TW200807870A - Rail-to-rail operational amplifier with an enhanced slew rate - Google Patents

Rail-to-rail operational amplifier with an enhanced slew rate Download PDF

Info

Publication number
TW200807870A
TW200807870A TW95126853A TW95126853A TW200807870A TW 200807870 A TW200807870 A TW 200807870A TW 95126853 A TW95126853 A TW 95126853A TW 95126853 A TW95126853 A TW 95126853A TW 200807870 A TW200807870 A TW 200807870A
Authority
TW
Taiwan
Prior art keywords
current
input voltage
rail
bias current
voltage
Prior art date
Application number
TW95126853A
Other languages
Chinese (zh)
Inventor
Jui-Te Chiu
Original Assignee
Aimtron Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aimtron Technology Corp filed Critical Aimtron Technology Corp
Priority to TW95126853A priority Critical patent/TW200807870A/en
Publication of TW200807870A publication Critical patent/TW200807870A/en

Links

Landscapes

  • Amplifiers (AREA)

Abstract

A rail-to-rail operational amplifier is provided with a high-side current adjusting circuit and a low-side current adjusting circuit. On a basis of a comparison between a first input voltage and a second input voltage, the high-side current adjusting circuit adjusts a high-side bias current. Under a condition that the first input voltage is smaller than the second input voltage, the high-side current adjusting circuit increases the high-side bias current when an absolute of a difference between the first and the second voltages increases. On a basis of the comparison between the first and the second input voltages, the low-side current adjusting circuit adjusts a low-side bias current. Under a condition that the first input voltage is larger than the second input voltage, the low-side current adjusting circuit increases the low-side bias current when the absolute of the difference between the first and the second voltages increases.

Description

200807870 九、發明說明:’ 【發明所屬之技術領域】 本發明係關於一種軌對執 n +. t Λ 軌運异放大器(Rail-to-Rail200807870 IX. Description of the invention: ‘Technical field to which the invention pertains. The present invention relates to a rail-to-rail n +. t Λ rail-shifting amplifier (Rail-to-Rail)

Operational Amplifier),尤 j:關认 ’ 關於一種具有高轉換率iSlewOperational Amplifier), especially j: confession ’About iSlew with a high conversion rate

Rate)之軌對軌運算放大器。 ㈣料(Slew 【先前技術、】 圖1顯示習知的軌對軌運算放大器1〇之電路圖。夫 照圖1,軌對軌運算放大器10 乡 A外 负互補式差動輸入級, 其由弟-與弟二P型電晶體PQ1與PQ2以Rate) rail-to-rail operational amplifier. (4) Material (Slew [Prior Art,] Figure 1 shows a circuit diagram of a conventional rail-to-rail operational amplifier 1。. Figure 1, a rail-to-rail operational amplifier 10 Town A external negative complementary differential input stage, its brother - With the second P-type transistor PQ1 and PQ2

型電晶體NQ1與NQ2所構成。 ,、弟一N 上t 风弟一 ?型電晶體PQ1之泝 極與弟二,型電晶體PQ2之源極相互麵合。第一 P型電晶 體PQ1之汲極與第二P型電晶體PQ2之汲極分別耦合至 1 口總輸出級11。固定的上側偏壓電流源ICH麵合於上侧供 應電壓VH以及第-與第二p型電晶體PQ1與pQ2之相互 輕合的源極間。第-輸入電壓Vinp施加至第一 P型電晶體 PQ1之閘極,而第二輸入電壓Vinn則施加至第二P型電曰曰 體PQ2之閘極。第—輸人電壓Vinp減去第二輸人電壓ν· I得之電位差可定義成一差動電壓DV,亦 DVr(rnp-Vinn)。在差動電壓Dv之控制丁,固定的上側偏 壓電流源ICH被分割而流經第一與第二p型電晶體 PQ2。 ”The transistor is composed of NQ1 and NQ2. , brother, a N on the wind brother one? The polarity of the transistor PQ1 is the same as that of the second phase, and the source of the transistor PQ2 is in contact with each other. The drain of the first P-type transistor PQ1 and the drain of the second P-type transistor PQ2 are coupled to the 1-port total output stage 11, respectively. The fixed upper bias current source ICH is in contact with the upper side supply voltage VH and the source between the first and second p-type transistors PQ1 and pQ2. The first input voltage Vinp is applied to the gate of the first P-type transistor PQ1, and the second input voltage Vinn is applied to the gate of the second P-type transistor PQ2. The potential difference between the first input voltage Vinp minus the second input voltage ν·I can be defined as a differential voltage DV, also DVr(rnp-Vinn). At the control of the differential voltage Dv, the fixed upper side bias current source ICH is divided and flows through the first and second p-type transistors PQ2. ”

第 N型電晶體NQ1之源極與第二N型電晶體NQ2 之源極相互耦合。第一 N型電晶體nqi之汲極與第二N 4 200807870 型電晶體NQ2之没極分別搞合至加總輪出級j丨。固定的 下側偏壓電流源ICL耦合於第一與第二N型電晶體與 NQ2之相互耦合·的源極以及下側供應電壓間。第一輸 入電壓Vinp施加至弟一 N型電晶體NQ1之閘極,而第二 輸入電壓V,inn則施加至第二N型電晶體NQ2之閘極。在 差動電壓DV之控制下,固定的下侧偏壓電流源被分 割而流經第一與第二N型電晶體NQ1與NQ2。The source of the N-type transistor NQ1 is coupled to the source of the second N-type transistor NQ2. The drain of the first N-type transistor nqi is combined with the second pole of the second N 4 200807870 transistor NQ2 to add the total wheel stage j丨. The fixed lower bias current source ICL is coupled between the source of the mutual coupling of the first and second N-type transistors and NQ2 and the supply voltage of the lower side. The first input voltage Vinp is applied to the gate of the N-type transistor NQ1, and the second input voltage V, inn is applied to the gate of the second N-type transistor NQ2. Under the control of the differential voltage DV, a fixed lower bias current source is divided and flows through the first and second N-type transistors NQ1 and NQ2.

加總輸出級11係用以組合從互補式差動輸入級而來 的四個電流信號,亦即分別從電晶體pQ1、pQ2、nqi、 以及NQ2之汲極而來的四個電流信號。最後,加總輸出級 11將此種電流組合轉換成一輸出電壓。 軌對軌運算放大器10之操作方式可依據共模 (C〇mm〇n Mode)電壓v⑶之觀點而區分為三個範圍。在 nCM<(VL+Vtn)之低範圍中(此處為N型電晶體之導 通^界電壓)’第—與第二N型電晶體NQ1與NQ2皆處於 不=作之狀態,因此軌對執運算放大器10之操作係單獨 _ ~ 生電日日體PQ1與PQ2所構成之上侧差動 =對所執订。在(VH-lvtPl)<vCM<vH之高範圍中(此處vtp :P型電晶體之導通臨界電壓),第一與第二p型電晶體 1與PQ2皆處於不動作之狀態,因此軌對執運算放大器 1 0之操作係由第一金窜 興弟二N型電晶體NQ1與NQ2所構成 之下側差動輸入對 > t 所執仃0 在(VL + Vtn)<VCM<(VH-|Vtp|)之 中'間乾圍中,因為筮_ 馬弟一與弟二P型電晶體PQ1與PQ2以 及弟~與第.二N形雷曰 I尾曰曰體NQ1與NQ2皆能正常操作,所 5The summed output stage 11 is used to combine four current signals from the complementary differential input stage, i.e., four current signals from the drains of transistors pQ1, pQ2, nqi, and NQ2, respectively. Finally, summing the output stage 11 converts this current combination into an output voltage. The operation of the rail-to-rail operational amplifier 10 can be divided into three ranges depending on the common mode (C〇mm〇n Mode) voltage v(3). In the low range of nCM < (VL + Vtn) (here, the conduction voltage of the N-type transistor) 'the first and the second N-type transistors NQ1 and NQ2 are in the state of no operation, so the rail pair The operation of the operational amplifier 10 is performed separately. _ ~ The power generation day and the body PQ1 and PQ2 constitute the upper side differential = the pair is engaged. In the high range of (VH-lvtPl) <vCM<vH (where vtp: the on-state threshold voltage of the P-type transistor), the first and second p-type transistors 1 and PQ2 are in a non-operating state, The operation of the rail-to-operator op amp 10 is composed of the first Kim Kyung-sing two N-type transistors NQ1 and NQ2, and the lower differential input pair > t is executed at 0 (VL + Vtn) <VCM< (VH-|Vtp|) in the middle of the dry circumference, because 筮 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NQ2 can operate normally, 5

容 内 明 發 200807870 以執對執運糞访| , Λ ,r, . ^ 大10之操作係由上側差動輸入對與下 側差動輸入對所共同執行。 執對執運算放夫哭、,Λ 大时10之優點在於可允許共模電壓 CM子於從&到%之整個範圍内,軌對執 有效地進行操作。在現今電子產品之電源供峨 之發展趨勢中,此項優點促使軌對軌運算放大 时之操作範圍有效地利用有限的電源供應電遷範圍。 一另方面,今日的電子產品亦同時被要求儘可能地 咼電子資料之傳輪祙疮 g^ 雷懕… 言,當運算放大器之輸入 叫及/或vinn發生變化時,運算放大器之輸出電壓 v〇ut會回應於此變化而從原先的狀態改變成另一狀態 出電麼V°ut隨著時間之變化率稱之為「轉換率(sle: Rate)」。轉換率愈高,代表運算放大器之操作速度愈快㈣ 然而,® 1所示之習知的執對軌運算放大胃1〇 ^特別 設計成具有比其他類型運算放大器更高的轉換率。 因此,期望有人能提供一種具有高轉換率之軌 算放大器。 机^ 有鑒於前述問題,本發明之目的在於提供一種具有^ 轉換率之軌對軌運算放大器。 ^ 依據本發明之一態樣,提供一種軌對執運算放大器, 包含··一上側差動輸入對、一下側差動輸入對、一加總輪 出級、一上侧電流調整電路、以及一下側電流調整電路2 200807870 該上侧差動輸入對係由-第—輸入電壓與一第二輸入電 壓所控制,用以分割一上側偏壓電流成為一.第—電流與一 第二電流。該下側差動輸入對係由該第_輸入電壓::亥第 二輸入電壓所控制,用以分割—下側偏壓電流成為二第三 電流與一第四電流。該加總輪出級係加總該第一至該第四 電流並且基於該總和而產生—輪出電壓。該上側電流調整 電路基於該第一與該第二輸入電壓間之比較而調整該上 側偏壓電流。在該第一輸入電壓小於該第二輸入電壓之條 件下’當該第-與該第二輸入電壓間之—差異的絕對值增 大時’該上侧電流調整電路使該上側偏壓電流增加。該下 側電流調整電路基於該第-與該第二輸人電壓間之比較 而調整該下側偏壓電流。在該第—輸人電壓大於該第二輸 入電壓之條件下’當該第.一與該第二輸入電壓間之該差異 、巴對值増大時,该下側電流調整電路使該下側偏壓電流 增加。 【實施方式】 下文中之說明與附圖將使本發明之前述與其他目 的、特徵、與優點更明顯。茲將參照圖式詳細說明依據本 發明之較佳實施例。 圖2顯示依據本發明之軌對執運算放大器20之電路 圖。依據本發明之軌對軌運算放大器20不同於習知的執 對運复^ 异敌大器10之處在於依據本發明之執對執運算放 ^ 20係採用一上侧電流調整電路22以提供一可調式上 200807870 側偏壓電流ιΑΗ ’並且採用一下側電流調整電路23以提供 一可調式下側偏壓電流ιΑί。容内明发200807870 To perform the operation of the fecal visit |, Λ, r, . ^ The operation of the large 10 is performed by the upper differential input pair and the lower differential input pair. The advantage of the singer is that the common mode voltage CM can be allowed to operate effectively from the range of & to %. In today's trend toward power supply for electronic products, this advantage has prompted the operating range of rail-to-rail operation to be effectively utilized with a limited range of power supply relocations. On the other hand, today's electronic products are also being asked to smash the electronic data as much as possible. He said that when the input of the operational amplifier is called and / or vanning changes, the output voltage of the operational amplifier is v. 〇ut will change from the original state to another state in response to this change. The rate of change of V°ut over time is called “sle: rate”. The higher the conversion rate, the faster the operating speed of the op amp (4). However, the conventional rail-to-rail operation amplification shown in ® 1 is specifically designed to have a higher conversion ratio than other types of operational amplifiers. Therefore, it is expected that someone can provide an operational amplifier with a high slew rate. In view of the foregoing, it is an object of the present invention to provide a rail-to-rail operational amplifier having a conversion ratio. According to one aspect of the present invention, an orbital operation amplifier is provided, comprising: an upper differential input pair, a lower differential input pair, a total wheel output stage, an upper side current adjustment circuit, and Side current adjustment circuit 2 200807870 The upper differential input pair is controlled by a -first input voltage and a second input voltage for dividing an upper bias current into a first current and a second current. The lower differential input pair is controlled by the second input voltage of the first input voltage to divide the lower bias current into two third currents and a fourth current. The summing wheel stage sums the first to the fourth currents and generates a wheeling voltage based on the sum. The upper current regulating circuit adjusts the upper bias current based on a comparison between the first and second input voltages. The upper side current adjustment circuit increases the upper side bias current when the first input voltage is less than the second input voltage 'when the absolute value of the difference between the first and the second input voltage increases' . The lower current adjustment circuit adjusts the lower bias current based on a comparison between the first and the second input voltages. When the first input voltage is greater than the second input voltage, when the difference between the first and the second input voltage is greater, the lower current adjustment circuit makes the lower side bias The voltage is increased. The foregoing and other objects, features and advantages of the present invention will become apparent from DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments in accordance with the present invention will be described in detail with reference to the drawings. Figure 2 shows a circuit diagram of the rail-to-operation operational amplifier 20 in accordance with the present invention. The rail-to-rail operational amplifier 20 in accordance with the present invention is different from the conventional operational amplifier 10 in that the slave operating circuit 20 according to the present invention employs an upper current regulating circuit 22 to provide An adjustable upper side of the 200807870 bias current ι ' and a lower side current adjustment circuit 23 is used to provide an adjustable lower bias current ιΑί.

參照圖2,軌對軌運算放大器2〇設置有一上側差動輸 入對與一下側差動輸入對。上側差動輸入對係由第一與第 - ρ型電晶體PQ1與PQ2所構成,而下侧差動輸入對則 由第一與第二Ρ型電晶體PQ1與PQ2所構成。因此,上 側差動輸入對與下侧差動輸入對共同構成一互補式差動 ,輸入級。請注意雖然圖2所示之ρ型電晶體係由pM〇s電 =體所實施,但亦得藉由ρηρ雙載子電晶體所實施。請注 意雖然圖2所示之Ν都雷日辨总;Λ <以i Έ日日體係由NMOS電晶體所實施, 但亦得藉由ηριι雙載子電晶體所實施。 第一 P型電晶體PQ1之源極與第二p.型電晶體pQ2 之源極相互耦合。第一 P型電晶體PQ1之汲極與第二ρ型 電晶體PQ2之汲極分別輕合至加總輸出級21。第__@ ^ 電壓Vinp施加至第—P型電晶體pQ1之開極,而第二輸入 電壓Vinn則施加至第二P型電晶體pQ2之閘極。固定的上 侧偏壓電流源IcH耦合於上側供應電壓Vh,並且也經由上 側電流調整電路22而轉合於第一與第二p型電晶體叩 與PQ2之相互麵合的源極。上側電流調整電路係由第 一與第二輸入電壓¥_與Vinn所控制,用以產生一可調式 上側偏壓電流w因此’固定的上側㈣電流源Ich之: 用如*同施加至上侧電流調整電路22之參考電流。基於第 ;、第輸入电魔νίηρ與Vinn間之比較,上侧電流調整電 路”使固定的上側偏壓電流源ICH被轉換成—可調式上側 8 200807870 偏壓電流ιΑΗ。隨後,可調式上侧偏壓電流施加至第一 與第二P型電晶體PQ1與PQ2之相互耦合的源極。Referring to Fig. 2, the rail-to-rail operational amplifier 2 is provided with an upper differential input pair and a lower differential input pair. The upper differential input pair is composed of first and second-type transistors PQ1 and PQ2, and the lower differential input pair is composed of first and second 电-type transistors PQ1 and PQ2. Therefore, the upper differential input pair and the lower differential input pair together form a complementary differential input stage. Please note that although the p-type electro-crystal system shown in Fig. 2 is implemented by pM〇s electric body, it is also implemented by a pnρ double-carrier transistor. Please note that although the 所示 雷 雷 辨 Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以The source of the first P-type transistor PQ1 and the source of the second p-type transistor pQ2 are coupled to each other. The drain of the first P-type transistor PQ1 and the drain of the second p-type transistor PQ2 are respectively coupled to the summed output stage 21. The first __@ ^ voltage Vinp is applied to the open end of the -P type transistor pQ1, and the second input voltage Vinn is applied to the gate of the second P type transistor pQ2. The fixed upper bias current source IcH is coupled to the upper supply voltage Vh, and is also coupled to the source of the first and second p-type transistors 叩 and PQ2 via the upper current adjustment circuit 22. The upper current regulating circuit is controlled by the first and second input voltages ¥_ and Vinn to generate an adjustable upper bias current w and thus a fixed upper (four) current source Ich: is applied to the upper current with * The reference current of circuit 22 is adjusted. Based on the comparison between the first input electric magic νίηρ and Vinn, the upper current regulating circuit "converts the fixed upper bias current source ICH into an adjustable upper side 8 200807870 bias current ιΑΗ. Subsequently, the adjustable upper side A bias current is applied to the mutually coupled sources of the first and second P-type transistors PQ1 and PQ2.

7苐 N型電晶體NQ1之源極與第二n型電晶體PQ2 之源極相互耦合。第一 N型電晶體Nq i之汲極與第二N 型電晶體NQ2之汲極分別耦合至加總輸出級2 i。第一輸 入電壓vinp施加至第一 N型電晶體NQ1之閘極,而第二 輸入笔壓Vinn則施加至第二n型電晶體NQ2之閘極。固 φ 定的下側偏壓電流源Icl經由下側電流調整電路23而耦合 於第一與第二N型電晶體NQ1與NQ2之相互耦合的源 極,並且也耦合於下側供應電壓Vl。下側電流調整電路 23係由第一與第二輸入電壓Vinp與Vinn所控制,用以產生 一可调式下侧偏壓電流IAL。因此,固定的下側偏壓電流 源Icl之作用如同施加至下侧電流調整電路23之參考電 流。基於第一與第二輸入電壓Vinp與%心間之比較,下侧 電流調整電路23使固定的下侧偏壓電流源icl被調整成一 _ 了凋式下側偏壓電流Ial。隨後,可調式下侧偏壓電流iAL 施加至第一與第二N型電晶體NQ1與NQ2之相互耦合的 源極。The source of the N-type transistor NQ1 is coupled to the source of the second n-type transistor PQ2. The drain of the first N-type transistor Nq i and the drain of the second N-type transistor NQ2 are coupled to the summed output stage 2 i, respectively. The first input voltage vinp is applied to the gate of the first N-type transistor NQ1, and the second input pen voltage Vinn is applied to the gate of the second n-type transistor NQ2. The lower bias current source Icl fixed to the φ is coupled to the mutually coupled source of the first and second N-type transistors NQ1 and NQ2 via the lower current adjustment circuit 23, and is also coupled to the lower supply voltage V1. The lower current regulating circuit 23 is controlled by the first and second input voltages Vinp and Vinn to generate an adjustable lower bias current IAL. Therefore, the fixed lower side bias current source Icl acts as the reference current applied to the lower side current adjusting circuit 23. Based on the comparison between the first and second input voltages Vinp and %, the lower current regulating circuit 23 causes the fixed lower bias current source icl to be adjusted to a lower bias current Ial. Subsequently, an adjustable lower bias current iAL is applied to the mutually coupled sources of the first and second N-type transistors NQ1 and NQ2.

圖3顯示依據本發明之上側電流調整電路22之第一 例子22a之詳細電路圖。參照圖3,P型電晶體31與32 構成一差動調整單元。P型電晶體3 1之源極耦合於p型電 晶體32之源極。固定的上側偏壓電流源iCH耦合於p盤電 曰曰體3 1與32之相互耦合的源極。第一輸入電壓施加 至P型電晶體3 1之閘極,而第二輸入電壓vinn則施加至P 9 200807870 型電晶體3 2之閘極。 N型電晶體34自身鉍人y ^ Λ 口成個一極體。Ν型電f辨 34之閘極纽極相互_合,並且更輕 ^曰曰體 之汲極。N型電晶體34之湃極 ,电日日體32 摩極耗合至下側供應電壓V N型電晶體33與35以及 /、應電壓 1, ^ 么電日日體3 6與3 7共同槿 成一電流鏡單元。N型電晶驊u —日日 j構 弘日日體33之閘極與N型雷晶驊u 之閘極相互耦合。N型電晶體33夕„ & ^ %日日體35 祐曰^人 电日日體33之閘極與汲極相互耦合, 、'更輕…型電晶體3 i之汲極。N型電晶體3…$ T源極皆轉合於下侧供應電壓U型電晶體%之問極 …電晶體.37之開極相互輕合。p型電晶體刊之問極 與没極相互耦合’並且更搞合至㈣電晶體3,之没極。p 型電晶體36之源極與P型電晶體37之源極皆耦合至上側 供應電壓VH。P型電晶體37之汲極係供應可調式上側偏 壓電流IAH至圖2所示之由第一與第二p型電晶體pQi與 PQ2所構成的上側差動輸入對。 上侧電流調整電路22a係依據第一輸入電壓Vinp與第 二輸入電壓Vinn間之比較而操作。首先考慮固定的上侧偏 壓電流源ICH被分割成兩個部分電流,其分別流經p型電 晶體31與32。當第一輸入電壓Vinp逐漸變大時,流經p 型電晶體3 1之電流比例會逐漸變小,而流經p型電晶體 32之電流比例則逐漸變大。相反地,當第二輪入電壓 逐漸變大時,流經P型電晶體32之電流比例會逐漸變小, 而流經P型電晶體3 1之電流比例則逐漸變大。藉由電流 鏡單元所提供之鏡像功能,流經P型電晶體3 1之電流比 10 200807870 例係對應地傳送至P型電晶體37之汲極,用以作為可調 式上側偏壓電流1AH。因此’基於第一輸入電壓Vinp與第 二輸入電壓vinn間之比較,上側電流調整電路22a得有效 地提供可調式上側偏壓電流ΙΑίΙ。 在依據本發明之一實施例中,ρ型電晶體3 1之寬長比 (W/L)!^係設計成小於ρ型電晶體32之寬長比(W/L)p32, 例如(W/L)P31:(W/L)P32=;h5。因此,當第一輸入電壓 _ 等於第一輸入電壓Vinn時,固定的上側偏壓電流源ICH之 絶大部.分會流經P型電晶體3 2,而僅有少部分流經p型電 晶體3 1。在此種情況下,倘若第一輸入電壓變成大於 第二輸入電壓Vinn時,流經P型電晶體3 i之電流比例僅 稍微地減少,相反地倘若第一輸入電壓Vi師變成小於第二 輸入電壓vinn時,流經p型電晶體31之電流比例則大幅 .度地增加。Figure 3 shows a detailed circuit diagram of a first example 22a of the overcurrent adjustment circuit 22 in accordance with the present invention. Referring to Fig. 3, P-type transistors 31 and 32 constitute a differential adjustment unit. The source of the P-type transistor 31 is coupled to the source of the p-type transistor 32. A fixed upper bias current source iCH is coupled to the mutually coupled sources of the p-disk bodies 31 and 32. The first input voltage is applied to the gate of the P-type transistor 3 1 and the second input voltage vinn is applied to the gate of the P 9 200807870 type transistor 3 2 . The N-type transistor 34 itself becomes a one-pole body. The gates of the Ν-type electric f 34 are mutually _ _, and are lighter. The drain of the N-type transistor 34, the electric solar body 32 is used to the lower side supply voltage VN type transistors 33 and 35 and /, the voltage should be 1, ^ 电 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日Into a current mirror unit. N-type electro-crystal 骅u — day and day j structure The gate of Hongri Japanese body 33 is coupled with the gate of N-type thunder crystal 骅u. N-type transistor 33 夕 & ^ % 日日体 35 曰 曰 ^ 人 人 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日The crystal 3...$T source is all transferred to the lower side of the supply voltage U-type transistor. The opening of the transistor.37 is lightly coupled with each other. The p-type transistor is reported to be coupled to the poleless pole. More preferably, the transistor of the p-type transistor 36 and the source of the P-type transistor 37 are coupled to the upper supply voltage VH. The drain of the P-type transistor 37 is adjustable. The upper bias current IAH to the upper differential input pair formed by the first and second p-type transistors pQi and PQ2 shown in Fig. 2. The upper current adjustment circuit 22a is based on the first input voltage Vinp and the second input The comparison is performed between the voltages Vinn. First, it is considered that the fixed upper bias current source ICH is divided into two partial currents which respectively flow through the p-type transistors 31 and 32. When the first input voltage Vinp becomes larger, The proportion of the current flowing through the p-type transistor 3 1 gradually becomes smaller, and the proportion of the current flowing through the p-type transistor 32 gradually becomes larger. Conversely, When the second wheel-in voltage gradually becomes larger, the current ratio flowing through the P-type transistor 32 gradually becomes smaller, and the current ratio flowing through the P-type transistor 3 1 gradually becomes larger. Provided by the current mirror unit The mirror function, the current flowing through the P-type transistor 3 1 is transmitted to the drain of the P-type transistor 37 correspondingly to the 10 200807870 example, and is used as the adjustable upper bias current 1AH. Therefore, based on the first input voltage The upper side current adjustment circuit 22a is effective to provide an adjustable upper side bias current ΙΑίΙ compared to the second input voltage vnn. In one embodiment of the invention, the width-to-length ratio of the p-type transistor 3 1 (W) The /L)!^ system is designed to be smaller than the width-to-length ratio (W/L) p32 of the p-type transistor 32, for example (W/L) P31: (W/L) P32 =; h5. Therefore, when the first input voltage When _ is equal to the first input voltage Vinn, the majority of the fixed upper bias current source ICH flows through the P-type transistor 3 2 , and only a small portion flows through the p-type transistor 3 1 . If the first input voltage becomes greater than the second input voltage Vinn, the current ratio flowing through the P-type transistor 3 i is only slightly Reduced, while conversely if a first division input voltage Vi becomes smaller than the second input voltage Vinn, the current flowing through the ratio of the p-type transistor 31 is substantially Increasing degrees.

請注意雖然圖3所示之P型電晶體係由pM〇s電晶體 所實施’但亦得藉由pnp雙載子電晶體所實施。請注意雖 然圖3所不之N型電晶體係由讀〇8電晶體所實施,但亦 得藉由npn雙載子電晶體所實施。 圖4顯不依據本發明之下侧電流調整電路23之第一 例子23a之厚、、、田,路圖。參照圖4,n型電晶體41與42 構成-差動調整單it。N Μ電晶體41之源極编合於N型 電晶體42之源極。固定的下 電晶體41與42之相互耦合 加至N型電晶體41之閘極 側偏壓電流源ICL耦合於N型 的源極。第一輸入電壓Vinp施 ’而第二輸入電壓Vinn則施加 11 200807870 至N型電晶體42之閘極。 P型電晶體44自身耦合成一 之閘極與没極相互耦合,樣曰苗 極體。?型電晶體44 、士 口 並*且更耦合至N型電曰體42之 及極。P型電晶體44 尾日日體42之 P“,耦a至上側供應電壓VH。 t %晶體43與45與N型電曰 一電流鏡單元。P型電晶體4 -47共同構成 f, ^ H ^ 3之閘極與P型電晶體45之Note that although the P-type electro-crystalline system shown in Figure 3 is implemented by a pM〇s transistor, it is also implemented by a pnp bipolar transistor. Please note that although the N-type cell system not shown in Figure 3 is implemented by a 〇8 transistor, it is also implemented by an npn bipolar transistor. Fig. 4 is a view showing a thickness, a field, and a road view of the first example 23a of the lower side current adjusting circuit 23 according to the present invention. Referring to Fig. 4, n-type transistors 41 and 42 constitute a differential adjustment unit it. The source of the N Μ transistor 41 is coupled to the source of the N-type transistor 42. The fixed lower transistors 41 and 42 are coupled to each other. The gate side bias current source ICL applied to the N type transistor 41 is coupled to the source of the N type. The first input voltage Vinp is applied and the second input voltage Vinn applies 11 200807870 to the gate of the N-type transistor 42. The P-type transistor 44 itself is coupled into a gate and a poleless coupling, and the seedling is extremely polar. ? The transistor 44, the gate and the * are more coupled to the poles of the N-type electrode body 42. P-type transistor 44 P of the solar body 42, coupled to the upper side supply voltage VH. t% crystals 43 and 45 and the N-type electric current-current mirror unit. P-type transistors 4 - 47 together constitute f, ^ Gate of H ^ 3 and P-type transistor 45

且更耦人’1型電晶體43之閘極與汲極相互耦合,並 至N型電晶體41之及極。?型電晶體4^45 ^極W合至上側供應電壓型電晶體“之間極 :、型電晶體4 7之閘極相互耦合。N型電晶體4 6之閘極 契及極相互耦合,並且更粞合至?型電晶體45之汲極1 型電晶體46之源極與N型電晶艟47之源極皆耦合至下侧 ^應電壓VL。N型電晶體47之汲極係供應可調式下侧偏 壓電抓IAL至圖2所示之由第一與第二電晶體nqi與 NQ2所構成的下側差動輸入對。 下側電流调整電路23a係依據第一輸入電壓與第 二輸入電壓Vinn間之比ΐ交而操作。首先考慮固定的下側偏 壓電流源ICL被分割成兩個部分電流,其分別流經Ν型電 曰日體4 1與4 2。當弟一輸入電壓V丨n p逐漸變大時,流經n 型電晶體41之電流比例會逐漸變大,而流經n型電晶體 42之電流比例則逐漸變小。相反地,當第二輸入電壓vinn 逐漸變大時,流經N型電晶體42之電流比例會逐漸變大, 而流經N型電晶體41之電流比例則逐漸變小。藉由電流 鏡單元所提供之鏡像功能,流經N型電晶體41之電流比 12 200807870 、 例係對應地傳送至ν型電晶體47之汲極,用以作為可調 式下侧偏壓電流ial。因此,基於第一輪入電壓Vi”與第 一輸入電壓Vinn間之比較,下側電流調整電路23a得有效 地提供可調式下側偏壓電流iAL。 在依據本發明之一實施例中rN型電晶體41之寬長比 (W/Lhq係設計成小於N型電晶體42之寬長比(w/l)n42, 例如(W/L)N41:(W/L)N42=1:5。因此,當第一輸入電壓vinp _ 專於弟一輸入電壓Vinn時,固定的下侧偏壓電流源ICL之 大部分會流經N型電晶體4 2,而僅有少部分流經n型 電βθ體4 1。在此種情況下’倘若第一輸入電壓vinp變成大 於第二輸入電壓Vinn時,流經N型電晶體41之電流比例 大幅度地增加,相反地倘若第一輸入電壓變成小於第 二輸入電壓Vinn時,流經N型電晶體41之電流比例僅稍 微地減少。 請注意雖然圖4所示之P型電晶體係由pM〇s電晶體 所實施,但亦得藉由PnP雙載子電晶體所實施。請注意雖 然圖4所示之N型電晶體係由NMOS電晶體所實施,但亦 得藉由npn雙載子電晶體所實施。 炫將參照圖2與5洋細說明依據本發明之軌對執運算 放大器2 0之操作方法如下。首先假設在時間丁1,第一輸 入電壓Vinp瞬間上升(或疋弟一輸入電壓Vinn瞬間下降), 使得差動電壓DV瞬間變成高於零甚多(亦即階梯形上升 變化)。因此,從上側電流調整電路22所產生之可調式上 側偏壓電流IAH變小,而從下側電流調整電路23所產生之 13 200807870 可满式下侧偏壓電流iAL變大。從圖3 ^清 可調式下側偏壓電流Ial變大之程度相較於::由: 壓電流Uh變小之程度而言係超出甚多,故:式上側偏 形成的總偏壓電流仍然顯著地增大。在厭相加總所 f、、心俺壓電漭辦女夕 情況下’軌對軌運算放大器20之操作速度被提高二此, 在時間丁…2期間中,軌對軌運算放大器20之輸出電 jv°:m提高’使其迅速地從低位準變遷至高位 :軌二 貫線51所示。相較之下,'既然習知的軌 絲 '1〇之總偏壓電流係固定不變,故習知的 執對執運异放大器10之輸出電壓 如円 52所示般緩慢地上升。 一 5中之點虛線 接下來假設在時間T3,第—輸人電壓、瞬間下降 (或是第二輸入電壓Vinn瞬間上升),使得差動電壓則 間變成低於零甚多(亦即階梯形下降變化)。因此,從上側 電流調整電路22所產生之可調式上側偏塵電流Iah變大, 而從下側電流調整雷敗(立 ^ 路23所產生之可調式下側偏壓電流 AL篗小。攸圖5可清楚看出,由於可調式上側偏壓電流 Iah^大之程度相較於可調式下側偏壓電& 變小之程度 而二係超出甚多,故兩者相加總所形成的總偏壓電流仍然 …員著地增大。在總偏壓電流增大之情況下,執對執運算放 二2〇之操作速度被提高。因此,在時間T3至T4期間 I執對軌運异放大器20之輸出電壓v〇ut的轉換率被提 回,使其迅速地從高位準變遷至低位準,如圖5中之實線 所不。相較之下’既然習知的軌對執運算放大器1 0之 14 200807870 總偏壓電流係固定不變,故習知的執對軌運算放大器ι〇 之輸出電壓V叫如圖5中之點虛線54所示般緩慢地下降。 圖6顯示依據本發明之上侧電流調整電路22之第二 J子=之詳細電路圖。圖6所示之第二例子22b不同於 圖3 :不之第—例子22a之處在於第二例子22b更設置有 定的上側補侦電流源I〇h。如前文參照圖5所述,在 時=τι至T2期間巾,可調式上側偏壓電流工AH會減少。 _ " H丁軌對軌運异放大器20係操作於vL<vCM<(vL + vtn) 低fe圍中,由於互補式輸入級中僅存上侧差動輸入對 1 /、PQ2被賦能,故軌對軌運算放大器之操作速度 係單獨根據可調式上側偏壓電流Uh而決定。為了避免可 凋式上側偏壓電流Iah之減少而對於操作速度造成不良影 響’上側電流調整電4 22b更設置有@定的上側補償電流 源I〇H於輸出端,用以作為可調式上側偏壓電流“Η之下 限。 _ 附帶一提,圖6所示之第二例子22b得更設置有一上 側"又疋電阻Rsh,其耦合於固定的上側偏壓電流源ICH與p 聖電曰b體31之源極間。由於必須考慮電流流經上側設定 包阻Rsh時所造成之一有限的電位差dVH,故上側電流調 正包路22b開始提高可調式上側偏壓電流Iah之操作條件 軲隻成(Vinp + dVH)<Vinn。換言之,適當地選擇上側設定電 阻Rsh可以有效地操縱上側電流調整電路22b之操作條 件。 /、 圖7顯示依據本發明之下側電流調整電路之第二 15 200807870 例子23b之詳細電路圖。圖7所示之第二例子23b不同於 圖4所示之第一例子23a之處在於第二例子23b更設置有 固疋的下侧補倡電流源I〇L。如前文蒼照圖5所述,在 時間T3至T4期間中,可調式下侧偏壓電流ial會變小。 倘若此時軌對軌運算放大器20係操作於 (Vh-| Vtp|)<VCM<VH之高範圍中,由於互補式輸入級中僅存 下側差動輸入對NQ1與NQ2被賦能,故軌對軌運算放大 φ 器20之操作速度係單獨根據可調式下侧偏壓電流IAL而決 定。為了避免可調式下側偏壓電流Ial之減少而對於操作 速度造成不良影響,下側電流調整電路23b更設置有固定 的下側補償電流源I0L於輸出端,用以作為可調式下側偏 壓電流IAL之下限〇 附帶一提,圖7所示之第二例子23b得更設置有一下 側設定電阻RSL,·其耦合於固定的下侧偏壓電流源Icl與n 型電晶體41之源極間。由於必須考慮電流流經下側設定 _ 電阻時所造成之一有限的電位差dVL,故上侧電流調 整電路22b開始提高可調式下側偏壓電流之操作條件 轉變成Vinn<(Vinp + dVL)。換言之,適當地選擇下側設定電 阻rsl可以有效地操縱下側電流調整電路23b之操作條件。 雖然本發明業已藉由較佳實施例作為例示加以說 明,應瞭解者為:本發明不限於此被揭露的實施例。相反 地,本發明意欲涵蓋對於熟習此項技藝之人士而言係明顯 的各種修改與相似配置。因此,申請專利範圍之範圍應根 據最廣的詮釋,以包容所有此類修改與相似配置。 16 200807870 【圖式簡單說明】 圖1顯不;習知的軌對軌運算放大器之電路圖。 圖2顯不依據本發明之執對執運算放大器之電路圖。 圖3頒示依據本發明之上側電流調整電路之第一例子 之詳細電路圖。 圖4顯不依據本發明之下侧電流調整電路之第一例子 之詳細電路圖。 圖5顯示依據本發明之軌對執運算放大器之操作波形 時序圖。 圖6顯示依據本發明之上側電流調整電路之第-例子 之詳細電路圖。 — 圖7顯示依據本發明之下侧電流調整電路 ^昂一例子 之样細電路圖。 【主要元件符號說明】 10 習知的軌對軌運算放大器 11 加總輸出級 20 依據本發明之執對執運算放大器 21 加總輸出級 22, 22a,22b 上側電流調整電路 23, 23a,23b 下側電流調整電路 3 1,32, 36, 3 7, 43, 44, 45 P 型電晶體 33, 34, 35, 41,42, 46, 47 N 型電晶體 17 200807870 51,53 依據本發明之轉換率 52, 54 習知轉換率 NQ1,NQ2 上側差動輸入對 PQ1,PQ2 下側差動輸入對Further, the gate of the '1 type transistor 43 is coupled to the drain and the drain of the N-type transistor 41. ? The type of transistor 4^45 ^ pole W is combined with the upper side supply voltage type transistor "between poles: the gates of the type transistor 47 are coupled to each other. The gates of the N type transistors 46 are coupled to each other, and The source of the drain type 1 transistor 46 and the source of the N type transistor 47 are coupled to the lower side voltage VL. The drain of the N type transistor 47 is supplied. The adjustable lower side bias electric chucking IAL to the lower differential input pair formed by the first and second transistors nqi and NQ2 shown in Fig. 2. The lower side current adjusting circuit 23a is based on the first input voltage and the first The ratio of the two input voltages Vinn is interspersed. First, consider that the fixed lower bias current source ICL is divided into two partial currents, which respectively flow through the 曰-type elders 4 1 and 4 2 . When the input voltage V丨np gradually becomes larger, the proportion of the current flowing through the n-type transistor 41 gradually becomes larger, and the proportion of the current flowing through the n-type transistor 42 gradually becomes smaller. Conversely, when the second input voltage vinn As it gradually becomes larger, the proportion of current flowing through the N-type transistor 42 gradually becomes larger, and the proportion of current flowing through the N-type transistor 41 gradually changes. By means of the mirroring function provided by the current mirror unit, the current flowing through the N-type transistor 41 is transmitted to the drain of the ν-type transistor 47 correspondingly to 12200807870, for use as an adjustable lower-side bias current. Therefore, based on the comparison between the first wheeling voltage Vi" and the first input voltage Vinn, the lower side current adjusting circuit 23a is effective to provide the adjustable lower side bias current iAL. In the embodiment according to the present invention, the aspect ratio of the rN type transistor 41 (W/Lhq is designed to be smaller than the aspect ratio (w/l) n42 of the N type transistor 42, for example, (W/L) N41: (W/L) N42 = 1: 5. Therefore, when the first input voltage vpn _ is dedicated to the input voltage Vinn, most of the fixed lower bias current source ICL flows through the N-type transistor 4 2 And only a small portion flows through the n-type electric βθ body 41. In this case, 'if the first input voltage vNTP becomes greater than the second input voltage Vinn, the proportion of current flowing through the N-type transistor 41 is greatly increased. Increasing, conversely, if the first input voltage becomes smaller than the second input voltage Vinn, the current ratio flowing through the N-type transistor 41 is only slightly reduced. Note that although the P-type electro-crystal system shown in FIG. 4 is composed of pM〇s The transistor is implemented, but it must be implemented by a PnP dual-carrier transistor. Note that although the N-type transistor system shown in Figure 4 is implemented by an NMOS transistor, it also has to pass an npn bipolar transistor. The method of operating the operational amplifier 20 in accordance with the present invention will be described below with reference to Figures 2 and 5. Ding 1, the first input voltage Vinp rises instantaneously (or the input voltage Vinn drops instantaneously), so that the differential voltage DV instantaneously becomes much higher than zero (that is, the stepwise rising change). Therefore, the current regulating circuit from the upper side The adjustable upper bias current IAH generated by 22 becomes smaller, and the lower-side bias current iAL of the 13200807870 full-scale generated from the lower current adjustment circuit 23 becomes larger. The degree to which the current Ial becomes larger is compared with:: by the extent that the voltage current Uh becomes smaller, so that the total bias current formed by the lateral bias is still significantly increased. f, 俺 俺 俺 漭 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'Make it quickly change from low to high: the rail line is shown as 51. In contrast, 'since the conventional rail wire'1总 total bias current is fixed, so the conventional implementation The output voltage of the differential amplifier 10 is as slowly as shown by 円52. The dotted line in point 5 is next assumed that at time T3, the first input voltage, the instantaneous drop (or the second input voltage Vinn rises instantaneously), so that the differential voltage becomes less than zero (that is, the ladder) Therefore, the adjustable upper side dust current Iah generated from the upper side current adjusting circuit 22 becomes larger, and the lower side current adjusts the lightning loss (the adjustable lower side bias current AL generated by the vertical path 23)篗 small. As can be clearly seen in Figure 5, since the adjustable upper bias current Iah^ is much larger than the adjustable lower bias voltage & The total bias current formed by the summation is still increasing. In the case where the total bias current is increased, the operation speed of the operation of the pair is increased. Therefore, during the period T3 to T4, the conversion rate of the output voltage v〇ut of the rail-operated alien amplifier 20 is retrieved, so that it rapidly changes from a high level to a low level, as shown by the solid line in FIG. . In contrast, since the conventional rail-to-operator amplifier 1 0 14 200807870 total bias current is fixed, the output voltage V of the conventional rail-operated amplifier is called the point in Figure 5. It descends as slowly as indicated by the dashed line 54. Figure 6 shows a detailed circuit diagram of the second J sub = of the overcurrent adjustment circuit 22 in accordance with the present invention. The second example 22b shown in Fig. 6 is different from Fig. 3: the second example 22a in that the second example 22b is further provided with a fixed upper side current source I 〇 h. As previously described with reference to Figure 5, the adjustable upper bias current AH is reduced during the period from τι to T2. _ " H-rail-to-rail differential amplifier 20 is operated in vL<vCM<(vL + vtn) low-fee, since only the upper differential input pair 1 /, PQ2 is enabled in the complementary input stage Therefore, the operating speed of the rail-to-rail operational amplifier is determined solely by the adjustable upper bias current Uh. In order to avoid the decrease of the upper side bias current Iah, the operation speed is adversely affected. The upper side current adjustment circuit 4 22b is further provided with an upper compensation current source I〇H at the output end for use as an adjustable upper side bias. The lower limit of the voltage current "Η". _ Incidentally, the second example 22b shown in Fig. 6 is further provided with an upper side and a resistor Rsh coupled to the fixed upper bias current source ICH and p. Between the sources of the body 31. Since the finite magnetic potential difference dVH caused by the current flowing through the upper side setting Rsh must be considered, the upper current regulating package 22b starts to increase the operating condition of the adjustable upper bias current Iah. (Vinp + dVH) <Vinn. In other words, the upper side setting resistor Rsh can be appropriately selected to effectively manipulate the operating conditions of the upper side current adjusting circuit 22b. /, Fig. 7 shows the second 15 of the lower side current adjusting circuit according to the present invention. 200807870 The detailed circuit diagram of the example 23b. The second example 23b shown in FIG. 7 is different from the first example 23a shown in FIG. 4 in that the second example 23b is further provided with a fixed lower side auxiliary current source I〇L. As described above in Fig. 5, during the period T3 to T4, the adjustable lower bias current ial becomes smaller. If the rail-to-rail operational amplifier 20 is operated at (Vh-|Vtp|) < In the high range of VCM<VH, since only the lower differential input pair NQ1 and NQ2 are enabled in the complementary input stage, the operation speed of the rail-to-rail operation amplifier φ 20 is separately based on the adjustable lower bias The current IAL is determined. In order to avoid the adverse effect on the operation speed due to the decrease of the adjustable lower bias current Ial, the lower current adjustment circuit 23b is further provided with a fixed lower compensation current source I0L at the output end for use as The lower limit of the lower bias current IAL of the mode is mentioned. The second example 23b shown in FIG. 7 is further provided with a lower side setting resistor RSL, which is coupled to a fixed lower bias current source Icl and n type. Between the sources of the crystal 41. Since the finite magnetic potential difference dVL caused by the current flowing through the lower side setting _ resistance must be considered, the upper current adjusting circuit 22b starts to increase the operating condition of the adjustable lower bias current to become Vinn<;(Vinp + dVL). In other words The lower side setting resistor rs1 can be appropriately selected to effectively manipulate the operating conditions of the lower side current adjusting circuit 23b. Although the present invention has been described by way of illustration of preferred embodiments, it should be understood that the invention is not limited thereto. Rather, the invention is intended to cover various modifications and equivalent arrangements of those skilled in the art. Similar configuration. 16 200807870 [Simple description of the diagram] Figure 1 shows the circuit diagram of a conventional rail-to-rail operational amplifier. Figure 2 shows a circuit diagram of an operational amplifier in accordance with the present invention. Figure 3 is a detailed circuit diagram showing a first example of the overcurrent adjustment circuit in accordance with the present invention. Figure 4 shows a detailed circuit diagram of a first example of a lower current regulating circuit in accordance with the present invention. Figure 5 is a timing diagram showing the operational waveforms of the rail-to-operation operational amplifier in accordance with the present invention. Fig. 6 is a detailed circuit diagram showing a first example of the overcurrent adjusting circuit according to the present invention. - Figure 7 shows a detailed circuit diagram of a lower current regulating circuit according to the present invention. [Major component symbol description] 10 conventional rail-to-rail operational amplifier 11 total output stage 20 in accordance with the present invention, the operational amplifier 21 is added to the total output stage 22, 22a, 22b upper side current adjustment circuit 23, 23a, 23b Side current adjustment circuit 3 1,32, 36, 3 7, 43, 44, 45 P type transistor 33, 34, 35, 41, 42, 46, 47 N type transistor 17 200807870 51, 53 Conversion according to the present invention Rate 52, 54 Conventional conversion rate NQ1, NQ2 Upper differential input pair PQ1, PQ2 Lower differential input pair

Vh 上 側 供 應 電 壓 Vl 下 側 供 應 電 壓 Vinp 第 一 入 電 壓 Vinn 第 二 入 電 壓 vout fm 出 電 壓 DV 差 動 電 壓 IcH 固 定 的 上 側偏 壓 電 流. 源 ICL 固 定 的 下 側 偏 壓 電 流 源 I AH 可 調 式 上 侧偏 壓 電 流 Ial 可 調 式 下 側 偏 壓 電 流 I〇H 上 側 補 償 電 流 源 I〇L 下 側 補 償 電 流 源 Rsh 上 側 設 定 電 阻 Rsl 下 侧 設 定 電 阻 18Vh upper side supply voltage Vl lower side supply voltage Vinp first input voltage Vinn second input voltage vout fm output voltage DV differential voltage IcH fixed upper bias current. Source ICL fixed lower bias current source I AH adjustable Side bias current Ial Adjustable lower bias current I〇H Upper compensation current source I〇L Lower compensation current source Rsh Upper setting resistor Rsl Lower setting resistor 18

Claims (1)

200807870 十、申請專利範圍: 1 · 一種軌對執運算放大器,包含: 一上側差動輸入對,由一第一輸入電壓與一# 一 電壓所控制,用以分割一上側偏壓電流弟一輪入 流; 成為兩個部分電 下側差動輸入對,由該第一輸入電壓與亨# 一- 電壓所控制,用以分割一下側偏壓電流 二:輪入 電流;以及外兩個部分 一加總輸出級’用以組合該兩個部分電流與該 個部分電流,並且基於該組合而產生一輸出電壓, 其特徵在於更包含: 一上侧電流調整電路,基於該第一與該第二輸入 電壓間之比較而調整該上側偏壓電流,使得在該第—^ 2 電壓小於該第二輸入電壓之條件下,當該第一與該第:輸 入電壓間之一差異的絕對值增大時,該上側偏壓電流^ 力口,以及 一下側電流調整電路,基於該第一與該第二輸入 電壓間之比較而調整該下側偏壓電流,使得在該第一輸入 電壓大於該第二輸入電壓之條件下,當該第一與該第二輸 入電壓間之該差異的絕對值增大時,該下侧偏壓電流增 力ϋ 〇 2.如申請專利範圍第1項之軌對軌運算放大器,其中: 在該第一輸入電壓大於該第二輸入電壓之條件下,當 19 200807870 該第一與该第二輸入電壓間之該差異的絕對值增大時,上 上側電流調整電路使該上側偏壓電流減少,並且 在該第一輸入電壓小於該第二輸入電壓之條件下,也 該第一與該第二輸入電壓間之該差異的絕對值增大時,: 下側電流調整電路使該下側偏壓電流減少。 忒200807870 X. Patent application scope: 1 · A rail-to-operation operational amplifier, comprising: an upper differential input pair, controlled by a first input voltage and a #1 voltage, for dividing an upper bias current and a round inflow The two differential electric differential input pairs are controlled by the first input voltage and the heng #一-voltage to divide the side bias current two: the wheel current; and the outer two parts The output stage ' is configured to combine the two partial currents and the partial current, and generate an output voltage based on the combination, further characterized by: an upper current adjustment circuit, based on the first and second input voltages Adjusting the upper bias current so that when the voltage of the first voltage is less than the second input voltage, when the absolute value of the difference between the first and the first input voltage is increased, The upper bias current port and the lower side current adjustment circuit adjust the lower bias current based on the comparison between the first and the second input voltage, so that the first input When the voltage is greater than the second input voltage, when the absolute value of the difference between the first and the second input voltage is increased, the lower bias current is increased by ϋ 〇 2. as claimed in the patent scope The rail-to-rail operational amplifier, wherein: when the first input voltage is greater than the second input voltage, when 19 200807870 the absolute value of the difference between the first and the second input voltage increases, The upper current adjustment circuit reduces the upper bias current, and when the first input voltage is less than the second input voltage, and the absolute value of the difference between the first and the second input voltage increases, : The lower side current adjustment circuit reduces the lower side bias current.忒 3·如申請專利範圍第1項之執對軌運算放大器,其中· 該上側電流調整電路包含: 一差動調整單元,由該第一輸入電壓與該第二 :電壓所控制,用以分割一固定的上側偏壓電流源成:: 弟-电流與-第二電流,使得在該第一輸入電壓小於 :輸入電墨之條件下,當該第一與該第二輸入電壓間二 異的絕對值增大時,該第一電流被提高,以及 a 用以傳送該第一電流作為該上側 一電流鏡單元 偏壓電流。 4.如申請專利範圍第3項之軌對軌運算放大器. 該差動調整單元包含: 、 一弟一 ?型電晶體,具有-源極、-閘極、盥一 係由兮於該固定的上側偏壓電流源,該閘極 元^及w Μ所控制,該没極係輕合於該電流鏡單 、及* 第—ρ型電晶體’具有-源極、-閘極、盘一 及極,該源極係耦合 ^ °亥固疋的上側偏壓電流源,該閘極 20 200807870 係由忒第一輸入電壓所控制,該汲極係耦合於一下側供應 電壓, 其中該第一P型電晶體之寬長比係設計成小於該第二 p型電晶體之寬長比。 5,如申請專利範圍第3項之軌對軌運算放大器,其中·· 在该第一輸入電壓大於該第二輸入電壓之條件下,當 _ 该第一與該第二輸入電壓間之該差異的絕對值增大時,該 第一電流被降低。 6·如申请專利範圍第5項之執對軌運算放大器,其中: 該上側電流調整電路更包含: 一上側補償電流源,用以作為該上侧偏壓電流之 下限。 •如申請專利範圍第1項之軌對軌運算放大器,其中: 該下侧電流調整電路包含: 一差動調整單元,由該第一輸入電壓與該第二輸 2電壓所控制,用以分割一固定的下側偏壓電流源成為一 第三電流與一第四電流,使得在該第一輸入電壓大於該第 輸入电壓之條件下,當該第一與該第二輸入電壓間之該 差異的絕對值增大時,該第三電流被提高,以及 一電流鏡單元’用以轉換該第三電流作為該下側 偏壓電流。 21 200807870 8.如申請專利範圍第7項之軌對軌運算放大器,其中: 該差動έ周整單元包含: 第一 Ν型電晶體,具有一源極、一閘極、與一 及極J源極係輕合於該固定的下侧偏壓電流源,該閑極 係由該第-輸入電壓所控制,該汲極係耦合於該電流鏡單 元,以及 弟一 Ν型電晶體,具有一源極、一閘極、與— /及極’ β源極係耦合於該固定的下侧偏壓電流源,該閑極 係由該第二輸入電壓所控制,該汲極係耦合於一上侧供應 電壓, ^ 其中孩第N型電晶體之寬長比係設計成小於該第二 N型電晶體之寬長比。 9·如申請專利範圍第7項之執對軌運算放大器,其中: 在該第一輸入電壓小於該第二輸入電壓之條件下,當 該第一與該第二輸入電壓間之談差異的絕對值增大時,該 第三電流被降低。 10.如申請專利範圍第9項之軌對軌運算放大器’其中: 該下側電流調整電路更包含: 一下側補偵電流源,用以作為該下側偏壓電流之 下限。 223. The orbital operational amplifier of claim 1, wherein the upper current adjustment circuit comprises: a differential adjustment unit controlled by the first input voltage and the second: voltage for dividing one The fixed upper bias current source is: - the current - the second current, such that when the first input voltage is less than: the input ink, when the first and the second input voltage are two different absolute When the value is increased, the first current is increased, and a is used to transmit the first current as the upper side current mirror unit bias current. 4. For example, the rail-to-rail operational amplifier of the third application patent scope. The differential adjustment unit includes: a type of transistor having a source, a gate, and a gate is controlled by the fixed upper bias current source, the gate element and the w Μ are controlled, and the immersion is lightly coupled to the current mirror And the *-p-type transistor 'has a source, a gate, a disk, and a pole, and the source is coupled to an upper bias current source of the gate, and the gate 20 200807870 is Controlled by an input voltage, the drain is coupled to a lower side supply voltage, wherein the first P-type transistor has a width to length ratio that is less than a width to length ratio of the second p-type transistor. 5. The rail-to-rail operational amplifier of claim 3, wherein the difference between the first input voltage and the second input voltage is greater than the second input voltage When the absolute value increases, the first current is lowered. 6. The rail-operated operational amplifier of claim 5, wherein: the upper current regulating circuit further comprises: an upper compensation current source for use as a lower limit of the upper bias current. • The rail-to-rail operational amplifier of claim 1, wherein: the lower current adjustment circuit comprises: a differential adjustment unit controlled by the first input voltage and the second input voltage to divide a fixed lower bias current source becomes a third current and a fourth current, such that the difference between the first and second input voltages is greater than the first input voltage is greater than the first input voltage When the absolute value is increased, the third current is increased, and a current mirror unit ' is used to convert the third current as the lower bias current. 21 200807870 8. The rail-to-rail operational amplifier of claim 7, wherein: the differential chirping unit comprises: a first germanium transistor having a source, a gate, and a pole J The source is lightly coupled to the fixed lower bias current source, the idle pole is controlled by the first input voltage, the drain is coupled to the current mirror unit, and the first transistor is a source, a gate, and a / / and a pole 'β source are coupled to the fixed lower bias current source, the idle pole is controlled by the second input voltage, and the drain is coupled to one The side supply voltage, ^ wherein the aspect ratio of the N-type transistor is designed to be smaller than the aspect ratio of the second N-type transistor. 9. The method of claim 7, wherein: the first input voltage is less than the second input voltage, and the difference between the first and the second input voltage is absolute When the value increases, the third current is lowered. 10. The rail-to-rail operational amplifier of claim 9 wherein: the lower current regulating circuit further comprises: a lower side compensation current source for use as a lower limit of the lower bias current. twenty two
TW95126853A 2006-07-21 2006-07-21 Rail-to-rail operational amplifier with an enhanced slew rate TW200807870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95126853A TW200807870A (en) 2006-07-21 2006-07-21 Rail-to-rail operational amplifier with an enhanced slew rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95126853A TW200807870A (en) 2006-07-21 2006-07-21 Rail-to-rail operational amplifier with an enhanced slew rate

Publications (1)

Publication Number Publication Date
TW200807870A true TW200807870A (en) 2008-02-01

Family

ID=44766765

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95126853A TW200807870A (en) 2006-07-21 2006-07-21 Rail-to-rail operational amplifier with an enhanced slew rate

Country Status (1)

Country Link
TW (1) TW200807870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935280A (en) * 2014-03-19 2015-09-23 联咏科技股份有限公司 Operational amplifier and driving circuit thereof
CN106877829A (en) * 2015-12-10 2017-06-20 矽创电子股份有限公司 Operational amplifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935280A (en) * 2014-03-19 2015-09-23 联咏科技股份有限公司 Operational amplifier and driving circuit thereof
US9531336B2 (en) 2014-03-19 2016-12-27 Novatek Microelectronics Corp. Operational amplifier and driving circuit
CN104935280B (en) * 2014-03-19 2017-10-27 联咏科技股份有限公司 Operational amplifier and driving circuit thereof
CN106877829A (en) * 2015-12-10 2017-06-20 矽创电子股份有限公司 Operational amplifier
CN106877829B (en) * 2015-12-10 2019-06-21 矽创电子股份有限公司 Operational amplifier

Similar Documents

Publication Publication Date Title
US7339430B2 (en) Rail-to-rail operational amplifier with an enhanced slew rate
TW200304275A (en) Low supply voltage differential signal driver
US7446576B2 (en) Output driver with slew rate control
JPH0282714A (en) Low noise output buffer circuit
US9054578B2 (en) Hybrid driver including a turbo mode
TWI358196B (en) High speed differential to single ended converting
US7330056B1 (en) Low power CMOS LVDS driver
TW200838127A (en) Operational amplifier capable of compensating offset voltage
US8400220B1 (en) Quiescent current control for class AB output stages
TWI231093B (en) One-way conduction device
TW200935752A (en) Current steering DAC and voltage booster for current steering DAC
TWI325688B (en) A dynamic input setup/hold time improvement architecture
US6642788B1 (en) Differential cascode amplifier
JP5097220B2 (en) Signal processor having a reference voltage circuit and reference voltage applying method
TW200807870A (en) Rail-to-rail operational amplifier with an enhanced slew rate
KR101096198B1 (en) Rail-to-rail amplifier
TW200541206A (en) Low voltage differential amplifier circuit for wide voltage range operation
US6529036B1 (en) Low noise, reduced swing differential output buffer design
TW201902116A (en) Inverting amplifier comparator
TW200527832A (en) High-speed receiver for high I/O voltage and low core voltage
JP4479309B2 (en) Reference current generation circuit and reference voltage generation circuit
TW202232885A (en) Amplification circuit
TWI226751B (en) Hysteresis circuits used in comparator
JP2004304234A (en) I/v converting circuit and da converter
US20070257712A1 (en) Low Current, High Gain, Single to Differential Buffer