WO2013001756A1 - Led illumination circuit and led illumination device - Google Patents

Led illumination circuit and led illumination device Download PDF

Info

Publication number
WO2013001756A1
WO2013001756A1 PCT/JP2012/004033 JP2012004033W WO2013001756A1 WO 2013001756 A1 WO2013001756 A1 WO 2013001756A1 JP 2012004033 W JP2012004033 W JP 2012004033W WO 2013001756 A1 WO2013001756 A1 WO 2013001756A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitor
led
unit
current
Prior art date
Application number
PCT/JP2012/004033
Other languages
French (fr)
Japanese (ja)
Inventor
杉森 英夫
Original Assignee
有限会社アルコ技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社アルコ技研 filed Critical 有限会社アルコ技研
Publication of WO2013001756A1 publication Critical patent/WO2013001756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an LED illumination circuit that emits an LED (light emitting diode) from a commercial AC power supply, and an LED illumination device using the LED illumination circuit.
  • an illumination circuit (LED illumination circuit) that uses an LED illumination tube with good luminous efficiency instead of a conventional illumination tube such as an incandescent bulb or a fluorescent tube has attracted attention.
  • An LED is a solid-state element that emits light with a predetermined light emission efficiency in accordance with a current flowing through a pn junction formed on a semiconductor substrate, and it cannot be said that the amount of light emission per LED is large. Therefore, the LED illumination circuit includes a light emitting element unit formed by connecting a large number of LEDs to form a light emitting circuit unit, and emits light having a required light emission amount (luminance).
  • the LED lighting circuit has a lower maximum application temperature than a solid-state LED or incandescent bulb or fluorescent tube (for example, 80 ° C. or less), and the maximum rated current is not large. Consideration is also required to prevent the LED from being destroyed by the current.
  • the charging current flowing through the capacitor 140 is concentrated near the peak of the AC voltage, and there is a problem that the inrush current that is the charging current when the power is turned on is large, and countermeasures are desired.
  • the constant current circuit 120 includes a DC circuit system and a switching circuit system. In such an LED lighting circuit 100, although the light emission amount of the light emitting circuit unit 130 is theoretically stable, in the constant current circuit 120, the voltage applied to both ends of the constant current circuit 120 and the light emitting element unit 131 in the DC circuit system. The power loss due to the current flowing through the AC increases in a high voltage region due to the voltage fluctuation of the AC power supply. In such a switching circuit system that can reduce power loss, EMI (electromagnetic interference) is likely to occur due to large high-frequency noise.
  • EMI electromagnetic interference
  • the LED lighting circuit 200 shown in FIG. 18 is an example using a voltage doubler rectifier circuit unit 210 that has been conventionally used in a power supply device or the like (see, for example, Patent Document 2).
  • This LED illumination circuit 200 is not provided with a circuit like the constant current circuit 120, but is provided with a voltage doubler rectifier circuit unit 210 including a first capacitor 211, a second capacitor 212, a first diode 213, and a second diode 214,
  • a current limiting capacitor 220 is provided between the voltage doubler rectifier circuit unit 210 and the commercial AC power supply ACS.
  • the current limiting capacitor 220 is a capacitor for limiting the current flowing through the light emitting circuit unit 230 including the LED group 231. Further, a leveling capacitor 240 for leveling the current flowing through the LED group 231 is connected in parallel with the LED group 231.
  • the capacitor 220 inserted in series between the voltage doubler rectifier circuit 210 and the AC power supply ACS limits the current flowing through the LED group 231.
  • the current flowing through the LED group in which a large number of LEDs are connected in series is reduced by inserting the capacitor 220, which causes a problem that it is difficult to flow a sufficiently large DC current.
  • the LED lighting circuit 200 has a poor power factor. The reason is that the phase of the current Ia flowing from the commercial AC power supply ACS to the LED lighting circuit 200 advances nearly 90 degrees with respect to the phase of the AC voltage Ea by driving the capacitors 220, 211, and 212, and is almost the first half of the positive and negative half cycles. Because it would be only. Furthermore, since a large current flows in the inrush current when the power is turned on as in the capacitor input method using the diode bridge, it has been desired to take measures to alleviate the peak current.
  • LED group When selected, the current flowing through the LED group flows through the capacitor, and the current is reduced compared to the current flowing through the LED group in the normal light emitting state.
  • LED group is usually a low luminance light emission state to emit light at a lower luminance than the luminance of the light emitting state configuration.
  • the LED illumination circuit of the present invention includes an abnormality detection unit that detects an abnormality related to the LED group, and when the abnormality detection unit detects an abnormality, the switch selects a capacitor to switch the LED group.
  • the capacitor has switching control means for causing a current to flow through the capacitor, and the capacitor is configured to reduce the current flowing through the LED group by causing the current to flow through the capacitor, thereby causing the LED group to emit light in a low-luminance light emitting state.
  • the LED lighting device of the present invention includes an LED lighting tube having a substrate on which a plurality of LEDs are arranged, and a lighting fixture that supports the LED lighting tube, and the LED lighting tube is attached to the lighting fixture.
  • a lighting fixture socket that engages with the lighting tube socket, and a power input.
  • a lighting fixture side circuit disposed between the terminal and the lighting fixture socket, wherein the LED lighting tube side circuit includes a part of the LED lighting circuit according to any one of claims 1 to 13.
  • the lighting fixture side circuit includes another part of the LED lighting circuit.
  • the inductor is provided between the power input terminal and the voltage doubler rectifier circuit unit to provide the choke input, the inrush current can be reduced.
  • the inductor as described above, in the normal operation state where the LED emits light with normal luminance, the phase of the current flowing through the LED group of the light emitting circuit unit approaches the phase of the AC voltage, and the rest period is shortened. As a result, a high power factor can be obtained.
  • the switching circuit unit for switching between the low luminance light emitting state and the normal operation state described above is provided.
  • the brightness of the LED can be changed by switching the part.
  • an abnormality detection unit that detects an abnormality that has occurred in the LED group, for example, an overcurrent or an excessive temperature rise, and a switching control unit that switches a switch to flow current to the capacitor when an abnormality is detected by the abnormality detection unit; Therefore, when an abnormality is detected, the current flowing through the capacitor can be reduced to reduce the current flowing through the LED so that the light emission state can be reduced. For this reason, it is possible to prevent the LED from being destroyed due to the occurrence of an abnormality such as an overcurrent.
  • the waveform of each voltage or electric current in the LED illumination circuit shown in FIG. 1 is shown.
  • FIG. 1 is a circuit diagram showing the configuration of the LED illumination circuit of the present embodiment.
  • Configuration of LED lighting circuit (2) Function of inductor (3) Normal lighting and dimmer lighting (4) Voltage and current characteristics of LED lighting circuit
  • the LED lighting circuit 10-1 includes power input terminals T1 and T2, a voltage doubler rectifier circuit unit 11, an inductor 12-1, and a switching circuit unit 13-. 1 and the light emitting circuit unit 14-1.
  • the power input terminals T1 and T2 are input terminals to which the AC voltage Ea of the commercial AC power supply ACS is applied.
  • T1 is a first power input terminal and T2 is a second power input terminal.
  • the inductor 12-1 is an electronic component having an inductance component.
  • the switching circuit unit 13-1 is a circuit for switching the magnitude of the current Ib supplied to the light emitting circuit unit 14-1. Details of the switching circuit unit 13-1 will be described later.
  • the inductor 12-1 and the switching circuit unit 13-1 are connected in series between the first power supply input terminal T1 and the connection part (input terminal) M1 of the voltage doubler rectifier circuit part 11. Specifically, one end of the inductor 12-1 is connected to the first power input terminal T1, and the other end is connected to one end of the switching circuit unit 13-1.
  • a connection part between the inductor 12-1 and the switching circuit part 13-1 is a connection part M0. The other end of the switching circuit unit 13-1 is connected to the connection unit M1 of the voltage doubler rectifier circuit unit 11. And the connection part M4 of the voltage doubler rectifier circuit part 11 is connected to the 2nd power supply input terminal T2.
  • the switching circuit unit 13-1 is connected in series between the inductor 12-1 and the voltage doubler rectifier circuit unit 11.
  • the power supply input terminal T1 and the inductor 12-1 can be connected in series.
  • one end of the switching circuit unit 13-1 is connected to the first power input terminal T1, and the other end is connected to one end of the inductor 12-1.
  • the other end of the inductor 12-1 is connected to the connection portion M1.
  • the switching circuit unit 13-1 can be connected in series between the second power input terminal T2 and the voltage doubler rectifier circuit unit 11.
  • one end of the switching circuit unit 13-1 can be connected to the second power input terminal T2, and the other end can be connected to the connection unit M4 of the voltage doubler rectifier circuit unit 11.
  • one end of the inductor 12-1 is connected to the first power supply input terminal T1, and the other end is connected to the connection portion M1 of the voltage doubler rectifier circuit portion 11.
  • the inductor 12-1 is connected in series between the first power input terminal T1 and the switching circuit unit 13-1, but the present invention is not limited to this.
  • the power input terminal T2 and the voltage doubler rectifier circuit unit 11 can be connected in series.
  • one end of the inductor 12-1 is connected to the second power input terminal T2, and the other end is connected to the connection part M4 of the voltage doubler rectifier circuit part 11.
  • one end of the switching circuit unit 13-1 is connected to the first power supply input terminal T1, and the other end is connected to the connection unit M1 of the voltage doubler rectifier circuit unit 11.
  • the inductor 12-1 can be constituted by a plurality of inductors and connected in series. That is, the power input terminals T1 and T2, the inductor 12-1, the voltage doubler rectifier circuit unit 11, and the switching circuit unit 13-1 can be connected in series in any order.
  • the anode of the LED 411 at the start of the LED group 142 is connected to the connection M3, and the cathode of the LED 41n at the end is connected to the connection M2.
  • the number is not limited to one, and two or more LED groups 142 may be provided and connected in parallel. In this case, the number of LEDs constituting each LED group is the same (n).
  • the inductor 12-1 is connected in series with the voltage doubler rectifier circuit unit 11 between the first power input terminal T1 and the second power input terminal T2. .
  • the power supply circuit of the LED lighting circuit 10-1 (the circuit portion of the LED lighting circuit 10-1 that receives the commercial AC power supply ACS and supplies power to the light emitting circuit unit 14-1) becomes the choke input method.
  • Inrush current when the AC power source Ea is turned on can be extremely reduced.
  • the LED lighting circuits 100 and 200 having the capacitor input type rectifier circuit the current for charging the capacitor when the power is turned on, that is, the inrush current is large.
  • These rectifier diodes require large rated current components.
  • a lighting device in which many of the same products are connected in parallel on the ceiling of a building is turned on / off by a wall switch for the entire room or floor. If the moment when the switch enters is close to the peak value of the AC power supply voltage, an excessive instantaneous current that is more than about ten times the normal current flows, noise is generated, and the switch contact burns, The service life is shortened. In addition, the devices connected to the same AC power supply also have a bad influence such as transmission of noise at that time.
  • the short circuit by the main switch 132 is switched to the circuit of the capacitor 131, and the current Ia flows through the capacitor 131.
  • the inductor 12-1, the capacitor 131, and the voltage doubler rectifier circuit unit 11 are connected in series between the first power input terminal T1 and the second power input terminal T2. Therefore, the combined capacity of the capacitor unit (the parallel circuit of the first capacitor 111 and the second capacitor 112) is reduced, the current Ic supplied to the light emitting element unit 141 is reduced, and the LED group 142 has a higher luminance than normal luminance. Emits light with low brightness.
  • the current Ic at this time can be set by the capacitance of the capacitor 131 with respect to the parallel capacitance of the first capacitor 111 and the second capacitor 112 of the voltage doubler rectifier circuit unit 11 (for example, the latter is set to 1/10 with respect to the former). it can.
  • a state in which the LED group 142 emits light with a luminance lower than the normal luminance is referred to as a “dimmer illumination state” or a “low luminance light emission state”.
  • the state in which the LED illumination circuit 10-1 operates so that the LED group 142 emits light with a luminance lower than the normal luminance is referred to as a “dima operation state”.
  • the main switch 132 on the input side of the voltage doubler rectifier circuit unit 11 and the voltage limiter 16 in parallel with the light emitting element unit 141, the LED group 142 is disconnected and the current path flowing through the LED group 142 is reduced. Even if the load is lightened due to disconnection, the voltage doubler rectifier circuit unit 11 does not perform its original operation, and a high voltage (2 ⁇ ⁇ 2 times the AC voltage) is not output (described later). Therefore, it is not necessary to increase the breakdown voltage of the first capacitor 111 and the second capacitor 112 of the voltage doubler rectifier circuit unit 11 and the leveling capacitor 15 so much.
  • the voltage and current characteristics of the LED lighting circuit 10-1 will be described with reference to FIG.
  • the upper waveform in the figure shows the waveform of the AC voltage Ea (broken line) supplied from the commercial AC power supply ACS to the power supply input terminals T1 and T2 and the voltage Eb (solid line) at the connection portion M1.
  • the voltages Ea and Eb are based on the potential of the connection part M4 of the voltage doubler rectifier circuit part 11.
  • the middle waveform in the figure shows the waveform of the current Ia supplied from the commercial AC power supply ACS at the first power input terminal T1.
  • the lower waveform in the figure shows the current (discharge current of the first capacitor 111 and the second capacitor 112) Ib (solid line) input to the light emitting circuit unit 14-1 and the current Ic (broken line) flowing in the light emitting element unit 141.
  • the waveform is shown.
  • the rectifier circuit composed of the voltage doubler rectifier circuit unit 11 and the inductor 12-1 has a saturation voltage characteristic because the LED group 142 of the light emitting circuit unit 14-1 as a load has a saturation voltage characteristic. It functions as a circuit that outputs a rectified DC current from the commercial AC power supply ACS to the light emitting circuit unit 14-1.
  • the half cycle in which the AC voltage Ea is positive (FIG. 2 (i))
  • the first capacitor 111 is charged, and at the same time, the charge of the second capacitor 112 charged so far is used as the discharge current to the light emitting circuit unit 14-1. Shed.
  • the second capacitor 112 is charged, and at the same time, the charge of the first capacitor 111 charged so far is used as a discharge current to the light emitting circuit unit 14-1. Shed.
  • n is the number of LEDs constituting the LED group 142 of the light emitting element unit 141
  • Vd is the forward saturation voltage of the LEDs. As this voltage increases, the discharge start timing of the second capacitor 112 is delayed.
  • Discharge current Ib of the second capacitor 112 while discharging the electric charge Q C2 of the second capacitor 112 is accumulated, the connecting portion M3 from the second capacitor 112, the light emitting circuit section 14-1, the connection portion M2, the first diode 113, It continues to flow through the current path in the order of the second power input terminal T2 and the current path in the order of the inductor 12-1, the switching circuit unit 13-1, and the second capacitor 112 from the first power input terminal T1.
  • the first capacitor 111 continues to be charged while the voltage Eb of the connection portion M1 increases.
  • the sum of the discharge current Ib of the second capacitor 112 and the charging current of the first capacitor 111 is the current Ia supplied from the commercial AC power supply ACS.
  • Q D2 C ⁇ (Vk ⁇ n ⁇ Vd) (2)
  • the first capacitor 111 as shown in Equation (1 ') below, to accumulate positive charge Q C1 in accordance with the positive peak value of the voltage Eb of the connection part M1 (Vk) to the connection portion M1 side .
  • Q C1 C ⁇ Vk (1 ')
  • C is a capacitance value of the first capacitor 111 and is the same value as the capacitance value of the second capacitor 112.
  • Discharge current Ib of the first capacitor 111 while discharging the electric charge Q C1 of the first capacitor 111 is stored, the switching circuit 13-1 from the first capacitor 111, an inductor 12-1, a first power supply terminal T1
  • the current continues to flow through the forward current path and the forward current path from the second power input terminal T2 to the second diode 114, the connection portion M3, the light emitting circuit portion 14-1, the connection portion M2, and the first capacitor 111.
  • the second capacitor 112 continues to be charged while the voltage Eb at the connection portion M1 drops.
  • the sum of the discharge current Ib of the first capacitor 111 and the charge current of the second capacitor 112 is the current Ia supplied from the commercial AC power supply ACS.
  • the discharge current Ib generated by the first capacitor 111 and the second capacitor 112 is supplied to the voltage doubler rectifier circuit unit via the inductor 12-1, as shown in the lower part of FIG. 11 alternately flows according to the alternating voltage Ea applied to the terminal 11. That is, the discharge current Ib by the second capacitor 112 flows in most of the period from the first half to the latter half of the period in which the AC voltage Ea is a positive value, and the first half to the latter half of the period in which the AC voltage Ea is a negative value. During most of the period, the discharge current Ib from the first capacitor 111 flows. As shown in the middle part of FIG. 2, the phase of the current Ia, which is the sum of the discharge current Ib and the charging current, approaches the phase of the AC voltage Ea, and the rest period Ts is shortened. As a result, the power factor is increased. Can do.
  • the combined capacitance value of the first capacitor 111 and the second capacitor 112 so that the phase of the AC voltage Ea of the AC power supply ACS and the current Ia flowing through the LED lighting circuit are close to each other. It is preferable to set (2C) and the inductance L of the inductor 12-1.
  • the voltage n ⁇ Vd between the connecting portions M2 and M3 is small, the reactance at the time of series resonance is canceled at the frequency F (angular frequency ⁇ ) of the AC voltage Ea. Since the voltage n ⁇ Vd between them is large, as described above, the discharge start timing of the second capacitor 112 or the first capacitor 111 is delayed, and during this time, the current Ia is delayed.
  • the reactance of the inductance L is adjusted to be smaller than the reactance of the capacitor 2C. ⁇ L ⁇ 1 / ⁇ (2C) (3)
  • the current Ib input to the light emitting circuit unit 14-1 is leveled by the leveling capacitor 15 and becomes the current Ic flowing through the light emitting element unit 141.
  • the average currents of the current Ib and the current Ic are the same.
  • the average current of the current Ic (current Ib) is expressed by the following equation (4): charge transfer (Q C1 -Q D1 ) and (Q C2 -Q D2 ) occurring during one period (1 / F) ).
  • Ic 2F ⁇ C ⁇ (2Vk ⁇ n ⁇ Vd) (4) 1 is a charge transfer type (CHARGE PUMP) power source in which the current value Ic is determined by the capacitance of the capacitor C.
  • the voltage Eb of the connecting portion M1 is calculated from each charge when the voltage Eb reaches Vk and ⁇ Vk. It can be seen that the charging current (Q C2 -Q D2 ) to the capacitor 112 and the discharging current (Q D1 -Q C1 ) of the capacitor 111 in the negative cycle are equal.
  • the current flowing through the capacitor 131 when the main switch 132 is off is divided into two equal parts: the current flowing through the capacitor 112 and the current flowing through the capacitor 111.
  • the protection circuit unit 17 includes a constant voltage generation unit 171, a first reference voltage generation unit 172, an overcurrent detection unit 173, an overheat detection unit 174, a latch circuit unit 175, and a driver unit. 176, a leveling capacitor 15, and a voltage limiter 16.
  • the constant voltage generation unit 171 includes resistors R11 and R12, a Zener diode Z11, a capacitor C11, transistors Q11 and Q12, and an error display LED 11.
  • the resistor R11, the error display LED 11, and the Zener diode Z11 are connected in series between the connection part M3 and the connection part M2 of the voltage doubler rectifier circuit part 11.
  • the overcurrent detection unit 173 includes resistors R31, R32, R33, and R34, and diodes D31, D32, D33, and D34.
  • the resistance R31 one end connected to the LED group 142 1 of end terminals (cathode of LED41n), the other end is connected to the connection portion M2 of the voltage doubler rectifier circuit 11.
  • the resistor R32 has one end connected to the connection portion M6, the other end connected to the anode of the diode D32, and the cathode of the diode D32 connected to the positive input terminal of the amplifier AMP51 of the latch circuit portion 175 (OR circuit connection portion M10 (described later)). It is connected to the.
  • Resistor R33 has one end connected to the end terminal of the LED group 142 2 (cathode of LED42n), the other end is connected to the connection portion M2 of the voltage doubler rectifier circuit 11.
  • the resistor R34 has one end connected to the connection portion M6, the other end connected to the anode of the diode D34, and the cathode of the diode D34 connected to the positive input terminal of the amplifier AMP51 of the latch circuit portion 175.
  • Diode D31 has an anode connected between the resistor R32 and the diode D32, the cathode is connected between the LED group 142 1 of end terminals (the cathode of LED41n) and a resistor R31.
  • Diode D33 has an anode connected between the resistor R34 and the diode D34, the cathode is connected between the terminal pin of the LED group 142 2 (the cathode of LED42n) and a resistor R33.
  • the overheat detection unit 174 includes resistors R41, R42, and R43, and transistors Q41 and Q42.
  • the resistor R41 has one end connected to the connection portion M6 and the other end connected to one end of the resistor R42.
  • the other end of the resistor R42 is connected to the connection M2 of the voltage doubler rectifier circuit unit 11.
  • the transistor Q41 has a base connected to the connection between the resistors R41 and R42, a collector connected to the base of the transistor Q42 via the resistor R43, and an emitter connected to the connection M2 of the voltage doubler rectifier circuit unit 11.
  • the transistor Q42 has an emitter connected to the connection portion M6 and a collector connected to an OR circuit connection portion M10 (described later).
  • the amplifier AMP51 has a negative input terminal connected to the connection portion M8 between the resistor R21 and the resistor R22 of the first reference voltage generation unit 172, and an output terminal connected to one end of the capacitor C51 and one end of the resistor R61 of the driver unit 176. It is connected to the. With such a configuration, the latch circuit portion 175 forms a monostable multivibrator.
  • a connection portion where the positive input terminal of the amplifier AMP51, one end of the resistor R51, and the other end of the capacitor C51 are connected is referred to as an OR circuit connection portion M10.
  • the driver unit 176 includes resistors R61, R62, R63, R64, R65, a capacitor C61, an amplifier AMP61, and an inverter INV61. Specifically, one end of the resistor R61 is connected to the output terminal of the amplifier AMP51 of the latch circuit unit 175, and the other end is connected to the positive input terminal of the amplifier AMP61.
  • the resistor R62 has one end connected to the positive input terminal of the amplifier AMP61 and the other end connected to the connection unit M6 of the constant voltage generation unit 171.
  • the resistor R63 has one end connected to the positive input terminal of the amplifier AMP61 and the other end connected to the output terminal of the amplifier AMP61.
  • the resistor R64 has one end connected to the output terminal of the amplifier AMP61 and the other end connected to the negative input terminal of the amplifier AMP61.
  • the resistor R65 has one end connected to the negative input terminal of the amplifier AMP61 and the other end connected to the connection M2 of the voltage doubler rectifier circuit unit 11.
  • the capacitor C61 has one end connected to the negative input terminal of the amplifier AMP61 and the other end connected to the connection M2 of the voltage doubler rectifier circuit unit 11.
  • the output terminal of the amplifier AMP61 is connected to the input terminal of the inverting circuit INV61, and the output terminal of the inverting circuit INV61 is connected to one end of a resistor 135 (described later) of the switching circuit unit 13-2.
  • the configuration of the driver unit 176 is as follows. An integral delay circuit divided by a resistor R64, a capacitor C61, and a resistor R65 is connected as a negative feedback circuit from the output terminal to the negative input terminal of the amplifier AMP61. The positive input terminal of the amplifier AMP61 is connected as a positive feedback circuit through a resistor R63 to a connection that divides the constant voltage Ec generated by the constant voltage generator 171 using the resistors R61 and R62. With this configuration, the driver unit 176 forms an astable multivibrator (ASTABLE MULTIVIBRATOR). Note that the output terminal of the inverting circuit INV61 is referred to as an output terminal M11 of the driver unit 176. Further, the power supply of the amplifier AMP51 of the latch circuit unit 175 and the power supply of the amplifier AMP61 of the driver unit 176 are both supplied from the constant voltage Ec of the constant voltage generation unit 171.
  • the switching circuit unit 13-2 includes both terminals of the inductor 12-1 and the input terminal M1 and the connection unit M4 of the voltage doubler rectifier circuit unit 11 between the first power input terminal T1 and the second power input terminal T2. And connected in series.
  • the switching circuit section 13-2 includes a capacitor 131, a triac main switch 132 ′, a light transmission element 133, a dimmer switch 134, and a resistor 135. Specifically, one end of the capacitor 131 is connected to the other end (connection portion M0) of the inductor 12-1, and the other end is connected to the connection portion M1 of the voltage doubler rectifier circuit portion 11.
  • the T2 terminal is connected to the other end (connection portion M0) of the inductor 12-1, the T1 terminal is connected to the connection portion M1 of the voltage doubler rectifier circuit portion 11, and the gate is the light transmission element.
  • 133 is connected to a light receiving portion 133 2 (described later).
  • Light transmitting element 133, and a light receiving portion 133 2 is a light emitting portion 133 1 and the triac is a light emitting diode, an anode of the light emitting diode is connected to the x contacts the dimmer switch 134 and a cathode of the voltage doubler rectifier circuit 11 Connected to the connection portion M2, the T1 terminal of the triac is connected to the gate of the main switch 132 ′, and the T2 terminal is connected to the T2 terminal of the main switch 132 ′.
  • the dimmer switch 134 is a manual changeover switch that switches between two contacts (x contact, y contact), and is in a state in which the y contact is open (a state in which nothing is connected).
  • the triac has three input / output terminals T1, T2, and a gate.
  • the triac T1 is referred to as a T1 terminal
  • the triac T2 is referred to as a T2 terminal.
  • normal operation refers to the operation of the LED illumination circuit 10-2 when the LED group 142 1 and the LED group 142 2 of the light emitting element unit 141 emit light with normal luminance.
  • the “dimming operation” refers to an operation of the LED illumination circuit 10-2 when the LED group 142 1 and the LED group 142 2 emit light with a luminance lower than that emitted in “normal operation”.
  • the constant voltage generation unit 171 divides the voltage from the connection unit M3 of the voltage doubler rectifier circuit unit 11 by the resistor R11 and the Zener diode Z11 in which the capacitor C11 is connected in parallel, and the resistor R11, the Zener diode Z11, and the capacitor
  • the constant voltage Ec generated at the connection M6 with C11 is output. Note that the constant voltage generation unit 171 that is supplied as the power source of the amplifier AMP61 generates the constant voltage Ec with a small current (for example, 1 mA) passing through the resistor R11 from the connection unit M3 of the voltage doubler rectifier circuit unit 11.
  • the output of the amplifier AMP51 of the latch circuit unit 175 is at a low level, so that the emitter current of the transistor Q12 flowing through the resistor R12 is the current of the transistor Q12. Since the transistor Q11 is turned on by flowing to the base of the transistor Q11 through the collector, the error display LED 11 is not lit.
  • the output of the amplifier AMP51 goes to a high level (high level) and both the transistor Q12 and the transistor Q11 are turned off, so that the error display LED 11 is lit and displays “abnormal”.
  • Overcurrent detection unit 173 detects that an overcurrent flows to the LED group 142 1 as the voltage drop of the resistor R31, detects that an overcurrent flows to the LED group 142 2 as the voltage drop of the resistor R33,
  • the OR coupling between the diode D32 and the diode D34 the higher one of the voltage drop generated in the resistor R31 and the voltage drop generated in the resistor R33 is applied to the OR circuit connection unit M10 (resistor R51). It has become.
  • the overheat detection unit 174 divides the constant voltage Ec output from the constant voltage generation unit 171 by a resistor R41 and a resistor R42 provided between the connection unit M6 and the connection unit M2 of the constant voltage generation unit 171 (resistance division). To do.
  • the voltage generated between the resistors R41 and R42 is input to the base of the transistor Q41 as the second reference voltage.
  • the second reference voltage is set to a base-emitter voltage Vbe (for example, about 0.40 V) when a predetermined current (for example, about 100 ⁇ A) flows through the collector of the transistor Q41 at a predetermined temperature.
  • the transistor Q41 is a temperature detecting transistor, and for example, an NPN bipolar transistor can be used.
  • the transistor Q41 such as near the LED411 ⁇ 41n, 421 ⁇ 42n constituting the LED group 142 1, 142 2 are disposed in LED411 ⁇ 41n, 421 ⁇ appropriate positions temperature capable of detecting the 42n.
  • a collector current starts to flow from the connection portion M6 of the constant voltage Ec through the resistor R43, and this collector current is amplified and inverted by the transistor Q42.
  • this collector current reaches a predetermined current value (for example, about 100 ⁇ A)
  • the current flows through the resistor R51 of the latch circuit unit 175, and the potential of the OR circuit connection unit M10 is set to the high level.
  • the potential of the OR circuit connection unit M10 exceeds the potential of the connection unit M8, the output terminal of the amplifier AMP51 of the latch circuit unit 175 becomes high level. That is, the resistance values of the resistor R51 and the resistor R43 are set so that the latch circuit unit 175 is triggered when the collector current of the transistor Q41 flowing through the resistor R43 from the connection portion M6 of the constant voltage Ec reaches a predetermined current. ing.
  • the latch circuit unit 175 has a predetermined bias voltage (a first reference voltage from the first reference voltage generation unit 172 in FIG. 3) applied to a negative input terminal (an input terminal where the polarity of the output terminal is inverted) of the amplifier AMP51. ) And a capacitor C51 is connected between the positive input terminal (input terminal where the polarity of the output terminal is not inverted) connected to the OR circuit connection unit M10 and the output terminal, and the positive input terminal and the voltage doubler rectifier circuit unit 11
  • a monostable multivibrator is configured in which a resistor R51 is connected to the connection portion M2. Further, as described in “(1) Configuration of LED illumination circuit”, the driver unit 176 forms an astable multivibrator.
  • the latch circuit unit 175 and the driver unit 176 operate as follows. In a normal operation in which no abnormality is detected by the overcurrent detection unit 173 or the overheat detection unit 174, the potential of the OR circuit connection unit M10 is maintained at a low level. Since the potential of the OR circuit connection portion M10 is lower than the potential of the connection portion M8, the potential of the output terminal of the amplifier AMP51 of the latch circuit portion 175 is also low, and the transistors Q12 and Q11 of the constant voltage generation portion 171 are turned on. .
  • a bias voltage obtained by dividing the constant voltage Ec by the resistor R62 and the resistor R61 is applied to the positive input terminal of the amplifier AMP61, and the amplifier AMP61 oscillates a pulse train signal having a negative duty control.
  • the inversion circuit INV61 inverts the pulse train signal to a positive pulse train signal and sends it to the switching circuit section 13-2 to keep the main switch 132 ′ in the on state and maintain the normal illumination.
  • the potential of the OR circuit connection unit M10 becomes high level.
  • a reference voltage which is a predetermined voltage
  • the bias voltage obtained by dividing the constant voltage Ec by the resistor R62 and the resistor R61 of the driver unit 176 increases, the positive input terminal of the amplifier AMP61 becomes higher than the potential of the negative input terminal, and the oscillation of the pulse train signal is stopped.
  • the output terminal is stable at high level, and the output terminal M11 of the inverting circuit INV61 becomes low level.
  • the main switch 132 ′ of the switching circuit unit 13-2 is turned off, and the current Ib supplied from the voltage doubler rectifier circuit unit 11 is switched to the reduced current supplied through the capacitor 131.
  • the light emitting element unit 141 becomes dimmer illumination by the reduced current Ib, and the output voltage Ec of the constant voltage generation unit 171 is maintained.
  • the potential of the positive input terminal of the amplifier AMP51 is predetermined by the positive feedback of the capacitor C51 and the discharge of the capacitor C52.
  • the high level is maintained for a certain time, and after a predetermined time has passed, the monostable multivibrator operates so that the potential of the positive input terminal becomes low level and the potential of the output terminal returns to low level.
  • the main switch 132 ′ is turned off, the current Ic flowing through the light emitting element portion 141 decreases, the temperature decreases, and overheating is not detected, and the OR circuit connection portion M10.
  • the latch circuit unit 175 constitutes a monostable multivibrator.
  • a bistable multivibrator flip-flop
  • this state is latched and the dimmer illumination is continued. Thereafter, the power is turned on again to return to a normal state if no abnormality is detected.
  • This method can be used as a countermeasure when an overcurrent or overheating is detected in the light emitting element portion 141.
  • the use environment of the LED lighting circuit 10-2 is inconvenient to the LED lighting circuit 10-2 (for example, the AC voltage Ea having a very high voltage value is supplied).
  • the LED current is prevented from being damaged by maintaining the dimmer illumination state in which the reduced current Ic flows in the light emitting element portion 141.
  • the voltage at the positive input terminal which is the voltage dividing point of the resistors R61 and R62, is increased through the resistor R63 (positive feedback is applied).
  • the voltage at the negative input terminal rises in the positive direction by the integration circuit of the resistor R64, the capacitor C61, and the resistor R65 connected between the output terminal and the negative input terminal.
  • the potential of the output terminal is inverted and becomes low level.
  • the voltage at the positive input terminal which is the voltage dividing point of the resistors R61 and R62, is reduced through the resistor R63 (positive feedback is applied).
  • the main switch 132 ′ is obtained by replacing the main switch 132 of the switching circuit unit 13-1 in the first embodiment with a main switch 132 ′ using a triac. To OFF control of the main switch 132 ', the light receiving portion 133 2 of the optical transmission element 133, is connected between its gate and T2 terminals.
  • the light transmission element 133 is a signal transmission element that switches the main switch 132 ′ by a rectangular wave signal from the driver unit 176.
  • the light transmission element 133 includes a light emitting unit 133 1 that emits light when receiving a high-level rectangular wave signal, and a light receiving unit 133 2 that receives light from the light emitting unit 133 1 and flows current to the gate of the main switch 132 ′. It has.
  • emitting portion 133 1 and the light receiving portion 133 2 is provided with a light transmitting element 133 isolated (insulated), in accordance with the rectangular wave signal of a direct current, it is possible to turn on and off the main switch 132 'for the AC .
  • the power consumption required to supply this current is converted into the input power of the AC power source, the power consumption is about 1 W when the AC power source is 100 VAC, for example.
  • the power consumption is reduced by using the output of the driver unit 176 as a pulse train for duty control. Specifically, for example, if the output of the inverting circuit INV61 is set to a high level for 10 ⁇ sec and flows for about 10 mA and then is not set to a low level for 90 ⁇ sec and no current is supplied, 1/10 intermittent control (DUTY CONTROL) drive It becomes.
  • DUTY CONTROL 1/10 intermittent control
  • a phototriac coupler is employed as the light transmission element 133.
  • the light transmission element 133 is not limited to a phototriac coupler, and, for example, a MOS photo relay (not shown) is employed. You can also Different from the of these photo-triac coupler and MOS photo relay, using the former, whereas the using switch as the light receiving portion 133 and second output side, the latter, the MOSFET is a resistance variation element as the light receiving unit 133 2 It is in place.
  • the main switch 132 ′ can be turned on / off by connecting between the gate and the T2 terminal of the main switch 132 ′ and passing a current between the gate and the T2 terminal.
  • the switching circuit unit 13-2 causes the resistor 135 that determines the output current of the driver part 176 and the output current of the driver part 176 to the light transmission element 133.
  • a method of inputting a duty-controlled pulse train signal from the inverting circuit INV 61 of the driver unit 176 is employed.
  • the reason is as follows. To turn on the main switch 132 'using a light transmitting element 133, a predetermined amount or more of current to LED 133 1 (e.g., in the case of using a Sharp S2S5 as the light transmitting element 133, more current 20 mA) flow There is a need. If the voltage of the connection part M5, which is the current source, is 150 V, for example, power consumption of 3 W is required for triggering.
  • the main switch 132 ′ which is a triac, has a self-holding characteristic and is kept on while a current flows between the T1 terminal and the T2 terminal. Therefore, the trigger signal for turning on the main switch 132 ′ is “ As shown as “a”, the pulse has a short output time (for example, about 25 ⁇ s). Thereafter, during the period indicated as “b” in FIG. 4 (for example, about 500 ⁇ s), the self-holding is performed even if the trigger is not performed. Even if the current flowing through the main switch 132 'disappears during this time and is turned off, the trigger is made to turn on the next pulse.
  • the rest period Ts shown in FIG. 2 occurs when the charging and discharging of the capacitor 111 or the capacitor 112 of the voltage doubler rectifier circuit unit 11 are completed. Since the main switch 132 ′ is self-holding until the discharge is completed, the average current supplied to the LED group does not change. This method reduces the power required for triggering (about 1/20).
  • the current Ic supplied to the light emitting element portion 141 decreases, and the LED groups 142 1 and 142 2 emit light with low luminance. (Dima lighting).
  • the current flowing through the LED groups 142 1 and 142 2 is sufficiently lower than the current during normal operation, and this current value is set by selecting the capacitance of the capacitor 131.
  • the current required for the operation of the protection circuit portion 17, since it is supplied from the voltage applied to the LED group 142 1 and 142 2 are adapted to operate at very low currents.
  • LED group 142 1 LED411 ⁇ 41n (or LED group 142 2 A voltage determined by the number n of LEDs 421 to 42n) connected in series and the forward voltage Vd of the LED is applied.
  • the constant voltage generator 171 connected between the input terminal M3 of the light emitting element portion 141 and the connection portion M2 generates a constant voltage Ec divided by the resistor R11 and the Zener diode Z11 at the connection portion M6, and protects it.
  • the circuit unit 17 is in an operating state.
  • the potential of the OR circuit connection unit (negative logic) M10 that is an input terminal of the latch circuit unit 175 becomes a low level when neither an overcurrent detection unit 173 nor an overheat detection unit 174 detects an abnormality, and the latch circuit unit 175
  • the driver terminal 176 oscillates to generate a high-level pulse train trigger signal, and the current set by the resistor 135 passes from the common terminal of the dimmer switch 134 through the x contact to transmit light.
  • the light emitting unit 133 1 of the element 133 is driven to turn on the light receiving unit 133 2 , the gate of the main switch 132 ′ that is a triac and the T2 terminal are turned on, the main switch 132 ′ is turned on, and normal operation starts. .
  • the current Ia during normal operation starts to flow from the AC voltage Ea.
  • the operation of the LED lighting circuit 10-2 immediately after the AC voltage Ea is turned on is the AC voltage Ea applied when the dimmer switch 134 is connected to the x contact.
  • the operation is the same as that of the LED illumination circuit 10-2 immediately after the operation, and dimmer illumination is performed.
  • the operation of the protection circuit unit 17 immediately after the AC voltage Ea is input that is, the constant voltage Ec is generated by the constant voltage generation unit 171, and the protection circuit unit 17 enters the operating state, and the overcurrent detection unit 173 and the overheat If none of the detection units 174 detects an abnormality, the OR circuit connection unit (negative logic) M10 becomes low level, the output terminal of the amplifier AMP51 becomes low level, and the operation of the driver unit 176 oscillating is the same. is there. However, since the y contacts the dimmer switch 134 is open, no current flows through the light emitting portion 133 1 of the optical transmission element 133, light receiving unit 133 2 will remain off, the main switch 132 'is also off Dima lighting continues in a state.
  • the dimmer illumination can be always made by manually performing the switching operation so that the dimmer switch 134 is connected to the y contact.
  • the current Ic flowing through the light emitting element portion 141 is reduced and the power consumption is also reduced. Therefore, the overcurrent and overheat detection are eliminated.
  • the potential of the output terminal of the amplifier AMP51 becomes low level, the transistor Q11 of the constant voltage generator 171 is turned on, and the error display LED 11 is turned off.
  • the circuit 10-2 not only reduce the current Ic when detecting an overcurrent and overheating in the LED group 142 1 and 142 2, It can also deal with the following abnormalities. For example, when an abnormally high AC voltage Ea is supplied, the current Ic increases as shown in the above equation (4), so that the overcurrent detection unit 173 detects the overcurrent, thereby causing a dimmer. It becomes illuminated, thereby preventing damage to the LED group 142 1 and 142 2. In addition, when either of the LED groups 142 1 or 142 2 connected in parallel is disconnected, the current distributed to the other LED groups 142 2 or 142 1 increases. In this case as well, the overcurrent detection unit 173 by detecting the overcurrent, becomes dimmer lighting, it can prevent breakage of the LED group 142 2 or 142 1.
  • the LEDs 411 to 41n and 421 to 42n can be prevented from being damaged.
  • the LED group 142 1 and the LED group 142 2 constituting the light emitting element section 141 is disconnected either the voltage limiter current Ic flowing in the light emitting element section 141 is connected in parallel with the light emitting element section 141 16, it is possible to prevent a high voltage from being applied to the leveling capacitor 15.
  • the LED illumination circuit can obtain a high power factor because the inductor is provided between the power input terminal and the voltage doubler rectifier circuit unit. Further, the LED lighting circuit can determine that the LED lighting circuit is abnormal when the temperature rises excessively or when an excessive current flows, and can switch to dimmer lighting in which the current flowing through the LED group is reduced. As a result, the LED can be prevented from being damaged by overheating or overcurrent, and the occurrence of a failure such as the LED being unable to be lit due to the damage of the LED can be avoided, and the electronic component is melted or burnt due to overheating. The occurrence of disasters such as can be suppressed.
  • the overcurrent detection unit 173 and the overheat detecting section 174 are both LED group 142 1, 142 2 on Abnormal (LED group 142 1, 142 2 in flowing excessive current, or, LED group 142 1, 142 2 of overheating) Therefore, it has a function as an “abnormality detection unit”.
  • the light transmission element 133, the dimmer switch 134, and the resistor 135 of the switching circuit unit 13-2 are switched (main switch 132 ′) when an abnormality is detected by the abnormality detection unit (overcurrent detection unit 173 or overheat detection unit 174). ) And the current flows through the capacitor 131, so that it has a function as “switching control means”.
  • the fluorescent lamp illuminator 20 includes a plate-like base 21 attached to a ceiling of a building and a plurality ( In the figure, two lighting fixture sockets 22 (22a, 22b) are provided.
  • the lighting fixture socket 22 is a member projecting vertically downward from the lower surface 23 of the base portion 21, and the distance between the lighting fixture socket 22 a and the lighting fixture socket 22 b is substantially the same as the axial length of the LED lighting tube 30. It has become.
  • the lighting fixture socket 22a and the lighting fixture socket 22b are provided with insertion holes 24 on the faces thereof.
  • the light tube socket terminals 33 (described later) of the light tube sockets 32a and 32b of the LED light tube 30 into the insertion hole 24, the light tube socket 32a and the light fixture socket 22a, and the light tube socket 32b and the light fixture socket 22b.
  • the lighting fixture sockets 22a and 22b support both ends of the LED lighting tube 30.
  • FIG. 5 a single fluorescent lamp lighting fixture 20 to which one LED lighting tube 30 can be attached is shown, but the fluorescent lighting fixture 20 is not limited to one lamp, for example, Further, it may be a fluorescent lamp lighting fixture for two lamps (see FIG. 8) to which two LED lighting tubes 30 can be attached.
  • the dimmer switch 134 and the like are provided such that a knob portion that is manually rotated and a support frame that supports the knob portion are exposed from the side surface of the lighting tube socket 32.
  • the dimmer switch 134 and the like are provided on the side surface of the lighting tube socket 32, but are not limited to the side surface of the lighting tube socket 32.
  • the dimmer switch 134 is provided on the back surface of the LED lighting tube 30. You can also.
  • LED Lighting Circuit (2-1) Configuration of LED Lighting Circuit
  • the fluorescent lamp lighting device 20 and the LED lighting tube 30 described in “(1) Fluorescent lamp lighting device and LED lighting tube” are the same as those in the first embodiment.
  • the LED illumination circuit 10-1 or the LED illumination circuit 10-2 in the second embodiment can be provided.
  • the LED illumination circuit 10-1 in the first embodiment is disposed in the glow starter type fluorescent lamp illumination fixture 20 and the LED illumination tube 30, the LED illumination circuit 10-1 is shown in FIG.
  • the LED illumination circuit shown in FIG. 6 will be described as “LED illumination circuit 10-3”.
  • the LED lighting circuit 10-3 includes power input terminals T1, T2, an inductor (ballast) 12-3, a lighting fixture socket terminal 25 (25a1, 25a2, 25b1, 25b2), an illumination Tube socket terminal 33 (33a1, 33a2, 33b1, 33b2), capacitor 181, selection switch 182, switching circuit unit 13-1, first voltage rectifier circuit unit 11, and second voltage rectifier circuit A section 11 ′ and a light emitting circuit section 14-1.
  • the second voltage doubler rectifier circuit unit 11 ′ has a configuration in which a first capacitor 111, a second capacitor 112, a third diode 113 ′, and a fourth diode 114 ′ are connected in a bridge shape.
  • the first capacitor 111 and the second capacitor 112 are the same as the first capacitor 111 and the second capacitor 112 in the first voltage doubler rectifier circuit unit 11. That is, the first voltage doubler rectifier circuit unit 11 and the second voltage doubler rectifier circuit unit 11 ′ share the first capacitor 111 and the second capacitor 112.
  • connection portion M1 between one end of the first capacitor 111 and one end of the second capacitor 112 is also a common connection portion M1 between the first voltage doubler rectifier circuit portion 11 and the second voltage doubler rectifier circuit portion 11 ′. It has become.
  • a connection portion M2 between the other end of the first capacitor 111 and the anode of the third diode 113 ′ is connected to the output terminal (OUTLET) of the light emitting circuit portion 14-1.
  • a connection part M3 between the other end of the second capacitor 112 and the cathode of the fourth diode 114 ′ is connected to an input terminal (INLET) of the light emitting circuit part 14-1.
  • a connection portion M4 ′ between the cathode of the third diode 113 ′ and the anode of the fourth diode 114 ′ is connected to the lighting tube socket terminal 33b1.
  • the power input terminals T1, T2, the inductor 12-3, and the lighting fixture socket terminal 25 are provided in the fluorescent lamp lighting fixture 20, and the lighting tube socket terminal 33 is provided.
  • the LED lighting tube 30 is provided.
  • a circuit constituted by the power input terminals T1 and T2, the inductor 12-3, and the lighting fixture socket terminal 25 provided in the fluorescent lamp lighting fixture 20 is referred to as a lighting fixture side circuit SK1.
  • the LED illumination circuit 10-3 has a circuit configuration in the case where the LED illumination circuit 10-1 of the first embodiment is disposed in a glow starter type fluorescent lamp luminaire and an LED illumination tube.
  • the LED illumination circuit 10-2 of the second embodiment may be provided.
  • the circuit configuration in this case includes a light emitting circuit unit 14-2 of the LED lighting circuit 10-2 in place of the light emitting circuit unit 14-1 in the LED lighting circuit 10-3 shown in FIG.
  • the switching circuit unit 13-2 of the LED illumination circuit 10-2 is provided.
  • the LED lighting circuit 10-3 includes a lighting fixture side circuit SK1, a capacitor 181, a selection switch 182, a first voltage doubler rectifier circuit unit 11, a second voltage doubler rectifier circuit unit 11 ′, and the like. Even when 2 is provided, the circuit configuration is the same.
  • the lighting fixture side circuit SK1 includes a part of the configuration of the LED lighting circuit 10-2 in the second embodiment (power input terminals T1, T2, inductor 12, etc.).
  • the LED lighting tube side circuit SC is another part of the configuration of the LED lighting circuit 10-2 in the second embodiment (such as a double voltage rectifier circuit unit 11, a switching circuit unit 13-2, a light emitting circuit unit 14-2, etc. ) Is included.
  • the LED lighting circuit 10-3 shown in FIG. 6 operates as follows. It is assumed that the main switch 132 of the switching circuit unit 13-1 is in an on state.
  • the AC voltage Ea of the commercial AC power supply ACS is applied between the lighting fixture socket terminal 25a2 and the lighting fixture socket terminal 25b2 via (through) the inductor 12-3.
  • the applied voltage is applied to the first voltage doubler rectifier circuit unit 11 through the selection switch 182, the switching circuit unit 13-1, and the current Ib is supplied to the light emitting circuit unit 14-1.
  • the LED group 142 is in a normal illumination state (Go) in which light is emitted with normal luminance.
  • the light tube socket terminals 33a2 and 33b2 are connected to the light fixture socket terminals 25a1 and 25b1, respectively, and the light tube socket terminals 33a1 and 33b1 are connected to the light fixture socket terminals 25a2 and 25b2, respectively.
  • the AC voltage Ea of the commercial AC power supply ACS is applied to the lighting tube socket terminal 33a1 and the lighting fixture socket terminal 33b1.
  • the selection switch 182 is connected to the x contact (the y contact is open), the lighting tube socket terminal 33a1 and the connection portion M0 are not connected, so that the applied The voltage is applied from the lighting tube socket terminal 33a1 through the capacitor 181, through the switching circuit unit 13-1, and to the second voltage doubler rectifier circuit unit 11 '. Then, the reduced current Ib is supplied to the light emitting circuit unit 14-1, and the LED group 142 enters a dimmer illumination state (No) in which light is emitted with lower luminance than usual.
  • the switching circuit unit 13-1 since the switching circuit unit 13-1 is in the ON state and the dimmer illumination is performed, even if the user of the LED lighting tube 30 performs the switching operation of the main switch 132, the switching to the normal illumination cannot be performed. Thereby, the user can know that the connection state of the LED illumination tube 30 is (No) connection. Further, in this state, when the user switches the selection switch 182 to the y-contact side, the AC voltage Ea of the commercial AC power supply ACS is applied to the second voltage rectifying circuit unit 11 ′, and the light emitting circuit unit 14-1 is applied. Since the current Ib is supplied, the normal illumination state (Go) is entered.
  • the LED lighting circuit 10-3 has the first voltage doubler rectifier circuit unit 11 or the second voltage doubler rectifier circuit when an AC voltage is applied to either of the light tube socket terminals 33b1 or 33b2.
  • One of the sections 11 ′ is selected, but when either the lighting tube socket terminal 33 a 1 or 33 a 2 is selected, the selection is made by switching the selection switch 182.
  • the heater voltage is applied between the lighting tube socket terminals 33a1 and 33a2, and there is a risk of damaging the rapid starter type fluorescent lamp lighting fixture.
  • FIG. 3 is a circuit diagram showing a configuration of a lighting fixture side circuit SK2 provided in a rapid starter type fluorescent lamp lighting fixture for one lamp.
  • the AC voltage Ea of the commercial AC power supply ACS is supplied to the lighting fixture socket terminals in the first lighting fixture socket 22a and the second lighting fixture socket 22b via the inductor (stabilizer) 12-3 ′.
  • the lighting fixture socket terminals 25a1, 25a2, 25b1, 25b2 of the lighting fixture side circuit SK2 are heater power terminals provided to heat the heaters of the connected fluorescent tubes. A voltage of about 3 Vrms is applied.
  • the commercial AC power supply ACS is used.
  • the AC voltage Ea is applied to both the lighting fixture socket terminals 25a1 and 25a2 and the lighting fixture socket terminals 25b1 and 25b2 via the inductor 12-3 ′.
  • the selection switch 182 selects either the x contact or the y contact. You may choose.
  • the phase advance capacitor 12c (which is a large capacity, for example, 5.1 ⁇ F) ) Can be compensated for a decrease in the combined capacity due to entering in series, and the discharge current Ib can be set to a predetermined current. That is, when the LED lighting tube 30 provided with the LED lighting tube side circuit SC shown in FIG. 6 is attached to the glow starter type fluorescent lamp lighting device provided with the lighting device side circuit SK1 shown in FIG. When attached to a rapid starter type fluorescent lamp luminaire, the discharge current Ib equivalent to that attached to the former is increased by increasing the capacity of the first capacitor 111 and the second capacitor 112 of the latter voltage doubler rectifier circuit unit 11. Can flow.
  • the configuration of the LED lighting tube side circuit SC connected to the lighting fixture side circuit SK2 shown in FIG. 7 is the circuit corresponding to the LED lighting tube side circuit SC in the LED lighting circuit 10-1 shown in FIG.
  • the configuration may also be a circuit configuration of a portion corresponding to the LED lighting tube side circuit SC in the LED lighting circuit 10-2 shown in FIG.
  • the capacitor 131 is inserted between the connection unit M 0 that is an input terminal for AC voltage and the connection unit M 1 of the voltage doubler rectification circuit unit 11.
  • the current Ib flowing through the light emitting circuit unit 14-2 decreases and the dimmer illumination state is entered.
  • the condition for turning off the main switch 132 ′ to enter the dimmer illumination state may be due to detection of an overcurrent or overheat of the light emitting element portion 141 and switching of the dimmer switch 134.
  • FIG. 8 is an external perspective view showing the configuration of the fluorescent lamp illuminator for two lamps and the LED lighting tube
  • FIG. 9 is the configuration of the luminaire side circuit SK3 provided in the rapid starter type fluorescent lamp illuminator for two lamps.
  • the rapid starter type fluorescent lamp lighting equipment 20 ′′ for two lamps can be attached with two LED lighting tubes 30 and corresponds to each of the two LED lighting tubes 30.
  • the lighting fixture socket 22 (22a, 22b, 22c, 22d) is arrange
  • the rapid starter type fluorescent lamp lighting fixture 20 ′′ for two lamps and the LED lighting tube 30 shown in the figure are collectively referred to as “LED lighting device B ′”.
  • the one LED lighting tube 30 When the LED lighting tube 30 is attached to a two-lamp rapid starter type fluorescent lamp lighting fixture 20 ′′ in which the lighting fixture circuit SK3 shown in FIG. 9 is disposed, the one LED lighting tube 30 includes a lighting fixture socket 22a and a lighting fixture. The other LED lighting tube 30 is mounted between the lighting fixture socket 22c, and the other LED lighting tube 30 is mounted between the lighting fixture socket 22b and the lighting fixture socket 22d. Thereby, those two LED lighting tubes 30 are connected in series between the lighting fixture socket 22a and the lighting fixture socket 22b. As described above, when the two LED lighting tubes 30 are attached to the fluorescent lamp lighting device 20 '' having the lighting device side circuit SK3 shown in FIG. 9, the LED lighting tube side circuit SC operates equivalently with an alternating current.
  • this is a circuit in which the LED group 142, which is a saturated load, is connected in series to a constant current circuit having a capacitive reactance configuration
  • the circuit is a circuit in which the two constant current circuits and the two loads are connected in series.
  • this constant current circuit is a capacitor, it is equivalent to a circuit in which two capacitors are connected in series. Accordingly, the voltages applied to the two capacitors are distributed in inverse proportion to the capacitance, and the same current Ib flowing through the two capacitors flows through each light emitting circuit unit 14-1 in series to illuminate. .
  • the capacitor 131 is connected between the connection section M0 that is an AC voltage input terminal and the connection section M1 of the voltage doubler rectification circuit section 11. Becomes a circuit inserted in series with the two capacitors described above, and the current Ib determined by the combined capacitance flows through both lamps and enters the dimmer illumination state. When both lamps are off, a current Ib (approximately 1 ⁇ 2) with a smaller combined capacity flows through both lamps, resulting in a dimmer illumination state. Further, as the LED lighting tube side circuit SC, the switching circuit unit 13-2, the voltage doubler rectifying circuit unit 11, and the light emitting circuit unit 14-2 of the LED lighting circuit 10-2 shown in FIG.
  • the condition for turning off the main switch 132 ′ of the switching circuit unit 13-2 to enter the dimmer illumination state is based on detection of overcurrent or overheating of the light emitting element unit 141 and switching of the dimmer switch 134. is there.
  • the lighting tube socket terminals 33a1, 33a2, 33b1, and 33b2 of one LED lighting tube 30 are connected to the lighting fixture socket terminals 25a1, 25a2, 25c1, and 25c2, and other LED lightings. Regardless of how the light tube socket terminals 33a1, 33a2, 33b1, 33b2 of the tube 30 are connected to the light fixture socket terminals 25b1, 25b2, 25d1, 25d2, in both cases both light emitting circuit sections 14 are properly applied. ⁇ 1 can be supplied with the discharge current Ib.
  • FIG. 10 is a circuit diagram showing the configuration of the LED illumination circuit of the present embodiment.
  • the switching circuit unit that can switch between normal lighting and dimmer lighting, power off (OFF) and power on (ON) (normal)
  • OFF power off
  • ON power on
  • Other components are the same as those of the first embodiment of the LED lighting circuit. Therefore, in FIG. 10, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the LED lighting circuit 10-4 includes power input terminals T1 and T2, a voltage doubler rectifier circuit unit 11, an inductor 12-1, and a power supply switching circuit unit 13. -4 and a light emitting circuit unit 14-1.
  • the power supply switching circuit unit 13-4 includes a capacitor 131 and a changeover switch 132-4.
  • the change-over switch 132-4 is a one-circuit, three-contact manual switch.
  • the switch 132-4 has a common terminal (COM) connected to the second power input terminal T2, an OFF contact (terminal x) is opened, and an ON contact (terminal y) is a voltage doubler rectifier circuit.
  • the DIM contact (terminal z) is connected to one end of the capacitor 131.
  • the other end of the capacitor 131 is connected to the connection portion M4 of the voltage doubler rectifier circuit portion 11.
  • the power supply switching circuit unit 13-4 is connected in series between the second power supply input terminal T2 and the connection unit M4 of the voltage doubler rectifier circuit unit 11, but the present invention is not limited to this.
  • the first power supply input terminal T1 and the inductor 12-1 can be connected in series.
  • the common terminal (COM) of the changeover switch 132-4 is connected to the first power input terminal T1
  • the OFF contact (terminal x) is opened
  • the ON contact (terminal y) is connected to one end of the inductor 12-1.
  • the DIM contact (terminal z) is connected to one end of the capacitor 131, and the other end of the capacitor 131 is connected to one end of the inductor 12-1.
  • the power supply switching circuit unit 13-4 has a power switch 19 for switching between power-on (ON) and power-off (OFF), and a switching circuit unit 13- for switching between normal illumination and dimmer illumination. It can be divided into 1.
  • the power switch 19 is connected in series between the second power input terminal T2 and the connection part M4 of the voltage doubler rectifier circuit part 11, and the switching circuit part 13-1 is connected to the inductor 12 -1 and the connecting part M1 of the voltage doubler rectifier circuit part 11 can be connected in series. That is, the inductor 12-1, the switching circuit unit 13-1, the voltage doubler rectifier circuit unit 11, and the power switch 19 can be connected in series in any order between the power input terminals T1 and T2.
  • the COM terminal of the power switch 19 is preferably a circuit connected to either the power input terminal T1 or T2.
  • the LED lighting circuit 10-4 shown in FIG. Light emission state) and dimmer illumination (DIM) (low luminance light emission state) can be selected.
  • DIM dimmer illumination
  • the switch 132-4 is switched and the common terminal (COM) and the OFF contact (terminal x) are connected, the path of the current flowing from the AC power supply ACS is disconnected by the switch 132-4, Since no current flows through the LED group 142, the LED group 142 is turned off.
  • the changeover switch 132-4 is switched and the common terminal (COM) and the ON contact (terminal y) are connected, the power on (ON) (normal light emission state) is selected.
  • the main switch 132 of the switching circuit unit 13-1 shown in FIG. It becomes the same state as having entered the state, the current Ic flows through the LED group 142, and the normal light emission state is entered.
  • dimmer illumination low-luminance light emission state
  • the capacitor 131 is connected in series between the second power supply input terminal T2 and the connection part M4 of the voltage doubler rectifier circuit unit 11, a current flows through the capacitor 131, and the LED The reduced current Ic flows through the group 142, and the light emission state is low.
  • the selector switch 132-4 of the power supply switching circuit unit 13-4 the power is turned off (OFF), the power is turned on (normal light emission state), and the dimmer illumination (DIM) (low luminance light emission state). Any one of them can be selected.
  • the LED illumination circuit 10-4 ′ shown in FIG. 11 can also select three types of states: power-off, power-on, and dimmer illumination, as with the LED illumination circuit 10-4 shown in FIG.
  • the power switch 19 when the power switch 19 is switched and the common terminal (COM) and the OFF contact (terminal x) are connected, the power OFF (OFF) is selected, and the LED group 142 is turned off.
  • the power switch 19 is switched to connect the common terminal (COM) and the ON contact (terminal y), and when the main switch 132 of the switching circuit unit 13-1 is on, the power is turned on (normal) Light emission state) is selected, and the LED group 142 is in a normal light emission state.
  • the LED lighting circuits 10-4 and 10-4 ′ shown in FIGS. 10 and 11 can be arranged in the LED lighting tube. .
  • the LED illumination circuit 10-4 shown in FIG. 10 is disposed in the LED illumination tube luminaire and the LED illumination tube, the LED illumination circuit 10-4 is, for example, a circuit as shown in FIG. It becomes possible to arrange
  • the LED illumination circuit shown in FIG. 12 will be described as “LED illumination circuit 10-4 ′′”.
  • the LED lighting circuit 10-4 ′′ includes power input terminals T1 and T2, a power switching circuit unit 13-4, an inductor (ballast) 12-1, and a lighting fixture socket terminal 25 ( 25a1, 25a2, 25b1, 25b2), light tube socket terminal 33 (33a1, 33a2, 33b1, 33b2), capacitor 181, selection switch 182, switching circuit unit 13-1, and first voltage doubler rectifier circuit Unit 11, a second voltage doubler rectifier circuit unit 11 ', and a light emitting circuit unit 14-1.
  • the lighting fixture side circuit SK4 is a circuit disposed between the power input terminals T1 and T2 and the lighting fixture sockets 22a and 22b, and is a part of the configuration of the LED lighting circuit 10-4 shown in FIG. LED lighting tube lighting fixture side circuit including input terminals T1, T2, a power supply switching circuit unit 13-4, an inductor 12, and the like.
  • the LED illumination tube side circuit SC shown in FIG. 12 is the same as the LED illumination tube side circuit SC of the LED illumination circuit 10-3 shown in FIG. That is, the LED illumination circuit 10-4 ′′ shown in FIG. 12 includes an LED illumination tube side circuit SC connected to the illumination fixture side circuit SK1 of the glow starter type fluorescent lamp fixture shown in FIG. A lighting fixture side circuit SK4 including a power supply switching circuit unit 13-4 is connected as a side circuit.
  • the LED lighting tube side circuit SC shown in FIG. 12 includes other parts of the configuration of the LED lighting circuit 10-4 shown in FIG. 10 (such as the voltage doubler rectifier circuit unit 11 and the light emitting circuit unit 14-1). Yes.
  • a circuit in which the lighting fixture socket terminals 25a1 and 25a2 and 25b1 and 25b2 of the LED lighting circuit 10-4 ′′ shown in FIG. 12 are short-circuited can be connected to a glow starter fluorescent lamp fixture or a rapid starter fluorescent fixture.
  • the LED lighting tube side circuit SC is a compatible circuit so that it can be connected to the lighting device side circuit SK4 which is the LED lighting tube lighting device side circuit.
  • the socket terminals 33b1 and 33b2 are connected to both the connection portions M4 and M4 ′ of the first and second voltage doubler rectifier circuit portions 11.
  • the power supply switching circuit unit 13-4 can be provided at an arbitrary position on the lower surface 23 of the base 21 of the LED lighting tube lighting fixture 20 ′ ′′. Specifically, the power supply switching circuit unit 13-4 can be provided, for example, such that a knob part of a rotary switch that is manually rotated is exposed from the lower surface 23 of the base portion 21 of the LED lighting tube lighting fixture 20 ′ ′′. .
  • the LED illumination tube luminaire 20 ′ ′′ and the LED illumination tube 30 are collectively referred to as “LED illumination device B ′′”.
  • the LED lighting circuit includes the power switching circuit unit that can switch between the three types of power-off, power-on, and dimmer lighting. ON, extinguishing (OFF), and dimmer illumination (DIM) can be easily and reliably switched.
  • the inductor 12-1 of the present embodiment includes an inductor 12-3 of the glow starter type fluorescent lamp fixture (for 40 W) shown in FIG. 6 and 12-3 ′ of the rapid starter type fluorescent lamp fixture shown in FIG.
  • the choke coil eliminates wasted power consumed by the primary winding. That is, the power efficiency can be made higher by using the inductor 12-3 than these existing inductors.
  • the LED illumination circuit of this embodiment can be easily set to dimmer illumination by inserting a capacitor in series with the input circuit of the AC power supply, a power switch for turning on / off the power, normal illumination, and dimmer illumination
  • the LED illumination circuit of this embodiment can be configured by combining a switching circuit unit that switches between the two.
  • the capacitor 131 of the power supply switching circuit unit 13-4 is connected in series with the capacitors 111 and 112 of the voltage doubler rectifier circuit unit 11, so that the combined capacity of the capacitors is reduced, so that the phase of the current Ib is reduced. Progresses and power factor decreases. In order to improve the power factor at this time, it can be adjusted by additionally inserting an inductor in series with the capacitor 131.
  • the power supply switching circuit unit 13-5 includes a constant voltage generating unit 137, a driver unit 138, and a switch unit 139, as shown in FIG.
  • the constant voltage generation unit 137 includes a diode D71, a resistor R71, a Zener diode Z71, and a capacitor C71.
  • the diode D71, the resistor R71, and the Zener diode Z71 are connected in series between the first power input terminal T1 and the second power input terminal T2. Specifically, the cathode of the diode D71 is connected to the first power input terminal T1, and the anode is connected to one end of the resistor R71.
  • the other end of the resistor R71 is connected to the anode of the Zener diode Z71, and the cathode of the Zener diode Z71 is connected to the second power input terminal T2.
  • One end of the capacitor C71 is connected to the connection portion M20 between the resistor R71 and the Zener diode Z71, and the other end is connected to the cathode of the Zener diode Z71.
  • the resistor R84 has one end connected to the output terminal of the amplifier AMP81 and the other end connected to the negative input terminal of the amplifier AMP81.
  • the capacitor C81 has one end connected to the negative input terminal of the amplifier AMP81 and the other end connected to the connection unit M20 of the constant voltage generation unit 137.
  • the power supply of the amplifier AMP81 is supplied from the constant voltage ⁇ Ee of the constant voltage generation unit 137.
  • the switch unit 139 includes a capacitor C91, a resistor R91, a PIN photodiode PD, a flip-flop FF1, a flip-flop FF2, a NAND circuit (gate) G1, a NAND circuit (gate) G2, a resistor R92, and a resistor R93, a triac 132′-1, a triac 132′-2, a capacitor 131, and a remote control light receiving control unit RC.
  • the capacitor C91 and the resistor R91 are connected in series between the second power input terminal T2 and the connection part M20 of the constant voltage generation part 137.
  • one end of the capacitor C91 is connected to the second power input terminal T2, the other end is connected to one end of the resistor R91, and the other end of the resistor R91 is connected to the connection portion M20 of the constant voltage generation unit 137.
  • condenser C91 and resistance R91 is connected to the input terminal S of remote control light reception control part RC.
  • the PIN photodiode PD has a cathode connected to the input terminal PI of the remote control light reception control unit RC, and an anode connected to the connection unit M20 of the constant voltage generation unit 137.
  • a D-type flip-flop can be used as the flip-flop FF1 and the flip-flop FF2, and a data input terminal S (S1, S2) for inputting a high level (H) or low level (L) signal and a clock signal are input.
  • the reason why the notation of the output terminal that outputs the inverted signal is “ ⁇ Q ( ⁇ Q1, ⁇ Q2)” is as follows. Originally, the notation of the output terminal should be a bar (overbar) on Q1 and Q2 as shown in FIG. 15, but such a notation cannot be made in this specification. Therefore, “ ⁇ Q ( ⁇ Q1, ⁇ Q2)” is used instead.
  • the data input terminal S1 is connected to the set output terminal A1 of the remote control light reception control unit RC
  • the clock input terminal C1 is connected to the output terminal C of the remote control light reception control unit RC
  • the output terminal Q1 is a NAND circuit.
  • the output terminal -Q1 is open.
  • the flip-flop FF2 has a data input terminal S2 connected to the set output terminal A2 of the remote control light reception control unit RC, a clock input terminal C2 connected to the output terminal C of the remote control light reception control unit RC, and an output terminal Q2 of the NAND circuit G2. Connected to one input terminal, the output terminal -Q2 is open.
  • the triac 132′-2 has a T1 terminal connected to the second power input terminal T2 and a T2 terminal connected to the second power output terminal T2 ′ via the capacitor 131.
  • the second power output terminal T2 ′ is a terminal provided between, for example, the second power input terminal T2 in FIG. 1 and the connection portion M4 of the voltage doubler rectifier circuit unit 11.
  • the remote control transmitter circuit 51 operates a battery BT that supplies power to the remote control transmitter circuit 51, a pulse generator PG that outputs a pulse signal, and an infrared-coded modulated signal based on the pulse signal. It has an infrared light emitting LED (LED2) that emits (wireless transmission) as a signal.
  • the remote control transmitter 50 is provided with one or more push buttons (not shown), and the pulse generator PG is selected according to the type of the push button pressed or the number of times the push button is pressed. Outputs a predetermined pulse signal, the LED 2 emits light based on this pulse signal, and emits an infrared-coded modulation signal.
  • the switch unit 139 receives an infrared coded modulation signal emitted from an external remote control transmitter 50 by a PIN photodiode PD as a sensor, demodulates the electric signal by a remote control light reception control unit RC, and outputs a set output.
  • a set signal is output from the terminals A1 and A2.
  • the codes of the flip-flops FF1 and FF2 set by the set signals from the set output terminals A1 and A2 are logically selected by the NAND circuits G1 and G2, and the gate of the triac 132'-1 or 132'-2 is triggered by the pulse train signal It is supposed to be.
  • the flip-flops FF1 and FF2 are latch registers, and the set state is held until the next set output signal is input.
  • the NAND circuits G1 and G2 are two-input NAND gates, and the output becomes L only when both inputs are H. If either or both are L, the output becomes H.
  • the T1 terminal is connected to the second power input terminal T2, which is a common terminal, and a negative trigger current is passed through the resistor R92 or R93 to the selected gate. To turn on the triac 132′-1 or 132′-2.
  • both ends of the capacitor C91 are 0 V. Therefore, when the DC power source -Ee rises, the input S of the remote control light receiving control unit RC becomes H, and the set output A1 becomes 1 (H). The set output A2 becomes 0 (L), and the clock signal C sets the output Q1 of the flip-flop FF1 to H and the output Q2 of the flip-flop FF2 to L.
  • the input Q1 of the NAND circuit G1 becomes H and the output DR of the driver unit 138 becomes H
  • the output of the NAND circuit G1 becomes L.
  • the output terminal LT of the NAND circuit G1 outputs a negative pulse train, and the triac 132′-1 through the resistor R92.
  • the triac 132′-1 is turned on by triggering the gates of the first and second lamps, and normal illumination is obtained.
  • the output Q2 of the flip-flop FF2 is L, the triac 132'-2 is turned off.
  • the set output A1 of the remote control light reception control unit RC becomes 0 (L) and the set output A2 becomes 1 (H), and these are set in the flip-flops FF1 and FF2. Since the output Q1 of the flip-flop FF1 is set to L and the output Q2 of the flip-flop FF2 is set to H, a negative pulse train is output from the output DM of the NAND circuit G2, and the triac 132′-2 is turned on to turn on the dimmer illumination. It becomes. At this time, the triac 132′-1 is turned off.
  • the set output A1 of the remote control light reception control unit RC becomes 0 (L) and the set output A2 also becomes 0 (L), and these are set in the flip-flops FF1 and FF2.
  • the output Q1 of the flip-flop FF1 is set to L and the output Q2 of the flip-flop FF2 is also set to L, so that the outputs LT and DM of the NAND circuits G1 and G2 become H, and the triacs 132′-1 and 132 Since '-2 is not triggered, it is turned off and the power is turned off.
  • the LED lighting circuit of the present embodiment operates the remote control transmitter and wirelessly transmits an operation signal to the power switching circuit unit provided in the LED lighting tube lighting fixture, thereby turning off the power. It is possible to easily and surely switch between the three states of power-on and dimmer illumination.
  • the circuit of the LED lighting tube side circuit SC that can be connected to any of the glow starter type fluorescent lamp fixture, the rapid starter type fluorescent lamp fixture and the LED lighting tube lighting fixture shown in FIG. 6 and FIG. Since the voltages applied to the inductor and the LED lighting tube side circuit SC are different from each other, by setting constant capacitors 111 and 112 suitable for each and switching in accordance with the connected lighting fixture, interchangeability is obtained. be able to. Therefore, in the existing fluorescent lamp illuminator, if the LED illuminating tube 30 is attached in place of the fluorescent tube, it becomes energy saving. Since it is compatible, it can be used continuously and further energy saving can be achieved.
  • the LED lighting circuit 10-6 of this embodiment includes power input terminals T1, T2, an inductor (ballast) 12-1, a switching circuit unit 13- 6, a first voltage doubler rectifier circuit unit 11, a second voltage doubler rectifier circuit unit 11 ′, and a light emitting circuit unit 14-2.
  • the circuit configuration of the light emitting circuit unit 14-2 is the same as the circuit configuration of the light emitting circuit unit 14-2 described in the second embodiment, and a description thereof will be omitted here.
  • the first voltage doubler rectifier circuit unit 11 has the same configuration as the voltage doubler rectifier circuit unit 11 in the second embodiment.
  • the connection section M1 is connected to the T1 terminal of the first main switch 132 ′ of the switching circuit section 13-6, and the connection section M2 is the output terminal of the light emitting circuit section 14-2. (OUTLET), the connection part M3 is connected to the input terminal (INLET) of the light emitting circuit part 14-2, and the connection part M4 is connected to the power input terminal T2.
  • the second voltage doubler rectifier circuit unit 11 ′ has a configuration in which a third capacitor 111 ′, a fourth capacitor 112 ′, a first diode 113, and a second diode 114 are connected in a bridge shape.
  • the first diode 113 and the second diode 114 are the same as the first diode 113 and the second diode 114 in the first voltage doubler rectifier circuit unit 11. That is, the first voltage rectifier circuit unit 11 and the second voltage rectifier circuit unit 11 ′ share the first diode 113 and the second diode 114.
  • connection M4 between one end of the first diode 113 and one end of the second diode 114 is also a common connection M4 between the first voltage doubler rectifier circuit unit 11 and the second voltage doubler rectifier circuit unit 11 ′. It has become.
  • a connection portion M1 ′ between one end of the third capacitor 111 ′ and one end of the fourth capacitor 112 ′ is connected to the T1 terminal of the second main switch 132 ′′ of the switching circuit portion 13-6.
  • a connection portion M2 between the other end of the third capacitor 111 ′ and the anode of the first diode 113 is connected to the output terminal (OUTLET) of the light emitting circuit portion 14-2.
  • a connection part M3 between the other end of the fourth capacitor 112 ′ and the cathode of the second diode 114 is connected to an input terminal (INLET) of the light emitting circuit part 14-2.
  • the switching circuit unit 13-6 includes a first main switch 132 ′ that is a triac, a second main switch 132 ′′ that is a triac, a capacitor 131, a first light transmission element 133, and a second optical switch.
  • a transmission element 133 ′, a changeover switch 134 ′, a resistor 135, and a diode 136 are provided.
  • the T2 terminal is connected to the other end (connection portion M0) of the inductor 12-1, and the T1 terminal is connected to the first voltage doubler rectifier circuit portion 11.
  • the gate is connected to the light receiving portion 133 2 (described later) of the first light transmission element 133.
  • the T2 terminal is connected to the other end (connection portion M0) of the inductor 12-1, and the T1 terminal is connected to the connection portion M1 ′ of the second voltage doubler rectifier circuit portion 11 ′.
  • the gate is connected to the light receiving part 133 ′ 2 (described later) of the second light transmission element 133 ′.
  • One end of the capacitor 131 is connected to the other end (connecting portion M0) of the inductor 12-1, and the other end is connected to the connecting portion M1 of the voltage doubler rectifier circuit portion 11. That is, the capacitor 131 is connected in parallel to the first main switch 132 ′.
  • First light transmission device 133 includes a light emitting portion 133 1 is a light emitting diode, and a light receiving portion 133 2 is triac.
  • the cathode of the light emitting diode which is the light emitting unit 133 1 is connected to the connection part M2 of the first voltage doubler rectifier circuit unit 11, the anode is connected to the cathode of the diode 136, and the anode of the diode 136 is the ECO contact of the changeover switch 134 ′. (Second contact).
  • Triac T1 terminal is receiving unit 133 2 'is connected to the gate of, T2 terminals first main switch 132' first main switch 132 is connected to the T2 terminal of.
  • Second light transmission device 133 ' the light emitting unit 133 is a light emitting diode' and 1, and a light receiving portion 133 '2 triacs.
  • the cathode of the light emitting diode that is the light emitting unit 133 ′ 1 is connected to the anode of the light emitting diode that is the light emitting unit 133 1 of the first light transmission element 133, and the anode is connected to the FULL contact (first contact) of the changeover switch 134 ′.
  • Light receiving portion 133 'triac T1 terminal is 2 the second main switch 132' is connected to the gate of ', T2 terminal is connected to the T2 terminal of the second main switch 132''.
  • the changeover switch 134 ′ is a manual changeover switch that switches between three contacts (a FULL contact that is a first contact, an ECO contact that is a second contact, and a DIM contact that is a third contact).
  • the DIM contact is open.
  • One end of the resistor 135 is connected to the output terminal of the inverting circuit INV61 of the driver unit 176, and the other end is connected to the common terminal c of the changeover switch 134 ′.
  • a predetermined current is supplied to the LED group 142 1 through the voltage doubler rectifier circuit units 11 and 11 ′ in which the third capacitor 111 ′ is connected in parallel and the second capacitor 112 and the fourth capacitor 112 ′ are connected in parallel. , flows to 142 2, LED411 ⁇ 41n, 421 ⁇ 42n emits light at a high luminance state, the bright illumination in comparison with the ECO lighting and DIM illumination to be described later.
  • the first main switch 132 ′ is turned on and the second main switch 132 ′′ is turned off. Become. Therefore, a predetermined current by the first voltage doubler rectifier circuit unit 11 flows to the LED groups 142 1 and 142 2 , and the LEDs 411 to 41n and 421 to 42n emit light in a state where the luminance is lower than the FULL illumination, and from the FULL illumination. Becomes energy-saving lighting (ECO lighting) with reduced illuminance.
  • ECO lighting energy-saving lighting
  • the third capacitor 111 ′ and the fourth capacitor 112 ′ of the second voltage doubler rectifier circuit unit 11 ′ are connected in series and are connected in parallel with the leveling capacitor 15. .
  • the diode 136, 1 and saturation voltage 'light emitting diode 133' the second optical transmission device 133 is equivalent is selected. As a result, even when either the FULL contact or the ECO contact is connected by the changeover switch 134 ′, the current flowing through the resistor 135 is made equal.
  • the capacitor 131 connected in parallel with the first main switch 132 ′ is connected in series with the first voltage doubler rectifier circuit unit 11, so that the first voltage doubler rectifier circuit unit 11 is charged and discharged. Is reduced by the capacitor 131, and a small amount of current flows to the LED groups 142 1 and 142 2 , and the LEDs 411 to 41n and 421 to 42n emit light in a state where the luminance is lower than that of the ECO illumination. It becomes the dropped DIM illumination.
  • the latch circuit unit 175 for detecting an abnormality functions as a monostable multivibrator in a state where the capacitor C51 is connected between the output terminal of the OR circuit connection unit M10 and the amplifier AMP51. Even if the abnormality is resolved, the DIM state is maintained for a certain time, and the normal state is restored after the certain time has elapsed.
  • a bistable multivibrator flip-flop
  • each column of the LED groups 142 1 and 142 2 is a series circuit of 50 LEDs, for example, the saturation voltage is 150V. become. Therefore, the electric power required for such control is about 0.375 W, which is about 2% for a 20 W lamp and 1% for a 40 W lamp.
  • DIM lighting is a light fixture with centrally controlled power supply. In places where lighting is not normally required, switch to DIM with slight lighting without removing the lamp and keep it in standby, and if necessary, a FULL contact Alternatively, it can be restored by switching to the ECO contact.
  • the power consumption required for the DIM illumination excluding the power consumption of the ballast 12-1, is, for example, a current of 4 mA is passed through the LED groups 142 1 and 142 2 and a current of 2.5 mA is passed through the protection circuit unit 17. In other words, if the capacity of the capacitor 131 is set so that a total of 6.5 mA flows, the power consumption can be 1 W. If this is a 20 W lamp, for example, power consumption will be reduced to 1/20.
  • the LED lighting circuit and LED lighting device of this invention As mentioned above, although preferred embodiment of the LED lighting circuit and LED lighting device of this invention was described, the LED lighting circuit and LED lighting device which concern on this invention are not limited only to embodiment mentioned above, The present invention is not limited. It goes without saying that various modifications can be made within the range.
  • FIG. 1 only one switching circuit unit 13-1 is connected between the inductor 12-1 and the connection part M1 of the voltage doubler rectifier circuit unit 11, but the switching circuit unit 13-1
  • the present invention is not limited to one, and a plurality of inductors 12-1 and a connecting portion M1 of the voltage doubler rectifier circuit unit 11 may be connected in series.
  • the LED lighting circuit of the present invention may be an arbitrary combination of the LED lighting circuits in each of the first to sixth embodiments. Further, the LED lighting device of the present invention may be an arbitrary combination of the LED lighting devices in each of the first to third embodiments.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Devices (AREA)

Abstract

Provided are an LED illumination circuit and LED illumination device, with which it is possible to alter LED brightness, and LED failure due to excessive increase in temperature or excess current is prevented. An inductor (12) and a switching circuit (13), which by means of a switch can select a capacitor (131) and a short circuit in series with a circuit to which a voltage doubler rectifier circuit (11) is connected, are provided between power supply input terminals (T1, T2) for inputting an AC power supply and an LED group (142) to which a plurality of LEDs (411 to 41n) are connected in series. When the switch (132) has selected the short circuit, current flowing in the LED group (142) flows through the short circuit and the LED group (142) assumes a normal light emission state in which light is emitted at a normal brightness. When the switch (132) has selected the capacitor (131), the current that flows in the LED group (142) flows through the capacitor (131) and is reduced, and the LED group (142) assumes a low-brightness light emission state in which light is emitted at a low brightness.

Description

LED照明回路及びLED照明装置LED lighting circuit and LED lighting device
 本発明は、商用交流電源からLED(発光ダイオード)を発光させるLED照明回路、及び、このLED照明回路を用いたLED照明装置に関する。 The present invention relates to an LED illumination circuit that emits an LED (light emitting diode) from a commercial AC power supply, and an LED illumination device using the LED illumination circuit.
 近年、白熱電球や蛍光管のような従来からの照明管のかわりに、発光効率の良いLEDの照明管を用いる照明回路(LED照明回路)が注目されている。LEDは、半導体基板に形成されたpn接合に流れる電流に応じて所定の発光効率で発光する固体素子であって、LED1個当たりの発光量自体は多いとは言えない。従って、LED照明回路は、多数のLEDを接続して成る発光素子部を含んで発光回路部を構成し、所要の発光量(光度)の光を発する。また、LED照明回路は、固体素子であるLEDが白熱電球や蛍光管に比べて適用最高温度が低く(例えば、80℃以下)、最大定格電流も大きくはないので、過度の温度上昇や過度の電流によりLEDが破壊されないようにする配慮も必要である。 In recent years, an illumination circuit (LED illumination circuit) that uses an LED illumination tube with good luminous efficiency instead of a conventional illumination tube such as an incandescent bulb or a fluorescent tube has attracted attention. An LED is a solid-state element that emits light with a predetermined light emission efficiency in accordance with a current flowing through a pn junction formed on a semiconductor substrate, and it cannot be said that the amount of light emission per LED is large. Therefore, the LED illumination circuit includes a light emitting element unit formed by connecting a large number of LEDs to form a light emitting circuit unit, and emits light having a required light emission amount (luminance). In addition, the LED lighting circuit has a lower maximum application temperature than a solid-state LED or incandescent bulb or fluorescent tube (for example, 80 ° C. or less), and the maximum rated current is not large. Consideration is also required to prevent the LED from being destroyed by the current.
 図17に示すLED照明回路100は、典型的な従来例である(例えば、特許文献1参照。)。このLED照明回路100は、四個のダイオード111~114からなるダイオードブリッジ110によって商用交流電源ACSの交流電圧Eaを整流し、整流した電圧を定電流回路120に入力し、この定電流回路120によって定電流を、発光素子部131を含む発光回路部130に供給するものである。定電流回路120の入力端子と発光素子部131の出力端子(OUTLET)との間にはコンデンサ140が接続されており、ダイオードブリッジ110による整流電圧を平滑化している。このコンデンサ140に流れる充電電流は、交流電圧のピーク付近に集中することと、電源を投入したときの充電電流である突入電流が大きいという問題があり、対策が望まれている。定電流回路120は、直流回路方式やスイッチング回路方式のものがある。このようなLED照明回路100は、発光回路部130の発光量が原理的に安定しているものの、定電流回路120において、直流回路方式では定電流回路120の両端にかかる電圧と発光素子部131に流れる電流による電力損失が、交流電源の電圧変動による高い電圧領域で大きくなる。このような電力損失を少なくできるスイッチング回路方式では大きな高周波ノイズによってEMI(電磁妨害)が生じ易い。 The LED illumination circuit 100 shown in FIG. 17 is a typical conventional example (see, for example, Patent Document 1). The LED lighting circuit 100 rectifies an AC voltage Ea of a commercial AC power supply ACS by a diode bridge 110 including four diodes 111 to 114, and inputs the rectified voltage to a constant current circuit 120. The constant current circuit 120 A constant current is supplied to the light emitting circuit unit 130 including the light emitting element unit 131. A capacitor 140 is connected between the input terminal of the constant current circuit 120 and the output terminal (OUTLET) of the light emitting element portion 131, and the rectified voltage by the diode bridge 110 is smoothed. The charging current flowing through the capacitor 140 is concentrated near the peak of the AC voltage, and there is a problem that the inrush current that is the charging current when the power is turned on is large, and countermeasures are desired. The constant current circuit 120 includes a DC circuit system and a switching circuit system. In such an LED lighting circuit 100, although the light emission amount of the light emitting circuit unit 130 is theoretically stable, in the constant current circuit 120, the voltage applied to both ends of the constant current circuit 120 and the light emitting element unit 131 in the DC circuit system. The power loss due to the current flowing through the AC increases in a high voltage region due to the voltage fluctuation of the AC power supply. In such a switching circuit system that can reduce power loss, EMI (electromagnetic interference) is likely to occur due to large high-frequency noise.
 図18に示すLED照明回路200は、従来から電源装置などに用いられてきた倍電圧整流回路部210を用いた例である(例えば、特許文献2参照。)。このLED照明回路200は、定電流回路120のような回路を設けず、第一コンデンサ211、第二コンデンサ212、第一ダイオード213、第二ダイオード214からなる倍電圧整流回路部210を設けるとともに、この倍電圧整流回路部210と商用交流電源ACSとの間に電流制限用コンデンサ220を設けている。この電流制限用コンデンサ220は、LED群231を含む発光回路部230に流す電流を制限するためのコンデンサである。また、LED群231に流れる電流を平準化するための平準用コンデンサ240が、LED群231と並列に接続されている。 The LED lighting circuit 200 shown in FIG. 18 is an example using a voltage doubler rectifier circuit unit 210 that has been conventionally used in a power supply device or the like (see, for example, Patent Document 2). This LED illumination circuit 200 is not provided with a circuit like the constant current circuit 120, but is provided with a voltage doubler rectifier circuit unit 210 including a first capacitor 211, a second capacitor 212, a first diode 213, and a second diode 214, A current limiting capacitor 220 is provided between the voltage doubler rectifier circuit unit 210 and the commercial AC power supply ACS. The current limiting capacitor 220 is a capacitor for limiting the current flowing through the light emitting circuit unit 230 including the LED group 231. Further, a leveling capacitor 240 for leveling the current flowing through the LED group 231 is connected in parallel with the LED group 231.
 このLED照明回路200の電源入力端子T1、T2に入力される商用交流電源ACSの交流電圧Eaは、図19の上段に示す波形のように変化し、また、商用交流電源ACSからLED照明回路200に流れる電流Iaは、同図の下段に示す波形のように変化する。
 ここで、同図の下段に示した電流Iaは、交流電圧Eaが負の値から正の方向に向かう途中から正のピーク値(Vp)になるまでの間では、電流制限用コンデンサ220を通して、第一コンデンサ211に充電電流として流れるとともに、第二コンデンサ212から発光回路部230、第一ダイオード213の順の電流パスを通って放電電流として流れる。同様に、交流電圧Eaが正の値から負の方向に向かう途中から負のピーク値(-Vp)になるまでの間では、第二ダイオード214から第二コンデンサ212に充電電流として流れるとともに、発光回路部230、第一コンデンサ211から電流制限用コンデンサ220の順の電流パスで放電電流として流れる合成電流である。この電流Iaの位相は、同図の下段に示す通り、商用交流電源ACSの交流電圧Eaの波形よりも90度近く進んでいる。
 さらに、電流制限用コンデンサ220が倍電圧整流回路210のコンデンサ211及びコンデンサ212と直列に挿入されているので、その合成容量が第一コンデンサ211と第二コンデンサ212の容量よりも低下する。そのために多数のLEDを接続してなる発光素子部に電流を流すための充分大きな直流電流を供給し難い。
The AC voltage Ea of the commercial AC power supply ACS input to the power input terminals T1 and T2 of the LED lighting circuit 200 changes as shown by the waveform shown in the upper part of FIG. 19, and from the commercial AC power supply ACS to the LED lighting circuit 200. The current Ia flowing through the capacitor changes as shown by the waveform shown in the lower part of FIG.
Here, the current Ia shown in the lower part of the figure passes through the current limiting capacitor 220 until the AC voltage Ea reaches the positive peak value (Vp) from the middle of the negative voltage toward the positive direction. The first capacitor 211 flows as a charging current, and also flows as a discharging current from the second capacitor 212 through a current path of the light emitting circuit unit 230 and the first diode 213 in this order. Similarly, the AC voltage Ea flows from the second diode 214 to the second capacitor 212 as a charging current during the period from the positive value toward the negative direction until it reaches the negative peak value (−Vp). This is a combined current that flows as a discharge current in the current path from the circuit unit 230 and the first capacitor 211 to the current limiting capacitor 220. The phase of the current Ia is approximately 90 degrees ahead of the waveform of the AC voltage Ea of the commercial AC power supply ACS as shown in the lower part of the figure.
Furthermore, since the current limiting capacitor 220 is inserted in series with the capacitor 211 and the capacitor 212 of the voltage doubler rectifier circuit 210, the combined capacity thereof is lower than the capacity of the first capacitor 211 and the second capacitor 212. For this reason, it is difficult to supply a sufficiently large direct current for flowing a current to a light emitting element portion formed by connecting a large number of LEDs.
特開2006-278304号公報JP 2006-278304 A 特開2008-263203号公報JP 2008-263203 A
 このように、電流出力である倍電圧整流回路210を用いたLED照明回路200は、定電流回路120のような無駄な電力消費を招く回路を必要としないので、発光回路部230で消費する電力の効率を高くすることができる。そして、定電流回路やその周辺回路で消費する無駄な消費電力を省ける。 As described above, the LED lighting circuit 200 using the voltage doubler rectifier circuit 210 that is a current output does not require a circuit that causes wasteful power consumption like the constant current circuit 120, and thus the power consumed by the light emitting circuit unit 230. The efficiency of can be increased. In addition, useless power consumption consumed by the constant current circuit and its peripheral circuits can be omitted.
 しかしながら、その倍電圧整流回路210と交流電源ACSとの間に直列に挿入されたコンデンサ220は、LED群231に流す電流を制限するものであった。つまり、多数のLEDを直列に接続したLED群に流す電流が、そのコンデンサ220を挿入することで低下してしまい、充分大きな直流電流を流し難いという支障をきたしていた。 However, the capacitor 220 inserted in series between the voltage doubler rectifier circuit 210 and the AC power supply ACS limits the current flowing through the LED group 231. In other words, the current flowing through the LED group in which a large number of LEDs are connected in series is reduced by inserting the capacitor 220, which causes a problem that it is difficult to flow a sufficiently large DC current.
 また、LED照明回路200は、力率が良くなかった。その理由は、商用交流電源ACSからLED照明回路200に流れる電流Iaの位相がコンデンサ220,211,212の駆動により、交流電圧Eaの位相に対して90度近く進み、正負の半周期のほとんど前半だけになるからであった。
 さらに、電源投入時の突入電流は、ダイオードブリッジによるコンデンサインプット方式と同様に大きな電流が流れるので、そのピーク電流を緩和する対策を講ずることが望まれていた。
Further, the LED lighting circuit 200 has a poor power factor. The reason is that the phase of the current Ia flowing from the commercial AC power supply ACS to the LED lighting circuit 200 advances nearly 90 degrees with respect to the phase of the AC voltage Ea by driving the capacitors 220, 211, and 212, and is almost the first half of the positive and negative half cycles. Because it would be only.
Furthermore, since a large current flows in the inrush current when the power is turned on as in the capacitor input method using the diode bridge, it has been desired to take measures to alleviate the peak current.
 また、特許文献1、2に記載のLED照明回路では、LEDの輝度(明るさ)を効率よく、容易に変えることができなかった。近年、LEDは、高輝度化の開発が進められ、照明用として充分使用できるLEDが市販されるようになってきた。しかしながら、場所により、あるいは、状況や時間帯により、照明を暗くすることが望ましい場合もある。そのような場合に、容易にLEDの明るさを切り換えることが可能な技術の提案が求められていた。
 さらに、過度の温度上昇や過度の電流によりLEDが破壊されないようにする保護回路を備えることも望まれていた。
In addition, in the LED illumination circuits described in Patent Documents 1 and 2, the luminance (brightness) of the LED cannot be changed efficiently and easily. In recent years, the development of high brightness LEDs has progressed, and LEDs that can be used sufficiently for illumination have come to the market. However, it may be desirable to darken the lighting depending on the location or depending on the situation or time of day. In such a case, the proposal of the technique which can switch the brightness of LED easily was calculated | required.
It has also been desired to provide a protection circuit that prevents the LED from being destroyed by excessive temperature rise or excessive current.
 本発明は、上記の事情にかんがみなされたものであり、突入電流を少なくするとともに、力率を改善し、かつ、LEDの明るさを容易に変えることができ、しかも、過度の温度上昇や過度の電流によりLEDが破壊されるのを防止する保護回路を備えたLED照明回路及びLED照明装置の提供を目的とする。 The present invention has been considered in view of the above circumstances, and can reduce the inrush current, improve the power factor, and easily change the brightness of the LED. It is an object of the present invention to provide an LED lighting circuit and an LED lighting device including a protection circuit that prevents the LED from being destroyed by the current.
 上記目的を達成するために、本発明のLED照明回路は、交流電源を入力する電源入力端子と、インダクタと、交流電源を整流する倍電圧整流回路部と、複数のLEDが直列に接続されたLED群を含む発光回路部とを備えたLED照明回路であって、電源入力端子とLED群との間に、インダクタと、倍電圧整流回路部が接続された回路と直列に、コンデンサとショート回路をスイッチで選択できる切換回路部を備え、スイッチがショート回路を選択したときには、LED群に流れる電流がショート回路を流れて、LED群が通常の輝度で発光する通常発光状態となり、スイッチがコンデンサを選択したときには、LED群に流れる電流が、コンデンサを通して流れて、通常発光状態のときにLED群に流れる電流よりも減少した電流となり、LED群が通常発光状態における輝度よりも低い輝度で発光する低輝度発光状態となる構成としている。 In order to achieve the above object, an LED lighting circuit of the present invention includes a power input terminal for inputting AC power, an inductor, a voltage doubler rectifier circuit for rectifying the AC power, and a plurality of LEDs connected in series. An LED lighting circuit including a light emitting circuit unit including an LED group, a capacitor and a short circuit in series with a circuit in which an inductor and a voltage doubler rectifier circuit unit are connected between a power input terminal and the LED group When the switch selects the short circuit, the current flowing through the LED group flows through the short circuit, and the LED group enters a normal light emitting state where light is emitted at normal luminance. When selected, the current flowing through the LED group flows through the capacitor, and the current is reduced compared to the current flowing through the LED group in the normal light emitting state. Ri, LED group is usually a low luminance light emission state to emit light at a lower luminance than the luminance of the light emitting state configuration.
 また、本発明のLED照明回路は、LED群に関する異常を検出する異常検出部を備え、切換回路部は、異常検出部で異常が検出されると、スイッチがコンデンサを選択して、LED群に流す電流をコンデンサを通して流す切換制御手段を有し、コンデンサは、自身に電流が流れることで、LED群に流れる電流を減少させて、LED群を低輝度発光状態で発光させる構成としている。 In addition, the LED illumination circuit of the present invention includes an abnormality detection unit that detects an abnormality related to the LED group, and when the abnormality detection unit detects an abnormality, the switch selects a capacitor to switch the LED group. The capacitor has switching control means for causing a current to flow through the capacitor, and the capacitor is configured to reduce the current flowing through the LED group by causing the current to flow through the capacitor, thereby causing the LED group to emit light in a low-luminance light emitting state.
 また、本発明のLED照明装置は、複数のLEDが配置されている基板を有したLED照明管と、このLED照明管を支持する照明器具とを備え、LED照明管は、照明器具に取り付けるための照明管ソケットと、この照明管ソケットと複数のLEDとの間に配設されたLED照明管側回路とを有し、照明器具は、照明管ソケットに係合する照明器具ソケットと、電源入力端子と照明器具ソケットとの間に配設された照明器具側回路とを有し、LED照明管側回路が、請求項1~請求項13のいずれかに記載のLED照明回路の一部を含み、照明器具側回路が、LED照明回路の他の一部を含む構成としている。 In addition, the LED lighting device of the present invention includes an LED lighting tube having a substrate on which a plurality of LEDs are arranged, and a lighting fixture that supports the LED lighting tube, and the LED lighting tube is attached to the lighting fixture. A lighting fixture socket that engages with the lighting tube socket, and a power input. A lighting fixture side circuit disposed between the terminal and the lighting fixture socket, wherein the LED lighting tube side circuit includes a part of the LED lighting circuit according to any one of claims 1 to 13. The lighting fixture side circuit includes another part of the LED lighting circuit.
 本発明に係るLED照明回路及びLED照明装置によれば、電源入力端子と倍電圧整流回路部との間にインダクタを設けてチョークインプットとしたので、突入電流を少なくできる。
 また、前述のようにインダクタを設けたことにより、LEDが通常の輝度で発光する通常動作状態では、発光回路部のLED群に流れる電流の位相が交流電圧の位相に近寄り、休止期間が短くなるので、その結果、高い力率を得ることができる。
According to the LED lighting circuit and the LED lighting device according to the present invention, since the inductor is provided between the power input terminal and the voltage doubler rectifier circuit unit to provide the choke input, the inrush current can be reduced.
In addition, by providing the inductor as described above, in the normal operation state where the LED emits light with normal luminance, the phase of the current flowing through the LED group of the light emitting circuit unit approaches the phase of the AC voltage, and the rest period is shortened. As a result, a high power factor can be obtained.
 さらに、LEDが通常の輝度よりも低い輝度で発光する状態を低輝度発光状態としたときに、この低輝度発光状態と前述の通常動作状態とを切り換える切換回路部を備えたので、この切換回路部を切り換えることでLEDの明るさを変えることができる。
 しかも、LED群にて発生した異常、例えば過電流や過度の温度上昇を検出する異常検出部と、この異常検出部で異常が検出されるとスイッチを切り換えてコンデンサに電流を流す切換制御部とを備えたので、異常が検出されたときには、コンデンサに電流を流してLEDに流れる電流を減少させて低輝度発光状態にすることができる。このため、それら過電流等の異常の発生に起因してLEDが破壊するのを防止できる。
Further, when the LED emits light with a lower luminance than the normal luminance, when the low luminance light emitting state is set, the switching circuit unit for switching between the low luminance light emitting state and the normal operation state described above is provided. The brightness of the LED can be changed by switching the part.
Moreover, an abnormality detection unit that detects an abnormality that has occurred in the LED group, for example, an overcurrent or an excessive temperature rise, and a switching control unit that switches a switch to flow current to the capacitor when an abnormality is detected by the abnormality detection unit; Therefore, when an abnormality is detected, the current flowing through the capacitor can be reduced to reduce the current flowing through the LED so that the light emission state can be reduced. For this reason, it is possible to prevent the LED from being destroyed due to the occurrence of an abnormality such as an overcurrent.
本発明の第一実施形態に係るLED照明回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the LED illumination circuit which concerns on 1st embodiment of this invention. 図1に示すLED照明回路おける各電圧又は電流の波形を示すものである。The waveform of each voltage or electric current in the LED illumination circuit shown in FIG. 1 is shown. 本発明の第二実施形態に係るLED照明回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the LED illumination circuit which concerns on 2nd embodiment of this invention. 接続部M11における出力電圧の波形を示す波形図である。It is a wave form diagram which shows the waveform of the output voltage in the connection part M11. 本発明のLED照明装置の構成を示す外観斜視図である。It is an external appearance perspective view which shows the structure of the LED lighting apparatus of this invention. 本発明の第三実施形態に係るLED照明回路をグロースタータ式蛍光灯照明器具に取り付けた場合を示す回路図である。It is a circuit diagram which shows the case where the LED lighting circuit which concerns on 3rd embodiment of this invention is attached to the glow starter type | mold fluorescent lamp lighting fixture. ラピッドスタータ式蛍光灯照明器具に設けられる照明器具側回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the lighting fixture side circuit provided in a rapid starter type fluorescent lamp lighting fixture. 本発明のLED照明装置の他の構成を示す外観斜視図である。It is an external appearance perspective view which shows the other structure of the LED lighting apparatus of this invention. 2灯用のラピッドスタータ式蛍光灯照明器具に設けられる照明器具側回路を示す回路図である。It is a circuit diagram which shows the lighting fixture side circuit provided in the rapid starter type | mold fluorescent lamp lighting fixture for 2 lights. 本発明の第四実施形態に係るLED照明回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the LED illumination circuit which concerns on 4th embodiment of this invention. 本発明の第四実施形態に係るLED照明回路の他の構成を示す回路図である。It is a circuit diagram which shows the other structure of the LED illumination circuit which concerns on 4th embodiment of this invention. 図6のLED照明回路を図10に示す電源切換回路部を備えたLED照明管照明器具に取り付けた場合の構成を示す回路図である。It is a circuit diagram which shows the structure at the time of attaching the LED illumination circuit of FIG. 6 to the LED illumination tube lighting fixture provided with the power supply switching circuit part shown in FIG. 本発明のLED照明装置のさらに他の構成を示す外観斜視図である。It is an external appearance perspective view which shows other structure of the LED lighting apparatus of this invention. 本発明の第五実施形態に係るLED照明回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the LED illumination circuit which concerns on 5th embodiment of this invention. 図14に示すLED照明回路に備えられる電源切換回路部の構成を示す回路図である。It is a circuit diagram which shows the structure of the power supply switching circuit part with which the LED illumination circuit shown in FIG. 14 is equipped. 本発明の第六実施形態に係るLED照明回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the LED illumination circuit which concerns on 6th embodiment of this invention. 従来のLED照明回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional LED illumination circuit. 従来のLED照明回路の他の構成を示す回路図である。It is a circuit diagram which shows the other structure of the conventional LED lighting circuit. 図18に示すLED照明回路における電圧Ea及び電流Iaの波形を示す波形図である。It is a wave form diagram which shows the waveform of the voltage Ea and the electric current Ia in the LED illumination circuit shown in FIG.
 以下、本発明に係るLED照明回路及びLED照明装置の好ましい実施形態について、図面を参照して説明する。 Hereinafter, preferred embodiments of an LED lighting circuit and an LED lighting device according to the present invention will be described with reference to the drawings.
[LED照明回路の第一実施形態]
 まず、本発明のLED照明回路の第一実施形態について、図1を参照して説明する。
 同図は、本実施形態のLED照明回路の構成を示す回路図である。
 なお、ここでは、次の項目について、順に説明する。
 (1)LED照明回路の構成
 (2)インダクタの機能
 (3)通常照明とディマ照明
 (4)LED照明回路の電圧、電流特性
[First embodiment of LED lighting circuit]
First, a first embodiment of the LED illumination circuit of the present invention will be described with reference to FIG.
The figure is a circuit diagram showing the configuration of the LED illumination circuit of the present embodiment.
Here, the following items will be described in order.
(1) Configuration of LED lighting circuit (2) Function of inductor (3) Normal lighting and dimmer lighting (4) Voltage and current characteristics of LED lighting circuit
(1)LED照明回路の構成
 同図に示すように、LED照明回路10-1は、電源入力端子T1、T2と、倍電圧整流回路部11と、インダクタ12-1と、切換回路部13-1と、発光回路部14-1と、を備えている。
 電源入力端子T1、T2は、商用交流電源ACSの交流電圧Eaが印加される入力端子である。なお、本実施形態においては、T1を第一の電源入力端子、T2を第二の電源入力端子とする。
(1) Configuration of LED Lighting Circuit As shown in the figure, the LED lighting circuit 10-1 includes power input terminals T1 and T2, a voltage doubler rectifier circuit unit 11, an inductor 12-1, and a switching circuit unit 13-. 1 and the light emitting circuit unit 14-1.
The power input terminals T1 and T2 are input terminals to which the AC voltage Ea of the commercial AC power supply ACS is applied. In the present embodiment, T1 is a first power input terminal and T2 is a second power input terminal.
 倍電圧整流回路部11は、交流電源ACSとして入力された交流電源Eaから整流した直流電流Ibを出力する回路であって、第一コンデンサ111と、第二コンデンサ112と、第一ダイオード113と、第二ダイオード114とを有してブリッジ回路を構成している。具体的には、第一コンデンサ111の一端と第二コンデンサ112の一端が接続されている。この接続部を接続部M1とする。第一ダイオード113は、アノードが第一コンデンサ111の他端に接続されている。この接続部を接続部M2とする。第二ダイオード114は、カソードが第二コンデンサ112の他端に接続されている。この接続部を接続部M3とする。第一ダイオード113のカソードと第二ダイオード114のアノードが接続されている。この接続部を接続部M4とする。 The voltage doubler rectifier circuit unit 11 outputs a DC current Ib rectified from the AC power supply Ea input as the AC power supply ACS, and includes a first capacitor 111, a second capacitor 112, a first diode 113, A bridge circuit is configured with the second diode 114. Specifically, one end of the first capacitor 111 and one end of the second capacitor 112 are connected. This connection portion is referred to as a connection portion M1. The first diode 113 has an anode connected to the other end of the first capacitor 111. This connection portion is referred to as a connection portion M2. The cathode of the second diode 114 is connected to the other end of the second capacitor 112. This connecting portion is referred to as a connecting portion M3. The cathode of the first diode 113 and the anode of the second diode 114 are connected. This connecting portion is referred to as a connecting portion M4.
 インダクタ12-1は、インダクタンス成分を有する電子部品である。
 切換回路部13-1は、発光回路部14-1に供給する電流Ibの大きさを切り換えるための回路である。この切換回路部13-1の詳細については、後述する。
 これらインダクタ12-1と切換回路部13-1は、第一の電源入力端子T1と倍電圧整流回路部11の接続部(入力端子)M1との間に、直列に接続されている。具体的には、インダクタ12-1の一端が第一の電源入力端子T1に接続されており、他端が切換回路部13-1の一端に接続されている。これらインダクタ12-1と切換回路部13-1との接続部を接続部M0とする。また、切換回路部13-1の他端は、倍電圧整流回路部11の接続部M1に接続されている。そして、倍電圧整流回路部11の接続部M4は、第二の電源入力端子T2に接続されている。
The inductor 12-1 is an electronic component having an inductance component.
The switching circuit unit 13-1 is a circuit for switching the magnitude of the current Ib supplied to the light emitting circuit unit 14-1. Details of the switching circuit unit 13-1 will be described later.
The inductor 12-1 and the switching circuit unit 13-1 are connected in series between the first power supply input terminal T1 and the connection part (input terminal) M1 of the voltage doubler rectifier circuit part 11. Specifically, one end of the inductor 12-1 is connected to the first power input terminal T1, and the other end is connected to one end of the switching circuit unit 13-1. A connection part between the inductor 12-1 and the switching circuit part 13-1 is a connection part M0. The other end of the switching circuit unit 13-1 is connected to the connection unit M1 of the voltage doubler rectifier circuit unit 11. And the connection part M4 of the voltage doubler rectifier circuit part 11 is connected to the 2nd power supply input terminal T2.
 なお、切換回路部13-1は、図1においては、インダクタ12-1と倍電圧整流回路部11との間に直列に接続されているが、これに限るものではなく、例えば、第一の電源入力端子T1とインダクタ12-1との間に直列に接続することができる。この場合、切換回路部13-1は、一端が第一の電源入力端子T1に接続され、他端がインダクタ12-1の一端に接続される。そして、インダクタ12-1の他端が接続部M1に接続される。
 また、切換回路部13-1は、第二の電源入力端子T2と倍電圧整流回路部11との間に直列に接続することができる。具体的には、切換回路部13-1は、一端が第二の電源入力端子T2に接続され、他端が倍電圧整流回路部11の接続部M4に接続することができる。この場合、インダクタ12-1は、一端が第一の電源入力端子T1に接続され、他端が倍電圧整流回路部11の接続部M1に接続される。
In FIG. 1, the switching circuit unit 13-1 is connected in series between the inductor 12-1 and the voltage doubler rectifier circuit unit 11. However, the present invention is not limited to this. The power supply input terminal T1 and the inductor 12-1 can be connected in series. In this case, one end of the switching circuit unit 13-1 is connected to the first power input terminal T1, and the other end is connected to one end of the inductor 12-1. The other end of the inductor 12-1 is connected to the connection portion M1.
The switching circuit unit 13-1 can be connected in series between the second power input terminal T2 and the voltage doubler rectifier circuit unit 11. Specifically, one end of the switching circuit unit 13-1 can be connected to the second power input terminal T2, and the other end can be connected to the connection unit M4 of the voltage doubler rectifier circuit unit 11. In this case, one end of the inductor 12-1 is connected to the first power supply input terminal T1, and the other end is connected to the connection portion M1 of the voltage doubler rectifier circuit portion 11.
 さらに、インダクタ12-1は、図1においては、第一の電源入力端子T1と切換回路部13-1との間に直列に接続されているが、これに限るものではなく、例えば、第二の電源入力端子T2と倍電圧整流回路部11との間に直列に接続することができる。具体的には、インダクタ12-1の一端が第二の電源入力端子T2に接続され、他端が倍電圧整流回路部11の接続部M4に接続される。この場合、切換回路部13-1は、一端が第一の電源入力端子T1に接続され、他端が倍電圧整流回路部11の接続部M1に接続される。
 また、インダクタ12-1を、複数のインダクタで構成して直列に接続することも可能である。すなわち、電源入力端子T1、T2とインダクタ12-1と倍電圧整流回路部11と切換回路部13-1とを、順不同で直列に接続することができる。
Further, in FIG. 1, the inductor 12-1 is connected in series between the first power input terminal T1 and the switching circuit unit 13-1, but the present invention is not limited to this. The power input terminal T2 and the voltage doubler rectifier circuit unit 11 can be connected in series. Specifically, one end of the inductor 12-1 is connected to the second power input terminal T2, and the other end is connected to the connection part M4 of the voltage doubler rectifier circuit part 11. In this case, one end of the switching circuit unit 13-1 is connected to the first power supply input terminal T1, and the other end is connected to the connection unit M1 of the voltage doubler rectifier circuit unit 11.
Further, the inductor 12-1 can be constituted by a plurality of inductors and connected in series. That is, the power input terminals T1 and T2, the inductor 12-1, the voltage doubler rectifier circuit unit 11, and the switching circuit unit 13-1 can be connected in series in any order.
 切換回路部13-1は、コンデンサ131と、主スイッチ132とを有している。コンデンサ131は、一端がインダクタ12-1の他端(接続部M0)に接続されており、他端が倍電圧整流回路部11の接続部M1に接続されている。主スイッチ132は、接点端子がコンデンサ131の一端に接続されており、コモン端子がコンデンサ131の他端に接続されている。
 なお、本実施形態において主スイッチ132は、手動の切換スイッチとするが、手動の切換スイッチに限るものではなく、例えば、発光素子部141の過電流又は過熱が原因で発光素子部141のLED群142が破壊されないように保護する手段として用いることができる。この構成については、第二実施形態以降で説明する。
The switching circuit unit 13-1 includes a capacitor 131 and a main switch 132. One end of the capacitor 131 is connected to the other end (connection portion M0) of the inductor 12-1, and the other end is connected to the connection portion M1 of the voltage doubler rectifier circuit portion 11. The main switch 132 has a contact terminal connected to one end of the capacitor 131 and a common terminal connected to the other end of the capacitor 131.
In the present embodiment, the main switch 132 is a manual changeover switch. However, the main switch 132 is not limited to a manual changeover switch. It can be used as a means for protecting 142 from being destroyed. This configuration will be described in the second and subsequent embodiments.
 発光回路部14-1は、接続部M3と接続部M2の間に設けられた発光素子部141と、この発光素子部141に流れる電流を平準化するために発光素子部141と並列に(すなわち、接続部M3と接続部M2の間に)設けられた平準用コンデンサ15と、を含む。
 発光素子部141は、複数のLED411~41nが直列に接続されたLED群142を含む。複数のLED411~41nは、それぞれ隣接するLED411~41nのカソードとアノードが接続されている。そして、LED群142の始端のLED411のアノードは接続部M3に接続され、終端のLED41nのカソードは接続部M2に接続されている。
 なお、図1においては、LED群142が一つのみ設けられているが、一つに限るものではなく、二つ以上設けて、これらを並列に接続することができる。また、この場合、各LED群を構成するLEDの数は、いずれも同じ(n)とする。
The light emitting circuit unit 14-1 includes a light emitting element unit 141 provided between the connecting unit M3 and the connecting unit M2, and a light emitting element unit 141 in parallel to level the current flowing through the light emitting element unit 141 (that is, the light emitting element unit 141). , And a leveling capacitor 15 provided between the connection portion M3 and the connection portion M2.
The light emitting element unit 141 includes an LED group 142 in which a plurality of LEDs 411 to 41n are connected in series. The plurality of LEDs 411 to 41n are connected to the cathodes and anodes of the adjacent LEDs 411 to 41n, respectively. The anode of the LED 411 at the start of the LED group 142 is connected to the connection M3, and the cathode of the LED 41n at the end is connected to the connection M2.
In FIG. 1, only one LED group 142 is provided, but the number is not limited to one, and two or more LED groups 142 may be provided and connected in parallel. In this case, the number of LEDs constituting each LED group is the same (n).
(2)インダクタの機能
 インダクタ12-1は、前述したように、第一の電源入力端子T1と第二の電源入力端子T2との間に、倍電圧整流回路部11と直列に接続されている。これにより、LED照明回路10-1の電源回路(LED照明回路10-1のうち、商用交流電源ACSを受けて、発光回路部14-1に電源を供給する回路部分)がチョークインプット方式になり、交流電源Eaを投入したときの突入電流を極めて少なくできる。
 例えば、図17又は図18に示すように、コンデンサインプット方式の整流回路を有するLED照明回路100、200では、電源を投入したときにコンデンサを充電するための電流、すなわち突入電流が大きいので、これらの整流ダイオードには大きな定格電流の部品を必要とする。さらに、建物の天井などに同じ製品が多数並列に接続されることになる照明装置は、部屋やフロア全体をまとめて壁スイッチでON/OFFするケースが多い。スイッチの入る瞬間が交流電源電圧のピーク値に近いと、通常の電流の約十倍以上の過大な瞬間電流が流れて、ノイズが発生して、スイッチの接点の焼傷が進行して、その回数寿命が短くなる。しかも、同じ交流電源に接続された機器にも、そのときのノイズが伝わる等、悪い影響をも及ぼすことになる。
(2) Function of Inductor As described above, the inductor 12-1 is connected in series with the voltage doubler rectifier circuit unit 11 between the first power input terminal T1 and the second power input terminal T2. . As a result, the power supply circuit of the LED lighting circuit 10-1 (the circuit portion of the LED lighting circuit 10-1 that receives the commercial AC power supply ACS and supplies power to the light emitting circuit unit 14-1) becomes the choke input method. Inrush current when the AC power source Ea is turned on can be extremely reduced.
For example, as shown in FIG. 17 or FIG. 18, in the LED lighting circuits 100 and 200 having the capacitor input type rectifier circuit, the current for charging the capacitor when the power is turned on, that is, the inrush current is large. These rectifier diodes require large rated current components. Furthermore, in many cases, a lighting device in which many of the same products are connected in parallel on the ceiling of a building is turned on / off by a wall switch for the entire room or floor. If the moment when the switch enters is close to the peak value of the AC power supply voltage, an excessive instantaneous current that is more than about ten times the normal current flows, noise is generated, and the switch contact burns, The service life is shortened. In addition, the devices connected to the same AC power supply also have a bad influence such as transmission of noise at that time.
 これに対し、本実施形態のLED照明回路10-1は、第一の電源入力端子T1と第二の電源入力端子T2との間に、倍電圧整流回路部11と切換回路部13-1とインダクタ12-1とを直列に接続したチョークインプット方式としたこと、及び、切換回路部13-1の主スイッチ132がオフのときに電源が投入されることにより、突入電流を極めて少なくできる。しかも、通常動作時における商用交流電源ACSからの入力電流は、交流電圧に近い波形の電流となり、コンデンサインプット方式のように、交流電圧波形のピーク値に近い特定部分(位相)だけに電流が集中することはない。 In contrast, the LED lighting circuit 10-1 of the present embodiment includes a voltage doubler rectifier circuit unit 11, a switching circuit unit 13-1, and the like between the first power input terminal T1 and the second power input terminal T2. The inrush current can be extremely reduced by adopting a choke input system in which the inductor 12-1 is connected in series and by turning on the power when the main switch 132 of the switching circuit unit 13-1 is off. Moreover, the input current from the commercial AC power supply ACS during normal operation has a waveform that is close to the AC voltage, and the current is concentrated only in a specific portion (phase) close to the peak value of the AC voltage waveform, as in the capacitor input method. Never do.
(3)通常照明とディマ照明
 図1に示すLED照明回路10-1において、電源入力端子T1、T2に商用交流電源ACSによる交流電圧Eaを印加した後、主スイッチ132を操作することにより、発光素子部141のLED群142の輝度を、通常の輝度から低い輝度に、またその逆に、切り換えることができる。
(3) Normal illumination and dimmer illumination In the LED illumination circuit 10-1 shown in FIG. 1, light is emitted by operating the main switch 132 after applying the AC voltage Ea from the commercial AC power supply ACS to the power input terminals T1 and T2. The luminance of the LED group 142 of the element unit 141 can be switched from normal luminance to low luminance and vice versa.
 例えば、主スイッチ132の接点を接続してオン(投入)したときは、コンデンサ131の両端がショート(短絡)した状態となる。この場合、電流Iaは、ショートした主スイッチ132に流れる。このとき、発光素子部141には電流Icが流れて、LED群142は、通常の輝度で発光する。
 なお、このように、コンデンサ131の両端がショートして、ショートした主スイッチ132に電流が流れるときの回路をショート回路という。
 また、LED群142が通常の輝度で発光する状態を、「通常照明状態」又は「通常発光状態」というものとする。さらに、LED群142が通常の輝度で発光するようにLED照明回路10-1が動作する状態を、「通常動作状態」というものとする。
For example, when the contact of the main switch 132 is connected and turned on (turned on), both ends of the capacitor 131 are short-circuited. In this case, the current Ia flows through the shorted main switch 132. At this time, the current Ic flows through the light emitting element portion 141, and the LED group 142 emits light with normal luminance.
Note that a circuit when both ends of the capacitor 131 are short-circuited and a current flows through the shorted main switch 132 is called a short circuit.
In addition, a state in which the LED group 142 emits light with normal luminance is referred to as a “normal illumination state” or a “normal light emission state”. Furthermore, a state in which the LED illumination circuit 10-1 operates so that the LED group 142 emits light with normal luminance is referred to as a “normal operation state”.
 一方、主スイッチ132の接点を切り離してオフ(開放)したときは、主スイッチ132によるショート回路からコンデンサ131の回路に切り換わり、コンデンサ131に電流Iaが流れる。この場合は、第一の電源入力端子T1と第二の電源入力端子T2との間で、インダクタ12-1とコンデンサ131と倍電圧整流回路部11が、直列に接続された状態となる。そのために、コンデンサ部(第一コンデンサ111及び第二コンデンサ112の並列回路)の合成容量が少なくなり、発光素子部141に供給される電流Icが減少して、LED群142は、通常の輝度よりも低い輝度で発光する。このときの電流Icは、倍電圧整流回路部11の第一コンデンサ111及び第二コンデンサ112の並列容量に対するコンデンサ131の容量で(例えば、前者に対して後者を1/10に)設定することができる。
 なお、LED群142が通常の輝度よりも低い輝度で発光する状態を、「ディマ(dimmer)照明状態」又は「低輝度発光状態」というものとする。また、LED群142が通常の輝度よりも低い輝度で発光するようにLED照明回路10-1が動作する状態を、「ディマ動作状態」というものとする。
On the other hand, when the contact of the main switch 132 is disconnected and turned off (opened), the short circuit by the main switch 132 is switched to the circuit of the capacitor 131, and the current Ia flows through the capacitor 131. In this case, the inductor 12-1, the capacitor 131, and the voltage doubler rectifier circuit unit 11 are connected in series between the first power input terminal T1 and the second power input terminal T2. Therefore, the combined capacity of the capacitor unit (the parallel circuit of the first capacitor 111 and the second capacitor 112) is reduced, the current Ic supplied to the light emitting element unit 141 is reduced, and the LED group 142 has a higher luminance than normal luminance. Emits light with low brightness. The current Ic at this time can be set by the capacitance of the capacitor 131 with respect to the parallel capacitance of the first capacitor 111 and the second capacitor 112 of the voltage doubler rectifier circuit unit 11 (for example, the latter is set to 1/10 with respect to the former). it can.
A state in which the LED group 142 emits light with a luminance lower than the normal luminance is referred to as a “dimmer illumination state” or a “low luminance light emission state”. The state in which the LED illumination circuit 10-1 operates so that the LED group 142 emits light with a luminance lower than the normal luminance is referred to as a “dima operation state”.
 このように、切換回路部13-1の主スイッチ132をオンしてショート回路を選択すると通常照明となり、その主スイッチ132をオフしてコンデンサ131を選択すると照明を暗くしたディマ照明になる。つまり、LED照明回路10-1の使用者が手動で主スイッチ132のオンオフを切り換えることにより、通常照明とディマ照明とを任意に切り換えることができる。 In this way, when the main switch 132 of the switching circuit unit 13-1 is turned on and the short circuit is selected, normal illumination is obtained, and when the main switch 132 is turned off and the capacitor 131 is selected, dimmer illumination with darkened illumination is obtained. That is, the user of the LED illumination circuit 10-1 can switch between normal illumination and dimmer illumination arbitrarily by manually switching on and off the main switch 132.
 また、倍電圧整流回路部11の入力側に主スイッチ132を設け、発光素子部141と並列に電圧リミッタ16を設けたことにより、LED群142が断線してLED群142に流れる電流の経路が断線して負荷が軽くなっても、倍電圧整流回路部11に本来の動作をさせず、高い電圧(交流電圧の2×√2倍)が出力されないようになっている(後述)。したがって、倍電圧整流回路部11の第一コンデンサ111及び第二コンデンサ112と平準用コンデンサ15の耐圧をそれ程高くする必要はない。 In addition, by providing the main switch 132 on the input side of the voltage doubler rectifier circuit unit 11 and the voltage limiter 16 in parallel with the light emitting element unit 141, the LED group 142 is disconnected and the current path flowing through the LED group 142 is reduced. Even if the load is lightened due to disconnection, the voltage doubler rectifier circuit unit 11 does not perform its original operation, and a high voltage (2 × √2 times the AC voltage) is not output (described later). Therefore, it is not necessary to increase the breakdown voltage of the first capacitor 111 and the second capacitor 112 of the voltage doubler rectifier circuit unit 11 and the leveling capacitor 15 so much.
(4)LED照明回路の電圧、電流特性
 LED照明回路10-1の電圧、電流特性について、図2を参照して説明する。同図の上段の波形は、商用交流電源ACSから電源入力端子T1、T2に供給される交流電圧Ea(破線)と、接続部M1における電圧Eb(実線)の波形を示している。なお、これら電圧Ea、Ebは、倍電圧整流回路部11の接続部M4の電位を基準としている。同図の中段の波形は、第一の電源入力端子T1において商用交流電源ACSから供給される電流Iaの波形を示す。同図の下段の波形は、発光回路部14-1に入力される電流(第一コンデンサ111と第二コンデンサ112の放電電流)Ib(実線)と、発光素子部141に流れる電流Ic(破線)の波形を示している。
(4) Voltage and Current Characteristics of LED Lighting Circuit The voltage and current characteristics of the LED lighting circuit 10-1 will be described with reference to FIG. The upper waveform in the figure shows the waveform of the AC voltage Ea (broken line) supplied from the commercial AC power supply ACS to the power supply input terminals T1 and T2 and the voltage Eb (solid line) at the connection portion M1. The voltages Ea and Eb are based on the potential of the connection part M4 of the voltage doubler rectifier circuit part 11. The middle waveform in the figure shows the waveform of the current Ia supplied from the commercial AC power supply ACS at the first power input terminal T1. The lower waveform in the figure shows the current (discharge current of the first capacitor 111 and the second capacitor 112) Ib (solid line) input to the light emitting circuit unit 14-1 and the current Ic (broken line) flowing in the light emitting element unit 141. The waveform is shown.
 通常動作状態において、倍電圧整流回路部11とインダクタ12-1で構成される整流回路は、負荷としての発光回路部14-1のLED群142が飽和電圧特性なので、以下に説明するように、商用交流電源ACSから発光回路部14-1に整流した直流電流を出力する回路として機能する。
 交流電圧Eaが正の半サイクル(図2(i))では、第一コンデンサ111を充電すると同時に、それまでに充電された第二コンデンサ112の電荷を放電電流として、発光回路部14-1に流す。これに対し、負の半サイクル(同図(ii))では、第二コンデンサ112を充電すると同時に、それまでに充電された第一コンデンサ111の電荷を放電電流として、発光回路部14-1に流す。
In a normal operation state, the rectifier circuit composed of the voltage doubler rectifier circuit unit 11 and the inductor 12-1 has a saturation voltage characteristic because the LED group 142 of the light emitting circuit unit 14-1 as a load has a saturation voltage characteristic. It functions as a circuit that outputs a rectified DC current from the commercial AC power supply ACS to the light emitting circuit unit 14-1.
In the half cycle in which the AC voltage Ea is positive (FIG. 2 (i)), the first capacitor 111 is charged, and at the same time, the charge of the second capacitor 112 charged so far is used as the discharge current to the light emitting circuit unit 14-1. Shed. On the other hand, in the negative half cycle ((ii) in the figure), the second capacitor 112 is charged, and at the same time, the charge of the first capacitor 111 charged so far is used as a discharge current to the light emitting circuit unit 14-1. Shed.
 これら両コンデンサ111、112が充電されるときの電圧(Vk)は、商用交流電源ACSから供給される交流電圧Eaのピーク電圧(Vp)付近で、電流Iaが減少し始めると、インダクタ12-1がその電流Iaを維持しようとする働きによる逆起電力で、交流電圧Eaのピーク電圧(Vp)よりも大きいキック電圧Vkとして得られる。
 交流電圧Eaが負の半サイクルにおいて、第二コンデンサ112が放電を開始する直前の当該第二コンデンサ112に蓄積された電荷QC2は、式(1)に示すように、マイナスの電荷QC2である。
 QC2=C・(-Vk)         ・・・(1)
 式(1)において、Cは、第二コンデンサ112の容量値である。また、負のキック電圧のピーク値(-Vk)及び正のキック電圧のピーク値(Vk)は、インダクタ12-1のインダクタンスLと交流電圧Eaに依存するものであり、その絶対値の大きさは、交流電圧Eaのピーク値(Vp)よりも大きく、交流電圧Eaに比例する。なお、第二ダイオード114による順方向飽和電圧は小さい(約0.8V)ので、式(1)及びこれ以降の説明では無視している。第一ダイオード113についても同様である。
When the capacitors 111 and 112 are charged, the voltage (Vk) is near the peak voltage (Vp) of the AC voltage Ea supplied from the commercial AC power supply ACS. When the current Ia starts to decrease, the inductor 12-1 Is a counter electromotive force due to the action of maintaining the current Ia, and is obtained as a kick voltage Vk larger than the peak voltage (Vp) of the AC voltage Ea.
In the AC voltage Ea is negative half-cycle, the charge Q C2 accumulated in the second capacitor 112 immediately before the second capacitor 112 begins to discharge, as shown in equation (1), in negative charge Q C2 is there.
Q C2 = C · (−Vk) (1)
In Expression (1), C is the capacitance value of the second capacitor 112. The peak value (−Vk) of the negative kick voltage and the peak value (Vk) of the positive kick voltage depend on the inductance L of the inductor 12-1 and the AC voltage Ea, and the magnitudes of the absolute values thereof. Is larger than the peak value (Vp) of the AC voltage Ea and is proportional to the AC voltage Ea. Since the forward saturation voltage by the second diode 114 is small (about 0.8 V), it is ignored in the expression (1) and the following description. The same applies to the first diode 113.
 交流電圧Eaが負のピーク値から上昇する途中で、商用交流電源ACSから供給される電流Iaがゼロになって、休止期間Tsの後、接続部M3の電圧が上昇して、n・Vdに達した時点から第二コンデンサ112が放電を開始する。ここで、nは発光素子部141のLED群142を構成するLEDの数、VdはLEDの順方向飽和電圧である。この電圧が大きい程、第二コンデンサ112の放電開始タイミングが遅くなる。
 第二コンデンサ112の放電電流Ibは、第二コンデンサ112が蓄えた電荷QC2を放電しながら、第二コンデンサ112から接続部M3、発光回路部14-1、接続部M2、第一ダイオード113、第二の電源入力端子T2の順の電流パス、及び、第一の電源入力端子T1からインダクタ12-1、切換回路部13-1、第二コンデンサ112の順の電流パスを通って流れ続ける。一方、第一コンデンサ111は、接続部M1の電圧Ebが上昇する間、充電を続ける。これら第二コンデンサ112の放電電流Ibと第一コンデンサ111の充電電流の和が、商用交流電源ACSから供給される電流Iaである。
While the AC voltage Ea rises from the negative peak value, the current Ia supplied from the commercial AC power supply ACS becomes zero, and after the idle period Ts, the voltage at the connection M3 rises to n · Vd. The second capacitor 112 starts discharging from the time when it reaches. Here, n is the number of LEDs constituting the LED group 142 of the light emitting element unit 141, and Vd is the forward saturation voltage of the LEDs. As this voltage increases, the discharge start timing of the second capacitor 112 is delayed.
Discharge current Ib of the second capacitor 112 while discharging the electric charge Q C2 of the second capacitor 112 is accumulated, the connecting portion M3 from the second capacitor 112, the light emitting circuit section 14-1, the connection portion M2, the first diode 113, It continues to flow through the current path in the order of the second power input terminal T2 and the current path in the order of the inductor 12-1, the switching circuit unit 13-1, and the second capacitor 112 from the first power input terminal T1. On the other hand, the first capacitor 111 continues to be charged while the voltage Eb of the connection portion M1 increases. The sum of the discharge current Ib of the second capacitor 112 and the charging current of the first capacitor 111 is the current Ia supplied from the commercial AC power supply ACS.
 交流電圧Eaが正のピーク値(Vp)に近づき、商用交流電源ACSから供給されてインダクタ12-1を流れる電流Iaの絶対値が減少し始めると、インダクタ12-1の逆起電力が作用して、電流Iaを維持しようとする働きで、接続部M1の電圧Ebが上昇する。そして、第二コンデンサ112の放電電流Ibが無くなり、電流Iaがゼロになるまで、接続部M1の電圧Ebは正のピーク値(Vk)まで達する。このとき、第二コンデンサ112は、以下の式(2)に示すように、接続部M1側にプラスの電荷QD2を蓄積する。
 QD2=C・(Vk-n・Vd)     ・・・(2)
 また、第一コンデンサ111は、下記の式(1’)に示すように、接続部M1の電圧Ebの正のピーク値(Vk)に応じたプラスの電荷QC1を接続部M1側に蓄積する。
 QC1=C・Vk            ・・・(1’)
 式(1’)において、Cは、第一コンデンサ111の容量値であって、第二コンデンサ112の容量値と同じ値である。
When the AC voltage Ea approaches the positive peak value (Vp) and the absolute value of the current Ia supplied from the commercial AC power supply ACS and flowing through the inductor 12-1 starts to decrease, the counter electromotive force of the inductor 12-1 acts. Thus, the voltage Eb at the connection portion M1 rises due to the action of maintaining the current Ia. Then, the voltage Eb of the connection portion M1 reaches the positive peak value (Vk) until the discharge current Ib of the second capacitor 112 disappears and the current Ia becomes zero. At this time, the second capacitor 112 accumulates a positive charge Q D2 on the connection portion M1 side as shown in the following formula (2).
Q D2 = C · (Vk−n · Vd) (2)
The first capacitor 111, as shown in Equation (1 ') below, to accumulate positive charge Q C1 in accordance with the positive peak value of the voltage Eb of the connection part M1 (Vk) to the connection portion M1 side .
Q C1 = C · Vk (1 ')
In the formula (1 ′), C is a capacitance value of the first capacitor 111 and is the same value as the capacitance value of the second capacitor 112.
 交流電圧Eaが正のピーク値から負の方向に下降する途中で、商用交流電源ACSから供給される電流Iaがゼロになって、休止期間Tsの後、接続部M2の電圧が下降して、-n・Vdに達した時点から第一コンデンサ111が放電を開始する。この電流Iaがゼロになってから、放電を開始するまでの間を休止期間Tsという。第一コンデンサ111の放電電流Ibは、第一コンデンサ111が蓄えた電荷QC1を放電しながら、第一コンデンサ111から切換回路部13-1、インダクタ12-1、第一の電源入力端子T1の順の電流パス、及び、第二の電源入力端子T2から第二ダイオード114、接続部M3、発光回路部14-1、接続部M2、第一コンデンサ111の順の電流パスを通って流れ続ける。一方、第二コンデンサ112は、接続部M1の電圧Ebが下降する間、充電を続ける。これら第一コンデンサ111の放電電流Ibと第二コンデンサ112の充電電流の和が、商用交流電源ACSから供給される電流Iaである。 While the AC voltage Ea is decreasing in the negative direction from the positive peak value, the current Ia supplied from the commercial AC power supply ACS becomes zero, and after the rest period Ts, the voltage at the connection portion M2 decreases. The first capacitor 111 starts discharging from the time when −n · Vd is reached. A period from when the current Ia becomes zero to when discharge is started is referred to as a rest period Ts. Discharge current Ib of the first capacitor 111, while discharging the electric charge Q C1 of the first capacitor 111 is stored, the switching circuit 13-1 from the first capacitor 111, an inductor 12-1, a first power supply terminal T1 The current continues to flow through the forward current path and the forward current path from the second power input terminal T2 to the second diode 114, the connection portion M3, the light emitting circuit portion 14-1, the connection portion M2, and the first capacitor 111. On the other hand, the second capacitor 112 continues to be charged while the voltage Eb at the connection portion M1 drops. The sum of the discharge current Ib of the first capacitor 111 and the charge current of the second capacitor 112 is the current Ia supplied from the commercial AC power supply ACS.
 交流電圧Eaが負のピーク値(-Vp)に近づき、インダクタ12-1を流れる電流Iaの絶対値が減少し始めると、インダクタ12-1の逆起電力によって電流Iaを維持しようとする働きで負のキック電圧が発生し、接続部M1の電圧Ebが下降する。そして、第一コンデンサ111の放電電流Ibが無くなり、電流Iaがゼロになるまで、接続部M1の電圧Ebは負のピーク値(-Vk)まで達する。このとき、第一コンデンサ111は、以下の式(2’)に示すように、接続部M1側にマイナスの電荷QD1を蓄積する。
 QD1=C・(n・Vd-Vk)     ・・・(2’)
 また、第二コンデンサ112は、上記の式(1)に示すように、接続部M1の電圧Ebの負のピーク値(-Vk)に応じたマイナスの電荷QC2を接続部M1側に蓄積していることになる。
When the AC voltage Ea approaches the negative peak value (−Vp) and the absolute value of the current Ia flowing through the inductor 12-1 starts to decrease, the current Ia is maintained by the counter electromotive force of the inductor 12-1. A negative kick voltage is generated, and the voltage Eb at the connection M1 drops. Then, the voltage Eb at the connection portion M1 reaches the negative peak value (−Vk) until the discharge current Ib of the first capacitor 111 disappears and the current Ia becomes zero. At this time, the first capacitor 111 accumulates a negative charge Q D1 on the connection portion M1 side as shown in the following expression (2 ′).
Q D1 = C · (n · Vd−Vk) (2 ′)
The second capacitor 112, as shown in the above equation (1), and accumulates the negative peak value of the voltage Eb of the connecting portion M1 a negative charge Q C2 corresponding to (-Vk) to the connection portion M1 side Will be.
 このようにして、発光回路部14-1には、図2の下段に示すように、第一コンデンサ111と第二コンデンサ112による放電電流Ibが、インダクタ12-1を介して倍電圧整流回路部11に印加される交流電圧Eaに応じて交互に流れる。すなわち、交流電圧Eaが正の値である期間の前半から後半の大部分の期間に第二コンデンサ112による放電電流Ibが流れ、そして、交流電圧Eaが負の値である期間の前半から後半の大部分の期間に第一コンデンサ111による放電電流Ibが流れる。そして、図2の中段に示すように、放電電流Ibと充電電流の和である電流Iaの位相が交流電圧Eaの位相に近寄り、休止期間Tsは短くなり、その結果、力率を高くすることができる。 In this way, in the light emitting circuit unit 14-1, the discharge current Ib generated by the first capacitor 111 and the second capacitor 112 is supplied to the voltage doubler rectifier circuit unit via the inductor 12-1, as shown in the lower part of FIG. 11 alternately flows according to the alternating voltage Ea applied to the terminal 11. That is, the discharge current Ib by the second capacitor 112 flows in most of the period from the first half to the latter half of the period in which the AC voltage Ea is a positive value, and the first half to the latter half of the period in which the AC voltage Ea is a negative value. During most of the period, the discharge current Ib from the first capacitor 111 flows. As shown in the middle part of FIG. 2, the phase of the current Ia, which is the sum of the discharge current Ib and the charging current, approaches the phase of the AC voltage Ea, and the rest period Ts is shortened. As a result, the power factor is increased. Can do.
 この図2の中段に示す休止期間Tsが図19の下段に示す休止期間Ts’に比べて短くなっている理由について、さらに説明する。
 交流電源ACSの電圧Eaが負から正へ向かうとき、(コンデンサ111への充電電流とコンデンサ112を通り発光素子部141への放電電流Ibの)電流Iaは、インダクタ12-1を通ることにより、インダクタの無いときの電流である図19の下段の電流位相よりも(インダクタの積分作用により)約90度遅れた電流が流れる。交流電圧Eaが正のピーク電圧Vpに達するに従い前述の合成電流Iaが減少し始めると、インダクタ12-1は充電された電流を継続しようと電流を放出する。すなわち、交流電源ACSの交流電圧Eaがピーク電圧に達した時点で、インダクタ12-1が無い場合の電流(図19下段)はゼロになるが、インダクタ12-1がある場合の電流(図2中段)は、インダクタ12-1に充電した電流を放出することにより、電流Iaが継続するので、休止期間が短くなる。
The reason why the suspension period Ts shown in the middle part of FIG. 2 is shorter than the suspension period Ts ′ shown in the lower part of FIG. 19 will be further described.
When the voltage Ea of the AC power supply ACS goes from negative to positive, the current Ia (of the charging current to the capacitor 111 and the discharging current Ib passing through the capacitor 112 to the light emitting element unit 141) passes through the inductor 12-1. A current that is delayed by about 90 degrees from the current phase in the lower part of FIG. 19, which is a current when there is no inductor (by the integration action of the inductor) flows. When the composite current Ia starts to decrease as the AC voltage Ea reaches the positive peak voltage Vp, the inductor 12-1 releases the current to continue the charged current. That is, when the AC voltage Ea of the AC power supply ACS reaches the peak voltage, the current without the inductor 12-1 (lower part in FIG. 19) becomes zero, but the current with the inductor 12-1 (FIG. 2). In the middle stage, the current Ia continues by discharging the current charged in the inductor 12-1, so that the pause period is shortened.
 通常照明状態において、より高い力率を得るために、交流電源ACSの交流電圧EaとLED照明回路に流れる電流Iaの位相が近くなるように、第一コンデンサ111と第二コンデンサ112の合成容量値(2C)と、インダクタ12-1のインダクタンスLとを設定するのが好ましい。接続部M2とM3間の電圧n・Vdが小さい場合には、交流電圧Eaの周波数F(角周波数ω)で直列共振時のリアクタンスを打ち消すように設定するが、実際には接続部M2とM3間の電圧n・Vdが大きいので、前述のように、第二コンデンサ112又は第一コンデンサ111の放電開始タイミングが遅くなり、この間は電流Iaの遅れとなるので、下記の式(3)で示すように、コンデンサ2CのリアクタンスよりもインダクタンスLのリアクタンスを小さくする範囲で調整される。
 ωL<1/ω(2C)              ・・・(3)
In a normal lighting state, in order to obtain a higher power factor, the combined capacitance value of the first capacitor 111 and the second capacitor 112 so that the phase of the AC voltage Ea of the AC power supply ACS and the current Ia flowing through the LED lighting circuit are close to each other. It is preferable to set (2C) and the inductance L of the inductor 12-1. When the voltage n · Vd between the connecting portions M2 and M3 is small, the reactance at the time of series resonance is canceled at the frequency F (angular frequency ω) of the AC voltage Ea. Since the voltage n · Vd between them is large, as described above, the discharge start timing of the second capacitor 112 or the first capacitor 111 is delayed, and during this time, the current Ia is delayed. As described above, the reactance of the inductance L is adjusted to be smaller than the reactance of the capacitor 2C.
ωL <1 / ω (2C) (3)
 なお、図2の下段に示すように、発光回路部14-1に入力される電流Ibが平準用コンデンサ15によって平準化されて発光素子部141に流れる電流Icとなる。電流Ibと電流Icの平均電流は同じである。電流Ic(電流Ib)の平均電流は、下記の式(4)に示すように、1周期(1/F)の間に起きる電荷の移動(QC1-QD1)及び(QC2-QD2)によって決まるものとなる。
 Ic=2F・C・(2Vk-n・Vd)      ・・・(4)
 すなわち、図1の発光回路部14-1に電流を供給する回路部分は、コンデンサCの容量により電流値Icが決まる電荷移動型(CHARGE PUMP)電源である。
 式(4)のキック電圧Vkは、交流電圧Eaに比例するので、定数αを掛けた式(α・Ea)に置き換えることができる。このため、電流Icは、第一コンデンサ111及び第二コンデンサ112の容量値Cによって容易に調整可能である。
As shown in the lower part of FIG. 2, the current Ib input to the light emitting circuit unit 14-1 is leveled by the leveling capacitor 15 and becomes the current Ic flowing through the light emitting element unit 141. The average currents of the current Ib and the current Ic are the same. The average current of the current Ic (current Ib) is expressed by the following equation (4): charge transfer (Q C1 -Q D1 ) and (Q C2 -Q D2 ) occurring during one period (1 / F) ).
Ic = 2F · C · (2Vk−n · Vd) (4)
1 is a charge transfer type (CHARGE PUMP) power source in which the current value Ic is determined by the capacitance of the capacitor C.
Since the kick voltage Vk in the equation (4) is proportional to the AC voltage Ea, it can be replaced with an equation (α · Ea) multiplied by a constant α. For this reason, the current Ic can be easily adjusted by the capacitance values C of the first capacitor 111 and the second capacitor 112.
 また、式(1)、(2)、(1’)、(2’)に示したように、電圧EbがVk及び-Vkに達したときの各電荷から、例えば接続部M1の電圧Ebが負のサイクルであるときのコンデンサ112への充電電流(QC2-QD2)とコンデンサ111の放電電流(QD1-QC1)は、等しいことがわかる。
 QC2-QD2=QD1-QC1=C・nVd-2C・Vk     ・・・(5)
 このため、主スイッチ132がオフのときにコンデンサ131を流れる電流は、コンデンサ112に流れる電流とコンデンサ111に流れる電流に2等分されることになる。すなわち、等価的に、コンデンサ131の容量を2等分してそれぞれコンデンサ112とコンデンサ111に直列に挿入した回路構成と等しくなる。
 したがって、DIM照明であるときにLED群142、142に供給される電流は、式(4)で示される。
Further, as shown in the equations (1), (2), (1 ′), and (2 ′), for example, the voltage Eb of the connecting portion M1 is calculated from each charge when the voltage Eb reaches Vk and −Vk. It can be seen that the charging current (Q C2 -Q D2 ) to the capacitor 112 and the discharging current (Q D1 -Q C1 ) of the capacitor 111 in the negative cycle are equal.
Q C2 −Q D2 = Q D1 −Q C1 = C · nVd−2C · Vk (5)
For this reason, the current flowing through the capacitor 131 when the main switch 132 is off is divided into two equal parts: the current flowing through the capacitor 112 and the current flowing through the capacitor 111. That is, it is equivalent to a circuit configuration in which the capacitance of the capacitor 131 is equally divided into two and inserted in series with the capacitor 112 and the capacitor 111, respectively.
Therefore, the current supplied to the LED groups 142 1 and 142 2 when DIM illumination is used is expressed by Expression (4).
[LED照明回路の第二実施形態]
 次に、本発明のLED照明回路の第二実施形態について、図3を参照して説明する。
 図3は、本実施形態のLED照明回路の構成を示す回路図である。
 本実施形態は、第一実施形態と比較して、発光素子部にて過電流、過熱、断線やショートが発生した場合にLEDが破壊しないようにするために、発光素子部に供給する電流を切り換える切換回路部と、この切換回路部をオン、オフ制御するための保護回路部とを備えた点で第一実施形態と相違する。他の構成要素は、第一実施形態と同様である。
 したがって、図3において、図1と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。
[Second Embodiment of LED Lighting Circuit]
Next, 2nd embodiment of the LED lighting circuit of this invention is described with reference to FIG.
FIG. 3 is a circuit diagram showing a configuration of the LED illumination circuit of the present embodiment.
Compared with the first embodiment, the present embodiment provides a current supplied to the light emitting element portion in order to prevent the LED from being destroyed when an overcurrent, overheating, disconnection or short circuit occurs in the light emitting element portion. The present embodiment is different from the first embodiment in that a switching circuit unit for switching and a protection circuit unit for controlling on / off of the switching circuit unit are provided. Other components are the same as those in the first embodiment.
Therefore, in FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 なお、ここでは、次の項目について、順に説明する。
 (1)LED照明回路の構成
 (2)LED照明回路の動作
Here, the following items will be described in order.
(1) Configuration of LED lighting circuit (2) Operation of LED lighting circuit
(1)LED照明回路の構成
 図3に示すように、LED照明回路10-2は、電源入力端子T1、T2と、倍電圧整流回路部11と、インダクタ12-1と、切換回路部13-2と、発光回路部14-2と、を備えている。
 なお、ここでは、発光回路部14-2の構成について先に説明し、その後に、切換回路部13-2の構成について説明する。
(1) Configuration of LED Lighting Circuit As shown in FIG. 3, the LED lighting circuit 10-2 includes power input terminals T1 and T2, a voltage doubler rectifier circuit unit 11, an inductor 12-1, and a switching circuit unit 13-. 2 and a light emitting circuit unit 14-2.
Here, the configuration of the light emitting circuit unit 14-2 will be described first, and then the configuration of the switching circuit unit 13-2 will be described.
 発光回路部14-2は、発光素子部141と、保護回路部17とを備えている。
 発光素子部141は、同図に示すように、複数のLED411~41nが直列に接続されたLED群142と、複数のLED421~42nが直列に接続されたLED群142が、並列に接続されている。これらLED群142を構成するLED411~41nの数と、LED群142を構成するLED421~42nの数は、同じ(n)である。
 なお、同図においては、LED群が二つ並列に接続されているが、二つに限るものではなく、三つ以上設けて、これらを並列に接続することもできる。また、この場合、各LED群を構成するLEDの数は、いずれも同じ(n)とする。
The light emitting circuit unit 14-2 includes a light emitting element unit 141 and a protection circuit unit 17.
The light emitting element 141, as shown in the figure, a plurality of LED411 ~ 41n is an LED group 142 1 connected in series, the LED group 142 2 in which a plurality of LEDs 421 ~ 42n are connected in series, connected in parallel Has been. The number of LEDs 421 ~ 42n constituting the number of LED411 ~ 41n constituting these LED group 142 1, the LED group 142 2 are the same (n).
In the figure, two LED groups are connected in parallel. However, the number of LED groups is not limited to two, and three or more LED groups may be provided and connected in parallel. In this case, the number of LEDs constituting each LED group is the same (n).
 保護回路部17は、同図に示すように、定電圧生成部171と、第一基準電圧発生部172と、過電流検出部173と、過熱検出部174と、ラッチ回路部175と、ドライバ部176と、平準用コンデンサ15と、電圧リミッタ16と、を含んでいる。
 定電圧生成部171は、抵抗R11、R12と、ツェナーダイオード(Zener Diode)Z11と、コンデンサC11と、トランジスタQ11、Q12と、エラー表示LED11とを備えている。
 抵抗R11とエラー表示LED11とツェナーダイオードZ11は、倍電圧整流回路部11の接続部M3と接続部M2との間に、直列に接続されている。具体的には、抵抗R11の一端が倍電圧整流回路部11の接続部M3に接続され、他端がエラー表示LED11のアノードに接続され、エラー表示LED11のカソードがツェナーダイオードZ11のカソードに接続されている。そして、ツェナーダイオードZ11のアノードは、倍電圧整流回路部11の接続部M2に接続されている。
 トランジスタQ12は、ベースがエラー表示LED11とツェナーダイオードZ11との間の接続部M6に接続され、コレクタがトランジスタQ11のベースに接続され、エミッタが抵抗R12の一端に接続され、抵抗R12の他端がラッチ回路部175の増幅器AMP51の出力端子に接続されている。
 トランジスタQ11は、エミッタが抵抗R11とエラー表示LED11との間に接続され、コレクタが接続部M6に接続されている。
 コンデンサC11は、一端が接続部M6に接続され、他端が倍電圧整流回路部11の接続部M2に接続されている。
 なお、倍電圧整流回路部11の接続部M3と発光素子部141の入力端子(INLET)とを接続する経路と抵抗R11の一端とが接続された点を接続部M5とする。
As shown in the figure, the protection circuit unit 17 includes a constant voltage generation unit 171, a first reference voltage generation unit 172, an overcurrent detection unit 173, an overheat detection unit 174, a latch circuit unit 175, and a driver unit. 176, a leveling capacitor 15, and a voltage limiter 16.
The constant voltage generation unit 171 includes resistors R11 and R12, a Zener diode Z11, a capacitor C11, transistors Q11 and Q12, and an error display LED 11.
The resistor R11, the error display LED 11, and the Zener diode Z11 are connected in series between the connection part M3 and the connection part M2 of the voltage doubler rectifier circuit part 11. Specifically, one end of the resistor R11 is connected to the connection part M3 of the voltage doubler rectifier circuit unit 11, the other end is connected to the anode of the error display LED 11, and the cathode of the error display LED 11 is connected to the cathode of the Zener diode Z11. ing. The anode of the Zener diode Z11 is connected to the connection part M2 of the voltage doubler rectifier circuit part 11.
The base of the transistor Q12 is connected to the connection portion M6 between the error indication LED 11 and the Zener diode Z11, the collector is connected to the base of the transistor Q11, the emitter is connected to one end of the resistor R12, and the other end of the resistor R12 is connected It is connected to the output terminal of the amplifier AMP51 of the latch circuit unit 175.
The transistor Q11 has an emitter connected between the resistor R11 and the error display LED 11, and a collector connected to the connection portion M6.
One end of the capacitor C11 is connected to the connection portion M6, and the other end is connected to the connection portion M2 of the voltage doubler rectifier circuit portion 11.
A connection point M5 is a point where a path connecting the connection part M3 of the voltage doubler rectifier circuit part 11 and the input terminal (INLET) of the light emitting element part 141 is connected to one end of the resistor R11.
 第一基準電圧発生部172は、抵抗R21と、抵抗R22とを備えている。抵抗R21は、一端が接続部M6(定電圧生成部171の出力端子)に接続され、他端が抵抗R22の一端に接続されている。抵抗R22の他端は、倍電圧整流回路部11の接続部M2に接続されている。 The first reference voltage generator 172 includes a resistor R21 and a resistor R22. One end of the resistor R21 is connected to the connecting portion M6 (the output terminal of the constant voltage generating portion 171), and the other end is connected to one end of the resistor R22. The other end of the resistor R22 is connected to the connection M2 of the voltage doubler rectifier circuit unit 11.
 過電流検出部173は、抵抗R31、R32、R33、R34と、ダイオードD31、D32、D33、D34とを備えている。
 具体的には、抵抗R31は、一端がLED群142の終末端子(LED41nのカソード)に接続され、他端が倍電圧整流回路部11の接続部M2に接続されている。抵抗R32は、一端が接続部M6に接続され、他端がダイオードD32のアノードに接続され、ダイオードD32のカソードがラッチ回路部175の増幅器AMP51の正入力端子(OR回路接続部M10(後述))に接続されている。抵抗R33は、一端がLED群142の終末端子(LED42nのカソード)に接続され、他端が倍電圧整流回路部11の接続部M2に接続されている。抵抗R34は、一端が接続部M6に接続され、他端がダイオードD34のアノードに接続され、ダイオードD34のカソードがラッチ回路部175の増幅器AMP51の正入力端子に接続されている。ダイオードD31は、アノードが抵抗R32とダイオードD32との間に接続され、カソードがLED群142の終末端子(LED41nのカソード)と抵抗R31との間に接続されている。ダイオードD33は、アノードが抵抗R34とダイオードD34との間に接続され、カソードがLED群142の終末端子(LED42nのカソード)と抵抗R33との間に接続されている。
The overcurrent detection unit 173 includes resistors R31, R32, R33, and R34, and diodes D31, D32, D33, and D34.
Specifically, the resistance R31, one end connected to the LED group 142 1 of end terminals (cathode of LED41n), the other end is connected to the connection portion M2 of the voltage doubler rectifier circuit 11. The resistor R32 has one end connected to the connection portion M6, the other end connected to the anode of the diode D32, and the cathode of the diode D32 connected to the positive input terminal of the amplifier AMP51 of the latch circuit portion 175 (OR circuit connection portion M10 (described later)). It is connected to the. Resistor R33 has one end connected to the end terminal of the LED group 142 2 (cathode of LED42n), the other end is connected to the connection portion M2 of the voltage doubler rectifier circuit 11. The resistor R34 has one end connected to the connection portion M6, the other end connected to the anode of the diode D34, and the cathode of the diode D34 connected to the positive input terminal of the amplifier AMP51 of the latch circuit portion 175. Diode D31 has an anode connected between the resistor R32 and the diode D32, the cathode is connected between the LED group 142 1 of end terminals (the cathode of LED41n) and a resistor R31. Diode D33 has an anode connected between the resistor R34 and the diode D34, the cathode is connected between the terminal pin of the LED group 142 2 (the cathode of LED42n) and a resistor R33.
 過熱検出部174は、抵抗R41、R42、R43と、トランジスタQ41、Q42とを備えている。
 具体的には、抵抗R41は、一端が接続部M6に接続され、他端が抵抗R42の一端に接続されている。抵抗R42の他端は、倍電圧整流回路部11の接続部M2に接続されている。トランジスタQ41は、ベースが抵抗R41と抵抗R42との間の接続部に接続され、コレクタが抵抗R43を介してトランジスタQ42のベースに接続され、エミッタが倍電圧整流回路部11の接続部M2に接続されている。トランジスタQ42は、エミッタが接続部M6に接続され、コレクタがOR回路接続部M10(後述)に接続されている。
 なお、トランジスタQ41は、LED411~41n、LED421~42n、電圧リミッタ16のいずれかに接触した位置又はそれらに近接した位置に設けられており、それらLED411~41n、LED421~42n、電圧リミッタ16が過熱した状態にあることを検知する。この検知に関する動作の詳細については、後記の「(2)LED照明回路の動作」にて詳述する。
The overheat detection unit 174 includes resistors R41, R42, and R43, and transistors Q41 and Q42.
Specifically, the resistor R41 has one end connected to the connection portion M6 and the other end connected to one end of the resistor R42. The other end of the resistor R42 is connected to the connection M2 of the voltage doubler rectifier circuit unit 11. The transistor Q41 has a base connected to the connection between the resistors R41 and R42, a collector connected to the base of the transistor Q42 via the resistor R43, and an emitter connected to the connection M2 of the voltage doubler rectifier circuit unit 11. Has been. The transistor Q42 has an emitter connected to the connection portion M6 and a collector connected to an OR circuit connection portion M10 (described later).
The transistor Q41 is provided at a position in contact with or close to any of the LEDs 411 to 41n, the LEDs 421 to 42n, and the voltage limiter 16, and the LEDs 411 to 41n, the LEDs 421 to 42n, and the voltage limiter 16 are overheated. Detects that it is in the state. The details of the operation related to this detection will be described in detail in “(2) Operation of LED illumination circuit” described later.
 ラッチ回路部175は、抵抗R51と、コンデンサC51、C52と、増幅器AMP51とを備えている。具体的には、抵抗R51は、一端が増幅器AMP51の正入力端子に接続され、他端が倍電圧整流回路部11の接続部M2に接続されている。コンデンサC52は、一端が増幅器AMP51の正入力端子に接続され、他端が倍電圧整流回路部11の接続部M2に接続されている。コンデンサC51は、一端が増幅器AMP51の出力端子に接続され、他端が増幅器AMP51の正入力端子に接続されている。増幅器AMP51は、負入力端子が第一基準電圧発生部172の抵抗R21と抵抗R22との間の接続部M8に接続され、出力端子が、コンデンサC51の一端と、ドライバ部176の抵抗R61の一端に接続されている。このような構成により、ラッチ回路部175は、単安定マルチバイブレータを形成している。
 なお、増幅器AMP51の正入力端子と抵抗R51の一端とコンデンサC51の他端が接続された接続部を、OR回路接続部M10とする。
The latch circuit unit 175 includes a resistor R51, capacitors C51 and C52, and an amplifier AMP51. Specifically, one end of the resistor R51 is connected to the positive input terminal of the amplifier AMP51, and the other end is connected to the connection portion M2 of the voltage doubler rectifier circuit portion 11. One end of the capacitor C52 is connected to the positive input terminal of the amplifier AMP51, and the other end is connected to the connection portion M2 of the voltage doubler rectifier circuit portion 11. The capacitor C51 has one end connected to the output terminal of the amplifier AMP51 and the other end connected to the positive input terminal of the amplifier AMP51. The amplifier AMP51 has a negative input terminal connected to the connection portion M8 between the resistor R21 and the resistor R22 of the first reference voltage generation unit 172, and an output terminal connected to one end of the capacitor C51 and one end of the resistor R61 of the driver unit 176. It is connected to the. With such a configuration, the latch circuit portion 175 forms a monostable multivibrator.
A connection portion where the positive input terminal of the amplifier AMP51, one end of the resistor R51, and the other end of the capacitor C51 are connected is referred to as an OR circuit connection portion M10.
 ドライバ部176は、抵抗R61、R62、R63、R64、R65と、コンデンサC61と、増幅器AMP61と、インバータINV61とを備えている。具体的には、抵抗R61は、一端がラッチ回路部175の増幅器AMP51の出力端子に接続され、他端が増幅器AMP61の正入力端子に接続されている。抵抗R62は、一端が増幅器AMP61の正入力端子に接続され、他端が定電圧生成部171の接続部M6に接続されている。抵抗R63は、一端が増幅器AMP61の正入力端子に接続され、他端が増幅器AMP61の出力端子に接続されている。抵抗R64は、一端が増幅器AMP61の出力端子に接続され、他端が、増幅器AMP61の負入力端子に接続されている。抵抗R65は、一端が増幅器AMP61の負入力端子に接続され、他端が、倍電圧整流回路部11の接続部M2に接続されている。コンデンサC61は、一端が増幅器AMP61の負入力端子に接続され、他端が倍電圧整流回路部11の接続部M2に接続されている。増幅器AMP61の出力端子は、反転回路INV61の入力端子に接続され、反転回路INV61の出力端子は、切換回路部13-2の抵抗135(後述)の一端に接続されている。 The driver unit 176 includes resistors R61, R62, R63, R64, R65, a capacitor C61, an amplifier AMP61, and an inverter INV61. Specifically, one end of the resistor R61 is connected to the output terminal of the amplifier AMP51 of the latch circuit unit 175, and the other end is connected to the positive input terminal of the amplifier AMP61. The resistor R62 has one end connected to the positive input terminal of the amplifier AMP61 and the other end connected to the connection unit M6 of the constant voltage generation unit 171. The resistor R63 has one end connected to the positive input terminal of the amplifier AMP61 and the other end connected to the output terminal of the amplifier AMP61. The resistor R64 has one end connected to the output terminal of the amplifier AMP61 and the other end connected to the negative input terminal of the amplifier AMP61. The resistor R65 has one end connected to the negative input terminal of the amplifier AMP61 and the other end connected to the connection M2 of the voltage doubler rectifier circuit unit 11. The capacitor C61 has one end connected to the negative input terminal of the amplifier AMP61 and the other end connected to the connection M2 of the voltage doubler rectifier circuit unit 11. The output terminal of the amplifier AMP61 is connected to the input terminal of the inverting circuit INV61, and the output terminal of the inverting circuit INV61 is connected to one end of a resistor 135 (described later) of the switching circuit unit 13-2.
 このドライバ部176の構成は、換言すれば、次のようになっている。増幅器AMP61の出力端子から負入力端子に、負帰還回路として、抵抗R64とコンデンサC61と抵抗R65とで分圧した積分遅延回路が接続されている。増幅器AMP61の正入力端子には、正帰還回路として、抵抗R63を通して、定電圧生成部171で生成された定電圧Ecを抵抗R61と抵抗R62で分圧する接続部が接続されている。このような構成により、ドライバ部176は、非安定マルチバイブレータ(ASTABLE MULTIVIBRATOR)を形成している。
 なお、反転回路INV61の出力端子をドライバ部176の出力端子M11とする。また、ラッチ回路部175の増幅器AMP51の電源と、ドライバ部176の増幅器AMP61の電源は、いずれも定電圧生成部171の定電圧Ecから供給されている。
In other words, the configuration of the driver unit 176 is as follows. An integral delay circuit divided by a resistor R64, a capacitor C61, and a resistor R65 is connected as a negative feedback circuit from the output terminal to the negative input terminal of the amplifier AMP61. The positive input terminal of the amplifier AMP61 is connected as a positive feedback circuit through a resistor R63 to a connection that divides the constant voltage Ec generated by the constant voltage generator 171 using the resistors R61 and R62. With this configuration, the driver unit 176 forms an astable multivibrator (ASTABLE MULTIVIBRATOR).
Note that the output terminal of the inverting circuit INV61 is referred to as an output terminal M11 of the driver unit 176. Further, the power supply of the amplifier AMP51 of the latch circuit unit 175 and the power supply of the amplifier AMP61 of the driver unit 176 are both supplied from the constant voltage Ec of the constant voltage generation unit 171.
 電圧リミッタ16は、倍電圧整流回路部11の接続部M3と接続部M2との間に接続されるとともに、平準用コンデンサ15に並列に接続されている。 The voltage limiter 16 is connected between the connection part M3 and the connection part M2 of the voltage doubler rectifier circuit part 11, and is connected in parallel to the leveling capacitor 15.
 切換回路部13-2は、第一の電源入力端子T1と第二の電源入力端子T2との間で、インダクタ12-1の両端子及び倍電圧整流回路部11の入力端子M1と接続部M4とともに直列に接続されている。
 この切換回路部13-2は、コンデンサ131と、トライアックである主スイッチ132’と、光伝達素子133と、ディマスイッチ134と、抵抗135とを備えている。
 具体的には、コンデンサ131は、一端がインダクタ12-1の他端(接続部M0)に接続され、他端が倍電圧整流回路部11の接続部M1に接続されている。主スイッチ132’であるトライアックは、T2端子がインダクタ12-1の他端(接続部M0)に接続され、T1端子が倍電圧整流回路部11の接続部M1に接続され、ゲートが光伝達素子133の受光部133(後述)に接続されている。光伝達素子133は、発光ダイオードである発光部133とトライアックである受光部133とを備え、発光ダイオードのアノードがディマスイッチ134のx接点に接続され、カソードが倍電圧整流回路部11の接続部M2に接続され、トライアックのT1端子が主スイッチ132’のゲートに接続され、T2端子が主スイッチ132’のT2端子に接続されている。ディマスイッチ134は、二つの接点(x接点、y接点)間で切り換えを行う手動の切換スイッチであって、y接点が開放された状態(何も接続されていない状態)となっている。抵抗135は、一端がドライバ部176の反転回路INV61の出力端子に接続され、他端がディマスイッチ134のコモン端子に接続されている。
 なお、トライアックは、一般に、T1、T2、ゲートの三つの入出力端子を有しているが、電源入力端子T1、T2との混同を避けるため、本実施形態及び以降の各実施形態においては、トライアックのT1をT1端子、トライアックのT2をT2端子というものとする。
The switching circuit unit 13-2 includes both terminals of the inductor 12-1 and the input terminal M1 and the connection unit M4 of the voltage doubler rectifier circuit unit 11 between the first power input terminal T1 and the second power input terminal T2. And connected in series.
The switching circuit section 13-2 includes a capacitor 131, a triac main switch 132 ′, a light transmission element 133, a dimmer switch 134, and a resistor 135.
Specifically, one end of the capacitor 131 is connected to the other end (connection portion M0) of the inductor 12-1, and the other end is connected to the connection portion M1 of the voltage doubler rectifier circuit portion 11. In the triac that is the main switch 132 ′, the T2 terminal is connected to the other end (connection portion M0) of the inductor 12-1, the T1 terminal is connected to the connection portion M1 of the voltage doubler rectifier circuit portion 11, and the gate is the light transmission element. 133 is connected to a light receiving portion 133 2 (described later). Light transmitting element 133, and a light receiving portion 133 2 is a light emitting portion 133 1 and the triac is a light emitting diode, an anode of the light emitting diode is connected to the x contacts the dimmer switch 134 and a cathode of the voltage doubler rectifier circuit 11 Connected to the connection portion M2, the T1 terminal of the triac is connected to the gate of the main switch 132 ′, and the T2 terminal is connected to the T2 terminal of the main switch 132 ′. The dimmer switch 134 is a manual changeover switch that switches between two contacts (x contact, y contact), and is in a state in which the y contact is open (a state in which nothing is connected). One end of the resistor 135 is connected to the output terminal of the inverting circuit INV61 of the driver unit 176, and the other end is connected to the common terminal of the dimmer switch 134.
In general, the triac has three input / output terminals T1, T2, and a gate. However, in order to avoid confusion with the power input terminals T1 and T2, in this embodiment and each of the following embodiments, The triac T1 is referred to as a T1 terminal, and the triac T2 is referred to as a T2 terminal.
(2)LED照明回路の動作
 LED照明回路10-2の動作について、図3を参照して説明する。
 なお、ここでは、次の項目について、順に説明する。
 (2-1)保護回路部17の構成各部の機能及び動作
 (2-2)切換回路部13-2の構成各部の機能及び動作
 (2-3)ディマスイッチ134がx接点に接続されている場合の動作
 (2-4)ディマスイッチ134がy接点に接続されている場合の動作
(2) Operation of LED Lighting Circuit The operation of the LED lighting circuit 10-2 will be described with reference to FIG.
Here, the following items will be described in order.
(2-1) Function and operation of each component of protection circuit unit 17 (2-2) Function and operation of each component of switching circuit unit 13-2 (2-3) Dima switch 134 is connected to x contact (2-4) Operation when the dimmer switch 134 is connected to the y contact
(2-1)保護回路部17の構成各部の機能及び動作
 ここでは、保護回路部17を構成する各部の機能及び動作について説明する。
 なお、以降の説明において、「通常動作」とは、発光素子部141のLED群142、LED群142が通常の輝度で発光しているときのLED照明回路10-2の動作をいう。また、「ディマ動作」とは、LED群142、LED群142が、「通常動作」において発光する輝度よりも低い輝度で発光しているときのLED照明回路10-2の動作をいう。
(2-1) Functions and Operations of Configuration Parts of Protection Circuit Unit 17 Here, functions and operations of the units constituting the protection circuit unit 17 will be described.
In the following description, “normal operation” refers to the operation of the LED illumination circuit 10-2 when the LED group 142 1 and the LED group 142 2 of the light emitting element unit 141 emit light with normal luminance. The “dimming operation” refers to an operation of the LED illumination circuit 10-2 when the LED group 142 1 and the LED group 142 2 emit light with a luminance lower than that emitted in “normal operation”.
 定電圧生成部171は、倍電圧整流回路部11の接続部M3からの電圧を、抵抗R11と、コンデンサC11を並列に接続したツェナーダイオードZ11とによって分圧し、それら抵抗R11とツェナーダイオードZ11及びコンデンサC11との接続部M6に生じた定電圧Ecを出力する。
 なお、増幅器AMP61の電源として供給している定電圧生成部171は、倍電圧整流回路部11の接続部M3から抵抗R11を通した少ない電流(例えば1mA)により定電圧Ecを生成している。定電圧Ecを得るツェナーダイオードZ11と並列にコンデンサC11を接続することにより、このコンデンサC11に蓄積された電荷により、後述の通り、増幅器AMP61の出力端子から抵抗135を通して、20mAのパルス電流を流すことができる。
The constant voltage generation unit 171 divides the voltage from the connection unit M3 of the voltage doubler rectifier circuit unit 11 by the resistor R11 and the Zener diode Z11 in which the capacitor C11 is connected in parallel, and the resistor R11, the Zener diode Z11, and the capacitor The constant voltage Ec generated at the connection M6 with C11 is output.
Note that the constant voltage generation unit 171 that is supplied as the power source of the amplifier AMP61 generates the constant voltage Ec with a small current (for example, 1 mA) passing through the resistor R11 from the connection unit M3 of the voltage doubler rectifier circuit unit 11. By connecting a capacitor C11 in parallel with the Zener diode Z11 that obtains the constant voltage Ec, a 20 mA pulse current is caused to flow from the output terminal of the amplifier AMP61 through the resistor 135, as will be described later, by the charge accumulated in the capacitor C11. Can do.
 また、定電圧生成部171においては、接続部M5から抵抗R11を通して接続部M6へ流れる電流経路に異常検出状態表示部であるエラー表示LED11とトランジスタQ11との並列回路を挿入し、トランジスタQ11のベースをトランジスタQ12のコレクタに接続し、トランジスタQ12のベースを接続部M6(Ec)に接続し、トランジスタQ12のエミッタと増幅器AMP51の出力端子との間を抵抗R12を介して接続している。
 ここで、過電流等の異常が発生していない通常状態では、ラッチ回路部175の増幅器AMP51の出力がローレベル(low level)なので、抵抗R12を通して流れるトランジスタQ12のエミッタ電流は、当該トランジスタQ12のコレクタを通してトランジスタQ11のベースに流れてトランジスタQ11をオンにするので、エラー表示LED11は点灯しない。
 一方、異常が発生すると、増幅器AMP51の出力がハイレベル(high level)になり、トランジスタQ12とトランジスタQ11の両方がオフとなるので、エラー表示LED11が点灯して「異常」を表示する。
In the constant voltage generator 171, a parallel circuit of the error display LED 11, which is an abnormality detection state display unit, and the transistor Q 11 is inserted into the current path flowing from the connection unit M 5 to the connection unit M 6 through the resistor R 11, and the base of the transistor Q 11 is inserted. Is connected to the collector of the transistor Q12, the base of the transistor Q12 is connected to the connection portion M6 (Ec), and the emitter of the transistor Q12 and the output terminal of the amplifier AMP51 are connected via a resistor R12.
Here, in a normal state where no abnormality such as an overcurrent has occurred, the output of the amplifier AMP51 of the latch circuit unit 175 is at a low level, so that the emitter current of the transistor Q12 flowing through the resistor R12 is the current of the transistor Q12. Since the transistor Q11 is turned on by flowing to the base of the transistor Q11 through the collector, the error display LED 11 is not lit.
On the other hand, when an abnormality occurs, the output of the amplifier AMP51 goes to a high level (high level) and both the transistor Q12 and the transistor Q11 are turned off, so that the error display LED 11 is lit and displays “abnormal”.
 第一基準電圧発生部172は、直列接続された抵抗R21と抵抗R22により、定電圧生成部171からの定電圧Ecを分圧(抵抗分割)する。この分圧により抵抗R21と抵抗R22との接続部M8に生じた電圧は、電流の上限を設定する第一基準電圧として、ラッチ回路部175の増幅器AMP51の負入力端子に入力される。 The first reference voltage generation unit 172 divides the constant voltage Ec from the constant voltage generation unit 171 (resistance division) by the resistors R21 and R22 connected in series. The voltage generated at the connection portion M8 between the resistor R21 and the resistor R22 by this voltage division is input to the negative input terminal of the amplifier AMP51 of the latch circuit portion 175 as the first reference voltage for setting the upper limit of the current.
 過電流検出部173は、LED群142に過電流が流れたことを抵抗R31の降下電圧として検出するとともに、LED群142に過電流が流れたことを抵抗R33の降下電圧として検出し、かつ、ダイオードD32とダイオードD34とのOR結合により、抵抗R31に生じた降下電圧と抵抗R33に生じた降下電圧のいずれか高い方の電圧が、OR回路接続部M10(抵抗R51)に掛かるようになっている。 Overcurrent detection unit 173, and detects that an overcurrent flows to the LED group 142 1 as the voltage drop of the resistor R31, detects that an overcurrent flows to the LED group 142 2 as the voltage drop of the resistor R33, In addition, due to the OR coupling between the diode D32 and the diode D34, the higher one of the voltage drop generated in the resistor R31 and the voltage drop generated in the resistor R33 is applied to the OR circuit connection unit M10 (resistor R51). It has become.
 なお、LED群142及び142に通常の電流(通常動作状態において流れる電流)が流れているときに抵抗R31、R33に生じる降下電圧は、LED群142及び142に過電流が流れたときに抵抗R31、R33に生じる降下電圧よりも低くなる。よって、前者の場合は、OR回路接続部M10の電位がローレベルで維持される。
 また、過電流検出部173の抵抗R32、R34は、接続部M6に接続しているが、接続部M5に接続することもできる。
Incidentally, the voltage drop occurring in the resistor R31, R33 when the LED group 142 1 and 142 2 to the normal current (current flowing in the normal operation state) is flowing, overcurrent flows through the LED group 142 1 and 142 2 Sometimes it becomes lower than the voltage drop generated in the resistors R31 and R33. Therefore, in the former case, the potential of the OR circuit connection unit M10 is maintained at a low level.
Moreover, although resistance R32, R34 of the overcurrent detection part 173 is connected to the connection part M6, it can also be connected to the connection part M5.
 過熱検出部174は、定電圧生成部171から出力された定電圧Ecを、定電圧生成部171の接続部M6と接続部M2の間に設けた抵抗R41と抵抗R42により分圧(抵抗分割)する。そして、それら抵抗R41と抵抗R42との間に生じた電圧を、第二基準電圧として、トランジスタQ41のベースに入力する。
 第二基準電圧は、所定温度におけるトランジスタQ41のコレクタに所定の電流(例えば約100μA)が流れるときのベース-エミッタ間電圧Vbe(例えば、約0.40V)に設定されている。
The overheat detection unit 174 divides the constant voltage Ec output from the constant voltage generation unit 171 by a resistor R41 and a resistor R42 provided between the connection unit M6 and the connection unit M2 of the constant voltage generation unit 171 (resistance division). To do. The voltage generated between the resistors R41 and R42 is input to the base of the transistor Q41 as the second reference voltage.
The second reference voltage is set to a base-emitter voltage Vbe (for example, about 0.40 V) when a predetermined current (for example, about 100 μA) flows through the collector of the transistor Q41 at a predetermined temperature.
 トランジスタQ41は、温度検出用のトランジスタであり、例えば、NPN型バイポーラトランジスタなどを用いることができる。このトランジスタQ41は、LED群142、142を構成するLED411~41n、421~42nの近傍など、LED411~41n、421~42nの温度を検出可能な適宜箇所に配置されている。
 このトランジスタQ41が所定の温度以上になると、定電圧Ecの接続部M6から抵抗R43を通してコレクタ電流が流れ始め、このコレクタ電流がトランジスタQ42により増幅され、反転される。そして、このコレクタ電流が所定の電流値(例えば約100μA)に達したときに、ラッチ回路部175の抵抗R51に流れて、OR回路接続部M10の電位をハイレベルにする。
 そして、OR回路接続部M10の電位が接続部M8の電位を上回ると、ラッチ回路部175の増幅器AMP51の出力端子がハイレベルとなる。すなわち、定電圧Ecの接続部M6から抵抗R43を通して流れるトランジスタQ41のコレクタ電流が所定の電流に達したときにラッチ回路部175をトリガするように、抵抗R51と抵抗R43の各抵抗値が設定されている。
The transistor Q41 is a temperature detecting transistor, and for example, an NPN bipolar transistor can be used. The transistor Q41, such as near the LED411 ~ 41n, 421 ~ 42n constituting the LED group 142 1, 142 2 are disposed in LED411 ~ 41n, 421 ~ appropriate positions temperature capable of detecting the 42n.
When the transistor Q41 reaches a predetermined temperature or higher, a collector current starts to flow from the connection portion M6 of the constant voltage Ec through the resistor R43, and this collector current is amplified and inverted by the transistor Q42. When this collector current reaches a predetermined current value (for example, about 100 μA), the current flows through the resistor R51 of the latch circuit unit 175, and the potential of the OR circuit connection unit M10 is set to the high level.
When the potential of the OR circuit connection unit M10 exceeds the potential of the connection unit M8, the output terminal of the amplifier AMP51 of the latch circuit unit 175 becomes high level. That is, the resistance values of the resistor R51 and the resistor R43 are set so that the latch circuit unit 175 is triggered when the collector current of the transistor Q41 flowing through the resistor R43 from the connection portion M6 of the constant voltage Ec reaches a predetermined current. ing.
 ラッチ回路部175は、増幅器AMP51の負入力端子(出力端子の極性が反転する入力端子)に所定のバイアス(bias)電圧(図3においては、第一基準電圧発生部172からの第一基準電圧)を掛け、OR回路接続部M10と接続した正入力端子(出力端子の極性が反転しない入力端子)と出力端子との間にコンデンサC51を接続し、正入力端子と倍電圧整流回路部11の接続部M2との間に抵抗R51を接続した、単安定マルチバイブレータを構成している。
 また、ドライバ部176は、「(1)LED照明回路の構成」にて説明したように、非安定マルチバイブレータを構成している。
The latch circuit unit 175 has a predetermined bias voltage (a first reference voltage from the first reference voltage generation unit 172 in FIG. 3) applied to a negative input terminal (an input terminal where the polarity of the output terminal is inverted) of the amplifier AMP51. ) And a capacitor C51 is connected between the positive input terminal (input terminal where the polarity of the output terminal is not inverted) connected to the OR circuit connection unit M10 and the output terminal, and the positive input terminal and the voltage doubler rectifier circuit unit 11 A monostable multivibrator is configured in which a resistor R51 is connected to the connection portion M2.
Further, as described in “(1) Configuration of LED illumination circuit”, the driver unit 176 forms an astable multivibrator.
 これらラッチ回路部175とドライバ部176は、次のように動作する。
 過電流検出部173又は過熱検出部174で異常が検知されていない通常動作においては、OR回路接続部M10の電位がローレベルで維持されている。このOR回路接続部M10の電位が接続部M8の電位よりも低いため、ラッチ回路部175の増幅器AMP51の出力端子の電位もローレベルとなり、定電圧生成部171のトランジスタQ12、Q11がオンとなる。ここで、ドライバ部176においては、抵抗R62と抵抗R61により定電圧Ecを分圧したバイアス電圧が増幅器AMP61の正入力端子に印加され、この増幅器AMP61が負のデューティ制御されたパルス列信号を発振し、反転回路INV61がそのパルス列信号を正のパルス列信号に反転し、切換回路部13-2に送って、主スイッチ132’をオン状態に保ち、通常照明を維持させる。
The latch circuit unit 175 and the driver unit 176 operate as follows.
In a normal operation in which no abnormality is detected by the overcurrent detection unit 173 or the overheat detection unit 174, the potential of the OR circuit connection unit M10 is maintained at a low level. Since the potential of the OR circuit connection portion M10 is lower than the potential of the connection portion M8, the potential of the output terminal of the amplifier AMP51 of the latch circuit portion 175 is also low, and the transistors Q12 and Q11 of the constant voltage generation portion 171 are turned on. . Here, in the driver unit 176, a bias voltage obtained by dividing the constant voltage Ec by the resistor R62 and the resistor R61 is applied to the positive input terminal of the amplifier AMP61, and the amplifier AMP61 oscillates a pulse train signal having a negative duty control. The inversion circuit INV61 inverts the pulse train signal to a positive pulse train signal and sends it to the switching circuit section 13-2 to keep the main switch 132 ′ in the on state and maintain the normal illumination.
 一方、過電流検出部173又は過熱検出部174で異常が検知されたときは、OR回路接続部M10の電位がハイレベルとなる。そして、増幅器AMP51の正入力端子の電位が負入力端子に接続した(所定の電圧である)基準電圧以上になると、増幅器AMP51の出力端子がハイレベルとなり、コンデンサC51を通して、正入力端子をハイレベルとするように正帰還がかかり、出力端子がハイレベルの状態で一時安定する。そして、ドライバ部176の抵抗R62と抵抗R61により定電圧Ecを分圧したバイアス電圧が上昇して、増幅器AMP61の正入力端子が負入力端子の電位より高くなり、パルス列信号の発振を停止し、その出力端子はハイレベルで安定して、反転回路INV61の出力端子M11はローレベルになる。切換回路部13-2の主スイッチ132’がオフになって、倍電圧整流回路部11から供給される電流Ibがコンデンサ131を通して供給される減少した電流に切り換わる。発光素子部141は、減少された電流Ibによりディマ照明となり、定電圧生成部171の出力電圧Ecが維持される。 On the other hand, when an abnormality is detected by the overcurrent detection unit 173 or the overheat detection unit 174, the potential of the OR circuit connection unit M10 becomes high level. When the potential of the positive input terminal of the amplifier AMP51 becomes equal to or higher than a reference voltage (which is a predetermined voltage) connected to the negative input terminal, the output terminal of the amplifier AMP51 becomes high level, and the positive input terminal is set to high level through the capacitor C51. Positive feedback is applied so that the output terminal is temporarily stabilized in a high level state. Then, the bias voltage obtained by dividing the constant voltage Ec by the resistor R62 and the resistor R61 of the driver unit 176 increases, the positive input terminal of the amplifier AMP61 becomes higher than the potential of the negative input terminal, and the oscillation of the pulse train signal is stopped. The output terminal is stable at high level, and the output terminal M11 of the inverting circuit INV61 becomes low level. The main switch 132 ′ of the switching circuit unit 13-2 is turned off, and the current Ib supplied from the voltage doubler rectifier circuit unit 11 is switched to the reduced current supplied through the capacitor 131. The light emitting element unit 141 becomes dimmer illumination by the reduced current Ib, and the output voltage Ec of the constant voltage generation unit 171 is maintained.
 過電流検出部173又は過熱検出部174が異常を検知しなくなり、OR回路接続部M10がローレベルになると、コンデンサC51の正帰還とコンデンサC52の放電によって、増幅器AMP51の正入力端子の電位が所定時間だけハイレベルを維持し、所定時間経過後に、その正入力端子の電位がローレベルとなって、出力端子の電位がローレベルに戻る単安定マルチバイブレータの動作をする。このような動作は、例えば、過熱を検知して、主スイッチ132’をオフすると、発光素子部141に流れる電流Icが減少し、温度が低下して、過熱検知しなくなり、OR回路接続部M10がローレベルになると、その時点からコンデンサC51、C52の放電が開始し、放電終了後に再び主スイッチ132’をオンして通常の照明状態に戻る。この方法により、異常な状態では通常の照明とディマ照明が交互に点灯して、発光素子部141に流す電流及び発熱による温度上昇が平均値として各設定値以上にならない範囲で、破損を防止しながら通常の照明を断続する。 When the overcurrent detection unit 173 or the overheat detection unit 174 does not detect the abnormality and the OR circuit connection unit M10 becomes low level, the potential of the positive input terminal of the amplifier AMP51 is predetermined by the positive feedback of the capacitor C51 and the discharge of the capacitor C52. The high level is maintained for a certain time, and after a predetermined time has passed, the monostable multivibrator operates so that the potential of the positive input terminal becomes low level and the potential of the output terminal returns to low level. In such an operation, for example, when overheating is detected and the main switch 132 ′ is turned off, the current Ic flowing through the light emitting element portion 141 decreases, the temperature decreases, and overheating is not detected, and the OR circuit connection portion M10. Becomes low level, discharging of the capacitors C51 and C52 starts from that point, and after the end of discharging, the main switch 132 ′ is turned on again to return to the normal lighting state. With this method, normal lighting and dimmer lighting are alternately turned on in an abnormal state, and damage is prevented within a range in which the current flowing through the light emitting element portion 141 and the temperature rise due to heat generation do not exceed the set values as average values. While normal lighting is interrupted.
 なお、ラッチ回路部175は、本実施形態においては、単安定マルチバイブレータを構成するものとしたが、例えば、コンデンサC51を抵抗に置き換えることで、双安定マルチバイブレータ(フリップフロップ)を構成することができる。この場合、異常が検出されて、増幅器AMP51の正入力端子の電位がハイレベルになると、この状態をラッチして、ディマ照明を継続させる。その後、電源を再投入することにより、異常が検出されなければ正常な状態に復帰する。
 この方法は、発光素子部141での過電流又は過熱が検出された場合の対処法として用いることができる。すなわち、そのような異常が検出されたことで、LED照明回路10-2の使用環境が当該LED照明回路10-2にとって不都合な環境(例えば、電圧値が非常に高い交流電圧Eaが供給される環境)であるものとし、これへの対処法として、減少した電流Icが発光素子部141に流れるディマ照明状態を保持することにより、LEDの破損を防止するものである。
In the present embodiment, the latch circuit unit 175 constitutes a monostable multivibrator. However, for example, by replacing the capacitor C51 with a resistor, a bistable multivibrator (flip-flop) can be constructed. it can. In this case, when an abnormality is detected and the potential of the positive input terminal of the amplifier AMP51 becomes a high level, this state is latched and the dimmer illumination is continued. Thereafter, the power is turned on again to return to a normal state if no abnormality is detected.
This method can be used as a countermeasure when an overcurrent or overheating is detected in the light emitting element portion 141. That is, when such an abnormality is detected, the use environment of the LED lighting circuit 10-2 is inconvenient to the LED lighting circuit 10-2 (for example, the AC voltage Ea having a very high voltage value is supplied). As a countermeasure to this, the LED current is prevented from being damaged by maintaining the dimmer illumination state in which the reduced current Ic flows in the light emitting element portion 141.
 ドライバ部176は、前述したように、非安定マルチバイブレータを構成している。この構成について、さらに説明する。
 ラッチ回路部175の出力がローレベルになったときは、抵抗R61とR62で定電圧Eを分圧したバイアス電圧が低下して、増幅器AMP61の正入力端子の電位が負入力端子よりも低くなるので、増幅器AMP61の出力端子の電位はローレベルになる。このとき、抵抗R64を通してコンデンサC61の電圧が放電下降して、増幅器AMP61の負入力端子が正入力端子の電圧よりもローレベルになると、増幅器AMP61の出力端子の電位は反転してハイレベルになり、抵抗R63を通して抵抗R61とR62の分圧点である正入力端子の電圧が高くなる(正帰還がかかる)。これにより、負入力端子の電圧は、出力端子と負入力端子との間に接続された抵抗R64とコンデンサC61及び抵抗R65との積分回路により正方向に上昇する。そして、その負入力端子の電圧が正入力端子よりハイレベルになると、出力端子の電位は、反転してローレベルになる。これにより、抵抗R63を通して、抵抗R61とR62の分圧点である正入力端子の電圧が低くなる(正帰還がかかる)。このようなバックラッシュ特性により、反転を繰り返し、スイッチングして、増幅器AMP61は、矩形波を出力する。
As described above, the driver unit 176 forms an astable multivibrator. This configuration will be further described.
When the output of the latch circuit 175 becomes low level, the bias voltage obtained by dividing the constant voltage E by the resistors R61 and R62 decreases, and the potential of the positive input terminal of the amplifier AMP61 becomes lower than that of the negative input terminal. Therefore, the potential of the output terminal of the amplifier AMP61 becomes low level. At this time, when the voltage of the capacitor C61 discharges and drops through the resistor R64 and the negative input terminal of the amplifier AMP61 becomes lower than the voltage of the positive input terminal, the potential of the output terminal of the amplifier AMP61 is inverted and becomes high level. The voltage at the positive input terminal, which is the voltage dividing point of the resistors R61 and R62, is increased through the resistor R63 (positive feedback is applied). As a result, the voltage at the negative input terminal rises in the positive direction by the integration circuit of the resistor R64, the capacitor C61, and the resistor R65 connected between the output terminal and the negative input terminal. When the voltage of the negative input terminal becomes higher than that of the positive input terminal, the potential of the output terminal is inverted and becomes low level. As a result, the voltage at the positive input terminal, which is the voltage dividing point of the resistors R61 and R62, is reduced through the resistor R63 (positive feedback is applied). By such backlash characteristics, the inversion is repeated and switched, and the amplifier AMP61 outputs a rectangular wave.
 なお、ドライバ部176においては、ラッチ回路部175の出力がハイレベルのときに、増幅器AMP61の正入力端子の電圧の方が負入力端子の電圧よりもハイレベルとなるように負入力端子の電圧をその出力端子の電圧を抵抗R64と抵抗R65で分圧した電圧とすることにより、正入力端子よりも低い電圧になるようにして、その出力端子をハイレベルの状態で停止するようにしている。 In the driver unit 176, when the output of the latch circuit unit 175 is at a high level, the voltage at the negative input terminal is set so that the voltage at the positive input terminal of the amplifier AMP61 is higher than the voltage at the negative input terminal. Is a voltage obtained by dividing the voltage of the output terminal by the resistors R64 and R65 so that the voltage is lower than that of the positive input terminal, and the output terminal is stopped in a high level state. .
(2-2)切換回路部13-2の構成各部の機能及び動作
 ここでは、切換回路部13-2の動作のうち、主スイッチ132’の機能及び動作と、光伝達素子133の機能及び動作について説明する。
(2-2) Configuration and Operation of Each Part of Switching Circuit Unit 13-2 Here, among the operations of switching circuit unit 13-2, the function and operation of main switch 132 ′ and the function and operation of light transmission element 133 Will be described.
 (2-21)主スイッチ132’の機能及び動作
 主スイッチ132’であるトライアックは、ゲートに所定のトリガ電流を流すと、T1端子とT2端子との間が導通するオン状態を保持する。ただし、オン保持状態のときにT1端子とT2端子との間に交流の電流が流れて、その電流の極性が反転するとき、すなわち電流がゼロになると、オフ状態になり電流が流れなくなる特性がある。このような状態は、図2の中段に示す電流Iaがゼロになるときに発生する。休止期間Ts後に逆極性の電流が流れ始めるので、その時点で主スイッチ132’のゲートをトリガする必要がある。このトリガについては、後記の「(2-22)光伝達素子133の機能及び動作」にて詳述する。
(2-21) Function and Operation of Main Switch 132 ′ The triac, which is the main switch 132 ′, maintains an ON state in which the T1 terminal and the T2 terminal are conductive when a predetermined trigger current is passed through the gate. However, when an alternating current flows between the T1 terminal and the T2 terminal in the on-hold state and the polarity of the current is reversed, that is, when the current becomes zero, the current is turned off and the current does not flow. is there. Such a state occurs when the current Ia shown in the middle stage of FIG. 2 becomes zero. Since a reverse polarity current begins to flow after the rest period Ts, it is necessary to trigger the gate of the main switch 132 ′ at that time. This trigger will be described in detail later in “(2-22) Function and operation of optical transmission element 133”.
 なお、主スイッチ132’は、第一実施形態における切換回路部13-1の主スイッチ132をトライアックによる主スイッチ132’に置き換えたものである。この主スイッチ132’をオンオフ制御するために、光伝達素子133の受光部133を、そのゲートとT2端子間に接続してある。 The main switch 132 ′ is obtained by replacing the main switch 132 of the switching circuit unit 13-1 in the first embodiment with a main switch 132 ′ using a triac. To OFF control of the main switch 132 ', the light receiving portion 133 2 of the optical transmission element 133, is connected between its gate and T2 terminals.
 (2-22)光伝達素子133の機能及び動作
 光伝達素子133は、ドライバ部176からの矩形波信号によって主スイッチ132’を切り換える信号伝達素子である。この光伝達素子133は、ハイレベルの矩形波信号を受けると発光する発光部133と、この発光部133からの光を受けて主スイッチ132’のゲートに電流を流す受光部133とを備えている。このように発光部133と受光部133がアイソレート(絶縁)した光伝達素子133を設けることで、直流の矩形波信号にしたがって、交流用の主スイッチ132’をオンオフ制御することができる。
(2-22) Function and Operation of Light Transmission Element 133 The light transmission element 133 is a signal transmission element that switches the main switch 132 ′ by a rectangular wave signal from the driver unit 176. The light transmission element 133 includes a light emitting unit 133 1 that emits light when receiving a high-level rectangular wave signal, and a light receiving unit 133 2 that receives light from the light emitting unit 133 1 and flows current to the gate of the main switch 132 ′. It has. By thus emitting portion 133 1 and the light receiving portion 133 2 is provided with a light transmitting element 133 isolated (insulated), in accordance with the rectangular wave signal of a direct current, it is possible to turn on and off the main switch 132 'for the AC .
 この光伝達素子133には、例えば、フォトトライアックカプラを用いることができる。フォトトライアックカプラは、発光部133として発光ダイオードを備えるとともに、受光部133としてトライアックを備えたフォトカプラである。このフォトトライアックカプラは、次に説明する間欠駆動により動作させることができる。
 主スイッチ132’を交流電圧Eaに対して常時オン状態を保つためには、フォトトライアックカプラの受光部133をオンさせることになるが、この場合、発光部133に約10mAの電流を流す必要がある。しかし、この電流を供給するために必要な消費電力を交流電源の入力電力に換算すると、交流電源が例えば100VACのときに約1Wの電力消費となる。しかし、この1Wの消費電力は10Wの照明器具には大きすぎるので、ドライバ部176の出力をデューティ制御のパルス列にして消費電力を低減している。具体的には、例えば、反転回路INV61の出力を10μsecの間ハイレベルにして約10mA流した後、90μsecの間ローレベルにして電流を流さなければ、1/10の間欠制御(DUTY CONTROL)駆動となる。トリガ電流が0である間に主スイッチ132’がオフしても、少なくとも90μsec後にはトリガすることになる。なお、ここでは、このトリガに要する消費電力を1/10に低減したが、この間欠駆動の比率を1/20にすれば同消費電力を1/20にすることができる。このように、トリガ信号のハイレベルの期間をローレベルの期間より短くするには、増幅器AMP61の出力ではその反対にする必要があるので、負入力端子において立ち下がりが早く、立ち上がりが遅くなればよい。したがって、抵抗R61と抵抗R62で分圧した正入力端子の電圧を高くすることで得られる。
For example, a phototriac coupler can be used as the light transmission element 133. Photo-triac coupler is provided with a light-emitting diode as a light emitting unit 133 1, a photocoupler provided with a triac as the light receiving unit 133 2. This phototriac coupler can be operated by intermittent driving described below.
To keep the always-on state of the main switch 132 'to the AC voltage Ea is made to turn on the light receiving portion 133 2 of the photo-triac coupler, in this case, electric current of about 10mA to the light emitting unit 133 1 There is a need. However, when the power consumption required to supply this current is converted into the input power of the AC power source, the power consumption is about 1 W when the AC power source is 100 VAC, for example. However, since the power consumption of 1 W is too large for a 10 W lighting fixture, the power consumption is reduced by using the output of the driver unit 176 as a pulse train for duty control. Specifically, for example, if the output of the inverting circuit INV61 is set to a high level for 10 μsec and flows for about 10 mA and then is not set to a low level for 90 μsec and no current is supplied, 1/10 intermittent control (DUTY CONTROL) drive It becomes. Even if the main switch 132 ′ is turned off while the trigger current is 0, the trigger is triggered at least after 90 μsec. Although the power consumption required for this trigger is reduced to 1/10 here, the power consumption can be reduced to 1/20 if the intermittent drive ratio is 1/20. In this way, in order to make the high level period of the trigger signal shorter than the low level period, the output of the amplifier AMP61 needs to be reversed. Good. Therefore, it can be obtained by increasing the voltage at the positive input terminal divided by the resistors R61 and R62.
 なお、本実施形態においては、光伝達素子133として、フォトトライアックカプラを採用するが、光伝達素子133は、フォトトライアックカプラに限るものではなく、例えば、MOSフォトリレイ(図示せず)を採用することもできる。これらフォトトライアックカプラとMOSフォトリレイの異なるところは、前者が、出力側の受光部133としてスイッチを用いているのに対し、後者が、受光部133として抵抗変化形素子であるMOSFETを用いているところである。ただし、いずれも主スイッチ132’のゲート-T2端子間に接続して、ゲート-T2端子間に電流を流すことにより主スイッチ132’をオンオフすることができる。 In the present embodiment, a phototriac coupler is employed as the light transmission element 133. However, the light transmission element 133 is not limited to a phototriac coupler, and, for example, a MOS photo relay (not shown) is employed. You can also Different from the of these photo-triac coupler and MOS photo relay, using the former, whereas the using switch as the light receiving portion 133 and second output side, the latter, the MOSFET is a resistance variation element as the light receiving unit 133 2 It is in place. However, in either case, the main switch 132 ′ can be turned on / off by connecting between the gate and the T2 terminal of the main switch 132 ′ and passing a current between the gate and the T2 terminal.
 さらに、切換回路部13-2は、これら主スイッチ132’や光伝達素子133の他に、ドライバ部176の出力電流を定める抵抗135と、光伝達素子133にドライバ部176の出力電流を流すか否かを切り換えるディマスイッチ134とを含んでいる。これらディマスイッチ134と、抵抗135の機能及び動作については、後記の「(2-3)ディマスイッチ134がx接点に接続されている場合」及び「(2-4)ディマスイッチ134がy接点に接続されている場合」の中で詳述する。 In addition to the main switch 132 ′ and the light transmission element 133, the switching circuit unit 13-2 causes the resistor 135 that determines the output current of the driver part 176 and the output current of the driver part 176 to the light transmission element 133. And a dimmer switch 134 for switching between “no” and “no”. The functions and operations of the dimmer switch 134 and the resistor 135 are described later in “(2-3) When the dimmer switch 134 is connected to the x contact” and “(2-4) The dimmer switch 134 is set to the y contact”. This will be described in detail in “When Connected”.
 また、切換回路部13-2の主スイッチ132’をオン、オフさせるためのトリガ方式として、デューティ制御したパルス列信号をドライバ部176の反転回路INV61から入力する方法を採用している。その理由は、次の通りである。
 光伝達素子133を用いて主スイッチ132’をオンさせるには、LED133に所定量以上の電流(例えば、光伝達素子133としてシャープ製S2S5を用いた場合には、20mA以上の電流)を流す必要がある。その電流源である接続部M5の電圧が例えば150Vとすれば、トリガするのに3Wの消費電力が必要になる。
 トライアックである主スイッチ132’には自己保持特性があり、T1端子-T2端子間に電流が流れている間はオン状態を保つので、主スイッチ132’をオンさせるトリガ信号は、図4において「a」として示すように、出力時間の短いパルス(例えば、約25μs)である。その後、図4において「b」として示す間(例えば、約500μs)、トリガしていなくても、自己保持している。
 もしこの間に、主スイッチ132’に流れる電流が無くなってオフになったとしても、次に来るパルスでオンさせるようにトリガするようにしている。
Further, as a trigger method for turning on and off the main switch 132 ′ of the switching circuit unit 13-2, a method of inputting a duty-controlled pulse train signal from the inverting circuit INV 61 of the driver unit 176 is employed. The reason is as follows.
To turn on the main switch 132 'using a light transmitting element 133, a predetermined amount or more of current to LED 133 1 (e.g., in the case of using a Sharp S2S5 as the light transmitting element 133, more current 20 mA) flow There is a need. If the voltage of the connection part M5, which is the current source, is 150 V, for example, power consumption of 3 W is required for triggering.
The main switch 132 ′, which is a triac, has a self-holding characteristic and is kept on while a current flows between the T1 terminal and the T2 terminal. Therefore, the trigger signal for turning on the main switch 132 ′ is “ As shown as “a”, the pulse has a short output time (for example, about 25 μs). Thereafter, during the period indicated as “b” in FIG. 4 (for example, about 500 μs), the self-holding is performed even if the trigger is not performed.
Even if the current flowing through the main switch 132 'disappears during this time and is turned off, the trigger is made to turn on the next pulse.
 図2に示す休止期間Tsは、倍電圧整流回路部11のコンデンサ111又はコンデンサ112への充電と放電が完了した時点で発生するので、次の充、放電開始のタイミングが少し遅れても、充、放電が完了するまで主スイッチ132’は、自己保持するので、LED群に供給する平均電流は変わらない。
 この方法により、トリガに必要な電力を少なくしている(約1/20)。
The rest period Ts shown in FIG. 2 occurs when the charging and discharging of the capacitor 111 or the capacitor 112 of the voltage doubler rectifier circuit unit 11 are completed. Since the main switch 132 ′ is self-holding until the discharge is completed, the average current supplied to the LED group does not change.
This method reduces the power required for triggering (about 1/20).
(2-3)ディマスイッチ134がx接点に接続されている場合
 ここでは、ディマスイッチ134がx接点に接続されている場合であって、過電流検出部173と過熱検出部174がいずれも異常を検出していないときのLED照明回路10-2の動作について、説明する。
(2-3) When the dimmer switch 134 is connected to the x contact Here, the dimmer switch 134 is connected to the x contact, and both the overcurrent detection unit 173 and the overheat detection unit 174 are abnormal. The operation of the LED illumination circuit 10-2 when no detection is detected will be described.
 電源入力端子T1、T2に交流電圧Eaが投入されると、トライアックである主スイッチ132’は、通常オフ(NORMALY OFF)のスイッチなので、交流電圧Eaは、インダクタ12-1、コンデンサ131、倍電圧整流回路部11(接続部M1と接続部M4との間)の直列回路に印加される。このとき、コンデンサ131が倍電圧整流回路部11(接続部M1と接続部M4との間)に対して直列に挿入されているので、コンデンサ131の容量と倍電圧整流回路部11のコンデンサ部(第一コンデンサ111と第二コンデンサ112の並列回路)の合成容量は少なくなり、電流が低下する。この電流は、通常動作時(コンデンサ131が挿入されていないとき)に比べて低いため、発光素子部141に供給される電流Icが減少して、LED群142、142が低い輝度で発光する(ディマ照明)。このとき、LED群142及び142に流れる電流は、通常動作時の電流より充分低い電流であり、この電流値は、コンデンサ131の容量の選択により設定される。なお、保護回路部17の動作に必要な電流は、LED群142及び142に印加された電圧から供給されるので、極めて低い電流で動作するようになっている。 When the AC voltage Ea is input to the power input terminals T1 and T2, the main switch 132 'that is a triac is a normally OFF switch, so the AC voltage Ea is the inductor 12-1, the capacitor 131, and the voltage doubler. It is applied to the series circuit of the rectifier circuit unit 11 (between the connection unit M1 and the connection unit M4). At this time, since the capacitor 131 is inserted in series with respect to the voltage doubler rectifier circuit unit 11 (between the connection unit M1 and the connection unit M4), the capacitance of the capacitor 131 and the capacitor unit of the voltage doubler rectifier circuit unit 11 ( The combined capacity of the first capacitor 111 and the second capacitor 112 is reduced, and the current decreases. Since this current is lower than that during normal operation (when the capacitor 131 is not inserted), the current Ic supplied to the light emitting element portion 141 decreases, and the LED groups 142 1 and 142 2 emit light with low luminance. (Dima lighting). At this time, the current flowing through the LED groups 142 1 and 142 2 is sufficiently lower than the current during normal operation, and this current value is set by selecting the capacitance of the capacitor 131. The current required for the operation of the protection circuit portion 17, since it is supplied from the voltage applied to the LED group 142 1 and 142 2 are adapted to operate at very low currents.
 交流電圧Eaの投入直後、前述したようにディマ照明になると、発光素子部141の入力端子M3と接続部M2との間には、LED群142のLED411~41n(又は、LED群142のLED421~42n)が直列に接続された数nとLEDの順方向電圧Vdとで決まる電圧が印加される。発光素子部141の入力端子M3と接続部M2との間に接続された定電圧生成部171により、抵抗R11とツェナーダイオードZ11で分圧された定電圧Ecが接続部M6に生成されて、保護回路部17は、動作状態になる。ラッチ回路部175の入力端子であるOR回路接続部(負論理)M10の電位は、過電流検出部173と過熱検出部174のいずれも異常が検出されなければローレベルになり、ラッチ回路部175の出力端子の電位もローレベルとなり、ドライバ部176は発振してハイレベルのパルス列のトリガ信号を発生し、抵抗135で設定された電流がディマスイッチ134のコモン端子からx接点を通り、光伝達素子133の発光部133を駆動して受光部133がオンとなり、トライアックである主スイッチ132’のゲートとT2端子間をオンして、主スイッチ132’がオンとなり、通常動作が開始する。このとき、交流電圧Eaからは、通常動作時の電流Iaが流れ始める。 Immediately after on of the AC voltage Ea, it becomes the dimmer illumination as described above, between the connection portion M2 and the input terminal M3 of the light emitting element section 141, LED group 142 1 LED411 ~ 41n (or LED group 142 2 A voltage determined by the number n of LEDs 421 to 42n) connected in series and the forward voltage Vd of the LED is applied. The constant voltage generator 171 connected between the input terminal M3 of the light emitting element portion 141 and the connection portion M2 generates a constant voltage Ec divided by the resistor R11 and the Zener diode Z11 at the connection portion M6, and protects it. The circuit unit 17 is in an operating state. The potential of the OR circuit connection unit (negative logic) M10 that is an input terminal of the latch circuit unit 175 becomes a low level when neither an overcurrent detection unit 173 nor an overheat detection unit 174 detects an abnormality, and the latch circuit unit 175 The driver terminal 176 oscillates to generate a high-level pulse train trigger signal, and the current set by the resistor 135 passes from the common terminal of the dimmer switch 134 through the x contact to transmit light. The light emitting unit 133 1 of the element 133 is driven to turn on the light receiving unit 133 2 , the gate of the main switch 132 ′ that is a triac and the T2 terminal are turned on, the main switch 132 ′ is turned on, and normal operation starts. . At this time, the current Ia during normal operation starts to flow from the AC voltage Ea.
 このように、主スイッチ132’がオンになると、コンデンサ131の両端がショートして、このショートした主スイッチ132’に電流Iaが流れる。このとき、第一の電源入力端子T1と第二の電源入力端子T2との間は、インダクタ12-1と倍電圧整流回路部11(接続部M1と接続部M4との間)が直列に接続されたのと同じ状態となるので、発光素子部141に供給される電流Icは、倍電圧整流回路部11の第一コンデンサ111と第二コンデンサ112で設定された電流が流れる。そして、この電流Icが流れることで、発光素子部141のLED群142、142が通常の輝度で発光する。 Thus, when the main switch 132 ′ is turned on, both ends of the capacitor 131 are short-circuited, and a current Ia flows through the shorted main switch 132 ′. At this time, between the first power input terminal T1 and the second power input terminal T2, the inductor 12-1 and the voltage doubler rectifier circuit section 11 (between the connection section M1 and the connection section M4) are connected in series. Therefore, the current Ic supplied to the light emitting element unit 141 is the current set by the first capacitor 111 and the second capacitor 112 of the voltage doubler rectifier circuit unit 11. Then, by this current Ic flows, LED group 142 1 of the light emitting element 141, 142 2 emits light at normal intensity.
 ここまで、ディマスイッチ134がx接点に接続されている場合の動作について説明したが、この動作は、前述したように、過電流検出部173と過熱検出部174がいずれも異常を検出していないときの動作である。それら過電流検出部173又は過熱検出部174のいずれかが異常を検出したときの動作は、「(2-1)保護回路部17の構成各部の機能及び動作」で説明した通りである。
 なお、コンデンサ131の両端がショートして、ショートした主スイッチ132’に電流が流れるときの回路をショート回路という。
 また、ドライバ部176の増幅器AMP61と反転回路INV61は、パルス列を出力する部品又は回路に相当し、ドライバ部176は、切換回路部13-2を駆動制御する回路に相当する。
So far, the operation in the case where the dimmer switch 134 is connected to the x contact has been described. However, as described above, neither the overcurrent detection unit 173 nor the overheat detection unit 174 detects an abnormality. When is the operation. The operation when either of the overcurrent detection unit 173 or the overheat detection unit 174 detects an abnormality is as described in “(2-1) Functions and operations of components of the protection circuit unit 17”.
A circuit in which both ends of the capacitor 131 are short-circuited and a current flows through the shorted main switch 132 ′ is referred to as a short circuit.
The amplifier AMP61 and the inverting circuit INV61 of the driver unit 176 correspond to a component or circuit that outputs a pulse train, and the driver unit 176 corresponds to a circuit that drives and controls the switching circuit unit 13-2.
(2-4)ディマスイッチ134がy接点に接続されている場合
 ここでは、ディマスイッチ134がy接点に接続されている場合であって、過電流検出部173と過熱検出部174がいずれも異常を検出していないときのLED照明回路10-2の動作について、説明する。
(2-4) When the dimmer switch 134 is connected to the y contact Here, the dimmer switch 134 is connected to the y contact, and both the overcurrent detection unit 173 and the overheat detection unit 174 are abnormal. The operation of the LED illumination circuit 10-2 when no detection is detected will be described.
 ディマスイッチ134がy接点に接続されている場合において、交流電圧Eaを投入した直後のLED照明回路10-2の動作は、ディマスイッチ134がx接点に接続されている場合において交流電圧Eaを投入した直後のLED照明回路10-2の動作と同じであり、ディマ照明となる。また、交流電圧Eaを投入した直後の保護回路部17の動作、すなわち、定電圧生成部171にて定電圧Ecが生成されて保護回路部17が動作状態になり、過電流検出部173と過熱検出部174がいずれも異常を検出していなければ、OR回路接続部(負論理)M10はローレベルになり、増幅器AMP51の出力端子もローレベルとなり、ドライバ部176が発振するという動作も同じである。ただし、ディマスイッチ134のy接点は開放されているので、光伝達素子133の発光部133には電流が流れず、受光部133はオフのままの状態となり、主スイッチ132’もオフの状態となって、ディマ照明が継続する。 When the dimmer switch 134 is connected to the y contact, the operation of the LED lighting circuit 10-2 immediately after the AC voltage Ea is turned on is the AC voltage Ea applied when the dimmer switch 134 is connected to the x contact. The operation is the same as that of the LED illumination circuit 10-2 immediately after the operation, and dimmer illumination is performed. In addition, the operation of the protection circuit unit 17 immediately after the AC voltage Ea is input, that is, the constant voltage Ec is generated by the constant voltage generation unit 171, and the protection circuit unit 17 enters the operating state, and the overcurrent detection unit 173 and the overheat If none of the detection units 174 detects an abnormality, the OR circuit connection unit (negative logic) M10 becomes low level, the output terminal of the amplifier AMP51 becomes low level, and the operation of the driver unit 176 oscillating is the same. is there. However, since the y contacts the dimmer switch 134 is open, no current flows through the light emitting portion 133 1 of the optical transmission element 133, light receiving unit 133 2 will remain off, the main switch 132 'is also off Dima lighting continues in a state.
 このように、ディマスイッチ134がy接点に接続するように手動で切換操作することにより、常時ディマ照明とすることができる。
 なお、このディマ照明状態では、発光素子部141に流れる電流Icが少なくなり、電力消費も少なくなるので、過電流及び過熱検出がなくなることから、保護回路部17は異常無しとして、ラッチ回路部175の増幅器AMP51の出力端子の電位がローレベルとなり、定電圧生成部171のトランジスタQ11がオンとなって、エラー表示LED11が消灯した状態となる。
In this way, the dimmer illumination can be always made by manually performing the switching operation so that the dimmer switch 134 is connected to the y contact.
In this dimmer illumination state, the current Ic flowing through the light emitting element portion 141 is reduced and the power consumption is also reduced. Therefore, the overcurrent and overheat detection are eliminated. The potential of the output terminal of the amplifier AMP51 becomes low level, the transistor Q11 of the constant voltage generator 171 is turned on, and the error display LED 11 is turned off.
 ここまで、LED照明回路10-2の動作について詳述したが、同回路10-2は、LED群142及び142における過電流や過熱を検知したときに電流Icを減少するだけでなく、次の異常が発生した場合にも対処できる。
 例えば、異常に高い電圧の交流電圧Eaが供給されたときは、前述の式(4)に示すように、電流Icが増大するので、過電流検出部173が過電流を検出することで、ディマ照明となり、LED群142及び142の破損を防止できる。
 また、並列に接続されたLED群142又は142のいずれかが断線したときは、他のLED群142又は142に分配される電流が増加するので、この場合も、過電流検出部173が過電流を検出することで、ディマ照明となり、LED群142又は142の破損を防止できる。
So far, have been described in detail the operation of the LED lighting circuit 10-2, the circuit 10-2, not only reduce the current Ic when detecting an overcurrent and overheating in the LED group 142 1 and 142 2, It can also deal with the following abnormalities.
For example, when an abnormally high AC voltage Ea is supplied, the current Ic increases as shown in the above equation (4), so that the overcurrent detection unit 173 detects the overcurrent, thereby causing a dimmer. It becomes illuminated, thereby preventing damage to the LED group 142 1 and 142 2.
In addition, when either of the LED groups 142 1 or 142 2 connected in parallel is disconnected, the current distributed to the other LED groups 142 2 or 142 1 increases. In this case as well, the overcurrent detection unit 173 by detecting the overcurrent, becomes dimmer lighting, it can prevent breakage of the LED group 142 2 or 142 1.
 さらに、いずれかのLED群142又は142がショートしたときは、ショートした列のLED群142又は142に電流が集中し、上限電流値を超えたときに過電流の検出により電流Icが減少するので、LED411~41n、421~42nの破損を防止できる。
 しかも、発光素子部141を構成するLED群142及びLED群142がいずれも断線した場合には、発光素子部141に流れていた電流Icが発光素子部141と並列に接続された電圧リミッタ16に流れるので、平準用コンデンサ15に高い電圧が印加されるのを防ぐことができる。また、このように電流Icが流れて電圧リミッタ16が過熱したときは、その温度上昇を過熱検出部174が検知することで、電流Icが減少して、電圧リミッタ16の発熱を軽減するとともに、平準用コンデンサ15の破損、劣化を防止することができる。
 なお、電圧リミッタ16は、両端子間の電圧が大きくなると電流が増大して、所定の電圧を保つ特性のものを指し、素子としてはバリスタ、回路としては並列型安定化回路(SHUNT REGULATER)(図示せず)がある。
Further, when one of the LED groups 142 1 or 142 2 is short-circuited, current concentrates on the LED group 142 1 or 142 2 in the shorted column, and when the upper limit current value is exceeded, current Ic is detected by overcurrent detection. Therefore, the LEDs 411 to 41n and 421 to 42n can be prevented from being damaged.
Moreover, when the LED group 142 1 and the LED group 142 2 constituting the light emitting element section 141 is disconnected either the voltage limiter current Ic flowing in the light emitting element section 141 is connected in parallel with the light emitting element section 141 16, it is possible to prevent a high voltage from being applied to the leveling capacitor 15. Further, when the voltage limiter 16 is overheated due to the current Ic flowing in this manner, the overheat detection unit 174 detects the temperature rise, thereby reducing the current Ic and reducing the heat generation of the voltage limiter 16. Damage and deterioration of the leveling capacitor 15 can be prevented.
The voltage limiter 16 indicates a characteristic in which a current increases and a predetermined voltage is maintained when the voltage between both terminals is increased. The voltage limiter 16 is a varistor as an element, and a parallel stabilization circuit (SHUN REGULARTER) (as a circuit). (Not shown).
 以上説明したように、本実施形態のLED照明回路は、電源入力端子と倍電圧整流回路部との間にインダクタを設けたので、高い力率を得ることができる。
 また、LED照明回路は、過度に温度上昇した場合や過度の電流が流れた場合には異常と判断して、LED群に流れる電流を減少したディマ照明に切り換えることができる。これにより、それら過熱や過電流によるLEDの破損を防止するとともに、そのLEDの破損によりLEDが点灯不能となるなどの故障の発生を回避でき、かつ、過熱にともなう電子部品の溶融や発火による焼損などの災害の発生を抑制できる。
As described above, the LED illumination circuit according to the present embodiment can obtain a high power factor because the inductor is provided between the power input terminal and the voltage doubler rectifier circuit unit.
Further, the LED lighting circuit can determine that the LED lighting circuit is abnormal when the temperature rises excessively or when an excessive current flows, and can switch to dimmer lighting in which the current flowing through the LED group is reduced. As a result, the LED can be prevented from being damaged by overheating or overcurrent, and the occurrence of a failure such as the LED being unable to be lit due to the damage of the LED can be avoided, and the electronic component is melted or burnt due to overheating. The occurrence of disasters such as can be suppressed.
 さらに、通常照明とディマ照明とを手動で切り換えるディマスイッチを設けたので、例えば、通常照明にする必要のないLED照明装置(LED照明回路を搭載した照明装置)を、消灯せずにディマ照明にすることで、消費電力を抑えることができる。しかも、それら通常照明とディマ照明とを任意のタイミングで切り換えることができるので、例えば、生活環境や職場の状況など、TPO(Time
Place Occasion)に応じてLEDの明るさを使い分けることができる。加えて、不要なときにはディマ照明にしてLEDを休止させ、必要となったときに通常照明に復活させることで、節電効果のあるLED照明装置を実現できる。
Furthermore, since a dimmer switch for manually switching between normal illumination and dimmer illumination is provided, for example, an LED illumination device that does not require normal illumination (illumination device equipped with an LED illumination circuit) can be switched to dimmer illumination without being turned off. By doing so, power consumption can be suppressed. Moreover, since the normal lighting and the dimmer lighting can be switched at an arbitrary timing, for example, TPO (Time
Depending on the Place Occasion, the brightness of the LED can be used properly. In addition, a dimmer illumination can be used to suspend the LED when it is unnecessary, and a normal illumination can be restored when it is necessary, thereby realizing an LED illumination device having a power saving effect.
 なお、過電流検出部173と過熱検出部174は、いずれもLED群142、142に関する異常(LED群142、142に流れる過電流、又は、LED群142、142の過熱)を検出することから、「異常検出部」としての機能を有している。
 また、切換回路部13-2の光伝達素子133、ディマスイッチ134、抵抗135は、異常検出部(過電流検出部173又は過熱検出部174)で異常が検出されるとスイッチ(主スイッチ132’)を切り換えてコンデンサ131に電流を流すことから、「切換制御手段」としての機能を有している。
Incidentally, the overcurrent detection unit 173 and the overheat detecting section 174 are both LED group 142 1, 142 2 on Abnormal ( LED group 142 1, 142 2 in flowing excessive current, or, LED group 142 1, 142 2 of overheating) Therefore, it has a function as an “abnormality detection unit”.
In addition, the light transmission element 133, the dimmer switch 134, and the resistor 135 of the switching circuit unit 13-2 are switched (main switch 132 ′) when an abnormality is detected by the abnormality detection unit (overcurrent detection unit 173 or overheat detection unit 174). ) And the current flows through the capacitor 131, so that it has a function as “switching control means”.
[LED照明回路の第三実施形態(LED照明装置の第一実施形態)]
 次に、本発明のLED照明回路の第三実施形態(LED照明装置の第一実施形態)について、図5、図6を参照して説明する。図5は、蛍光灯照明器具及びLED照明管の構成を示す外観斜視図、図6は、既存のグロースタータ式蛍光灯照明器具及びLED照明管に配設されるLED照明回路の構成を示す回路図である。
 本実施形態は、LED照明回路の第一実施形態と比較して、LED照明回路を、既存の蛍光灯照明器具に適用するための回路構成とした点で相違する。すなわち、第一実施形態では、LED照明回路を適用する照明器具を特定しなかったのに対し、本実施形態では、LED照明回路を適用する器具を蛍光灯照明器具とし、この蛍光灯照明器具に適用するためのLED照明回路の構成を示した点で相違する。他の構成要素は、第一実施形態と同様である。
 したがって、図5、図6において、図1と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。
[Third Embodiment of LED Lighting Circuit (First Embodiment of LED Lighting Device)]
Next, a third embodiment of the LED lighting circuit of the present invention (first embodiment of the LED lighting device) will be described with reference to FIGS. FIG. 5 is an external perspective view showing the configuration of the fluorescent lamp lighting fixture and the LED lighting tube, and FIG. 6 is a circuit showing the configuration of the existing glow starter type fluorescent lighting fixture and the LED lighting circuit arranged in the LED lighting tube. FIG.
The present embodiment is different from the first embodiment of the LED lighting circuit in that the LED lighting circuit has a circuit configuration for applying to an existing fluorescent lamp lighting fixture. That is, in the first embodiment, the lighting fixture to which the LED lighting circuit is applied is not specified, whereas in this embodiment, the fixture to which the LED lighting circuit is applied is a fluorescent lighting fixture, and the fluorescent lighting fixture is It differs in the point which showed the structure of the LED illumination circuit for applying. Other components are the same as those in the first embodiment.
Therefore, in FIG. 5 and FIG. 6, the same components as those in FIG.
 なお、ここでは、次の項目について説明する。
 (1)蛍光灯照明器具及びLED照明管
 (2)LED照明回路
 これらのうち、(1)では、第一実施形態のLED照明回路10-1又は第二実施形態のLED照明回路10-2を配設可能な蛍光灯照明器具20及びLED照明管30の構成について説明する。また、(2)では、蛍光灯照明器具20及びLED照明管30に配設されるLED照明回路の構成について説明する。
Here, the following items will be described.
(1) Fluorescent lamp lighting equipment and LED lighting tube (2) LED lighting circuit Among these, in (1), the LED lighting circuit 10-1 of the first embodiment or the LED lighting circuit 10-2 of the second embodiment is provided. The structure of the fluorescent lamp lighting fixture 20 and the LED lighting tube 30 which can be arrange | positioned is demonstrated. Moreover, (2) demonstrates the structure of the LED illumination circuit arrange | positioned at the fluorescent lamp lighting fixture 20 and the LED illumination tube 30. FIG.
(1)蛍光灯照明器具及びLED照明管
 図5に示すように、蛍光灯照明器具20は、建物の天井などに取り付けられた板状の基部21と、この基部21に突設された複数(同図においては、二つ)の照明器具ソケット22(22a、22b)とを備えている。
 照明器具ソケット22は、基部21の下面23から垂直下方に突設された部材であって、照明器具ソケット22aと照明器具ソケット22bとの間隔は、LED照明管30の軸方向の長さとほぼ同じになっている。
(1) Fluorescent lamp illuminator and LED illuminator tube As shown in FIG. 5, the fluorescent lamp illuminator 20 includes a plate-like base 21 attached to a ceiling of a building and a plurality ( In the figure, two lighting fixture sockets 22 (22a, 22b) are provided.
The lighting fixture socket 22 is a member projecting vertically downward from the lower surface 23 of the base portion 21, and the distance between the lighting fixture socket 22 a and the lighting fixture socket 22 b is substantially the same as the axial length of the LED lighting tube 30. It has become.
 また、照明器具ソケット22aと照明器具ソケット22bは、これらが対向する面に差込穴24が穿設されている。この差込穴24にLED照明管30における照明管ソケット32a、32bの照明管ソケット端子33(後述)を差し込むことで、照明管ソケット32aと照明器具ソケット22a、照明管ソケット32bと照明器具ソケット22bがそれぞれ係合し、照明器具ソケット22a、22bがLED照明管30の両端を支持するようになっている。
 なお、図5においては、一本のLED照明管30を取り付け可能な1灯用の蛍光灯照明器具20を示しているが、蛍光灯照明器具20は、1灯用に限るものではなく、例えば、二本のLED照明管30を取り付け可能な2灯用の蛍光灯照明器具(図8参照)であってもよい。
In addition, the lighting fixture socket 22a and the lighting fixture socket 22b are provided with insertion holes 24 on the faces thereof. By inserting the light tube socket terminals 33 (described later) of the light tube sockets 32a and 32b of the LED light tube 30 into the insertion hole 24, the light tube socket 32a and the light fixture socket 22a, and the light tube socket 32b and the light fixture socket 22b. Are respectively engaged, and the lighting fixture sockets 22a and 22b support both ends of the LED lighting tube 30.
In FIG. 5, a single fluorescent lamp lighting fixture 20 to which one LED lighting tube 30 can be attached is shown, but the fluorescent lighting fixture 20 is not limited to one lamp, for example, Further, it may be a fluorescent lamp lighting fixture for two lamps (see FIG. 8) to which two LED lighting tubes 30 can be attached.
 また、蛍光灯照明器具20は、蛍光灯(内部電極間の放電にともなって蛍光物質に紫外線を照射して可視光線を発生させるもの)を発光させるための照明器具であって、建物の天井などに既設の蛍光灯照明器具を本実施形態の蛍光灯照明器具20として使用することができる。ただし、蛍光灯照明器具20は、既設の蛍光灯照明器具に限るものではなく、新規に配設された蛍光灯照明器具であってもよい。 The fluorescent lamp luminaire 20 is a luminaire for emitting a fluorescent lamp (one that emits visible light by irradiating a fluorescent substance with ultraviolet rays in accordance with discharge between internal electrodes), such as a ceiling of a building. The existing fluorescent lamp luminaire can be used as the fluorescent lamp luminaire 20 of the present embodiment. However, the fluorescent lamp luminaire 20 is not limited to the existing fluorescent lamp luminaire, and may be a newly arranged fluorescent lamp luminaire.
 LED照明管30は、円筒形状中空の管部31と、この管部31の両端に嵌合した照明管ソケット32(32a、32b)とを備えている。
 管部31は、透明又は半透明の管状部材であって、内部に基板(図示せず)が挿入されている。この基板には、発光素子部141を構成するLED群142が配置されている。そして、LED群142から放射された光は、管部31を透過して、外部に放出される。これにより、LED照明管30は、LED群142の光を対象物に照射するLED照明管として機能する。
The LED illumination tube 30 includes a cylindrical hollow tube portion 31 and illumination tube sockets 32 (32a, 32b) fitted to both ends of the tube portion 31.
The tube portion 31 is a transparent or translucent tubular member, and a substrate (not shown) is inserted therein. The LED group 142 which comprises the light emitting element part 141 is arrange | positioned at this board | substrate. And the light radiated | emitted from LED group 142 permeate | transmits the tube part 31, and is discharge | released outside. Thereby, the LED illumination tube 30 functions as an LED illumination tube that irradiates the object with the light of the LED group 142.
 照明管ソケット32は、管部31の端部の開口を閉塞する蓋部材である。この照明管ソケット32の外側の円形面には、外方へ向かって突設された照明管ソケット端子33(33a1、33a2、33b1、33b2)が形成されている。この照明管ソケット端子33を、前述した蛍光灯照明器具20における照明器具ソケット22の差込穴24に差し込むことで、そのLED照明管30を蛍光灯照明器具20に取り付けることができる。
 また、照明管ソケット32の側面には、ディマスイッチ134(又は主スイッチ132)や選択スイッチ182(後述)が設けられている。これらディマスイッチ134等は、手動で回転動作させるつまみ部と、このつまみ部を支持する支持枠が、照明管ソケット32の側面から露出するように設けられている。
 なお、本実施形態においては、それらディマスイッチ134等を照明管ソケット32の側面に設けることとするが、照明管ソケット32の側面に限るものではなく、例えばLED照明管30の裏面などに設けることもできる。
The illumination tube socket 32 is a lid member that closes the opening at the end of the tube portion 31. On the outer circular surface of the illumination tube socket 32, illumination tube socket terminals 33 (33a1, 33a2, 33b1, and 33b2) projecting outward are formed. By inserting the lighting tube socket terminal 33 into the insertion hole 24 of the lighting fixture socket 22 in the fluorescent lighting device 20 described above, the LED lighting tube 30 can be attached to the fluorescent lighting device 20.
In addition, a dimmer switch 134 (or main switch 132) and a selection switch 182 (described later) are provided on the side surface of the lighting tube socket 32. The dimmer switch 134 and the like are provided such that a knob portion that is manually rotated and a support frame that supports the knob portion are exposed from the side surface of the lighting tube socket 32.
In this embodiment, the dimmer switch 134 and the like are provided on the side surface of the lighting tube socket 32, but are not limited to the side surface of the lighting tube socket 32. For example, the dimmer switch 134 is provided on the back surface of the LED lighting tube 30. You can also.
 このように、LED照明管30は、従来公知の蛍光灯と類似の外観形状とすることができる。ただし、LED照明管30は、蛍光灯と類似の外観形状に限るものではなく、例えば、従来公知の白熱灯と類似の外観形状とすることもできる。この場合、インダクタ12-1は、LED照明回路10-2とともに白熱灯と類似の外観形状の照明管に組み込まれる。
 また、本実施形態においては、これら蛍光灯照明器具20とLED照明管30とを併せて「LED照明装置B」という。
Thus, the LED illumination tube 30 can have an external appearance similar to that of a conventionally known fluorescent lamp. However, the LED illumination tube 30 is not limited to an external shape similar to that of a fluorescent lamp, and may be an external shape similar to that of a conventionally known incandescent lamp, for example. In this case, the inductor 12-1 is incorporated into an illumination tube having an appearance shape similar to that of an incandescent lamp together with the LED illumination circuit 10-2.
In the present embodiment, the fluorescent lamp lighting device 20 and the LED lighting tube 30 are collectively referred to as “LED lighting device B”.
(2)LED照明回路
(2-1)LED照明回路の構成
 「(1)蛍光灯照明器具及びLED照明管」で説明した蛍光灯照明器具20及びLED照明管30においては、第一実施形態におけるLED照明回路10-1又は第二実施形態におけるLED照明回路10-2を配設することができる。例えば、第一実施形態におけるLED照明回路10-1をグロースタータ式の蛍光灯照明器具20及びLED照明管30に配設する場合には、そのLED照明回路10-1を、例えば、図6に示すような回路構成とすることで配設可能となる。なお、ここでは、図6に示すLED照明回路を、「LED照明回路10-3」として説明する。
(2) LED Lighting Circuit (2-1) Configuration of LED Lighting Circuit The fluorescent lamp lighting device 20 and the LED lighting tube 30 described in “(1) Fluorescent lamp lighting device and LED lighting tube” are the same as those in the first embodiment. The LED illumination circuit 10-1 or the LED illumination circuit 10-2 in the second embodiment can be provided. For example, when the LED illumination circuit 10-1 in the first embodiment is disposed in the glow starter type fluorescent lamp illumination fixture 20 and the LED illumination tube 30, the LED illumination circuit 10-1 is shown in FIG. The circuit configuration as shown in FIG. Here, the LED illumination circuit shown in FIG. 6 will be described as “LED illumination circuit 10-3”.
 同図に示すように、LED照明回路10-3は、電源入力端子T1、T2と、インダクタ(安定器)12-3と、照明器具ソケット端子25(25a1、25a2、25b1、25b2)と、照明管ソケット端子33(33a1、33a2、33b1、33b2)と、コンデンサ181と、選択スイッチ182と、切換回路部13-1と、第一の倍電圧整流回路部11と、第二の倍電圧整流回路部11’と、発光回路部14-1と、を備えている。 As shown in the figure, the LED lighting circuit 10-3 includes power input terminals T1, T2, an inductor (ballast) 12-3, a lighting fixture socket terminal 25 (25a1, 25a2, 25b1, 25b2), an illumination Tube socket terminal 33 (33a1, 33a2, 33b1, 33b2), capacitor 181, selection switch 182, switching circuit unit 13-1, first voltage rectifier circuit unit 11, and second voltage rectifier circuit A section 11 ′ and a light emitting circuit section 14-1.
 ここで、インダクタ12-3は、既設の蛍光灯照明器具20に備えられた(40W用)安定器である。この安定器は、通常、蛍光灯照明器具20の基部21の内部又は裏面などに設置されている。
 このインダクタ12-3の一次側は、一端が第一の電源入力端子T1に接続され、他端が第二の電源入力端子T2に接続されている。また、インダクタ12-3の二次側は、一端が照明器具ソケット端子25a2に接続され、他端が照明器具ソケット端子25b2に接続されている。
 なお、インダクタ12-3は、第一実施形態におけるLED照明回路10-1のインダクタ12-1に相当する。
Here, the inductor 12-3 is a ballast (for 40 W) provided in the existing fluorescent lamp lighting fixture 20. This ballast is usually installed on the inside or the back surface of the base 21 of the fluorescent lamp lighting device 20.
The primary side of the inductor 12-3 has one end connected to the first power input terminal T1 and the other end connected to the second power input terminal T2. Further, one end of the secondary side of the inductor 12-3 is connected to the lighting fixture socket terminal 25a2, and the other end is connected to the lighting fixture socket terminal 25b2.
The inductor 12-3 corresponds to the inductor 12-1 of the LED lighting circuit 10-1 in the first embodiment.
 照明器具ソケット端子25は、照明器具ソケット22の内部に配設された端子である。この照明器具ソケット端子25は、照明器具ソケット22の差込穴24にLED照明管30の照明管ソケット端子33が差し込まれたときに、この照明管ソケット端子33に接続される。これにより、照明器具20に配設された回路(照明器具側回路SK1(後述))と照明管30に配設された回路(LED照明管側回路SC(後述))が電気的に接続されて導通するようになっている。
 この照明器具ソケット端子25は、一つの照明器具ソケット22の内部に二つ配設されている。具体的には、照明器具ソケット22aの内部に照明器具ソケット端子25a1、25a2が配設されており、照明器具ソケット22bの内部に照明器具ソケット端子25b1、25b2が配設されている。
The lighting fixture socket terminal 25 is a terminal disposed inside the lighting fixture socket 22. The lighting fixture socket terminal 25 is connected to the lighting tube socket terminal 33 when the lighting tube socket terminal 33 of the LED lighting tube 30 is inserted into the insertion hole 24 of the lighting fixture socket 22. Thereby, the circuit (lighting fixture side circuit SK1 (described later)) provided in the lighting fixture 20 and the circuit (LED lighting tube side circuit SC (described later)) provided in the lighting tube 30 are electrically connected. It is designed to conduct.
Two of the lighting fixture socket terminals 25 are arranged inside one lighting fixture socket 22. Specifically, lighting fixture socket terminals 25a1 and 25a2 are disposed inside the lighting fixture socket 22a, and lighting fixture socket terminals 25b1 and 25b2 are disposed inside the lighting fixture socket 22b.
 なお、蛍光灯照明器具20には、点灯開始用のグローランプを取り付けるためのソケット26が設置されている。そして、このソケット26の第一端子26aには、照明器具ソケット端子25a1が接続されており、ソケット26の第二端子26bには、照明器具ソケット端子25b1が接続されている。これらソケット26の第一端子26aと第二端子26bには、電圧が印加されないので、グローランプが接続されていても、支障はない(例えば、接続部M4がハイレベルのとき、接続部M4’はハイレベルにならない)が、説明の都合上、グローランプは、接続されていない状態で説明する。 In addition, the fluorescent lamp luminaire 20 is provided with a socket 26 for attaching a glow lamp for starting lighting. A lighting fixture socket terminal 25 a 1 is connected to the first terminal 26 a of the socket 26, and a lighting fixture socket terminal 25 b 1 is connected to the second terminal 26 b of the socket 26. Since no voltage is applied to the first terminal 26a and the second terminal 26b of the socket 26, there is no problem even if a glow lamp is connected (for example, when the connection portion M4 is at a high level, the connection portion M4 ′). However, for the sake of explanation, the glow lamp will be explained in a state where it is not connected.
 照明管ソケット端子33は、前述したように、照明管ソケット32の外側の円形面に突設形成された端子である。この照明管ソケット端子33は、一つの照明管ソケット32に二つ形成されている。具体的には、照明管ソケット32aに照明管ソケット端子33a1、33a2が形成されており、照明管ソケット32bに照明管ソケット端子33b1、33b2が形成されている。 As described above, the lighting tube socket terminal 33 is a terminal projectingly formed on the outer circular surface of the lighting tube socket 32. Two lighting tube socket terminals 33 are formed in one lighting tube socket 32. Specifically, lighting tube socket terminals 33a1 and 33a2 are formed in the lighting tube socket 32a, and lighting tube socket terminals 33b1 and 33b2 are formed in the lighting tube socket 32b.
 コンデンサ181は、一端が照明管ソケット端子33a1に接続され、他端が照明管ソケット端子33a2に接続されている。
 選択スイッチ182は、手動の切換スイッチであって、コモン端子が接続部M0を介して切換回路部13-1の一端に接続され、y接点が照明管ソケット端子33a1に接続され、x接点が照明管ソケット端子33a2に接続されている。
One end of the capacitor 181 is connected to the light tube socket terminal 33a1, and the other end is connected to the light tube socket terminal 33a2.
The selection switch 182 is a manual changeover switch, the common terminal is connected to one end of the switching circuit part 13-1 via the connection part M0, the y contact is connected to the lighting tube socket terminal 33a1, and the x contact is illuminated. It is connected to the tube socket terminal 33a2.
 第一の倍電圧整流回路部11は、第一実施形態における倍電圧整流回路部11と同様の構成を有している。この第一の倍電圧整流回路部11は、接続部M1が切換回路部13-1の他端に接続され、接続部M2が発光回路部14-1の出力端子(OUTLET)に接続され、接続部M3が発光回路部14-1の入力端子(INLET)に接続され、接続部M4が照明管ソケット端子33b2に接続されている。 The first voltage doubler rectifier circuit unit 11 has the same configuration as the voltage doubler rectifier circuit unit 11 in the first embodiment. In the first voltage doubler rectifier circuit unit 11, the connection unit M1 is connected to the other end of the switching circuit unit 13-1, and the connection unit M2 is connected to the output terminal (OUTLET) of the light emitting circuit unit 14-1. The part M3 is connected to the input terminal (INLET) of the light emitting circuit part 14-1, and the connection part M4 is connected to the lighting tube socket terminal 33b2.
 第二の倍電圧整流回路部11’は、第一コンデンサ111と第二コンデンサ112と第三ダイオード113’と第四ダイオード114’とをブリッジ状に接続した構成となっている。ここで、第一コンデンサ111と第二コンデンサ112は、第一の倍電圧整流回路部11における第一コンデンサ111及び第二コンデンサ112と同一のものである。つまり、第一の倍電圧整流回路部11と第二の倍電圧整流回路部11’は、第一コンデンサ111及び第二コンデンサ112を共用している。また、これら第一コンデンサ111の一端と第二コンデンサ112の一端との接続部M1も、第一の倍電圧整流回路部11と第二の倍電圧整流回路部11’との共通の接続部M1となっている。
 第一コンデンサ111の他端と第三ダイオード113’のアノードとの接続部M2は、発光回路部14-1の出力端子(OUTLET)に接続されている。第二コンデンサ112の他端と第四ダイオード114’のカソードとの接続部M3は、発光回路部14-1の入力端子(INLET)に接続されている。第三ダイオード113’のカソードと第四ダイオード114’のアノードとの接続部M4’は、照明管ソケット端子33b1に接続されている。
The second voltage doubler rectifier circuit unit 11 ′ has a configuration in which a first capacitor 111, a second capacitor 112, a third diode 113 ′, and a fourth diode 114 ′ are connected in a bridge shape. Here, the first capacitor 111 and the second capacitor 112 are the same as the first capacitor 111 and the second capacitor 112 in the first voltage doubler rectifier circuit unit 11. That is, the first voltage doubler rectifier circuit unit 11 and the second voltage doubler rectifier circuit unit 11 ′ share the first capacitor 111 and the second capacitor 112. In addition, a connection portion M1 between one end of the first capacitor 111 and one end of the second capacitor 112 is also a common connection portion M1 between the first voltage doubler rectifier circuit portion 11 and the second voltage doubler rectifier circuit portion 11 ′. It has become.
A connection portion M2 between the other end of the first capacitor 111 and the anode of the third diode 113 ′ is connected to the output terminal (OUTLET) of the light emitting circuit portion 14-1. A connection part M3 between the other end of the second capacitor 112 and the cathode of the fourth diode 114 ′ is connected to an input terminal (INLET) of the light emitting circuit part 14-1. A connection portion M4 ′ between the cathode of the third diode 113 ′ and the anode of the fourth diode 114 ′ is connected to the lighting tube socket terminal 33b1.
 このような構成を備えたLED照明回路10-3は、電源入力端子T1、T2とインダクタ12-3と照明器具ソケット端子25が、蛍光灯照明器具20に備えられており、照明管ソケット端子33と、コンデンサ181と、選択スイッチ182と、切換回路部13-1と、第一の倍電圧整流回路部11と、第二の倍電圧整流回路部11’と、発光回路部14-1が、LED照明管30に備えられている。
 ここで、蛍光灯照明器具20に備えられた電源入力端子T1、T2とインダクタ12-3と照明器具ソケット端子25とにより構成される回路を、照明器具側回路SK1とする。また、LED照明管30に備えられたコンデンサ181と選択スイッチ182と切換回路部13-1と第一の倍電圧整流回路部11と第二の倍電圧整流回路部11’と発光回路部14-1と照明管ソケット端子33とにより構成される回路を、LED照明管側回路SCとする。
 このように、照明器具側回路SK1は、電源入力端子T1、T2と照明器具ソケット22a、22bとの間に配設された回路であって、第一実施形態におけるLED照明回路10-1の構成の一部(電源入力端子T1、T2、インダクタ12など)を含んでいる。また、LED照明管側回路SCは、照明管ソケット32a、32bと複数のLED411~41nとの間に配設された回路であって、第一実施形態におけるLED照明回路10-1の構成の他の一部(倍電圧整流回路部11、切換回路部13-1、発光回路部14-1など)を含んでいる。
In the LED lighting circuit 10-3 having such a configuration, the power input terminals T1, T2, the inductor 12-3, and the lighting fixture socket terminal 25 are provided in the fluorescent lamp lighting fixture 20, and the lighting tube socket terminal 33 is provided. A capacitor 181, a selection switch 182, a switching circuit unit 13-1, a first voltage doubler rectifier circuit unit 11, a second voltage doubler rectifier circuit unit 11 ′, and a light emitting circuit unit 14-1. The LED lighting tube 30 is provided.
Here, a circuit constituted by the power input terminals T1 and T2, the inductor 12-3, and the lighting fixture socket terminal 25 provided in the fluorescent lamp lighting fixture 20 is referred to as a lighting fixture side circuit SK1. Further, the capacitor 181, the selection switch 182, the switching circuit unit 13-1, the first voltage doubler rectifier circuit unit 11, the second voltage doubler rectifier circuit unit 11 ', and the light emitting circuit unit 14- provided in the LED lighting tube 30 are provided. A circuit constituted by 1 and the lighting tube socket terminal 33 is referred to as an LED lighting tube side circuit SC.
Thus, the lighting fixture side circuit SK1 is a circuit disposed between the power supply input terminals T1 and T2 and the lighting fixture sockets 22a and 22b, and the configuration of the LED lighting circuit 10-1 in the first embodiment. (Power input terminals T1, T2, inductor 12, etc.). Further, the LED lighting tube side circuit SC is a circuit disposed between the lighting tube sockets 32a and 32b and the plurality of LEDs 411 to 41n, and includes the configuration of the LED lighting circuit 10-1 in the first embodiment. (A voltage doubler rectifier circuit unit 11, a switching circuit unit 13-1, a light emitting circuit unit 14-1, etc.).
 なお、LED照明回路10-3は、第一実施形態のLED照明回路10-1をグロースタータ式蛍光灯照明器具及びLED照明管に配設する場合の回路構成であるが、その第一実施形態のLED照明回路10-1に代えて第二実施形態のLED照明回路10-2を配設することもできる。この場合の回路構成は、具体的には、図6に示すLED照明回路10-3のうち、発光回路部14-1に代えてLED照明回路10-2の発光回路部14-2を備えるとともに、切換回路部13-1に代えてLED照明回路10-2の切換回路部13-2を備えた構成となる。そして、LED照明回路10-3の照明器具側回路SK1、コンデンサ181、選択スイッチ182、第一の倍電圧整流回路部11、第二の倍電圧整流回路部11’等は、LED照明回路10-2を配設した場合でも同様の回路構成となる。
 この場合、照明器具側回路SK1は、第二実施形態におけるLED照明回路10-2の構成の一部(電源入力端子T1、T2、インダクタ12など)を含んでいる。また、LED照明管側回路SCは、第二実施形態におけるLED照明回路10-2の構成の他の一部(倍電圧整流回路部11、切換回路部13-2、発光回路部14-2など)を含んでいる。
The LED illumination circuit 10-3 has a circuit configuration in the case where the LED illumination circuit 10-1 of the first embodiment is disposed in a glow starter type fluorescent lamp luminaire and an LED illumination tube. Instead of the LED illumination circuit 10-1, the LED illumination circuit 10-2 of the second embodiment may be provided. Specifically, the circuit configuration in this case includes a light emitting circuit unit 14-2 of the LED lighting circuit 10-2 in place of the light emitting circuit unit 14-1 in the LED lighting circuit 10-3 shown in FIG. Instead of the switching circuit unit 13-1, the switching circuit unit 13-2 of the LED illumination circuit 10-2 is provided. The LED lighting circuit 10-3 includes a lighting fixture side circuit SK1, a capacitor 181, a selection switch 182, a first voltage doubler rectifier circuit unit 11, a second voltage doubler rectifier circuit unit 11 ′, and the like. Even when 2 is provided, the circuit configuration is the same.
In this case, the lighting fixture side circuit SK1 includes a part of the configuration of the LED lighting circuit 10-2 in the second embodiment (power input terminals T1, T2, inductor 12, etc.). The LED lighting tube side circuit SC is another part of the configuration of the LED lighting circuit 10-2 in the second embodiment (such as a double voltage rectifier circuit unit 11, a switching circuit unit 13-2, a light emitting circuit unit 14-2, etc. ) Is included.
(2-2)LED照明回路の動作
 図6に示すLED照明回路10-3は、次のように動作する。
 なお、切換回路部13-1の主スイッチ132は、オン状態であるものとする。
 商用交流電源ACSの交流電圧Eaは、インダクタ12-3を介して(を通って)照明器具ソケット端子25a2と照明器具ソケット端子25b2との間に印加される。
(2-2) Operation of LED Lighting Circuit The LED lighting circuit 10-3 shown in FIG. 6 operates as follows.
It is assumed that the main switch 132 of the switching circuit unit 13-1 is in an on state.
The AC voltage Ea of the commercial AC power supply ACS is applied between the lighting fixture socket terminal 25a2 and the lighting fixture socket terminal 25b2 via (through) the inductor 12-3.
 LED照明管30の照明管ソケット端子33を蛍光灯照明器具20の照明器具ソケット22の差込穴24に差し込むことにより、このLED照明管30を蛍光灯照明器具20に取り付けると、選択スイッチ182の選択により、下記の二通りの照明状態(Go)、(No)が起きる。
 例えば、選択スイッチ182がx接点に接続されている場合において、照明管ソケット端子33a2及び33b2がそれぞれ照明器具ソケット端子25a2及び25b2に接続され、照明管ソケット端子33a1及び33b1がそれぞれ照明器具ソケット端子25a1及び25b1に接続されたときは、商用交流電源ACSの交流電圧Eaは、インダクタ12-3を介して、照明管ソケット端子33a2と照明管ソケット端子33b2に印加される。これにより、その印加された電圧が、選択スイッチ182を通り、切換回路部13-1を通り、第一の倍電圧整流回路部11に印加され、発光回路部14-1に電流Ibが供給されて、LED群142が通常の輝度で発光する通常照明状態(Go)となる。
When this LED lighting tube 30 is attached to the fluorescent lamp lighting fixture 20 by inserting the lighting tube socket terminal 33 of the LED lighting tube 30 into the insertion hole 24 of the lighting fixture socket 22 of the fluorescent lamp lighting fixture 20, the selection switch 182 Depending on the selection, the following two illumination states (Go) and (No) occur.
For example, when the selection switch 182 is connected to the x contact, the light tube socket terminals 33a2 and 33b2 are connected to the light fixture socket terminals 25a2 and 25b2, respectively, and the light tube socket terminals 33a1 and 33b1 are respectively the light fixture socket terminals 25a1. And 25b1, the AC voltage Ea of the commercial AC power supply ACS is applied to the lighting tube socket terminal 33a2 and the lighting tube socket terminal 33b2 via the inductor 12-3. As a result, the applied voltage is applied to the first voltage doubler rectifier circuit unit 11 through the selection switch 182, the switching circuit unit 13-1, and the current Ib is supplied to the light emitting circuit unit 14-1. Thus, the LED group 142 is in a normal illumination state (Go) in which light is emitted with normal luminance.
 これに対し、照明管ソケットの接続を変えて、照明管ソケット端子33a2及び33b2がそれぞれ照明器具ソケット端子25a1及び25b1に接続され、照明管ソケット端子33a1及び33b1がそれぞれ照明器具ソケット端子25a2及び25b2に接続されたときは、商用交流電源ACSの交流電圧Eaは、照明管ソケット端子33a1と照明器具ソケット端子33b1に印加される。ここで、選択スイッチ182がx接点に接続されている(y接点が開放となっている)ことにより、照明管ソケット端子33a1と接続部M0との間が接続されていないので、その印加された電圧は、照明管ソケット端子33a1からコンデンサ181を通り、切換回路部13-1を通り、第二の倍電圧整流回路部11’に印加される。そして、発光回路部14-1に減少された電流Ibが供給されて、LED群142が通常よりも低い輝度で発光するディマ照明状態(No)となる。この場合は、切換回路部13-1がオン状態でディマ照明になっていることから、LED照明管30の使用者が主スイッチ132を切換操作しても、通常照明に切り換えることができない。これにより、使用者は、当該LED照明管30の接続状態が、(No)の接続であることを知得できる。また、この状態で、使用者が選択スイッチ182をy接点側に切り換えることにより、商用交流電源ACSの交流電圧Eaが第二の電圧整流回路部11’に印加され、発光回路部14-1に電流Ibが供給されるので、通常照明状態(Go)となる。 On the other hand, by changing the connection of the light tube socket, the light tube socket terminals 33a2 and 33b2 are connected to the light fixture socket terminals 25a1 and 25b1, respectively, and the light tube socket terminals 33a1 and 33b1 are connected to the light fixture socket terminals 25a2 and 25b2, respectively. When connected, the AC voltage Ea of the commercial AC power supply ACS is applied to the lighting tube socket terminal 33a1 and the lighting fixture socket terminal 33b1. Here, since the selection switch 182 is connected to the x contact (the y contact is open), the lighting tube socket terminal 33a1 and the connection portion M0 are not connected, so that the applied The voltage is applied from the lighting tube socket terminal 33a1 through the capacitor 181, through the switching circuit unit 13-1, and to the second voltage doubler rectifier circuit unit 11 '. Then, the reduced current Ib is supplied to the light emitting circuit unit 14-1, and the LED group 142 enters a dimmer illumination state (No) in which light is emitted with lower luminance than usual. In this case, since the switching circuit unit 13-1 is in the ON state and the dimmer illumination is performed, even if the user of the LED lighting tube 30 performs the switching operation of the main switch 132, the switching to the normal illumination cannot be performed. Thereby, the user can know that the connection state of the LED illumination tube 30 is (No) connection. Further, in this state, when the user switches the selection switch 182 to the y-contact side, the AC voltage Ea of the commercial AC power supply ACS is applied to the second voltage rectifying circuit unit 11 ′, and the light emitting circuit unit 14-1 is applied. Since the current Ib is supplied, the normal illumination state (Go) is entered.
 このように、LED照明回路10-3は、照明管ソケット端子33b1又は33b2のいずれかの端子に交流電圧が印加されたときには、第一の倍電圧整流回路部11又は第二の倍電圧整流回路部11’のいずれかが選択されることになるが、照明管ソケット端子33a1又は33a2のいずれかを選択する場合には、選択スイッチ182の切換で選択することになる。ここで、照明管ソケット端子33a1と接続部M0、及び、照明管ソケット端子33a2と接続部M0をそれぞれショートして選択スイッチ182を省略することが考えられるが、後述するラピッドスタータ式蛍光灯照明器具に取り付けた場合に、それら照明管ソケット端子33a1と33a2との間にヒータ電圧が印加されることになり、ラピッドスタータ式蛍光灯照明器具を破損する危険性がある。従来から、グロースタータ式とラピッドスタータ式蛍光灯器具のLED照明管30は同一形状であるために、代替のLED照明灯も同一形状となるので、安全のためにこの選択スイッチ182で切り換えることになる。
 なお、LED照明回路10-3に流れる電流(電流Ia、放電電流Ib、充電電流)は、原理的には、第一実施形態のLED照明回路10-1に流れる電流と同様であるので、ここでの説明は省略する。
As described above, the LED lighting circuit 10-3 has the first voltage doubler rectifier circuit unit 11 or the second voltage doubler rectifier circuit when an AC voltage is applied to either of the light tube socket terminals 33b1 or 33b2. One of the sections 11 ′ is selected, but when either the lighting tube socket terminal 33 a 1 or 33 a 2 is selected, the selection is made by switching the selection switch 182. Here, it is possible to omit the selection switch 182 by short-circuiting the lighting tube socket terminal 33a1 and the connection portion M0, and the lighting tube socket terminal 33a2 and the connection portion M0, respectively. , The heater voltage is applied between the lighting tube socket terminals 33a1 and 33a2, and there is a risk of damaging the rapid starter type fluorescent lamp lighting fixture. Conventionally, since the LED lighting tube 30 of the glow starter type and the rapid starter type fluorescent lamp fixture has the same shape, since the alternative LED lighting lamp has the same shape, the selection switch 182 is used for safety. Become.
Note that the current (current Ia, discharge current Ib, charging current) flowing through the LED lighting circuit 10-3 is in principle the same as the current flowing through the LED lighting circuit 10-1 of the first embodiment. The description in is omitted.
(2-3)LED照明回路の他の構成
(2-31)1灯用のラピッドスタータ式蛍光灯照明器具の場合
 次に、蛍光灯照明器具が1灯用のラピッドスタータ式蛍光灯照明器具の場合におけるLED照明回路の構成について、図7を参照して説明する。
 同図は、1灯用のラピッドスタータ式蛍光灯照明器具に備えられる照明器具側回路SK2の構成を示す回路図である。
(2-3) Other configurations of LED lighting circuit (2-31) In the case of a rapid starter type fluorescent lamp lighting fixture for one lamp Next, a fluorescent lamp lighting fixture is a rapid starter type fluorescent lamp lighting fixture for one lamp. The configuration of the LED illumination circuit in this case will be described with reference to FIG.
This figure is a circuit diagram showing a configuration of a lighting fixture side circuit SK2 provided in a rapid starter type fluorescent lamp lighting fixture for one lamp.
 同図に示すように、商用交流電源ACSの交流電圧Eaは、インダクタ(安定器)12-3’を介して、第一の照明器具ソケット22a及び第二の照明器具ソケット22bにおける照明器具ソケット端子25a(25a1及び25a2)と照明器具ソケット端子25b(25b1及び25b2)との間に印加される。
 照明器具側回路SK2の照明器具ソケット端子25a1、25a2、25b1、25b2は、接続される蛍光管の各ヒータを加熱するために設けられたヒータ用の電源端子であり、例えば、この端子間に約3Vrms程度の電圧が印加される。
As shown in the figure, the AC voltage Ea of the commercial AC power supply ACS is supplied to the lighting fixture socket terminals in the first lighting fixture socket 22a and the second lighting fixture socket 22b via the inductor (stabilizer) 12-3 ′. Applied between 25a (25a1 and 25a2) and the luminaire socket terminal 25b (25b1 and 25b2).
The lighting fixture socket terminals 25a1, 25a2, 25b1, 25b2 of the lighting fixture side circuit SK2 are heater power terminals provided to heat the heaters of the connected fluorescent tubes. A voltage of about 3 Vrms is applied.
 図7に示す照明器具側回路SK2を備えた照明器具20’(図示せず)に、図6に示すLED照明管側回路SCを備えたLED照明管30を取り付けた場合は、商用交流電源ACSの交流電圧Eaが、インダクタ12-3’を介して照明器具ソケット端子25a1及び25a2と、照明器具ソケット端子25b1及び25b2とのいずれにも、印加される。これにより、照明管ソケット端子33a1及び33a2と照明管ソケット端子33b1及び33b2のいずれの端子にも交流電圧の一方が供給されるので、選択スイッチ182は、x接点又はy接点のいずれの接点端子を選択してもよい。照明管ソケット32bの照明管ソケット端子33b2は第一の倍電圧整流回路部11の接続部M4に、照明管ソケット端子33b1は第二の倍電圧整流回路部11’の接続部M4’に接続されており、両端子間に前述のヒータ用の電圧が重畳されているので、いずれか高い電圧から電流が供給される。照明管ソケットの組み合わせを変えたときにも同様に動作するので、この場合も選択スイッチ182を切り換える必要はない。よって、この場合は、コンデンサ181及び選択スイッチ182を省略することができる。 When the LED lighting tube 30 having the LED lighting tube side circuit SC shown in FIG. 6 is attached to the lighting fixture 20 ′ (not shown) having the lighting device side circuit SK2 shown in FIG. 7, the commercial AC power supply ACS is used. The AC voltage Ea is applied to both the lighting fixture socket terminals 25a1 and 25a2 and the lighting fixture socket terminals 25b1 and 25b2 via the inductor 12-3 ′. As a result, since one of the AC voltages is supplied to both the lighting tube socket terminals 33a1 and 33a2 and the lighting tube socket terminals 33b1 and 33b2, the selection switch 182 selects either the x contact or the y contact. You may choose. The lighting tube socket terminal 33b2 of the lighting tube socket 32b is connected to the connection part M4 of the first voltage doubler rectification circuit unit 11, and the lighting tube socket terminal 33b1 is connected to the connection part M4 ′ of the second voltage doubler rectification circuit unit 11 ′. Since the heater voltage is superimposed between both terminals, the current is supplied from the higher voltage. Since the same operation is performed when the combination of the light tube sockets is changed, it is not necessary to switch the selection switch 182 in this case. Therefore, in this case, the capacitor 181 and the selection switch 182 can be omitted.
 ここで、図7に示す照明器具側回路SK2に接続されたLED照明管側回路SCの倍電圧整流回路部11又は11’の第一コンデンサ111及び第二コンデンサ112の容量は、インダクタ12-3’に含まれる力率改善のための進相コンデンサ12cと直列接続回路となるため、前述のグロースタータ式蛍光灯の照明器具側回路SK1の場合に比べて、その合成容量が低下する。したがって、LED照明管側回路SCの倍電圧整流回路部11又は11’の第一コンデンサ111及び第二コンデンサ112の容量を大きくすることにより、進相コンデンサ12c(である大きな容量、例えば5.1μF)が直列に入ることによる合成容量の低下を補い、放電電流Ibを所定の電流とすることができる。すなわち、図6に示すLED照明管側回路SCを備えたLED照明管30を、同図に示す照明器具側回路SK1を備えたグロースタータ式蛍光灯照明器具に取り付けた場合と、図7に示すラピッドスタータ式蛍光灯照明器具に取り付けた場合では、後者の倍電圧整流回路部11の第一コンデンサ111及び第二コンデンサ112の容量を大きくすることで、前者に取り付けた場合と同等の放電電流Ibを流すことができる。 Here, the capacitance of the first capacitor 111 and the second capacitor 112 of the voltage doubler rectifier circuit section 11 or 11 ′ of the LED lighting tube side circuit SC connected to the lighting fixture side circuit SK2 shown in FIG. Since the phase-advance capacitor 12c for improving the power factor included in 'is connected in series, the combined capacity thereof is reduced as compared with the case of the lighting fixture side circuit SK1 of the glow starter type fluorescent lamp described above. Therefore, by increasing the capacity of the first capacitor 111 and the second capacitor 112 of the voltage doubler rectifier circuit section 11 or 11 ′ of the LED lighting tube side circuit SC, the phase advance capacitor 12c (which is a large capacity, for example, 5.1 μF) ) Can be compensated for a decrease in the combined capacity due to entering in series, and the discharge current Ib can be set to a predetermined current. That is, when the LED lighting tube 30 provided with the LED lighting tube side circuit SC shown in FIG. 6 is attached to the glow starter type fluorescent lamp lighting device provided with the lighting device side circuit SK1 shown in FIG. When attached to a rapid starter type fluorescent lamp luminaire, the discharge current Ib equivalent to that attached to the former is increased by increasing the capacity of the first capacitor 111 and the second capacitor 112 of the latter voltage doubler rectifier circuit unit 11. Can flow.
 なお、図7に示す照明器具側回路SK2に接続されたLED照明管側回路SCの構成は、図1に示すLED照明回路10-1のうちLED照明管側回路SCに相当する部分の回路の構成であってもよく、また、図3に示すLED照明回路10-2のうちLED照明管側回路SCに相当する部分の回路の構成であってもよい。後者の場合、切換回路部13-2の主スイッチ132’をオフにすると、交流電圧の入力端子である接続部M0と倍電圧整流回路部11の接続部M1との間にコンデンサ131が挿入された回路となり、発光回路部14-2に流れる電流Ibが減少してディマ照明状態になる。このとき、主スイッチ132’をオフしてディマ照明状態にする条件は、発光素子部141の過電流又は過熱の検知による場合と、ディマスイッチ134の切り換えによる場合がある。 The configuration of the LED lighting tube side circuit SC connected to the lighting fixture side circuit SK2 shown in FIG. 7 is the circuit corresponding to the LED lighting tube side circuit SC in the LED lighting circuit 10-1 shown in FIG. The configuration may also be a circuit configuration of a portion corresponding to the LED lighting tube side circuit SC in the LED lighting circuit 10-2 shown in FIG. In the latter case, when the main switch 132 ′ of the switching circuit unit 13-2 is turned off, the capacitor 131 is inserted between the connection unit M 0 that is an input terminal for AC voltage and the connection unit M 1 of the voltage doubler rectification circuit unit 11. As a result, the current Ib flowing through the light emitting circuit unit 14-2 decreases and the dimmer illumination state is entered. At this time, the condition for turning off the main switch 132 ′ to enter the dimmer illumination state may be due to detection of an overcurrent or overheat of the light emitting element portion 141 and switching of the dimmer switch 134.
(2-32)2灯用のラピッドスタータ式蛍光灯照明器具の場合
 次に、蛍光灯照明器具が2灯用のラピッドスタータ式蛍光灯照明器具の場合のLED照明回路の構成について、図8、図9を参照して説明する。
 図8は、2灯用の蛍光灯照明器具及びLED照明管の構成を示す外観斜視図、図9は、2灯用のラピッドスタータ式蛍光灯照明器具に備えられる照明器具側回路SK3の構成を示す回路図である。
(2-32) In the case of a rapid starter type fluorescent lamp lighting fixture for two lamps Next, with respect to the configuration of the LED lighting circuit when the fluorescent lamp lighting fixture is a rapid starter type fluorescent lamp lighting fixture for two lamps, FIG. This will be described with reference to FIG.
FIG. 8 is an external perspective view showing the configuration of the fluorescent lamp illuminator for two lamps and the LED lighting tube, and FIG. 9 is the configuration of the luminaire side circuit SK3 provided in the rapid starter type fluorescent lamp illuminator for two lamps. FIG.
 図8に示すように、2灯用のラピッドスタータ式蛍光灯照明器具20''は、二本のLED照明管30を取り付け可能となっており、それら二本のLED照明管30のそれぞれに対応して、照明器具ソケット22(22a、22b、22c、22d)が配設されている。具体的には、一のLED照明管30に対応して、照明器具ソケット22a、22cが配設されており、他のLED照明管30に対応して、照明器具ソケット22b、22dが配設されている。
 なお、同図に示す2灯用のラピッドスタータ式蛍光灯照明器具20''とLED照明管30とを併せて「LED照明装置B’」という。
As shown in FIG. 8, the rapid starter type fluorescent lamp lighting equipment 20 ″ for two lamps can be attached with two LED lighting tubes 30 and corresponds to each of the two LED lighting tubes 30. And the lighting fixture socket 22 (22a, 22b, 22c, 22d) is arrange | positioned. Specifically, lighting fixture sockets 22a and 22c are arranged corresponding to one LED lighting tube 30, and lighting fixture sockets 22b and 22d are arranged corresponding to the other LED lighting tubes 30. ing.
In addition, the rapid starter type fluorescent lamp lighting fixture 20 ″ for two lamps and the LED lighting tube 30 shown in the figure are collectively referred to as “LED lighting device B ′”.
 図9に示すように、2灯用のラピッドスタータ式蛍光灯照明器具20''に備えられる照明器具側回路SK3は、図7に示す1灯用のラピッドスタータ式蛍光灯照明器具20に備えられる照明器具側回路SK2と比較して、照明器具ソケット22c、22dを新たに設けている点等で相違する。
 照明器具ソケット22cの照明器具ソケット端子25c1と照明器具ソケット22dの照明器具ソケット端子25d1、照明器具ソケット端子25c2と照明器具ソケット端子25d2は、それぞれ直接に接続され、それらの二つの接続部は、インダクタ(安定器)12-3’’に設けられている2次巻線12dを介して互いに接続されている。その他の構成は、図7に示す照明器具回路SK2の構成と同様である。
As shown in FIG. 9, the luminaire side circuit SK3 provided in the rapid starter type fluorescent lamp illuminating device 20 '' for two lights is provided in the rapid starter type fluorescent lamp illuminating device 20 for one lamp shown in FIG. Compared with the luminaire side circuit SK2, the luminaire sockets 22c and 22d are newly provided.
The luminaire socket terminal 25c1 of the luminaire socket 22c and the luminaire socket terminal 25d1 of the luminaire socket 22d, and the luminaire socket terminal 25c2 and the luminaire socket terminal 25d2 are directly connected to each other. They are connected to each other via a secondary winding 12d provided on (ballast) 12-3 ″. Other configurations are the same as the configuration of the lighting fixture circuit SK2 shown in FIG.
 図9に示す照明器具回路SK3が配設された2灯用のラピッドスタータ式蛍光灯照明器具20''にLED照明管30を取り付ける場合、一のLED照明管30は、照明器具ソケット22aと照明器具ソケット22cとの間に取り付けられ、他のLED照明管30は、照明器具ソケット22bと照明器具ソケット22dとの間に取り付けられる。これにより、それら二本のLED照明管30が、照明器具ソケット22aと照明器具ソケット22bとの間に直列に接続されることになる。
 このように、図9に示す照明器具側回路SK3を備えた蛍光灯照明器具20''に二本のLED照明管30を取り付けた場合、LED照明管側回路SCは等価的に交流で動作する容量性リアクタンス構成の定電流回路に飽和型負荷であるLED群142を直列に接続した回路であるから、前記定電流回路二個と前記負荷が二個直列に接続した回路となる。この定電流回路はコンデンサなので、等価的に二個のコンデンサを直列に接続した回路である。したがって、この二個のコンデンサに印加される電圧は、容量に反比例して配分された状態になり、二個のコンデンサに流れる同じ電流Ibが各発光回路部14-1を直列に流れて照明する。
When the LED lighting tube 30 is attached to a two-lamp rapid starter type fluorescent lamp lighting fixture 20 ″ in which the lighting fixture circuit SK3 shown in FIG. 9 is disposed, the one LED lighting tube 30 includes a lighting fixture socket 22a and a lighting fixture. The other LED lighting tube 30 is mounted between the lighting fixture socket 22c, and the other LED lighting tube 30 is mounted between the lighting fixture socket 22b and the lighting fixture socket 22d. Thereby, those two LED lighting tubes 30 are connected in series between the lighting fixture socket 22a and the lighting fixture socket 22b.
As described above, when the two LED lighting tubes 30 are attached to the fluorescent lamp lighting device 20 '' having the lighting device side circuit SK3 shown in FIG. 9, the LED lighting tube side circuit SC operates equivalently with an alternating current. Since this is a circuit in which the LED group 142, which is a saturated load, is connected in series to a constant current circuit having a capacitive reactance configuration, the circuit is a circuit in which the two constant current circuits and the two loads are connected in series. Since this constant current circuit is a capacitor, it is equivalent to a circuit in which two capacitors are connected in series. Accordingly, the voltages applied to the two capacitors are distributed in inverse proportion to the capacitance, and the same current Ib flowing through the two capacitors flows through each light emitting circuit unit 14-1 in series to illuminate. .
 2灯のうちの1灯の切換回路部13-1の主スイッチ132をオフにすると、交流電圧の入力端子である接続部M0と倍電圧整流回路部11の接続部M1との間にコンデンサ131が前述した二個のコンデンサに直列に挿入された回路となり、合成容量で決まる電流Ibが両灯に流れてディマ照明状態になる。2灯ともオフの場合は、さらに少ない合成容量による(約1/2の)電流Ibが両灯に流れてディマ照明状態になる。
 また、LED照明管側回路SCとして、図3に示すLED照明回路10-2のうちの切換回路部13-2、倍電圧整流回路部11、発光回路部14-2をLED照明管30に配設した場合、切換回路部13-2の主スイッチ132’をオフしてディマ照明状態にする条件は、発光素子部141の過電流又は過熱の検知による場合と、ディマスイッチ134の切換による場合がある。
When the main switch 132 of the switching circuit section 13-1 of one of the two lamps is turned off, the capacitor 131 is connected between the connection section M0 that is an AC voltage input terminal and the connection section M1 of the voltage doubler rectification circuit section 11. Becomes a circuit inserted in series with the two capacitors described above, and the current Ib determined by the combined capacitance flows through both lamps and enters the dimmer illumination state. When both lamps are off, a current Ib (approximately ½) with a smaller combined capacity flows through both lamps, resulting in a dimmer illumination state.
Further, as the LED lighting tube side circuit SC, the switching circuit unit 13-2, the voltage doubler rectifying circuit unit 11, and the light emitting circuit unit 14-2 of the LED lighting circuit 10-2 shown in FIG. In this case, the condition for turning off the main switch 132 ′ of the switching circuit unit 13-2 to enter the dimmer illumination state is based on detection of overcurrent or overheating of the light emitting element unit 141 and switching of the dimmer switch 134. is there.
 なお、一のLED照明管30の照明管ソケット端子33a1、33a2、33b1、33b2が、照明器具ソケット端子25a1、25a2、25c1、25c2に対してどのように接続されても、そして、他のLED照明管30の照明管ソケット端子33a1、33a2、33b1、33b2が、照明器具ソケット端子25b1、25b2、25d1、25d2に対してどのように接続されても、全ての場合において適正に両方の発光回路部14-1に放電電流Ibを供給することができる。 Note that the lighting tube socket terminals 33a1, 33a2, 33b1, and 33b2 of one LED lighting tube 30 are connected to the lighting fixture socket terminals 25a1, 25a2, 25c1, and 25c2, and other LED lightings. Regardless of how the light tube socket terminals 33a1, 33a2, 33b1, 33b2 of the tube 30 are connected to the light fixture socket terminals 25b1, 25b2, 25d1, 25d2, in both cases both light emitting circuit sections 14 are properly applied. −1 can be supplied with the discharge current Ib.
[LED照明回路の第四実施形態(LED照明装置の第二実施形態)]
 次に、本発明のLED照明回路の第四実施形態(LED照明装置の第二実施形態)について、図10を参照して説明する。同図は、本実施形態のLED照明回路の構成を示す回路図である。
 本実施形態は、LED照明回路の第一実施形態と比較したときに、通常照明とディマ照明とを切換可能とする切換回路部に代えて、電源オフ(OFF)と電源オン(ON)(通常照明)とディマ照明(DIM)との三種類の状態を切換可能とする電源切換回路部を備えた点が相違する。他の構成要素は、LED照明回路の第一実施形態と同様である。
 したがって、図10において、図1と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。
[Fourth Embodiment of LED Lighting Circuit (Second Embodiment of LED Lighting Device)]
Next, a fourth embodiment of the LED lighting circuit of the present invention (second embodiment of the LED lighting device) will be described with reference to FIG. The figure is a circuit diagram showing the configuration of the LED illumination circuit of the present embodiment.
In the present embodiment, when compared with the first embodiment of the LED lighting circuit, instead of the switching circuit unit that can switch between normal lighting and dimmer lighting, power off (OFF) and power on (ON) (normal) The difference is that a power supply switching circuit unit that can switch between three types of illumination (illumination) and dimmer illumination (DIM) is provided. Other components are the same as those of the first embodiment of the LED lighting circuit.
Therefore, in FIG. 10, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 なお、ここでは、次の項目について、順に説明する。
 (1)LED照明回路の構成
 (2)LED照明回路の動作
 (3)LED照明回路を照明器具及びLED照明管に備えた場合の構成
Here, the following items will be described in order.
(1) Configuration of LED lighting circuit (2) Operation of LED lighting circuit (3) Configuration when LED lighting circuit is provided in lighting fixture and LED lighting tube
(1)LED照明回路の構成
 図10に示すように、LED照明回路10-4は、電源入力端子T1、T2と、倍電圧整流回路部11と、インダクタ12-1と、電源切換回路部13-4と、発光回路部14-1とを備えている。
 電源切換回路部13-4は、コンデンサ131と、切換スイッチ132-4とを有している。
 切換スイッチ132-4は、1回路、3接点の手動のスイッチである。この切換スイッチ132-4は、コモン端子(COM)が第二の電源入力端子T2に接続されており、OFF接点(端子x)が開放されており、ON接点(端子y)が倍電圧整流回路部11の接続部M4に接続されており、DIM接点(端子z)がコンデンサ131の一端に接続されている。コンデンサ131の他端は、倍電圧整流回路部11の接続部M4に接続されている。
(1) Configuration of LED Lighting Circuit As shown in FIG. 10, the LED lighting circuit 10-4 includes power input terminals T1 and T2, a voltage doubler rectifier circuit unit 11, an inductor 12-1, and a power supply switching circuit unit 13. -4 and a light emitting circuit unit 14-1.
The power supply switching circuit unit 13-4 includes a capacitor 131 and a changeover switch 132-4.
The change-over switch 132-4 is a one-circuit, three-contact manual switch. The switch 132-4 has a common terminal (COM) connected to the second power input terminal T2, an OFF contact (terminal x) is opened, and an ON contact (terminal y) is a voltage doubler rectifier circuit. The DIM contact (terminal z) is connected to one end of the capacitor 131. The other end of the capacitor 131 is connected to the connection portion M4 of the voltage doubler rectifier circuit portion 11.
 なお、電源切換回路部13-4は、図10においては、第二の電源入力端子T2と倍電圧整流回路部11の接続部M4との間に直列に接続されているが、これに限るものではなく、例えば、第一の電源入力端子T1とインダクタ12-1との間に直列に接続することができる。この場合、切換スイッチ132-4のコモン端子(COM)が第一の電源入力端子T1に接続され、OFF接点(端子x)が開放され、ON接点(端子y)がインダクタ12-1の一端に接続され、DIM接点(端子z)がコンデンサ131の一端に接続され、コンデンサ131の他端がインダクタ12-1の一端に接続される。 In FIG. 10, the power supply switching circuit unit 13-4 is connected in series between the second power supply input terminal T2 and the connection unit M4 of the voltage doubler rectifier circuit unit 11, but the present invention is not limited to this. Instead, for example, the first power supply input terminal T1 and the inductor 12-1 can be connected in series. In this case, the common terminal (COM) of the changeover switch 132-4 is connected to the first power input terminal T1, the OFF contact (terminal x) is opened, and the ON contact (terminal y) is connected to one end of the inductor 12-1. The DIM contact (terminal z) is connected to one end of the capacitor 131, and the other end of the capacitor 131 is connected to one end of the inductor 12-1.
 また、電源切換回路部13-4は、図11に示すように、電源オン(ON)と電源オフ(OFF)とを切り換える電源スイッチ19と、通常照明とディマ照明とを切り換える切換回路部13-1とに分けることができる。この場合の回路構成としては、電源スイッチ19を、第二の電源入力端子T2と倍電圧整流回路部11の接続部M4との間に直列に接続し、切換回路部13-1を、インダクタ12-1と倍電圧整流回路部11の接続部M1との間に直列に接続することができる。
 すなわち、電源入力端子T1、T2間に、インダクタ12-1と、切換回路部13-1と、倍電圧整流回路部11と、電源スイッチ19とを順不同で直列に接続することができる。ただし、電源スイッチ19のCOM端子は、電源入力端子T1又はT2のいずれかに接続した回路とすることが望ましい。
Further, as shown in FIG. 11, the power supply switching circuit unit 13-4 has a power switch 19 for switching between power-on (ON) and power-off (OFF), and a switching circuit unit 13- for switching between normal illumination and dimmer illumination. It can be divided into 1. As a circuit configuration in this case, the power switch 19 is connected in series between the second power input terminal T2 and the connection part M4 of the voltage doubler rectifier circuit part 11, and the switching circuit part 13-1 is connected to the inductor 12 -1 and the connecting part M1 of the voltage doubler rectifier circuit part 11 can be connected in series.
That is, the inductor 12-1, the switching circuit unit 13-1, the voltage doubler rectifier circuit unit 11, and the power switch 19 can be connected in series in any order between the power input terminals T1 and T2. However, the COM terminal of the power switch 19 is preferably a circuit connected to either the power input terminal T1 or T2.
 また、電源切換回路部13-4は、図3に示すLED照明回路10-2の交流電源ACSの入力回路部に接続することもできる。
 さらに、電源切換回路部13-4は、図6、図7、図9に示す照明器具側回路SK1、SK2、SK3にも接続可能であるが、これらの構成については、後記の「(3)LED照明回路を照明器具及びLED照明管に備えた場合の構成」にて詳述する。
The power supply switching circuit unit 13-4 can also be connected to the input circuit unit of the AC power supply ACS of the LED illumination circuit 10-2 shown in FIG.
Furthermore, the power supply switching circuit unit 13-4 can be connected to the lighting fixture side circuits SK1, SK2, and SK3 shown in FIGS. 6, 7, and 9, but these configurations are described later in “(3)”. This will be described in detail in “Configuration when LED lighting circuit is provided in lighting fixture and LED lighting tube”.
(2)LED照明回路の動作
 図10に示すLED照明回路10-4は、電源切換回路部13-4の切換スイッチ132-4の切換により、電源オフ(OFF)、電源オン(ON)(通常発光状態)、ディマ照明(DIM)(低輝度発光状態)の三種類の状態を選択できるようになっている。
 例えば、切換スイッチ132-4が切り換えられてコモン端子(COM)とOFF接点(端子x)が接続されたときは、交流電源ACSから流れる電流の経路が当該切換スイッチ132-4で切断されて、LED群142に電流が流れないので、LED群142は、消灯状態となる。
(2) Operation of the LED lighting circuit The LED lighting circuit 10-4 shown in FIG. Light emission state) and dimmer illumination (DIM) (low luminance light emission state) can be selected.
For example, when the switch 132-4 is switched and the common terminal (COM) and the OFF contact (terminal x) are connected, the path of the current flowing from the AC power supply ACS is disconnected by the switch 132-4, Since no current flows through the LED group 142, the LED group 142 is turned off.
 また、切換スイッチ132-4が切り換えられてコモン端子(COM)とON接点(端子y)が接続されたときは、電源オン(ON)(通常発光状態)が選択される。この場合、第二の電源入力端子T2と倍電圧整流回路部11の接続部M4が直接接続されたのと同じ状態となるため、図1に示す切換回路部13-1の主スイッチ132がオン状態になったのと同じ状態となり、LED群142に電流Icが流れて、通常発光状態となる。 Also, when the changeover switch 132-4 is switched and the common terminal (COM) and the ON contact (terminal y) are connected, the power on (ON) (normal light emission state) is selected. In this case, since the second power input terminal T2 and the connection part M4 of the voltage doubler rectifier circuit unit 11 are directly connected, the main switch 132 of the switching circuit unit 13-1 shown in FIG. It becomes the same state as having entered the state, the current Ic flows through the LED group 142, and the normal light emission state is entered.
 さらに、切換スイッチ132-4が切り換えられてコモン端子(COM)とDIM接点(端子z)が接続されたときは、ディマ照明(DIM)(低輝度発光状態)が選択される。この場合、第二の電源入力端子T2と倍電圧整流回路部11の接続部M4との間にコンデンサ131が直列に接続されたのと同じ状態となるため、このコンデンサ131に電流が流れ、LED群142に減少した電流Icが流れて、低輝度発光状態となる。
 このように、電源切換回路部13-4の切換スイッチ132-4を切り換えることにより、電源オフ(OFF)、電源オン(ON)(通常発光状態)、ディマ照明(DIM)(低輝度発光状態)のうちから任意の一つを選択することができる。
Further, when the changeover switch 132-4 is switched to connect the common terminal (COM) and the DIM contact (terminal z), dimmer illumination (DIM) (low-luminance light emission state) is selected. In this case, since the capacitor 131 is connected in series between the second power supply input terminal T2 and the connection part M4 of the voltage doubler rectifier circuit unit 11, a current flows through the capacitor 131, and the LED The reduced current Ic flows through the group 142, and the light emission state is low.
Thus, by switching the selector switch 132-4 of the power supply switching circuit unit 13-4, the power is turned off (OFF), the power is turned on (normal light emission state), and the dimmer illumination (DIM) (low luminance light emission state). Any one of them can be selected.
 なお、図11に示すLED照明回路10-4’においても、図10に示すLED照明回路10-4と同様に、電源オフ、電源オン、ディマ照明の三種類の状態を選択できる。
 例えば、電源スイッチ19が切り換えられてコモン端子(COM)とOFF接点(端子x)が接続されたときは、電源オフ(OFF)が選択され、LED群142は、消灯状態となる。
 また、電源スイッチ19が切り換えられてコモン端子(COM)とON接点(端子y)が接続されるとともに、切換回路部13-1の主スイッチ132がオンのときは、電源オン(ON)(通常発光状態)が選択され、LED群142は、通常発光状態となる。
 さらに、電源スイッチ19が切り換えられてコモン端子(COM)とON接点(端子y)が接続されるとともに、切換回路部13-1の主スイッチ132がオフのときは、ディマ照明(低輝度発光状態)が選択され、LED群142は、低輝度発光状態となる。
Note that the LED illumination circuit 10-4 ′ shown in FIG. 11 can also select three types of states: power-off, power-on, and dimmer illumination, as with the LED illumination circuit 10-4 shown in FIG.
For example, when the power switch 19 is switched and the common terminal (COM) and the OFF contact (terminal x) are connected, the power OFF (OFF) is selected, and the LED group 142 is turned off.
When the power switch 19 is switched to connect the common terminal (COM) and the ON contact (terminal y), and when the main switch 132 of the switching circuit unit 13-1 is on, the power is turned on (normal) Light emission state) is selected, and the LED group 142 is in a normal light emission state.
Further, when the power switch 19 is switched to connect the common terminal (COM) and the ON contact (terminal y), and when the main switch 132 of the switching circuit unit 13-1 is OFF, dimmer illumination (low luminance light emission state) ) Is selected, and the LED group 142 enters a low-luminance light emission state.
(3)LED照明回路を照明器具及びLED照明管に備えた場合の構成
 図10、図11に示したLED照明回路10-4、10-4’は、LED照明管に配設することができる。それらのうち、図10に示すLED照明回路10-4をLED照明管照明器具及びLED照明管に配設する場合には、そのLED照明回路10-4を、例えば、図12に示すような回路構成とすることで配設可能となる。なお、ここでは、図12に示すLED照明回路を、「LED照明回路10-4’’」として説明する。
(3) Configuration when LED lighting circuit is provided in lighting fixture and LED lighting tube The LED lighting circuits 10-4 and 10-4 ′ shown in FIGS. 10 and 11 can be arranged in the LED lighting tube. . Among them, when the LED illumination circuit 10-4 shown in FIG. 10 is disposed in the LED illumination tube luminaire and the LED illumination tube, the LED illumination circuit 10-4 is, for example, a circuit as shown in FIG. It becomes possible to arrange | position with a structure. Here, the LED illumination circuit shown in FIG. 12 will be described as “LED illumination circuit 10-4 ″”.
 同図に示すように、LED照明回路10-4’’は、電源入力端子T1、T2と、電源切換回路部13-4と、インダクタ(安定器)12-1と、照明器具ソケット端子25(25a1、25a2、25b1、25b2)と、照明管ソケット端子33(33a1、33a2、33b1、33b2)と、コンデンサ181と、選択スイッチ182と、切換回路部13-1と、第一の倍電圧整流回路部11と、第二の倍電圧整流回路部11’と、発光回路部14-1と、を備えている。 As shown in the figure, the LED lighting circuit 10-4 ″ includes power input terminals T1 and T2, a power switching circuit unit 13-4, an inductor (ballast) 12-1, and a lighting fixture socket terminal 25 ( 25a1, 25a2, 25b1, 25b2), light tube socket terminal 33 (33a1, 33a2, 33b1, 33b2), capacitor 181, selection switch 182, switching circuit unit 13-1, and first voltage doubler rectifier circuit Unit 11, a second voltage doubler rectifier circuit unit 11 ', and a light emitting circuit unit 14-1.
 このような構成を備えたLED照明回路10-4’’は、電源入力端子T1、T2と電源切換回路部13-4とインダクタ12-1と照明器具ソケット端子25が、LED照明管照明器具20’’’(図13参照)に備えられており、照明管ソケット端子33と、コンデンサ181と、選択スイッチ182と、切換回路部13-1と、第一の倍電圧整流回路部11と、第二の倍電圧整流回路部11’と、発光回路部14-1が、LED照明管30に備えられている。
 ここで、LED照明管照明器具20’’’に備えられた電源入力端子T1、T2と電源切換回路部13-4とインダクタ12-1と照明器具ソケット端子25とにより構成される回路を、照明器具側回路SK4とする。
 照明器具側回路SK4は、電源入力端子T1、T2と照明器具ソケット22a、22bとの間に配設された回路であって、図10に示すLED照明回路10-4の構成の一部(電源入力端子T1、T2、電源切換回路部13-4、インダクタ12など)を含んだLED照明管照明器具側回路である。
The LED lighting circuit 10-4 ″ having such a configuration includes power input terminals T1, T2, a power supply switching circuit unit 13-4, an inductor 12-1, and a lighting fixture socket terminal 25. '''(See FIG. 13), the light tube socket terminal 33, the capacitor 181, the selection switch 182, the switching circuit unit 13-1, the first voltage doubler rectifier circuit unit 11, The second voltage doubler rectifier circuit unit 11 ′ and the light emitting circuit unit 14-1 are provided in the LED lighting tube 30.
Here, the circuit constituted by the power input terminals T1 and T2, the power supply switching circuit unit 13-4, the inductor 12-1, and the lighting fixture socket terminal 25 provided in the LED lighting tube lighting fixture 20 ′ ″ is illuminated. Let it be an instrument side circuit SK4.
The lighting fixture side circuit SK4 is a circuit disposed between the power input terminals T1 and T2 and the lighting fixture sockets 22a and 22b, and is a part of the configuration of the LED lighting circuit 10-4 shown in FIG. LED lighting tube lighting fixture side circuit including input terminals T1, T2, a power supply switching circuit unit 13-4, an inductor 12, and the like.
 また、図12に示すLED照明管側回路SCは、図6に示したLED照明回路10-3のLED照明管側回路SCと同一である。すなわち、図12に示すLED照明回路10-4''は、図6に示すグロースタータ式蛍光灯器具の照明器具側回路SK1に接続していたLED照明管側回路SCと、LED照明管照明器具側回路として電源切換回路部13-4を含んだ照明器具側回路SK4を接続したものである。
 なお、図12に示すLED照明管側回路SCは、図10に示すLED照明回路10-4の構成の他の一部(倍電圧整流回路部11、発光回路部14-1など)を含んでいる。
Further, the LED illumination tube side circuit SC shown in FIG. 12 is the same as the LED illumination tube side circuit SC of the LED illumination circuit 10-3 shown in FIG. That is, the LED illumination circuit 10-4 ″ shown in FIG. 12 includes an LED illumination tube side circuit SC connected to the illumination fixture side circuit SK1 of the glow starter type fluorescent lamp fixture shown in FIG. A lighting fixture side circuit SK4 including a power supply switching circuit unit 13-4 is connected as a side circuit.
The LED lighting tube side circuit SC shown in FIG. 12 includes other parts of the configuration of the LED lighting circuit 10-4 shown in FIG. 10 (such as the voltage doubler rectifier circuit unit 11 and the light emitting circuit unit 14-1). Yes.
 また、図12に示すLED照明回路10-4’’の照明器具ソケット端子25a1と25a2、及び25b1と25b2間をショートした回路は、グロースタータ式蛍光灯器具又はラピッドスタータ式蛍光灯器具に接続可能なLED照明管側回路SCをLED照明管照明器具側回路である照明器具側回路SK4にも接続できるように、互換性を持たせた回路である。両端子間をショートすることにより、一方の照明器具ソケット端子25a1と25a2は、照明管ソケット端子33a1と33a2のいずれにも接続されるので、選択スイッチ182の操作無しに接続され、他方の照明器具ソケット端子33b1と33b2も同様に、第一及び第二の倍電圧整流回路部11の接続部M4とM4’のいずれにも接続される。 In addition, a circuit in which the lighting fixture socket terminals 25a1 and 25a2 and 25b1 and 25b2 of the LED lighting circuit 10-4 ″ shown in FIG. 12 are short-circuited can be connected to a glow starter fluorescent lamp fixture or a rapid starter fluorescent fixture. The LED lighting tube side circuit SC is a compatible circuit so that it can be connected to the lighting device side circuit SK4 which is the LED lighting tube lighting device side circuit. By short-circuiting both terminals, one of the lighting fixture socket terminals 25a1 and 25a2 is connected to either of the lighting tube socket terminals 33a1 and 33a2, so that the other lighting fixture is connected without operating the selection switch 182. Similarly, the socket terminals 33b1 and 33b2 are connected to both the connection portions M4 and M4 ′ of the first and second voltage doubler rectifier circuit portions 11.
 なお、電源切換回路部13-4は、図13に示すように、LED照明管照明器具20'''の基部21の下面23の任意の箇所に設けることができる。具体的には、電源切換回路部13-4は、例えば、手動で回転させるロータリースイッチのつまみ部をLED照明管照明器具20’’’の基部21の下面23から露出するように設けることができる。
 また、本実施形態においては、LED照明管照明器具20'''とLED照明管30とを併せて「LED照明装置B’’」という。
As shown in FIG. 13, the power supply switching circuit unit 13-4 can be provided at an arbitrary position on the lower surface 23 of the base 21 of the LED lighting tube lighting fixture 20 ′ ″. Specifically, the power supply switching circuit unit 13-4 can be provided, for example, such that a knob part of a rotary switch that is manually rotated is exposed from the lower surface 23 of the base portion 21 of the LED lighting tube lighting fixture 20 ′ ″. .
In the present embodiment, the LED illumination tube luminaire 20 ′ ″ and the LED illumination tube 30 are collectively referred to as “LED illumination device B ″”.
 以上のように、本実施形態のLED照明回路は、電源オフ、電源オン、ディマ照明の三種類の状態を切換可能な電源切換回路部を備えた構成としたので、任意のタイミングで、点灯(ON)、消灯(OFF)、ディマ照明(DIM)を、容易かつ確実に切り換えることができる。
 また、本実施形態のインダクタ12-1は、図6に示すグロースタータ式蛍光灯器具(40W用)のインダクタ12-3及び、図7に示すラピッドスタータ式蛍光灯器具の同12-3’と図9の同12-3’’に示すような一次巻線を持つオートトランスと違い、チョークコイルなので、該一次巻線で消費する無駄な電力が無くなる。すなわち、これら既設のインダクタよりも、インダクタ12-3を用いることにより電力効率を高くできる。
 また、本実施形態のLED照明回路は、交流電源の入力回路に直列にコンデンサを挿入することにより、容易にディマ照明とすることができるので、電源をオンオフする電源スイッチと、通常照明とディマ照明とを切り換える切換回路部とを結合することにより、本実施形態のLED照明回路を構成できる。
As described above, the LED lighting circuit according to the present embodiment includes the power switching circuit unit that can switch between the three types of power-off, power-on, and dimmer lighting. ON, extinguishing (OFF), and dimmer illumination (DIM) can be easily and reliably switched.
Further, the inductor 12-1 of the present embodiment includes an inductor 12-3 of the glow starter type fluorescent lamp fixture (for 40 W) shown in FIG. 6 and 12-3 ′ of the rapid starter type fluorescent lamp fixture shown in FIG. Unlike an autotransformer having a primary winding as shown at 12-3 ″ in FIG. 9, the choke coil eliminates wasted power consumed by the primary winding. That is, the power efficiency can be made higher by using the inductor 12-3 than these existing inductors.
Moreover, since the LED illumination circuit of this embodiment can be easily set to dimmer illumination by inserting a capacitor in series with the input circuit of the AC power supply, a power switch for turning on / off the power, normal illumination, and dimmer illumination The LED illumination circuit of this embodiment can be configured by combining a switching circuit unit that switches between the two.
 さらに、従来の室内照明の多くは、壁スイッチにより、複数の照明器具の電源をオンオフするようになっている。本実施形態のLED照明器具を、室内の天井などに複数設置し、個別に切換操作(要否選択)を行うようにすることで、それら複数のLED照明器具の中から任意の数のLED照明器具をディマ照明に切り換えて明るさを調整することにより、省エネを図ることができる。 Furthermore, many of the conventional indoor lightings are designed to turn on and off the power of a plurality of lighting fixtures by a wall switch. By installing a plurality of LED lighting fixtures of the present embodiment on the ceiling of the room and performing individual switching operations (necessity selection), an arbitrary number of LED lighting fixtures can be selected from the plurality of LED lighting fixtures. Energy saving can be achieved by switching the fixture to dimmer lighting and adjusting the brightness.
 また、ディマ照明を実現可能な本実施形態のLED照明回路は、様々な場所に使用可能である。
 例えば、フットライトのように、僅かな明かりが必要な場所に使用することができる。これにより、その僅かな明かりを得るための、輝度の低い小型電球(いわゆる豆電球)を備えることなく、本実施形態のLED照明器具がその必要性を満たすことができる。
 さらに、本実施形態のLED照明回路は、電源のオンオフとディマ照明とを手動で簡単に切り換えることができるので、電気スタンドや小型の照明器具などに用いることができ、手軽に省エネルギーに寄与できる。
Moreover, the LED illumination circuit of this embodiment which can implement | achieve dimmer illumination can be used in various places.
For example, it can be used where a small amount of light is required, such as a footlight. Thereby, the LED lighting fixture of this embodiment can satisfy | fill the necessity, without providing the small light bulb (what is called a miniature light bulb) with a low brightness | luminance for obtaining the slight light.
Furthermore, since the LED illumination circuit according to the present embodiment can be easily manually switched between power on / off and dimmer illumination, the LED illumination circuit can be used for a desk lamp or a small lighting fixture, and can easily contribute to energy saving.
 なお、図10に示すLED照明回路10-4は、電源切換回路部13-4にコンデンサ131を一つのみ備えて、電源オン(ON)、電源オフ(OFF)、ディマ照明(DIM)の三種類の状態を選択可能としているが、この構成に限るものではなく、例えば、電源オン、電源オフの他に、明るさの異なる複数段階のディマ照明を選択できるようにすることができる。すなわち、容量の異なる複数のコンデンサを切換スイッチ132-4の接点を増やして、それらの端子にそれぞれ接続することにより、明るさの異なる複数段階のディマ照明を選択できる。
 ディマ照明状態では、電源切換回路部13-4のコンデンサ131が倍電圧整流回路部11のコンデンサ111及び112と直列に接続されるので、かかるコンデンサの合成容量が少なくなり、そのために電流Ibの位相が進み、力率が低下する。このときの力率を改善するには、コンデンサ131と直列にインダクタを追加挿入することで調整することができる。
Note that the LED illumination circuit 10-4 shown in FIG. 10 includes only one capacitor 131 in the power supply switching circuit unit 13-4, and includes power on (ON), power off (OFF), and dimmer illumination (DIM). The type of state can be selected. However, the present invention is not limited to this configuration. For example, in addition to power-on and power-off, it is possible to select a plurality of dimmer illuminations having different brightnesses. That is, a plurality of dimmer illuminations with different brightnesses can be selected by connecting a plurality of capacitors with different capacities to the terminals of the selector switch 132-4 and increasing the number of contacts.
In the dimmer illumination state, the capacitor 131 of the power supply switching circuit unit 13-4 is connected in series with the capacitors 111 and 112 of the voltage doubler rectifier circuit unit 11, so that the combined capacity of the capacitors is reduced, so that the phase of the current Ib is reduced. Progresses and power factor decreases. In order to improve the power factor at this time, it can be adjusted by additionally inserting an inductor in series with the capacitor 131.
[LED照明回路の第五実施形態(LED照明装置の第三実施形態)]
 次に、本発明のLED照明回路の第五実施形態(LED照明装置の第三実施形態)について、図14、図15を参照して説明する。図14は、本実施形態のLED照明回路の構成を示す回路図である。図15は、図14に示すLED照明回路に備えられる電源切換回路部及びリモコン送信機用回路の構成を示す回路図である。
 本実施形態は、第一実施形態のLED照明回路に付加できる、電源オンと電源オフとディマ照明との三種類の状態を切換可能とする電源切換回路部と、この電源切換回路部を無線信号により操作するリモコン送信機とを備えるLED照明回路である。
 なお、図14において、図1と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。
[Fifth Embodiment of LED Lighting Circuit (Third Embodiment of LED Lighting Device)]
Next, a fifth embodiment of the LED lighting circuit of the present invention (third embodiment of the LED lighting device) will be described with reference to FIGS. 14 and 15. FIG. 14 is a circuit diagram showing a configuration of the LED illumination circuit of the present embodiment. FIG. 15 is a circuit diagram showing a configuration of a power supply switching circuit unit and a remote control transmitter circuit included in the LED illumination circuit shown in FIG.
In the present embodiment, a power supply switching circuit unit that can be added to the LED lighting circuit of the first embodiment and capable of switching between three types of states of power-on, power-off, and dimmer illumination, and this power switching circuit unit are used as a radio signal. It is an LED illumination circuit provided with the remote control transmitter operated by.
In FIG. 14, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 なお、ここでは、次の項目について、順に説明する。
 (1)LED照明回路及び電源切換回路部の構成
 (2)LED照明回路及び電源切換回路部の動作
Here, the following items will be described in order.
(1) Configuration of LED lighting circuit and power supply switching circuit section (2) Operation of LED lighting circuit and power supply switching circuit section
(1)LED照明回路及び電源切換回路部の構成
 図14に示すように、本実施形態のLED照明回路10-5は、電源入力端子T1、T2と、電源切換回路部13-5と、リモコン送信機用回路51と、インダクタ(安定器)12-1と、照明器具ソケット端子25(25a1、25a2、25b1、25b2)と、照明管ソケット端子33(33a1、33a2、33b1、33b2)と、コンデンサ181と、選択スイッチ182と、切換回路部13-1と、第一の倍電圧整流回路部11と、第二の倍電圧整流回路部11’と、発光回路部14-1と、を備えている。
(1) Configuration of LED Lighting Circuit and Power Supply Switching Circuit Unit As shown in FIG. 14, the LED lighting circuit 10-5 of this embodiment includes power input terminals T1 and T2, a power supply switching circuit unit 13-5, a remote controller Transmitter circuit 51, inductor (ballast) 12-1, lighting fixture socket terminal 25 (25a1, 25a2, 25b1, 25b2), lighting tube socket terminal 33 (33a1, 33a2, 33b1, 33b2), and capacitor 181, a selection switch 182, a switching circuit unit 13-1, a first voltage doubler rectifier circuit unit 11, a second voltage doubler rectifier circuit unit 11 ′, and a light emitting circuit unit 14-1. Yes.
 ここで、電源切換回路部13-5は、図15に示すように、定電圧生成部137と、ドライバ部138と、スイッチ部139とを有している。
 定電圧生成部137は、ダイオードD71と、抵抗R71と、ツェナーダイオードZ71と、コンデンサC71とを有している。ダイオードD71と抵抗R71とツェナーダイオードZ71は、第一の電源入力端子T1と第二の電源入力端子T2との間に、直列に接続されている。具体的には、ダイオードD71のカソードが、第一の電源入力端子T1に接続され、アノードが、抵抗R71の一端に接続されている。抵抗R71の他端は、ツェナーダイオードZ71のアノードに接続され、ツェナーダイオードZ71のカソードは、第二の電源入力端子T2に接続されている。コンデンサC71は、一端が抵抗R71とツェナーダイオードZ71との接続部M20に接続され、他端が、ツェナーダイオードZ71のカソードに接続されている。
Here, the power supply switching circuit unit 13-5 includes a constant voltage generating unit 137, a driver unit 138, and a switch unit 139, as shown in FIG.
The constant voltage generation unit 137 includes a diode D71, a resistor R71, a Zener diode Z71, and a capacitor C71. The diode D71, the resistor R71, and the Zener diode Z71 are connected in series between the first power input terminal T1 and the second power input terminal T2. Specifically, the cathode of the diode D71 is connected to the first power input terminal T1, and the anode is connected to one end of the resistor R71. The other end of the resistor R71 is connected to the anode of the Zener diode Z71, and the cathode of the Zener diode Z71 is connected to the second power input terminal T2. One end of the capacitor C71 is connected to the connection portion M20 between the resistor R71 and the Zener diode Z71, and the other end is connected to the cathode of the Zener diode Z71.
 ドライバ部138は、抵抗R81と、抵抗R82と、抵抗R83と、抵抗R84と、コンデンサC81と、増幅器AMP81とを備えている。具体的には、抵抗R81は、一端が第二の電源入力端子T2に接続され、他端が増幅器AMP81の正入力端子に接続されている。抵抗R82は、一端が増幅器AMP81の正入力端子に接続され、他端が定電圧生成部137の接続部M20に接続されている。抵抗R83は、一端が増幅器AMP81の正入力端子に接続され、他端が、増幅器AMP81の出力端子に接続されている。抵抗R84は、一端が増幅器AMP81の出力端子に接続され、他端が、増幅器AMP81の負入力端子に接続されている。コンデンサC81は、一端が増幅器AMP81の負入力端子に接続され、他端が定電圧生成部137の接続部M20に接続されている。なお、増幅器AMP81の電源は、定電圧生成部137の定電圧-Eeから供給されている。 The driver unit 138 includes a resistor R81, a resistor R82, a resistor R83, a resistor R84, a capacitor C81, and an amplifier AMP81. Specifically, the resistor R81 has one end connected to the second power input terminal T2 and the other end connected to the positive input terminal of the amplifier AMP81. The resistor R82 has one end connected to the positive input terminal of the amplifier AMP81 and the other end connected to the connection unit M20 of the constant voltage generation unit 137. The resistor R83 has one end connected to the positive input terminal of the amplifier AMP81 and the other end connected to the output terminal of the amplifier AMP81. The resistor R84 has one end connected to the output terminal of the amplifier AMP81 and the other end connected to the negative input terminal of the amplifier AMP81. The capacitor C81 has one end connected to the negative input terminal of the amplifier AMP81 and the other end connected to the connection unit M20 of the constant voltage generation unit 137. The power supply of the amplifier AMP81 is supplied from the constant voltage −Ee of the constant voltage generation unit 137.
 スイッチ部139は、コンデンサC91と、抵抗R91と、PINフォトダイオードPDと、フリップフロップFF1と、フリップフロップFF2と、NAND回路(ゲート)G1と、NAND回路(ゲート)G2と、抵抗R92と、抵抗R93と、トライアック132’-1と、トライアック132’-2と、コンデンサ131と、リモコン受光制御部RCとを有している。
 ここで、コンデンサC91と抵抗R91は、第二の電源入力端子T2と定電圧生成部137の接続部M20との間に、直列に接続されている。具体的には、コンデンサC91の一端が第二の電源入力端子T2に接続され、他端が抵抗R91の一端に接続され、抵抗R91の他端が定電圧生成部137の接続部M20に接続されている。そして、コンデンサC91と抵抗R91との接続部は、リモコン受光制御部RCの入力端子Sに接続されている。
 PINフォトダイオードPDは、カソードがリモコン受光制御部RCの入力端子PIに接続され、アノードが定電圧生成部137の接続部M20に接続されている。
The switch unit 139 includes a capacitor C91, a resistor R91, a PIN photodiode PD, a flip-flop FF1, a flip-flop FF2, a NAND circuit (gate) G1, a NAND circuit (gate) G2, a resistor R92, and a resistor R93, a triac 132′-1, a triac 132′-2, a capacitor 131, and a remote control light receiving control unit RC.
Here, the capacitor C91 and the resistor R91 are connected in series between the second power input terminal T2 and the connection part M20 of the constant voltage generation part 137. Specifically, one end of the capacitor C91 is connected to the second power input terminal T2, the other end is connected to one end of the resistor R91, and the other end of the resistor R91 is connected to the connection portion M20 of the constant voltage generation unit 137. ing. And the connection part of the capacitor | condenser C91 and resistance R91 is connected to the input terminal S of remote control light reception control part RC.
The PIN photodiode PD has a cathode connected to the input terminal PI of the remote control light reception control unit RC, and an anode connected to the connection unit M20 of the constant voltage generation unit 137.
 フリップフロップFF1とフリップフロップFF2は、例えばD型フリップフロップを用いることができ、ハイレベル(H)又はローレベル(L)の信号を入力するデータ入力端子S(S1、S2)と、クロック信号を入力するクロック入力端子C(C1、C2)と、正の出力信号を出力する出力端子Q(Q1、Q2)と、出力端子Qの出力信号に対して反転した信号を出力する出力端子-Q(-Q1、-Q2)とを有している。なお、反転した信号を出力する出力端子の表記を「-Q(-Q1、-Q2)」とした理由は、次の通りである。本来であれば、その出力端子の表記は、図15に示すように、Q1やQ2の上にバー(オーバーバー)を付するべきところであるが、この明細書では、そのような表記が行えないため、「-Q(-Q1、-Q2)」を代わりに用いて表記することとしたものである。 For example, a D-type flip-flop can be used as the flip-flop FF1 and the flip-flop FF2, and a data input terminal S (S1, S2) for inputting a high level (H) or low level (L) signal and a clock signal are input. Input clock input terminal C (C1, C2), output terminal Q (Q1, Q2) for outputting a positive output signal, and output terminal -Q (for outputting a signal inverted from the output signal of the output terminal Q -Q1, -Q2). The reason why the notation of the output terminal that outputs the inverted signal is “−Q (−Q1, −Q2)” is as follows. Originally, the notation of the output terminal should be a bar (overbar) on Q1 and Q2 as shown in FIG. 15, but such a notation cannot be made in this specification. Therefore, “−Q (−Q1, −Q2)” is used instead.
 そして、フリップフロップFF1は、データ入力端子S1がリモコン受光制御部RCのセット出力端子A1に接続され、クロック入力端子C1がリモコン受光制御部RCの出力端子Cに接続され、出力端子Q1がNAND回路G1の一方の入力端子に接続され、出力端子-Q1が開放されている。フリップフロップFF2は、データ入力端子S2がリモコン受光制御部RCのセット出力端子A2に接続され、クロック入力端子C2がリモコン受光制御部RCの出力端子Cに接続され、出力端子Q2がNAND回路G2の一方の入力端子に接続され、出力端子-Q2が開放されている。 In the flip-flop FF1, the data input terminal S1 is connected to the set output terminal A1 of the remote control light reception control unit RC, the clock input terminal C1 is connected to the output terminal C of the remote control light reception control unit RC, and the output terminal Q1 is a NAND circuit. Connected to one input terminal of G1, the output terminal -Q1 is open. The flip-flop FF2 has a data input terminal S2 connected to the set output terminal A2 of the remote control light reception control unit RC, a clock input terminal C2 connected to the output terminal C of the remote control light reception control unit RC, and an output terminal Q2 of the NAND circuit G2. Connected to one input terminal, the output terminal -Q2 is open.
 NAND回路G1の他方の入力端子と、NAND回路G2の他方の入力端子は、ドライバ部138の増幅器AMP81の出力端子に接続されている。NAND回路G1の出力端子は、抵抗R92の一端に接続され、抵抗R92の他端がトライアック132’-1のゲートに接続されている。NAND回路G2の出力端子は、抵抗R93の一端に接続され、抵抗R93の他端がトライアック132’-2のゲートに接続されている。
 トライアック132’-1は、T1端子が第二の電源入力端子T2に接続され、T2端子が第二の電源出力端子T2’に接続されている。トライアック132’-2は、T1端子が第二の電源入力端子T2に接続され、T2端子がコンデンサ131を介して第二の電源出力端子T2’に接続されている。なお、第二の電源出力端子T2’は、例えば図1の第二の電源入力端子T2と倍電圧整流回路部11の接続部M4との間に設けられる端子である。
The other input terminal of the NAND circuit G1 and the other input terminal of the NAND circuit G2 are connected to the output terminal of the amplifier AMP81 of the driver unit 138. The output terminal of the NAND circuit G1 is connected to one end of the resistor R92, and the other end of the resistor R92 is connected to the gate of the triac 132′-1. The output terminal of the NAND circuit G2 is connected to one end of the resistor R93, and the other end of the resistor R93 is connected to the gate of the triac 132′-2.
The triac 132′-1 has a T1 terminal connected to the second power input terminal T2 and a T2 terminal connected to the second power output terminal T2 ′. The triac 132′-2 has a T1 terminal connected to the second power input terminal T2 and a T2 terminal connected to the second power output terminal T2 ′ via the capacitor 131. The second power output terminal T2 ′ is a terminal provided between, for example, the second power input terminal T2 in FIG. 1 and the connection portion M4 of the voltage doubler rectifier circuit unit 11.
 リモコン送信機用回路51は、リモコン送信機50に備えられた回路である。
 リモコン送信機50は、LED照明管照明器具20’’’やLED照明管30とは別個独立して形成された、いわゆるリモートコントローラーであって、持ち運び容易に小型化されたもの、壁などに取り付けて固定されたもの、壁にホルダーを設けてこれに着脱可能な構造としたものなどがある。
The remote control transmitter circuit 51 is a circuit provided in the remote control transmitter 50.
The remote control transmitter 50 is a so-called remote controller formed independently of the LED lighting tube lighting fixture 20 ′ ″ and the LED lighting tube 30 and is miniaturized for easy carrying and attached to a wall or the like. There is a structure that is fixed to the wall, and a structure in which a holder is provided on the wall so that it can be attached and detached.
 リモコン送信機用回路51は、当該リモコン送信機用回路51に電源を供給する電池BTと、パルス信号を出力するパルス発生器PGと、そのパルス信号にもとづいて赤外線のコード化した変調信号を操作信号として発射(無線送信)する赤外発光LED(LED2)とを有している。
 また、リモコン送信機50には、一又は二以上の押しボタン(図示せず)が備えられており、押された押しボタンの種類又は押しボタンが押された回数などに応じてパルス発生器PGが所定のパルス信号を出力し、このパルス信号にもとづいてLED2が発光して、赤外線のコード化した変調信号を発射するようになっている。
The remote control transmitter circuit 51 operates a battery BT that supplies power to the remote control transmitter circuit 51, a pulse generator PG that outputs a pulse signal, and an infrared-coded modulated signal based on the pulse signal. It has an infrared light emitting LED (LED2) that emits (wireless transmission) as a signal.
In addition, the remote control transmitter 50 is provided with one or more push buttons (not shown), and the pulse generator PG is selected according to the type of the push button pressed or the number of times the push button is pressed. Outputs a predetermined pulse signal, the LED 2 emits light based on this pulse signal, and emits an infrared-coded modulation signal.
(2)LED照明回路及び電源切換回路部の動作
 定電圧生成部137は、第二の電源入力端子T2をコモン(COM)として、電源切換回路部13-5に必要な直流電源-Eeを与える。すなわち、第一の電源入力端子T1における交流電圧Eaを第二の電源入力端子T2を共通端子(COM)として整流ダイオードD71で整流後、抵抗R71とツェナーダイオードZ71とで分圧した直流電圧-Eeを接続部M20から出力する。
(2) Operation of LED Lighting Circuit and Power Supply Switching Circuit Unit The constant voltage generation unit 137 supplies the necessary DC power source -Ee to the power supply switching circuit unit 13-5 with the second power input terminal T2 as a common (COM). . That is, the AC voltage Ea at the first power input terminal T1 is rectified by the rectifier diode D71 using the second power input terminal T2 as a common terminal (COM), and then divided by the resistor R71 and the Zener diode Z71 to obtain a DC voltage −Ee. Is output from the connection unit M20.
 ドライバ部138は、図3に示すドライバ部176とほぼ同様の動作をするものであり、トライアック132’-1、132’-2をトリガする電力を低減するために必要な、デューティ制御したパルス列を発生する。
 このドライバ部138では、抵抗R81をハイレベルであるCOM端子(第二の電源入力端子T2)に接続しているので、交流電圧Eaが供給されている間は、常時発振するようになっている。その詳細な動作原理は、第二実施形態においてドライバ部176の動作として既に説明してあるので、ここでの説明は省略する。
The driver unit 138 operates in substantially the same manner as the driver unit 176 shown in FIG. 3, and generates a duty-controlled pulse train necessary to reduce the power for triggering the triacs 132′-1 and 132′-2. appear.
In the driver unit 138, the resistor R81 is connected to the COM terminal (second power supply input terminal T2) which is at a high level, so that it always oscillates while the AC voltage Ea is supplied. . Since the detailed operation principle has already been described as the operation of the driver unit 176 in the second embodiment, the description thereof is omitted here.
 スイッチ部139は、外部のリモコン送信機50から発射される赤外線のコード化した変調信号をセンサであるPINフォトダイオードPDで受光し、その電気信号をリモコン受光制御部RCで復調して、セット出力端子A1、A2からセット信号を出力する。
 セット出力端子A1、A2からのセット信号によりセットされたフリップフロップFF1、FF2のコードをNAND回路G1、G2で論理選択して、トライアック132’-1又は132’-2のゲートをパルス列信号でトリガするようになっている。
The switch unit 139 receives an infrared coded modulation signal emitted from an external remote control transmitter 50 by a PIN photodiode PD as a sensor, demodulates the electric signal by a remote control light reception control unit RC, and outputs a set output. A set signal is output from the terminals A1 and A2.
The codes of the flip-flops FF1 and FF2 set by the set signals from the set output terminals A1 and A2 are logically selected by the NAND circuits G1 and G2, and the gate of the triac 132'-1 or 132'-2 is triggered by the pulse train signal It is supposed to be.
 ここで、NAND回路G1が選択されると、抵抗R92を通して、デューティ制御された負のパルス列信号でトライアック132’-1をトリガし続けて、このトライアック132’-1のオン状態を保ち、通常照明状態とする。
 一方、NAND回路G2が選択されると、抵抗R93を通して、同様にトライアック132’-2をトリガし続けて、このトライアック132’-2のオン状態を保ち、コンデンサ131を通した交流電流により、ディマ照明とする。
 また、NAND回路G1及びG2のいずれも選択されなければ、トライアック132’-1及び132’-2のいずれのゲートもトリガしないので、電源オフになる。
 なお、フリップフロップFF1、FF2のデータ入力端子S1、S2は、電源投入時の初期設定入力でもあり、電源投入時に通常照明状態にセットされる。
Here, when the NAND circuit G1 is selected, the triac 132'-1 is continuously triggered by the negative pulse train signal whose duty is controlled through the resistor R92, and the triac 132'-1 is kept in an on state, thereby causing the normal illumination. State.
On the other hand, when the NAND circuit G2 is selected, the triac 132′-2 is continuously triggered through the resistor R93, and the triac 132′-2 is kept on. Lighting.
If neither of the NAND circuits G1 and G2 is selected, neither gate of the triacs 132′-1 and 132′-2 triggers, and the power is turned off.
The data input terminals S1 and S2 of the flip-flops FF1 and FF2 are also initial setting inputs when the power is turned on, and are set to the normal illumination state when the power is turned on.
 リモコン受光制御部RCは、PINフォトダイオードPDで受信された操作信号(赤外線のコード化された変調信号)を入力端子PIで入力すると、この操作信号を解読して、命令信号に変換し、セット出力信号A1、A2をフリップフロップFF1、FF2のデータ入力端子S1、S2に入力し、クロック信号CでフリップフロップFF1、FF2にセットする。例えば、セット出力信号A1が1(H:High)、セット出力信号A2が0(L:Low)であれば、フリップフロップFF1の出力Qは1(H)、フリップフロップFF2の出力Qは0(L)にセットされる。 When the operation signal (infrared coded modulation signal) received by the PIN photodiode PD is input at the input terminal PI, the remote control light receiving control unit RC decodes the operation signal and converts it into a command signal. The output signals A1 and A2 are input to the data input terminals S1 and S2 of the flip-flops FF1 and FF2, and set to the flip-flops FF1 and FF2 by the clock signal C. For example, if the set output signal A1 is 1 (H: High) and the set output signal A2 is 0 (L: Low), the output Q of the flip-flop FF1 is 1 (H) and the output Q of the flip-flop FF2 is 0 ( L).
 フリップフロップFF1、FF2は、ラッチレジスタであり、セットされた状態は、次のセット出力信号を入力するまで保持される。
 NAND回路G1、G2は、2入力NANDゲートであり、両入力ともにHであるときにだけ出力がLになり、いずれか又は両方がLなら、出力はHになる動作をする。
 トライアック132’-1、132’-2は、コモン端子である第二の電源入力端子T2にいずれもT1端子が接続されており、選択した方のゲートに、抵抗R92又はR93を通して負のトリガ電流を流すことで、トライアック132’-1又は132’-2をオンさせるようになっている。
The flip-flops FF1 and FF2 are latch registers, and the set state is held until the next set output signal is input.
The NAND circuits G1 and G2 are two-input NAND gates, and the output becomes L only when both inputs are H. If either or both are L, the output becomes H.
In the triacs 132′-1 and 132′-2, the T1 terminal is connected to the second power input terminal T2, which is a common terminal, and a negative trigger current is passed through the resistor R92 or R93 to the selected gate. To turn on the triac 132′-1 or 132′-2.
 交流電圧Eaが供給される初期状態では、コンデンサC91の両端は0Vであるので、直流電源-Eeが立ち上がると、リモコン受光制御部RCの入力SがHとなり、セット出力A1が1(H)、セット出力A2が0(L)となり、クロック信号Cにより、フリップフロップFF1の出力Q1がH、フリップフロップFF2の出力Q2がLにセットされる。NAND回路G1の入力Q1がHになり、ドライバ部138の出力DRがHになると、NAND回路G1の出力がLとなる。すなわち、電源投入の初期状態は、フリップフロップFF1がセットされ、フリップフロップFF2がリセットされるので、NAND回路G1の出力端子LTは、負のパルス列を出力して、抵抗R92を通してトライアック132’-1のゲートをトリガしてトライアック132’-1をオンさせて、通常照明となる。このとき、フリップフロップFF2の出力Q2はLなので、トライアック132’-2はオフ状態となる。 In the initial state in which the AC voltage Ea is supplied, both ends of the capacitor C91 are 0 V. Therefore, when the DC power source -Ee rises, the input S of the remote control light receiving control unit RC becomes H, and the set output A1 becomes 1 (H). The set output A2 becomes 0 (L), and the clock signal C sets the output Q1 of the flip-flop FF1 to H and the output Q2 of the flip-flop FF2 to L. When the input Q1 of the NAND circuit G1 becomes H and the output DR of the driver unit 138 becomes H, the output of the NAND circuit G1 becomes L. That is, in the initial state when the power is turned on, since the flip-flop FF1 is set and the flip-flop FF2 is reset, the output terminal LT of the NAND circuit G1 outputs a negative pulse train, and the triac 132′-1 through the resistor R92. The triac 132′-1 is turned on by triggering the gates of the first and second lamps, and normal illumination is obtained. At this time, since the output Q2 of the flip-flop FF2 is L, the triac 132'-2 is turned off.
 リモコン送信機50からディマ照明にする命令を送ると、リモコン受光制御部RCのセット出力A1が0(L)、セット出力A2が1(H)となり、これらがフリップフロップFF1、FF2にセットされると、フリップフロップFF1の出力Q1がL、フリップフロップFF2の出力Q2がHにセットされるので、NAND回路G2の出力DMから負のパルス列が出力されて、トライアック132’-2がオンとなりディマ照明となる。このとき、トライアック132’-1は、オフ状態になる。
 一方、リモコン送信機50から電源オフにする命令を送ると、リモコン受光制御部RCのセット出力A1が0(L)、セット出力A2も0(L)となり、これらがフリップフロップFF1、FF2にセットされると、フリップフロップFF1の出力Q1がL、フリップフロップFF2の出力Q2もLにセットされるので、NAND回路G1、G2のいずれの出力LT、DMはHとなり、トライアック132’-1、132’-2をトリガしないのでオフとなり、電源オフの状態になる。
When an instruction to switch to dimmer illumination is sent from the remote control transmitter 50, the set output A1 of the remote control light reception control unit RC becomes 0 (L) and the set output A2 becomes 1 (H), and these are set in the flip-flops FF1 and FF2. Since the output Q1 of the flip-flop FF1 is set to L and the output Q2 of the flip-flop FF2 is set to H, a negative pulse train is output from the output DM of the NAND circuit G2, and the triac 132′-2 is turned on to turn on the dimmer illumination. It becomes. At this time, the triac 132′-1 is turned off.
On the other hand, when a command to turn off the power is sent from the remote control transmitter 50, the set output A1 of the remote control light reception control unit RC becomes 0 (L) and the set output A2 also becomes 0 (L), and these are set in the flip-flops FF1 and FF2. Then, the output Q1 of the flip-flop FF1 is set to L and the output Q2 of the flip-flop FF2 is also set to L, so that the outputs LT and DM of the NAND circuits G1 and G2 become H, and the triacs 132′-1 and 132 Since '-2 is not triggered, it is turned off and the power is turned off.
 以上のように、本実施形態のLED照明回路は、リモコン送信機を操作して、LED照明管照明器具に設けられた電源切換回路部に対して操作信号を無線送信することで、電源オフ、電源オン、ディマ照明の三種類の状態を、容易かつ確実に切り換えることができる。 As described above, the LED lighting circuit of the present embodiment operates the remote control transmitter and wirelessly transmits an operation signal to the power switching circuit unit provided in the LED lighting tube lighting fixture, thereby turning off the power. It is possible to easily and surely switch between the three states of power-on and dimmer illumination.
 なお、図14に示すLED照明回路10-5のうち、LED照明管照明器具20'''に配設される電源入力端子T1、T2、電源切換回路部13-5、インダクタ12-1、LED照明器具ソケット端子25により構成される回路を、照明器具側回路SK5というものとする。
 また、図15に示す電源切換回路部13-5は、図1、3、6に示すLED照明回路10-1、10-2、10-3の交流電源の入力端子に接続することができる。
 さらに、本実施形態においては、図14に示す照明器具側回路SK5と、同図に示すLED照明管側回路SCを併せて、及び図13に示すLED照明管照明器具20’’’と、同図に示すLED照明管30とを併せて、「LED照明装置」という。
Of the LED illumination circuit 10-5 shown in FIG. 14, the power input terminals T1, T2, the power supply switching circuit unit 13-5, the inductor 12-1, the LED, A circuit constituted by the lighting fixture socket terminal 25 is referred to as a lighting fixture side circuit SK5.
Further, the power supply switching circuit unit 13-5 shown in FIG. 15 can be connected to the input terminal of the AC power supply of the LED lighting circuits 10-1, 10-2, 10-3 shown in FIGS.
Furthermore, in this embodiment, the lighting fixture side circuit SK5 shown in FIG. 14 and the LED lighting tube side circuit SC shown in FIG. The LED illumination tube 30 shown in the figure is collectively referred to as an “LED illumination device”.
 また、LED照明管とLED照明器具がコネクタで分離した構造となっているときは、LED照明管に配設された保護回路部で制御される切換回路部とLED照明器具側に配設された電源切換回路部が直列に接続されることになるが、両者が一体化した構造の場合には、保護回路部で駆動する光伝達素子の二次側を電源切換回路部のリモコン受光制御部に信号を送るようにすれば、切換回路部を省略することも可能である。すなわち、一体化した場合には、光伝達素子の二次側である2本の線を電源切換回路部に接続できるので、光伝達素子を二次側がフォトトランジスタであるフォトカプラにするなどして、リモコン受光制御部の入力端子(例えば、IO端子を追加)に信号を入力することで、切換回路部を省略することができる。 Also, when the LED lighting tube and the LED lighting fixture are separated from each other by the connector, the switching circuit portion controlled by the protection circuit portion arranged on the LED lighting tube and the LED lighting fixture side are arranged. The power supply switching circuit unit is connected in series. However, in the case where the two are integrated, the secondary side of the light transmission element driven by the protection circuit unit is used as the remote control light receiving control unit of the power supply switching circuit unit. If a signal is sent, the switching circuit unit can be omitted. In other words, when integrated, the two lines on the secondary side of the light transmission element can be connected to the power supply switching circuit, so that the light transmission element can be a photocoupler whose secondary side is a phototransistor. The switching circuit unit can be omitted by inputting a signal to an input terminal (for example, an IO terminal is added) of the remote control light receiving control unit.
 また、図6及び図12に示す、グロースタータ式蛍光灯器具、ラピッドスタータ式蛍光灯器具及びLED照明管照明器具のいずれにも接続可能なLED照明管側回路SCの回路は、それぞれの照明器具のインダクタ及びLED照明管側回路SCに印加される電圧が異なるので、それぞれに適合したコンデンサ111及び112を定数設定して、接続する照明器具に応じて切り換えれば、互換性(interchangeability)を得ることができる。
 したがって、既設の蛍光灯照明器具において、蛍光管の代わりにLED照明管30を取り付ければ省エネとなり、その蛍光灯照明器具をLED照明管照明器具20’’’に取り換えれば、当該LED照明管は互換性があるので継続的に使用できる上に、さらなる省エネを図ることができる。
The circuit of the LED lighting tube side circuit SC that can be connected to any of the glow starter type fluorescent lamp fixture, the rapid starter type fluorescent lamp fixture and the LED lighting tube lighting fixture shown in FIG. 6 and FIG. Since the voltages applied to the inductor and the LED lighting tube side circuit SC are different from each other, by setting constant capacitors 111 and 112 suitable for each and switching in accordance with the connected lighting fixture, interchangeability is obtained. be able to.
Therefore, in the existing fluorescent lamp illuminator, if the LED illuminating tube 30 is attached in place of the fluorescent tube, it becomes energy saving. Since it is compatible, it can be used continuously and further energy saving can be achieved.
[LED照明回路の第六実施形態(LED照明装置の第四実施形態)]
 次に、本発明のLED照明回路の第六実施形態(LED照明装置の第四実施形態)について、図16を参照して説明する。図16は、本実施形態のLED照明回路の構成を示す回路図である。
 本実施形態は、第一実施形態のLED照明回路に付加できる、通常照明と省エネ照明とディマ照明との三種類の照明状態を切換可能とする切換回路部と、過電流又は過熱の異常が発生したことを検出するとディマ照明に切り換える保護回路部とを備えるLED照明回路である。
 なお、図16において、図1等と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。
[Sixth Embodiment of LED Lighting Circuit (Fourth Embodiment of LED Lighting Device)]
Next, a sixth embodiment of the LED lighting circuit of the present invention (fourth embodiment of the LED lighting device) will be described with reference to FIG. FIG. 16 is a circuit diagram showing a configuration of the LED illumination circuit of the present embodiment.
This embodiment can be added to the LED lighting circuit of the first embodiment, and a switching circuit unit that can switch between three types of illumination states of normal illumination, energy-saving illumination, and dimmer illumination, and overcurrent or overheat abnormality occurs. It is an LED illumination circuit provided with the protection circuit part which switches to a dimmer illumination if it detects that it did.
In FIG. 16, the same components as those in FIG. 1 and the like are denoted by the same reference numerals, and detailed description thereof is omitted.
 ここでは、次の項目について、順に説明する。
 (1)LED照明回路の構成
 (2)LED照明回路の動作
Here, the following items will be described in order.
(1) Configuration of LED lighting circuit (2) Operation of LED lighting circuit
(1)LED照明回路の構成
 図16に示すように、本実施形態のLED照明回路10-6は、電源入力端子T1、T2と、インダクタ(安定器)12-1と、切換回路部13-6と、第一の倍電圧整流回路部11と、第二の倍電圧整流回路部11’と、発光回路部14-2と、を備えている。
 なお、発光回路部14-2の回路構成は、第二実施形態で説明した発光回路部14-2の回路構成と同じであるため、ここでの説明を省略する。
(1) Configuration of LED Lighting Circuit As shown in FIG. 16, the LED lighting circuit 10-6 of this embodiment includes power input terminals T1, T2, an inductor (ballast) 12-1, a switching circuit unit 13- 6, a first voltage doubler rectifier circuit unit 11, a second voltage doubler rectifier circuit unit 11 ′, and a light emitting circuit unit 14-2.
The circuit configuration of the light emitting circuit unit 14-2 is the same as the circuit configuration of the light emitting circuit unit 14-2 described in the second embodiment, and a description thereof will be omitted here.
 第一の倍電圧整流回路部11は、第二実施形態における倍電圧整流回路部11と同様の構成を有している。この第一の倍電圧整流回路部11は、接続部M1が切換回路部13-6の第一の主スイッチ132’のT1端子に接続され、接続部M2が発光回路部14-2の出力端子(OUTLET)に接続され、接続部M3が発光回路部14-2の入力端子(INLET)に接続され、接続部M4が電源入力端子T2に接続されている。 The first voltage doubler rectifier circuit unit 11 has the same configuration as the voltage doubler rectifier circuit unit 11 in the second embodiment. In the first voltage doubler rectifier circuit section 11, the connection section M1 is connected to the T1 terminal of the first main switch 132 ′ of the switching circuit section 13-6, and the connection section M2 is the output terminal of the light emitting circuit section 14-2. (OUTLET), the connection part M3 is connected to the input terminal (INLET) of the light emitting circuit part 14-2, and the connection part M4 is connected to the power input terminal T2.
 第二の倍電圧整流回路部11’は、第三コンデンサ111’と第四コンデンサ112’と第一ダイオード113と第二ダイオード114とをブリッジ状に接続した構成となっている。ここで、第一ダイオード113と第二ダイオード114は、第一の倍電圧整流回路部11における第一ダイオード113及び第二ダイオード114と同一のものである。つまり、第一の倍電圧整流回路部11と第二の倍電圧整流回路部11’は、第一ダイオード113及び第二ダイオード114を共用している。また、これら第一ダイオード113の一端と第二ダイオード114の一端との接続部M4も、第一の倍電圧整流回路部11と第二の倍電圧整流回路部11’との共通の接続部M4となっている。
 第三コンデンサ111’の一端と第四コンデンサ112’の一端との接続部M1’は、切換回路部13-6の第二の主スイッチ132’’のT1端子に接続されている。第三コンデンサ111’の他端と第一ダイオード113のアノードとの接続部M2は、発光回路部14-2の出力端子(OUTLET)に接続されている。第四コンデンサ112’の他端と第二ダイオード114のカソードとの接続部M3は、発光回路部14-2の入力端子(INLET)に接続されている。
The second voltage doubler rectifier circuit unit 11 ′ has a configuration in which a third capacitor 111 ′, a fourth capacitor 112 ′, a first diode 113, and a second diode 114 are connected in a bridge shape. Here, the first diode 113 and the second diode 114 are the same as the first diode 113 and the second diode 114 in the first voltage doubler rectifier circuit unit 11. That is, the first voltage rectifier circuit unit 11 and the second voltage rectifier circuit unit 11 ′ share the first diode 113 and the second diode 114. Further, the connection M4 between one end of the first diode 113 and one end of the second diode 114 is also a common connection M4 between the first voltage doubler rectifier circuit unit 11 and the second voltage doubler rectifier circuit unit 11 ′. It has become.
A connection portion M1 ′ between one end of the third capacitor 111 ′ and one end of the fourth capacitor 112 ′ is connected to the T1 terminal of the second main switch 132 ″ of the switching circuit portion 13-6. A connection portion M2 between the other end of the third capacitor 111 ′ and the anode of the first diode 113 is connected to the output terminal (OUTLET) of the light emitting circuit portion 14-2. A connection part M3 between the other end of the fourth capacitor 112 ′ and the cathode of the second diode 114 is connected to an input terminal (INLET) of the light emitting circuit part 14-2.
 切換回路部13-6は、トライアックである第一の主スイッチ132’と、トライアックである第二の主スイッチ132’’と、コンデンサ131と、第一の光伝達素子133と、第二の光伝達素子133’と、切換スイッチ134’と、抵抗135と、ダイオード136とを備えている。
 具体的には、第一の主スイッチ132’であるトライアックは、T2端子がインダクタ12-1の他端(接続部M0)に接続され、T1端子が第一の倍電圧整流回路部11の接続部M1に接続され、ゲートが第一の光伝達素子133の受光部133(後述)に接続されている。
 第二の主スイッチ132’’であるトライアックは、T2端子がインダクタ12-1の他端(接続部M0)に接続され、T1端子が第二の倍電圧整流回路部11’の接続部M1’に接続され、ゲートが第二の光伝達素子133’の受光部133’(後述)に接続されている。
 コンデンサ131は、一端がインダクタ12-1の他端(接続部M0)に接続され、他端が倍電圧整流回路部11の接続部M1に接続されている。すなわち、コンデンサ131は、第一の主スイッチ132’に並列に接続されている。
The switching circuit unit 13-6 includes a first main switch 132 ′ that is a triac, a second main switch 132 ″ that is a triac, a capacitor 131, a first light transmission element 133, and a second optical switch. A transmission element 133 ′, a changeover switch 134 ′, a resistor 135, and a diode 136 are provided.
Specifically, in the triac that is the first main switch 132 ′, the T2 terminal is connected to the other end (connection portion M0) of the inductor 12-1, and the T1 terminal is connected to the first voltage doubler rectifier circuit portion 11. The gate is connected to the light receiving portion 133 2 (described later) of the first light transmission element 133.
In the triac that is the second main switch 132 ″, the T2 terminal is connected to the other end (connection portion M0) of the inductor 12-1, and the T1 terminal is connected to the connection portion M1 ′ of the second voltage doubler rectifier circuit portion 11 ′. The gate is connected to the light receiving part 133 ′ 2 (described later) of the second light transmission element 133 ′.
One end of the capacitor 131 is connected to the other end (connecting portion M0) of the inductor 12-1, and the other end is connected to the connecting portion M1 of the voltage doubler rectifier circuit portion 11. That is, the capacitor 131 is connected in parallel to the first main switch 132 ′.
 第一の光伝達素子133は、発光ダイオードである発光部133と、トライアックである受光部133とを備えている。発光部133である発光ダイオードのカソードが第一の倍電圧整流回路部11の接続部M2に接続され、アノードがダイオード136のカソードに接続され、ダイオード136のアノードが切換スイッチ134’のECO接点(第二接点)に接続されている。受光部133であるトライアックのT1端子が第一の主スイッチ132’のゲートに接続され、T2端子が第一の主スイッチ132’のT2端子に接続されている。
 第二の光伝達素子133’は、発光ダイオードである発光部133’と、トライアックである受光部133’とを備えている。発光部133’である発光ダイオードのカソードが第一の光伝達素子133の発光部133である発光ダイオードのアノードに接続され、アノードが切換スイッチ134’のFULL接点(第一接点)に接続されている。受光部133’であるトライアックのT1端子が第二の主スイッチ132’’のゲートに接続され、T2端子が第二の主スイッチ132’’のT2端子に接続されている。
First light transmission device 133 includes a light emitting portion 133 1 is a light emitting diode, and a light receiving portion 133 2 is triac. The cathode of the light emitting diode which is the light emitting unit 133 1 is connected to the connection part M2 of the first voltage doubler rectifier circuit unit 11, the anode is connected to the cathode of the diode 136, and the anode of the diode 136 is the ECO contact of the changeover switch 134 ′. (Second contact). Triac T1 terminal is receiving unit 133 2 'is connected to the gate of, T2 terminals first main switch 132' first main switch 132 is connected to the T2 terminal of.
Second light transmission device 133 ', the light emitting unit 133 is a light emitting diode' and 1, and a light receiving portion 133 '2 triacs. The cathode of the light emitting diode that is the light emitting unit 133 ′ 1 is connected to the anode of the light emitting diode that is the light emitting unit 133 1 of the first light transmission element 133, and the anode is connected to the FULL contact (first contact) of the changeover switch 134 ′. Has been. Light receiving portion 133 'triac T1 terminal is 2 the second main switch 132' is connected to the gate of ', T2 terminal is connected to the T2 terminal of the second main switch 132''.
 切換スイッチ134’は、三つの接点(第一接点であるFULL接点、第二接点であるECO接点、第三接点であるDIM接点)間で切り換えを行う手動の切換スイッチである。なお、DIM接点は、開放されている。
 抵抗135は、一端がドライバ部176の反転回路INV61の出力端子に接続され、他端が切換スイッチ134’のコモン端子cに接続されている。
The changeover switch 134 ′ is a manual changeover switch that switches between three contacts (a FULL contact that is a first contact, an ECO contact that is a second contact, and a DIM contact that is a third contact). The DIM contact is open.
One end of the resistor 135 is connected to the output terminal of the inverting circuit INV61 of the driver unit 176, and the other end is connected to the common terminal c of the changeover switch 134 ′.
(2)LED照明回路の動作
 LED照明回路10-6の動作について、図16を参照して説明する。
 ここでは、次の項目について、順に説明する。
 (2-1)切換スイッチ134’がFULL接点に接続されている場合の動作
 (2-2)切換スイッチ134’がECO接点に接続されている場合の動作
 (2-3)切換スイッチ134’がDIM接点に接続されている場合の動作
 (2-4)過電流又は過熱の異常が発生した場合の動作
 なお、(2-1)~(2-3)においては、過電流又は過熱の異常が発生していない通常状態におけるLED照明回路10-6の動作について説明する。異常が発生した場合のLED照明回路10-6の動作については、(2-4)において説明する。
 また、過電流等の異常の検出は、発光回路部14-2の保護回路部17で行われるが、この保護回路部17の動作については、第二実施形態において既に説明したため、ここでの詳細な説明は省略する。
(2) Operation of LED Lighting Circuit The operation of the LED lighting circuit 10-6 will be described with reference to FIG.
Here, the following items will be described in order.
(2-1) Operation when the changeover switch 134 ′ is connected to the FULL contact (2-2) Operation when the changeover switch 134 ′ is connected to the ECO contact (2-3) The changeover switch 134 ′ is Operation when connected to a DIM contact (2-4) Operation when an overcurrent or overheat abnormality occurs Note that in (2-1) to (2-3), there is an overcurrent or overheat abnormality. The operation of the LED lighting circuit 10-6 in a normal state where no occurrence has occurred will be described. The operation of the LED lighting circuit 10-6 when an abnormality occurs will be described in (2-4).
In addition, the detection of an abnormality such as an overcurrent is performed by the protection circuit unit 17 of the light emitting circuit unit 14-2. Since the operation of the protection circuit unit 17 has already been described in the second embodiment, details here. Detailed explanation is omitted.
 (2-1)切換スイッチ134’がFULL接点に接続されている場合の動作
 異常が発生していない通常状態においては、ドライバ部176の出力端子M11からパルス列信号が出力される。ここで、正のパルス列信号が出力されたとき、抵抗135からFULL接点を通して、第二の光伝達素子133’の発光ダイオード133’と、第一の光伝達素子133の発光ダイオード133との両方に電流が流れて、これら第二の光伝達素子133’と第一の光伝達素子133が駆動する。
 第二の光伝達素子133’と第一の光伝達素子133が駆動すると、第二の主スイッチ132’’と第一の主スイッチ132’の両方がショート状態になるので、第一コンデンサ111と第三コンデンサ111’が並列に接続されるとともに、第二コンデンサ112と第四コンデンサ112’が並列に接続された倍電圧整流回路部11、11’を介して、所定の電流がLED群142、142に流れて、LED411~41n、421~42nが輝度の高い状態で発光し、後述するECO照明やDIM照明に比べて明るい照明となる。
(2-1) Operation when the changeover switch 134 'is connected to the FULL contact In a normal state where no abnormality has occurred, a pulse train signal is output from the output terminal M11 of the driver unit 176. Here, when a positive pulse train signal is output through FULL contact from the resistor 135, and 1 'emitting diode 133' the second optical transmission device 133, the light emitting diode 133 1 of the first light transmitting element 133 A current flows through both, and the second light transmission element 133 ′ and the first light transmission element 133 are driven.
When the second light transmission element 133 ′ and the first light transmission element 133 are driven, both the second main switch 132 ″ and the first main switch 132 ′ are short-circuited. A predetermined current is supplied to the LED group 142 1 through the voltage doubler rectifier circuit units 11 and 11 ′ in which the third capacitor 111 ′ is connected in parallel and the second capacitor 112 and the fourth capacitor 112 ′ are connected in parallel. , flows to 142 2, LED411 ~ 41n, 421 ~ 42n emits light at a high luminance state, the bright illumination in comparison with the ECO lighting and DIM illumination to be described later.
 (2-2)切換スイッチ134’がECO接点に接続されている場合の動作
 通常状態においては、ドライバ部176の出力端子M11からパルス列信号が出力される。ここで、正のパルス列信号が出力されたとき、抵抗135からECO接点及びダイオード136を通して、第一の光伝達素子133の発光ダイオード133に電流が流れて、当該第一の光伝達素子133が駆動する。一方、第二の光伝達素子133’の発光ダイオード133’には電流が流れないので、当該第二の光伝達素子133’は駆動しない。
 第一の光伝達素子133が駆動し、第二の光伝達素子133’は駆動しないので、第一の主スイッチ132’がオンの状態となり、第二の主スイッチ132’’がオフの状態となる。よって、第一の倍電圧整流回路部11による所定の電流がLED群142、142に流れて、FULL照明よりも輝度の低い状態でLED411~41n、421~42nが発光し、FULL照明よりも照度を落とした省エネ照明(ECO照明)となる。
(2-2) Operation when the changeover switch 134 ′ is connected to the ECO contact In a normal state, a pulse train signal is output from the output terminal M11 of the driver unit 176. Here, when a positive pulse train signal is output, through the ECO contacts and the diode 136 from the resistor 135, a current flows through the light emitting diode 133 1 of the first optical transmission device 133, the first optical transmission element 133 To drive. Meanwhile, since the 1 'light emitting diode 133' the second optical transmission device 133 no current flows, the second light transmission device 133 'is not driven.
Since the first light transmission element 133 is driven and the second light transmission element 133 ′ is not driven, the first main switch 132 ′ is turned on and the second main switch 132 ″ is turned off. Become. Therefore, a predetermined current by the first voltage doubler rectifier circuit unit 11 flows to the LED groups 142 1 and 142 2 , and the LEDs 411 to 41n and 421 to 42n emit light in a state where the luminance is lower than the FULL illumination, and from the FULL illumination. Becomes energy-saving lighting (ECO lighting) with reduced illuminance.
 なお、この場合、第二の倍電圧整流回路部11’の第三コンデンサ111’と第四コンデンサ112’は、直列に接続された状態で、平準化コンデンサ15と並列に接続された状態となる。
 また、ダイオード136は、第二の光伝達素子133’の発光ダイオード133’と飽和電圧が同等の物が選ばれる。これにより、切換スイッチ134’にてFULL接点又はECO接点のいずれが接続された場合でも、抵抗135を流れる電流が同等の電流になるようにしている。
In this case, the third capacitor 111 ′ and the fourth capacitor 112 ′ of the second voltage doubler rectifier circuit unit 11 ′ are connected in series and are connected in parallel with the leveling capacitor 15. .
The diode 136, 1 and saturation voltage 'light emitting diode 133' the second optical transmission device 133 is equivalent is selected. As a result, even when either the FULL contact or the ECO contact is connected by the changeover switch 134 ′, the current flowing through the resistor 135 is made equal.
 (2-3)切換スイッチ134’がDIM接点に接続されている場合の動作
 切換スイッチ134’がDIM接点に接続された場合、このDIM接点は開放されているので、ドライバ部176の出力端子M11からパルス列信号が出力されるか否かに関係なく、第二の光伝達素子133’の発光ダイオード133’と、第一の光伝達素子133の発光ダイオード133のいずれにも電流が流れず、これら第二の光伝達素子133’と第一の光伝達素子133がいずれも駆動しないので、第一の主スイッチ132’と第二の主スイッチ132’’の両方ともオフになる。
 これにより、第一の主スイッチ132’と並列に接続されたコンデンサ131が第一の倍電圧整流回路部11と直列に接続されるので、第一の倍電圧整流回路部11への充放電時の電流がコンデンサ131により低減された、少ない電流がLED群142、142に流れて、ECO照明よりも輝度の低い状態でLED411~41n、421~42nが発光し、ECO照明よりも照度を落としたDIM照明となる。
(2-3) Operation when the changeover switch 134 ′ is connected to the DIM contact When the changeover switch 134 ′ is connected to the DIM contact, the DIM contact is open, so the output terminal M11 of the driver unit 176 regardless of whether the pulse train signal is output from the 1 'emitting diode 133' the second optical transmission device 133, without any current also light emitting diodes 133 1 of the first optical transmission element 133 flows Since neither the second light transmission element 133 ′ nor the first light transmission element 133 is driven, both the first main switch 132 ′ and the second main switch 132 ″ are turned off.
Thereby, the capacitor 131 connected in parallel with the first main switch 132 ′ is connected in series with the first voltage doubler rectifier circuit unit 11, so that the first voltage doubler rectifier circuit unit 11 is charged and discharged. Is reduced by the capacitor 131, and a small amount of current flows to the LED groups 142 1 and 142 2 , and the LEDs 411 to 41n and 421 to 42n emit light in a state where the luminance is lower than that of the ECO illumination. It becomes the dropped DIM illumination.
 (2-4)異常が検出された場合の動作
 保護回路部17において異常が検出されると、ドライバ部176の発振が停止して、第一の主スイッチ132’と第二の主スイッチ132’’がいずれもオフになり、DIM状態と同じ照明になる。
 また、この場合、ラッチ回路部175の増幅器AMP51の出力がハイレベルになり、定電圧生成部171のトランジスタQ12、Q11がオフとなるので、エラー表示LED11が点灯して、「異常」であることを表示する。
(2-4) Operation when an abnormality is detected When an abnormality is detected in the protection circuit unit 17, the oscillation of the driver unit 176 stops, and the first main switch 132 'and the second main switch 132''Is turned off and the lighting is the same as in the DIM state.
Further, in this case, the output of the amplifier AMP51 of the latch circuit unit 175 becomes high level, and the transistors Q12 and Q11 of the constant voltage generation unit 171 are turned off, so that the error display LED 11 is lit and “abnormal”. Is displayed.
 ここで、異常を検出するラッチ回路部175は、OR回路接続部M10と増幅器AMP51の出力端子間にコンデンサC51が接続されている状態では、単安定マルチバイブレータとして機能し、異常を検出後、その異常が解消されても、一定の時間は、DIM状態を維持し、一定時間経過後に、正常な状態に復帰する。
 また、ラッチ回路部175のコンデンサC51を抵抗に置き換えることで、双安定マルチバイブレータ(フリップフロップ)を構成することができる。この場合、異常が検出されて、増幅器AMP51の正入力端子の電位がハイレベルになると、この状態をラッチして、ディマ照明を継続させる。その後は、電源が再投入されることにより、正常な状態に復帰する。
Here, the latch circuit unit 175 for detecting an abnormality functions as a monostable multivibrator in a state where the capacitor C51 is connected between the output terminal of the OR circuit connection unit M10 and the amplifier AMP51. Even if the abnormality is resolved, the DIM state is maintained for a certain time, and the normal state is restored after the certain time has elapsed.
Further, a bistable multivibrator (flip-flop) can be configured by replacing the capacitor C51 of the latch circuit portion 175 with a resistor. In this case, when an abnormality is detected and the potential of the positive input terminal of the amplifier AMP51 becomes a high level, this state is latched and the dimmer illumination is continued. Thereafter, when the power is turned on again, the normal state is restored.
 また、異常を検出する保護回路部17の制御に要する電源とその電流は、LED群142、142に電流を供給する接続部M5から供給している。
 制御に必要な電流は、光伝達素子133、133’を駆動する電流が約20mAとすれば、パルス列駆動することにより、その平均電流を約1/20にすれば1mA、回路の電流を1mA、ツェナーダイオードZ11に流す電流を0.5mAとすれば、合計2.5mAとなる。
 LED群142、142を構成する各LEDは、約3Vの飽和電圧を持ち、LED群142、142の各列が例えば50個のLEDの直列回路とすれば、その飽和電圧は150Vになる。
 したがって、かかる制御に必要な電力は、約0.375Wとなり、20Wのランプなら約2%、40Wのランプに用いれば1%の電力損失である。
Further, the power source and the current required for the control of the protection circuit unit 17 that detects the abnormality are supplied from the connection unit M5 that supplies current to the LED groups 142 1 and 142 2 .
If the current for driving the light transmission elements 133 and 133 ′ is about 20 mA, the current required for the control is 1 mA when the average current is reduced to about 1/20 by driving the pulse train, and the current of the circuit is 1 mA. If the current flowing through the Zener diode Z11 is 0.5 mA, the total is 2.5 mA.
Each LED constituting the LED groups 142 1 and 142 2 has a saturation voltage of about 3V. If each column of the LED groups 142 1 and 142 2 is a series circuit of 50 LEDs, for example, the saturation voltage is 150V. become.
Therefore, the electric power required for such control is about 0.375 W, which is about 2% for a 20 W lamp and 1% for a 40 W lamp.
 電源スイッチである主スイッチ132’と並列に挿入されたコンデンサ131は、この主スイッチ132’がオフのときでも、DIM状態での照明に必要な電流と、制御回路の電源Ecを維持するための必要最小限の電流を供給するように設定される。
 切換スイッチ134’は、同スイッチ132が交流電源である高い電圧が印加されているのに対して、各端子間にかかる電圧は、制御回路の電源Ecなので、図13に示すように、小型のロータリースイッチを用いて、照明管30の照明管ソケット32aに小さく収納することができる。
 異常を検出したときに発光するエラー表示LED11は、この切換スイッチ134’を操作するツマミの付近に配置して光らせて、異常状態が表示される。
 DIM照明は、電源が集中制御された灯器具の中で、普段照明を必要としない場所において、ランプを外さずに僅かな照明のDIMに切り換えて、待機状態に保ち、必要になればFULL接点又はECO接点に切り替えることで復帰させることができる。
 安定器12-1の電力消費を除いた、DIM照明に必要な消費電力は、例えば、LED群142、142に4mAの電流を流して、保護回路部17に2.5mAの電流を流すこととすれば、合計6.5mAを流すようにコンデンサ131の容量を設定すれば、1Wの消費電力にできる。
 これが、例えば20Wのランプであれば、消費電力を1/20に低減することになる。
The capacitor 131 inserted in parallel with the main switch 132 ′, which is a power switch, maintains the current necessary for illumination in the DIM state and the power source Ec of the control circuit even when the main switch 132 ′ is off. It is set to supply the minimum necessary current.
The changeover switch 134 'is applied with a high voltage that is an AC power supply for the switch 132, whereas the voltage applied between the terminals is the power supply Ec of the control circuit. Using a rotary switch, the light tube 30 can be housed in a small size in the light tube socket 32a.
The error display LED 11 that emits light when an abnormality is detected is arranged near the knob that operates the changeover switch 134 ′ to light up, and an abnormal state is displayed.
DIM lighting is a light fixture with centrally controlled power supply. In places where lighting is not normally required, switch to DIM with slight lighting without removing the lamp and keep it in standby, and if necessary, a FULL contact Alternatively, it can be restored by switching to the ECO contact.
The power consumption required for the DIM illumination, excluding the power consumption of the ballast 12-1, is, for example, a current of 4 mA is passed through the LED groups 142 1 and 142 2 and a current of 2.5 mA is passed through the protection circuit unit 17. In other words, if the capacity of the capacitor 131 is set so that a total of 6.5 mA flows, the power consumption can be 1 W.
If this is a 20 W lamp, for example, power consumption will be reduced to 1/20.
 以上、本発明のLED照明回路及びLED照明装置の好ましい実施形態について説明したが、本発明に係るLED照明回路及びLED照明装置は、上述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。
 例えば、図1においては、切換回路部13-1が、インダクタ12-1と倍電圧整流回路部11の接続部M1との間に一つのみ接続されているが、切換回路部13-1は、一つに限るものではなく、それらインダクタ12-1と倍電圧整流回路部11の接続部M1との間に、複数直列に接続することもできる。この場合、複数の切換回路部13-1のそれぞれの主スイッチ132を任意に(又は、所定の条件下で)切り換えることにより、直列に接続されるコンデンサ131の合成容量を変化させて、LED群142の輝度をその合成容量の変化に応じて複数段階で変化させることができる。
As mentioned above, although preferred embodiment of the LED lighting circuit and LED lighting device of this invention was described, the LED lighting circuit and LED lighting device which concern on this invention are not limited only to embodiment mentioned above, The present invention is not limited. It goes without saying that various modifications can be made within the range.
For example, in FIG. 1, only one switching circuit unit 13-1 is connected between the inductor 12-1 and the connection part M1 of the voltage doubler rectifier circuit unit 11, but the switching circuit unit 13-1 However, the present invention is not limited to one, and a plurality of inductors 12-1 and a connecting portion M1 of the voltage doubler rectifier circuit unit 11 may be connected in series. In this case, by changing the main switch 132 of each of the plurality of switching circuit units 13-1 arbitrarily (or under a predetermined condition), the combined capacity of the capacitors 131 connected in series is changed, and the LED group The luminance of 142 can be changed in a plurality of steps according to the change of the combined capacity.
 なお、本発明のLED照明回路は、第一実施形態~第六実施形態のそれぞれにおけるLED照明回路を任意に組み合わせたものであってもよい。
 また、本発明のLED照明装置は、第一実施形態~第三実施形態のそれぞれにおけるLED照明装置を任意に組み合わせたものであってもよい。
The LED lighting circuit of the present invention may be an arbitrary combination of the LED lighting circuits in each of the first to sixth embodiments.
Further, the LED lighting device of the present invention may be an arbitrary combination of the LED lighting devices in each of the first to third embodiments.
 10(10-1~10-6) LED照明回路
 11、11’ 倍電圧整流回路部
 111 第一コンデンサ
 112 第二コンデンサ
 113 第一ダイオード
 114 第二ダイオード
 12(12-1、12-3、12-3’、12-3'') インダクタ
 13-1、13-2、13-6 切換回路部
 13-4、13-5 電源切換回路部
 131 コンデンサ
 132、132’、132’’ 主スイッチ
 132-4 切換スイッチ
 137 定電圧生成部
 138 ドライバ部
 139 スイッチ部
 14(14-1、14-2) 発光回路部
 141 発光素子部
 142、142、142 LED群
 15 平準化コンデンサ
 16 電圧リミッタ
 17 保護回路部
 171 定電圧生成部
 172 第一基準電圧発生部
 173 過電流検出部
 174 過熱検出部
 175 ラッチ回路部
 176 ドライバ部
 20、20’、20'' 蛍光灯照明器具
 20''' LED照明管照明器具
 30 LED照明管
 411~41n、421~42n LED
 50 リモコン送信機
 51 リモコン送信機用回路
 T1、T2 電源入力端子
 ACS 商用交流電源
 B、B’、B'' LED照明装置
 SK1、SK2、SK3、SK4、SK5 照明器具側回路
 SC LED照明管側回路
10 (10-1 to 10-6) LED illumination circuit 11, 11 ′ voltage doubler rectifier circuit section 111 first capacitor 112 second capacitor 113 first diode 114 second diode 12 (12-1, 12-3, 12- 3 ′, 12-3 ″) Inductors 13-1, 13-2, 13-6 Switching circuit section 13-4, 13-5 Power switching circuit section 131 Capacitors 132, 132 ′, 132 ″ Main switch 132-4 Changeover switch 137 Constant voltage generation unit 138 Driver unit 139 Switch unit 14 (14-1, 14-2) Light emitting circuit unit 141 Light emitting element unit 142, 142 1 , 142 2 LED group 15 Leveling capacitor 16 Voltage limiter 17 Protection circuit unit 171 Constant voltage generator 172 First reference voltage generator 173 Overcurrent detector 174 Overheat detector 175 Latch circuit 1 6 driver section 20, 20 ', 20''fluorescent lighting fixture 20''' LED light tube lighting apparatus 30 LED light tube 411 ~ 41n, 421 ~ 42n LED
50 Remote control transmitter 51 Remote control transmitter circuit T1, T2 Power input terminal ACS Commercial AC power supply B, B ′, B ″ LED lighting device SK1, SK2, SK3, SK4, SK5 Lighting fixture side circuit SC LED lighting tube side circuit

Claims (14)

  1.  交流電源を入力する電源入力端子と、インダクタと、前記交流電源を整流する倍電圧整流回路部と、複数のLEDが直列に接続されたLED群を含む発光回路部とを備えたLED照明回路であって、
     前記電源入力端子と前記LED群との間に、前記インダクタと、前記倍電圧整流回路部が接続された回路と直列に、コンデンサとショート回路をスイッチで選択できる切換回路部を備え、
     前記スイッチが前記ショート回路を選択したときには、前記LED群に流れる電流が前記ショート回路を流れて、前記LED群が通常の輝度で発光する通常発光状態となり、
     前記スイッチが前記コンデンサを選択したときには、前記LED群に流れる電流が、前記コンデンサを通して流れて、前記通常発光状態のときに前記LED群に流れる電流よりも減少した電流となり、前記LED群が前記通常発光状態における輝度よりも低い輝度で発光する低輝度発光状態となる
     ことを特徴とするLED照明回路。
    An LED lighting circuit comprising a power input terminal for inputting an AC power source, an inductor, a voltage doubler rectifier circuit unit for rectifying the AC power source, and a light emitting circuit unit including an LED group in which a plurality of LEDs are connected in series. There,
    In series with the circuit connected to the inductor and the voltage doubler rectifier circuit unit between the power input terminal and the LED group, a switching circuit unit capable of selecting a capacitor and a short circuit with a switch,
    When the switch selects the short circuit, a current flowing through the LED group flows through the short circuit, and the LED group enters a normal light emitting state in which light is emitted at a normal luminance.
    When the switch selects the capacitor, the current that flows through the LED group flows through the capacitor and becomes a current that is less than the current that flows through the LED group in the normal light emission state, and the LED group An LED illumination circuit characterized by being in a low-luminance light emitting state in which light is emitted at a lower luminance than that in the light emitting state.
  2.  前記LED群に関する異常を検出する異常検出部を備え、
     前記切換回路部は、前記異常検出部で異常が検出されると、前記スイッチが前記コンデンサを選択して、前記LED群に流す電流を前記コンデンサを通して流す切換制御手段を有し、
     前記コンデンサは、自身に電流が流れることで、前記LED群に流れる電流を減少させて、前記LED群を前記低輝度発光状態で発光させる
     ことを特徴とする請求項1記載のLED照明回路。
    An abnormality detection unit that detects an abnormality related to the LED group,
    The switching circuit unit includes a switching control unit that, when an abnormality is detected by the abnormality detection unit, the switch selects the capacitor and causes a current to flow through the LED group to flow through the capacitor;
    The LED illumination circuit according to claim 1, wherein when the current flows through the capacitor, the current flowing through the LED group is reduced to cause the LED group to emit light in the low-luminance light emitting state.
  3.  前記コンデンサを、電流低減用コンデンサとし、
     前記切換回路部は、前記電源入力端子と前記倍電圧整流回路部との間であって、前記インダクタの前又は後の間に設けられており、
     前記倍電圧整流回路部は、それぞれの一端が接続された第一コンデンサ及び第二コンデンサと、前記第一コンデンサの他端にアノードが接続された第一ダイオードと、前記第二コンデンサの他端にカソードが接続されるとともに前記第一ダイオードのカソードにアノードが接続された第二ダイオードとを有し、
     前記切換回路部は、前記第一コンデンサと前記第二コンデンサとの接続点に直列に接続され、
     前記異常検出部で異常が検出されていないときは、前記スイッチが前記ショート回路を選択して、前記第一コンデンサと第二コンデンサとの接続点に電流を流して、前記LED群を前記通常発光状態の輝度で発光させ、
     前記異常検出部で異常が検出されると、前記スイッチが前記電流低減用コンデンサを選択して、前記第一コンデンサと第二コンデンサとの接続点に電流を流し、前記LED群に流れる電流を減少させて、前記LED群を前記低い輝度で発光させる
     ことを特徴とする請求項2記載のLED照明回路。
    The capacitor is a current reduction capacitor,
    The switching circuit unit is provided between the power input terminal and the voltage doubler rectifier circuit unit, and is provided before or after the inductor,
    The voltage doubler rectifier circuit unit includes a first capacitor and a second capacitor connected to one end of each, a first diode having an anode connected to the other end of the first capacitor, and the other end of the second capacitor. A second diode having a cathode connected and an anode connected to the cathode of the first diode;
    The switching circuit unit is connected in series to a connection point between the first capacitor and the second capacitor,
    When no abnormality is detected by the abnormality detection unit, the switch selects the short circuit, and a current is passed through a connection point between the first capacitor and the second capacitor to cause the LED group to emit the normal light. Let it emit light with the brightness of the state,
    When an abnormality is detected by the abnormality detection unit, the switch selects the current reducing capacitor, and a current flows through a connection point between the first capacitor and the second capacitor, thereby reducing a current flowing through the LED group. The LED illumination circuit according to claim 2, wherein the LED group emits light at the low luminance.
  4.  前記異常検出部は、前記LED群に流れる過電流を検出する過電流検出部を有し、
     前記切換回路部の切換制御手段は、前記過電流検出部で前記過電流が検出されたときに、前記スイッチが前記電流低減用コンデンサを選択して、前記電流低減用コンデンサに電流を流し、前記LED群に流れる電流を減少させて、前記LED群を前記低い輝度で発光させる
     ことを特徴とする請求項3記載のLED照明回路。
    The abnormality detection unit includes an overcurrent detection unit that detects an overcurrent flowing through the LED group,
    When the overcurrent is detected by the overcurrent detection unit, the switching control unit of the switching circuit unit selects the current reduction capacitor and causes the current to flow through the current reduction capacitor. The LED illumination circuit according to claim 3, wherein the LED group emits light with the low luminance by reducing a current flowing through the LED group.
  5.  前記異常検出部は、前記LED群における過熱を検出する過熱検出部を有し、
     前記切換回路部の切換制御手段は、前記過熱検出部で前記過熱が検出されたときに、前記スイッチが前記電流低減用コンデンサを選択して、前記電流低減用コンデンサに電流を流し、前記LED群に流れる電流を減少させて、前記LED群を前記低い輝度で発光させる
     ことを特徴とする請求項3又は4のいずれかに記載のLED照明回路。
    The abnormality detection unit includes an overheat detection unit that detects overheating in the LED group,
    When the overheat is detected by the overheat detection unit, the switching control unit of the switching circuit unit selects the current reduction capacitor, and causes the current to flow through the current reduction capacitor when the overheat is detected. 5. The LED illumination circuit according to claim 3, wherein the LED group emits light with the low luminance by reducing a current flowing through the LED.
  6.  前記切換回路部は、前記スイッチがトライアックからなり、当該トライアックのT1端子とT2端子間に、前記電流低減用コンデンサが接続された回路で構成し、
     前記切換回路部の前記切換制御手段にパルス列である矩形波信号を送るドライバ部を備え、
     前記ドライバ部は、
     前記異常検出部で異常が検出されていないときは、前記パルス列を出力する部品又は回路を駆動制御して、前記パルス列を前記切換回路部へ送り、前記トライアックのゲートに所定の電流を流してオン状態にし、前記トライアックに流す電流による通常輝度状態とし、
     前記異常検出部で異常が検出されたときは、前記矩形波信号を前記切換回路部へ送らず、前記トライアックをオフ状態にし、前記電流低減用コンデンサに電流を流し、前記LED群に流れる電流を減少させて、前記LED群を前記低い輝度で発光させる
     ことを特徴とする請求項3~5のいずれかに記載のLED照明回路。
    The switching circuit unit is configured by a circuit in which the switch includes a triac, and the current reducing capacitor is connected between the T1 terminal and the T2 terminal of the triac.
    A driver unit that sends a rectangular wave signal that is a pulse train to the switching control means of the switching circuit unit;
    The driver part is
    When no abnormality is detected by the abnormality detection unit, the drive or control of the component or circuit that outputs the pulse train is performed, the pulse train is sent to the switching circuit unit, and a predetermined current is supplied to the gate of the triac to turn it on. To the normal brightness state by the current flowing through the triac,
    When an abnormality is detected by the abnormality detection unit, the rectangular wave signal is not sent to the switching circuit unit, the triac is turned off, a current is supplied to the current reducing capacitor, and a current flowing through the LED group is 6. The LED lighting circuit according to claim 3, wherein the LED group emits light at the low luminance by decreasing the LED group.
  7.  単安定マルチバイブレータ又は双安定マルチバイブレータを構成する、前記ドライバ部を制御するラッチ回路部を備え、
     前記異常検出部で異常が検出されると、前記ラッチ回路部でラッチして、前記ドライバ部の出力を停止することにより、前記トライアックをオフ状態に保ち、前記LED群を前記低い輝度で発光させ、当該異常が検出されなくなると、前記ラッチ回路部が単安定マルチバイブレータの場合には、当該ラッチ回路部は、所定時間が経過するまで、前記ドライバ部の出力の停止状態を維持して、前記LED群が前記低い輝度で発光した状態を維持し、前記所定時間が経過すると、前記ドライバ部の出力を出力して、前記LED群を前記通常の輝度で発光させ、
     前記ラッチ回路部が双安定マルチバイブレータの場合には、前記異常が検出されなくなっても、当該ラッチ回路部は、前記LED群が前記低い輝度で発光させ続ける
     ことを特徴とする請求項6記載のLED照明回路。
    Comprising a monolithic multivibrator or a bistable multivibrator, comprising a latch circuit part for controlling the driver part,
    When an abnormality is detected by the abnormality detection unit, the triac is latched by the latch circuit unit and the output of the driver unit is stopped, thereby keeping the triac off and causing the LED group to emit light at the low luminance. When the abnormality is not detected, when the latch circuit unit is a monostable multivibrator, the latch circuit unit maintains the output stop state of the driver unit until a predetermined time elapses. Maintaining the state where the LED group emits light at the low luminance, and when the predetermined time has elapsed, the output of the driver unit is output to cause the LED group to emit light at the normal luminance,
    7. The latch circuit unit according to claim 6, wherein, when the latch circuit unit is a bistable multivibrator, the LED group continues to emit light at the low luminance even when the abnormality is not detected. LED lighting circuit.
  8.  前記切換回路部の切換制御手段は、光伝達素子を有し、
     この光伝達素子は、
     前記ドライバ部からの前記矩形波信号を受けると発光する発光部と、
     この発光部からの光を受けると、前記スイッチを切り換える受光部とを有した
     ことを特徴とする請求項6又は7記載のLED照明回路。
    The switching control means of the switching circuit unit has a light transmission element,
    This light transmission element is
    A light emitting unit that emits light when receiving the rectangular wave signal from the driver unit;
    The LED illumination circuit according to claim 6, further comprising a light receiving unit that switches the switch when receiving light from the light emitting unit.
  9.  前記切換回路部をオンオフ制御するための保護回路部を備え、
     前記保護回路部は、前記LED群が前記異常検出状態であることを発光により表示する異常検出状態表示部を有した
     ことを特徴とする請求項1~8のいずれかに記載のLED照明回路。
    A protection circuit unit for on-off control of the switching circuit unit;
    The LED illumination circuit according to any one of claims 1 to 8, wherein the protection circuit unit includes an abnormality detection state display unit that displays by light emission that the LED group is in the abnormality detection state.
  10.  前記LED群に並列に接続された平準化コンデンサと、この平準化コンデンサに並列に接続された電圧リミッタとを備え、
     前記LED群が断線して当該LED群の両端に加わる電圧が所定の電圧値を超えようとすると、前記電圧リミッタに電流が流れて、前記平準化コンデンサに所定の電圧以上の電圧が加わるのを制限するとともに、当該電圧リミッタの温度上昇による異常を検知して、前記切換回路部が前記スイッチを切り換えて、前記電流低減用コンデンサを通して、前記電圧リミッタに流れる電流を減少させて、前記平準化コンデンサの破損、劣化を防止する
     ことを特徴とする請求項3~9のいずれかに記載のLED照明回路。
    A leveling capacitor connected in parallel to the LED group, and a voltage limiter connected in parallel to the leveling capacitor;
    When the LED group is disconnected and the voltage applied to both ends of the LED group exceeds a predetermined voltage value, a current flows through the voltage limiter and a voltage higher than the predetermined voltage is applied to the leveling capacitor. In addition, the leveling capacitor detects the abnormality due to the temperature rise of the voltage limiter, and the switching circuit unit switches the switch to reduce the current flowing to the voltage limiter through the current reducing capacitor. The LED lighting circuit according to claim 3, wherein the LED lighting circuit is prevented from being damaged or deteriorated.
  11.  前記スイッチが、手動の切換スイッチである
     ことを特徴とする請求項1記載のLED照明回路。
    The LED lighting circuit according to claim 1, wherein the switch is a manual changeover switch.
  12.  前記切換回路部の前記スイッチは、前記コンデンサと前記ショート回路の他に、電源オフを選択でき、
     前記スイッチが前記電源オフを選択したときには、前記交流電源から流れる電流の経路が切断されて、前記LED群に電流が流れず、前記LED群が発光しない消灯状態となる
     ことを特徴とする請求項1又は11記載のLED照明回路。
    In addition to the capacitor and the short circuit, the switch of the switching circuit unit can select power off,
    When the switch selects the power-off, the path of the current flowing from the AC power supply is cut off, and no current flows through the LED group, and the LED group is turned off so that it does not emit light. 12. The LED illumination circuit according to 1 or 11.
  13.  操作信号を無線出力するリモコン送信機用回路を備え、
     前記切換回路部は、前記リモコン送信機用回路から出力された操作信号を受信するとともに、受信した前記操作信号にもとづいて、前記スイッチによる前記コンデンサと前記ショート回路と前記電源オフとの選択を切り換える
     ことを特徴とする請求項12記載のLED照明回路。
    A remote control transmitter circuit that wirelessly outputs operation signals is provided.
    The switching circuit unit receives the operation signal output from the remote control transmitter circuit and switches the selection of the capacitor, the short circuit, and the power-off by the switch based on the received operation signal. The LED lighting circuit according to claim 12.
  14.  複数のLEDが配置されている基板を有したLED照明管と、このLED照明管を支持する照明器具とを備え、
     前記LED照明管は、
     前記照明器具に取り付けるための照明管ソケットと、
     この照明管ソケットと前記複数のLEDとの間に配設されたLED照明管側回路とを有し、
     前記照明器具は、
     前記照明管ソケットに係合する照明器具ソケットと、
     電源入力端子と前記照明器具ソケットとの間に配設された照明器具側回路とを有し、
     前記LED照明管側回路が、前記請求項1~請求項13のいずれかに記載のLED照明回路の一部を含み、
     前記照明器具側回路が、前記LED照明回路の他の一部を含む
     ことを特徴とするLED照明装置。
    An LED lighting tube having a substrate on which a plurality of LEDs are disposed, and a lighting fixture that supports the LED lighting tube;
    The LED lighting tube is
    A light tube socket for attachment to the lighting fixture;
    An LED lighting tube side circuit disposed between the lighting tube socket and the plurality of LEDs,
    The lighting fixture is:
    A luminaire socket engaging the luminaire socket;
    A lighting fixture side circuit disposed between a power input terminal and the lighting fixture socket;
    The LED lighting tube side circuit includes a part of the LED lighting circuit according to any one of claims 1 to 13,
    The lighting device side circuit includes another part of the LED lighting circuit. The LED lighting device.
PCT/JP2012/004033 2011-06-29 2012-06-21 Led illumination circuit and led illumination device WO2013001756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011144114A JP2013037763A (en) 2011-06-29 2011-06-29 Led lighting circuit and led lighting device
JP2011-144114 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013001756A1 true WO2013001756A1 (en) 2013-01-03

Family

ID=47423684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004033 WO2013001756A1 (en) 2011-06-29 2012-06-21 Led illumination circuit and led illumination device

Country Status (2)

Country Link
JP (1) JP2013037763A (en)
WO (1) WO2013001756A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944415A (en) * 2013-01-22 2014-07-23 宁波金辉摄影器材有限公司 Wide voltage-doubling circuit system
CN103945592A (en) * 2013-01-21 2014-07-23 朗捷科技股份有限公司 LED lamp tube compatible with electronic stabilizer having preheating current
JP2014146634A (en) * 2013-01-28 2014-08-14 Rohm Co Ltd Led driving device and led lighting device
EP3024303A3 (en) * 2014-11-21 2016-07-27 Zhejiang CH Lighting Co., Ltd. Led tube power drive circuit and led tube
US9713224B2 (en) 2014-01-28 2017-07-18 Koninklijke Philips N.V. Electroluminescent device with short detection circuit
CN107979885A (en) * 2016-10-25 2018-05-01 松下知识产权经营株式会社 Ignition device and lighting device
CN113595232A (en) * 2021-08-02 2021-11-02 巨翊科技(上海)有限公司 Dual management system for power supply software and hardware of mobile medical equipment
EP3920664A4 (en) * 2019-01-28 2022-10-05 Shenzhen Hontech-Wins Electronics Co., Ltd Application apparatus combining led dimmer and reactor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419537B1 (en) * 2015-01-29 2016-08-16 Technical Consumer Products, Inc. Light emitting diode (LED) driver having direct replacement capabilities
JP6426018B2 (en) * 2015-02-03 2018-11-21 エイブリック株式会社 Overheat detection circuit and power supply
JP2022016541A (en) * 2016-07-29 2022-01-21 パイオニア株式会社 Light source drive device
JP6980369B2 (en) * 2016-07-29 2021-12-15 パイオニア株式会社 Light source drive and distance measurement device
KR102493070B1 (en) * 2021-05-24 2023-01-31 엘지전자 주식회사 A display device
CN113757575B (en) * 2021-06-23 2023-11-10 厦门普为光电科技有限公司 Adjustable light tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148593A (en) * 1983-02-09 1984-08-25 Matsushita Seiko Co Ltd Speed control circuit for motor
JP2011049075A (en) * 2009-08-27 2011-03-10 Daiichi-Tsusho Co Ltd Lighting system and light source device
JP2011100666A (en) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Lighting device, and headlight lighting device, headlight and vehicle using the same
JP2011100667A (en) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Lighting device and headlight using the same, and vehicle
JP2011113643A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Lighting device, lighting device for high-brightness discharge lamp, lighting device for semiconductor light source, and headlamp equipped therewith, and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148593A (en) * 1983-02-09 1984-08-25 Matsushita Seiko Co Ltd Speed control circuit for motor
JP2011049075A (en) * 2009-08-27 2011-03-10 Daiichi-Tsusho Co Ltd Lighting system and light source device
JP2011100666A (en) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Lighting device, and headlight lighting device, headlight and vehicle using the same
JP2011100667A (en) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Lighting device and headlight using the same, and vehicle
JP2011113643A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Lighting device, lighting device for high-brightness discharge lamp, lighting device for semiconductor light source, and headlamp equipped therewith, and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945592A (en) * 2013-01-21 2014-07-23 朗捷科技股份有限公司 LED lamp tube compatible with electronic stabilizer having preheating current
CN103944415A (en) * 2013-01-22 2014-07-23 宁波金辉摄影器材有限公司 Wide voltage-doubling circuit system
JP2014146634A (en) * 2013-01-28 2014-08-14 Rohm Co Ltd Led driving device and led lighting device
US9713224B2 (en) 2014-01-28 2017-07-18 Koninklijke Philips N.V. Electroluminescent device with short detection circuit
EP3024303A3 (en) * 2014-11-21 2016-07-27 Zhejiang CH Lighting Co., Ltd. Led tube power drive circuit and led tube
CN107979885A (en) * 2016-10-25 2018-05-01 松下知识产权经营株式会社 Ignition device and lighting device
EP3920664A4 (en) * 2019-01-28 2022-10-05 Shenzhen Hontech-Wins Electronics Co., Ltd Application apparatus combining led dimmer and reactor
CN113595232A (en) * 2021-08-02 2021-11-02 巨翊科技(上海)有限公司 Dual management system for power supply software and hardware of mobile medical equipment

Also Published As

Publication number Publication date
JP2013037763A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
WO2013001756A1 (en) Led illumination circuit and led illumination device
JP5214585B2 (en) LED drive circuit, phase control dimmer, LED illumination lamp, LED illumination device, and LED illumination system
US8432103B2 (en) LED drive circuit, LED illumination fixture, LED illumination device, and LED illumination system
JP4943402B2 (en) LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
US8400079B2 (en) LED drive circuit, dimming device, LED illumination fixture, LED illumination device, and LED illumination system
JP5031865B2 (en) LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
US9018846B2 (en) AC to DC LED illumination devices, systems and methods
US10681782B2 (en) Dimmable universal voltage LED power supply with regenerating power source circuitry and non-isolated load
TWI397348B (en) Light source driving circuit
JP2012204026A (en) Solid light source lighting device, lighting fixture and illumination system using the same
JP2004296205A (en) Led dimming and lighting device and illuminating equipment
US8710766B2 (en) LED driving circuit, LED illumination appliance, LED illuminator, and LED illumination system
CN109792819B (en) Modified light-emitting diode (LED) lamp tube for realizing step-by-step dimming in multi-lamp lighting system
JP2006100036A (en) Led illuminating device
US11229101B2 (en) LED driver and LED lighting system for use with a high frequency electronic ballast
JP5449303B2 (en) Light source lighting device and lighting fixture
KR101139344B1 (en) Led drive circuit, led illumination fixture, led illumination device, and led illumination system
TW201325312A (en) Light emitting apparatus and dimming method
JP2007005258A (en) Lighting system
TW201902297A (en) Light-emitting diode lamp with automatic dimming function achieves efficacy of saving power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804424

Country of ref document: EP

Kind code of ref document: A1