TWI294602B - Display element, display system comprising the element and image processing method - Google Patents

Display element, display system comprising the element and image processing method Download PDF

Info

Publication number
TWI294602B
TWI294602B TW95136377A TW95136377A TWI294602B TW I294602 B TWI294602 B TW I294602B TW 95136377 A TW95136377 A TW 95136377A TW 95136377 A TW95136377 A TW 95136377A TW I294602 B TWI294602 B TW I294602B
Authority
TW
Taiwan
Prior art keywords
display
temperature
liquid crystal
layer
image data
Prior art date
Application number
TW95136377A
Other languages
Chinese (zh)
Other versions
TW200816109A (en
Inventor
Masaki Nose
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW95136377A priority Critical patent/TWI294602B/en
Application granted granted Critical
Publication of TWI294602B publication Critical patent/TWI294602B/en
Publication of TW200816109A publication Critical patent/TW200816109A/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

2946〇2, 九、發明說明: 【發明所屬之技術領域】 技術領域 纟發明係有關於顯示元件、具有該元件之顯示系統及 影像處理方法。 C :5^前餘】 背景技術 近年來,在各企業、大學間積極地進行著電子紙之開 Μ發。電子紙係以電子書籍為首,並期待可應用在移動終端 〇之次顯示器或1C卡之顯示部等方面。使用膽固醇液晶之液 晶顯示元件係用於電子紙之有力的顯示方式之一,且使用 膽固醇液晶之液晶顯示元件具有半永久性的顯示維持特性 (記憶性)、鮮_亮彩顯频性、高對比特性及高解析度特 h性等之優異特徵。膽固醇液晶係藉由於向列型液晶添加較 多的(數十%)旋光性添加劑(旋光材)而得者,且亦可稱為旋 光/向列型液晶。膽固醇液晶可形成向列型液晶分子強烈扭 轉成螺旋狀之膽固醇相,且達到入射光受到干涉反射的程 度。 2 使用膽固醇液晶之顯示元件係藉由控制每個像素的液 晶分子之定向狀態而進行顯示。膽固醇液晶之定向狀態有 水平螺旋狀態及垂直螺旋狀態,且該等狀態即使在無電場 之下亦可安定存在。垂直螺旋狀態之液晶層可透過光,而 水平螺旋狀態之液晶層可選擇性地反射對應液晶分子的螺 距之特定波長光。 5 1294602 第21圖係顯示使用膽固醇液晶之液晶顯示元件的截面 構造之模式圖,且第21(a)圖顯示水平螺旋狀態之液晶顯示 元件的截面構造,而第21(b)圖顯示垂直螺旋狀態之液晶顯 示元件的截面構造。如第21(a)、(b)圖所示,液晶顯示元件 5 具有一對基板147、149、及於兩基板147、149之間密封 膽固醇液晶而形成之液晶層143。 如第21(a)圖所示,水平螺旋狀態下的液晶分子133係形 成螺旋軸與基板面大致垂直之螺旋構造,且水平螺旋狀態 之液晶層143可選擇性地反射對應液晶分子133的螺距之預 10定波長光。因此,可藉由某像素之液晶層143呈水平螺旋狀 態而使該像素成為明亮狀態。當液晶之平均折射率為η,且 螺距為ρ時,以λ=η · ρ來表示反射的最大波長a。反射頻 寬△ λ係隨著液晶的折射率異向性△ η而變大。 另一方面,如第21(b)圖所示,垂直螺旋狀態下的液晶 15分子133係形成螺旋轴與基板面大致平行之螺旋構造,且垂 直螺旋狀態之液晶層143可透過大量入射光。因此,可藉由 某像素之液晶層143呈垂直螺旋狀態而使該像素成為黑暗 狀態,且在下基板149裹面側配置可見光吸收層時,可於垂 直螺旋狀態下顯示黑暗。 20 專利文獻1 ··日本專利公開公報第2005-196062號 專利文獻2:曰本專利公開公報第2〇〇Μ〇〇182號 專利文獻3 :曰本專利公開公報第2〇〇1-238227號 專利文獻4:曰本專利公開公報第2003-29294號 專利文獻5:曰本專利公開公報第7_56545號 1294602 專利文獻6:日本專利公開公報第3299058號 【号务明内 發明欲解決之問題 第22圖係顯示使用膽固醇液晶之一般彩色液晶顯示元 5件的截面構造之模式圖。如第22圖所示,彩色液晶顯示元 件具有下述結構:例如,依照顯示藍色(B)之液晶層(藍色 層)101B、顯示綠色(G)之液晶層(綠色層)i〇ig及顯示紅色 (R)之液晶層(紅色層)101R之順序從顯示面側(圖中上方)開 始積層。一般而言,旋光材含有率越高的液晶層可反射越 10 短波長之光。即,在如第22圖所示的彩色液晶顯示元件之 情形下,液晶層101B含有最多旋光材,且液晶分子受到強 烈扭轉而縮短螺距。又,一般而言,旋光材含有率越高的 液晶層,驅動電壓會越高。 弟23圖係顯不液晶顯不元件的反射光譜之一例。橫轴 15 表示波長〇m),而縱轴表示反射率(%)。連結▲記號之曲線 表示在液晶層101B之反射光譜,且連結記號之曲線表示 在液晶層101G之反射光譜,而連結♦記號之曲線表示在液 晶層101R之反射光譜。水平螺旋狀態之液晶層係選擇左右 任一邊的圓偏振光而反射,故,反射率之理論最大值為 20 50%,且實際上為40%左右。如此,液晶層i〇iR、i〇ig、 101B可藉由液晶分子之螺距不同而分別選擇r、g、B各色 予以反射。藉此,可使具有積層有3層液晶層101R、101G、 101B的結構之液晶顯示元件顯示彩色。 然而,在具有前述積層結構而可顯示彩色之顯示元件 129460*2 中,即使欲顯示同-影像亦可能由於周圍環境而造成顯示 色調產生變化。因此’會產生即使具有積層結構之顯示元 件亦未必具有良好顯示品質之問題。 本發明之目的在於提供具有良好顯示品質之顯示元 5件、具有該元件之顯示系統及影像處理方法。 解決問題之手段 前述目的可藉由下述顯示元件而達成,且該顯示元件 包含有:顯示部,係設有可顯示第!光譜之顯示層、及 • 積層於前述第1㈣層上並且可顯和目對前述第1光譜位於 10較長波長側之第2光譜者;溫度檢測部’係可檢測前述顯示 部附近之溫度者;及控制部,係根據輸入影像資料及前述 溫度產生顯示於前述第1及第2顯示層之顯示影像資料,使 對應於前述輸入影像資料之顯示色調呈大致固定且不受到 前述溫度影響者。 15 在前述本發明之顯示元件中,前述控制部具有查表, 且前述查表係根據前述溫度修正前述輸入影像資料,並儲 存用以產生前述顯示影像資料之修正係數者。 在前述本發明之顯示元件中,前述控制部具有查表, 赠述查㈣可儲存與前述輸人影料料及前述溫度對應 2〇 之前述顯示影像資料者。 在前述本發明之顯示元件中,前述查表之前述溫度的 刻度寬度係越靠近低溫側越細。 二在前述本發明之顯示元件中,前述控制部係藉由使用 前述輸入影像資料及前述溫度之函數運算而產生前述顯示 8 1294602 影像資料者。 在前述本發明之顯示元件中,前述控制部係考慮前述 第1及第2光譜之重複部分而產生前述顯示影像資料者。 在前述本發明之顯示元件中,係隨著前述溫度越低, 5 施加於前述顯示層之電氣信號的施加時間越長。 在前述本發明之顯示元件中,係配合前述查表之前述 溫度的刻度寬度而變更前述電氣信號的施加時間。 在前述本發明之顯示元件中,前述顯示部更包含有積 層於前述第1及第2顯示層上,且可顯示相對前述第1光譜位 10 於較長波長側並且相對前述第2光譜位於較短波長側之第3 光譜之第3顯示層,又,前述第1顯示層顯示藍色,且前述 第2顯示層顯示紅色,而前述第3顯示層顯示綠色。 在前述本發明之顯示元件中,前述第1、第3及第2顯示 層係從顯示面側開始依照前述順序積層者。 15 在前述本發明之顯示元件中,前述第1至第3顯示層具 有記憶性。 在前述本發明之顯示元件中,前述第1至第3顯示層具 有形成膽固醇相之液晶。 在前述本發明之顯示元件中,由前述第1、第2及第3光 20 譜形成之色調具有藉由溫度而強化之色調,且前述控制部 可產生前述顯示影像資料,使與前述色調相當之顯示灰階 值相對於其他色調之顯示灰階值為低。 在前述本發明之顯示元件中,前述第3顯示層之旋光方 向與前述第1及第2顯示層之旋光方向不同。 1294602 珂述目的可藉由設有前述本發明的顯示元件雷 端而達成。 电于終 前述目的可藉由設有顯示元件及顯示資訊發送裝置之 顯示系統而達成,其中,該顯示元件包含有顯示部:溫声 5 ^測部及發送魏部,且_科係設村料第丨光^ 第1顯示層、及積層於前述第丨顯示層上並且可顯示相 述第1光譜位於較長波長側之第2光譜之第罐㈣::: 該溫度檢測部係可檢測前述顯示部附近之溫戶 /且 、、, 又’而該發 迭接收部係可發送前述溫度資訊並接收顯示於前述第工及 10第2顯示層之顯示影像資料者。又,該顯示資訊發送裝置勺 含有發送接收部及控制部,且該發送接收部係㈣前^ 示元件接收前述溫度資訊,並將前述顯示影像資料發送至 前述顯示元件者,而該控制部係根據輸入影像資料及前述 溫度產生前述顯示影像資料’使對應於前述輸入影像資料 I5之顯示色調呈大致固定且不受到前述温度影塑者。 前述目的可藉由下述影像處理方法而達成,且該影像 處理方法包含有下列步驟:檢測設有第i顯示層及第2顯示 層之顯不部附近的溫度,且第1顯不層可顯示第1光嗜,而 第2顯示層積層於前述第1顯不層上且可顯示相對前述第1 20光譜位於較長波長侧之第2光譜;及根捸輸入影像資料及前 述溫度產生顯示於前述第1及第2顯示層之顯示影像資料, 使對應於前述輸入影像資料之顯示色調呈大致固定且不受 到前述溫度影響。 發明之效果 10 1294602 根據本發明,可實現具有良好顯示品質之顯示元件、 具有該元件之顯示系統及影像處理方法。 圖式之簡單說明 第1圖係顯示使用膽固醇液晶之一般液晶顯示元件的 5 反射光譜之一例。 第2圖係顯示使用膽固醇液晶之一般液晶顯示元件的 反射光譜之一例。 第3圖係顯示使用膽固醇液晶之一般液晶顯示元件的 反射光譜之一例。 10 第4圖係顯示使用膽固醇液晶之一般液晶顯示元件的 溫度與在垂直螺旋狀態下的反射率之關係。 第5圖係顯示某液晶顯示元件在水平螺旋狀態下的反 射光譜。 第6(a)、(b)圖係顯示本發明第1實施型態之原理。 15 第7圖係顯示R、G、B各層的反射光譜之模式圖。 第8(a)、(b)圖係本發明第1實施型態所使用的修正方法 之一例之說明圖。 第9(a)、(b)圖係本發明第1實施型態所使用的修正方法 之一例之說明圖。 20 第10(a)、(b)圖係本發明第1實施型態所使用的修正方 法之另一例之說明圖。 第11(a)、(b)圖係本發明第1實施型態所使用的修正方 法之另一例之說明圖。 第12圖係顯示本發明第1實施型態的顯示元件之概略 11 1294602 結構之方塊圖。 第13圖係模式性的顯示本發明第1實施型態的顯示元 件結構之截面圖。 第14(a)、(b)圖係顯示儲存於影像修正LUT之修正係數 5 的資料結構之例。 第15(a)、(b)圖係顯示施加於信號電極之1個選擇期間 分的電壓波形。 第16(a)、(b)圖係顯示施加於掃描電極之1個選擇期間 分的電壓波形。 10 第17(a)、(b)圖係顯示施加於像素的液晶層之1個選擇 期間分的電壓波形。 第18圖係顯示膽固醇液晶的電壓-反射率特性之一例。 第19圖係顯示影像修正LUT之變化例。 第20圖係顯示本發明第2實施型態的顯示系統之概略 15 結構之方塊圖。 第21(a)、(b)圖係顯示使用膽固醇液晶之液晶顯示元件 的截面構造之模式圖。 第2 2圖係顯示使用膽固醇液晶之彩色液晶顯示元件的 截面構造之模式圖。 20 第23圖係顯不具有積層結構之液晶顯不元件的反射光 譜之一例。 I:實施方式3 實施發明之最佳型態 〔第1實施型態〕 12 1294602 使用第1圖至第19圖說明本發明第丨實施型態之顯示元 件及影像處理方法。首先,說明作為本實施型態的前提之 習知顯示元件的問題點。使用膽固醇液晶之習知彩色液晶 顯示元件,具有液晶層的選擇性反射特性等隨著溫度變 5化,因而造成顯示色調(色度或彩度)變化之問題,且顯示色 調變化之第1原因為水平螺旋狀態的液晶層之反射波長溫 度所引起的轉換。第1圖係顯示使用膽固醇液晶之_般液晶 顯示元件在水平螺旋狀態的反射光譜之例,且橫軸表示波 長(mn),而縱軸表示反射率(%)。曲線a]L、bl、cl表示同一 10 液晶顯示元件之反射光譜。曲線al表示在室溫(例如,25。〇 下的反射光譜,且曲線bl表示在低於室溫之低溫(例如,〇 C)下的反射光譜,而曲線“表示在高於室溫之高溫(例如, 50 C)下的反射光譜。如第1圖所示,可知該液晶顯示元件 之反射光譜越靠近低溫越轉換波長至短波長側,而越靠近 15面溫越轉換波長至長波長侧。 第2圖係顯示使用別的膽固醇液晶之液晶顯示元件在 水平螺旋狀態的反射光譜之例。曲線a2表示在室溫丁的反 射光譜,且曲線b2表示在低於室溫之低溫下的反射光譜, 而曲線c2表示在高於室溫之高溫下的反射光譜。如第2圖所 20示’可知該液晶顯示元件之反射光譜越靠近低溫越轉換波 長至長波長側,而越靠近高溫越轉換波長至短波長侧。 如此,膽固醇液晶既有越靠近低溫,選擇性反射光的 波長頻帶越轉換至短波長側之材料,亦有反之越靠近低 溫,選擇性反射光的波長頻帶越轉換至長波長側之材料。 13 1294602 此種波長轉換之原因’可能是液晶的螺距?之溫度所引起的 變化。 顯不色調變化之第2原因為使用膽固醇液晶之液晶顯 不元件的反射光譜之半值振幅的溫度變化,而第3圖係顯示 5使用膽固醇液晶之液晶顯示元件在水平職狀態的反射光 譜之例。曲線a3表示在室溫下的反射光譜,且曲線…表示 在低於室溫之低溫下的反射光譜,而曲線〇3表示在高於室 溫之高溫下的反射光譜。如第3圖所示,反射光譜之半值振 幅係越靠近低溫者越寬。因此,使用膽固醇液晶之顯示元 10件的色純度,一般會隨著溫度越低而降低並隨著溫度越高 而提咼。其原因可能是液晶的折射率異向性么11之溫度所引 起的變化。溫度降低時,液晶的折射率異向性△11會增加, 故’可推測在水平螺旋狀態中的反射光譜之半值振幅變 寬,並且色純度降低。 15 折射率異向性Δη之變化亦會影響到垂直螺旋狀態。當 溫度降低且折射率異向性Δη增加時,垂直螺旋狀態下的光 散射會增加。第4圖係顯示溫度與在垂直螺旋狀態的液晶層 下之光反射率之關係。橫轴表示溫度(它),而縱轴表示反射 率(%)。如第4圖所示,越靠近低溫時,在垂直螺旋狀態下 20的光散射越增加,故反射率亦會上升。因此,於例如具有 積層R、G、B各色的液晶層結構之彩色液晶顯示元件中, 在垂直螺旋狀態的其他液晶層之散射光會作為雜訊添加至 在水平螺旋狀態的液晶層之反射光中,而使得低溫下的色 純度越來越低。 14 1294602 專利文獻2係揭示參照作為液晶顯示元件的明亮度之γ 值’並藉由調變驅動脈衝之波高值或脈衝寬度使該γ值呈固 定且不受溫度影響,以進行溫度補償之方法。但,該方法 具有下述缺點。第5圖係顯示某液晶顯示元件在水平螺旋狀 5悲下的反射光譜。橫軸表示波長(nm),而縱軸表示反射率 (%)。曲線b4表示在低溫下的反射光譜,且曲線“表示在高 酿下的反射光譜,而曲線^表示視感度曲線。如第5圖所示, 液曰g層之反射波長頻V係如在低溫下轉換至短波長側,並 在高溫下轉換至長波長側。在此,當從視感度曲線d的中央 10轉換至短波長侧之低溫下的轉換量S1,與從視感度曲線(1 的中央轉換至長波長側之高溫下的轉換量S2相等時,低溫 下的Y值與高溫下的γ值會大致相等。然而,即使Y值相等, 亦會因低溫時與高溫時的波長轉換方向不同,使得顯示色 調不同。因此,即使參照γ值進行溫度補償,亦無法抑制色 15 調的變動。 除前述者外,亦知有修正液晶顯示元件的亮度值戋白 色平衡之方法。 專利文獻3係揭示根據查表(LUT)修正正常白色模式的 透射型液晶顯示裝置之白色平衡之方法。但,該方法並未 2〇考慮溫度所引起的液晶^特性之變動,故無法抑制色調變 化。 專利文獻4係揭示使用旋光/向列型(膽固醇)液晶之雙 層結構的液晶顯示裝置。在該液晶顯示裝置中,係轉換可 反射短波長側的光之液晶層的選擇性反射最大波長及可反 15 1294602 射長波長侧的光之液晶層的選擇性反射最大波長,使該等 波長隨著溫度上升而互相分離。藉此,可在不受到周邊溫 度影響下實現高明亮度且高對比之顯示。但,對雙層液晶 層的選擇性反射最大波長進行此種轉換時,會難以維持白 5 色平衡或抑制色調變化。 專利文獻5係與專利文獻3相同,揭示根據1^[71修正透 射型液晶顯示裝置之方法。但,該方法亦未考慮溫度所引 起的液晶7特性之變動,故無法抑制色調變化。 專利文獻6係揭示根據溫度感測器所測出之溫度,參照 10 LUT來修jLRGBf彡像信號之技術。然而,該技術係根據液 晶投影機之燈部溫度來修正RGB影像信號,故,並未考慮 測出的燈部溫度及液晶顯示元件的實際溫度之間在時間與 空間上的相異點。又,該技術係與透射型液晶投影機相關, 故在前提上與本案不同。 15 本發明人係在具積層結構的彩色顯示元件中,考量用 以解決顯示色調因溫度產生變化的問題點之技術。第6圖係 顯示本實施型態之原理。第6(a)圖係積層有R、G、B3層顯 示層之積層結構的彩色液晶顯示元件利用灰階標度顯示之 反射光譜。曲線a5表示在室溫下的反射光譜,而曲線^表 20示在低溫下的反射光譜。如第6(a)圖所示,低溫時反射光譜 會整體轉換至短波長側(在第6(a)圖中以箭頭表示波長轉換 方向)’且灰階標度顯示中的灰色平衡崩解並且整體變成帶 有藍色之顯示。即,該例係3層顯示層的反射光譜皆在低溫 下轉換至短波長側。 16 1294602 本貫施型怨係用以抑制前述溫度所引起的顯示色調變 化,而根據儲存於LUT之修正資訊修正輸人影像資料或驅 動波形。第6(b)圖係顯示修正前後的低溫下之反射光譜。第 6(b)圖之曲線b5與第6(a)圖之曲線b5對應,並顯示修正前的 5低溫下之反射光譜,而曲線e5顯示修正後的反射光譜。又, 曲線e6〜e8係分別顯示在較低灰階的灰階標度顯示中的修 正後之反射光譜。 如第6(b)圖所示,根據修正資訊使例如短波長側之反射 率如圖中箭頭所示地降低至適當範圍,可修正顯示的灰色 10平衡並抑制色調變化。例如,本實施型態係藉由降低顯示B 的顯示層之顯示灰階值,來降低短波長側之反射率。 儲存於LUT之修正資訊含有關於積層的各顯示層之顏 色資訊的相互關係之資訊。在此,說明各顯示層之顏色資 訊的相互關係。第7圖係分別顯示R、G、B各顯示層的反射 15 光譜之模式圖。橫轴表示波長(nm),而縱軸表示反射率 (%)。曲線R1表示顯示R的顯示層(R層)之反射光譜,且曲線 G1表示顯示G的顯示層(G層)之反射光譜,而曲線B1表示顯 示B的顯示層(B層)之反射光譜,並且曲線d表示視感度曲 線。如第7圖所示,當R、G、B各層之反射光譜重疊顯示時, 20 會形成反射光譜互相重複之重複部分。例如,在R層的反射 光譜上具有與G層的反射光譜重複之重複部分Lrg、及與G 層及B層的反射光譜重複之重複部分Lrgb。具有重複部分 Lrg、Lrgb表示R層的反射光含有〇或B的無用顏色成分。同 樣地,在G層的反射光譜上具有與R層的反射光譜重複之重 17 1294602 複部分Lrg、與R層及B層的反射光譜重複之重複部分Lrgb、 及與B層的反射光譜重複之重複部分Lgb。因此,G層的反 射光含有R或B的無用顏色成分。又,在b層的反射光譜上 具有與R層及G層的反射光譜重複之重複部*Lrgb、及與g 5層的反射光譜重複之重複部分Lgb。因此,b層的反射光含 有R或G的無用顏色成分。螺距p或折射率異向性△ n之溫度 所引起的變化亦會影響到此種無用的顏色成分。 本實施型態係除了修正受到螺距ρ或折射率異向性Δι1 之溫度變化影響的反射光譜本身以外,亦會配合需要進行 10考慮到R、G、Β各層的反射光譜之重複部分之修正。 在此,說明本實施型態所使用的修正方法之一例。第8 圖及第9圖係本實施型態所使用的修正方法之一例之說明 圖。首先,要事先求得輸入影像資料與根據該輸入影像資 料的實際顯示之對應。第8(a)圖係顯示輸入影像資料與根據 15該輸入影像資料之室溫下的實際顯示之關係,而第8(b)圖係 顯示輸入影像資料與根據該輸入影像資料之低溫下的實際 顯示之關係。在此,輸入影像資料之RGB值表示為(R_data、 G_data、B_data),而在顯示畫面實際輸出的顯示色調進行 模擬替換後的RGB值則表示為(R—out、G_out、B—out)。 2〇 如第8(a)圖所示,使用預定的3x3矩陣表示輸入影像資 料之RGB值與輸出至顯示晝面之模擬顯示的RGB值之關 係。在顯示畫面所顯示的紅色中,例如90%為R層之反射成 分,而10%為G層之反射成分。同樣地,在顯示晝面所顯示 的綠色中,例如90%為G層之反射成分,而5%為B層之反射 18 1294602 成分,且5%為R層之反射成分。在顯示晝面所顯示的藍色 中,例如90%為B層之反射成分,而7%為G層之反射成分, 且3%為R層之反射成分。矩陣各要素之行方向(在第8(a)圖 中分別以虛橢圓線圍住)的合計值在R行(第1行)、G行(第2 5 行)、B行(第3行)分別形成為1。 另一方面,在低溫下液晶的物性值變化會使得各層的 反射光譜轉換至短波長側,故,反射成分之比率會如第8(b) 圖所示地變動。R層的反射光譜及G層的反射光譜會分別轉 ® 換至短波長側(藍色側),故,例如在顯示晝面所顯示的紅色 10中,R層的反射成分相對於室溫時的90%減少為85%,而G 層的反射成分相對於室溫時的10%減少為5%。又,在顯示 畫面所顯示的綠色中,R層的反射成分由於前述轉換分的增 加而相對於室溫時的5%增加為1〇%,且在顯示的綠色中, G層的反射成分由於G層的反射光譜轉換至藍色側而相對 15於室溫時的90%減少為85%,並且在顯示的綠色中,b層的 _ 反射成分亦同樣地相對於室溫時的5%減少為〇%。而在顯示 畫面所顯示的藍色中,R層的反射成分由於前述轉換分的增 加而相對於室溫時的3%增加為7%,且G層的反射成分亦由 於前述轉換分的增加而相對於室溫時的7%增加為13%,並 20在顯示的藍色中’ B層的反射成分由於B層的反射光譜轉換 至紫外線方向而相對於室溫時的9〇%減少為85%。 如第8(b)圖所示,矩陣各要素之行方向(在第8(b)圖中分 別以虛橢圓線圍住)的合計值在r、G、B各行分別形成為 0.90、0.95、1.05。即,B行的合計值最大,故,在低溫下 19 1294602 灰色平衡會偏往藍色方向而形成整體帶有藍色之顯示。 為了對室溫中的顏色平衡崩解進行修正,係=用根 據反射光譜的傾向而得之前述如矩陣的反矩陣作為修正乂 係數較為簡便。即,如第9⑷圖所示,藉由取得輸入影像資 5料(實際欲顯示於顯示畫面之色調的R(jb值)(r—如卜 G_〇Ut、B_out)與第8⑷圖所示矩陣之反矩陣(修正矩旬的乘 積’可修正輸入影像資料並取得欲輸出至顯示部之顯示影 像資訊(R_data、G_data、Β__。根據所得之顯示影像= 訊進行寫入,可修正反射光譜重複所引起的顏色渾濁,而 10 得到良好的顯示品質。 +要修正低溫下帶有藍色之顯示時,可如第9(b)圖所示, 藉由取得輸入影像資料(R—〇ut、G—_、B一與第8細 所Wx3矩陣之反矩陣(修正矩陣)的乘積,而得到欲輸出至 顯不。P之顯不影像資訊(R—data、G—_、B—d咖)。在此, 15第9⑻圖所示修正矩陣的各要素之行方向的合計值,分別在 R B各行形成為U1、i·04、〇·92。即,可知B行的合 汁值最小,故,要進行修正使8層的顯示灰階值降低,以抑 制低溫中的灰色平衡偏往藍色方向。根據該顯示影像資訊 進灯寫入’可抑制波長轉換所引起的灰色平衡偏向,而得 20到良好的顯示品質。 、接著’簡單說明未考慮到R、G、B各層的反射光譜之 重複4刀之情形’作為本實施型態所使用的修正方法之另 、例第1G®及第u圖係說明本實施型態所使用的修正方 法之另例。首先,要事先求得輸入影像資料與根據該輸 20 1294602 入影像資料的實際顯示之對應。第l〇(a)圖係顯示輸入影像 負料與根據該輸入影像資料之室溫下的實際顯示之關係, 而苐10(b)圖係顯示輸入影像資料與根據該輸入影像資料之 低溫下的實際顯示之關係。 5 如第1〇(幻圖所示,本例係將在室溫下顯示晝面所顯示 之紅色的100%視為R層的反射成分。同樣地,將顯示書面 所顯示之綠色的100%視為G層的反射成分,並將所顯示之 藍色的100%視為B層的反射成分。在室溫中,矩陣的各要 ® 素在行方向的合計值分別於R、G、B各行形成為i。 10 另一方面,在低溫下,如第10(b)圖所示,矩陣的各要 素在行方向的合計值分別於R、G、B各行形成為〇.9〇、0.95、 1.05。即,B行的合計值最大,故,在低溫下灰色平衡會偏 往藍色方向而形成整體帶有藍色之顯示。 如第11(a)圖所示,藉由取得輸入影像資料(R_out、 15 G一0加、B一out)與第10(a)圖所示矩陣之反矩陣的乘積,可得 _ 到欲輸出至顯示部之顯示影像資訊(R_data、G_data、 B一data)。本例中的3x3矩陣為單位矩陣,故反矩陣與原本的 矩陣相等。因此,本例並不進行室溫下的輸入影像資料之 實質修正。 20 另一方面,在低溫下,如第11(b)圖所示,藉由取得輸 入影像資料(R—out、G-〇ut、B—out)與第10(b)圖所示矩陣之 反矩陣(修正矩陣)的乘積,可得到欲輸出至顯示部之顯示影 像資訊(R—data、G一data、B—data)。如第11(b)圖所示,修正 矩陣的各要素在行方向的合計值分別於R、G、B各行形成 21 1294602 為 1 · 11、1 ·05、〇·95。即,人 、 订的合計值最小,故,可知低 >凰中的灰色平衡之偏往藍色方向 匕乃句業已修正。但,本例並未 考慮與其他顯示層之間的相互關在,,^ 及關係,故,容易過度修正顏 色,且修正精準度並不夠高。2946〇2, IX. Description of the Invention: TECHNICAL FIELD The present invention relates to a display element, a display system having the same, and an image processing method. C: 5^ Before the background] In recent years, electronic papers have been actively promoted among enterprises and universities. The electronic paper is led by an electronic book and is expected to be applied to the display of the mobile terminal, the display of the 1C card, and the like. The liquid crystal display element using cholesteric liquid crystal is one of the powerful display modes of electronic paper, and the liquid crystal display element using cholesteric liquid crystal has semi-permanent display maintenance characteristics (memory), fresh _ bright color display frequency, high contrast Excellent characteristics such as characteristics and high resolution. The cholesteric liquid crystal is obtained by adding a large amount (tens of%) of an optically active additive (rotation material) to a nematic liquid crystal, and may also be called an optical/nematic liquid crystal. The cholesteric liquid crystal forms a cholesterol phase in which the nematic liquid crystal molecules are strongly twisted into a spiral shape, and the incident light is subjected to interference reflection. 2 Display elements using cholesteric liquid crystals are displayed by controlling the orientation state of liquid crystal molecules of each pixel. The directional state of the cholesteric liquid crystal has a horizontal spiral state and a vertical spiral state, and these states are stable even in the absence of an electric field. The liquid crystal layer in the vertical spiral state transmits light, and the liquid crystal layer in the horizontal spiral state selectively reflects light of a specific wavelength corresponding to the pitch of the liquid crystal molecules. 5 1294602 Fig. 21 is a schematic view showing a cross-sectional structure of a liquid crystal display element using cholesteric liquid crystal, and Fig. 21(a) shows a cross-sectional structure of a liquid crystal display element in a horizontal spiral state, and Fig. 21(b) shows a vertical spiral The cross-sectional configuration of the liquid crystal display element in the state. As shown in Figs. 21(a) and (b), the liquid crystal display element 5 has a pair of substrates 147 and 149, and a liquid crystal layer 143 formed by sealing a cholesteric liquid crystal between the substrates 147 and 149. As shown in Fig. 21(a), the liquid crystal molecules 133 in the horizontal spiral state form a spiral structure in which the helical axis is substantially perpendicular to the substrate surface, and the liquid crystal layer 143 in the horizontal spiral state selectively reflects the pitch of the corresponding liquid crystal molecules 133. Pre-determined 10 wavelength light. Therefore, the liquid crystal layer 143 of a certain pixel can be made into a bright state by being in a horizontal spiral state. When the average refractive index of the liquid crystal is η and the pitch is ρ, the maximum wavelength a of reflection is represented by λ = η · ρ. The anti-radio frequency width Δ λ becomes larger as the refractive index anisotropy Δ η of the liquid crystal. On the other hand, as shown in Fig. 21(b), the liquid crystal 15 molecules 133 in the vertical spiral state form a spiral structure in which the helical axis is substantially parallel to the substrate surface, and the liquid crystal layer 143 in the vertical spiral state can transmit a large amount of incident light. Therefore, the liquid crystal layer 143 of a certain pixel can be made dark in a vertical spiral state, and when the visible light absorbing layer is disposed on the side of the lower substrate 149, the darkness can be displayed in a vertical spiral state. [Patent Document 1] Japanese Patent Laid-Open Publication No. 2005-196062 Patent Document 2: Patent Publication No. 2, No. 182, Patent Document 3: Japanese Patent Publication No. 21-2382278 Patent Document 4: Japanese Laid-Open Patent Publication No. 2003-29294 Patent Document 5: Japanese Patent Laid-Open Publication No. Hei No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The figure shows a schematic view of a cross-sectional structure of five pieces of a general color liquid crystal display element using cholesteric liquid crystal. As shown in Fig. 22, the color liquid crystal display element has a structure in which, for example, a liquid crystal layer (blue layer) 101B which displays blue (B) and a liquid crystal layer (green layer) which displays green (G) i〇ig The order of the liquid crystal layer (red layer) 101R showing red (R) is laminated from the display surface side (upper in the figure). In general, a liquid crystal layer having a higher content of the optically active material can reflect light of a shorter wavelength. That is, in the case of the color liquid crystal display element as shown in Fig. 22, the liquid crystal layer 101B contains the most optically active material, and the liquid crystal molecules are strongly twisted to shorten the pitch. Further, in general, the liquid crystal layer having a higher content of the optically active material has a higher driving voltage. The Brother 23 shows an example of a reflection spectrum of a liquid crystal display element. The horizontal axis 15 represents the wavelength 〇m), and the vertical axis represents the reflectance (%). The curve connecting the ▲ marks indicates the reflection spectrum of the liquid crystal layer 101B, and the curve of the connected symbol indicates the reflection spectrum of the liquid crystal layer 101G, and the curve connecting the ♦ marks indicates the reflection spectrum of the liquid crystal layer 101R. The liquid crystal layer in the horizontal spiral state is reflected by the circularly polarized light on either side of the left and right sides. Therefore, the theoretical maximum value of the reflectance is 20 50%, and is actually about 40%. Thus, the liquid crystal layers i 〇 iR, i 〇 ig, and 101 B can be individually reflected by the respective colors of the liquid crystal molecules to be reflected by the respective colors of r, g, and B. Thereby, the liquid crystal display element having a structure in which three liquid crystal layers 101R, 101G, and 101B are laminated can be displayed in color. However, in the display element 129460*2 which has the above-described laminated structure and which can display color, even if the same image is to be displayed, the display color tone may be changed due to the surrounding environment. Therefore, there is a problem that even a display element having a laminated structure does not necessarily have a good display quality. SUMMARY OF THE INVENTION An object of the present invention is to provide a display element having good display quality, a display system having the same, and an image processing method. Means for Solving the Problems The foregoing objects can be attained by the following display elements, and the display elements include: a display portion, which is provided with a displayable portion! The display layer of the spectrum and the layered on the first (fourth) layer, and the second spectrum in which the first spectrum is located on the longer wavelength side of the first spectrum; and the temperature detecting unit' is capable of detecting the temperature in the vicinity of the display portion And the control unit generates display image data displayed on the first and second display layers based on the input image data and the temperature, so that the display color tone corresponding to the input image data is substantially constant and is not affected by the temperature. In the display device of the present invention, the control unit has a look-up table, and the look-up table corrects the input image data based on the temperature, and stores a correction coefficient for generating the displayed image data. In the display device of the present invention, the control unit has a look-up table, and the gift description (4) stores the display image data corresponding to the input shadow material and the temperature. In the display element of the present invention described above, the scale width of the aforementioned temperature of the look-up table is as fine as it is closer to the low temperature side. In the display device of the present invention, the control unit generates the image data of the display 8 1294602 by using the input image data and the function of the temperature. In the display device of the present invention, the control unit generates the display image data in consideration of the overlapping portions of the first and second spectra. In the display element of the present invention described above, the lower the temperature is, the longer the application time of the electrical signal applied to the display layer is. In the display device of the present invention, the application time of the electric signal is changed in accordance with the scale width of the temperature of the look-up table. In the display device of the present invention, the display portion further includes a laminate on the first and second display layers, and is capable of displaying the first spectral position 10 on the longer wavelength side and on the second spectrum In the third display layer of the third spectrum on the short wavelength side, the first display layer displays blue, and the second display layer displays red, and the third display layer displays green. In the display device of the present invention, the first, third, and second display layers are laminated in the order described above from the display surface side. In the display element of the present invention described above, the first to third display layers have memory properties. In the display element of the present invention, the first to third display layers have liquid crystals which form a cholesterol phase. In the display device of the present invention, the color tone formed by the first, second, and third light 20 spectra has a color tone that is enhanced by temperature, and the control unit generates the display image data so as to be equivalent to the color tone. The displayed grayscale value is lower than the display grayscale value of other tones. In the display device of the present invention, the optical direction of the third display layer is different from the optical rotation directions of the first and second display layers. 1294602 The purpose of the description can be achieved by providing the aforementioned display element lightning end of the present invention. The foregoing purpose can be achieved by a display system provided with a display element and a display information transmitting device, wherein the display element includes a display portion: a warm sound 5 ^ measuring portion and a transmitting Wei portion, and the _ department has a village The first display layer and the first tank (4) which is laminated on the second display layer and can display the second spectrum of the first spectrum on the longer wavelength side::: The temperature detection unit is detectable The temperature receiving unit in the vicinity of the display unit and/or the transmitting unit can transmit the temperature information and receive the displayed image data displayed on the work and the 10th display layer. Further, the display information transmitting device spoon includes a transmitting/receiving unit and a control unit, and the transmitting and receiving unit (4) the front display unit receives the temperature information, and transmits the display image data to the display element, and the control unit is The display image data is generated based on the input image data and the temperature, so that the display color tone corresponding to the input image data I5 is substantially fixed and is not affected by the temperature. The foregoing object can be achieved by the following image processing method, and the image processing method includes the steps of: detecting a temperature in the vicinity of a display portion where the ith display layer and the second display layer are provided, and the first display layer is Displaying the first light sensation, and the second display layer is layered on the first display layer and can display the second spectrum on the longer wavelength side with respect to the first 20th spectrum; and the input image data and the temperature generation display The display image data of the first and second display layers is such that the display color tone corresponding to the input image data is substantially fixed and is not affected by the temperature. EFFECTS OF THE INVENTION 10 1294602 According to the present invention, a display element having good display quality, a display system having the same, and an image processing method can be realized. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an example of a reflection spectrum of a general liquid crystal display element using cholesteric liquid crystal. Fig. 2 is a view showing an example of a reflection spectrum of a general liquid crystal display element using cholesteric liquid crystal. Fig. 3 is a view showing an example of a reflection spectrum of a general liquid crystal display element using cholesteric liquid crystal. 10 Fig. 4 shows the relationship between the temperature of a general liquid crystal display element using cholesteric liquid crystal and the reflectance in a vertical spiral state. Fig. 5 is a view showing a reflection spectrum of a liquid crystal display element in a horizontal spiral state. The sixth (a) and (b) drawings show the principle of the first embodiment of the present invention. 15 Figure 7 shows a schematic diagram of the reflection spectra of the R, G, and B layers. Figs. 8(a) and 8(b) are explanatory views showing an example of a correction method used in the first embodiment of the present invention. Figs. 9(a) and 9(b) are explanatory views showing an example of a correction method used in the first embodiment of the present invention. 20 (a) and (b) are explanatory views showing another example of the correction method used in the first embodiment of the present invention. 11(a) and 11(b) are explanatory views showing another example of the correction method used in the first embodiment of the present invention. Fig. 12 is a block diagram showing the outline of a display element according to a first embodiment of the present invention. Fig. 13 is a cross-sectional view schematically showing the structure of a display element of the first embodiment of the present invention. The 14th (a) and (b) diagrams show an example of the data structure stored in the correction coefficient 5 of the image correction LUT. The 15th (a) and (b) diagrams show voltage waveforms applied to one selected period of the signal electrode. Figures 16(a) and (b) show voltage waveforms applied to one selected period of the scan electrode. 10 (a) and (b) show the voltage waveforms of one selected period of the liquid crystal layer applied to the pixel. Fig. 18 is a view showing an example of voltage-reflectance characteristics of a cholesteric liquid crystal. Fig. 19 shows a variation of the image correction LUT. Fig. 20 is a block diagram showing the outline of the display system of the second embodiment of the present invention. 21(a) and (b) are schematic views showing a cross-sectional structure of a liquid crystal display element using cholesteric liquid crystal. Fig. 2 is a schematic view showing a sectional structure of a color liquid crystal display element using cholesteric liquid crystal. 20 Fig. 23 shows an example of a reflection spectrum of a liquid crystal display element having no laminated structure. I: Embodiment 3 BEST MODE FOR CARRYING OUT THE INVENTION [First Embodiment] 12 1294602 A display element and an image processing method according to a third embodiment of the present invention will be described using Figs. 1 to 19 . First, a problem of a conventional display element which is a premise of this embodiment will be described. A conventional color liquid crystal display device using a cholesteric liquid crystal has a problem that the selective reflection characteristic of the liquid crystal layer changes with temperature, thereby causing a problem of change in display hue (chromaticity or chroma), and displaying the first cause of color tone change. The conversion caused by the reflection wavelength temperature of the liquid crystal layer in a horizontal spiral state. Fig. 1 shows an example of a reflection spectrum of a liquid crystal display element using a cholesteric liquid crystal in a horizontal spiral state, and the horizontal axis represents the wavelength (mn), and the vertical axis represents the reflectance (%). Curves a] L, bl, and cl represent reflection spectra of the same 10 liquid crystal display elements. The curve a1 represents the reflection spectrum at room temperature (for example, 25 〇, and the curve bl represents the reflection spectrum at a low temperature (for example, 〇C) below room temperature, and the curve "expresses the temperature at a temperature higher than room temperature. (For example, the reflection spectrum at 50 C). As shown in Fig. 1, it can be seen that the closer the reflection spectrum of the liquid crystal display element is to the low temperature, the wavelength is converted to the shorter wavelength side, and the closer to the 15 surface temperature, the wavelength is converted to the longer wavelength side. Fig. 2 shows an example of a reflection spectrum of a liquid crystal display element using another cholesteric liquid crystal in a horizontal spiral state. Curve a2 indicates a reflection spectrum at room temperature, and curve b2 indicates reflection at a low temperature lower than room temperature. The spectrum, and the curve c2, represents a reflection spectrum at a high temperature higher than room temperature. As shown in Fig. 2, 20, it can be seen that the closer the reflection spectrum of the liquid crystal display element is to the low temperature, the wavelength is converted to the long wavelength side, and the closer to the high temperature, the closer the temperature is. Converting the wavelength to the short wavelength side. Thus, the cholesteric liquid crystal is closer to the low temperature, the wavelength band of the selectively reflected light is shifted to the short wavelength side material, and the opposite is closer to the low temperature, the selective reflection light The wavelength band is converted to the material on the long wavelength side. 13 1294602 The reason for this wavelength conversion is likely to be the change caused by the temperature of the liquid crystal. The second cause of the change in color tone is the liquid crystal display element using cholesteric liquid crystal. The temperature change of the half-value amplitude of the reflection spectrum, and the third figure shows an example of the reflection spectrum of the liquid crystal display element using the cholesteric liquid crystal in the horizontal position. The curve a3 represents the reflection spectrum at room temperature, and the curve... The reflection spectrum at a low temperature lower than room temperature, and the curve 〇3 indicates a reflection spectrum at a high temperature higher than room temperature. As shown in Fig. 3, the half-value amplitude of the reflection spectrum is wider toward the lower temperature. Therefore, the color purity of 10 pieces of display element using cholesteric liquid crystal generally decreases with the lower temperature and increases with the higher temperature. The reason may be caused by the refractive index anisotropy of the liquid crystal. When the temperature is lowered, the refractive index anisotropy Δ11 of the liquid crystal increases, so it is presumed that the half-value amplitude of the reflection spectrum in the horizontal spiral state is widened, and the color is pure. The degree of decrease is also affected by the change of the refractive index anisotropy Δη. When the temperature is lowered and the refractive index anisotropy Δη is increased, the light scattering in the vertical spiral state is increased. Fig. 4 shows the temperature and The relationship between the light reflectances under the liquid crystal layer in the vertical spiral state. The horizontal axis represents temperature (it), and the vertical axis represents reflectance (%). As shown in Fig. 4, the closer to low temperature, the vertical spiral state The increase in the light scattering of 20 increases the reflectance. Therefore, in a color liquid crystal display device having a liquid crystal layer structure in which the colors of the layers R, G, and B are laminated, the scattered light in the other liquid crystal layer in the vertical spiral state is The noise is added to the reflected light of the liquid crystal layer in the horizontal spiral state, so that the color purity at a low temperature is getting lower and lower. 14 1294602 Patent Document 2 discloses the reference to the gamma value of the brightness as a liquid crystal display element and by The wave height value or pulse width of the modulation drive pulse is such that the gamma value is fixed and is not affected by temperature for temperature compensation. However, this method has the following disadvantages. Figure 5 shows the reflection spectrum of a liquid crystal display element in a horizontal spiral. The horizontal axis represents the wavelength (nm), and the vertical axis represents the reflectance (%). Curve b4 represents the reflection spectrum at a low temperature, and the curve "represents the reflection spectrum at high brewing, and the curve ^ represents the visual sensitivity curve. As shown in Fig. 5, the reflection wavelength of the liquid 曰 g layer is V at a low temperature. Down-converted to the short-wavelength side and converted to the long-wavelength side at a high temperature. Here, when the conversion amount S1 at the low temperature from the center 10 of the visual sensitivity curve d to the short-wavelength side is changed, and the viscous curve (1) When the conversion amount S2 at the high temperature of the central conversion to the long wavelength side is equal, the Y value at a low temperature and the γ value at a high temperature are substantially equal. However, even if the Y values are equal, the wavelength conversion direction at a low temperature and a high temperature is also caused. The difference in display color is different. Therefore, even if the temperature compensation is performed with reference to the γ value, the variation of the color modulation cannot be suppressed. In addition to the above, a method of correcting the luminance value 戋 white balance of the liquid crystal display element is also known. The method for correcting the white balance of a normally-white mode transmissive liquid crystal display device according to a look-up table (LUT) is disclosed. However, this method does not consider the variation of the liquid crystal characteristics caused by temperature, so it cannot be suppressed. Patent Document 4 discloses a liquid crystal display device using a two-layer structure of optical rotation/nematic (cholesterol) liquid crystal, in which the selectivity of a liquid crystal layer that can reflect light on a short-wavelength side is converted. The maximum wavelength of reflection and the maximum wavelength of the selective reflection of the liquid crystal layer of the light on the long wavelength side of 15 1294602, so that the wavelengths are separated from each other as the temperature rises, thereby achieving high brightness without being affected by the ambient temperature. However, when the conversion is performed on the maximum wavelength of the selective reflection of the double-layer liquid crystal layer, it is difficult to maintain the white color balance or suppress the color tone change. Patent Document 5 is the same as Patent Document 3, and discloses that ^ [71] A method of correcting a transmissive liquid crystal display device. However, this method does not take into consideration the variation of the characteristics of the liquid crystal 7 caused by the temperature, so that the change in color tone cannot be suppressed. Patent Document 6 discloses the temperature measured by the temperature sensor. The technique of repairing the jLRGBf artifact signal with reference to the 10 LUT. However, the technique corrects the RGB image signal according to the temperature of the lamp portion of the liquid crystal projector. The time and space difference between the measured lamp portion temperature and the actual temperature of the liquid crystal display element is not considered. Moreover, this technology is related to the transmissive liquid crystal projector, and thus is different from the present case on the premise. The present inventors have considered a technique for solving a problem in which a display color tone changes due to temperature in a color display element having a laminated structure. Fig. 6 shows the principle of the present embodiment. Fig. 6(a) is a diagram A color liquid crystal display element having a laminated structure of R, G, and B3 layer display layers uses a gray scale scale to display a reflection spectrum. A curve a5 indicates a reflection spectrum at room temperature, and a curve 20 indicates a reflection at a low temperature. Spectral. As shown in Fig. 6(a), the reflection spectrum is converted to the short wavelength side at the low temperature (the wavelength conversion direction is indicated by an arrow in Fig. 6(a)) and the gray balance in the gray scale scale display Disintegrated and turned into a blue display. That is, the reflection spectrum of the three-layer display layer of this example was converted to the short-wavelength side at a low temperature. 16 1294602 This type of resentment is used to suppress the display color change caused by the above temperature, and correct the input image data or drive waveform according to the correction information stored in the LUT. Figure 6(b) shows the reflectance spectrum at low temperatures before and after correction. The curve b5 of Fig. 6(b) corresponds to the curve b5 of Fig. 6(a), and shows the reflection spectrum at the low temperature 5 before the correction, and the curve e5 shows the corrected reflection spectrum. Further, the curves e6 to e8 respectively show the corrected reflection spectra in the gray scale display of the lower gray scale. As shown in Fig. 6(b), according to the correction information, for example, the reflectance on the short-wavelength side is lowered to an appropriate range as indicated by an arrow in the figure, and the gray balance of the display can be corrected and the color tone change can be suppressed. For example, this embodiment reduces the reflectance on the short wavelength side by lowering the display gray scale value of the display layer of display B. The correction information stored in the LUT contains information on the correlation of the color information of each display layer of the layer. Here, the relationship of the color information of each display layer will be described. Fig. 7 is a schematic view showing the reflection 15 spectrum of each of the display layers of R, G, and B. The horizontal axis represents the wavelength (nm), and the vertical axis represents the reflectance (%). The curve R1 represents the reflection spectrum of the display layer (R layer) showing R, and the curve G1 represents the reflection spectrum of the display layer (G layer) showing G, and the curve B1 represents the reflection spectrum of the display layer (layer B) of the display B, And curve d represents the visual sensitivity curve. As shown in Fig. 7, when the reflection spectra of the R, G, and B layers are superimposed, 20 will form a repeating portion in which the reflection spectra are repeated. For example, the reflection spectrum of the R layer has a repeating portion Lrg overlapping with the reflection spectrum of the G layer, and a repeating portion Lrgb overlapping with the reflection spectra of the G layer and the B layer. The repeating portion Lrg and Lrgb indicate that the reflected light of the R layer contains an unnecessary color component of 〇 or B. Similarly, the reflection spectrum of the G layer has a repeating weight of the reflection spectrum of the R layer of 17 1294602, a portion Lrg, a repeating portion Lrgb overlapping with the reflection spectra of the R layer and the B layer, and a reflection spectrum overlapping with the layer B. Repeat part Lgb. Therefore, the reflected light of the G layer contains an unnecessary color component of R or B. Further, the reflection spectrum of the b layer has a repeating portion *Lrgb which overlaps with the reflection spectrum of the R layer and the G layer, and a repeating portion Lgb which overlaps with the reflection spectrum of the g 5 layer. Therefore, the reflected light of the b layer contains an unnecessary color component of R or G. Changes caused by the temperature of the pitch p or the refractive index anisotropy Δ n also affect such useless color components. In this embodiment, in addition to correcting the reflection spectrum itself affected by the temperature variation of the pitch ρ or the refractive index anisotropy Δι1, it is also necessary to perform the correction of the repeated portions of the reflection spectra of the respective layers of R, G, and Β. Here, an example of the correction method used in the present embodiment will be described. Fig. 8 and Fig. 9 are explanatory views showing an example of a correction method used in the present embodiment. First, the correspondence between the input image data and the actual display based on the input image data is obtained in advance. Figure 8(a) shows the relationship between the input image data and the actual display at room temperature according to 15 the input image data, and the 8th (b) image shows the input image data and the low temperature according to the input image data. The actual display relationship. Here, the RGB values of the input image data are expressed as (R_data, G_data, B_data), and the RGB values after the analog tone of the display actually outputted on the display screen are replaced by (R_out, G_out, B_out). 2〇 As shown in Figure 8(a), a predetermined 3x3 matrix is used to represent the relationship between the RGB values of the input image data and the RGB values of the analog display output to the display side. In the red color displayed on the display screen, for example, 90% is the reflection component of the R layer, and 10% is the reflection component of the G layer. Similarly, in the green color displayed on the display pupil, for example, 90% is the reflection component of the G layer, and 5% is the reflection of the B layer 18 1294602 component, and 5% is the reflection component of the R layer. In the blue color displayed on the kneading surface, for example, 90% is the reflection component of the B layer, and 7% is the reflection component of the G layer, and 3% is the reflection component of the R layer. The total value of the row direction of each element of the matrix (enclosed by a dotted ellipse in Fig. 8(a)) is in the R row (the 1st row), the G row (the 25th row), and the B row (the 3rd row). ) formed as 1. On the other hand, when the physical property value of the liquid crystal changes at a low temperature, the reflection spectrum of each layer is converted to the short wavelength side, the ratio of the reflection component changes as shown in Fig. 8(b). The reflection spectrum of the R layer and the reflection spectrum of the G layer are respectively switched to the short wavelength side (blue side), so that, for example, in the red color 10 displayed on the display side, the reflection component of the R layer is relative to the room temperature. The 90% reduction is 85%, while the reflection component of the G layer is reduced by 5% relative to 10% at room temperature. Further, in the green color displayed on the display screen, the reflection component of the R layer is increased by 1% by 5% with respect to room temperature due to the increase of the conversion component, and in the green color displayed, the reflection component of the G layer is The reflection spectrum of the G layer is converted to the blue side and the 90% reduction with respect to 15 at room temperature is 85%, and in the green color shown, the _ reflection component of the b layer is also reduced by 5% with respect to room temperature. For 〇%. On the display screen, the reflection component of the R layer is increased by 7% with respect to 3% at room temperature due to the increase of the conversion component, and the reflection component of the G layer is also increased due to the aforementioned conversion component. The increase with respect to 7% at room temperature is 13%, and 20 in the blue color shown, the reflection component of the B layer is reduced to 95% with respect to 9室温% at room temperature due to the conversion of the reflection spectrum of the B layer to the ultraviolet direction. %. As shown in Fig. 8(b), the total value of the row direction of each element of the matrix (enclosed by a dotted ellipse in Fig. 8(b)) is 0.90, 0.95 in each of r, G, and B, respectively. 1.05. That is, the total value of the B line is the largest, so at a low temperature, the gray balance of 19 1294602 is biased toward the blue direction to form a display with a blue color as a whole. In order to correct the color balance disintegration at room temperature, it is simpler to use the inverse matrix such as the matrix obtained as the correction 乂 coefficient according to the tendency of the reflection spectrum. That is, as shown in Fig. 9(4), by inputting the input image material (the R (jb value) actually displayed on the hue of the display screen (r - such as G_〇Ut, B_out) and the figure shown in Fig. 8(4) The inverse matrix of the matrix (corrected product of the moments) corrects the input image data and obtains the display image information (R_data, G_data, Β__) to be output to the display unit. The reflected image spectrum can be corrected by writing according to the obtained display image=signal The resulting color is turbid, and 10 gives good display quality. + To correct the display with blue at low temperature, as shown in Figure 9(b), by taking the input image data (R-〇ut, The product of G__, B1 and the inverse matrix (correction matrix) of the Wx3 matrix of the eighth detail is obtained, and the image is not output. The image information of R (R-data, G__, B-d coffee) Here, the total value of the row direction of each element of the correction matrix shown in Fig. 9 (8) is formed as U1, i·04, and 〇·92 in each row of RB. That is, it can be seen that the combined value of the B row is the smallest. Therefore, it is necessary to correct the 8-level display gray scale value to suppress the gray balance in the low temperature to the blue direction. According to the display image information into the lamp writing 'can suppress the gray balance bias caused by the wavelength conversion, and get 20 to good display quality. Then, 'simplified explanation does not consider the repetition of the reflection spectrum of each layer of R, G, B The case of 4 knives 'Another example of the correction method used in the present embodiment 1G® and the u-th diagram illustrate another example of the correction method used in the present embodiment. First, the input image data is obtained in advance. Corresponding to the actual display of the image data according to the input 20 1294602. The first frame (a) shows the relationship between the input image negative material and the actual display at room temperature according to the input image data, and 苐 10(b) The figure shows the relationship between the input image data and the actual display at the low temperature according to the input image data. 5 As shown in the first picture (this picture shows, this example will display 100% of the red color displayed on the face at room temperature. It is regarded as a reflection component of the R layer. Similarly, 100% of the green color shown in the drawing is regarded as a reflection component of the G layer, and 100% of the displayed blue color is regarded as a reflection component of the B layer. Medium, the matrix of each element The total value of the directions is formed as i in each of R, G, and B. On the other hand, at a low temperature, as shown in Fig. 10(b), the total value of each element of the matrix in the row direction is R, G, respectively. The B lines are formed as 〇.9〇, 0.95, 1.05. That is, the total value of the B line is the largest, so the gray balance will be biased toward the blue direction at a low temperature to form a blue display as a whole. a) As shown in the figure, by obtaining the product of the input image data (R_out, 15 G - 0 plus, B - out) and the inverse matrix of the matrix shown in Fig. 10 (a), _ is outputted to the display portion. Display image information (R_data, G_data, B-data). The 3x3 matrix in this example is a unit matrix, so the inverse matrix is equal to the original matrix. Therefore, this example does not perform substantial correction of the input image data at room temperature. 20 On the other hand, at low temperatures, as shown in Figure 11(b), by taking the input image data (R-out, G-〇ut, B-out) and the matrix shown in Figure 10(b) The product of the inverse matrix (correction matrix) can obtain the display image information (R_data, G_data, B-data) to be output to the display unit. As shown in Fig. 11(b), the total value of each element of the correction matrix in the row direction is formed in each of R, G, and B rows, and 21 1294602 is 1 · 11 , 1 · 05, and 〇 · 95. That is, the total value of the person and the order is the smallest, so it can be seen that the gray balance in the low and the phoenix is biased toward the blue direction. However, this example does not consider the relationship between the other display layers, and the relationship between them, so it is easy to over-correct the color, and the correction accuracy is not high enough.

卩上’已舉出兩以求得修正顏色㈣修正係數之 方法’但本實施型態所使用的修正方法並不限於該兩例。 本實施型態亦可使用對溫度所引起的水平螺旋狀態下之波 長轉換變化、及溫度所引起的折射率異向性Λη之變化進行 修正等各種修正方法。又,修正時最好要考慮與其他顯示 10 層之間的相互關係。 接著’說明本實施型態之顯示元件、電子紙及影像處 理方法。第12圖係顯示本實施型態的顯示元件之概略結構 之方塊圖,而苐13圖係模式性的顯示本實施型態的顯示元 件結構之截面圖。如第12圖及第13圖所示,顯示元件(液晶 15顯示元件)設有具記憶性之顯示部38。顯示部38具有下述結 構··依照顯示Β之顯示層39Β、顯示G之顯示層39G及顯示R 之顯示層39R之順序從顯示面侧(第13圖中上方)開始積 層。又,可配合需要在顯示層39R的裏面側(第13圖中下方) 設置可見光吸收層40。 20 各顯示層39R、39G、39Β具有透過密封材44而貼合之 一對基板42、43。基板42、43係例如雙方皆具有可透過可 見光之透光性。基板42、43可使用採用玻璃基板、聚對苯 二甲酸乙二酯(PET ; PolyEthylene Terephthalate)或聚碳酸 酯(PC ; Polycarbonate)等具有高度可撓性之膜片基板。 22 !2946〇^ 在基板42面對基板43之面上,形成有多數大致互相平 行延伸之帶狀掃描電極48。又,在基板43面對基板42之面 上,形成有多數大致互相平行延伸之帶狀信號電極5〇。而 為Q-VGA顯示層時,則形成如24〇條的掃描電極48及32〇條 5的信號電極50。垂直地觀察基板面時,掃描電極48與信號 電極50係互相交叉地延伸。掃描電極佔與信號電極5〇交叉 之多數領域係配置成矩陣狀之多數像素領域。掃描電極48 與信號電極50係使用如銦錫氧化物(IT〇; Indium 丁比〇xid幻 而形成者,且亦可使用銦鋅氧化物(IZ〇; Indium zine 〇xide) 10等透明導電膜或非晶石夕等形成掃描電極48與信號電極5〇。 最好在掃描電極48及信號電極50上塗布絕緣性薄膜或 定向穩定膜。絕緣性薄膜具有防止電極間的短路或作為氣 體P早壁層阻斷氣體成分,以提高液晶顯示層的可靠性之機 能。而定向穩定膜適合使用聚醯亞胺樹脂或丙烯酸樹脂等 15有機膜。本例係於掃描電極48、信號電極%上塗布定向穩 定膜(未圖示)。又,亦可兼用定向穩定膜與絕緣性薄膜。 基板42、43之間設有用以均一保持單元間距之間隔物 (未圖示)。在間隔物方面,可使用樹脂製或無機氧化物製之 球狀間隔物、表面塗布有熱可塑性樹脂之固接間隔物、使 20用光刻法形成於基板上的柱狀或壁狀間隔物等。 基板42、43間密封有在室溫下顯示膽固醇相之膽固醇 液晶組成物,並形缝晶層(顯示層)46。膽固醇液晶組成物 係於向列型液晶混合物中添加1〇〜4_%之旋光材而製作 者。在此,旋光材添加量係向列型液晶與旋光材之合計量 23 1294602 為lOOwt%時之值。旋光材添加量較多時,向列型液晶分子 會由於受到強烈扭轉而縮短螺距,並在水平螺旋狀態下選 擇短波長光予以反射。相反地,旋光材添加量較少時螺距 會變長,並在水平螺旋狀態下選擇長波長光予以反射。顯 5示層39化之液晶層46係在水平螺旋狀態下選擇尺波長光反 射,且顯示層39G之液晶層46係在水平螺旋狀態下選擇g波 長光反射,而顯示層39B之液晶層46係在水平螺旋狀態下選 擇B波長光反射。 溫度所引起的液晶波長轉換方向受到旋光材的影響相 10當大。例如,有選擇性反射波長隨著溫度上升而轉換至長 波長側之旋光材,亦有選擇性反射波長隨著溫度上升而轉 換至短波長側之旋光材。藉由混合波長轉換方向相反之旋 光材,可良好地抑制波長轉換,但仍然難以完全抑制波長 轉換。又’例如為具有R、G、B3層積層結構之顯示元件時, 15係=各液曰曰層的波長轉換方向相同者可利用較少的前述修 正量完成,因此較佳。 可使用周知的各種材料作為向列型液晶。膽固醇液晶 組成物之介電常數異向性係以2〇〜5〇較佳。介電常數異 向f生△ ε在20以上時,可抑制驅動電壓快速上升,故驅動 20 $路可使用便宜的通用零件。當膽固醇液晶組成物之介電 系α △ 6與$述氣圍相比過低時,會造成驅動電壓 提高。相反地,當介雷I奴 電⑦數異向性△ε與前述範圍相比過 高時,會降低顯示元件的猨 、 仵的穩疋性或可靠性,而容易產生影 像缺陷或影像雜訊。 24 1294602 又膽固if·液aQ組成物之折射率異向性△ η係支配書質 的重要物性值。折射率異向性Δη以大致在〇 18〜〇·24較佳, 當折射率異向性Δη小於該範圍時,水平螺旋狀態下的反射 率會降低,因而造成顯示亮度降低。相反地,當折射率異 5向性么11大於該範圍時,垂直螺旋狀態下的光散射會變大, 故色純度或對比降低並造成顯示模糊。膽固醇液晶組成物 之對比電阻值最好在1〇10〜1〇13Ω · 之範圍。又,膽固醇 液晶組成物之黏度越低越可抑制低溫時的電壓上升或對比 降低,且膽固醇液晶組成物黏度最好相對於響應速度或定 10 向狀態的穩定性位於20〜1200mPa · s之範圍。 本實施型態係使水平螺旋狀態中的顯示層39G之液晶 層46的旋光性(旋光方向),與顯示層39R、39B之液晶層46 的旋光性不同。因此,在第7圖所示之B與G的反射光譜之 重璺領域、及G與R的反射光譜之重疊領域中,可於顯示層 15 39]8之液晶層46反射右圓偏振光之光,並於顯示層39G之液 晶層46反射左圓偏振光之光。藉此,可減低反射光之損失, 並提南液晶顯不元件的顯示畫面亮度。 又’液晶顯示元件係與STN模式之液晶顯示元件相 同’具有分別與顯示部38連接之掃描端的驅動ic及資料端 2〇的驅動1C(第12圖係以1個驅動1C顯示)。本實施型態係使用 通用的STN驅動器作為該等驅動1C。在本實施型態之積層 有多數顯示層39R、39G、39B的液晶顯示元件中,一般必 須在各層獨立設置資料端的驅動1C,而掃描端的驅動ic則 可各層共通使用。 25 1294602 又,液晶顯示元件具有未圖示之電源部。電源部係例 如具有DC-DC變換器,可使外部輪入的如直流3〜5V之電壓 升壓為驅動膽固醇液晶所需的直流如〜4〇v左右之電壓。此 外’電源部係使用升壓後的電壓,並因應各像素的灰階值 5或選擇/非選擇之區別來產生所需的多種等級電歷。而所產 生之電壓係藉由具有穩壓二極體或運算放大器之調整器而 穩定化,並供給至驅動IC20。 又’液晶顯示元件具有如設置在顯示部38附近之溫度 感測器27(溫度檢測部)。溫度感測器27可檢測顯示部38附近 10之溫度,並根據測出之溫度輸出溫度資料。 再者,液晶顯示元件具有設有運算部25及資料控制部 26之控制部29。運算部25係從外部輸入輸入影像資料,並 從溫度感測器27輸入顯示部38附近之溫度資料。又,溫度 資料亦可從外部輪入至運算部25,此時,可不需在液晶顯 15不元件設置溫度感測器27。運算部25可根據輸入影像資料 及溫度資料產生用以顯示於顯示部38的各顯示層39R、 39G、39B之顯示影像資料,並輸出至資料控制部%。 溫度感測器27之輸出值係輸入至運算部25之解碼器 30,且解碼器30將溫度感測器27之輸出值變換成預定溫度 20資料,並輸出至LUT選擇器31。溫度感測器27之輸出為數 位信號時,解碼器3〇會進行配合LUT選擇器之編碼,而溫 度感測器27之輸出為類比信號時,則要使解碼器3〇具有作 為A/D變換器之機能。LUT選擇器31係從可儲存與顯示部邛 附近溫度對應的修正係數之影像修正LUT32,根據解碼器 26 1294602 30所輸入之溫度選擇最合適之修正係數。 5The above method has been proposed to correct the color (4) correction coefficient. However, the correction method used in the present embodiment is not limited to the two examples. In the present embodiment, various correction methods such as correction of the wavelength conversion in the horizontal spiral state caused by the temperature and correction of the change in the refractive index anisotropy Λ caused by the temperature can be used. Also, it is best to consider the relationship with other display 10 layers when correcting. Next, the display element, the electronic paper, and the image processing method of the present embodiment will be described. Fig. 12 is a block diagram showing a schematic configuration of a display element of the present embodiment, and Fig. 13 is a schematic sectional view showing the structure of a display element of the present embodiment. As shown in Figs. 12 and 13, the display element (liquid crystal display element) is provided with a memory display portion 38. The display unit 38 has the following structure: The display layer 39 Β, the display layer 39G for displaying G, and the display layer 39R for displaying R are stacked in this order from the display surface side (upward in Fig. 13). Further, it is possible to provide the visible light absorbing layer 40 on the back side (lower in FIG. 13) of the display layer 39R. Each of the display layers 39R, 39G, and 39R has a pair of substrates 42, 43 which are bonded to each other through the sealing member 44. For example, both of the substrates 42 and 43 have light transmissivity that is permeable to visible light. As the substrates 42, 43, a highly flexible film substrate such as a glass substrate, polyethylene terephthalate (PET) or polycarbonate (PC; Polycarbonate) can be used. 22! 2946 〇 ^ On the surface of the substrate 42 facing the substrate 43, a plurality of strip-shaped scanning electrodes 48 extending substantially parallel to each other are formed. Further, on the surface of the substrate 43 facing the substrate 42, a plurality of strip-shaped signal electrodes 5a extending substantially in parallel with each other are formed. In the case of the Q-VGA display layer, the scanning electrodes 48 of the 24 turns and the signal electrodes 50 of the 32 bars 5 are formed. When the substrate surface is viewed vertically, the scan electrode 48 and the signal electrode 50 extend across each other. Most of the fields in which the scanning electrode occupies the signal electrode 5A are arranged in a matrix of a plurality of pixel fields. The scan electrode 48 and the signal electrode 50 are formed by using, for example, indium tin oxide (IT〇; Indium 〇 〇 〇 〇 幻 幻 , , , , , , , , , , , , 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明Or the amorphous electrode or the like forms the scan electrode 48 and the signal electrode 5A. Preferably, an insulating film or an orientation stabilizing film is coated on the scan electrode 48 and the signal electrode 50. The insulating film has a short circuit between the electrodes or is used as a gas P. The wall layer blocks the gas component to improve the reliability of the liquid crystal display layer. The orientation stabilization film is preferably a 15-organic film such as a polyimide resin or an acrylic resin. This example is applied to the scan electrode 48 and the signal electrode %. An orientation-stabilizing film (not shown) may be used in combination with an orientation-stabilizing film and an insulating film. A spacer (not shown) for uniformly maintaining a cell pitch is provided between the substrates 42 and 43. A spherical spacer made of a resin or an inorganic oxide, a fixed spacer having a surface coated with a thermoplastic resin, a columnar or wall spacer formed by photolithography on the substrate, and the like are used. The cholesteric liquid crystal composition exhibiting a cholesterol phase at room temperature is sealed, and a slit layer (display layer) 46 is formed. The cholesteric liquid crystal composition is added to the nematic liquid crystal mixture by adding 1 to 4% of the optically active material. Here, the amount of the optically active material added is a value when the total amount of the nematic liquid crystal and the optically active material 23 1294602 is 100% by weight. When the amount of the optically active material is large, the nematic liquid crystal molecules are shortened by the strong twist. And the short-wavelength light is selected to be reflected in the horizontal spiral state. Conversely, when the amount of the optically-optic material is small, the pitch will become longer, and the long-wavelength light is selected to be reflected in the horizontal spiral state. The 46 series selects the ulnar wavelength light reflection in the horizontal spiral state, and the liquid crystal layer 46 of the display layer 39G selects the g-wavelength light reflection in the horizontal spiral state, and the liquid crystal layer 46 of the display layer 39B selects the B wavelength in the horizontal spiral state. Light reflection. The wavelength conversion direction of the liquid crystal caused by the temperature is affected by the optically active material. If, for example, the selective reflection wavelength shifts to the long wavelength side as the temperature rises. The material also has a selective reflection wavelength that is converted to the short-wavelength side of the optical material as the temperature rises. By mixing the optically-rotating materials of opposite wavelength conversion directions, the wavelength conversion can be satisfactorily suppressed, but it is still difficult to completely suppress the wavelength conversion. For example, in the case of a display element having a laminated structure of R, G, and B layers, the 15 series = the same wavelength conversion direction of each liquid helium layer can be completed with a small amount of the above correction amount, and therefore it is preferable to use various materials known in the art. As a nematic liquid crystal, the dielectric constant anisotropy of the cholesteric liquid crystal composition is preferably 2 〇 to 5 。. When the dielectric constant is in the opposite direction f Δ ε is 20 or more, the driving voltage can be suppressed from rising rapidly, so that the driving is performed. A cheap general-purpose part can be used for the 20 $ road. When the dielectric system α Δ 6 of the cholesteric liquid crystal composition is too low compared with the gas enthalpy, the driving voltage is increased. Conversely, when the 7-axis anisotropy Δε of the Jielei I slave is too high compared to the above range, the stability or reliability of the display element is lowered, and image defects or image noise are easily generated. . 24 1294602 The refractive index anisotropy of the biliary if· liquid aQ composition is an important physical property value of the η system. The refractive index anisotropy Δη is preferably approximately 〇 18 〇 〇 24, and when the refractive index anisotropy Δη is smaller than the range, the reflectance in the horizontal spiral state is lowered, thereby causing a decrease in display luminance. Conversely, when the refractive index isotropy 11 is larger than the range, the light scattering in the vertical spiral state becomes large, so that the color purity or contrast is lowered and the display is blurred. The comparative resistance value of the cholesteric liquid crystal composition is preferably in the range of 1 〇 10 〜 1 〇 13 Ω · . Further, the lower the viscosity of the cholesteric liquid crystal composition, the more the voltage rise or the contrast reduction at a low temperature can be suppressed, and the viscosity of the cholesteric liquid crystal composition is preferably in the range of 20 to 1200 mPa·s with respect to the response speed or the stability of the fixed 10-state state. . In this embodiment, the optical rotation (optical rotation direction) of the liquid crystal layer 46 of the display layer 39G in the horizontal spiral state is different from the optical rotation of the liquid crystal layer 46 of the display layers 39R and 39B. Therefore, in the overlapping field of the reflection spectrum of B and G and the reflection spectrum of G and R shown in FIG. 7, the liquid crystal layer 46 of the display layer 15 39] 8 can reflect the right circularly polarized light. Light, and the liquid crystal layer 46 of the display layer 39G reflects the light of the left circularly polarized light. Thereby, the loss of the reflected light can be reduced, and the brightness of the display screen of the south liquid crystal display element can be improved. Further, the liquid crystal display element is the same as the liquid crystal display element of the STN mode, and has a drive ic of the scanning end connected to the display unit 38 and a drive 1C of the data terminal 2 (the 12th figure is displayed by one drive 1C). This embodiment uses a general-purpose STN driver as the drives 1C. In the liquid crystal display device in which the plurality of display layers 39R, 39G, and 39B are laminated in the present embodiment, it is generally necessary to independently provide the drive 1C of the data terminal in each layer, and the drive ic of the scan end can be used in common for each layer. 25 1294602 Further, the liquid crystal display element has a power supply unit (not shown). For example, the power supply unit has a DC-DC converter, which can boost the voltage of the externally-introduced DC voltage of 3 to 5 V to a voltage of about 400 volts required to drive the cholesteric liquid crystal. In addition, the power supply unit uses the boosted voltage and generates the required multiple levels of electrical history in response to the grayscale value 5 or the selection/non-selection of each pixel. The voltage generated is stabilized by a regulator having a voltage stabilizing diode or an operational amplifier, and supplied to the driving IC 20. Further, the liquid crystal display element has a temperature sensor 27 (temperature detecting portion) provided in the vicinity of the display portion 38. The temperature sensor 27 detects the temperature in the vicinity of the display portion 38 and outputs temperature data based on the measured temperature. Further, the liquid crystal display element has a control unit 29 provided with a calculation unit 25 and a data control unit 26. The calculation unit 25 inputs the input image data from the outside, and inputs the temperature data in the vicinity of the display unit 38 from the temperature sensor 27. Further, the temperature data can be rotated from the outside to the calculation unit 25. In this case, the temperature sensor 27 can be disposed without the liquid crystal display element. The calculation unit 25 generates display image data for display on each of the display layers 39R, 39G, and 39B of the display unit 38 based on the input image data and the temperature data, and outputs the image data to the data control unit %. The output value of the temperature sensor 27 is input to the decoder 30 of the arithmetic unit 25, and the decoder 30 converts the output value of the temperature sensor 27 into a predetermined temperature 20 data, and outputs it to the LUT selector 31. When the output of the temperature sensor 27 is a digital signal, the decoder 3 〇 encodes with the LUT selector, and when the output of the temperature sensor 27 is an analog signal, the decoder 3 〇 has to be used as the A/D. The function of the converter. The LUT selector 31 selects an image correction LUT 32 which can store a correction coefficient corresponding to the temperature in the vicinity of the display unit ,, and selects an optimum correction coefficient based on the temperature input from the decoder 26 1294602 30. 5

10 G_b B_r B_g、係作為每個預定溫度範圍之修正係數 而儲存。本㈣泰机為最低溫度、㈣。c為最高溫度, 第14圖係顯示儲存於影像修正LUT32之修正係數的資 料結構。如第14(a)圖所示,以3χ3矩陣表現的修正矩陣之第 1行各要素為R_r、R_g、R_b,且第2行各要素為G—r、G」、 G_b ’並且第3行各要素為、B—g、。此時,如第剛 圖所示’修正矩陣之各要素R_r、R_g、R_b、g—r、G一§、 並將刻度寬度全部设為阶,故,分割為9階段的溫度範 圍。在此’雖,然溫度T的刻度寬度變細時可提高修正精準 度仁台增大i料里。因此,溫度τ的刻度寬度最好為5。 左右,且亦可如本例為10。左右。又,可由第4圖所示在垂 直螺旋狀態的液晶層之纽料(折料異向性)的溫度關 連得知液BS的物性值係越靠近低溫時變化越加急劇。 1510 G_b B_r B_g is stored as a correction factor for each predetermined temperature range. This (four) Thai machine is the lowest temperature, (four). c is the highest temperature, and Fig. 14 shows the data structure stored in the correction coefficient of the image correction LUT32. As shown in Fig. 14(a), the elements in the first row of the correction matrix expressed by the 3χ3 matrix are R_r, R_g, and R_b, and the elements in the second row are G_r, G", G_b' and the third row. Each element is, B-g,. At this time, as shown in the figure, the elements R_r, R_g, R_b, g_r, and G of the correction matrix are all set to have a scale width, so that they are divided into nine temperature ranges. Here, although the scale width of the temperature T is thinner, the correction accuracy can be improved. Therefore, the scale width of the temperature τ is preferably 5. Left and right, and can also be 10 as in this example. about. Further, it can be seen from the temperature at the temperature of the liquid crystal layer (folding anisotropy) in the vertical spiral state shown in Fig. 4 that the physical property value of the liquid BS is more rapidly changed as it approaches the low temperature. 15

因此’為了提高修正精準度’溫度了的刻度寬度係以越靠近 低溫側越細者較佳。 回到第I2圖,外部的輸入影像資料係輸入至運算部25 的影像變換部33。影像變換部33係藉由根據輸入影像資料 及LUT選擇器31所選擇的修正係數之運算處理,產生用以 20顯示於各顯示層39R、39G、柳之顯示影像資料。又,影 像變換部33亦可藉由使用輸入影像資料及溫度資料之預定 函數運算處理來產生顯示影像資料,而不是根據修正係數 產生顯不影像資料》此時,顯示影像資料的產生速度雖然 降低’卻可因不需影像修正而32 —小運算部25的所需 27 1294602 記憶體容量。 在具有記憶性的顯示元件中,一般認為會在伴隨顯示 内容變更之顯示改寫時產生新的顯示影像資料。然而,本 實施型態亦可在測出某程度較大的溫度變化時,即使並未 5變更顯示内容仍然產生新的顯示影像資料並進行顯示改 寫’此外’亦可定期性地檢測溫度,且即使並未變更顯示 内容仍然根據該溫度定期性地產生顯示影像資料並進行顯 示改寫。 ® 所產生的顯示影像資料可在需要時進行灰階變換處 10理。例如,在顯示部38的顯示色數為4096色時,各顯示層 39R、39G Λ 39B的可能顯示灰階數分別為16灰階,相對於 此’在輸入影像資料為全彩(r、G、B皆為256灰階(8位元)) 時’則需有與可能顯示灰階數對應之灰階變換處理。灰階 變換之運算法雖有網點法或系統性遞色方法等,但以誤差 15分散法的解析度或清晰度最為優異,且與使用膽固醇液晶 • 之液晶顯示元件相合,而次於誤差分散法的有藍色干擾遮 罩法。藍色干擾遮罩法的晝質雖然稍差於誤差分散法,卻 具有可高速處理之長處。 影像變換部33所產生之顯示影像資料係輸出至資料控 20制部26 ’且資料控制部26根據影像變換部33所輸入的每個 顯示層39R、39G、39B之顯示影像資料、及例如事先設定 之驅動波形資料,產生驅動資料。資料控制部26再配合資 料取入時脈將產生的驅動資料輸出至資料端的驅動IC20。 此外,資料控制部26將脈衝極性控制信號、訊框開始信號、 28 1294602 貝料鎖存/掃秒轉換等控制錢輸出至資料端及掃描 驅動IC20。 二又’雖然省略圖式,但根據本實施型態之電子紙係於 刖述液日日顯不元件上設有可統括控制輸人/輸出裝置及整 5 體之控制裝置。 在此’呪明本實施型態的液晶顯示元件之驅動方法。 第15⑷圖係根據從資料控制部26輸入之驅動資料,顯示用 以使液晶主水平螺旋狀態之資料端的驅動IC2〇施加於信號 電極50的1個選擇期間分之電壓波形。該選擇時間與液晶材 1〇料或兀件結構相關,大致為數ms〜數十ms(例如,50ms)。一 般而言,液晶層係隨著溫度越低對於電壓的響應性越低, 故最好在溫度較低時加長選擇時間。此外,最好配合影像 修正LUT之溫度τ的刻度寬度,來變更該選擇時間。第15(b) 圖係顯示用以使液晶呈垂直螺旋狀態之資料端的驅動IC2〇 15施加於信號電極50之電壓波形。第16(a)圖係顯示掃描端的 驅動IC20施加於選擇的掃描電極48之電壓波形,而第16(b) 圖係顯示掃描端的驅動IC20施加於非選擇的掃描電極48之 電壓波形。第17(a)圖係顯示施加於以水平螺旋狀態驅動之 像素的液晶層46之電壓波形,而第17(b)圖係顯示施加於以 20 垂直螺旋狀態驅動之像素的液晶層46之電壓波形。 又’第18圖係顯示膽固醇液晶的電屢反射率特性之一 例。橫轴表示施加於液晶層46之電壓值(V),而縱轴表示施 加電壓後的液晶層46之反射率。相對於液晶層46的反射率 較高之狀態表示水平螺旋狀態,而相對於液晶層46的反射 29 1294602 率較低之狀態表示垂直職狀態。第18圖之實線曲線p表示 初』狀怎為水平螺旋狀悲之液晶層46的電壓_反射率特 性,而虛線曲線FC表示初期狀態為垂直螺旋狀態之液晶層 46的電壓-反射率特性。 5 以水平螺旋狀態驅動之像素係於選擇期間的前半段, 如第15(a)圖所示地信號電極50之電壓為+32v,並如第16(幻 圖所示地掃描電極48之電壓為0V,因此,如第17⑷圖所示 者,於該像素之液晶層46施加+32V之電壓。又,於選擇期 間的後半段,信號電極50之電壓為0V,且掃描電極似之電 10壓為+32V,故,於該像素之液晶層46施加-32V之電壓,而 施加於非選擇期間的液晶層46之電壓最大為±4V,因此,於 選擇期間中的該像素之液晶層46施加大致±32V之脈衝電 壓。當液晶層46產生強烈電場時,液晶分子之螺旋結構會 元全朋解,且所有液晶分子之長軸方向形成為依照電場方 15向之垂直配向(H〇meotropic)狀態。接著,從垂直配向狀態 之液晶急速去除電場時,液晶螺旋轴會與電極表面垂直, 而形成可選擇性反射對應於螺距的波長光之水平螺旋狀 態。即,如第18圖所示,液晶層46係於施加±32V( = VP0) 之脈衝電壓時形成為水平螺旋狀態,且該像素變成明亮狀 20 態。 另一方面,以垂直螺旋狀態驅動之像素係於選擇期間 的前半段,如第15(b)圖所示地信號電極50之電壓為+24v, 並如第16(a)圖所示地掃描電極48之電壓為0V,因此,如第 17(b)圖所示者,於該像素之液晶層46施加+24V之電壓。 30 1294602 又,於選擇期間的後半段,信號電極5〇之電壓為+8V,且 掃描電極48之電壓為+32V,故,於該像素之液晶層施力口 -24V之電壓’而施加於非選擇期間的液晶層恥之電壓最大 為±4V,因此,於選擇期間中的該像素之液晶層扑施加大致 5 ±24V之脈衝電壓。於液晶層46產生液晶分子之螺旋結構並 未完全崩解程度之較弱電場後再去除電場時,或,於液晶 層46產生強烈電場後再緩慢去除電場時,液晶螺旋軸會與 電極表面平行,而形成可透過入射光之垂直螺旋狀態。即, 如第18圖所示,液晶層46係於施加±24V(<VF100b)之脈衝 10電壓時形成為垂直螺旋狀態,且該像素變成黑暗狀態。 為了顯示中間色調,而使用VFlOOb(例如,26V)與 VP0(例如’ 32v)之間的電壓值,或vf〇(例如,6V)與 VFl〇〇a(例如,20V)之間的電壓值。藉由施加該等電壓值之 脈衝電壓’液晶之定向狀態可形成混合水平螺旋狀態與垂 15直螺旋狀態之狀態,且可顯示中間色調。使用VF0與VFlOOa 之間的電壓值顯示中間色調時,雖有須使液晶的初期狀態 為水平螺旋狀態之限制,但可縮小中間色調的顯示斑點, 並得到良好的顯示品質。另一方面,使用VFlOOb與VP0之 間的電壓值顯示中間色調時,雖除了中間色調的顯示不均 20勻性會稍微變大之外,還會難以利用通用的驅動1C進行用 以抑制串音干擾之控制,卻具有可縮短寫入時間之優點。 第19圖係顯示影像修正LUT之變化例。本變化例之影 像修正LUT52係直接儲存與輸入影像資料及溫度對應之顯 示影像資料,而不是修正係數。本變化例係直接儲存顯示 31 1294602 影像資料於影像修正LUT52 ’故,可大幅提高產生顯示影 像資料之變換處理速度,然而,影像修正LUT52之所需記 憶體容量會變大,例如,與第14(b)圖相同地將溫度範圍分 割為9階段時,會在以RGB各64灰階之26萬色顯示時,可於 5 影像修正LUT52儲存最大26萬χ9個之資料,但,亦可在抽 取掉修正值後儲存於影像修正LUT52,並輸入未儲存的中 間輸入影像資料時,藉由資料的補全處理來予以補足。 如前所述,根據本實施型態,可於具有積層結構的彩 色顯示元件中,使對應於輸入影像資料之顯示色調呈大致 10固定且不受到溫度影響。因此,根據本實施型態,可得到 不受周圍環境影響並且顯示品質良好之顯示元件。 〔第2實施型態〕 使用第20圖說明本發明第2實施型態之顯示系統。第2〇 圖係顯示本實施型態的顯示系統之概略結構之方塊圖。如 15第20圖所示,顯示系統包含有顯示元件54(例如,電子紙)、 及可發送影像資料至顯示元件之資料伺服器56(顯示資訊 發送裝置)。顯示元件54與資料伺服器56之間係透過如無線 LAN、Bluetooth(藍牙;註冊商標)等介面無線連接。又,顯 示元件54與資料伺服器56之間亦可透過USB等介面有線連 20 接。 顯示元件54設有具有顯示B的顯示層、顯示〇的顯示層 及顯示R的顯示層的積層結構之顯示部58。又,顯示元件科 係與第12圖之顯示元件相同,具有可檢測顯示部別附近的 溫度之溫度感測器57、及控制部59。但,顯示元件54之控 32 1294602 制。P59與第12®之顯示元件的㈣彳部29不同,並未設有 LUTl擇$、景彡像修正LUT及景彡像變換部。再者,顯示元 件54八有可發送溫度資訊至資料词服器%並且從資料飼服 器56接收顯示影像資料之發送接收部6〇。 5 另方面,貧料伺服器56具有包含LUT選擇器、影像Therefore, the width of the scale in order to increase the accuracy of the correction is preferably as the closer to the low temperature side is, the finer the thickness is. Returning to Fig. 12, the external input image data is input to the image conversion unit 33 of the calculation unit 25. The video conversion unit 33 generates display image data for display on each of the display layers 39R, 39G and Liu by the arithmetic processing of the correction coefficient selected by the input image data and the LUT selector 31. Moreover, the image conversion unit 33 can also generate display image data by using a predetermined function operation process of inputting image data and temperature data, instead of generating display image data according to the correction coefficient. At this time, the generation speed of the display image data is lowered. 'But the need for image correction 32 - the required capacity of the small computing unit 25 27 1294602 memory capacity. In a memory display element, it is generally considered that a new display image data is generated when the display is changed with the display content change. However, in this embodiment, when a certain temperature change is detected to a certain extent, even if the display content is not changed, a new display image data is generated and the display rewrite 'other' can periodically detect the temperature, and Even if the display content is not changed, the display image data is periodically generated and displayed and rewritten according to the temperature. The display image data produced by ® can be used to perform grayscale transformation when needed. For example, when the display color number of the display unit 38 is 4096 colors, the possible display gray scales of the respective display layers 39R, 39G Λ 39B are 16 gray scales respectively, and the input image data is full color (r, G). When B is 256 grayscale (8-bit)), then gray-scale transform processing corresponding to the number of possible grayscales is required. Although the gray scale conversion algorithm has a dot method or a systematic dithering method, the resolution or sharpness of the error 15 dispersion method is the most excellent, and it is compatible with the liquid crystal display element using cholesteric liquid crystal, and is second to the error dispersion. The method has a blue interference mask method. Although the enamel of the blue interference mask method is slightly worse than the error dispersion method, it has the advantage of being able to process at a high speed. The display image data generated by the image conversion unit 33 is output to the data control unit 26' and the data control unit 26 displays the image data of each of the display layers 39R, 39G, and 39B input by the image conversion unit 33, and for example, Set the driving waveform data to generate the driving data. The data control unit 26 outputs the drive data generated by the data acquisition clock to the drive IC 20 of the data terminal. Further, the data control unit 26 outputs control charges such as a pulse polarity control signal, a frame start signal, and 28 1294602 bedding latch/scanning conversion to the data terminal and the scan driving IC 20. In addition, although the drawings are omitted, the electronic paper according to the present embodiment is provided with a control device that can integrally control the input/output device and the entire body on the daily display component of the description. Here, a method of driving a liquid crystal display element of the present embodiment will be described. The fifteenth (4) diagram shows a voltage waveform divided by one drive period in which the drive IC 2A of the data terminal of the liquid crystal main horizontal spiral state is applied to the signal electrode 50 based on the drive data input from the data control unit 26. The selection time is related to the liquid crystal material 1 or the structure of the element, and is approximately several ms to several tens of ms (for example, 50 ms). In general, the lower the temperature of the liquid crystal layer is, the lower the responsiveness to voltage is, so it is preferable to lengthen the selection time when the temperature is low. Further, it is preferable to change the selection time in accordance with the scale width of the temperature correction τ of the image correction LUT. Fig. 15(b) shows a voltage waveform of the driving IC 2 〇 15 applied to the signal electrode 50 for causing the liquid crystal to be in a vertical spiral state. Fig. 16(a) shows the voltage waveform applied to the selected scan electrode 48 by the drive IC 20 at the scan end, and Fig. 16(b) shows the voltage waveform applied to the non-selected scan electrode 48 by the drive IC 20 at the scan end. Fig. 17(a) shows the voltage waveform applied to the liquid crystal layer 46 of the pixel driven in the horizontal spiral state, and Fig. 17(b) shows the voltage applied to the liquid crystal layer 46 of the pixel driven in the 20 vertical spiral state. Waveform. Further, Fig. 18 shows an example of the electrical multiple reflectance characteristics of the cholesteric liquid crystal. The horizontal axis represents the voltage value (V) applied to the liquid crystal layer 46, and the vertical axis represents the reflectance of the liquid crystal layer 46 after the voltage is applied. The state in which the reflectance with respect to the liquid crystal layer 46 is high indicates a horizontal spiral state, and the state in which the reflectance with respect to the liquid crystal layer 46 is low is a vertical duty state. The solid line curve p of Fig. 18 shows the voltage-reflectance characteristic of the liquid crystal layer 46 which is the horizontal spiral shape, and the dotted line curve FC shows the voltage-reflectance characteristic of the liquid crystal layer 46 whose initial state is the vertical spiral state. . 5 The pixel driven in the horizontal spiral state is in the first half of the selection period. As shown in Fig. 15(a), the voltage of the signal electrode 50 is +32v, and the voltage of the scanning electrode 48 is shown as in the 16th (the magic image). 0V, therefore, as shown in Fig. 17(4), a voltage of +32 V is applied to the liquid crystal layer 46 of the pixel. Further, in the latter half of the selection period, the voltage of the signal electrode 50 is 0 V, and the scanning electrode is like the electric 10 The voltage is +32V, so a voltage of -32V is applied to the liquid crystal layer 46 of the pixel, and the voltage applied to the liquid crystal layer 46 during the non-selection period is at most ±4V, and therefore, the liquid crystal layer 46 of the pixel in the selection period. A pulse voltage of approximately ±32 V is applied. When the liquid crystal layer 46 generates a strong electric field, the helical structure of the liquid crystal molecules is completely dissociated, and the long-axis directions of all the liquid crystal molecules are formed to be vertically aligned according to the electric field direction (H〇meotropic). Then, when the electric field is rapidly removed from the liquid crystal in the vertical alignment state, the liquid crystal helix axis is perpendicular to the electrode surface, and a horizontal spiral state in which the wavelength light corresponding to the pitch is selectively reflected is formed, that is, as shown in FIG. ,liquid crystal The 46 is formed into a horizontal spiral state when a pulse voltage of ±32 V (= VP0) is applied, and the pixel becomes a bright 20 state. On the other hand, the pixel driven in the vertical spiral state is in the first half of the selection period, as in the first The voltage of the signal electrode 50 shown in Fig. 15(b) is +24v, and the voltage of the scan electrode 48 is 0V as shown in Fig. 16(a). Therefore, as shown in Fig. 17(b), The liquid crystal layer 46 of the pixel applies a voltage of +24 V. 30 1294602 Further, in the latter half of the selection period, the voltage of the signal electrode 5 为 is +8 V, and the voltage of the scan electrode 48 is +32 V, so the liquid crystal of the pixel The voltage of the layer urging port -24V' and the voltage of the liquid crystal layer applied during the non-selection period is at most ±4V, so that the liquid crystal layer of the pixel in the selection period applies a pulse voltage of approximately 5 ± 24V. When the layer 46 generates a weak electric field of the liquid crystal molecule without a complete disintegration, and then removes the electric field, or after the liquid crystal layer 46 generates a strong electric field and then slowly removes the electric field, the liquid crystal spiral axis is parallel to the electrode surface. Forming a vertical spiral that is permeable to incident light That is, as shown in Fig. 18, the liquid crystal layer 46 is formed into a vertical spiral state when a pulse voltage of ±24 V (<VF100b) is applied, and the pixel becomes a dark state. To display a halftone, VF100b is used. a voltage value between (for example, 26V) and VP0 (for example, '32v), or a voltage value between vf〇 (for example, 6V) and VFl〇〇a (for example, 20V). By applying the voltage values The directional state of the pulse voltage 'liquid crystal can form a mixed horizontal spiral state and a vertical 15 spiral state, and can display a halftone. When the intermediate value is displayed using the voltage value between VF0 and VF100a, the initial state of the liquid crystal is required. It is a limitation of the horizontal spiral state, but can reduce the display spot of the halftone and obtain good display quality. On the other hand, when the intermediate color tone is displayed using the voltage value between VF100b and VP0, it is difficult to suppress the crosstalk by using the general drive 1C, except that the display unevenness 20 of the halftone is slightly increased. The control of interference has the advantage of shortening the writing time. Fig. 19 shows a variation of the image correction LUT. The image correction LUT52 of this variation directly stores the displayed image data corresponding to the input image data and temperature, instead of the correction coefficient. This variation directly stores the display image 31 1294602 image data in the image correction LUT52', so that the conversion processing speed for generating the display image data can be greatly improved, however, the required memory capacity of the image correction LUT 52 becomes larger, for example, with the 14th (b) When the temperature range is divided into 9 stages in the same manner, when the RGB color is displayed in 260,000 colors, the LUT52 can store up to 260,000 pieces of data in 5 images, but it can also be After the correction value is extracted and stored in the image correction LUT 52, and the unallocated intermediate input image data is input, it is complemented by the data completion processing. As described above, according to the present embodiment, in the color display element having the laminated structure, the display color tone corresponding to the input image data can be made substantially fixed and free from temperature. Therefore, according to the present embodiment, a display element which is not affected by the surrounding environment and which is excellent in display quality can be obtained. [Second Embodiment] A display system according to a second embodiment of the present invention will be described with reference to Fig. 20. Fig. 2 is a block diagram showing a schematic configuration of a display system of the present embodiment. As shown in Fig. 20, the display system includes a display element 54 (e.g., electronic paper) and a data server 56 (display information transmitting means) that can transmit image data to the display element. The display element 54 and the data server 56 are wirelessly connected via an interface such as a wireless LAN or Bluetooth (registered trademark). Further, the display device 54 and the data server 56 can also be connected via a USB interface such as a USB cable. The display element 54 is provided with a display portion 58 having a laminated structure of a display layer for displaying B, a display layer for displaying 〇, and a display layer for displaying R. Further, the display element is the same as the display element of Fig. 12, and has a temperature sensor 57 that can detect the temperature in the vicinity of the display portion, and a control unit 59. However, the display element 54 is controlled by 32 1294602. Unlike the (four) crotch portion 29 of the display element of the 12th, the P59 is not provided with the LUT1, the image correction LUT, and the scene image conversion unit. Further, the display element 54 has a transmission/reception unit 6 that can transmit temperature information to the data word processor % and receive the display image data from the data feed server 56. In another aspect, the poor service server 56 has a LUT selector, an image

^正LUT及影像變換敎運算财(㈣部)。即,本實施型 非於顯示元件54端而是於資料飼服器兄端設置⑶τ選 擇器、影像修正LUT及影像變換部。再者,資料祠服器% 具有可從_元件54接收溫度資訊並且魏㈣影像資料 10至顯示元件54之發送接收部61。 15 20 在資料伺服器56顯示預定影像於顯示元件54的顯示部 _之際命資料飼服器56發送溫度資訊要求信號至顯 示元件54 ’接_溫度資訊要求信狀顯科件54會將使 用溫度感卿57而取得之溫度f訊發送至資料伺服器%。 接收到溫度資訊之資料他㈣的運算部Μ會採取與第丄 實施型態相同之手法’例如,根據該溫度資訊修正外部輸 亡之輸入影像資料並產生顯示影像資料,再將修正後的^ 不影像資料發送至顯示元件54。接收義示影像資料之 示元件54會將魏_顯示影像㈣及需要_動波形資 料輪入至顯不部58的驅動IC,以驅動顯示部_各顯示 層。藉此,可在顯示元件54的顯示部58進行顯示改寫,^ 且顯示部58的對應於顯示影像資料之顯示色調 〜 且不受到溫度影響。 口& 根據本實施型態,可與第1實施型態相同,於具有積層 33 1294602 結構之彩色顯示元件中使顯示色調呈大致固定且不受到溫 度影響。因此,根據本實施型態,可得到不受周圍環境影 響並且顯示品質良好之顯示元件。又,本實施型態係於資 料伺服器56端進行影像變換,故不須在顯示元件54端設置 5 LUT選擇器、影像修正LUT及影像變換部。因此,本實施 型態具有可減低顯示元件54的製造成本之優點。 本發明並不限於前述實施型態且可進行各種變化。 例如,前述實施型態係以低溫下的反射光譜波長轉換 至短波長側之顯不元件為例,但本發明並不僅限於此。例 10如,在具有R、G、B3層結構之液晶顯示元件中,各層的反 射光譜在低溫下波長轉換至長波長側時,可產生於低溫下 進行修正使R層的顯示灰階值變低之顯示影像資料。藉此, 可抑制低溫中的灰色平衡偏往紅色方向。 又,前述實施型態係以根據顯示部附近的溫度來修正 15顯示影像寊料之顯示元件為例,但本發明並不僅限於此。 例如,亦可根據溫度修正含有脈衝寬度或波高值的資料之 驅動波形資料,而不是修正顯示影像資料。當低溫下的反 射光譜波長轉換至短波長側時,可藉由於低溫中縮小B層的 驅動波形資料之脈衝寬度、或降低波高值,而得到與前述 2〇 實施型態同樣的效果。 又’前述實施型態係以使用膽固醇液晶的積層結構之 衫色液晶顯不元件為例,但本發明並不僅限於此,且亦可 適用具有記憶性之其他顯示元件或反射型顯示元件等各種 積層結構之顯示元件。 34 1294602 又,前述實施型態係以電子紙為例,但本發明並不僅 限於此,且亦可適用設有顯示元件之各種電子終端。 產業上之可利用性 由於顯示色調並不會因為周圍環境而產生變化,故, 5可適用具有積層結構且可顯示彩色之顯示元件。 I:圖式簡單說明3 第1圖係顯示使用膽固醇液晶之一般液晶顯示元件的 反射光譜之一例。 第2圖係顯示使用膽固醇液晶之一般液晶顯示元件的 1〇 反射光譜之一例。 第3圖係顯示使用膽固醇液晶之一般液晶顯示元件的 反射光譜之一例。 第4圖係顯示使用膽固醇液晶之一般液晶顯示元件的 溫度與在垂直螺旋狀態下的反射率之關係。 15 第5圖係顯示某液晶顯示元件在水平螺旋狀態下的反 射光譜。 第6(a)、(b)圖係顯示本發明第1實施型態之原理。 第7圖係顯示R、G、B各層的反射光譜之模式圖。 第8(a)、(b)圖係本發明第1實施型態所使用的修正方法 20 之一例之說明圖。 第9(a)、(b)圖係本發明第1實施型態所使用的修正方法 之一例之說明圖。 第10(a)、(b)圖係本發明第1實施型態所使用的修正方 法之另一例之說明圖。 35 !2946〇2 、第11(a)、(b)圖係本發明第i實施型態所使用的修正方 去之另一例之說明圖。 第12圖係顯示本發明第1實施型態的顯示元件之概略 結構之方塊圖。 第13圖係模式性的顯示本發明第i實施型態的顯示元 件結構之截面圖。^ Positive LUT and image conversion 敎 computing wealth ((4)). That is, this embodiment is not provided on the display element 54 side but on the data feeding device, the (3) τ selector, the image correction LUT, and the image conversion unit are provided. Further, the data server % has a transmission/reception unit 61 that can receive temperature information from the_element 54 and the Wei (4) video material 10 to the display element 54. 15 20 When the data server 56 displays the predetermined image on the display portion of the display element 54, the data feed device 56 sends a temperature information request signal to the display element 54. The temperature information request letter device 54 will be used. The temperature sent by the temperature sensing 57 is sent to the data server %. After receiving the information of the temperature information, the computing department of (4) will adopt the same method as the third implementation type. For example, according to the temperature information, the input image data of the external death will be corrected and the display image data will be generated, and then the corrected image will be generated. No image data is sent to display element 54. The display component 54 for receiving the video data will rotate the WE_display image (4) and the drive waveform required to the display portion 58 to drive the display portion_ display layers. Thereby, display rewriting can be performed on the display unit 58 of the display element 54, and the display portion 58 corresponds to the display hue of the display image data and is not affected by the temperature. According to this embodiment, as in the first embodiment, in the color display element having the structure of the laminated layer 33 1294602, the display color tone is substantially fixed and is not affected by temperature. Therefore, according to the present embodiment, it is possible to obtain a display element which is not affected by the surrounding environment and which is excellent in display quality. Further, since this embodiment performs image conversion on the data server 56 side, it is not necessary to provide a 5 LUT selector, an image correction LUT, and a video conversion unit at the display element 54 side. Therefore, this embodiment has the advantage of reducing the manufacturing cost of the display element 54. The present invention is not limited to the foregoing embodiments and various changes can be made. For example, the foregoing embodiment is exemplified by a wavelength conversion of a reflection spectrum at a low temperature to a display element on a short wavelength side, but the present invention is not limited thereto. Example 10 For example, in a liquid crystal display device having a R, G, and B layer structure, when the reflection spectrum of each layer is converted to a long wavelength side at a low temperature, it can be corrected at a low temperature to change the display gray scale value of the R layer. Low display image data. Thereby, the gray balance in the low temperature can be suppressed from shifting to the red direction. Further, the above embodiment is an example in which the display element for displaying the image defect is corrected based on the temperature in the vicinity of the display portion, but the present invention is not limited thereto. For example, it is also possible to correct the driving waveform data of the data having the pulse width or the wave height value according to the temperature, instead of correcting the displayed image data. When the wavelength of the reflection spectrum at a low temperature is converted to the short wavelength side, the same effect as the above-described embodiment can be obtained by reducing the pulse width of the driving waveform data of the B layer at a low temperature or lowering the wave height value. Further, the above-described embodiment is exemplified by a shirt color liquid crystal display device using a laminated structure of cholesteric liquid crystal. However, the present invention is not limited thereto, and various other display elements having a memory property or a reflective display element may be applied. Display elements of a laminated structure. 34 1294602 Further, the above embodiment is exemplified by electronic paper, but the present invention is not limited thereto, and various electronic terminals provided with display elements can also be applied. Industrial Applicability Since the display color tone does not change due to the surrounding environment, it is possible to apply a display element having a laminated structure and displaying color. I: BRIEF DESCRIPTION OF THE DRAWINGS 3 Fig. 1 shows an example of a reflection spectrum of a general liquid crystal display element using cholesteric liquid crystal. Fig. 2 is a view showing an example of a 1 反射 reflection spectrum of a general liquid crystal display element using cholesteric liquid crystal. Fig. 3 is a view showing an example of a reflection spectrum of a general liquid crystal display element using cholesteric liquid crystal. Fig. 4 is a graph showing the relationship between the temperature of a general liquid crystal display element using a cholesteric liquid crystal and the reflectance in a vertical spiral state. 15 Figure 5 shows the reflection spectrum of a liquid crystal display element in a horizontal spiral state. The sixth (a) and (b) drawings show the principle of the first embodiment of the present invention. Fig. 7 is a schematic view showing the reflection spectra of the respective layers of R, G, and B. Figs. 8(a) and 8(b) are explanatory views showing an example of a correction method 20 used in the first embodiment of the present invention. Figs. 9(a) and 9(b) are explanatory views showing an example of a correction method used in the first embodiment of the present invention. Figs. 10(a) and (b) are explanatory views showing another example of the correction method used in the first embodiment of the present invention. 35! 2946〇2, and Figs. 11(a) and (b) are explanatory views of another example of the correction used in the i-th embodiment of the present invention. Fig. 12 is a block diagram showing a schematic configuration of a display element according to a first embodiment of the present invention. Fig. 13 is a cross-sectional view schematically showing the structure of a display element of the i-th embodiment of the present invention.

10 第Η⑷、⑻圖係顯示儲存於影像修正谢之修正 的資料結構之例。 ”数 第15(a)、(b)圖係顯示施加於信號電極之i個選擇 分的電壓波形。 θ1 第16⑷、(b)圖係顯示施加於掃描電極之丨個選擇期門 分的電壓波形。 / 3 第17⑷、(b)圖係顯示施加於像素的液晶層之丨個選擇 期間分的電壓波形。 15 第18圖係顯不膽固醇液晶的電壓-反射率特性之—^ ^10 Dimensional (4) and (8) diagrams show examples of data structures stored in the image correction correction. The 15th (a) and (b) diagrams show the voltage waveforms of the i selection points applied to the signal electrodes. θ1 The 16th (4) and (b) diagrams show the voltages applied to the selection gates of the scan electrodes. Waveform / 3 The 17th (4) and (b) graphs show the voltage waveforms of the selected periods of the liquid crystal layer applied to the pixel. 15 Figure 18 shows the voltage-reflectance characteristics of the non-cholesterol liquid crystal—^ ^

第19圖係顯示影像修正LUT之變化例。 第20圖係顯示本發明第2實施型態的顯示系統之概略 結構之方塊圖。 第21(a)、(b)圖係顯示使用膽固醇液晶之液晶顯示元件 20 的截面構造之模式圖。 第2 2圖係顯示使用膽固醇液晶之彩色液晶顯示元件的 截面構造之模式圖。 第23圖係顯示具有積層結構之液晶顯示元件的反射光 譜之一例。 36 1294602 【主要元件符號說明】 20…驅動1C 50...信號電極 25...運算部 54…顯示元件 26··.資料控制部 55···運算部(控制部) 27…溫度感測器(溫度檢測部) 56…資料伺服器(顯示資訊發 29.. .控制部 30.. .解碼器 31.. .LUT選擇器 32.. .影像修正LUT 33…影像變換部 38.. .顯示部 39B、39G、39R··.顯示層 42、43…基板 44.. .密封材 46···液晶層(顯示層) 48. ·.掃描電極 送裝置) 57.. .溫度感測器 58.. .顯示部 59.. .控制部 60、61…發送接收部 101B、101G、101R···液晶層 133.. .液晶分子 143.. .液晶層 146···液晶顯不兀件 147、149…基板 37Fig. 19 shows a variation of the image correction LUT. Fig. 20 is a block diagram showing the schematic configuration of a display system according to a second embodiment of the present invention. 21(a) and (b) are schematic views showing a cross-sectional structure of a liquid crystal display element 20 using cholesteric liquid crystal. Fig. 2 is a schematic view showing a sectional structure of a color liquid crystal display element using cholesteric liquid crystal. Fig. 23 is a view showing an example of a reflection spectrum of a liquid crystal display element having a laminated structure. 36 1294602 [Description of main component symbols] 20...drive 1C 50...signal electrode 25...calculation unit 54...display element 26·.data control unit 55···calculation unit (control unit) 27...temperature sensing (temperature detecting unit) 56... data server (display information 29.. control unit 30.. decoder 31.. LUT selector 32.. image correction LUT 33... video conversion unit 38.. Display portions 39B, 39G, 39R··. Display layers 42, 43... Substrate 44.. Sealing material 46···Liquid liquid layer (display layer) 48. · Scanning electrode feeding device 57.. Temperature sensor 58.. Display unit 59.. Control unit 60, 61... Transmission/reception unit 101B, 101G, 101R···Liquid liquid layer 133.. Liquid crystal molecule 143.. Liquid crystal layer 146··· Liquid crystal display 147, 149... substrate 37

Claims (1)

1294602 係考慮前述第1及第2光譜之重複部分而產生前述顯示 影像資料者。 7. 如申請專利範圍第1或2項之顯示元件,係隨著前述溫度 越低,施加於前述顯示層之電氣信號的施加時間越長 5 者。 8. 如申請專利範圍第7項之顯示元件,係配合前述查表之 前述溫度的刻度寬度而變更前述電氣信號的施加時間 者。 9. 如申請專利範圍第1或2項之顯示元件,其中前述顯示部 10 更包含有積層於前述第1及第2顯示層上,且可顯示相對 前述第1光譜位於較長波長側並且相對前述第2光譜位 於較短波長側之第3光譜之第3顯示層,又,前述第1顯 示層顯示藍色,且前述第2顯示層顯示紅色,而前述第3 顯示層顯示綠色。 15 10.如申請專利範圍第9項之顯示元件,其中前述第1、第3 及第2顯示層係從顯示面側開始依照前述順序積層者。 11. 如申請專利範圍第9項之顯示元件,其中前述第1至第3 顯示層具有記憶性。 12. 如申請專利範圍第9項之顯示元件,其中前述第1至第3 20 顯示層具有形成膽固醇相之液晶。 13. 如申請專利範圍第9項之顯示元件,其中由前述第1、第 2及第3光譜形成之色調具有藉由溫度而強化之色調,且 前述控制部可產生前述顯示影像資料,使與前述色調相 當之顯示灰階值相對於其他色調之顯示灰階值為低。 39 1294605 14.如申請專利範圍第9項之顯示元件,其中前述第3顯示声 之旋光方向與前述第1及第2顯示層之旋光方向不同。 15· —種電子終端,係設有申請專利範圍第丨或2項之顯示元 件者。 ” 5 I6· 一種顯示系統,包含有: 顯示元件,係包含有顯示部、溫度檢测部及發送接 收部者,且該顯示部係設有可顯示第1光譜之第丨顯示 φ 層、及積層於前述第1顯示層上並且可顯示相對前述第! 光譜位於較長波長侧之第2光譜之第2顯示層者,並且該 1〇 溫度檢測部係可檢測前述顯示部附近之溫度者,而該發 送接收部係可發送前述溫度資訊並接收顯示於前述第i 及第2顯示層之顯示影像資料者;及 顯不資訊發送裝置,係包含有發送接收部及控制部 者’且該發送接收部係可從前述顯示元件接收前述溫度 15 貝訊’並將前述顯示影像資料發送至前述顯示元件者, 翁㈣㈣部係根據輸八影像資料及前述溫度產生前述 _示影像資料’使對應於前述輸人影像資料之顯示色調 呈大致固定且不受到前述溫度影響者。 17· -種影像處理方法,包含有下列步驟: 檢測没有第1顯示層及第2顯示層之顯示部附近的 @度’且第1顯示層可顯示第1光譜,而第2顯示層積層 於刖述第1顯不層上且可顯示相對前述第丨光譜位於較 長波長側之第2光譜;及 根據輸人影像資料及前述溫度產生顯示於前述第1 40 1294602 及第2顯示層之顯示影像資料,使對應於前述輸入影像 資料之顯示色調呈大致固定且不受到前述溫度影響。1294602 is the one that generates the aforementioned display image data in consideration of the overlapping portions of the first and second spectra. 7. The display element of claim 1 or 2, wherein the lower the temperature is, the longer the application time of the electrical signal applied to the display layer is 5 . 8. The display element of claim 7 is adapted to change the application time of the electrical signal in accordance with the scale width of the temperature of the look-up table. 9. The display element of claim 1 or 2, wherein the display portion 10 further comprises a laminate on the first and second display layers, and is capable of displaying a relatively long wavelength side with respect to the first spectrum and is opposite The second spectrum is located on the third display layer of the third spectrum on the shorter wavelength side, and the first display layer displays blue, and the second display layer displays red, and the third display layer displays green. The display element according to claim 9, wherein the first, third, and second display layers are laminated in accordance with the above-described order from the display surface side. 11. The display element of claim 9, wherein the first to third display layers are memory. 12. The display element of claim 9, wherein the first to third display layers have a liquid crystal forming a cholesterol phase. 13. The display element according to claim 9, wherein the color tone formed by the first, second, and third spectra has a color tone enhanced by temperature, and the control unit generates the display image data to enable The display of the gray scale value corresponding to the aforementioned hue is lower than the display gray scale value of the other hue. The display element according to claim 9, wherein the optical direction of the third display sound is different from the optical rotation direction of the first and second display layers. 15. An electronic terminal is provided with the display element of the third or second patent application scope. 5 I6· A display system comprising: a display element including a display unit, a temperature detecting unit, and a transmitting/receiving unit, wherein the display unit is provided with a φ display φ layer capable of displaying the first spectrum, and a second display layer which is laminated on the first display layer and which can display the second spectrum on the longer wavelength side with respect to the first ! spectrum, and the temperature detection unit can detect the temperature in the vicinity of the display portion. And the transmitting and receiving unit can transmit the temperature information and receive the display image data displayed on the ith and second display layers; and the display information transmitting device includes the transmitting and receiving unit and the control unit, and the transmitting The receiving unit can receive the temperature 15 from the display element and transmit the display image data to the display element, and the (4) (4) portion generates the image data according to the image data and the temperature to correspond to The display color of the input image data is substantially fixed and is not affected by the aforementioned temperature. 17· - Image processing method, comprising the following steps: It is measured that there is no @度' in the vicinity of the display portion of the first display layer and the second display layer, and the first display layer can display the first spectrum, and the second display layer can be displayed on the first display layer and can be displayed as described above. The second spectrum of the second spectrum is located on the longer wavelength side; and the display image data displayed on the first 40 1294602 and the second display layer is generated according to the input image data and the temperature, so that the display color corresponding to the input image data is displayed. It is approximately fixed and is not affected by the aforementioned temperature. 4141
TW95136377A 2006-09-29 2006-09-29 Display element, display system comprising the element and image processing method TWI294602B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95136377A TWI294602B (en) 2006-09-29 2006-09-29 Display element, display system comprising the element and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95136377A TWI294602B (en) 2006-09-29 2006-09-29 Display element, display system comprising the element and image processing method

Publications (2)

Publication Number Publication Date
TWI294602B true TWI294602B (en) 2008-03-11
TW200816109A TW200816109A (en) 2008-04-01

Family

ID=44769022

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95136377A TWI294602B (en) 2006-09-29 2006-09-29 Display element, display system comprising the element and image processing method

Country Status (1)

Country Link
TW (1) TWI294602B (en)

Also Published As

Publication number Publication date
TW200816109A (en) 2008-04-01

Similar Documents

Publication Publication Date Title
JP5076572B2 (en) Image display device and image display method
KR100887217B1 (en) Display device
JP4633789B2 (en) Driving method of liquid crystal display element
US8823615B2 (en) Driving method and driving apparatus of liquid crystal display
JP4846786B2 (en) Liquid crystal display device, electronic paper including the same, and image processing method
JP5072973B2 (en) Display device having dot matrix type display element and driving method thereof
JP2004233555A (en) Display device and display method
US20090174640A1 (en) Display element, image rewriting method for the display element, and electronic paper and electronic terminal utilizing the display element
JP4915418B2 (en) Display element, electronic paper including the same, electronic terminal device including the display element, display system including the display element, and image processing method for the display element
JP5071388B2 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
JP2008519996A (en) Drive system for cholesteric liquid crystal display
JP5051233B2 (en) Display device and driving method thereof
JP5223730B2 (en) Display device and driving method of cholesteric liquid crystal display panel
JP4983800B2 (en) Display element, display system including the same, and image processing method
JP3714324B2 (en) Liquid crystal display device
TWI294602B (en) Display element, display system comprising the element and image processing method
JP4014363B2 (en) Liquid crystal display
JP2004245888A (en) Liquid crystal display device
JP3818273B2 (en) Method for driving liquid crystal display element and liquid crystal display device
TW200816133A (en) Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method
CN100535976C (en) Drive scheme for a cholesteric liquid crystal display device
JP2007241317A (en) Liquid crystal display
TW200816131A (en) Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method
JP2013205673A (en) Cholesteric liquid crystal display device and display method thereof
TWI300207B (en) Display element, element drive method, and information display system having the element