TW200808120A - Method for driving a hybrid lamp and a hybrid lamp assembly - Google Patents

Method for driving a hybrid lamp and a hybrid lamp assembly Download PDF

Info

Publication number
TW200808120A
TW200808120A TW95145436A TW95145436A TW200808120A TW 200808120 A TW200808120 A TW 200808120A TW 95145436 A TW95145436 A TW 95145436A TW 95145436 A TW95145436 A TW 95145436A TW 200808120 A TW200808120 A TW 200808120A
Authority
TW
Taiwan
Prior art keywords
circuit
impedance
led
branch
light output
Prior art date
Application number
TW95145436A
Other languages
Chinese (zh)
Inventor
Der Veeken Renatus Willem Clemens Van
Henricus Marius Joseph Maria Kahlman
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200808120A publication Critical patent/TW200808120A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B35/00Electric light sources using a combination of different types of light generation

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The invention relates to a lighting circuit for use in a hybrid lamp assembly, for example a LCD backlight assembly. The lighting circuit comprises three parallel branches. A first branch comprising an impedance circuit, a second branch and a third branch each comprising at least one LED, the at least one LED of the second branch and the at least one LED of the third branch being connected anti-parallel. If a current is supplied to the lighting circuit, the impedance of the impedance circuit determines an amount of current that flows through the impedance circuit. A remaining part of the current flows through the second or third branch. Controlling the impedance of the impedance circuit allows to control the amount of current flowing through the LED branches and thus to control a light output of the LEDs. The lighting circuit is advantageously employed in a hybrid lamp assembly in combination with a fluorescent lamp, since the fluorescent lamp is current driven.

Description

200808120 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種混合燈及用於驅動混合燈之方法。本 發明特定言之係關於一種包含一螢光燈及一發光二極體 (led)之混合燈組件及用於驅動該螢光燈及該LED之方法。 【先前技術】 混合燈包含至少兩種類型的燈。例如,混合燈可包含一 螢光k及至少一發光二極體(LED)。此類混合燈適用於顏色 控制該混合燈所輸出之光。特定言之,可採用許多顏色使 用LED,因此其適用於改變—螢光燈所輸ώ之^顏L 混合燈係如此為人所熟知。熟知的混合燈包含用於向螢 光燈供應-電流之-第—驅動器電路與用於向咖供應一 :流或電壓之一第二驅動器電路。因%,二驅動器電路係 提供用以操作該混合燈。此類混合燈驅動器電路組態較複 雜且相對較昂貴。此外’對於減亮能力’需要一複雜的使 用者介面來獲得所需光位準及所需光顔色。同#,—使用 者介面較複雜且相對較昂貴。 【發明内容】 、、:發明之一目的係提供一種具有一單一驅動器電路之可 減亮及/或光顏色可控制之混合燈。 在一第一態樣,本發明提供一種混合燈組件,其包含一 螢光燈、用於向該螢光燈供應-高頻交流電之—驅動器電 路及串聯連接該勞光燈之至少—㈣電路。各咖電路包含 至少三個並聯支路:包含一阻抗電路之一第一支路、各包 1 】6608.doc 200808120 含至少一 LED之一第二支路及一筮— 又峪次弟二支路。該第二支路之 至少一 LED與该弟二支路之至少一 g人从从土 ^ LED係反向並聯連接。 在上述混合燈組件中,利用一並 扪用音通螢光燈驅動器來向該 螢光燈供應-高頻交流電。例如,該燈驅動器電路可包含 一半橋反相器電路。可提供另相電路零件以控制該螢光 燈之(預)加熱。 該至少-LED係包含於一 LED電路内,該led電路係串聯 連接該螢光燈並因而連接以接收與料光燈相同的高頻交 流電。該LED電路包含至少三個並聯電路支路。一第一電 路支路包含-阻抗電路…第二及一第三支路包含至少一 LED。由於-LED允許電流僅在—方向上流動,因此在該第 二支路内的該至少一 LED與在該第三支路内的該至少一 LED係反向並聯連接,從而允許該交流電隨時流過該第二 支路或該第三支路。該阻抗電路控制流過該第二及該第三 支路之-者(即流過該至少—LED)之電流量。若餘抗電路 之阻抗較高,則該電流之一較大部分流過該第二或第三支 路;若該阻抗較低,則該電流之一較小部分流過該第二或 第三支路。 由於該交流電可能隨時流過該LED電路,因此該LED電路 可串聯連接該螢光燈而不干擾該螢光燈之操作。該電流可 以係一穩態驅動電流’但還可以係一(預)加熱電流或任何其 他高頻交流電。因而,不需要調適該螢光燈驅動器電路。 而且,該螢光燈驅動器電路還可用作一LED驅動器電路。 在此項技術中已知一種串聯連接至一阻抗電路之1^£)電 116608.doc -7- 200808120 路。例如,US 2003/0043611 A1揭示一種連接至反向並聯 連接LED之高頻反相器電路。該等反向並聯連接的led係串 聯連接至一阻抗電路。透過在該反相器電路上的頻率控 制,控制該阻抗電路之阻抗.該阻抗電路之阻抗影響提^ 至δ亥等LED之電流量。因而,可控制該等LED之亮度。 在一具體實施例中,該方法包含改變該高頻交流電之一 頻率,以便控制該螢光燈之一光輸出。因而,該螢光燈與 該LED電路之光輸出係可控制的。應注意,在此項技術中 已知控制該交流電之頻率以便減亮該螢光燈。 此外,在一具體實施例中,該方法包含改變該高頻交流 電之一工作循環,以便控制該LED電路及該螢光燈之一光 輸出。該交流電之工作循環指示出在該交流電之—循環之 哪個週期該電流不等於零。因而,該卫作循環指示出在— 循環之哪個部分期間該榮光燈及/或該led係實際上供應電 机。因此’若該工作循環較大,則該LED電路及該榮光燈 之光輸出較大。若該工作循環較小,則該光輸出較低。a 如上所述,在此項技術中已知改變該交流電之頻率以便 減亮該榮光燈。添加至少一 LED向該勞光燈之功能性添加 顏色控制。為了獲得一所需LED光輸出,將依據用於操作 並減免該榮光燈之頻率來配置該頻率依賴阻抗。習知此項 技術者應明白如何可設計並構成具有此類所需阻抗特徵之 在—具體實施例中,該阻抗電路包含具有—可變電阻之 電阻器。該電阻器之電阻直接影響該阻抗電路之阻抗。 116608.doc 200808120 同樣地,一阻抗電路可包含分別具有一可變電容及/或可變 電感之一電容及/或一電感器,用於影響該阻抗電路之阻抗 特徵。因而,可不依賴該交流電之頻率來控制該阻抗電路 之阻抗及因此控制該等LED之光輸出。 應注意,可在一具體實施例内組合上述控制阻抗(頻率依 賴性、可變電阻、可變電容、可變電感)之方式。因而,一 或多個控制參數可用於亮度及/或顏色控制。此外,除了一 電阻器、-電容及-電感器夕卜,可使用其他具有作用元件 用於提供一適當阻抗電路。 在-具體實施例中,該混合燈組件包含—控制電路及連 接至該控制電路之一感測器。該控制電路係配置成用以回 應從該感測器所接收之一信號來控制該阻抗電路之阻抗。 該感測器可以係一光感測器,其決定一組參數之至少一參 數’該等參數包含該混合燈所輸出之光量、該混合輪 出之光顏色 '流過該等LED或流過該阻抗電路之電流量。 該感測器還可決定適用於控制該混合燈所輸出之光的任何 其他參數。 在-具體實施例中,該控制電路可連接至該驅動器電 路’以控制該高頻交流電之頻率。因而,該控制電路可藉 由控制該頻率來控制該等LED之井鈐ψ ιν ^ ^ 曰 <无輸出,以便回應從該感 測器所接收之信號,栌制兮 " b控制忒阻抗電路之阻抗並可能藉由控 制該頻率來控制該螢光燈之光輪出。 此外,本發明係關於一 路:-第-支路…入 ,支路之照明電 路八包㊁一阻抗電路、及一第二支路及一 116608.doc 200808120 弟二支路各包含至少―㈣,該第二支路之至少-LED與該 第三支路之至少—LED敍向並聯連接。在—具體實施例 中,此類照明電路之兩個或兩個以上電路係串聯連接。藉 由控制各阻抗電路之阻抗’可控制各照明電路之光輸出。 應注意,本文中該照明電路係料包含於進—步包含一 螢光燈之-混合燈組件内而提供。然而,該照明電路還可 用於任何其他電流控制電路。若電流係—直流電,則由於 電流僅在一方向上流動’故可省略該等led支路之一者。 在另一態樣,本發明提供一種用於驅動一混合燈組件之 方法。該混合燈組件肖今一签本、峰 ^ 干^ 3螢先燈、用於向該螢光燈供應 一高頻交流電之一驅動器電路及包含至少三並聯支路之一 LED電路。一第一支路包含一阻抗電路,—第二電路及一 第三電路各包含至少-LED。該第二支路之至少―咖與該 第二支路之至少一 LED係反向並聯連接。該LED電路係串聯 連接該營光燈。該方法包含:向該營光燈及該LED電路供 應-高頻交流電;及改變該阻抗電路之阻抗以控制該LED 電路之一光輸出。 在-具體實施例中,改變該阻抗之步驟包含改變該高頻 乂肌電之頻率。在另一具體實施例中,該阻抗電路包含具 有一可變電阻之一電阻器,而改變該阻抗之步驟包含改變 该電阻器之電阻。同樣地,該阻抗電路可包含分別具有一 可k電容及/或一可變電感之一電容器及/或一電感器,而改 變該阻抗之步驟可包含改變該電感器之電感或該電容器之 電容。如上所述,可在一具體實施例中組合該等改變頻率、 】16608.doc -】0- 200808120 改變電阻、改變電容及/或改變電感之特徵。 在一具體實施例中,其中該混合燈組件包含一控制電路 及連接至該控制電路之感測器,該方法進一步包含向該控 制電路提供一所需光輸出設定;藉由該感測器來決定該混 合燈組件之一光輸出參數;向該控㈣路供應包含來自該 感測杰之光輸出參數之一參數信號;及回應該參數信號來 控制该阻抗電路之阻抗。 【實施方式】 圖1A顯示用於操作一螢光燈几之一先前技術燈驅動器 電路。該燈驅動器電路包含用於接收—Dc電壓之二輸入端 子11、12。包含開關元件S1、S2、電感器[丨及電容器a、 C3之一高頻反相器電路在電路節點N1、N2i間將該直流電 壓轉換成一交流電。電容器C1用於調節用於加熱該螢光燈 FL之電極之一加熱電流並用於點亮該榮光燈几。應注意, 該反相器電路實質上用作一電流源。 “ 圖1B顯示具有端子丁卜丁2之一LED照明電路LEDC。該電200808120 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a hybrid lamp and a method for driving a hybrid lamp. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid lamp assembly including a fluorescent lamp and a light emitting diode (LED) and a method for driving the fluorescent lamp and the LED. [Prior Art] A hybrid lamp contains at least two types of lamps. For example, the hybrid lamp can include a fluorescent light k and at least one light emitting diode (LED). This type of hybrid lamp is suitable for color control of the light output by the hybrid lamp. In particular, LEDs can be used in many colors, so they are suitable for use in changing - the fluorescent lamps that are transmitted by fluorescent lamps are well known. A well-known hybrid lamp includes a -first driver circuit for supplying a current to the fluorescent lamp and a second driver circuit for supplying a flow or voltage to the coffee. Because of the %, the two driver circuit is provided to operate the hybrid lamp. Such hybrid lamp driver circuit configurations are complex and relatively expensive. In addition, a 'difficulty' is required for a complex user interface to achieve the desired level of light and the desired color of light. Same as #, the user interface is more complicated and relatively expensive. SUMMARY OF THE INVENTION One object of the invention is to provide a hybrid lamp having a single driver circuit that can be reduced in brightness and/or light color controllable. In a first aspect, the present invention provides a hybrid lamp assembly including a fluorescent lamp, a driver circuit for supplying a high frequency alternating current to the fluorescent lamp, and at least a (four) circuit for connecting the lamp in series . Each coffee circuit comprises at least three parallel branches: one of the first branches of an impedance circuit, each package 1] 6608.doc 200808120 contains at least one LED, one second branch and one 筮 - two second brothers road. At least one LED of the second branch and at least one g of the second branch are connected in reverse parallel from the earth ^ LED system. In the above hybrid lamp unit, the fluorescent lamp driver is used to supply the high frequency alternating current to the fluorescent lamp. For example, the lamp driver circuit can include a half bridge inverter circuit. A separate phase circuit component can be provided to control the (pre)heating of the fluorescent lamp. The at least-LED system is contained within an LED circuit that is connected in series to the fluorescent lamp and is thus connected to receive the same high frequency AC power as the material light. The LED circuit includes at least three parallel circuit branches. A first circuit branch includes an impedance circuit. The second and third branches comprise at least one LED. Since the -LED allows current to flow only in the - direction, the at least one LED in the second branch is connected in anti-parallel with the at least one LED in the third branch, thereby allowing the alternating current to flow at any time Pass the second branch or the third branch. The impedance circuit controls the amount of current flowing through the second and third branches (i.e., flowing through the at least - LED). If the impedance of the residual reactance circuit is high, a larger portion of the current flows through the second or third branch; if the impedance is lower, a smaller portion of the current flows through the second or third portion Branch road. Since the alternating current may flow through the LED circuit at any time, the LED circuit can be connected in series to the fluorescent lamp without interfering with the operation of the fluorescent lamp. This current can be a steady state drive current 'but can also be a (pre)heat current or any other high frequency alternating current. Thus, there is no need to adapt the fluorescent lamp driver circuit. Moreover, the fluorescent lamp driver circuit can also be used as an LED driver circuit. A circuit that is connected in series to an impedance circuit, 116608.doc -7-200808120, is known in the art. For example, US 2003/0043611 A1 discloses a high frequency inverter circuit connected to an anti-parallel connection LED. The LEDs connected in anti-parallel are connected in series to an impedance circuit. The impedance of the impedance circuit is controlled by frequency control on the inverter circuit. The impedance of the impedance circuit affects the amount of current drawn to the LED such as δHai. Thus, the brightness of the LEDs can be controlled. In a specific embodiment, the method includes changing a frequency of the high frequency alternating current to control a light output of the fluorescent lamp. Thus, the light output of the fluorescent lamp and the LED circuit is controllable. It should be noted that it is known in the art to control the frequency of the alternating current in order to illuminate the fluorescent lamp. Moreover, in a specific embodiment, the method includes changing one of the high frequency alternating current duty cycles to control the light output of the LED circuit and the fluorescent lamp. The duty cycle of the alternating current indicates which cycle of the alternating current is not equal to zero. Thus, the circulatory cycle indicates which portion of the cycle the glory lamp and/or the LED system actually supplies to the motor. Therefore, if the duty cycle is large, the LED circuit and the glare light have a large light output. If the duty cycle is small, the light output is low. a As noted above, it is known in the art to vary the frequency of the alternating current to illuminate the glory. Add at least one LED to add color control to the functionality of the worklight. In order to obtain a desired LED light output, the frequency dependent impedance will be configured in accordance with the frequency used to operate and reduce the glory. It will be understood by those skilled in the art how to design and construct features having such desired impedance characteristics - in particular embodiments, the impedance circuit includes a resistor having a - variable resistance. The resistance of the resistor directly affects the impedance of the impedance circuit. 116608.doc 200808120 Similarly, an impedance circuit can include a capacitor having a variable capacitance and/or a variable inductance and/or an inductor for affecting impedance characteristics of the impedance circuit. Thus, the impedance of the impedance circuit and thus the light output of the LEDs can be controlled independently of the frequency of the alternating current. It should be noted that the above-described manner of controlling impedance (frequency dependence, variable resistance, variable capacitance, variable inductance) may be combined in a specific embodiment. Thus, one or more control parameters can be used for brightness and/or color control. In addition, in addition to a resistor, a capacitor, and an inductor, other active components can be used to provide a suitable impedance circuit. In a particular embodiment, the hybrid lamp assembly includes a control circuit and a sensor coupled to the control circuit. The control circuit is configured to control the impedance of the impedance circuit in response to a signal received from the sensor. The sensor may be a light sensor that determines at least one parameter of a set of parameters 'these parameters include the amount of light output by the hybrid lamp, the color of the light that the mixing wheel emits' flows through the LEDs or flows through The amount of current in the impedance circuit. The sensor can also determine any other parameters suitable for controlling the light output by the hybrid lamp. In a particular embodiment, the control circuit can be coupled to the driver circuit ' to control the frequency of the high frequency alternating current. Thus, the control circuit can control the LEDs to control the frequency of the LEDs 无 ^ ^ 无 无 无 , , , , , , , 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无The impedance of the circuit and possibly by controlling the frequency to control the light out of the fluorescent lamp. In addition, the present invention relates to all the way: - the first branch ... into, the lighting circuit of the branch circuit eight packs two impedance circuit, and a second branch and a 116608.doc 200808120 brother two branches each contain at least "(four), At least the LEDs of the second branch are connected in parallel with at least the LEDs of the third branch. In a particular embodiment, two or more circuits of such lighting circuits are connected in series. The light output of each illumination circuit can be controlled by controlling the impedance of each impedance circuit. It should be noted that the illumination circuit system is provided herein as being provided in a hybrid lamp assembly that includes a fluorescent lamp. However, the lighting circuit can also be used with any other current control circuit. If the current is - direct current, one of the led branches can be omitted because the current flows only in one direction. In another aspect, the invention provides a method for driving a hybrid light assembly. The hybrid lamp assembly Xiao Jinyi signature, the peak ^3 burner, the driver circuit for supplying a high frequency alternating current to the fluorescent lamp and the LED circuit including at least three parallel branches. A first branch includes an impedance circuit, and the second circuit and a third circuit each comprise at least an LED. At least one of the second branches of the second branch is connected in anti-parallel with at least one of the LEDs of the second branch. The LED circuit is connected in series to the camper light. The method includes: supplying a high frequency alternating current to the camping light and the LED circuit; and changing an impedance of the impedance circuit to control a light output of the LED circuit. In a particular embodiment, the step of varying the impedance comprises varying the frequency of the high frequency diaphragm muscle. In another embodiment, the impedance circuit includes a resistor having a variable resistor, and the step of changing the impedance includes changing the resistance of the resistor. Similarly, the impedance circuit can include a capacitor having a k-capacitance and/or a variable inductance, and/or an inductor, and the step of changing the impedance can include changing the inductance of the inductor or the capacitor. capacitance. As described above, the frequency of change can be combined in a particular embodiment, 16608.doc - 0-200808120 to change the resistance, change the capacitance, and/or change the characteristics of the inductance. In one embodiment, the hybrid lamp assembly includes a control circuit and a sensor coupled to the control circuit, the method further comprising providing a desired light output setting to the control circuit; Determining a light output parameter of the hybrid lamp assembly; supplying the control (four) way with a parameter signal including one of the light output parameters from the sensing; and responding to the parameter signal to control the impedance of the impedance circuit. [Embodiment] Fig. 1A shows a prior art lamp driver circuit for operating a fluorescent lamp. The lamp driver circuit includes two input terminals 11, 12 for receiving a -Dc voltage. The high frequency inverter circuit including the switching elements S1, S2, the inductor [丨 and the capacitors a, C3 converts the direct current voltage into an alternating current between the circuit nodes N1, N2i. The capacitor C1 is for adjusting a heating current for heating one of the electrodes of the fluorescent lamp FL and for lighting the glory. It should be noted that the inverter circuit is essentially used as a current source. Figure 1B shows an LED lighting circuit LEDC with a terminal Ding Ding 2. This electric

路可藉由向β亥等i^T1、T2供應—交流電來操作。該LED 電路LEDC包含三個並聯支路。—第—支路包含—阻抗電路 VRC。一第二支路包含一或多個發光二極體⑽"至The road can be operated by supplying AC power to βH, etc., i^T1, T2. The LED circuit LEDC contains three parallel branches. - The first branch contains the impedance circuit VRC. a second branch comprising one or more light emitting diodes (10)" to

In 第一支路包合一或多個發光二極體LED21至 咖2„。該第:支路之發光二㈣LEDijleDi』反向並聯 連接至該第三支路之發光二極體LED2 ^至LED。。 在操作中,在該交流雷夕筮_ ^之苐一週期期間,該電流從該第 一端子T〗流向該第二端子了2。該第三支路之該等㈣ 116608.doc 200808120 (LEDn至LED^)阻擋此電流。然而,該阻抗電路與該 第二支路之該等LED(LED"至LEDln)二者允許此電流流 動。因此,取決於各支路之阻抗,該電流將在該些二支路 上分流自身。 在該交流電之第二週期期間,該電流從該第二端子丁2流 向該第一端子T1。該第二支路之該等LED (LED"至LEDin) 阻擋此電流。然而,該阻抗電路VRC與該第三支路之該等 LED (LED21至LED2n)二者允許此電流流動。因此,取決於 各支路之電阻’該電流將在該些二支路上分流自身。 3弟一及苐二支路之阻抗係恒定。該阻抗電路Vrc之阻 抗可以改變。因而,可藉由改變該阻抗電路VRC之阻抗來 影響該電流之流動。例如,在該交流電之第一週期期間, 右該阻抗電路之阻抗較高,則該電流之一較大部分將流過 該第二支路之該等LED (LEDi^LEDin),藉此產生該等 LED (LEDU至LED】n)之光輸出。若該阻抗電路之電阻較 低,孩電之一較大部分將流過該阻抗電路且僅該電流之 一較小部分將流過該第二支路之該等LED (LED"至 LEDin),藉此產生該等LED (LEDijLED】n)之一較低光輸 出。 圖1C”、、員示用於圖1BiLED電路中之一阻抗電路VRC之一 /、胆貫施例。该具體實施例包含具有一可變電阻之一電阻 σσ VR可手動控制或藉由一適當控制電路電性控制該電阻 器VR之電阻。 圖1D顯不一阻抗電路VRC之另一具體實施例。該阻抗電 116608.doc -12- 200808120 路VRC包含-LC電路。-電感器L2與一電容器以係並聯連 接。該阻抗電路具有—阻抗,其取決於供應該電路vrc之 —交流電之頻率。因而,藉由改變該交流電之頻率,該阻 抗電路之阻抗可改變。該電感器[2之電感及/或電容器C4 之電容係可變、可手動或電性控制。因而,可控制該阻抗 電路之阻抗特徵。 再次參考圖1B,任何供應給LED電路LEDC之交流或直流 電可隨時流過該LED電路LEDC。因此,該LED電路ledc 可併入藉由一電流源供應一電流之另一電路中而不影響任 何其他電路操作。 圖1E顯示一混合燈組件,其包含如圖〗八所示之一螢光燈 FL與對應驅動器電路,並包含如圖ib所示之—電路 LEDC。由於該LED電路LEDC不影響螢光燈fl及其對應驅 動杰電路之操作’因此螢光燈?]^之操作可以與關於圖1八所 述相同。 圖1E之此合燈組件之光輸出可藉由頻率控制來控制。如 上所述,螢光燈FL可藉由改變該交流電之頻率來減亮。例 如,螢光燈FL可採用產生一較高光輸出的‘卟^^來操作。 如此項技術中眾人所知,增加該交流電之頻率至65kHz可執 行減亮螢光燈FL之光輸出。用於減亮該螢光燈之頻率控制 可較有利地用於控制與螢光燈FL串聯連接之該led電路 ledc之光輸出。特定言之,改變該螢光燈FL之光輸出及/ 或忒LED電路LEDC之光輸出可用於顏色控制,由於該螢光 燈扛所輸出之光之顏色與該等LED所輸出之光之顏色不 H6608.doc 13 200808120 问。因此’該螢光燈與該等咖之_組合 色取決於該螢光_FI口月51 光之顏 踅尤4FL所輸出之光之數量 之光之數量。 里,、β寺LED所輸出 例如’在上述之一工作 一最 ㈣羊4〇kHz下,- t光燈FL輸出 先數置,該光係感受為白光。在術Hz下,該阻抗電 路(例如圖1D所示之一阻抗雷& 阻抗電路)具有一特徵,使得該電流 要〜過該阻抗電路,該等LED由此極難產生任何光輸 出。因此’該混合燈組件之光輸出係'實質上等於該螢光燈 FL之光輸出。隨著增加該頻率,該阻抗電路之阻抗合烊加 使得在該共振頻率(例如65kHz)下,該螢光燈fl之光輸出處 於一最小值(即實質上為零)。因而,該LED電路ledc之該 等LED輸出一最大值的光,同時該螢光燈fl不輸出任何 直至達到該阻抗電路之—共振頻率。可設計該阻抗=, 光。因此,該混合燈組件所輸出之光之顏色實質上等於該 等LED所輸出之光之顏色。由於可採用許多顏色使用led, 因此所產生的顏色幾乎可以係任何顏色,(例如)紅色或綠 色。當然,取決於該阻抗電路之阻抗,該光之顏色將回應 一變化頻率而逐漸變化。 取代僅控制該交流電之頻率,還可直接控制該阻抗電路 之阻抗’例如使用具有圖1 C所示之一可變電阻之一電阻 器。此具體貫施例之' 一優點在於個別控制該榮光燈L之光 幸兩出與該LED電路LEDC之光輸出。因而,可改變該頻率以 控制螢光燈FL之光輸出,並可變化該阻抗電路之阻抗以控 制該LED電路LEDC之光輸出。當然,在一具體實施例中, 116608.doc -14- 200808120 僅控制該阻抗電路之阻抗。 在另一具體實施财,該LED電路LEDC之光輸出與該肇 光燈FL之光輸出係、透過工作循環來控制。該交流電之工作 循環可藉由該驅動器電路(尤其係開關S1、S2)來控制,藉 此控制供應給該LED電路LEDC與該螢光燈FL之電流量。^ 供應之電流量決定該光輸出。 圖2說明依據本發明之一混合燈組件之另一具體實施 例。該混合燈組件包含一螢光燈FL與一 lED電路LEDc。— 高頻交流電係藉由一驅動器電路〇(::來供應。該驅動器電路 係連接至一控制電路CC〇 一感測器§係連接至該控制電路 CC。該控制電路cc可控制三個控制參數cTRL1、cTRL2、 CTRL3 〇 在操作中,該感測器S決定該混合燈組件之一操作參數。 該感測器S可以係一光學感測器,其決定一光輸出及/或該 光輸出之一顏色。該感測器s還可以係一熱感測器,用於決 疋所產生熱1,即來自該混合燈之一熱輻射。該感測器S 還可以係任何其他適當感測器。該感測器S可決定一操作參 數’但還可決定兩個或兩個以上操作參數。一參數信號係 從該感測器s供應至該控制電路CC。 該控制電路cc被供應該參數信號並配置成用以產生對 應於一使用者設定之一光輸出。基於該使用者設定與該感 測器S所供應之該(等)操作參數之值,該控制電路cc決定用 於該等控制參數CTRL1、CTRL2、CTRL3i一或多個控制 參數的一適當值。 116608.doc -15- 200808120 第一控制參數CTRL 1可以係該高頻交流電之頻率。第二 控制參數CTRL2可以係該高頻交流電之工作循環。第三控 制參數CTRL3可以係該LED電路LEDC之阻抗電路之阻 抗。該等控制參數CTRL1、CTRL2及CTRL3不一定獨立。 例如,該第一控制參數CTRL1 (即交流電之頻率)可影響該阻 抗電路之阻抗(即CTRL3)。 在一具體實施例中,該控制電路CC可不具有所有三個控 制參數CTRL1、CTRL2、CTRL3作為實際控制參數。例如, 該控制電路CC可配置成用以僅控制該交流電之頻率。 在一具體實施例中,可省略該感測器S。例如,該控制電 路CC然後可具有儲存一查詢表的一記憶體,該查詢表包含 對應於個別數目之使用者設定的若干控制參數設定。 圖3說明另一具體實施例,其具有與一螢光燈FL串聯連接 之四個 LED 電路 LEDC1、LEDC2、LEDC3 及 LEDC4。一驅 動器電路DC可能回應任何控制參數或信號CTRL而供應一 適當南頻父流電。由於任何電流可流過各LED電路 LEDC1、LEDC2、LEDC3、LEDC4而不干擾該電流,因此 可串聯連接任何數目之LED電路。各LED電路之阻抗特徵決 定各分離LED電路之光輸出。 該混合燈組件與用於驅動該混合燈組件之方法可用作液 晶顯示器(LCD)之一背光,例如LCD電視機。特定言之,用 作一背光,可提高LCD-TV之色域。而且,可省略用於驅動 該等LED之額外驅動器,比較先前技術的混合燈組件,藉 此提供一成本降低。 116608.doc -16- 200808120 本文已揭示本發明之詳細具體實施例,但應明白,該等 :揭不具體實施例僅例示本發明,本發明可採用各種形式 來執订。因此’本文所揭示之具體結構及功能細節不應視 ^艮制性,而應僅視為巾請專利範圍之—基礎及用於教導 白知此項技術者採靠何實際地適料細結構來各方面地 >1用本u之—代表性基礎。此外,本文所使用之術語及 措詞不希望有限制性,相反希望提供本發明之—可理解說 明。 本文所使用之術語"一”或"一個”係定義為一或多個。本文 所使用之術語複數個係定義為二或二個以上。本文所使用 術語另―,錢義為至少—第二個或更多_。本文所使用 之術語包括及/或具有,係定義為包含(即開放式語言)。本 文所使用之術語耦合’係定義為連接,儘管不一定以直接 及不一定以機械方式連接。 【圖式簡單說明】 翏考上述具體實施例已明示並說明本發明之此些及其他 態樣。 在圖式中: 圖1A說明一先前技術螢光燈及燈驅動器電路; 圖1B說明依據本發明之一具體實施例之電路; 圖1C說明用於依據圖1B之一 LED電路中之一阻抗電路之 一具體實施例; 圖1D說明用於依據圖1B(LED電路中之一阻抗電路之一 具體實施例; 116608.doc 17 200808120 圖1E說明依據本發明之一混合燈組件之一具體實施例; 圖2說明包含一控制電路之依據本發明之一混合燈組件 之一具體實施例;以及 圖3說明依據本發明之一混合燈組件之另一具體實施例。 【主要元件符號說明】 C1 電容器 C2 電容器 C3 電容器 C4 電容器 CC 控制電路 CTRL 控制參數或信號 CTRL1 第一控制參數 CTRL2 第二控制參數 CTRL3 第三控制參數 DC 驅動器電路 FL 螢光燈 11 輸入端子 12 輸入端子 LI 電感器 L2 電感器 LEDn 發光二極體 LEDln 發光二極體 led21 發光二極體 LED2n 發光二極體 116608.doc -18- 200808120 LEDC LED照明電路 LEDC1 LED電路 LEDC2 LED電路 LEDC3 LED電路 LEDC4 LED電路 N1 電路節點 N2 電路節點 S 感測器 SI 開關元件 S2 開關元件 T1 端子 T2 端子 VR 電阻器 VRC 阻抗電路 116608.doc -19-In the first branch, one or more LEDs 21 to 2 are included. The first: branch light (two) LEDijleDi is connected in reverse parallel to the LED of the third branch LED 2 ^ to LED In operation, during the period of the alternating current, the current flows from the first terminal T to the second terminal by 2. The third branch of the fourth branch (four) 116608.doc 200808120 (LEDn to LED^) blocks this current. However, the impedance circuit and the LEDs of the second branch (LED" to LEDln) allow this current to flow. Therefore, depending on the impedance of each branch, the current The two will be shunted on the two branches. During the second period of the alternating current, the current flows from the second terminal 2 to the first terminal T1. The LEDs of the second branch (LED" to LEDin) Blocking this current. However, the impedance circuit VRC and the LEDs (LED21 to LED2n) of the third branch allow this current to flow. Therefore, depending on the resistance of each branch, the current will be in the two Diverting itself on the road. The impedance of the 3rd and 2nd branches is constant. The impedance circuit Vrc The impedance can be changed. Therefore, the flow of the current can be affected by changing the impedance of the impedance circuit VRC. For example, during the first period of the alternating current, the impedance of the impedance circuit is higher, and one of the currents is larger. Part of the LEDs (LEDi^LEDin) flowing through the second branch, thereby generating light output of the LEDs (LEDU to LED) n). If the resistance of the impedance circuit is lower, one of the children is less Most will flow through the impedance circuit and only a small portion of the current will flow through the LEDs (LED" to LEDin) of the second branch, thereby producing one of the LEDs (LEDijLED) n) Low light output. Figure 1C", the member is used in one of the impedance circuits VRC in the BiLED circuit of Figure 1. This embodiment includes a resistor having a resistance σσ VR that can be manually controlled or electrically controlled by a suitable control circuit. Figure 1D shows another embodiment of an impedance circuit VRC. The impedance is 116608.doc -12- 200808120 The road VRC contains the -LC circuit. - The inductor L2 is connected in parallel with a capacitor. The impedance circuit has an impedance that depends on the frequency of the alternating current supplied to the circuit vrc. Thus, by varying the frequency of the alternating current, the impedance of the impedance circuit can be varied. The inductance of the inductor [2] and/or the capacitance of capacitor C4 is variable and can be controlled manually or electrically. Thus, the impedance characteristics of the impedance circuit can be controlled. Referring again to Figure 1B, any alternating current or direct current supplied to the LED circuit LEDC may flow through the LED circuit LEDC at any time. Thus, the LED circuit ledc can be incorporated into another circuit that supplies a current through a current source without affecting any other circuit operation. Figure 1E shows a hybrid lamp assembly that includes a fluorescent lamp FL and a corresponding driver circuit as shown in Figure VIII, and includes a circuit LEDC as shown in Figure ib. Since the LED circuit LEDC does not affect the operation of the fluorescent lamp fl and its corresponding driving circuit, therefore, the fluorescent lamp? The operation of ^^ can be the same as described with respect to Fig. 18. The light output of the light assembly of Figure 1E can be controlled by frequency control. As described above, the fluorescent lamp FL can be lightened by changing the frequency of the alternating current. For example, the fluorescent lamp FL can be operated with '卟^^ which produces a higher light output. As is well known in the art, increasing the frequency of the alternating current to 65 kHz can perform the light output of the dimming fluorescent lamp FL. The frequency control for refracting the fluorescent lamp can be advantageously used to control the light output of the led circuit ledc connected in series with the fluorescent lamp FL. In particular, changing the light output of the fluorescent lamp FL and/or the light output of the LED circuit LEDC can be used for color control, because the color of the light output by the fluorescent lamp and the color of the light output by the LEDs Not H6608.doc 13 200808120 Q. Therefore, the combination of the fluorescent lamp and the coffee beans depends on the amount of light of the amount of light output by the fluorescent light. In the case, the output of the β Temple LED is, for example, 'in one of the above works. One (4) sheep 4 kHz, the -t light FL output is set first, and the light system is perceived as white light. At Hz, the impedance circuit (e.g., one of the impedance thunder & impedance circuits shown in Figure 1D) has a feature that causes the current to pass through the impedance circuit, which makes it extremely difficult to produce any light output. Thus, the light output of the hybrid lamp assembly is substantially equal to the light output of the fluorescent lamp FL. As the frequency is increased, the impedance of the impedance circuit is summed such that at the resonant frequency (e.g., 65 kHz), the light output of the fluorescent lamp fl is at a minimum (i.e., substantially zero). Thus, the LEDs of the LED circuit ledc output a maximum amount of light while the fluorescent lamp fl does not output any until the resonance frequency of the impedance circuit is reached. This impedance =, light can be designed. Therefore, the color of the light output by the hybrid lamp assembly is substantially equal to the color of the light output by the LEDs. Since the LED can be used in many colors, the resulting color can be almost any color, for example, red or green. Of course, depending on the impedance of the impedance circuit, the color of the light will gradually change in response to a varying frequency. Instead of controlling only the frequency of the alternating current, the impedance of the impedance circuit can be directly controlled, e.g., using one of the variable resistors shown in Fig. 1C. An advantage of this specific embodiment is that the light of the glory L is individually controlled to output light with the LED circuit LEDC. Thus, the frequency can be varied to control the light output of the fluorescent lamp FL, and the impedance of the impedance circuit can be varied to control the light output of the LED circuit LEDC. Of course, in one embodiment, 116608.doc -14-200808120 controls only the impedance of the impedance circuit. In another implementation, the light output of the LED circuit LEDC and the light output of the xenon lamp FL are controlled by a duty cycle. The alternating current duty cycle can be controlled by the driver circuit (especially the switches S1, S2), thereby controlling the amount of current supplied to the LED circuit LEDC and the fluorescent lamp FL. ^ The amount of current supplied determines the light output. Figure 2 illustrates another embodiment of a hybrid lamp assembly in accordance with the present invention. The hybrid lamp assembly includes a fluorescent lamp FL and an lED circuit LEDc. – The high frequency alternating current is supplied by a driver circuit : (:: the driver circuit is connected to a control circuit CC 〇 a sensor § is connected to the control circuit CC. The control circuit cc can control three controls The parameters cTRL1, cTRL2, CTRL3 are in operation, the sensor S determines an operating parameter of the hybrid lamp assembly. The sensor S can be an optical sensor that determines a light output and/or the light output One of the colors. The sensor s can also be a thermal sensor for determining the generated heat 1, that is, heat radiation from one of the hybrid lamps. The sensor S can also be any other suitable sensing. The sensor S can determine an operating parameter 'but can also determine two or more operating parameters. A parameter signal is supplied from the sensor s to the control circuit CC. The control circuit cc is supplied The parameter signal is configured to generate a light output corresponding to a user setting. Based on the user setting and the value of the (equal) operating parameter supplied by the sensor S, the control circuit cc determines to use the And other control parameters CTRL1, CTRL2, CTRL 3i an appropriate value of one or more control parameters 116608.doc -15- 200808120 The first control parameter CTRL 1 may be the frequency of the high frequency alternating current. The second control parameter CTRL2 may be the working cycle of the high frequency alternating current. The three control parameters CTRL3 may be the impedance of the impedance circuit of the LED circuit LEDC. The control parameters CTRL1, CTRL2 and CTRL3 are not necessarily independent. For example, the first control parameter CTRL1 (ie the frequency of the alternating current) may affect the impedance of the impedance circuit. (ie CTRL3). In a specific embodiment, the control circuit CC may not have all three control parameters CTRL1, CTRL2, CTRL3 as actual control parameters. For example, the control circuit CC may be configured to control only the frequency of the alternating current In a specific embodiment, the sensor S can be omitted. For example, the control circuit CC can then have a memory that stores a lookup table containing a number of control parameters corresponding to an individual number of user settings. Figure 3 illustrates another embodiment having four LED circuits LEDC1, LEDC2, LEDC3 and LEDs connected in series with a fluorescent lamp FL C4. A driver circuit DC may supply an appropriate south frequency parent galvanic power in response to any control parameter or signal CTRL. Since any current may flow through the LED circuits LEDC1, LEDC2, LEDC3, LEDC4 without interfering with the current, it may be connected in series Any number of LED circuits. The impedance characteristics of each LED circuit determine the light output of each separate LED circuit. The hybrid lamp assembly and method for driving the hybrid lamp assembly can be used as a backlight for a liquid crystal display (LCD), such as an LCD television In particular, it acts as a backlight to increase the color gamut of the LCD-TV. Moreover, additional drivers for driving the LEDs can be omitted, comparing prior art hybrid lamp assemblies, thereby providing a cost reduction. 116608.doc -16- 200808120 The detailed embodiments of the present invention have been disclosed, but it should be understood that the present invention is not limited by the specific embodiments. Therefore, the specific structural and functional details disclosed herein should not be regarded as the basis of the patent, but should be regarded only as the basis of the scope of the patent, and to teach the skilled person to adopt the actual structure and fine structure. In all aspects, >1 uses the basis of this u. In addition, the terms and phrases used herein are not intended to be limiting, but rather are intended to provide an understanding of the invention. The term "a" or "a" as used herein is defined as one or more. The plural terms used herein are defined as two or more. The term used in this article is another, and the meaning of money is at least - the second or more _. The terms used herein, and/or have, are defined to include (i.e., open language). The term "coupled" as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. BRIEF DESCRIPTION OF THE DRAWINGS These and other aspects of the invention have been shown and described with reference to the particular embodiments described herein. In the drawings: FIG. 1A illustrates a prior art fluorescent lamp and lamp driver circuit; FIG. 1B illustrates a circuit in accordance with an embodiment of the present invention; FIG. 1C illustrates an impedance circuit for use in an LED circuit in accordance with FIG. 1D illustrates a specific embodiment of a hybrid lamp assembly in accordance with the present invention in accordance with FIG. 1B (one embodiment of an impedance circuit in an LED circuit; 116608.doc 17 200808120; FIG. 2 illustrates a specific embodiment of a hybrid lamp assembly in accordance with the present invention including a control circuit; and FIG. 3 illustrates another embodiment of a hybrid lamp assembly in accordance with the present invention. [Description of Main Components] C1 Capacitor C2 Capacitor C3 Capacitor C4 Capacitor CC Control circuit CTRL Control parameter or signal CTRL1 First control parameter CTRL2 Second control parameter CTRL3 Third control parameter DC Driver circuit FL Fluorescent lamp 11 Input terminal 12 Input terminal LI Inductor L2 Inductor LEDn Illuminated two Polar body LEDln light-emitting diode led21 light-emitting diode LED2n light-emitting diode 116608.doc -18- 2008 08120 LEDC LED Lighting Circuit LEDC1 LED Circuit LEDC2 LED Circuit LEDC3 LED Circuit LEDC4 LED Circuit N1 Circuit Node N2 Circuit Node S Sensor SI Switching Element S2 Switching Element T1 Terminal T2 Terminal VR Resistor VRC Impedance Circuit 116608.doc -19-

Claims (1)

200808120 十、申請專利範圍: 1 · 一種用於驅動一混合燈組件之方法,該混合燈組件包含 一螢光燈、用於向該螢光燈供應一高頻交流電之一驅動 态電路及包含至少三個並聯支路之一 LED電路,一第一支 路包含一阻抗電路,一第二支路及一第三支路各包含至 少一 LED,該第二支路之該LED與該第三支路之該led係 反向並聯連接,該LED電路係串聯連接該螢光燈,該方法 包含: 向該螢光燈及該LED電路供應一高頻交流電; 改變該阻抗電路之阻抗以控制該LED電路之一光輸出。 月长項1之方法,該方法進一步包含改變該高頻交流電 之一頻率以控制該螢光燈之一光輸出。 月长項1之方法,該方法進一步包含改變該高頻交流電 之:工作循環以控制該螢光燈及該LED電路之一光輸出。 4· 1叫求項1之方法,其中改變該阻抗之該步驟包含改變該 高頻交流電之頻率。 求員1之方法,其中該阻抗電路包含具有一可變電阻 電阻為,且其中改變該阻抗之該步驟包含改變該雷 阻器之電阻。 6. 如請求項1t、、土 、 、 / ,/、中該混合燈組件包含一控制電路與 、 °亥&制電路之一感測器,該方法進一步包含: 向該控制電路提供—所需光輸出設定; 藉,該感測器來決定該混合燈組件之一光輸出參數; 向该控制電路供應包含來自該感測器之該光輸出參數 116608.doc 200808120 的一參數信號; 回應該光輸出參數,藉由該 路之阻抗。 岭;改變该阻抗電 7 · 種混合燈組件,該燈組件包含: 一螢光燈; ::動器電路’其用於向該發光燈供應—高頻交流電; 串%連接该螢光燈之至少一 5 + 電路,各led電路包含 至少二個並聯支路: 匕己 一第一支路,其包含一阻抗電路; -第二支路及-第三支路,各包含至少_LED,該第 :支路之該至少-LED及㈣三支路之該至少一咖 係反向並聯連接。 8. 如請求項7之混合燈組件,其中該阻抗電路包含一具有— 可變電阻之電阻器。 9. 如請求項7之混合燈組件,其中該燈組件進一步包含一控 制電路與連接至該控制電路之一感測器’該控制電路係 配置成用以回應從該感測器所接收之—參數信號來控制 该阻抗電路之阻抗。 W如=求項9之混合燈組件’其中該控制電路係連接至該驅 動器電路用於控制該高頻交流電之頻率。 種匕3如睛求項7至1 0之任一項之混合燈組件之LCD背 光電路。 12· —種照明電路,其包含至少三並聯支路: 第一支路,其包含一阻抗電路;以及 116608.doc 200808120 一第二支路及一第三支路,各包含至少一 LED,該第二 支路之該至少一 LED及該第三支路之該至少一 LED係反 向並聯連接。 13. 一種包含串聯連接的如 明模組。 长項12之至少兩照明電路之照 J16608.doc200808120 X. Patent application scope: 1 . A method for driving a hybrid lamp assembly, the hybrid lamp assembly comprising a fluorescent lamp, a driving circuit for supplying a high frequency alternating current to the fluorescent lamp, and including at least An LED circuit of one of the three parallel branches, a first branch comprising an impedance circuit, a second branch and a third branch each comprising at least one LED, the LED of the second branch and the third branch The led circuit is connected in reverse parallel connection, the LED circuit is connected to the fluorescent lamp in series, the method comprises: supplying a high frequency alternating current to the fluorescent lamp and the LED circuit; changing an impedance of the impedance circuit to control the LED One of the circuits has a light output. The method of month length item 1, the method further comprising changing a frequency of the high frequency alternating current to control a light output of the fluorescent lamp. The method of month length item 1, the method further comprising changing the high frequency alternating current: a duty cycle to control the light output of the fluorescent lamp and the LED circuit. The method of claim 1, wherein the step of changing the impedance comprises changing the frequency of the high frequency alternating current. The method of claim 1, wherein the impedance circuit comprises a variable resistance, and wherein the step of changing the impedance comprises changing a resistance of the resistor. 6. The request item 1t, earth, , /, /, the hybrid lamp assembly includes a control circuit and a sensor of the circuit, the method further comprises: providing the control circuit The light output setting is required; the sensor determines a light output parameter of the hybrid lamp assembly; and supplies a parameter signal including the light output parameter 116608.doc 200808120 from the sensor to the control circuit; Light output parameter, by the impedance of the path. Changing the impedance of the electric power unit, the lamp assembly comprises: a fluorescent lamp; a follower circuit for supplying the illuminating lamp with high frequency alternating current; and a string % connecting the fluorescent lamp At least one 5 + circuit, each LED circuit comprises at least two parallel branches: a first branch, comprising an impedance circuit; - a second branch and a third branch, each comprising at least _LED, The at least one of the at least-LED and the (four) three-way branch of the branch is connected in reverse parallel. 8. The hybrid lamp assembly of claim 7, wherein the impedance circuit comprises a resistor having a variable resistance. 9. The hybrid lamp assembly of claim 7, wherein the lamp assembly further comprises a control circuit and a sensor coupled to the control circuit 'the control circuit is configured to respond to receipt from the sensor- The parameter signal controls the impedance of the impedance circuit. W is the hybrid lamp assembly of claim 9 wherein the control circuit is coupled to the driver circuit for controlling the frequency of the high frequency alternating current. The LCD backlight circuit of the hybrid lamp assembly of any one of items 7 to 10. 12. A lighting circuit comprising at least three parallel branches: a first leg comprising an impedance circuit; and 116608.doc 200808120 a second branch and a third branch each comprising at least one LED, The at least one LED of the second branch and the at least one LED of the third branch are connected in anti-parallel. 13. A modular module comprising a series connection. Photo of at least two lighting circuits of the long term 12 J16608.doc
TW95145436A 2005-12-09 2006-12-06 Method for driving a hybrid lamp and a hybrid lamp assembly TW200808120A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05111929 2005-12-09

Publications (1)

Publication Number Publication Date
TW200808120A true TW200808120A (en) 2008-02-01

Family

ID=37890125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95145436A TW200808120A (en) 2005-12-09 2006-12-06 Method for driving a hybrid lamp and a hybrid lamp assembly

Country Status (2)

Country Link
TW (1) TW200808120A (en)
WO (1) WO2007066252A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146582A1 (en) * 2007-12-07 2009-06-11 The University Of British Columbia Colour rendering in compact fluorescent lamps
CA2649259A1 (en) * 2008-01-14 2009-07-14 Tai-Her Yang Bi-directional light emitting diode drive circuit in pulsed power parallel resonance
US7759880B2 (en) 2008-02-12 2010-07-20 General Electric Company Combined ballast for fluorescent lamp and light emitting diode and method of driving same
FR2941822A1 (en) * 2009-02-02 2010-08-06 Sfidi SECURED ELECTRIC LIGHTING SYSTEM.
DE102010029100A1 (en) 2010-05-19 2011-11-24 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement for operating at least one discharge lamp and at least one LED
DE102010064069A1 (en) * 2010-12-23 2012-06-28 Osram Ag Electronic ballast for operating a hybrid light
US10048299B2 (en) * 2014-05-28 2018-08-14 Intermountain Electronics, Inc. Electric power sensor
WO2018054841A1 (en) * 2016-09-22 2018-03-29 Philips Lighting Holding B.V. A retrofit light emitting diode, led, tube for enabling step dimming in a multi lamp luminaire lighting system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10013207B4 (en) * 2000-03-17 2014-03-13 Tridonic Gmbh & Co Kg Control of light emitting diodes (LEDs)
NZ543078A (en) * 2003-05-02 2007-04-27 George Alan Limpkin Apparatus for supplying energy to a load and a related system
DE102005030115A1 (en) * 2005-06-28 2007-01-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement and method for operating at least one LED and at least one electric lamp

Also Published As

Publication number Publication date
WO2007066252A1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5371764B2 (en) Power supply device for lighting element and method for supplying power to the lighting element
RU2524477C2 (en) Led lighting device with characteristic of colour temperature of incandescent lamp
TW200808120A (en) Method for driving a hybrid lamp and a hybrid lamp assembly
RU2481752C2 (en) System and method to control led lamp power supply
CN103314640B (en) For the method and apparatus driving LED strip
JP5903273B2 (en) Resonant converter
WO2013001756A1 (en) Led illumination circuit and led illumination device
JP2004296205A (en) Led dimming and lighting device and illuminating equipment
MX2011002446A (en) Hybrid light source.
RU2596804C2 (en) Linear power supply signal generator for reduced perceptible light flicker
JP2013545238A5 (en)
US20070194721A1 (en) Electronic lighting ballast with multiple outputs to drive electric discharge lamps of different wattage
JP5639177B2 (en) Electronic ballast dimming circuit
JP6448854B2 (en) LED tube lamp
JP2012043657A (en) Light source lighting device and lighting equipment
KR102070445B1 (en) LED Dimming Control Apparatus and Method for Reducing Flicker
JP6262775B2 (en) Dimmable LED lamp activated on demand side
KR100433804B1 (en) Device for driving the fluorescent lamp with external electrodes of LCD
KR102070444B1 (en) LED Lighting Control Apparatus for Reducing Flicker
EP3890443B1 (en) Lighting apparatus
JP4889202B2 (en) lighting equipment
JP4442098B2 (en) Lighting device
JPH0212799A (en) Lighting control unit of fluorescent lamp