TW200816131A - Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method - Google Patents

Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method Download PDF

Info

Publication number
TW200816131A
TW200816131A TW95136355A TW95136355A TW200816131A TW 200816131 A TW200816131 A TW 200816131A TW 95136355 A TW95136355 A TW 95136355A TW 95136355 A TW95136355 A TW 95136355A TW 200816131 A TW200816131 A TW 200816131A
Authority
TW
Taiwan
Prior art keywords
display
liquid crystal
display element
unit
state
Prior art date
Application number
TW95136355A
Other languages
Chinese (zh)
Inventor
Masaki Nose
Hisashi Yamaguchi
Tsuneo Watanuki
Makoto Fukuda
Toshiaki Yoshihara
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW95136355A priority Critical patent/TW200816131A/en
Publication of TW200816131A publication Critical patent/TW200816131A/en

Links

Abstract

The present invention relates to a display element comprising a plurality of display units stacked together, an electronic paper using the same, an electronic terminal device using the paper, a display system using the device, and an image processing method for a display element. The invention has an object of providing a display element capable of achieving images of high display image quality with improved usability, an electronic paper using the same, an electronic terminal device using the paper and a display system using the device. The liquid crystal display element 1 comprises the green display part 6g as the first display part, the red and the blue display parts 6r and 6b, as the second and the third display parts, which are stacked on the G display part 6g and are provided with display regions arranged in correspondence to the display region of the G display part 6g, and the display control circuit 29 which, after performing a reset operation that transfers the display regions to the same display state to the green display part 6g, controls to start reset operations to the red and the blue display parts 6r and 6b.

Description

200816131 九、發明說明: t ^^明所屬領 技術領域 本發明係關於積層有複數顯示部之顯示元件、具有該 5痛示元件之電子紙、具有該電子紙之電子終端機器及具有 該電子終端機器之顯示系統以及顯示元件之影像處理方 法。 L先前技術3 背景技術 10 近年來,於各企業及各大學中,電子紙的開發正興盛 進行著。已提案有利用電子紙之適用市場,以電子書籍為 首’而且有行動終端機器之副顯示器及1€卡之顯示部等多 用途應用行動式機器。電子紙之有力的顯示方式之一,乃 有使用可形成膽固醇相之液晶組成物(稱為膽固醇液晶)的 15液晶顯示元件。膽固醇液晶,具有半永久性的顯示保持特 性(記憶性)、鮮明的色彩顯示特性、高對比特性及高解析度 特性等優異的特點。 第11圖係板式化地表示使用膽固醇液晶之可全彩顯示 之液晶顯示元件51的剖面構造。液晶顯示元件51具有從顯 20不面順序地積層M色⑻顯示部働、綠色⑼顯示料g、紅 色W顯示部46r的構造。於圖式中,建構成上側的基板47b 側為顯示面,外來光源(實料頭)絲板47b上方朝向顯示 、入X ’在基;fe47b_L方储式化表示朗者的眼睛及 其觀察方向(虛線箭頭)。 5 200816131 —B顯示部46b具有已密封於-對上下基板47b 、49b間的 二色(B)用液晶43b、可對8用液晶層43b施加預定之脈波電 i的脈波包壓源4lb。G顯示部46g具有已密封於一對上下基 板47g、49g間的綠色(G)用液晶,、可對〇用液晶層43名施 加預定之脈波電壓的脈波電壓源4丄g。r顯示部输具有已密 封於一對上下基板47Γ、491*間的紅色(R)用液晶43r、可對R 用液晶層43r施加預义之脈波電壓的脈波電壓源仙。R顯示 部46r之下基板49r背面配置著光吸收層45。 使用於各B、G、R用液晶層43b、43g、43r之膽固醇液 1〇晶係以數十wt%之掌狀性之添加物(亦稱對掌材)含有率較 大里地添加於扭轉性液晶的液晶混合物。一旦扭轉性液晶 以車父大ΐ地含有對掌性材,則能形成將扭轉性液晶分子強 力地扭轉成螺旋狀的膽固醇相。膽固醇液晶亦稱為對掌性 扭轉液晶。 15 膽固醇液晶具有雙安定性(記憶性),依據調節施加於液 晶的電場強度而可呈平行螺旋狀態、垂直螺旋狀態或平行 螺旋狀態與垂直螺旋狀態混合存在之中間性狀態之其中任 何狀態,一旦形成平行螺旋狀態、垂直螺旋狀態,則之後 即使是在無電場情形下亦呈穩定而保持其狀態。 20 平行螺旋狀態係將預定的高電壓施加於上下基板47、 49間,並對液晶層43施予強電場之後,急劇地使電場設成 零而獲得。垂直螺旋狀態係例如將比前述高電壓低的預定 電壓施加於上下基板47、49間,並且對液晶層43施予電場 之後,再急劇地使電場設成零的狀態而獲得。平行螺旋狀 6 200816131 態與垂直螺旋狀態混合存在之中間性狀態,係例如將比可 獲得垂直螺旋狀態之電壓低的電壓施加於上下基板47、49 間’並且對液晶層43施予電場之後,再急劇地使電場設成 零而獲得。 5 使用第12圖並且以B顯示部46b為例來說明使用了此膽 固醇液晶的液晶顯示元件的顯示原理。第12圖(a)表示B顯 示部46b之B用液晶層43b於平行螺旋狀態中之膽固醇液晶 之液晶分子33的配向狀態。第12圖(b)表示B顯示部46b之B 用液晶層43b於垂直螺旋狀態中之膽固醇液晶之液晶分子 10 33的配向狀態。 如第12圖⑻所示,在平行螺旋狀態下之液晶分子33朝 基板厚度方向順序地旋轉而形成螺旋構造,螺旋構造之螺 旋軸約垂直於基板面。在平行螺旋狀態下,對應液晶分子 之螺旋間距之預定波長領域的光會在液晶層被選擇性地反 15 射。若是將液晶層之平均折射率設為η,而將螺旋間距設為 Ρ,則反射呈最大的波長λ能以λ = η · ρ表示。 因此,在Β顯示部46b之Β用液晶層43b於平行螺旋狀態 時要選擇性地反射藍色光的場合,乃要決定平均折射率η及 螺旋間距ρ以達到例如;I =48〇nm。而以選擇液晶材料及對 20 掌材而能調整平均折射率η,且以調整對掌材之含有率而能 調節螺旋間距Ρ。 另一方面,如第12圖(b)所示,在垂直螺旋狀態下的液 晶分子33朝向基板内面方向順次地轉旋後形成螺旋構造’ 螺旋構造的螺旋軸約平行於基板面。若是垂直螺旋狀態的 7 200816131 話,對B用液晶層43b失去反射波長的選擇性,入射光幾乎 全都透過。透過光被配置在R顯示部46r之下基板49r背面的 光吸收層45吸收,因此能實現暗(黑)顯示。 如上所述,膽固醇液晶以扭轉成螺旋狀之液晶分子33 5 的配向狀態而能控制光的反射透過。與上述B用液晶層43b 同樣地’將平行螺旋狀態時可選擇性地反射綠或紅的光的 膽固醇液晶’分別封入G用液晶層43g及R用液晶層43r而可 製成全彩顯示之液晶顯示元件51。 第13圖表示各液晶層43b、43g、43r於平行螺旋狀態之 10反射光譜的一例。橫軸表示反射光之波長(nm),縱軸表示 反射率(白色板比;%)。在B用液晶層3b之反射光譜在圖中 以連結▲記號之曲線表示。同樣地,在G用液晶層3g之反射 光譜在圖中以連結記號之曲線表示,而在R用液晶層七 之反射光譜在圖中以連結♦記號之曲線表示。 I5 如弟13圖所不,各液晶層43b、43g、43r之平行螺旋狀 悲之反射光谱的中心波長以B、G’R的順序變長,因此靡固 醇液晶之螺旋間距以液晶層43b、43g、43r的順序變長。如 此一來,液晶層43b、43g、43r之膽固醇液晶的對掌性材的 含有率必須以液晶層43b、43g、43r的順序變低。 20 一般而言,反射波長愈短,則必須強力地扭轉液晶分 子而將螺旋間距弄短,因此膽固醇液晶中的對掌性材的含 有率會變高。又,一般而言,會有對掌性材之含有率愈高, 則驅動電壓會變高的傾向。又,反射頻帶幅△ λ會隨著膽 固醇液晶之折射率異方向性△ η變大而變大。 8 200816131 專利文獻1 :特開2004—219715號公報 專利文獻2 :特開2002— 139746號公報 【發明内容】 發明概要 5 發明欲解決的課題 使用膽固醇液晶之液晶顯示元件,會有一旦長時間顯 示靜止晝面,則即使更新成不同畫面,亦會發生稍稍地殘 留之前之顯示影像之所謂「燒烙」的問題。燒烙的原因可 推測有水分、離子性不純物或液晶與基板界面之相性等各 10 種各樣的要因。為了根絕燒烙,在材料的精製度及界面狀 態上要求非常高的穩定性。又,為了防止此燒烙情形,乃 有使液晶顯示元件具備計時器或光感測器,並藉著檢測出 經過連續動作時間或液晶顯示元件置於暗的環境的情形, 而使全晝面設於待機狀態(關閉顯示)以防止燒烙的方法。但 15 是,此等方法從待機狀態至復原(再顯示)會花費時間,因此 在急切必須看顯示影像時等情形下,會有液晶顯示元件之 便利性明顯降低的問題。 專利文獻1揭示了由於環境溫度愈高則燒烙現象發生 愈強,因此當溫度感測器檢測到預定以上的溫度的話,例 20 如會顯示全晝面變全黑之防止燒烙圖案,而將液晶設於垂 直螺旋狀態,藉此防止燒烙的方法。然而,一旦於顯示畫 面顯示防止燒烙圖案,則至此所顯示之影像會暫時消滅 了。如此一來,會產生液晶顯示元件之便利性顯著降低的 問題。 9 200816131 專利文獻2揭示了於7段的單色顯示中,於各階段分割 共用電極而降低消耗電力的方法。又,專利文獻2揭示了用 以防止燒烙而將顯示元件初始化的技術。但是,專利文獻2 僅揭示了 7段的單色顯示,而無關可彩色顯示之點陣型顯示 5 裝置的技術思想。 本發明之目的在於提供可獲得顯示品質優良之顯示影 像,提昇便利性之顯示元件、使用該顯示元件之電子紙、 使用該電子紙之電子終端機器及使用該電子終端機器之顯 不糸統。 10 &而且’本發明之目的在於提供可獲得良好的顯示狀 悲,提昇便利性之顯示元件的影像處理方法。 用以解決課題的手段 上述目的依據-種顯示元件而達成,該顯示元件的特 占在於具有·具備了第i顯示領域的第丨顯示部、與前述第1 I5顯:部積層,且具備了對應前述第丄顯示領域而酉己置之200816131 IX. Description of the invention: The present invention relates to a display element in which a plurality of display portions are laminated, an electronic paper having the five pain sensing elements, an electronic terminal device having the electronic paper, and the electronic terminal The display system of the machine and the image processing method of the display element. L Prior Art 3 Background Art 10 In recent years, the development of electronic paper is prospering in various enterprises and universities. A multi-purpose mobile device such as a sub-display of a mobile terminal device and a display unit of a 1€ card has been proposed as an application market using electronic paper. One of the powerful display methods of electronic paper is a liquid crystal display element using a liquid crystal composition (referred to as cholesteric liquid crystal) which can form a cholesterol phase. Cholesterol liquid crystals have excellent characteristics such as semi-permanent display retention characteristics (memory), vivid color display characteristics, high contrast characteristics, and high resolution characteristics. Fig. 11 is a plate view showing the cross-sectional structure of the liquid crystal display element 51 which can be displayed in full color using a cholesteric liquid crystal. The liquid crystal display element 51 has a structure in which an M color (8) display portion 働, a green (9) display material g, and a red W display portion 46r are laminated in this order. In the drawing, the side of the substrate 47b on the upper side is a display surface, and the upper side of the external light source (solid material) wire plate 47b is oriented toward the display and enters X' at the base; the storage of fe47b_L indicates the eyes of the person and its viewing direction. (dashed arrow). 5 200816131 - B display portion 46b has a liquid crystal 43b for two colors (B) sealed between the pair of upper and lower substrates 47b, 49b, and a pulse wave voltage source for applying a predetermined pulse wave power i to the liquid crystal layer 43b for 8 . The G display portion 46g has a green (G) liquid crystal sealed between the pair of upper and lower substrates 47g and 49g, and a pulse wave voltage source 4丄g which can apply a predetermined pulse wave voltage to the liquid crystal layer 43. The r display unit transmits a red (R) liquid crystal 43r sealed between the pair of upper and lower substrates 47A and 491*, and a pulse wave voltage source capable of applying a predetermined pulse wave voltage to the R liquid crystal layer 43r. The light absorbing layer 45 is disposed on the back surface of the substrate 49r under the R display portion 46r. The cholesterol liquid 1 〇 crystal system used for each of the B, G, and R liquid crystal layers 43b, 43g, and 43r is added to the twist in a large amount of the palm-shaped additive (also referred to as the palm material) of several tens of weight%. Liquid crystal liquid crystal mixture. Once the torsion liquid crystal contains the palm material in a big way, the twisted liquid crystal molecules can be strongly twisted into a spiral cholesterol phase. Cholesterol liquid crystals are also known as palmar twisted liquid crystals. 15 Cholesterol liquid crystal has double stability (memory), which can be in any state of parallel state, vertical spiral state or parallel spiral state mixed with vertical spiral state depending on the electric field strength applied to the liquid crystal. A parallel spiral state and a vertical spiral state are formed, and then the state is maintained even in the absence of an electric field. The parallel spiral state is obtained by applying a predetermined high voltage between the upper and lower substrates 47, 49 and applying a strong electric field to the liquid crystal layer 43, and then rapidly setting the electric field to zero. The vertical spiral state is obtained, for example, by applying a predetermined voltage lower than the above-described high voltage between the upper and lower substrates 47 and 49, and applying an electric field to the liquid crystal layer 43, and then rapidly setting the electric field to zero. The intermediate state in which the parallel spiral 6 200816131 state is mixed with the vertical spiral state is, for example, a voltage lower than a voltage at which a vertical spiral state can be obtained is applied between the upper and lower substrates 47, 49' and an electric field is applied to the liquid crystal layer 43. It is obtained by sharply setting the electric field to zero. 5 The display principle of the liquid crystal display element using this cholesteric liquid crystal will be described using the Fig. 12 and taking the B display portion 46b as an example. Fig. 12(a) shows the alignment state of the liquid crystal molecules 33 of the cholesteric liquid crystal in the parallel spiral state of the B liquid crystal layer 43b of the B display portion 46b. Fig. 12(b) shows the alignment state of the liquid crystal molecules 1033 of the cholesteric liquid crystal in the vertical spiral state of the liquid crystal layer 43b of the B display portion 46b. As shown in Fig. 12 (8), the liquid crystal molecules 33 in the parallel spiral state are sequentially rotated in the thickness direction of the substrate to form a spiral structure, and the spiral axis of the spiral structure is approximately perpendicular to the substrate surface. In the parallel spiral state, light of a predetermined wavelength region corresponding to the helical pitch of the liquid crystal molecules is selectively inverted in the liquid crystal layer. If the average refractive index of the liquid crystal layer is η and the pitch of the spiral is Ρ, the wavelength λ at which the reflection is maximum can be expressed by λ = η · ρ. Therefore, in the case where the liquid crystal layer 43b is selectively reflected in the parallel spiral state in the Β display portion 46b, the average refractive index η and the spiral pitch ρ are determined so as to be, for example, I = 48 〇 nm. The average refractive index η can be adjusted by selecting the liquid crystal material and the 20 palm material, and the helical pitch Ρ can be adjusted by adjusting the content of the palm material. On the other hand, as shown in Fig. 12(b), the liquid crystal molecules 33 in the vertical spiral state are sequentially rotated toward the inner surface of the substrate to form a spiral structure. The spiral axis of the spiral structure is approximately parallel to the substrate surface. In the case of the vertical spiral state of 7 200816131, the liquid crystal layer 43b for B loses the selectivity of the reflection wavelength, and the incident light is almost completely transmitted. The transmitted light is absorbed by the light absorbing layer 45 disposed on the back surface of the substrate 49r under the R display portion 46r, so that dark (black) display can be realized. As described above, the cholesteric liquid crystal can control the reflection of light by the alignment state of the liquid crystal molecules 33 5 which are twisted into a spiral shape. Similarly to the above-mentioned liquid crystal layer 43b for B, 'the cholesteric liquid crystal ' which selectively reflects green or red light in a parallel spiral state is sealed in the liquid crystal layer 43g for G and the liquid crystal layer 43r for R, respectively, and can be displayed in full color. Liquid crystal display element 51. Fig. 13 shows an example of a reflection spectrum of each of the liquid crystal layers 43b, 43g, and 43r in a state of parallel spiral. The horizontal axis represents the wavelength (nm) of the reflected light, and the vertical axis represents the reflectance (white plate ratio; %). The reflection spectrum of the liquid crystal layer 3b for B is shown by a curve connecting ▲ marks in the figure. Similarly, the reflection spectrum of the liquid crystal layer 3g for G is indicated by a curved line in the figure, and the reflection spectrum of the liquid crystal layer 7 for R is indicated by a curve connecting ♦ marks in the figure. I5, as shown in Fig. 13, the center wavelength of the parallel spiral reflection spectrum of each of the liquid crystal layers 43b, 43g, 43r becomes longer in the order of B and G'R, so the helical pitch of the sterol liquid crystal is the liquid crystal layer 43b. The order of 43g and 43r becomes longer. As a result, the content of the palmitic liquid material of the liquid crystal layers 43b, 43g, and 43r must be lower in the order of the liquid crystal layers 43b, 43g, and 43r. 20 In general, the shorter the reflection wavelength, the stronger the liquid crystal molecules must be twisted and the spiral pitch is shortened. Therefore, the content of the palm material in the cholesteric liquid crystal becomes high. Further, in general, the higher the content rate of the palm material, the higher the driving voltage tends to be. Further, the reflection band width Δ λ becomes larger as the refractive index anisotropy Δ η of the cholesteric liquid crystal becomes larger. [Patent Document 1] JP-A-2004-219715 (Patent Document 2) JP-A-2002- 219746 SUMMARY OF INVENTION Technical Problem 5 Problems to be Solved by the Invention A liquid crystal display element using a cholesteric liquid crystal may be displayed for a long time. Even if it is updated to a different screen, the problem of so-called "burning" of the previously displayed image slightly remains. The reason for the burning is estimated to be 10 kinds of various factors such as moisture, ionic impurities or phase interaction between the liquid crystal and the substrate. In order to eliminate the burning, very high stability is required in the fine system and interface state of the material. Further, in order to prevent this burning, the liquid crystal display element is provided with a timer or a photo sensor, and the full surface is made by detecting that the continuous operation time or the liquid crystal display element is placed in a dark environment. Set to standby (turn off display) to prevent burning. However, in the case where these methods take time from the standby state to the restoration (redisplay), there is a problem that the convenience of the liquid crystal display element is remarkably lowered in the case where it is urgent to look at the display image. Patent Document 1 discloses that the higher the ambient temperature, the stronger the burning phenomenon occurs. Therefore, when the temperature sensor detects a predetermined temperature or higher, the example 20 shows that the full-faced all-black anti-burning pattern is displayed. The liquid crystal is placed in a vertical spiral state, thereby preventing the method of burning. However, once the burn-in prevention pattern is displayed on the display screen, the image displayed so far is temporarily erased. As a result, there is a problem that the convenience of the liquid crystal display element is remarkably lowered. 9 200816131 Patent Document 2 discloses a method of dividing a common electrode at each stage to reduce power consumption in a monochrome display of seven stages. Further, Patent Document 2 discloses a technique for initializing a display element to prevent burning. However, Patent Document 2 only discloses a monochrome display of 7 segments, and the technical idea of the dot device type display device of the color display is irrelevant. SUMMARY OF THE INVENTION An object of the present invention is to provide a display element which can obtain a display image excellent in display quality, to improve convenience, an electronic paper using the display element, an electronic terminal device using the electronic paper, and a display using the electronic terminal device. 10 & and 'The object of the present invention is to provide an image processing method for a display element which can obtain a good display sorrow and improve convenience. Means for Solving the Problem The above-described object is achieved in accordance with a display element which is characterized in that it has a second display portion having an i-th display field and a first I5 display portion. Corresponding to the aforementioned third display field

顯示領域的第2顯示冑、可進行控制對前述第!顯示部進行 使,、、頁I員域轉移至相同顯示狀態之復置處理之後妒寸 述第2顯示部之前述復置處理的顯示控制部。 20 如上述本發明之顯示元件,其中前述第1及第2顯一邱 刀別具有·複數的掃描電極、與前述複數的掃描 , 而配置之複數㈣料電極、分綱彡躲前述複 ^ 極與前述複數的杳、掃描電 旻數的貝枓%極之交叉部,並配置 複數的像素,見俞、+ι 啤形狀之 、卜 ” 刖述顯不控制部可進行控制同時選埋^、 複數的掃描電極,^ 、擇剐述 並對珂述第1或第2顯示部進行前述復置 10 200816131 處理。 如上述本發明之顯示元件,其中前述顯示控制部&lt;進 行控制大約相同波形之電壓脈波同時施加於前述複數的像 素,並使前述第1或第2顯示部進行前述復置處理。 5 如上述本發明之顯示元件,其中前述顯示控制部可進 行控制前述第1顯示部之前述復置處理結束後,開始將影像 資料電極料寫入前述第1顯示領域的寫入處理,並於結束前 述寫入處理後,開始前述第2顯示部的復置處理。 如上述本發明之顯示元件,其中更具有第3顯示部,該 10第3顯示部與分別表示反射光之狀態、透過光之狀態或此等 狀態之中間性之狀態並反射相互不同色之光的前述第1及 第2顯示部一同積層,並具備了對應前述第1及第2顯示領域 而配置之第3顯示領域,且該第3顯示部表示反射光之狀 態、透過光之狀態或該等狀態之中間狀態並反射與在前述 15 第1及第2顯示部反射之光不同色的光。 如上述本發明之顯示元件,其中前述顯示控制部以與 其他顯示部呈獨立之時序,控制可反射最接近顯示影像之 色調之顏色的前述第1至第3顯示部之中的一個顯示部,以 與其他顯示部獨立的時序進行前述復置處理。 20 如上述本發明之顯示元件,其中更具有測知開始前述 復置處理之時序的測知部。 如上述本發明之顯示元件,其中前述测知部具有用以 計測可避免前述顯示領域之燒烙之時間間隔的計測部。 如上述本發明之顯示元件,其中前述測知部具有測出 11 200816131 一 5 外部環境之照度的光測出部。 如上述本發明之顯示元件,其中前述顯示控制部可進 行控制,當前述光測出部所測出之前述照度比預定值低 時,開始前述第1顯示部的前述復置處理。 如上述本發明之顯示元件,其中前述第1至第3顯示部 具有記憶性。 如上述本發明之顯示元件,其中前述第1至第3顯示部 具有對向配置之一對基板、及密封在前述基板間而形成膽 固醇相的液晶。 10 如上述本發明之顯示元件,其中前述復置處理及前述 寫入處理使用DDS驅動方法。 如上述本發明之顯示元件,其中前述第1至第3顯示領 域係段型顯示方式的顯示段。 又,上述目的可依據一種電子紙而達成,該電子紙係 15 用以顯示影像者,且其特點在於具有上述本發明之顯示元 件。 又,上述目的可依據一種電子終端機器而達成,該電 子終端機器係用以顯示影像者,且其特點在於具有上述本 發明之電子紙。 ^ 20 又,上述目的可依據一種顯示系統而達成,該顯示系 統係用以顯示影像者,且其特點在於具有上述本發明之電 子終端機器。 再者,上述目的可依據一種顯示元件之影像處理方法 而達成,該顯示元件之影像處理方法係用以驅動第1顯示部 12 200816131 — 5 及第2顯示部並顯示影像者,該第1顯示部係具有第1顯示領 域者,而該第2顯示部係與前述第1顯示部積層,且具有對 應前述第1顯示領域而配置之第2顯示領域者,其特點在於 前述顯示元件之影像處理方法對前述第1顯示部進行將顯 示領域轉移至相同顯示狀態之復置處理之後,開始前述第2 顯示部之前述復置處理。 上述本發明之顯示元件之影像處理方法,其中進行控 制以使同時選擇前述第1及第2顯示部具有之複數掃描電 極,並對前述第1或第2顯示部進行前述復置處理。 10 上述本發明之顯示元件之影像處理方法,其中進行控 制以對複數的像素同時施加大約相同波形的電壓,並對前 述第1或第2顯示部進行前述復置處理,而該複數的像素分 別形成於前述複數掃描電極與前述複數掃描電極交叉而配 置之複數資料電極之交叉部,且配置成矩陣狀。 15 上述本發明之顯示元件之影像處理方法,其中前述第1 顯示部之前述復置處理結束後,開始將影像資料寫入前述 第1顯示領域的寫入處理,且前述寫入處理結束後,開始前 述第2顯示部之前述復置處理。 上述本發明之顯示元件之影像處理方法,其中前述第1 ' 20 顯示部、前述第2顯示部、及與前述第1及第2顯示部一同積 層且具有第3顯示領域之第3顯示部,反射相互不同色的 光,且使反射最接近顯示影像之色調之顏色的前述第1至第 3顯示部之中的一個顯示部,以與其他顯示部呈獨立之時序 進行前述復置處理。 13 200816131 上述本發明之顯示元件之影像處理方法,其中可進行 控制以玎避免前述顯示領域之燒烙的時間間隔,開始前述 復置處理。 上述本發明之顯示元件之影像處理方法,其中進行控 5制以當外部環境之照度比預定值低時,開始前述第1顯示部 之前述復置處理。 上述本發明之顯示元件之影像處理方法,其中使用 DDS驅動方法而進行前述復置處理及前述寫入處理。 發明功效 10 依據本發明,可實現能獲得顯示品質優良之顯示影 像,提昇便利性之顯示元件、使用該顯示元件之電子紙、 使用該電子紙之電子終端機器及使用該電子終端機器之顯 示系統。 圖式簡單說明 15 弟1圖表示作為本發明之第1實施樣態所構成之顯示元 件之液晶顯示元件1的概略構造。 第2圖係模式化表示作為本發明之第1實施樣態所構成 之顯示元件之液晶顯示元件1的剖面構造。 苐3圖(a)、(b)表示作為本發明之第1實施樣態所構成之 20 顯示元件之液晶顯示元件1之驅動波形的一例。 第4圖表示作為本發明之第1實施樣態所構成之顯示元 件之液晶顯示元件1之液晶組成物之電壓一反射率特性的 一例0 第5圖表示作為本發明之第1實施樣態所構成之顯示元 14 200816131 件之液晶顯示元件1之影像處理方法的流程圖。 第6圖(a)-(d)係模式化表示使用本發明之第1實施樣態 所構成之顯示元件之影像處理方法,而進行再新處理中的 顯示部6。 5 第7圖係說明本發明之第1實施樣態所構成之顯示元件 之影像處理方法,且係說明顯示領域之燒烙的評價方法。 第8圖係說明本發明之第1實施樣態所構成之顯示元件 之影像處理方法,且係說明顯示領域之燒烙的評價方法。 第9圖(a)、(b)係說明使用於本發明之第2實施樣態所構 10 成之顯示元件的DDS驅動方法。 第10圖表示本發明之第2實施樣態所構成之顯示元件 之影像處理方法,且表示將DDS驅動方法應用於復置處理 及寫入處理時之驅動波形。 第11圖係模式化表示習知可全彩顯示之液晶顯示元件 15 的剖面構造。 第12圖(a)、(b)係模式化表示習知之液晶顯示元件之一 液晶層的剖面構造。 第13圖表示習知之液晶顯示元件在平行螺旋狀態之反 射光譜的一例。 20【資地方式】 實施發明之最佳樣態 [第1實施樣態j 使用第1至第8圖來說明依據本發明之第1實施樣態所 構成之顯示元件、使用該顯示元件之電子紙、使用該電子 15 200816131 、 5 紙之電子終端機器及使用該電子終端機器之顯示系統以及 顯示元件之影像處理方法。本實施樣態以使用了藍(B)、綠(G) 及紅(R)用膽固醇液晶之液晶顯示元件1為例來說明顯示元 件。首先,使用第1至第4圖來說明依據本實施樣態所構成 之液晶顯示元件1的概略構造。第1圖表示依據本實施樣態 所構成之液晶顯示元件1的概略構造的一例。第2圖係模式 化表示以平行於第1圖之左右方向的直線來切斷液晶顯示 元件1的剖面構造。 如第1圖及第2圖所示,液晶顯示元件1具有電路區塊la 10 與顯示驅塊lb。電路區塊la具有顯示部6,該顯示部6具有B 顯示部6b、G顯示部6g及R顯示部6r,該B顯示部6b具有B顯 示領域,而該B顯示領域具有在平行螺旋狀態下反射藍色光 的B用液晶層3b,該G顯示部6g具有G顯示領域,而該G顯示 領域具有在平行螺旋狀態下反射綠色光的G用液晶層3g,該 15 R顯示部6r具有R顯示領域,而該r顯示領域具有在平行螺 • 旋狀態下反射紅色光的R用液晶層3r。B、G、R顯示部6b、 6g、6r對應B、G、R顯示領域而配置,並以此順序從光入 射面(顯示面)這一侧積層。而且,顯示驅塊lb具有用以驅動 顯示部6之掃描電極電路20及資料電極電路21。 * 20 相對於此,電路區塊^具有將由例如未以圖式顯示之 系統側輸入之3〜5v直流電壓,轉換成驅動顯示驅塊lb必須 之直流電壓的電源部28。又,電路區塊la具有顯示控制電 路29(顯示控制部),該顯示控制電路29可進行控制以於R、 G、B顯示部6r、6g、&amp;之其中一者,進行使顯示領域轉移 16 200816131 至相同顯示狀態之復置處理後,開始剩餘之顯示部的復置 處理,或是產生用以於顯示部6顯示影像之預定控制信號。 而且’電路區塊la具有記憶從系統側輸入之輸入影像資料 的影像資料記憶體3G、及測知開始顯示部6之復置處理之時 5 序的測知部25。 建構成電源部28具有昇壓部22、顯示元件驅動電壓產 生部23及調節器24。昇壓部22具有例如DC〜Dc變流器,可 將由系統侧輸入之直流3〜5V的輸入電壓,昇壓至驅動顯示 部6所必須之直流30〜40V前後的電壓。顯示元件驅動電壓 10產生部23使用以昇壓部22所昇壓的電壓與輪入電壓,並可 因應各像素之灰階值及選擇/非選擇之個別狀況而產生複 數位準的電壓。調節器24具有基納二極體及運算放大器 等’可使電壓產生部23所產生之電壓穩定,並供給至顯示 區塊lb所具備之掃描電極電路2〇及資料電極電路21。 15 建構成測知部25具有計時器(計測部)27與光感測器(光 测出部)26。計時器27使用於用以計测可避免顯示部6之顯 示領域之燒烙的時間間隔。光感測器26可測出放置液晶顯 示元件1之外部環境的照度。測知部25可將計時器27計測之 日守間賓料與光感測器26測出之照度資料輸出至顯示控制電 20 路 29 〇 如將於後段詳細說明的情形,建構成顯示控制電路29 使用從測知部25輸出之時間資料及照度資料,而將用以開 始顯示部6之復置處理的控制信號,輸出至掃描電極驅動電 路20及資料電極驅動電路21。又,顯示控制電路29依據從 17 200816131 影像資料記憶體30讀出之每一R、G、B顯示部6r、6g、6b 之影像資料,與預設之驅動波形資料而產生驅動資料。建 構成顯示控制電路29將已產生之驅動資料配合資料擷取時 鐘,而輸出至掃描電極驅動電路20及資料電極驅動電路 5 21。又,建構成顯示控制電路29將掃描方向信號、脈波極 性控制信號、訊框開始信號、資料鎖存掃描移位、關閉驅 動器輸出等控制信號,輸出至該二電路20、21。 其次,詳細說明顯示區塊lb的構造。如第1圖及第2圖 所示,顯示區塊lb所具有之B顯示部6b具有對向配置之一對 10 上下基板7b、9b、密封在兩基板7b、9b間的B用液晶層3b。 B用液晶層3b具有B用膽固醇液晶,該B用膽固醇液晶已被 調整平均折射率η及螺旋間距p而用以選擇性地反射藍色。 G顯示部6g具有對向配置之一對上下基板7g、9g、密封 在兩基板7g、9g間的G用液晶層3g。G用液晶層3g具有G用 15膽固醇液晶,該G用膽固醇液晶已被調整平均折射率n及螺 旋間距p而用以選擇性地反射綠色。 R顯示部6r具有對向配置之一對上下基板7r、9r、密封 在兩基板7r、9r間的G用液晶層3r。R用液晶層3r具有G用膽 固醇液晶,該G用膽固醇液晶已被調整平均折射率n及螺旋 2〇 間距P而用以選擇性地反射紅色。 構成B、G、R用液晶層3b、3g、3r的液晶組成物,係 將對掌性材添加10〜40wt%於扭轉液晶的膽固醇液晶。對 掌性材之添加率為扭轉液晶成分與對掌性材之合計量設為 lOOwt%時的值。雖然可使用習知之各種材料作為扭轉液 18 200816131 阳^疋作為膽固醇液晶組成物之介電率異方向性△ε 最好為2()‘Δ ε $5G。錢介電率異方向性△ ε為20以 上,則可使用之對掌材的選擇範圍變廣。X,一旦介電率 異方向性^ ε比上述範圍低,則各液晶層3b、3g、3r之驅 5動電齡變高。相對於此,一旦介電率異方向性“高過 上述範圍,職晶顯示元件丨之穩定性及可#度降低而易發 生影像缺陷或影像失真。 膽固醇液晶之折射率異方向性△ n係支配晝質之重要 的物性。折射率異方向性Δη之值最好為〇心24。 10旦折射率異方向性△ η比此範圍小,則平行螺旋狀態之各 液晶層3b、3g、3r的反射率會變低,因此呈亮度不足的暗 顯示。相對於此,折射率異方向性Δη若是比此範圍大,則 液晶層3b、3g、3r在垂直螺旋狀態的散射反射會變大,因 此顯示畫面之色純度及對比不足而形成模糊顯示。而且, 15折射率異方向性Δη若是比上述範圍大,則黏度也會變高而 會使膽固醇液晶降低反應速度。 膽固醇液晶之電阻率ρ之值最好是1〇ι〇 $ ρ $ 1013(Ω · cm)。又,膽固醇液晶之黏性低者可抑制低溫時之 電壓上昇及對比降低,因此為宜。 20 於B、G、R之各顯示部6b、6g、6r之積層構造中,平 行螺旋狀態中的G用液晶層3g的旋光性與B用及R用液晶層 3b、3r之旋光性不同’因此,在第13圖所示之藍與綠、以 及綠與紅之反射光譜重畳的領域,例如B用液晶層3b可反射 右圓偏光之光,G用液晶層3g可反射左圓偏光之光。藉此, 19 200816131 可降低反射光的損失,而能提昇液晶顯示元件丨之顯示畫面 的明亮度。 上基板7b、7g、7r及下基板9b、9g、9r必須具有透光性。 本實施樣態使用二片玻璃基板。又,可取代玻璃基板而使 5用聚碳酸酯(PC)薄膜基板或聚對苯二曱酸乙二酸酯(pet) 等薄膜基板。本實施樣態之上基板7b、7g、7r及下基板9b、 9g、9r均具有透光性,惟,配置於最下層之R顯示部&amp;之下 基板9r可為不透光性。 於B顯示部6b之下基板9b之B用液晶層3b側並列形成 1〇有朝向第1圖中之上下方向延伸之複數帶狀的資料電極 19b。又,於上基板7b之B用液晶層3b側並列形成有朝向第1 圖中之左右方向延伸之複數帶狀的資料電極17b。本實施樣 態中,將銦錫氧化物(indium Tin Oxide ; ITO)所構成之透明 電極予以圖案化,而形成條帶狀掃描電極17b及複數的資料 15 電極19b。兩電極17b、19b之形成材料例如可以ΓΓΡ為代表, 惟,此外可使用銦鋅氧化物(indium Zic Oxide ; IZO)等透明 導電膜或非晶質矽等光導電性膜等。 如第1圖所示,於法線方向觀看上下基板7b、9b之電極 形成面,兩電極17b、19b相互交叉對向配置。兩電極17b、 2〇 19b之各交叉領域分別構成像素(畫素)。又,第2圖所示之編 號17b、19b表不兩電極17b、19b之存在領域,而未教示該 等電極的形狀。 於兩電極17b、19b上配置之機能膜最好是分別塗上絕 緣性薄膜或液晶分子之配向穩定化膜(均未以圖式顯示)。絕 20 200816131 雜薄膜具有防止電極17b、1關軸路,且作减體屏 障層而能提昇液晶顯示元件!之可#度的機能。又,可使用 聚醯乙胺樹脂或丙烯酸_脂等作為配向穩定化膜。本實 施樣態例如於電極17b、上的分別㈤基板全面塗上 5 (coadmg)配向知定膜。配向穩定膜亦可兼用絕緣性薄膜。 藉著塗在上下基板7b、9b之外周圍的密封材2ib而使b 用液曰曰層3b被饴封在兩基板7b、%間。又,b用液晶層% 之厚度(晶胞間距)必須保持成均一。為了維持預定的晶胞間 距,將樹脂製或無機氧化物製之球狀間隔件(spacer)散置於 10 B用液晶層31&gt;内,或將表面已塗上熱可塑性樹脂之柱狀間隔 件以多數形成在B用液晶層3b内。於本實施樣態之液晶顯示 凡件1,在B用液晶層3b内亦插入球狀間隔件(圖式未顯示) 而保持晶胞間距的均一性。B用液晶層3七之晶胞間距d最好 是在的範圍。 15 〇顯示部6g及R顯示部6r具有與B顯示部讣相同的構 造’因此省略其說明。R顯示部6Γ之下基板9r的外面(背面) 設置有可見光吸收層15。因此在所有B、G、R之各液晶層 3b、3g、3r於垂直螺旋狀態時,液晶顯示元件丨之顯示晝面 可顯示黑色。又,可見光吸收層15因應必要來設置即可。 20 安裝有用以個別驅動複數掃描電極17b、17g、I7r之掃 描電極用驅動器1C之掃描電極驅動電路20連接於上基板 7b、7g、7r。又,安裝有用以個別驅動複數資料電極191)、 Dg ' 19r之資料電極用驅動器IC之資料電極驅動電路21連 接於下基板9b、9g、9r。建構成此等驅動電路2〇、21依據 21 200816131 從顯^控制電路29輸出之預定信號,而將脈波狀之掃描信 说或貝料彳5就輪出至預定的掃描電極H I%、π或資料 電極 19b、19g、&amp;。 藉著將輪入輪出裝置及總括整體之控制裝置(均未以 5圖式α不)6又置於第i圖所示之液晶顯示元件^而構成電子 、、氏°亥私子紙可作為電子終端機器之顯示裝置使用。該電 子終端機器可作為顯示系統之顯示裝置使用。 、接=,使用第3圖及第4圖來說明液晶顯示元❸之驅動 方法帛3圖表示液晶顯示元件丨之驅動資料之驅動波开》的 1〇 :例。第3圖⑷表示用以將膽固醇液晶驅動成為平行螺旋狀 態的驅動波形’第3圖⑻表示用以將膽固醇液晶驅動成為垂 直螺旋狀態的驅動波形。於第3圖⑷及第3圖⑻,圖上段表 示從資料電極驅動電路2G輸出之資料信號電壓別的波形, 圖中段表示從掃描電極驅動電路21輸出之掃減號電壓% 15的波形’圖下段表示施加於B、G、R用之各液晶層%、%、 3r之其中任何像素的施加電壓Vlc的波形。又於第3圖0) 及第3圖(b),從圖左至圖右表示經過時間,而圖之上下方向 表示電壓。 第4圖表示膽固醇液晶之電壓—反射率特性的一例。橫 20軸表示施加於膽固醇液晶之電壓值(V),縱轴表示膽固醇液 晶的反射率(%)。第4圖所示之實線的曲線p表示初始狀態為 平 &lt;亍螺說狀悲之膽固醇液晶的電塵一反射率特性,虛線之 曲線FC表示初始狀態為垂直螺旋狀態之膽固醇液晶的電壓 一反射率特性。 22 200816131 以例子說明將預定電壓施加於第i圖所示之3顯示部沾 之第1列之資料電極19b與第1行之掃描電極17b之交又部的 藍(B)像素(1、1}的情形。如第3圖⑷所示,於選擇第丨行之 掃描電極17b之選擇期間T1之前半的約1/2期間,相對於資 5料信號電壓Vd為+ 32V,掃描信號電壓Vs為〇v,而在後半 的約1/2期間,相對於資料信號電壓¥(1為〇¥,掃描信號電 壓Vs為+ 32V。因此,B像素(1、1)之b用液晶層3七於選擇 期間T1之間被施加±32V的脈波電壓。如第4圖所示,一旦 預定的咼電壓VP 100(例如32V)施加於膽固醇液晶而產生強 10的電場,則液晶分子之螺旋構造完全解開,所有的液晶分 子隨著電場的方向而形成垂直配向狀態。因此,B像素〇、 1)之B用液晶層3b的液晶分子於選擇期間T1呈垂直配向狀 態。 一旦選擇期間τι結束而呈非選擇期間T2,則以選擇期 15間T1之丨/2周期對第1行的掃描電極17b施加例如+ 28V及 + 4V的電壓。相對於此,預定的資料信號電壓¥(1施加於第 1列之資料電極19b。於第3圖(a)中,以選擇期間丁丨之丨/2 周期對第1列的資料電極17施加例如+ 32V及0V的電壓。因 此,在非選擇期間T2之間可對b像素(1、1)之b用液晶層3b 20施加土4V的脈波電壓。如此一來,在非選擇期間T2之間, 於B像素(1、1)之B用液晶層3b產生的電場約為零。 液晶分子垂直配向狀態時施加液晶電壓從vpl〇〇(土 32V)改變至VF0(±4V)後急劇地將電場設成約零時,則液晶 分子之螺旋軸相對於兩電極l7b、呈現朝向約垂直的螺 23 200816131 旋狀態,而形成選擇性反射其對應螺旋間距之光的平行螺 旋狀態。爰此,因B像素(1、1)之B用液晶層3b形成平行螺 旋狀態後會反射光線,故於B像素(1、1)顯示藍色。 相對於此,如第3圖(b)所示,在選擇期間τι之前半的 5約1/2期間及後半的約1/2期間,相對於資料信號電壓vd 為24V/8V的情形,一旦掃描信號電壓Vs為0V/ + 32V, 貝U24V之脈波電壓施加於B像素(1、1)之B用液晶層3b。如 第4圖所示,——旦預定的低電壓VFlOOb(例如24V)施加於膽 固醇液晶後產生弱的電場,則液晶分子之螺旋構造形成未 10完全解開的狀態。一旦達到非選擇期間T2,則以選擇期間 T1之1/2周期對第1行的掃描電極17b施加例如+28V/ + 4V的電壓,預定的資料信號電壓vd(例如+24V/8V)的電 壓以選擇期間T1之1/2周期施加於資料電極19b。因此,在 非選擇期間T2之間可對B像素(1、1)之B用液晶層3b施加一 15 4V/ + 4V的脈波電壓。如此一來,在非選擇期間T2之間, 於B像素(1、1)之B用液晶層3b產生的電場約為零。 液晶分子之螺旋構造不完全解開的狀態下,若是將施 加於膽固醇液晶之電壓從VF100b(±24V)改變至VF0(±4V) 後急劇地使電場變成約零,則液晶分子之螺旋軸相對於兩 2〇電極17b、19b朝向約平行的方向而呈螺旋狀態,而成為透 過入射光的垂直螺旋狀態。因此,B像素(1、用液晶 層3b呈垂直螺旋狀態而透過光。又,如第4圖所示,施加 VPl〇〇(±32V)的電壓而使液晶層產生強的電場之後,即使漸 漸地除去電場,膽固醇液晶亦能形成垂直螺旋狀態。 24 200816131 上述驅動電壓為一例,在室溫下將3 0〜3 5 v的脈波狀電 壓對兩電極17b、19b之間施加實際效用時間20ms,則B用 液晶層3b之膽固醇液晶呈選擇反射狀態(平行螺旋狀態),將 15〜22V的脈波狀電壓施加實際效用時間20ms,則呈良好 5 的透過狀態(垂直螺旋狀態)。 藉著與上述B像素(1、1)之驅動同樣進行而驅動對應上 述B像素(1、1)而配置之綠(G)像素(1、1)及(R)像素(1、1), 能於已積層三個B、G、R像素(1、1)的像素(1、1),進行彩 色顯示。又,使從第1行至第η行之掃描電極17b、17g、17r, 10 進行所謂線順序驅動而於每一行改寫各資料電極19b的資 料電壓,藉此,可將顯示資料輸出到從像素(1、1)至像素(η、 m)之全部領域,而能實現〗訊框(顯示晝面)的彩色顯示。 又,將中間強度之電場施予膽固醇液晶並急劇地去除該電 場’則呈平行螺旋狀態與垂直螺旋狀態混合存在的中間灰 15 階,能作全彩顯示。 其次’使用第1至第5圖來說明依據本實施樣態所構成 之液晶顯示元件1之影像處理方法。進行控制以使於具有第 1顯示領域之第1顯示部進行使顯示領域轉移至相同顯示狀 態的復置處理後,開始與該第1顯示部積層且具有第2顯示 20領域之前述第2顯示部的復置處理。而且,本實施樣態所構 成之顯示元件之影像處理方法,係進行控制以使第1顯示領 域之復置處理結束後,開始將影像資料寫入第1顯示領域的 寫入處理,而於該寫入處理結束後,開始第2顯示領域的寫 入處理。如此一來,可建構成在保持顯示元件之可辨識度 25 200816131 的情形下,能執行顯示部的再寫入處理。在此說明所謂「再 寫入處理」乃指執行於顯示部進行將顯示領域設成特定的 顯示狀態的上述復置處理,且將影像資料寫入已進行復置 處理之該顯示部之寫入處理的一連_處理。又,以下的說 5明係將於顯示元件所具有之所有顯示部進行再寫入處理的 情形稱為再新處理。 膽固醇液晶的話,在作為特定 向狀態的再新處理後,進行寫入影像資料。藉此,能將待 機狀態或初始化中的顯示元件之辨識度降低的情形抑制在 10 最小限度。 而且本實施樣態能以可避免顯示部之顯示領域燒烙的 時間間隔,開始復置處理。藉此,可有效地防止顯示元件 的燒絡而維持良好的顯示狀態。 15 20 接著,以第1圖所示之液晶顯示元件1為例來說明依據 本實施樣態所構成之顯示元件的影像處理方法。第5圖表示 依據本實施樣態所構成之顯示元件之影像處理方法的流程 圖。第6圖係模式化表示依據本實施樣態所構成之顯示元件 之影像處理方法,而進行再新處理中的顯示部6。第6圖⑷ 再新處理之開始$及結束後的顯示部6,第6圖⑻及第6 圖⑷表示復置處理結束時之顯示部6,第㈣⑷表示寫入處 理結束時之顯示部6。第6_)至第6圖⑷中,上段所示之 圖係模式化表示顯示部6的剖面,下段所示之圖表示顯示部 的顯示影像。第6圖⑷至第6圖⑷之上㈣中,顯示部反 或透過己入射之光L的狀態乃表示通常的顯示狀態,顯示 26 200816131 部不反射光L而僅透過光的狀態乃表示進行著復置處理的 狀態。 以下如第6圖⑻所示,以塗滿紅色之圓形的圖形r、塗 滿綠色之三角形的圖形g及塗滿M色之四角_圖形b,配 5置於上側半部為白色而下側半部為灰色之背景的顯示影像 為例,說明顯示元件的影像處理方法。又,圖形『配置於白 色背景的領域,圖形g跨白色及灰色背景的領域,圖形成 響 i於灰色肖景之領域内。本實施樣態建構成因應顯示影像 整體的色調而變更進行復置處理之顯示部的順序或組合, 1〇以達到更能保持復置處理時顯示影像的辨識度。顯示影像 整體的色調可依據例如RGB各影像資料的像素值(灰階值) 的平均值來判k/f,或疋抽出已顯示在畫面中心之顯示影像 而槌已抽出的顯示影像來判斷。顯示影像整體之色調以顯 示控制電路29來判斷。 15 依據本實施樣態所構成之顯示元件的影像處理方法, • 如第5圖所示,首先,判斷顯示影像是否為單色(步驟S1)。 於步驟S1比較已寫入在R、G、B顯示部&amp;、6g、仍之顯示 領域内對應配置之像素的各個影像資料,若是於全像素對 應配置之各個像素的影像資料互為相同,則判斷為單色。 2〇如第1圖所不,例如B像素(1、丨)與分別配置於B像素(1、1) 之正下方的G像素(1、1)及R像素(!、〗)(均不以圖式顯示) 的影像資料相同,以下同樣地,若是B像素(1、2)至(n、m)、 象素(1 2)至(η、m)及R像素(1、2)至(n、m)之影像資料分 別相同,則判斷為單色。本例子如第6圖(4所示為彩色顯 27 200816131 示,因此判斷為非單色顯示〈步驟S1之否)。 其次,獨立並決定執行再寫入處理的顏色(步驟S6)。 _ 於步驟S6,例如顯示控制電路29從影像資料記憶體3〇分別 讀出RGB各影像資料後,對每— RGB求取顯示影像整體之 5灰階的平均值。接著,顯示控制電路29將灰階之平均值最 大的顏色判斷為最接近顯示影像整體的色調。如第6圖0) 所不,本例子之圖形g比其他的圖形r及圖形^^大,因此綠色 《灰階資料的平均值比其他顏色大。爰此,顯示控制電路 29判斷顯示影像的色調為綠色系。 1〇 接著,如第5圖所示,使反射最接近顯示影像之色調顏 色的纟、、員示。卩,以獨立於其他顯示部的時序進行復置處理(步 驟S7)。本例子使作為第丨顯示部之G顯示部獨立進行復置The second display of the display field can be controlled to the aforementioned! The display unit performs the above-described reset processing display control unit of the second display unit after the page member I field is transferred to the same display state. [20] The display element according to the above aspect of the invention, wherein the first and second display knives have a plurality of scan electrodes and the plurality of scans, and the plurality of (four) material electrodes and the sub-layers are arranged to avoid the complex electrode And the above-mentioned plural number of 杳, the intersection of the number of scanning electric 的 枓 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The plurality of scanning electrodes are selected, and the first or second display portion is subjected to the above-described resetting 10 200816131. The display element of the present invention described above, wherein the display control unit &lt; controls approximately the same waveform The voltage pulse wave is simultaneously applied to the plurality of pixels, and the first or second display unit performs the above-described reset processing. The display device of the present invention, wherein the display control unit can control the first display unit. After the completion of the resetting process, the image data electrode material is written into the writing process of the first display area, and after the writing process is completed, the reset processing of the second display unit is started. According to the display element of the present invention, the third display portion further includes a state of reflected light, a state of transmitted light, or an intermediate state between the states, and reflects different colors. The first display unit and the second display unit are laminated together, and include a third display area that is disposed corresponding to the first and second display areas, and the third display unit indicates a state of reflected light, a state of transmitted light, or The intermediate state of the states reflects the light of a color different from the light reflected by the first and second display portions. The display device of the present invention, wherein the display control unit is independent of the other display portions. Controlling one of the first to third display portions that can reflect the color of the hue closest to the display image, and performing the reset processing at a timing independent of the other display portions. 20 As described above, the display element of the present invention Further, the display unit of the present invention has a sensing unit that detects the timing of the start of the resetting process. The display unit of the present invention, wherein the detecting unit has a measuring portion for avoiding the display. The display unit of the present invention, wherein the detecting unit has a light detecting portion that measures the illuminance of the external environment of 11 200816131 - 5. The display element of the present invention described above, wherein the foregoing The display control unit is configured to control the reset processing of the first display unit when the illuminance measured by the light detecting unit is lower than a predetermined value. The display element of the present invention, wherein the display element is the first to In the display element of the present invention, the first to third display portions have a pair of substrates disposed opposite to each other and a liquid crystal sealed between the substrates to form a cholesterol phase. In the display element of the present invention, the above-described reset processing and the aforementioned write processing use a DDS driving method. The display element of the present invention as described above, wherein the first to third display areas are display segments of the segment type display mode. Further, the above object can be attained in accordance with an electronic paper system 15 for displaying an image, and is characterized by having the above-described display element of the present invention. Further, the above object can be attained by an electronic terminal device for displaying an image, and characterized in that it has the above-described electronic paper of the present invention. Further, the above object can be attained in accordance with a display system for displaying an image, and is characterized by having the above-described electronic terminal machine of the present invention. Furthermore, the above object can be achieved according to an image processing method for a display element, wherein the image processing method of the display element is for driving the first display unit 12 200816131 - 5 and the second display portion and displaying the image, the first display The second display unit is formed in the first display area, and the second display unit is provided in the second display area corresponding to the first display area, and is characterized in that the display unit performs image processing. In the method of performing the resetting process of shifting the display area to the same display state in the first display unit, the above-described reset processing of the second display unit is started. The image processing method of the display element according to the present invention is characterized in that the plurality of scanning electrodes included in the first and second display portions are simultaneously selected, and the reset processing is performed on the first or second display portion. [10] The image processing method of the display device of the present invention, wherein the control is performed to simultaneously apply a voltage of approximately the same waveform to the plurality of pixels, and perform the above-described reset processing on the first or second display portion, and the plurality of pixels respectively The intersection of the plurality of data electrodes disposed between the plurality of scan electrodes and the plurality of scan electrodes is arranged in a matrix. In the image processing method of the display device of the present invention, after the resetting process of the first display unit is completed, the image data is written into the writing process of the first display area, and after the writing process is completed, The aforementioned reset processing of the second display unit is started. In the image processing method of the display device of the present invention, the first '20 display unit, the second display unit, and a third display unit that are stacked together with the first and second display units and have a third display area are provided. The display unit that reflects the light of the different colors and the one of the first to third display portions that reflect the color of the hue of the display image is subjected to the reset processing at a timing independent of the other display portions. 13 200816131 The image processing method of the display element of the present invention described above, wherein the control can be controlled to avoid the time interval of burning in the display field, and the foregoing resetting process is started. In the image processing method of the display element of the present invention, the control processing is performed to start the reset processing of the first display portion when the illuminance of the external environment is lower than a predetermined value. In the image processing method of the display element of the present invention described above, the above-described reset processing and the write processing are performed using a DDS driving method. According to the present invention, it is possible to realize a display element capable of obtaining a display image excellent in display quality, to improve convenience, an electronic paper using the display element, an electronic terminal device using the electronic paper, and a display system using the electronic terminal device . BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a schematic configuration of a liquid crystal display element 1 as a display element composed of a first embodiment of the present invention. Fig. 2 is a schematic view showing a cross-sectional structure of a liquid crystal display element 1 as a display element constituted by the first embodiment of the present invention. (a) and (b) show an example of driving waveforms of the liquid crystal display element 1 which is a display element of the first embodiment of the present invention. Fig. 4 is a view showing an example of the voltage-reflectance characteristic of the liquid crystal composition of the liquid crystal display element 1 as the display element of the first embodiment of the present invention. Fig. 5 is a view showing the first embodiment of the present invention. A flowchart of an image processing method of the liquid crystal display element 1 of the display unit 14 200816131. Fig. 6 (a) - (d) schematically shows the display unit 6 in the reprocessing process using the image processing method of the display element constituted by the first embodiment of the present invention. 5 Fig. 7 is a view showing an image processing method of a display element constituted by the first embodiment of the present invention, and an evaluation method of burning in the display field. Fig. 8 is a view showing an image processing method of a display element constituted by the first embodiment of the present invention, and an evaluation method of burning in the display field. Fig. 9 (a) and (b) are views showing a DDS driving method for a display element constructed in the second embodiment of the present invention. Fig. 10 is a view showing an image processing method of a display element comprising the second embodiment of the present invention, and shows a driving waveform when the DDS driving method is applied to the reset processing and the write processing. Fig. 11 is a schematic view showing the cross-sectional structure of a liquid crystal display element 15 of a conventional full color display. Fig. 12 (a) and (b) schematically show a cross-sectional structure of a liquid crystal layer which is one of conventional liquid crystal display elements. Fig. 13 is a view showing an example of a reflection spectrum of a conventional liquid crystal display element in a parallel spiral state. 20 [Fundamental Mode] The best mode for carrying out the invention [First Embodiment j] The display element constituted by the first embodiment of the present invention and the electron using the display element will be described using the first to eighth figures. Paper, an electronic terminal device using the electronic 15 200816131, 5 paper, a display system using the electronic terminal device, and an image processing method for a display element. In the present embodiment, the display element will be described by taking the liquid crystal display element 1 using cholesteric liquid crystals of blue (B), green (G) and red (R) as an example. First, the schematic configuration of the liquid crystal display element 1 constructed in accordance with the present embodiment will be described using Figs. 1 to 4 . Fig. 1 shows an example of a schematic configuration of a liquid crystal display element 1 constructed in accordance with the present embodiment. Fig. 2 is a schematic view showing the cross-sectional structure of the liquid crystal display element 1 cut in a line parallel to the left-right direction of Fig. 1. As shown in FIGS. 1 and 2, the liquid crystal display element 1 has a circuit block la 10 and a display driver block 1b. The circuit block 1a has a display unit 6 having a B display portion 6b, a G display portion 6g, and an R display portion 6r, the B display portion 6b having a B display field, and the B display region having a parallel spiral state The B liquid crystal layer 3b for reflecting blue light having a G display region having a G liquid crystal layer 3g for reflecting green light in a parallel spiral state, the 15 R display portion 6r having an R display The field, and the r display region has a liquid crystal layer 3r for R which reflects red light in a parallel spiral state. The B, G, and R display portions 6b, 6g, and 6r are arranged corresponding to the display areas of B, G, and R, and are stacked in this order from the side of the light incident surface (display surface). Further, the display driver block 1b has a scan electrode circuit 20 and a data electrode circuit 21 for driving the display portion 6. *20 In contrast, the circuit block has a power supply unit 28 that converts a DC voltage of, for example, 3 to 5 volts input from the system side not shown in the figure, into a DC voltage necessary to drive the display driver block 1b. Further, the circuit block 1a has a display control circuit 29 (display control unit) that can perform control to shift the display area to one of the R, G, and B display units 6r, 6g, &amp; 16 200816131 After the reset processing to the same display state, the reset processing of the remaining display portions is started, or a predetermined control signal for displaying an image on the display unit 6 is generated. Further, the circuit block 1a has a video data memory 3G for storing input image data input from the system side, and a detecting unit 25 for detecting the time of the reset processing of the start display unit 6. The power supply unit 28 includes a boosting unit 22, a display element driving voltage generating unit 23, and a regulator 24. The boosting unit 22 has, for example, a DC to Dc converter, and can boost the input voltage of the DC of 3 to 5 V input from the system side to a voltage of 30 to 40 V DC which is necessary for driving the display unit 6. The display element driving voltage 10 generating unit 23 uses the voltage boosted by the boosting unit 22 and the wheel-in voltage, and generates a complex level voltage in response to the gray scale value of each pixel and the individual conditions of selection/non-selection. The regulator 24 has a Zener diode, an operational amplifier, etc., and can stabilize the voltage generated by the voltage generating unit 23, and supplies it to the scan electrode circuit 2A and the data electrode circuit 21 included in the display block 1b. The construction detecting unit 25 includes a timer (measuring unit) 27 and a photo sensor (light detecting unit) 26. The timer 27 is used to measure the time interval during which the burning of the display area of the display portion 6 can be avoided. The photo sensor 26 measures the illuminance of the external environment in which the liquid crystal display element 1 is placed. The detecting unit 25 can output the illuminance data measured by the timer 27 and the illuminance data measured by the photo sensor 26 to the display control circuit 20, for example, as will be described in detail later, to form a display control circuit. The control signal for starting the reset processing of the display unit 6 is output to the scan electrode driving circuit 20 and the data electrode driving circuit 21 using the time data and the illuminance data outputted from the detecting unit 25. Further, the display control circuit 29 generates drive data based on the image data of each of the R, G, and B display portions 6r, 6g, and 6b read from the image data memory 30 of 17 200816131, and the predetermined drive waveform data. The display control circuit 29 constructs the generated drive data to match the data capture clock, and outputs it to the scan electrode drive circuit 20 and the data electrode drive circuit 521. Further, the display control circuit 29 outputs control signals such as a scanning direction signal, a pulse polarity control signal, a frame start signal, a data latch scan shift, and a shutdown drive output to the two circuits 20 and 21. Next, the construction of the display block lb will be described in detail. As shown in FIGS. 1 and 2, the B display portion 6b of the display block 1b has a pair of upper and lower substrates 7b and 9b disposed opposite to each other, and a liquid crystal layer 3b for B sealed between the substrates 7b and 9b. . The liquid crystal layer B for B has a cholesteric liquid crystal for B, and the cholesteric liquid crystal for B has been adjusted to have an average refractive index η and a pitch p of p to selectively reflect blue. The G display portion 6g has a pair of upper and lower substrates 7g and 9g disposed opposite to each other, and a liquid crystal layer 3g for G sealed between the substrates 7g and 9g. The G liquid crystal layer 3g has a 15 cholesteric liquid crystal for G, which has been adjusted to have an average refractive index n and a pitch p of p to selectively reflect green. The R display portion 6r has a pair of upper and lower substrates 7r and 9r disposed opposite to each other, and a G liquid crystal layer 3r for sealing between the substrates 7r and 9r. The R liquid crystal layer 3r has a cholesteric liquid crystal for G, and the G cholesteric liquid crystal has been adjusted to have an average refractive index n and a helix 2〇 pitch P for selectively reflecting red. The liquid crystal composition constituting the liquid crystal layers 3b, 3g, and 3r for B, G, and R is a cholesteric liquid crystal in which 10 to 40% by weight of a liquid crystal is added to the palm material. The addition ratio to the palm material was a value when the total amount of the twisted liquid crystal component and the palm material was set to 100% by weight. Although a variety of materials can be used as the torsion solution 18 200816131 As the cholesteric liquid crystal composition, the dielectric anisotropy Δ ε is preferably 2 () ‘ Δ ε $5 G. When the dielectric constant rate Δ ε is 20 or more, the selection range of the palm material can be widened. When the dielectric constant ε is lower than the above range, the driving age of each of the liquid crystal layers 3b, 3g, and 3r becomes high. On the other hand, once the dielectric variability is higher than the above range, the stability and the degree of stability of the crystal display device are reduced, and image defects or image distortion are likely to occur. The refractive index of the cholesteric liquid crystal is Δ n It is important to control the physical properties of the tannin. The value of the refractive index anisotropy Δη is preferably the core 24. The 10th denier refractive index anisotropy Δ η is smaller than this range, and the liquid crystal layers 3b, 3g, 3r in the parallel spiral state. In the case where the refractive index anisotropy Δη is larger than this range, the scattering reflectance of the liquid crystal layers 3b, 3g, and 3r in the vertical spiral state becomes large, and the reflectance is low. Therefore, if the color purity and contrast of the display screen are insufficient, a fuzzy display is formed. Further, if the refractive index anisotropy Δη is larger than the above range, the viscosity is also increased, and the cholesteric liquid crystal is lowered in reaction rate. The value is preferably 1 〇ι〇$ ρ $ 1013 (Ω · cm). Moreover, the lower viscosity of the cholesteric liquid crystal can suppress the voltage rise and the contrast decrease at low temperatures, so it is preferable. 20 in B, G, R Each In the laminated structure of the portions 6b, 6g, and 6r, the optical rotatory properties of the G liquid crystal layer 3g in the parallel spiral state are different from those of the B and R liquid crystal layers 3b and 3r. Therefore, the blue color shown in Fig. 13 In the field of green, and the reflection spectrum of green and red, for example, the liquid crystal layer 3b for B can reflect the light of the right circular polarization, and the liquid crystal layer 3g for G can reflect the light of the left circular polarization. Thereby, 19 200816131 can reduce the reflected light. The loss of the liquid crystal display element 丨 can increase the brightness of the display screen. The upper substrates 7b, 7g, 7r and the lower substrates 9b, 9g, and 9r must have translucency. In this embodiment, two glass substrates are used. A film substrate such as a polycarbonate (PC) film substrate or a polyethylene terephthalate (pet) may be used instead of the glass substrate. In the present embodiment, the substrates 7b, 7g, 7r and the lower substrate 9b are used. Each of 9g and 9r has translucency, but the substrate 9r disposed under the R display portion and the lowermost layer may be opaque. The B of the substrate 9b under the B display portion 6b is juxtaposed with the liquid crystal layer 3b side. A plurality of data electrodes 19b having a plurality of strips extending in the upper and lower directions in the first drawing are formed. On the liquid crystal layer 3b side of the upper substrate 7b, a plurality of strip-shaped data electrodes 17b extending in the left-right direction in the first drawing are formed in parallel. In the present embodiment, indium tin oxide (ITO) is used. The transparent electrode is patterned to form a strip-shaped scanning electrode 17b and a plurality of data electrodes 15b. The forming materials of the two electrodes 17b and 19b can be represented, for example, by using indium zinc oxide (indium Zic). A transparent conductive film such as Oxide or IZO) or a photoconductive film such as amorphous germanium. As shown in Fig. 1, the electrode forming faces of the upper and lower substrates 7b and 9b are viewed in the normal direction, and the electrodes 17b and 19b cross each other. To the configuration. The respective intersecting fields of the two electrodes 17b and 2〇 19b constitute pixels (pixels). Further, the numbers 17b and 19b shown in Fig. 2 show the existence of the electrodes 17b and 19b, and the shapes of the electrodes are not taught. Preferably, the functional films disposed on the two electrodes 17b and 19b are respectively coated with an insulating film or an alignment stabilizing film of liquid crystal molecules (all of which are not shown in the drawings).绝 20 200816131 The hybrid film has the function of preventing the electrodes 17b and 1 from closing the axis, and can reduce the liquid crystal display element by reducing the barrier layer! The function of #度. Further, a polyethylamine resin or an acrylic acid or the like can be used as the alignment stabilizing film. In this embodiment, for example, the respective (5) substrates on the electrode 17b and the upper substrate are coated with a 5 (coadmg) alignment film. The alignment film can also be used as an insulating film. The liquid helium layer 3b for b is sealed between the two substrates 7b and % by the sealing material 2ib applied around the upper and lower substrates 7b and 9b. Further, the thickness (cell pitch) of the liquid crystal layer % for b must be kept uniform. In order to maintain a predetermined cell pitch, a spherical spacer made of a resin or inorganic oxide is dispersed in the liquid crystal layer 31 for 10 B, or a column spacer having a surface coated with a thermoplastic resin. It is formed in a majority in the liquid crystal layer 3b for B. In the liquid crystal display of the present embodiment, a spherical spacer (not shown) is also inserted in the liquid crystal layer 3b for B to maintain the uniformity of the cell pitch. The cell pitch d of the liquid crystal layer 3 for B is preferably in the range of. The 〇 display unit 6g and the R display unit 6r have the same configuration as the B display unit ’. Therefore, the description thereof will be omitted. The visible light absorbing layer 15 is provided on the outer surface (back surface) of the substrate 9r under the R display portion 6A. Therefore, when all of the liquid crystal layers 3b, 3g, and 3r of B, G, and R are in the vertical spiral state, the display surface of the liquid crystal display element 可 can display black. Further, the visible light absorbing layer 15 may be provided as necessary. 20 The scan electrode drive circuit 20 for driving the scan electrode driver 1C for individually driving the plurality of scan electrodes 17b, 17g, and I7r is connected to the upper substrates 7b, 7g, and 7r. Further, a data electrode driving circuit 21 for driving the data electrode driver IC for individually driving the plurality of data electrodes 191) and Dg ' 19r is connected to the lower substrates 9b, 9g, and 9r. The drive circuit 2〇, 21 is configured to output a predetermined signal from the display control circuit 29 according to 21 200816131, and the pulse-shaped scanning signal or the feed device 5 is rotated to the predetermined scan electrode HI%, π. Or data electrodes 19b, 19g, & By arranging the wheel-in and turn-out devices and the overall control device (none of which is not shown in FIG. 5) 6 to be placed in the liquid crystal display element ^ shown in the figure i, the electronic device can be constructed. It is used as a display device of an electronic terminal device. The electronic terminal machine can be used as a display device of a display system. And the connection =, using the 3rd and 4th drawings to illustrate the driving method of the liquid crystal display element 帛 3 is a diagram showing the driving wave of the driving data of the liquid crystal display element 〇 : an example. Fig. 3 (4) shows a driving waveform for driving the cholesteric liquid crystal to a parallel spiral state. Fig. 3 (8) shows a driving waveform for driving the cholesteric liquid crystal to a vertical spiral state. In Figs. 3(4) and 3(8), the upper part of the figure shows the waveform of the data signal voltage outputted from the data electrode driving circuit 2G, and the middle side of the figure shows the waveform of the snubber voltage %15 outputted from the scanning electrode driving circuit 21. The lower stage shows the waveform of the applied voltage Vlc applied to any of the liquid crystal layers %, %, and 3r for B, G, and R. Further, in Fig. 3, Fig. 0) and Fig. 3(b), the elapsed time is shown from the left to the right of the figure, and the upper and lower directions of the figure indicate the voltage. Fig. 4 shows an example of the voltage-reflectance characteristics of the cholesteric liquid crystal. The horizontal axis represents the voltage value (V) applied to the cholesteric liquid crystal, and the vertical axis represents the reflectance (%) of the cholesterol liquid crystal. The curve p of the solid line shown in Fig. 4 indicates the electric dust-reflectance characteristic of the condensed liquid crystal whose initial state is flat & snail, and the curve FC of the broken line indicates the voltage of the cholesteric liquid crystal whose initial state is the vertical spiral state. A reflectivity characteristic. 22 200816131 By way of example, a predetermined voltage is applied to the blue (B) pixel (1, 1) of the intersection of the data electrode 19b of the first column and the scanning electrode 17b of the first row of the display portion 3 shown in FIG. In the case of }, as shown in Fig. 3 (4), during about 1/2 of the first half of the selection period T1 of the scanning electrode 17b of the third row, the signal voltage Vd is +32 V with respect to the material signal voltage Vd, and the scanning signal voltage Vs 〇v, and during about 1/2 of the second half, relative to the data signal voltage ¥(1 is 〇¥, the scanning signal voltage Vs is +32V. Therefore, the B pixel (1, 1) b uses the liquid crystal layer 3 A pulse wave voltage of ±32 V is applied between the selection periods T1. As shown in Fig. 4, once a predetermined 咼 voltage VP 100 (for example, 32 V) is applied to the cholesteric liquid crystal to generate a strong electric field of 10, the spiral structure of the liquid crystal molecules Fully unraveled, all liquid crystal molecules form a vertical alignment state with the direction of the electric field. Therefore, the liquid crystal molecules of the B liquid crystal layer 3b of the B pixel 〇, 1) B are vertically aligned during the selection period T1. In the non-selection period T2, the selection period is 15 T1 丨/2 cycles to the first row. The scanning electrode 17b is applied with a voltage of, for example, +28 V and +4 V. In contrast, a predetermined data signal voltage ¥1 is applied to the data electrode 19b of the first column. In Fig. 3(a), the selection period is Then, a voltage of, for example, +32 V and 0 V is applied to the data electrode 17 of the first column. Therefore, the soil of the b pixel (1, 1) can be applied to the liquid crystal layer 3b 20 between the non-selection period T2. Therefore, during the non-selection period T2, the electric field generated by the liquid crystal layer 3b for the B pixel (1, 1) B is about zero. The liquid crystal voltage is applied from the vpl〇 when the liquid crystal molecules are vertically aligned. When the enthalpy (earth 32V) is changed to VF0 (±4V) and the electric field is sharply set to about zero, the helical axis of the liquid crystal molecules is rotated toward the two electrodes l7b toward the approximately vertical snail 23 200816131 to form a selectivity. Reflecting the parallel spiral state of the light corresponding to the spiral pitch. Thus, since the B pixel (1, 1) B forms a parallel spiral state with the liquid crystal layer 3b, the light is reflected, so that the B pixel (1, 1) displays blue. On the other hand, as shown in Fig. 3(b), during the selection period τι, the first half of the period is about 1/2 In the case of about 1/2 of the second half, with respect to the case where the data signal voltage vd is 24V/8V, once the scanning signal voltage Vs is 0V/ + 32V, the pulse voltage of the U24V is applied to the B pixel (1, 1) B. The liquid crystal layer 3b. As shown in Fig. 4, once a predetermined low voltage VF100b (for example, 24V) is applied to the cholesteric liquid crystal to generate a weak electric field, the spiral structure of the liquid crystal molecules forms a state in which the liquid crystal molecules are not completely unfolded. In the non-selection period T2, a voltage of, for example, +28 V / + 4 V is applied to the scan electrode 17b of the first row at a period of 1/2 of the selection period T1, and a predetermined data signal voltage vd (for example, +24 V/8 V) is selected. A period 1/2 of the period T1 is applied to the data electrode 19b. Therefore, a pulse wave voltage of 15 4 V / + 4 V can be applied to the B liquid crystal layer 3b of the B pixel (1, 1) between the non-selection periods T2. As a result, the electric field generated by the liquid crystal layer 3b for B of the B pixel (1, 1) is approximately zero between the non-selection periods T2. In a state where the spiral structure of the liquid crystal molecules is not completely unwound, if the voltage applied to the cholesteric liquid crystal is changed from VF100b (±24V) to VF0 (±4V) and the electric field is sharply changed to about zero, the helical axis of the liquid crystal molecules is relatively The two electrodes 2b and 19b are spirally oriented in a direction parallel to the parallel direction, and are in a vertical spiral state in which incident light is transmitted. Therefore, the B pixel (1, the liquid crystal layer 3b is in a vertical spiral state and transmits light. Further, as shown in Fig. 4, after applying a voltage of VP1 〇〇 (±32 V) to generate a strong electric field in the liquid crystal layer, even gradually The electric field is removed, and the cholesteric liquid crystal can also form a vertical spiral state. 24 200816131 The above driving voltage is an example, and a pulse-like voltage of 3 0 to 3 5 v is applied to the two electrodes 17b and 19b at room temperature for 20 ms. Then, the cholesteric liquid crystal of the B liquid crystal layer 3b is in a selectively reflective state (parallel spiral state), and when the pulse-like voltage of 15 to 22 V is applied for an actual utility time of 20 ms, a transparent state of 5 (vertical spiral state) is obtained. Similarly to the driving of the B pixels (1, 1), the green (G) pixels (1, 1) and (R) pixels (1, 1) arranged to correspond to the B pixels (1, 1) are driven, and The pixels (1, 1) of three B, G, and R pixels (1, 1) are stacked to perform color display. Further, the scanning electrodes 17b, 17g, 17r, 10 from the 1st to the nth rows are so-called The line is sequentially driven to rewrite the data voltage of each of the data electrodes 19b in each row, whereby The display data can be output to all areas from the pixel (1, 1) to the pixel (η, m), and the color display of the frame (display surface) can be realized. Further, the electric field of the intermediate intensity is applied to the cholesteric liquid crystal. And the electric field is sharply removed, and the intermediate gray is mixed in the parallel spiral state and the vertical spiral state, and can be displayed in full color. Next, the first to fifth figures are used to illustrate the liquid crystal according to the present embodiment. The image processing method of the display element 1. The first display unit having the first display area is subjected to a reset process for shifting the display area to the same display state, and then the first display unit is layered and has a second display layer. The reset processing of the second display unit in the 20th field is displayed. Further, the image processing method of the display element configured in the present embodiment is controlled so that the image processing is started after the reset processing of the first display area is completed. Writing processing in the first display area is written, and after the writing processing is completed, writing processing in the second display area is started. In this way, it can be constructed to be identifiable while holding the display element. In the case of degree 25 200816131, the rewriting process of the display unit can be executed. Here, the "rewrite processing" is performed by the display unit performing the above-described reset processing for setting the display area to a specific display state, and The image data is written into the _ processing of the write processing of the display unit that has been subjected to the reset processing. Further, the following description is performed on the case where all the display units included in the display element are rewritten. When the cholesteric liquid crystal is reprocessed as a specific state, the image data is written, whereby the visibility of the display element during standby or initialization can be reduced to a minimum of 10. Further, in this embodiment, the reset processing can be started at a time interval in which the display area of the display portion can be prevented from being burned. Thereby, it is possible to effectively prevent the display element from being burned and maintain a good display state. 15 20 Next, the image processing method of the display element constructed in accordance with the present embodiment will be described by taking the liquid crystal display element 1 shown in Fig. 1 as an example. Fig. 5 is a flow chart showing an image processing method of a display element constructed in accordance with the present embodiment. Fig. 6 is a view schematically showing the display unit 6 in the reprocessing process according to the image processing method of the display element constituted by the present embodiment. Fig. 6 (4) The display unit 6 after the start and the end of the new process, the sixth figure (8) and the sixth figure (4) show the display unit 6 at the end of the reset process, and the fourth (4) (4) shows the display unit 6 at the end of the write process. . In the sixth to sixth diagrams (4), the diagram shown in the upper section schematically shows the cross section of the display unit 6, and the diagram shown in the lower section shows the display image of the display unit. In the above (4) to (4), the state in which the display unit is reversed or transmitted through the incident light L indicates the normal display state, and the display 26 2616131 is not reflected light L but only transmits light. The state of the reset processing. As shown in Fig. 6 (8), the pattern r painted with a red circle, the pattern g coated with a green triangle, and the four corners of the M color _ pattern b are placed with the upper half being white and the lower half. The display image of the gray background is shown as an example of the image processing method of the display element. In addition, the graphic "configures in the field of white background, the image g spans the field of white and gray background, and the figure forms a sphere in the field of gray xiaojing. In this embodiment, the order or combination of the display portions for performing the reset processing is changed in accordance with the overall color tone of the display image, so that the visibility of the displayed image when the reset processing is more maintained can be achieved. Display image The overall color tone can be judged based on, for example, the average value of the pixel values (grayscale values) of each of the RGB image data, or by extracting the display image that has been displayed in the center of the screen and extracting the displayed image. The color tone of the entire image is displayed to be judged by the display control circuit 29. According to the image processing method of the display element constructed in the present embodiment, as shown in Fig. 5, first, it is determined whether or not the display image is monochrome (step S1). In step S1, the image data of the pixels corresponding to the pixels in the R, G, and B display units &amp; 6g and the still display area are compared, and if the image data of the pixels arranged in the entire pixel are the same, Then it is judged to be monochrome. 2, as shown in Fig. 1, for example, B pixels (1, 丨) and G pixels (1, 1) and R pixels (!, 〗) respectively disposed directly below the B pixels (1, 1) (none The image data shown in the figure is the same, and in the following, if B pixels (1, 2) to (n, m), pixels (1 2) to (η, m), and R pixels (1, 2) to If the image data of (n, m) are the same, it is judged to be monochrome. This example is shown in Fig. 6 (4 shows color display 27 200816131, so it is judged as non-monochrome display <No in step S1). Next, the color of the re-write process is determined independently (step S6). In step S6, for example, the display control circuit 29 reads out each of the RGB image data from the image data memory 3, and obtains an average value of the 5 gray scales of the entire display image for each RGB. Next, the display control circuit 29 determines the color having the largest average value of the gray scales as the color tone closest to the entire display image. As shown in Fig. 6 (0), the graph g of this example is larger than the other graphs r and graphs ^^, so the average value of the green "gray scale data is larger than other colors. Thus, the display control circuit 29 determines that the hue of the displayed image is green. 1〇 Next, as shown in Fig. 5, the reflection is closest to the color and color of the displayed image. Then, the reset processing is performed at a timing independent of the other display portions (step S7). This example allows the G display unit as the second display unit to be independently reset.

處理。於步驟S7例如同時對全像素施加±32乂電壓,以使G 顯不46g之顯不領域(第!顯示領域)之〇用液晶層城移至 15 =如垂直配向狀態。具體而言,顯示控制電路29將用以同 • 日〜擇G顯不部6g之所有的掃4苗電極17g的預定控制信號, 輸出至掃描電極驅動電路2〇,以使約相同波形的電壓脈波 G”、員示。卩6g之全像素。同時,顯示控制電路”將預定deal with. In step S7, for example, a voltage of ±32 施加 is applied to the entire pixel at the same time, so that the display area of the display area of G (not shown) is shifted to 15 = as in the vertical alignment state. Specifically, the display control circuit 29 outputs a predetermined control signal for sweeping the four seed electrodes 17g of the same day to the G display portion 6g to the scan electrode driving circuit 2A so as to make the voltage of the same waveform. Pulse wave G", member. 卩 6g of full pixels. At the same time, the display control circuit" will be scheduled

I 號輸丨至資料電極驅動電路21,以達到[§]時選擇G &quot;P6g之所有的貝料電極19g。藉此,兩驅動電路2〇、21 第3圖⑻所不之選擇期間们之掃描信號電壓%及資 遽电壓Vd分別施加於全部掃描電極i7g及全部資料電 和9g而後液晶施加電壓Vlc之電壓脈波施加於G顯示部以 之全部像素。 28 200816131 如第6圖(b)之上段所示,G顯示部6g轉移至垂直配向狀 悲而成為透過光L的狀態。相對於此,R、B用顯示部6]:、汕 維持反射或透過光L之通常的顯示狀態。藉此,如第6,(b) 下段所不,液晶顯示元件丨顯示黑色三角形的圖形g、與通 5常顯示同樣的紅色圖形『及藍色圖形b、以及上侧為洋紅(綠 色的補色)而下侧為中間灰階之洋紅的背景。如此一來,液 曰曰顯不兀件1於復置處理時能維持可充分辦識與通常顯示 不同顏色之通常顯示時的影像資料那般程度的顯示。 其次,如第5圖所示,G顯示部化之復置處理結束之後, 10開始將影像貧料寫入G顯示部6代顯示領域的寫入處理(步 驟S8)。顯不控制電路29與通常的寫入處理同樣地控制掃描 i極驅動電路2G及資料電極驅動電路21,而將驅動資料施 加於G顯示部6g。藉此,如第6圖(〇所示,液晶顯示元❸ 顯示通常的影像。藉著步驟S7、S8而結束作為第廉示部之 15 G顯示部6g的再寫入處理。 接著,如第5圖所示,開始作為第2及第3顯示部之R、 B用顯示部6r、6b的復置處理(步驟S9)。r、B用顯示部紅、 6b依據與G顯示部6g同樣的方法進行復置處理。如第6圖⑷ 之上段所示,R、B用顯示雜喝轉移至垂直配向狀態而 2〇成為透過光L的狀態。相對於此,G顯示部^維持反射成透 過光L之通常的顯示狀態。藉此,如物⑷下段所示,浪 晶顯示元件1顯示黑色三角形的圖形卜$色四角_圖衫 卜與通常顯示同樣的綠色圖形g”x及上側為綠色而下侧 為中間灰階之綠色的背景。如第6圖⑷之下段所示,一多結 29 200816131 束R、B用顯示部6r、6b之復置處理,則圖形g與上側的背景 變得同色,因此配置於上侧之背景上的圖形g的一部分變得 難以辨識,而可見圖形g呈梯形形狀了。如此一來,於第6 圖例示之單純的顯示影像於復置處理時也會產生被辨識為 5 不同影像的情形。但是,實際的顯示影像複雜,如此的問 題幾乎不會發生。因此,液晶顯示元件1於復置處理時也可 維持能充分辨識影像資訊程度的顯示。 接著,如第5圖所示,R、B用顯示部6r、6b之復置處理 結束之後,開始R、B用顯示部6r、6b之寫入處理(步驟S10)。 10 顯示控制電路29與通常的寫入處理同樣地控制掃描電極驅 動電路20及資料電極驅動電路21,而將驅動資料施加於R、 B用顯示部6r、6b。藉此,如第6圖(a)所示,液晶顯示元件1 顯示通常的影像。藉著步驟S9、S10而結束R、B用顯示部 6r、6b的再寫入處理,且結束顯示部6的再新處理。 本例子以影像整體色調為綠色系為前提來說明,而在 該色調為藍色系的情形於步驟87、S8,作為第1顯示部之b 顯示部6b的再寫入處理從其他顏色獨立並執行,在紅色系 的情形於步驟S7、S8,作為第1顯示部之R顯示部6r的再寫 入處理從其他顏色獨立並執行。接著於步驟S9、S10執行作 2〇 ' 、 為第2及第3顯示部之反射殘留色之顯示部的再寫入處理。 如第5圖所示,於步驟S1若是判斷為單色顯示(步驟S1 之疋)’則於作為第1顯示部之G顯示部6g進行復置處理後 (步驟S2),執行寫入處理(步驟S3)。藉此,結束G顯示部6g 之再寫入處理。綠色在RGB之中的視覺度最高,對於觀看 30 200816131 顯示影像之眼睛的影響最大,因此可單獨執行g顯示部化 的再寫入處理。接著,於於作為第2及第3顯示部之r、B用 顯不部6r、此進行復置處理後(步驟S4),執行寫入處理(步 驟S5)。藉此,結束R、b用顯示物、处之再寫入處理,且 5結束顯示部6之再新處理。步驟幻至步驟S5之各處理與步驟 S7至步驟S1〇之各處理分別相同,故省略其說明。The No. I is input to the data electrode driving circuit 21, and when it is [§], all the bead electrodes 19g of G &quot;P6g are selected. Therefore, the scanning signal voltage % and the voltage Vd of the two driving circuits 2, 21, and 3 are applied to all of the scanning electrodes i7g and all the data and 9g, and then the voltage of the liquid crystal application voltage Vlc. The pulse wave is applied to all pixels of the G display portion. 28 200816131 As shown in the upper part of Fig. 6(b), the G display portion 6g shifts to the state of the vertical alignment and becomes the transmitted light L. On the other hand, the R and B display portions 6]:, 维持 maintain the normal display state of the reflected or transmitted light L. Therefore, as shown in the sixth paragraph, (b), the liquid crystal display element 丨 displays the pattern g of the black triangle, the same red pattern as the line 5 and the blue pattern b, and the upper side is magenta (green complementary color) And the lower side is the background of the magenta of the middle gray scale. In this way, the liquid visual display 1 can maintain a display that is sufficient for the image data normally displayed when the display is in a different color. Next, as shown in Fig. 5, after the completion of the reset processing of the G display portion, 10 starts writing the image poor material to the write processing of the display area of the G display unit 6 (step S8). The display control circuit 29 controls the scanning i-pole driving circuit 2G and the data electrode driving circuit 21 in the same manner as the normal writing processing, and applies driving data to the G display portion 6g. As a result, as shown in Fig. 6, the liquid crystal display element ❸ displays a normal image. The rewriting process of the 15 G display unit 6g as the second display unit is completed by steps S7 and S8. As shown in Fig. 5, the reset processing of the display portions 6r and 6b for R and B as the second and third display portions is started (step S9). The display portions red and 6b for r and B are the same as those for the G display portion 6g. In the upper part of Fig. 6 (4), R and B are shown to shift to the vertical alignment state and 2 to become the state of transmitted light L. In contrast, the G display portion maintains reflection into the transmission. The normal display state of the light L. Thereby, as shown in the lower part of the object (4), the wave crystal display element 1 displays a black triangle pattern, the color of the four corners, the blue shirt, the same green pattern g"x, and the upper side is green. The lower side is the green background of the middle gray scale. As shown in the lower part of Fig. 6 (4), a multi-junction 29 200816131 bundle R, B is replaced by the display portions 6r, 6b, and the background g and the upper background change The same color, so a part of the graphic g arranged on the background of the upper side becomes illegible and visible The shape g has a trapezoidal shape. As a result, the simple display image illustrated in Fig. 6 also generates a case where it is recognized as 5 different images in the reset processing. However, the actual display image is complicated, and the problem is almost Therefore, the liquid crystal display element 1 can maintain a display capable of sufficiently recognizing the degree of image information during the reset processing. Next, as shown in Fig. 5, the reset processing of the display units 6r and 6b for R and B ends. Thereafter, the writing process of the display portions 6r and 6b for R and B is started (step S10). 10 The display control circuit 29 controls the scan electrode driving circuit 20 and the data electrode driving circuit 21 in the same manner as the normal writing process, and drives the driving. The data is applied to the display units 6r and 6b for R and B. Thereby, as shown in Fig. 6(a), the liquid crystal display element 1 displays a normal image, and the display unit 6r for R and B is terminated by steps S9 and S10. The rewriting process of 6b is completed, and the re-processing of the display unit 6 is completed. This example is described on the premise that the overall color tone of the image is green, and the case where the hue is blue is in steps 87 and S8. 1 display portion b display portion 6b The rewrite process is executed independently from the other colors. In the case of the red system, the rewrite process of the R display unit 6r as the first display unit is independently executed from the other colors in steps S7 and S8. Then, steps S9 and S10 are performed. The rewriting process of the display portion for the reflection residual color of the second and third display portions is performed as shown in Fig. 5. If it is determined in step S1, the display is monochrome (step S1). Then, after the reset processing is performed on the G display unit 6g as the first display unit (step S2), the writing process is executed (step S3). Thereby, the rewriting process of the G display unit 6g is ended. Green is in RGB. It has the highest degree of visual acuity, and has the greatest influence on the eyes that display the 30 200816131 display image. Therefore, the re-writing process of the g display portion can be performed separately. Then, the r and B display portions 6r as the second and third display portions are subjected to the reset processing (step S4), and the write processing is executed (step S5). Thereby, the re-writing process of the display objects for R and b is completed, and the re-processing of the display unit 6 is ended. The respective processes of the step S5 to the step S5 are the same as the respective processes of the steps S7 to S1, and the description thereof will be omitted.

進仃再新處理的順序不限於第5圖所示的順序,例如也 可於處理步獅、S5後,處理步卿、S3,於處理步驟S9、 S1〇後,處理步㈣H此順序進行顯示部6之再新處 H)理的情形下,以步職、S5或步驟S9、si〇處理的顯示部成 為㈣示部,而以步驟S2、S3或步驟S7、s8處理的顯示部 成為弟2顯不部。又,於步驟q ^The order of re-processing is not limited to the order shown in FIG. 5, for example, after processing lion, S5, processing step S, S3, after processing steps S9, S1, processing step (four) H is displayed in this order. In the case of the new part H), the display unit processed by the step, S5 or step S9, si〇 is the (four) display unit, and the display unit processed in steps S2, S3 or steps S7 and s8 becomes the younger brother. 2 shows no. Also, in step q ^

乂驟以、S5亦可不同時處理R、B 用顯示物、6b,而分別單獨地處理r、b㈣示部n 同樣地於步驟S9、S1()亦可不同時處理殘餘的顏色,而於每 一顏色分別單獨地處理顯示部。而且,也可不執行步驟S6 的處理,而例如使R、G、B顯示部分別單獨 序執行再寫入處理。 、 15 六一人 20 叫/入市0國來說明進行液晶顯示元件i 之顯示部6之再新處理的時序。本實施樣態之再新處理係依 據可避免顯不領域内之像素燒路的時間間隔或放置液晶顯 示元件1之外部環境的照度而執行。㈣及_係用以; 明顯不領域之燒烙的評價方法。第7圖表示燒络評價時 價後之顯雜像的-例。圖中左獅圖係麻像素饮 評價時的顯示部6,圖中右側之圖係例示像素之燒絡評^ 31 200816131 束後的顯示部6。第8圖表示第7圖所示之黑白相間方格花故 (方格花紋圖案)之顯示時間與燒烙度△ γ之關係的曲線 圖。第8圖之橫軸表示黑白相間花紋之顯示時間⑻,縱轴表 示燒烙度ΔΥ。以向圖中之左右方向延伸的虛線所示之直 5線,表示燒烙之辨識界限的境界,以向圖中之上下方向延 伸的虛線所示之直線,表示本實施樣態之再新處理的時間 間隔。又,圖中所示之粗箭頭表示可辨識燒烙之燒烙度 的範圍。 如第7圖所不’例如使顯示部6顯示黑白相間方格花紋 1〇 -預定時間後’使全面顯示白色或—定中間灰階_色。 如此-來,不論使全面顯示白色或一定中間灰階的顏色, 均會有第7圖之圖中右側例示之燒烙了黑白相間方格花紋 而殘留於顯示畫面的情形。顯示部6之燒烙情形能以為 指標來評價。△ γ可由黑白相間方格花紋之中的顯示白領域 15 Α之明亮度¥以及顯示黑領域Β之明亮度Yb,並藉由Δγ二In the step S5, the display objects R and B may be processed differently, and the display objects and 6b may be separately processed. The r and b (four) display portions are separately processed. Similarly, in step S9 and S1 (), the residual colors may be processed differently, and each of them may be processed. The colors individually process the display portion. Further, the processing of step S6 may not be performed, and for example, the R, G, and B display sections may separately perform the re-write processing. The 15th-sixth person 20 calls/enters the market 0 to explain the timing of performing the re-processing of the display unit 6 of the liquid crystal display element i. The reprocessing of the present embodiment is performed in accordance with the illuminance at which the pixel burning path in the field is avoided or the external environment of the liquid crystal display element 1 is placed. (4) and _ used for; the evaluation method of burning without obvious field. Fig. 7 shows an example of the appearance of a noise image after the price of the burn-in evaluation. In the figure, the left lion figure is the display unit 6 at the time of evaluation, and the figure on the right side of the figure is an example of the pixel burning evaluation 31 31, 2011. Fig. 8 is a graph showing the relationship between the display time of the black and white checkered pattern (checkered pattern) and the degree of burntness Δ γ shown in Fig. 7. The horizontal axis of Fig. 8 indicates the display time (8) of the black and white pattern, and the vertical axis indicates the degree of burnt ΔΥ. The straight line indicated by the broken line extending in the left-right direction in the figure indicates the boundary of the identification limit of the burnt, and the straight line indicated by the broken line extending in the upper and lower directions in the figure indicates the re-processing of the present embodiment. Interval. Further, the thick arrows shown in the figure indicate the range in which the degree of burntness of the burn can be recognized. As shown in Fig. 7, for example, the display unit 6 is caused to display a black and white checkered pattern 1 〇 - after a predetermined period of time - to display white or - intermediate gray scale _ color. In this way, regardless of whether the white color or the color of the intermediate gray scale is fully displayed, there is a case where the black and white checkered pattern is burned on the right side of the figure in Fig. 7 and remains on the display screen. The burning condition of the display unit 6 can be evaluated as an index. △ γ can be displayed in the black and white checkered pattern. The brightness of the white area is 15 以及 and the brightness of the black field is displayed by Yb, and by Δγ

Yw-Yb而算出。顯示部6之燒烙愈強則顯示黑^細會變 黑,因此Yb值會降低而Yw^Yb之差會變大。因此,可判 斷ΔΥ值愈大,則像素之燒烙愈強。以預^的時間間隔例如 經過0日〜數日反覆計算Δγ,而可獲得第8圖所示的曲線 20圖。又,在測定反射率方面,可使用例如大嫁電子株式會 社製之分光測定機。 曰 如第8圖所示,像素之燒烙係顯示時間愈長愈增加么 Υ。如圖中以虛線之直線所示,一般為Δγ^5(將標準白 色板之γ值設為⑽時)的話,顯示畫面之燒烙為不構成影響 32 200816131 的程度。因此,本實施樣態之像素燒烙的容許範圍設定於 △Υ^〇·5。對顯示時間之δυ的特性因使用的液晶材料等而 不同。本實施樣態若將相同影像顯示13.5小時,則δυ〉 0·5 ’於顯示晝面可辨識燒烙現象。因此,本實施樣態在對 5 於像素之燒烙要確保預定效益的目的下,再新處理設定成 以12小時周期來進行。如此一來,液晶顯示元件1之ΔΥ可 控制在未滿〇·5,因此可防止顯示畫面的燒烙而能達到提昇 • 顯示品質。若是本實施樣態之再新處理以24小時周期來進 行,則ΔΥ超過〇·5,因此顯示畫面會產生燒烙而損害液晶 10顯示元件1的顯示品質。 例如顯示控制電路2 9記憶著開始用以防止發生燒烙之 再新處理的時間間隔。顯示控制電路29在計時器27輸出之 日守間資料超過該時間間隔的話,開始第5圖所示之顯示部6 的再新處理。顯示控制電路29於R、G、Β顯示部6r、6g、 15 6b之再新處理結束後,復置計時器27的時間資料而再開始 % 比較從計時器27輸出之時間資料與開始再新處理的時間間 隔。 又’建構成液晶顯示元件1依據從測知部25之光感測器 26輸出之照度資料,而能與上述時間間隔獨立並自發性地 20開始再新處理。顯示控制電路29於從光感測器26輸出之照 度資料低於預定門檻值的話,開始第5圖所示之顯示部6的 再新處理。顯示控制電路29於R、G、B顯示部6r、6g、6b 之再新處理結束後,再開始比較從光感測器26輸出之照度 資料與開始再新處理的門檻值。如此一來,液晶顯示元件1 33 200816131 以具有光感測态26,而於液晶顯示元件1被帶入暗的場所而 虻成無法看到晝面的狀況下,即使達到12小時周期,顯示 • 控制電路29亦能自發性地開始顯示部6的再新處理。藉此, • 可防止像素的燒烙且同時能提昇液晶顯示元件1的便利 5性。用以開始再新處理的門檻值預先設定成例如50(lx)。由 於;夜晶顯示元件1為反射型顯示元件,因此一旦周圍的照度 在5〇(1χ)以下,則因辨識度明顯降低而使自發性的再新處理 成為好的指標。 如以上說明,依據本實施樣態的話,液晶顯示元件1 依據使R、G、Β顯示部6r、6g、6b之復置處理的時序不同, 在保持顯示畫面之可辨識度的情形下,能執行顯示部6的再 新處理。而且’液晶顯示元件1以不會造成顯示部6之顯示 領域燒烙的間隔來進行再新處理,藉此可防止顯示領域的 繞烙而能獲得良好的顯示品質。 15 [第2實施樣態] • 使用第9及第10圖來說明依據本發明之第2實施樣態所 構成之顯示元件、使用該顯示元件之電子紙、使用該電子 紙之電子終端機器及使用該電子終端機器之顯示系統以及 顯示元件之影像處理方法。本實施樣態所構成之顯示元件 20 具有高速地驅動復置處理及寫入處理的特點。本實施樣態 ^ 之顯示元件以與上述第1實施樣態同樣構造的液晶顯示元 件1為例,而以DDS(Dynamic Drive Scheme)驅動方法作為 馬速驅動方法為例來說明· 第9圖係說明DDS驅動方法的圖式。第9圖(a)係用以將 34 200816131 膽固醇液晶驅動成平行螺旋狀態狀態)的驅動波形,第9 圖⑻係用以將膽固醇液晶驅動成垂直螺旋狀態(p狀態)的 驅動波形。圖中的上段表示從資料電極驅動電路輸出之 資料信號電壓Vd的波形,圖之中段表示從掃描電極驅動電 5路21輸出之掃描信號電壓%的波形,圖之下段係模式化表 示液晶層的狀態。於圖中的上段及下段,由圖左朝右表示 經過時間,圖之上下方向表示電壓。 如第9圖⑻及第9圖⑻所示,DDS驅動方法可分為將液 晶層設成垂直配向狀態(HT狀態)的復置期間Tr、決定最後 ίο的液晶層狀態的寫入期間Tw、以及保持在寫入期間Tw決定 之液晶層狀態的保持期間Th之三個期間。 百先,說明用以將液晶層設成平行螺旋狀態的驅動方 法。如第9圖⑷所示,在復置期間Tr之前半約!/2期間,相 對於掃描信號電壓Vs為+31V,資料信號電壓^為土帽未 15以圖式顯示),而在後半之約1/2期,相對於掃描信號電 壓Vs為-31V’資料信號電壓別為情(未以圖式顯示因 此,液晶層於復置期間Tr之間可被施加±31v與±4V之差分 的脈波電壓。如此一來,如圖中的下段所示液晶層呈垂直 配向狀態。復置期間Tr的時間為例如數十〜數百。 20 復置期間Tr結束後則達寫入期間Tw。寫入期間丁〜在時 間上分為4個期間。寫入期間Tw之時間為例如數〇1§以下, 寫入期間内的正負脈波的施加時間為例如lms以下。首先, 於第1/月間知彳田#號電壓Vs為0V,資料信號電麼為+ 4V或4V之其中之一 ’於第2期間,相對於掃描信號電壓 35 200816131 二為· ’資料信_Vd為〜4V ’於第3期間,相對於 =信號電壓Vs為-12V,資料信號電_為憎,於第4 /月間’掃描信號電壓VS猶,資料信號電㈣為+4V或-4V之其中之一。因此,於第i及第4期間可對液晶層施減 的電壓。又’在第2及第3期間,可施加黎的脈波電壓。 友此如圖中的下段所示,液晶層維持垂直配向狀離。Calculated by Yw-Yb. The stronger the burning of the display portion 6, the blacker the black will become black, so the Yb value will decrease and the difference of Yw^Yb will become larger. Therefore, it can be judged that the larger the ΔΥ value, the stronger the burning of the pixels. The Δγ is repeatedly calculated at intervals of, for example, 0 days to several days, and the graph 20 shown in Fig. 8 can be obtained. Further, for measuring the reflectance, for example, a spectroscopic measuring machine manufactured by Dairy Electronics Co., Ltd. can be used.曰 As shown in Figure 8, the longer the display time of the pixel burning system is, the more it will increase. As shown by a broken line in the figure, generally Δγ^5 (when the γ value of the standard white plate is set to (10)), the burnt of the display screen does not constitute an influence of 32 200816131. Therefore, the allowable range of pixel burning in this embodiment is set to ΔΥ^〇·5. The characteristics of δ 显示 for the display time differ depending on the liquid crystal material used and the like. In this embodiment, if the same image is displayed for 13.5 hours, δ υ > 0·5 ′ can be identified on the display surface. Therefore, in the present embodiment, the new process is set to be performed in a 12-hour cycle for the purpose of ensuring a predetermined benefit for the burning of the pixels. As a result, the ΔΥ of the liquid crystal display element 1 can be controlled to be less than 〇5, so that the display screen can be prevented from being burned and the display quality can be improved. If the reprocessing of the present embodiment is performed in a 24-hour period, ΔΥ exceeds 〇·5, so that the display screen is burnt and the display quality of the liquid crystal display element 1 is impaired. For example, the display control circuit 29 memorizes the time interval from which the reprocessing of the burn-in is started. When the day-to-day data of the output of the timer 27 exceeds the time interval, the display control circuit 29 starts the re-processing of the display unit 6 shown in Fig. 5. After the re-processing of the R, G, and Β display units 6r, 6g, and 156b is completed, the display control circuit 29 resets the time data of the timer 27 and restarts the comparison of the time data output from the timer 27 and the start of the new control. The time interval for processing. Further, the liquid crystal display element 1 is constructed so that the illuminance data outputted from the photo sensor 26 of the detecting unit 25 can be renewed independently from the above-described time interval. The display control circuit 29 starts the renewing of the display unit 6 shown in Fig. 5 when the illuminance data output from the photo sensor 26 is lower than the predetermined threshold value. After the re-processing of the R, G, and B display portions 6r, 6g, and 6b is completed, the display control circuit 29 starts comparing the illuminance data output from the photo sensor 26 with the threshold value for starting the re-processing. In this way, the liquid crystal display element 1 33 200816131 has the light sensing state 26, and when the liquid crystal display element 1 is brought into a dark place and is not able to see the kneading surface, even if the 12-hour period is reached, the display is performed. The control circuit 29 can also spontaneously start the renewing of the display unit 6. Thereby, it is possible to prevent the burning of the pixels and at the same time to improve the convenience of the liquid crystal display element 1. The threshold value for starting the re-processing is preset to, for example, 50 (lx). Since the night crystal display element 1 is a reflective display element, once the ambient illuminance is 5 〇 (1 χ) or less, the spontaneous reprocessing is a good indicator because the visibility is remarkably lowered. As described above, according to the present embodiment, the liquid crystal display element 1 can change the timing of the reset processing of the R, G, and Β display portions 6r, 6g, and 6b, while maintaining the visibility of the display screen. The re-processing of the display unit 6 is performed. Further, the liquid crystal display element 1 is reprocessed at intervals that do not cause the display area of the display unit 6 to be burned, whereby the display area can be prevented from being smeared and good display quality can be obtained. 15 [Second Embodiment] A display element configured in accordance with a second embodiment of the present invention, an electronic paper using the display element, an electronic terminal device using the electronic paper, and A display system of the electronic terminal device and an image processing method of the display element are used. The display element 20 constructed in this embodiment has the feature of driving the reset processing and the writing processing at high speed. The display element of the present embodiment is exemplified by the liquid crystal display element 1 having the same structure as that of the first embodiment described above, and the DDS (Dynamic Drive Scheme) driving method is taken as an example of the horse speed driving method. A diagram illustrating the DDS driving method. Fig. 9(a) is a driving waveform for driving the 34200816131 cholesteric liquid crystal into a parallel spiral state, and Fig. 9(8) is a driving waveform for driving the cholesteric liquid crystal into a vertical spiral state (p state). The upper part of the figure shows the waveform of the data signal voltage Vd output from the data electrode driving circuit, and the middle of the figure shows the waveform of the scanning signal voltage % outputted from the scanning electrode driving circuit 5, and the lower part of the figure is a pattern indicating the liquid crystal layer. status. In the upper and lower sections of the figure, the elapsed time is indicated from the left to the right, and the voltage is indicated in the lower direction of the figure. As shown in FIGS. 9(8) and 9(8), the DDS driving method can be classified into a reset period Tr in which the liquid crystal layer is in the vertical alignment state (HT state), a writing period Tw in which the liquid crystal layer state is finally determined, and And three periods of the holding period Th in which the state of the liquid crystal layer determined in the writing period Tw is maintained. First, a driving method for setting the liquid crystal layer in a parallel spiral state will be described. As shown in Figure 9 (4), before the reset period Tr is about half! During the /2 period, the scanning signal voltage Vs is +31V, the data signal voltage ^ is the earth cap not 15 shown in the figure), and in the second half of the second half, the scanning signal voltage Vs is -31V' data. The signal voltage is not the case (not shown in the figure. Therefore, the liquid crystal layer can be applied with a pulse voltage of ±31v and ±4V between the reset periods Tr. Thus, the liquid crystal layer is shown in the lower part of the figure. In the vertical alignment state, the time of the reset period Tr is, for example, several tens to several hundreds. 20 The write period Tw is reached after the completion of the reset period Tr. The write period is divided into four periods in time. The time of Tw is, for example, several 〇1 § or less, and the application time of the positive and negative pulse waves in the writing period is, for example, lms or less. First, in the first/month, the voltage Vs of the 彳田# is 0V, and the data signal is + One of 4V or 4V is in the second period, relative to the scanning signal voltage 35 200816131, and the 'data letter _Vd is ~4V' in the third period, relative to the = signal voltage Vs is -12V, the data signal is _ 憎, in the 4th / month 'scanning signal voltage VS still, data signal electricity (four) is +4V or -4V Therefore, the voltage that can be applied to the liquid crystal layer during the i-th and fourth periods can be applied. In the second and third periods, the pulse voltage of the Li can be applied. As shown in the lower part of the figure, The liquid crystal layer maintains a vertical alignment.

壓Vs為+28V,資料信號電壓別為±4¥(未以圖式顯示),而 在後半約1/2期間,相對於掃描信號電壓%為一28v,資 料信號電壓Vd為±4V(未以圖式顯示)。因此,於初始期間之 間可對液晶層施加±28V與±4V之差分的脈波電壓。爰此如 寫入期間Tw結束後則達保持期間几。保持期㈣在時 間上分為兩個期間。就在寫人期MW結束之後的初始期 間,僅相當於復置㈣Tr之約1/2時間施加預定的脈波電 壓。在該初始期間之前半約1/2期間,相對於掃描信號電 圖中的下段所示,液晶層維持垂直配向狀態。保持期間結 束後,例如掃描信號電壓Vs為0V,資料信號電壓^^為±4¥, 可對液晶層施加該差分±4V的電壓。藉此,液晶層呈平行螺 旋狀態。 接著’說明用以將液晶層設成垂直螺旋狀態的驅動方 20法。如第9圖0&gt;)所示,在復置期間Tr對液晶層施加與在驅動 成平行螺旋狀態時同樣的脈波電壓。藉此,液晶層呈垂直 配向狀態。 復置期間Tr結束後則達寫入期間Tw。寫入期間Tw在第 1期間’掃描信號電壓Vs為0V,資料信號電壓V(j為+4V或 36 200816131 4V之其中之一,於第2期間,相對於掃描信號電壓為 + 12V,資料信號電壓Vd為+4V,於第3期帛,相對於掃描 h號電壓Vs為一 12V,資料信號電壓Vd為一4V,於第4期The voltage Vs is +28V, the data signal voltage is ±4¥ (not shown), and during the second half of the 1/2 period, the voltage relative to the scanning signal is 28v, and the data signal voltage Vd is ±4V (not Shown as a schema). Therefore, a pulse wave voltage of a difference of ±28 V and ±4 V can be applied to the liquid crystal layer during the initial period. For example, if the writing period Tw ends, it will reach the holding period. The retention period (4) is divided into two periods in time. Just in the initial period after the end of the writing period MW, a predetermined pulse voltage is applied only for about 1/2 of the time of the reset (four) Tr. During about half of the first half of the initial period, the liquid crystal layer maintains a vertical alignment state as indicated by the lower portion of the scanning signal electrogram. After the end of the holding period, for example, the scanning signal voltage Vs is 0 V, and the data signal voltage is ±4 ¥, the voltage of the differential ±4 V can be applied to the liquid crystal layer. Thereby, the liquid crystal layer is in a parallel spiral state. Next, the driving method 20 for setting the liquid crystal layer in a vertical spiral state will be described. As shown in Fig. 9 0&gt;), the same pulse wave voltage as that applied when driving in a parallel spiral state is applied to the liquid crystal layer during the reset period Tr. Thereby, the liquid crystal layer is vertically aligned. After the end of the reset period Tr, the write period Tw is reached. The writing period Tw is in the first period 'the scanning signal voltage Vs is 0V, the data signal voltage V (j is one of +4V or 36 200816131 4V, and in the second period, the scanning signal voltage is +12V, the data signal The voltage Vd is +4V. In the third period, the voltage Vs is a 12V with respect to the scan h, and the data signal voltage Vd is a 4V.

間掃彳田k號電壓Vs為0V,資料信號電壓或一4VSweeping field k voltage Vs is 0V, data signal voltage or a 4V

5之其中之一。因此,於第1及第4期間可對液晶層施加±8V 的包壓。又,在第2及第3期間,可施加±8V的脈波電壓。於 第2第3期間施加於液晶層之電壓比驅動成平行螺旋狀態 時還低,因此如圖中之下段所示,液晶層呈的咖(過渡)平 行螺旋狀態(TP狀態)。纟此,液晶層呈正在形成螺旋構造 10 中途的狀態。 在寫入期間Tw結束後的保持期間Th的初始期間,將與 要驅動成平行螺旋狀態時相同的脈波電壓施加於液晶層, 則液晶層呈垂直螺旋狀態。保持期間結束後,例如掃描信 號電壓Vs為0V,資料信號電壓V_±4V,液晶層可被施加 15其差分±4V的電壓,而液晶層維持於垂直螺旋狀態。 如以上說明,於寫入期間Tw將相對高的電壓施加於液 曰曰層,則可設成平行螺旋狀態,於寫入期間Tw將相對低的 電壓施加於液晶層,則可設成垂直螺旋狀態。 第10圖係例示將DDS驅動方法應用於復置處理及寫入 2〇處理日寸之驅動波形。第10圖表示第1圖所示之B顯示部6b之 複數像素之中,施加於第i至第3行之掃描電極nb與第1列 之資料電極19b之交叉部之像素(1、1}、(2、1}、(3、1}的液 晶施加電壓。於第10圖中,從圖之左向右表示經過時間, 圖之上下方向表示電壓。 37 200816131 如第10圖所示,第5圖所示之步驟S7的復置處理係在 DDS驅動方法中之復置期間Tr進行,B用液晶層3b呈垂直配 向狀態。DDS驅動方法可將從開始B像素(1、1)之復置期間 Tr至開始B像素(2、1)之復置期間Tr設成例如lms範圍。因 5 此’若是1個像素所須復置期間Tr例如為20ms,則整體復置 期間Tr為20+(n—l)ms(n為掃描電極之數)。第1〇圖例示了 3 條掃描電極17b,因此復置期間Tr為22ms。 其次,於DDS驅動方法中的寫入期間Tw,在B顯示部 6b進行第5圖所示之步驟S8的寫入處理。順序掃描第1至第3 1〇掃描電極17b並對像素(1、1)、(2、1)、(3、1)分別施加預定 的驅動資料。藉此而結束顯示部的寫入處理。使用第3圖所 示之膽固醇液晶之液晶顯示元件之一般的驅動方法,為了 驅動1條掃描電極而必須有20ms範圍的選擇期間。因此,為 了驅動n條掃描電極,全像素之選擇期間必須為20xn(ms)。 15相對於此,DDS驅動方法可將復置期間Tr設成20 + (n — l)ms ’因此可比第3圖所示之驅動方法更高速地驅動液晶。 如以上說明,依據本實施樣態,在復置處理及寫入處 理上應用DDS驅動方法之高速驅動方法,而能縮短再寫入 處理的時間,因此,比較於上述第1實施樣態,乃能提昇再 2〇寫入處理時之顯示畫面的辨識度。而且,依據本實施樣態, 與上述第1實施樣態同樣以顯示部6之顯示領域不產生燒烙 的間隔來執行再新處理,藉此,可獲得能防止顯示領域燒 絡之良好顯示品質的顯示元件。 本發明不限於上述實施樣態而能作各種的變形。 38 200816131 上述第1實施樣態係於全部顯示領域内之全部像素同 時進行復置處理,惟,本發明秘於此,例如將所有的掃 描電極之中複數條掃描電極設為一組並同時選擇,而對每 一該組順序地進行復置處理,且於全部像素之復置處理結 5束後執行寫入處理’亦可獲得與上述實施樣態同樣的效果I 又,上述實施樣悲,係建構成R、G、B顯示部&amp;、%、 6r可個別獨立地驅動,惟,本發明不限於此,例如亦可將 掃描電極驅動電路2〇之預定的輸出端子共通連接於掃描電 極17b、17g、17r之預定的各輸入端子。此情形下,會對r、 10 G、B顯示部6r、6g、6r之各掃描電極nb、%、nr施加相 同電壓,惟,藉著調整施加於資料電極之電壓以使施加於 不進行再寫入處理之顯示部之液晶層的電壓約呈〇v,而可 獲得與上述第1及第2實施樣態同樣的效果。 上述實施樣態以矩陣型顯示方式之液晶顯示元件為例 15來說明,惟,本發明不限於此。例如亦可應用於使用僅獨 立地將電壓施加於要顯示之段的靜態型或將顯示段予以時 系列地配合時序來驅動之動態(多工)型等驅動方式的段型 顯不方式的液晶顯示元件。 上述實施樣態之液晶顯示元件丨具有光感測器2 6及計 20時器27,惟,本發明不限於此。例如液晶顯示元^僅具有 计0守态亦能防止顯示領域的燒烙,因此可獲得與上述實施 樣態同樣的效果。 產業上的利用性 本發明可應用於能執行顯示部之再新處理的顯示元 39 200816131 件。 【圖式簡單說明】 第1圖表示作為本發明之第1實施樣態所構成之顯示元 件之液晶顯示元件丨的概略構造。 5 第2圖係模式化表示作為本發明之第1實施樣態所構成 之顯示元件之液晶顯示元件1的剖面構造。 第3圖(a)、(b)表示作為本發明之第1實施樣態所構成之 顯不兀件之液晶顯示元件1之驅動波形的一例。 第4圖表示作為本發明之第1實施樣態所構成之顯示元 10件之液晶顯示元件1之液晶組成物之電壓一反射率特性的 一例。 第5圖表示作為本發明之第1實施樣態所構成之顯示元 件之液晶顯示元件1之影像處理方法的流程圖。 第6圖(aHd)係模式化表示使用本發明之第1實施樣態 所構成之顯示元件之影像處理方法,而進行再新處理中的 顯示部6 〇 第7圖係說明本發明之第1實施樣態所構成之顯示元件 之如像處理方法,且係說明顯示領域之燒烙的評價方法。 第8圖係說明本發明之第1實施樣態所構成之顯示元件 之心像處理方法,且係說明顯示領域之燒烙的評價方法。 第9圖(a)、(b)係說明使用於本發明之第2實施樣態所構 成之顯不元件的1^驅動方法。 第10圖表示本發明之第2實施樣態所構成之顯示元件 知像處理方法,且表示將DDS驅動方法應用於復置處理 40 200816131 及寫入處理時之驅動波形。 第11圖係模式化表示習知可全彩顯示之液晶顯示元件 的剖面構造。 第12圖(a)、(b)係模式化表示習知之液晶顯示元件之一 液晶層的剖面構造。 第13圖表示習知之液晶顯示元件在平行螺旋狀態之反 射光譜的一例。 【主要元件符號說明】One of the five. Therefore, a voltage of ±8 V can be applied to the liquid crystal layer during the first and fourth periods. Further, in the second and third periods, a pulse wave voltage of ±8 V can be applied. The voltage applied to the liquid crystal layer during the second to third periods is lower than when the parallel spiral is driven. Therefore, as shown in the lower part of the figure, the liquid crystal layer has a parallel (transitional) spiral state (TP state). Thus, the liquid crystal layer is in a state in which the spiral structure 10 is being formed. In the initial period of the holding period Th after the end of the writing period Tw, the same pulse wave voltage as that to be driven in the parallel spiral state is applied to the liquid crystal layer, and the liquid crystal layer is in a vertical spiral state. After the end of the sustain period, for example, the scanning signal voltage Vs is 0 V, the data signal voltage is V_±4 V, the liquid crystal layer can be applied with a voltage of ±4 V, and the liquid crystal layer is maintained in a vertical spiral state. As described above, when a relatively high voltage is applied to the liquid helium layer in the writing period Tw, a parallel spiral state can be set, and when a relatively low voltage is applied to the liquid crystal layer in the writing period Tw, a vertical spiral can be set. status. Fig. 10 is a diagram showing the driving waveform of the DDS driving method applied to the reset processing and writing. Fig. 10 is a view showing pixels (1, 1} applied to the intersections of the scanning electrodes nb of the i-th to third rows and the data electrodes 19b of the first column among the plurality of pixels of the B display portion 6b shown in Fig. 1; The voltage is applied to the liquid crystals of (2, 1}, (3, 1}. In Fig. 10, the elapsed time is shown from the left to the right of the figure, and the voltage is indicated by the upper and lower directions. 37 200816131 As shown in Fig. 10, The reset processing of step S7 shown in FIG. 5 is performed in the reset period Tr in the DDS driving method, and the liquid crystal layer 3b in B is vertically aligned. The DDS driving method can be repeated from the start B pixel (1, 1). The reset period Tr of the period Tr to the start B pixel (2, 1) is set to, for example, the lms range. Since 5, if the reset period Tr of one pixel is, for example, 20 ms, the overall reset period Tr is 20+. (n-1) ms (n is the number of scanning electrodes). The first drawing illustrates three scanning electrodes 17b, so the reset period Tr is 22 ms. Second, the writing period Tw in the DDS driving method, in B The display unit 6b performs the writing process of step S8 shown in Fig. 5. The first to third scanning electrodes 17b are sequentially scanned and the pixels (1, 1), (2, 1), (3) are scanned. 1) Applying predetermined drive data, respectively, thereby ending the writing process of the display unit. Using the general driving method of the liquid crystal display element of the cholesteric liquid crystal shown in Fig. 3, it is necessary to have a range of 20 ms in order to drive one scanning electrode. Therefore, in order to drive n scan electrodes, the selection period of the full pixels must be 20xn (ms). 15 In contrast, the DDS driving method can set the reset period Tr to 20 + (n - l) ms ' Therefore, the liquid crystal can be driven at a higher speed than the driving method shown in Fig. 3. As described above, according to the present embodiment, the high-speed driving method of the DDS driving method is applied to the reset processing and the writing processing, and the rewriting can be shortened. Since the processing time is compared with the above-described first embodiment, the degree of recognition of the display screen at the time of the write processing can be improved. Further, according to the present embodiment, the display is performed in the same manner as in the first embodiment. The display area of the portion 6 does not generate a firing interval to perform the re-processing, whereby a display element capable of preventing good display quality in the display field from being burned can be obtained. The present invention is not limited to the above embodiment. 38 200816131 The first embodiment described above is to perform simultaneous reset processing on all pixels in all display fields. However, the present invention is secreted, for example, a plurality of scan electrodes among all scan electrodes. It is set as one set and selected at the same time, and each of the groups is sequentially subjected to the reset processing, and the write processing is performed after the completion of the reset processing of all the pixels, and the same effect as the above-described embodiment can be obtained. Further, in the above-described embodiment, the R, G, and B display portions &amp; %, 6r can be individually and independently driven. However, the present invention is not limited thereto, and for example, the scan electrode driving circuit 2 may be predetermined. The output terminals are commonly connected to predetermined input terminals of the scan electrodes 17b, 17g, and 17r. In this case, the same voltage is applied to each of the scanning electrodes nb, %, and nr of the r, 10 G, and B display portions 6r, 6g, and 6r, but the voltage applied to the data electrode is adjusted so as not to be applied again. The voltage of the liquid crystal layer of the display portion to be processed is approximately 〇v, and the same effects as those of the first and second embodiments described above can be obtained. The above embodiment is described by taking a liquid crystal display element of a matrix type as an example 15, but the present invention is not limited thereto. For example, it can also be applied to a liquid crystal of a segment type display system in which a static type which independently applies a voltage to a segment to be displayed or a dynamic (multiplexed) type which is driven by a series of timings to be driven in series. Display component. The liquid crystal display element 上述 of the above embodiment has a photo sensor 26 and a timer 27, but the invention is not limited thereto. For example, the liquid crystal display element can be prevented from burning in the display field only by having the zero-threshold state, so that the same effect as the above-described embodiment can be obtained. Industrial Applicability The present invention is applicable to display elements 39 200816131 capable of performing reprocessing of the display unit. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a schematic configuration of a liquid crystal display element 显示 as a display element constituting the first embodiment of the present invention. 5 Fig. 2 is a schematic cross-sectional view showing a liquid crystal display element 1 as a display element constituted by the first embodiment of the present invention. Fig. 3 (a) and (b) show an example of driving waveforms of the liquid crystal display element 1 which is a display device which is constituted by the first embodiment of the present invention. Fig. 4 is a view showing an example of the voltage-reflectance characteristics of the liquid crystal composition of the liquid crystal display element 1 of the display element 10 which is constituted by the first embodiment of the present invention. Fig. 5 is a flow chart showing an image processing method of the liquid crystal display element 1 as a display element constituted by the first embodiment of the present invention. Fig. 6(aHd) is a diagram showing the display unit 6 in the reprocessing process using the image processing method of the display element constituted by the first embodiment of the present invention. Fig. 7 is a view showing the first aspect of the present invention. The image processing method of the display element constituted by the aspect is implemented, and the evaluation method of the burn-in in the display field is explained. Fig. 8 is a view showing a method of processing a heart image of a display element constituted by the first embodiment of the present invention, and an evaluation method of burning in the display field. Fig. 9 (a) and (b) are views showing a driving method of a display element used in the second embodiment of the present invention. Fig. 10 is a view showing a display element image processing method of the second embodiment of the present invention, and shows a driving waveform when the DDS driving method is applied to the multiplexing processing 40 200816131 and the writing processing. Fig. 11 is a schematic view showing a cross-sectional structure of a liquid crystal display element of a conventional full color display. Fig. 12 (a) and (b) schematically show a cross-sectional structure of a liquid crystal layer which is one of conventional liquid crystal display elements. Fig. 13 is a view showing an example of a reflection spectrum of a conventional liquid crystal display element in a parallel spiral state. [Main component symbol description]

l···液晶顯示元件 18b、18g、18r···密封材 3b、43b*&quot;B用液晶層 19r、19g、19b…資料電極 3g、43g*&quot;G用液晶層 20…掃描電極驅動電路 3r、43r&quot;.R用液晶層 21…貢料電極驅動電路 6…顯示部 22…昇壓部 6b、46b,&quot;B顯示部 23…顯示元件驅動電壓產生部 6g、46g&quot;.G顯示部 24…調節器 6r、46r…R顯示部 25…測知部 7b、7g、7r…上基板 26…光感測器 9b、9g、9r···下基板 27…計時器 47、49…基板 28…電源部 12…像素領域 29…顯示控制電路 15…可見光吸收層 30···影像資料記憶體 17r、17g、17b…掃描電極 31…液晶層 41 200816131 33、33b、33s···液晶分子 41…脈波電壓源l··· liquid crystal display elements 18b, 18g, 18r··· sealing material 3b, 43b*&quot;B liquid crystal layers 19r, 19g, 19b... data electrodes 3g, 43g*&quot;G liquid crystal layer 20...scanning electrode driving Circuit 3r, 43r&quot;.R liquid crystal layer 21...Guide electrode drive circuit 6...display unit 22...boost unit 6b,46b,&quot;B display unit 23...display element drive voltage generating unit 6g, 46g&quot;.G display 24: adjuster 6r, 46r...R display unit 25...measuring unit 7b, 7g, 7r...upper substrate 26...photosensor 9b,9g,9r·...lower substrate 27...timer 47,49...substrate 28...power supply unit 12...pixel area 29...display control circuit 15...visible light absorbing layer 30···image data memory 17r, 17g, 17b...scanning electrode 31...liquid crystal layer 41 200816131 33, 33b, 33s···liquid crystal molecules 41...pulse voltage source

4242

Claims (1)

200816131 十、申請專利範圍: 1. 一種顯示元件,包含有: 第1顯示部,係具有第1顯示領域者; 第2顯示部,係與前述第1顯示部積層,且具有對應 5 前述第1顯示領域而配置之第2顯示領域者;及 顯示控制部,係可進行控制,以在對前述第1顯示部 進行使顯示領域轉移至相同顯示狀態之復置處理後,開 始前述第2顯示部之前述復置處理者。 2. 如申請專利範圍第1項之顯示元件,其中前述第1及第2顯 10 示部分別具有:複數掃描電極;與前述複數掃描電極交 叉而配置之複數資料電極;及分別形成於前述複數掃描 電極與前述複數資料電極之交叉部並配置成矩陣形狀之 複數像素,且前述顯示控制部可進行控制,以同時選擇 前述複數掃描電極,並對前述第1或第2顯示部進行前述 15 復置處理。 3. 如申請專利範圍第2項之顯示元件,其中前述顯示控制部 可進行控制,使大約相同波形之電壓脈波電壓波同時施 加於前述複數像素,並對前述第1或第2顯示部進行前述 復置處理。 20 4.如申請專利範圍第1或2項之顯示元件,其中前述顯示控 制部可進行控制,以在前述第1顯示部之前述復置處理結 束後,開始將影像資料電極料寫入前述第1顯示領域的寫 入處理,並於結束前述寫入處理後,開始前述第2顯示部 的復置處理。 43 200816131 5. 如申請專利範圍第1或2項之顯示元件,其中更具有第3顯 示部,前述第3顯示部與分別表示反射光之狀態、透過光 之狀態或該等狀態之中間狀態並反射相互不同色之光的 前述第1及第2顯示部一同積層,並具有對應前述第1及第 5 2顯示領域而配置之第3顯示領域,且前述第3顯示部表示 反射光之狀態、透過光之狀態或該等狀態之中間狀態並 反射與在前述第1及第2顯示部反射之光不同色的光。 6. 如申請專利範圍第5項之顯示元件,其中前述顯示控制部 以與其他顯示部呈獨立之時序,控制可反射最接近顯示 10 影像之色調之顏色的前述第1至第3顯示部之中的一個顯 示部,並進行前述復置處理。 7. 如申請專利範圍第1或2項之顯示元件,更具有測知開始 前述復置處理之時序的測知部。 8. 如申請專利範圍第7項之顯示元件,其中前述測知部具有 15 用以計測可避免前述顯示領域之燒烙之時間間隔的計測 部。 9. 如申請專利範圍第7項之顯示元件,其中前述測知部具有 測出外部環境之照度的光測出部。 10. 如申請專利範圍第9項之顯示元件,其中前述顯示控制部 20 可進行控制,當前述光測出部所測出之前述照度比預定 值低時,開始前述第1顯示部的前述復置處理。 11. 如申請專利範圍第5項之顯示元件,其中前述第1至第3 顯示部具有記憶性。 12. 如申請專利範圍第5項之顯示元件,其中前述第1至第3 44 200816131 顯示部具有對向配置之一對基板、及密封在前述基板間 且形成膽固醇相的液晶。 13.如申請專利範圍第12項之顯示元件,其中前述復置處理 及前述寫入處理使用DDS驅動方法。 5 14.如申請專利範圍第1項之顯示元件,其中前述第1至第3 顯示領域係段型顯示方式的顯示段。 15. —種電子紙,係用以顯示影像者,其特徵在於: 具有申請專利範圍第1或2項之液晶顯示元件。 16. —種電子終端機器.,係用以顯示影像者,其特徵在於: 10 具有申請專利範圍第15項之電子紙。 Π. —種顯示系統,係用以顯示影像者,其特徵在於: 具有申請專利範圍第16項之電子終端機器。 18. —種顯示元件之影像處理方法,係用以驅動第1顯示部及 第2顯示部並顯示影像者,且該第1顯示部係具有第1顯示 15 領域者,而該第2顯示部係與前述第1顯示部積層且具有 對應前述第1顯示領域而配置之第2顯示領域者,其特徵 在於該顯示元件之影像處理方法包含有: 在對前述第1顯示部進行將顯示領域轉移至相同顯 示狀態之復置處理之後,開始前述第2顯示部之前述復置 20 處理。 19. 如申請專利範圍第18項之顯示元件之影像處理方法,係 進行控制,以同時選擇前述第1及第2顯示部具有之複數 掃描電極,並對前述第1或第2顯示部進行前述復置處理。 20. 如申請專利範圍第19項之顯示元件之影像處理方法,係 45 200816131 進行控制,以對複數像素同時施加大約相同波形的電 壓,並對前述第1或第2顯示部進行前述復置處理,而該 複數像素分別形成於前述複數掃描電極、及與前述複數 掃描電極交叉配置之複數資料電極的交叉部,且配置成 5 矩陣狀。 21. 如申請專利範圍第18至20項中任一項之顯示元件之影像 處理方法,係在前述第1顯示部之前述復置處理結束後, 開始將影像資料寫入前述第1顯示領域的寫入處理,且在 前述寫入處理結束後,開始前述第2顯示部之前述復置處 10 理。 22. 如申請專利範圍第18至20項中任一項之顯示元件之影像 處理方法,係使前述第1顯示部、前述第2顯示部、及與 前述第1及第2顯示部一同積層且具有第3顯示領域之第3 顯示部,反射相互不同色的光,且使反射最接近顯示影 15 像之色調之顏色的前述第1至第3顯示部之中的一個顯示 部,以與其他顯示部呈獨立之時序進行前述復置處理。 23. 如申請專利範圍第22項之顯示元件之影像處理方法,係 進行控制,俾以可避免前述顯示領域之燒烙的時間間 隔,開始前述復置處理。 20 24.如申請專利範圍第23項之顯示元件之影像處理方法,係 進行控制,以當外部環境之照度比預定值低時,開始前 述第1顯示部之前述復置處理。 25.如申請專利範圍第22項之顯示元件之影像處理方法,係 使用DDS驅動方法進行前述復置處理及前述寫入處理。 46200816131 X. Patent application scope: 1. A display device comprising: a first display portion having a first display area; and a second display portion being laminated with the first display portion and having a correspondence 5 The second display area that is disposed in the display area; and the display control unit is configured to control the second display unit after performing the resetting process of shifting the display area to the same display state to the first display unit The aforementioned reset processor. 2. The display element according to claim 1, wherein the first and second display portions respectively have: a plurality of scan electrodes; a plurality of data electrodes arranged to intersect with the plurality of scan electrodes; and are respectively formed in the plural a plurality of pixels arranged in a matrix shape at intersections of the scan electrodes and the plurality of data electrodes, wherein the display control unit is controllable to simultaneously select the plurality of scan electrodes and perform the aforementioned 15th step on the first or second display portion Set processing. 3. The display element of claim 2, wherein the display control unit is controllable to apply a voltage pulse wave voltage of approximately the same waveform to the plurality of pixels simultaneously, and to perform the first or second display portion The aforementioned resetting process. The display element according to claim 1 or 2, wherein the display control unit is controllable to start writing the image data electrode material to the first portion after the resetting process of the first display unit is completed. (1) The write processing of the display area is performed, and after the completion of the write processing, the reset processing of the second display unit is started. 43. The display element according to claim 1 or 2, further comprising a third display portion, wherein the third display portion respectively indicates a state of reflected light, a state of transmitted light, or an intermediate state of the states The first display unit and the second display unit that reflect light of different colors are stacked together, and have a third display area that is disposed corresponding to the first and fifth display areas, and the third display unit indicates a state of reflected light. Light that is different in color from the light reflected by the first and second display portions is reflected by the state of the light or the intermediate state of the states. 6. The display element of claim 5, wherein the display control unit controls the first to third display portions that reflect a color closest to the color of the display 10 image at a timing independent of the other display portions. One of the display portions, and performs the aforementioned reset processing. 7. The display unit of claim 1 or 2, further comprising a detecting unit for detecting the timing of starting the resetting process. 8. The display element of claim 7, wherein the detecting unit has 15 measuring means for measuring a time interval during which burning in the display field can be avoided. 9. The display element of claim 7, wherein the detecting unit has a light detecting unit that measures the illuminance of the external environment. 10. The display element of claim 9, wherein the display control unit 20 is controllable, and when the illuminance measured by the light detecting unit is lower than a predetermined value, the aforementioned first display unit is started. Set processing. 11. The display element of claim 5, wherein the first to third display portions are memory. 12. The display element according to claim 5, wherein the display portions of the first to third 44 200816131 have a pair of substrates disposed opposite to each other and a liquid crystal sealed between the substrates and forming a cholesterol phase. 13. The display element of claim 12, wherein the aforementioned reset processing and the aforementioned write processing use a DDS driving method. 5. The display element of claim 1, wherein the first to third display fields are display segments of the segment type display mode. 15. An electronic paper for displaying an image, characterized by: a liquid crystal display element having the first or second aspect of the patent application. 16. An electronic terminal device for displaying images, characterized by: 10 having electronic paper of claim 15th.显示. A display system for displaying images, characterized by: an electronic terminal machine having a patent application scope. 18. An image processing method for a display device for driving a first display portion and a second display portion to display a video, wherein the first display portion has a first display 15 field, and the second display portion And a second display field in which the first display portion is laminated and configured to correspond to the first display area, wherein the image processing method of the display element includes: shifting a display field to the first display unit After the reset processing to the same display state, the above-described reset 20 processing of the second display unit is started. 19. The image processing method of the display element of claim 18, wherein the plurality of scan electrodes included in the first and second display portions are simultaneously selected, and the first or second display portion is subjected to the aforementioned Reset processing. 20. The image processing method of the display element of claim 19, wherein the control is performed to apply a voltage of approximately the same waveform to the plurality of pixels simultaneously, and perform the foregoing reset processing on the first or second display portion. The plurality of pixels are respectively formed at intersections of the plurality of scan electrodes and the plurality of data electrodes arranged to intersect the plurality of scan electrodes, and are arranged in a matrix of five. The image processing method of the display element according to any one of the items of the first aspect of the invention, wherein the image data is written in the first display field after the completion of the resetting process of the first display unit The writing process is started, and after the writing process is completed, the resetting of the second display unit is started. The image processing method of the display device according to any one of claims 18 to 20, wherein the first display unit, the second display unit, and the first and second display units are laminated together The third display portion having the third display field reflects light of mutually different colors and reflects one of the first to third display portions that are closest to the color of the hue of the image 15 to be displayed. The display unit performs the above-described reset processing at an independent timing. 23. The image processing method of the display element of claim 22 of the patent application is controlled so as to start the aforementioned resetting process by avoiding the time interval of burning in the display field. 20. The image processing method of the display element according to Item 23 of the patent application is controlled to start the above-described reset processing of the first display unit when the illuminance of the external environment is lower than a predetermined value. 25. The image processing method of a display element according to claim 22, wherein the above-described reset processing and the aforementioned write processing are performed using a DDS driving method. 46
TW95136355A 2006-09-29 2006-09-29 Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method TW200816131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95136355A TW200816131A (en) 2006-09-29 2006-09-29 Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95136355A TW200816131A (en) 2006-09-29 2006-09-29 Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method

Publications (1)

Publication Number Publication Date
TW200816131A true TW200816131A (en) 2008-04-01

Family

ID=44769030

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95136355A TW200816131A (en) 2006-09-29 2006-09-29 Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method

Country Status (1)

Country Link
TW (1) TW200816131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424404B (en) * 2010-11-16 2014-01-21 Chunghwa Picture Tubes Ltd Driving system for display and method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424404B (en) * 2010-11-16 2014-01-21 Chunghwa Picture Tubes Ltd Driving system for display and method of the same

Similar Documents

Publication Publication Date Title
US8144091B2 (en) Liquid crystal display element, driving method of the same, and electronic paper having the same
JP4915418B2 (en) Display element, electronic paper including the same, electronic terminal device including the display element, display system including the display element, and image processing method for the display element
JP5245821B2 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
JP5293606B2 (en) Liquid crystal display element, driving method thereof, and electronic paper using the same
JP5071388B2 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
US8325125B2 (en) Display apparatus, driving method and display driving controller of cholesteric liquid crystal display panel
JP5051233B2 (en) Display device and driving method thereof
JP4258128B2 (en) Method for driving liquid crystal display element and liquid crystal display device
JP4985765B2 (en) Display device
US7944425B2 (en) Liquid crystal display element and method of driving the element
JP3714324B2 (en) Liquid crystal display device
JP3818273B2 (en) Method for driving liquid crystal display element and liquid crystal display device
TW200816133A (en) Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method
JP5620493B2 (en) Rapid migration of large area cholesteric displays
TW200816131A (en) Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method
KR100892029B1 (en) Method for driving liquid crystal display element
JP4924610B2 (en) Display element, electronic paper including the same, electronic terminal device including the display element, display system including the display element, and image processing method for the display element
JPH0442653B2 (en)
JP2004309732A (en) Method for driving liquid crystal display device
TWI294602B (en) Display element, display system comprising the element and image processing method
JP2012003017A (en) Display apparatus
JP2004240203A (en) Method for manufacturing liquid crystal display element
JP2013068955A (en) Liquid crystal display element and driving method thereof, and electronic paper using the same