TW200807518A - Method of striping remnant metal - Google Patents

Method of striping remnant metal Download PDF

Info

Publication number
TW200807518A
TW200807518A TW95126798A TW95126798A TW200807518A TW 200807518 A TW200807518 A TW 200807518A TW 95126798 A TW95126798 A TW 95126798A TW 95126798 A TW95126798 A TW 95126798A TW 200807518 A TW200807518 A TW 200807518A
Authority
TW
Taiwan
Prior art keywords
metal
transition metal
substrate
oxidation treatment
telluride
Prior art date
Application number
TW95126798A
Other languages
Chinese (zh)
Other versions
TWI312174B (en
Inventor
Chun-Chieh Chang
Tzung-Yu Hung
Chao-Ching Hsieh
Yi-Wei Chen
Yu-Lan Chang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW95126798A priority Critical patent/TWI312174B/en
Publication of TW200807518A publication Critical patent/TW200807518A/en
Application granted granted Critical
Publication of TWI312174B publication Critical patent/TWI312174B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

A method of striping a remnant metal is disclosed. The remnant metal is formed on an intergraded silicide of a silicon wafer. Firstly, a surface oxidation process is performed to the intergraded silicide, so as to form a protection layer on the intergraded silicide. And then, a HPM rinse process is performed to the silicon wafer in order to strip the remnant metal.

Description

200807518 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種清除殘餘金屬的方法,尤指一種先 於過渡金屬矽化物上生成一層保護層,再進行清除步驟, 以清除過渡金屬矽化物上之殘餘金屬的方法。 【先前技術】 在積體電路(integrated circuit)的製造過程中,電晶懸 (transistor)是一種極重要的電子元件,而隨著半導體元件的 尺寸越來越小,電晶體的製程步驟也有許多的改進,以_ 能製造出體積小而高品質的電晶體。 以現行的電晶體製程來說,金屬矽化物(sjlici(je)的製 作即為一種改進電晶體品質的作法。金屬石夕化物的製作方 法大多是利用自動對準金屬矽化物(selfi aligned silicide, salicide)製程來形成,其製作方法係於形成源極/汲極之 後,於源極/汲極與閘極結構上方覆蓋一金屬層,例如:鎳 (Ni)金屬層。然後’再賤錢一層氮化鈦(titanium nitride,TiN) 於該金屬層上方。接下來,進行一快速熱處理製程(rapid thermal process,RTP),以使金屬層中的金屬與閘極結構、 源極/汲極中的矽反應,形成金屬矽化物於閘極結構、源極 /汲極的表面上。之後去除未反應的金屬層,並再進行一次 快速熱處理製程(RTP),以使閘極結構、源極/汲極表面上 6 200807518 的金屬矽化物轉換成電阻值較小的化合物。 一般而a,於閘極結構、源極/汲極的表面上方形成金 屬矽化物的優點在於,可改善接觸插塞(c〇ntactplug)與閘 極結構、源極/汲極之間的歐米接觸(〇hmicc〇ntact)。因為 接觸插塞的材質通常為鎢(W)等金屬導體,因此,其與閘極 結構、源極/汲極中的多晶矽或者單晶矽等材質之間的導通 情況並不理想。所以現行的電晶體製程通常會製作金屬矽 化物在於源極/汲極區與閘極結構上方,以使得接觸插塞與 閘極結構、源極/没極區之間的歐米接觸(〇hmic c〇ntact)得 以改善’且源極/>及極的片電阻㈣⑽⑽以⑽㈣也會降低。 而在目前的電晶體製程中為了防止諸如矽化鎳(nickd silicide,NiSi)專之金屬石夕化物產生結塊(aggi〇merati〇n),皆 會在用來形成金屬矽化物的金屬層中,添加低濃度化學性 質穩定的其他金屬。這是因為如果金屬矽化物中有結塊產 生’就會使付接觸插塞的電阻㈣价⑽resjstance)增加,並 且會發生接面漏電(juncti〇I1 leakage)等情況。所以,在現行 的製程中,為了避免金屬矽化物產生結塊,通常會在用來 形成金屬矽化物的金屬層中,加入少量的熱穩定性金屬。 例如:將重量約佔3至的鉑(Pt)加在用來形成金屬矽 化物的鎳金屬層中。這樣作的原理是因為鉑金屬是化學性 質穩定的重金屬,所以有助於改善矽化鎳的熱穩定性。而 7 200807518 因為銘的添加,故使得之後形成的碎化錄(nickel silicide, NiSi)可在較高的溫度中仍不發生結塊。 但疋’因為舶和砍化錄的剝除選擇比(strip selectivity) 極小,所以當進行清洗步驟欲剝除未反應的鉑時,很容易 在去除未反應的鉑時,同時傷害到已形成的石夕化鎳。 _ 請參考第1至2圖,其中第1至2圖係為先前技術製作 金屬珍化物的方法示意圖。如第1圖所示,半導體晶片1〇 上具有一基底(substrate)12,例如:矽基底。再於基底u 上方形成一閘極結構20,其中閘極結構2〇包含有一閘極 絕緣層14和一閘極導電層16。接著,利用可降低熱預算 (thermal budget)的離子植入(ionimplantati〇n)製程,於閘極 …構20兩側的基底12中形成源極/没極延伸出 •她nsion)區 26,或者稱為輕摻雜(lightly doped drain,LDD) 源極/没極。接著,於閘極結構20周圍形成侧壁子(spa㈣i 8, 並利用此閘極結構20及侧壁子18做為遮罩,進行離子植 入製程,以於基底12中形成源極/汲極28。 接、,著,進行一薄膜沈積ii 於基底12以及閉極結構2Q上方均勻形成_金屬)=二 .中’金屬層22含有重量占3至8%的銘以及重量占92至 .97%左右的鎳。紐,再將氮化鈦層24錢鍍(sputter)沈積 8 200807518 於金屬層22之上。 如第2圖所示,隨後進行第一階段的快速熱處理製 私’使部份金屬層22與其下方的閘極導電層16以及源極/ 沒極28的石夕原子發生化學反應,生成過渡金屬矽化物30, 其中第一階段快速熱處理的反應式可以是:200807518 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for removing residual metals, in particular to a protective layer formed on a transition metal halide prior to removal stepping to remove transition metal telluride The method of residual metal. [Prior Art] In the manufacturing process of an integrated circuit, an electro-transformer is an extremely important electronic component, and as the size of the semiconductor component becomes smaller, the process steps of the transistor are also many. The improvement is that _ can produce small and high quality transistors. In the current transistor process, the manufacture of metal sulphide (sjlici (je) is an improvement in the quality of the crystal. Most of the metal stellite is made by self-aligned silicide. The salicide process is formed by forming a source/drain and covering a metal layer over the source/drain and gate structures, such as a nickel (Ni) metal layer. Titanium nitride (TiN) is over the metal layer. Next, a rapid thermal process (RTP) is performed to make the metal in the metal layer and the gate structure, the source/drain The ruthenium reaction forms a metal ruthenium on the surface of the gate structure and the source/drain. After that, the unreacted metal layer is removed, and a rapid thermal processing process (RTP) is performed to make the gate structure, source/汲The metal halide of 6 200807518 on the surface of the pole is converted into a compound with a small resistance value. Generally, a, the formation of metal telluride above the surface of the gate structure and the source/drain is advantageous in that contact can be improved. 〇hmicc〇ntact between the plug (c〇ntactplug) and the gate structure and the source/drain. Since the material of the contact plug is usually a metal conductor such as tungsten (W), it is connected to the gate. The conduction between the structure, the polysilicon in the source/drain, or the single crystal germanium is not ideal. Therefore, the current transistor process usually produces a metal telluride in the source/drain region and the gate structure. In order to improve the ohmic contact between the contact plug and the gate structure, the source/nothotropic region, and the source/> and the chip resistance (4) (10) (10) of the pole are also reduced by (10) (4). In the current transistor process, in order to prevent the formation of agglomerates, such as nicked silicide (NiSi), it is added to the metal layer used to form the metal telluride. Low concentration of other metals that are chemically stable. This is because if there is agglomeration in the metal telluride, the resistance (4) resistance of the contact plug will increase, and junction leakage (juncti〇I1 leakage) will occur. Happening. Therefore, in the current process, in order to avoid agglomeration of the metal telluride, a small amount of thermally stable metal is usually added to the metal layer used to form the metal telluride. For example, platinum (Pt) having a weight of about 3 Å is added to a nickel metal layer for forming a metal ruthenium. The principle of this is because platinum metal is a chemically stable heavy metal, which helps to improve the thermal stability of nickel halide. And 7 200807518 Because of the addition of the name, the nickel silicide (NiSi) formed later can still not agglomerate at a higher temperature. However, 疋 'Because the strip selectivity is extremely small, it is easy to remove unreacted platinum when removing the unreacted platinum while cleaning. Shi Xihua nickel. _ Refer to Figures 1 to 2, where Figures 1 to 2 are schematic views of the prior art method of making metallization. As shown in Fig. 1, the semiconductor wafer 1 has a substrate 12, for example, a germanium substrate. A gate structure 20 is formed over the substrate u, wherein the gate structure 2A includes a gate insulating layer 14 and a gate conductive layer 16. Next, using the ion implantation method that reduces the thermal budget, a source/no-polar extension/shesion region 26 is formed in the substrate 12 on either side of the gate structure 20, or It is called lightly doped drain (LDD) source/no pole. Next, a sidewall (spa) 8 is formed around the gate structure 20, and the gate structure 20 and the sidewall spacer 18 are used as a mask to perform an ion implantation process to form a source/drain in the substrate 12. 28. Connect, and, perform a thin film deposition ii to form a uniform metal over the substrate 12 and the closed-pole structure 2Q. = 2. The 'metal layer 22 contains 3 to 8% by weight and 92 to 97. About 0.7% nickel. Then, a titanium nitride layer 24 is sputter deposited 8 200807518 on the metal layer 22. As shown in Fig. 2, the first stage of the rapid thermal processing process is performed to chemically react a portion of the metal layer 22 with the gate conductive layer 16 and the source/danopole 28 of the underlying layer to form a transition metal. The telluride 30, wherein the first stage rapid heat treatment reaction formula can be:

Si+Ni->Ni2Si 接者,利用硫酸和過氧化氮混合物(sulfuric acid-hydrogen peroxide mixture,SPM)清除製程,去除氮化 鈦層24和金屬層22中未反應的鎳。接著,利用氯化氫和 過氧化氮;ά合物(hydrochloric acid hydrogen peroxide mixture,HPM)清除製程,使得過渡金屬石夕化物3〇上方未反 應的鉑發生化學反應,形成可溶性錯離子,藉以去除未反 應的銘。 但是,因為HPM清除製程中包含有過氧化氫、鹽酸、 氯氣(CD專化學成分,這些成分會傷害過渡金屬石夕化物 30,例如:氣氣是一種高活性氣體,會和金屬反應,所以 氣氣除了會跟鉑反應外,也會過渡金屬矽化物3〇反應,使 付過渡金屬石夕化物30受到侵姓,進而被剝除。之後再進行 第二階段的快速熱處理製程,以使過渡金屬矽化物3〇轉換 成較低電阻值的金屬矽化物。其中,第二階段的快速熱處 200807518 理製程的反應式可以是:The Si+Ni->Ni2Si bond utilizes a sulfuric acid-hydrogen peroxide mixture (SPM) removal process to remove unreacted nickel in the titanium nitride layer 24 and the metal layer 22. Then, using hydrogen chloride and nitrogen peroxide; hydrochloric acid hydrogen peroxide mixture (HPM) to remove the process, the unreacted platinum above the transition metallization 3 化学 chemical reaction, forming soluble wrong ions, thereby removing unreacted Ming. However, because the HPM removal process contains hydrogen peroxide, hydrochloric acid, and chlorine (CD-specific chemical components, these components can damage the transition metal lithology 30, for example, gas is a highly reactive gas that reacts with metals, so gas In addition to reacting with platinum, the gas also transitions to the metal ruthenium 3 〇 reaction, so that the transition metal gangue 30 is invaded and then stripped. Then the second stage of rapid thermal processing is performed to make the transition metal The telluride 3〇 is converted into a lower resistance metal halide. Among them, the second stage of the rapid heat treatment of the 200807518 process can be:

Si+ NiSi-> NiSi 請參考第3圖,第3圖係為第2圖之未反應的鉑位於 金屬石夕化物上方的掃瞄式電子顯微鏡(Scanning Electron Microscopy,SEM)示意圖。如第3圖所示,基底12上方具 有數個過渡金屬矽化物3〇的圖案,而部分之過渡金屬矽化 • 物30上方則有著許多未反應的鉑32。接著,請參考第4 圖,第4圖係為第2圖之未反應的鉑進行HPM清除I程後 之SEM示意圖。如第4圖所示,HpM清除製程雖可有致 清除未反應的鉑,但基底12上已經形成的過渡金屬矽化物 30卻也會與HPM清除製程中的氯氣(cy等化學成分發生 反應,進而使得部分之過渡金屬石夕化物30受到侵飯而被 除,形成傷害區域42。 ^ •【發明内容】 本發明係提供一種清除殘餘金屬的方法,特別是可針 對過渡金屬矽化物上之殘餘金屬進行清除。且 a 傷害到過渡金屬矽化物。 / 曰 在本發明之一較佳實施例中係提供一種清除殘餘金屬 。的方法。此殘餘金屬係位於石夕晶圓基底的過渡金屬石夕化物 上。而本發明之清除殘餘金屬的方法係利用過氣化氣先對 200807518 過渡金屬石夕化物作表面氧化處理,以形成一保護層於該過 渡金屬矽化物上方後,再利用—HPM清洗步驟清洗矽晶圓 基底’以清除殘餘金屬。 在本發明之另-較佳實施例中係提供一種清除殘餘金 屬的方法。此雜金屬錄㈣晶底的毅金屬石夕化 物上而本發明之,除殘餘金屬的方法m過渡金屬石夕 =作表面氧化處理,以於金屬魏物上方形成保護層, 二二基底進行清洗步驟,以清除過渡金屬矽化物上的 殘餘金屬。 進行-表^化广渡金屬魏物進行清洗處理前,先行 物性質的保❹使得過渡金屬魏物上形成一氧化 金屬料;θ’所以後續的清洗步料會傷害到過渡 I屬矽化物。而且 氧化處理和清洗步驟=_化物係循環性地受到表面 必要的殘留物,例二機:斤::渡金屬魏物上方不 由清洗产理、主咚.有機粒子、熱穩定性金屬等皆可藉 到清洗處二二且已經形成的過渡金屬石夕化物也不會受 【實施方式】 請參考第5至6圖,第s <同乂么&丄 ^ 口弟5至6圖係為本發明之較佳會 例中h除過渡金屬石夕化物 實知 碉7化物上方殘餘金屬之方法示意圖。如 200807518 第5圖所tf ’半導體晶片50上具有一基底52 ’在此較佳 實施例中基底52係為一矽基底。而於基底52上方又形成 一閘極結構60,其中閘極結構60包含有一閘極絕緣層54 和一閘極導電層56,閘極絕緣層54可以由氧化氮層、氮 化層、氧化層或者其他介電層所構成;而閘極導電層56則 可由摻雜多晶矽或者金屬層等導電結構構成。 • 閘極結構60形成後,接著,利用可降低熱預算的離子 植入製程,於閘極結構60兩侧的基底52中形成源極/汲極 延伸區66,其中,源極/汲極延伸區66又可以稱為輕摻雜 源極/汲極。接續著,於閘極結構60和基底52上方形成一 介電層(未顯示),並對此介電層進行一非等向性乾钱刻 (Anisotropic Etch)製程,使得閘極結構60周圍形成侧壁子 58。接下來,利用此閘極結構60及侧壁子58做為遮罩, φ 進行離子植入製程,以於閘極結構60兩側的基底52中形 成源極/没極68。 接續著,進行一濺鍍等之薄膜沈積製程,以於基底52 以及閘極結構60上方均勻形成一金屬層62,其中金屬層 62至少包含兩種金屬成分,其一為主要金屬成分,是可以 用來形成之後金屬矽化物的主要成分,而另一種金屬係為 , 化學性質穩定的重金屬,其加入的目的是為了增加之後形 成之金屬石夕化物的熱穩定性。在此較佳實施例中,金屬層 12 200807518 62中的主要金屬成份係為鎳,而增加熱穩定性的金屬則為 鉑,其中鎳約佔金屬層60的92至97%左右的重量,而鉑 的重量百分比則為3至8(wt%)左右。然後,再將氮化鈦 層64濺鐘沈積於金屬層62之上。當然,在較佳實施例的 隻化型中,不只可以利用鎳作為主要金屬成分,也可以利 用鈷以及鈦等金屬;而增加熱穩定性的金屬,除了鉑之外, 也可以選用把(Pd)、猛(Mo)、组(Ta)、釕(Ru)等化學性質穩 定的金屬。 接著,如第6圖所示,隨後進行第一階段的快速熱處理 I私’使4伤金屬層62與其下方閘極導電層5 6以及源極/ 汲極68反應生成過渡金屬矽化物70。在此同時,過渡金 屬矽化物70上方尚存在氮化鈦層70以及未反應的鎳和 翻。為去除過渡金屬石夕化物7〇上方尚存在的氮化鈦層7〇 以及未反應的鎳和鉑,會先進行一 SPM清洗製程,以硫酸 和過氧化虱等成分與氮化鈦層64和未反應的鎳反應,以去 除氮化鈦層64和金屬層62中未反應的鎳。接著,利用氣 鹽基和過氧化氳混合物(ammonium hydrogen peroxide mixture,APM)清洗製程,去除基底52上方不必要的有機污染。 接下來,先對過渡金屬矽化物70進行一表面氧化處理 72 ’在本發明之較佳實施例中,表面氧化處理72係利用一 過氧化氫(Η"2)溶液喷灑至過渡金屬矽化物7〇表面,而過 13 200807518 渡金屬矽化物70會與過氧化氫形成二氧化矽(si〇2)或者 Si〇x等的氧化物(未顯示),而這些氧化物會在過渡金屬矽 化物70的表面上形成一保護層74。接續著,進行一 hpm ✓月洗製程76,而HPM中的過氧化氫、氣氣、鹽酸等成分 和過渡金屬石夕化物70上方未反應的翻反應,以形成可溶性 錯離子,進而可清除掉過渡金屬矽化物7〇上方未反應的鉑。 而此較佳實施例不同於先前技術的地方是,由於過渡金 屬矽化物70上方有一層保護層74的存在,因此HPM中的 成分無法和過渡金屬矽化物70作用,所以過渡金屬矽化物 70不會被破壞。在此請特別注意,在本發明之較佳實施例 中,表面氧化處理72和HPM清洗製程76係可循環輪替進 行,且不侷限於以HPM清洗製程76作為該階段的最後一 步驟’亦可以表面氧化處理72作為該階段的最後一步驟。 當過渡金屬矽化物70上方未反應的鉑被清除乾淨 後,接著,對半導體晶片50進行第二階段的快速熱處理, 以使過渡金屬矽化物70與部份基底52反應生成一較穩定 且低電阻值的金屬石夕化物(未顯示),就本發明之較佳實施 例而言’此金屬矽化物係為矽化鎳,當然,在其他變化型 的實施例中,此金屬矽化物可以是矽化鈷、矽化鈦等化合 物。最後’視製程需求及產品特性等考量,以選擇性進行 應變石夕金氧半導體電晶體(strained-silicon transistors)之接 14 200807518 觸洞蝕刻停止層(contact etch stop layer,CESL),或直接利 用一化學氣相沈積法(chemical vapor deposition,CVD)形成 一層間介電層(ILD)均勻覆蓋於整個基底52和閘極結構60 上,並依序形成所需之接觸插塞,完成半導體晶片5()中各 個電晶體之間的電連結。Si+NiSi-> NiSi Please refer to Fig. 3. Fig. 3 is a schematic diagram of a scanning electron microscope (SEM) of unreacted platinum in the second figure above the metallide. As shown in Fig. 3, the substrate 12 has a pattern of transition metal halides 3 上方 above, and a portion of the transition metal hydrides 30 have a plurality of unreacted platinum 32 thereon. Next, please refer to Fig. 4, which is a SEM diagram of the unreacted platinum of Fig. 2 after HPM removal. As shown in Fig. 4, although the HpM cleaning process can remove unreacted platinum, the transition metal halide 30 already formed on the substrate 12 reacts with the chlorine component (chemical components such as cy) in the HPM cleaning process. Part of the transition metallization 30 is removed by insulting to form the damage area 42. ^ [SUMMARY OF THE INVENTION The present invention provides a method for removing residual metals, particularly for residual metals on transition metal tellurides The removal is performed and a damages the transition metal halide. / 曰 In a preferred embodiment of the invention, a method of removing residual metal is provided. The residual metal is a transition metal ruthenium on the base of the Shixi wafer. The method for removing residual metal of the present invention utilizes a gasification gas to first surface oxidize the 200807518 transition metal cerium compound to form a protective layer over the transition metal ruthenium, and then use the HPM cleaning step. The crucible wafer substrate is cleaned to remove residual metal. In another preferred embodiment of the invention, a method of removing residual metal is provided. The heterometal is recorded on the (four) crystal bottom of the metal-based compound of the present invention, and the method of removing the residual metal is used for the surface metal oxidation treatment to form a protective layer over the metal material, and the second and second substrates are cleaned. a step of removing the residual metal on the transition metal telluride. Before performing the cleaning treatment, the properties of the precursor property are such that a metal oxide is formed on the transition metal material; θ' The cleaning step will damage the transition I is a sulphate. And the oxidation treatment and cleaning steps = _ the chemical system cyclically receives the necessary residue on the surface, the second machine: jin:: above the metal material is not cleaned by the production, Main 咚. Organic particles, heat-stable metals, etc. can be borrowed from the cleaning station 22 and the formed transition metal lithology will not be affected. [Implementation] Please refer to Figures 5 to 6, s < 5 &6; Figure 5 is a schematic diagram of a method for removing residual metal from a transition metallization in the preferred embodiment of the present invention. For example, the semiconductor wafer of 200807518, FIG. 50 There is a substrate 52'. In the preferred embodiment, the substrate 52 is a germanium substrate. A gate structure 60 is formed over the substrate 52. The gate structure 60 includes a gate insulating layer 54 and a gate conductive layer. The layer 56, the gate insulating layer 54 may be composed of a nitrogen oxide layer, a nitride layer, an oxide layer or other dielectric layer; and the gate conductive layer 56 may be composed of a conductive structure such as a doped polysilicon or a metal layer. After the structure 60 is formed, a source/drain extension 66 is formed in the substrate 52 on either side of the gate structure 60 using an ion implantation process that reduces the thermal budget, wherein the source/drain extension 66 It may be referred to as a lightly doped source/drain. Next, a dielectric layer (not shown) is formed over the gate structure 60 and the substrate 52, and an anisotropic dry memory is performed on the dielectric layer ( The Anisotropic Etch process results in the formation of sidewalls 58 around the gate structure 60. Next, the gate structure 60 and the sidewall spacers 58 are used as masks, and φ is subjected to an ion implantation process to form source/drain electrodes 68 in the substrate 52 on both sides of the gate structure 60. Subsequently, a thin film deposition process such as sputtering is performed to uniformly form a metal layer 62 over the substrate 52 and the gate structure 60. The metal layer 62 includes at least two metal components, one of which is a main metal component. The main component used to form the subsequent metal halide, and the other metal is a chemically stable heavy metal added for the purpose of increasing the thermal stability of the later formed metallide. In the preferred embodiment, the main metal component of the metal layer 12 200807518 62 is nickel, and the metal for increasing thermal stability is platinum, wherein nickel accounts for about 92 to 97% of the weight of the metal layer 60. The weight percentage of platinum is about 3 to 8 (wt%). Then, a titanium nitride layer 64 is again sputter deposited on the metal layer 62. Of course, in the preferred embodiment of the preferred embodiment, not only nickel may be used as the main metal component, but also metals such as cobalt and titanium; and metals having increased thermal stability may be used in addition to platinum (Pd). Chemically stable metals such as sulphur (Mo), group (Ta), and ruthenium (Ru). Next, as shown in Fig. 6, the first stage rapid thermal processing is performed to cause the 4-injured metal layer 62 to react with the lower gate conductive layer 56 and the source/drain 68 to form a transition metal telluride 70. At the same time, a titanium nitride layer 70 and unreacted nickel and turns are present over the transition metal telluride 70. In order to remove the titanium nitride layer 7〇 and the unreacted nickel and platinum which are still present above the transition metallite 7〇, an SPM cleaning process is first performed, with components such as sulfuric acid and barium peroxide and the titanium nitride layer 64. Unreacted nickel reacts to remove unreacted nickel in the titanium nitride layer 64 and the metal layer 62. Next, the process is cleaned with a salt base and an ammonium hydrogen peroxide mixture (APM) to remove unnecessary organic contamination above the substrate 52. Next, the transition metal halide 70 is first subjected to a surface oxidation treatment 72'. In a preferred embodiment of the invention, the surface oxidation treatment 72 is sprayed with a hydrogen peroxide (Η"2) solution to the transition metal halide. 7〇 surface, and over 13 200807518, the metal telluride 70 will form an oxide of ceria (si〇2) or Si〇x with hydrogen peroxide (not shown), and these oxides will be in transition metal telluride A protective layer 74 is formed on the surface of 70. Continuing, a hpm ✓ month wash process 76 is performed, and the components of hydrogen peroxide, gas, hydrochloric acid, and the like in the HPM and the unreacted turn-over reaction above the transition metal cerium 70 form a soluble dissociated ion, which can be removed. The unreacted platinum above the transition metal telluride 7〇. Whereas the preferred embodiment differs from the prior art in that the presence of a protective layer 74 over the transition metal telluride 70 prevents the components in the HPM from interacting with the transition metal telluride 70, so the transition metal telluride 70 does not Will be destroyed. It is to be noted in particular that in the preferred embodiment of the invention, the surface oxidation process 72 and the HPM cleaning process 76 are cycled, and are not limited to the HPM cleaning process 76 as the last step of the stage. Surface oxidation treatment 72 can be used as the last step in this stage. After the unreacted platinum above the transition metal halide 70 is removed, a second stage of rapid thermal processing of the semiconductor wafer 50 is performed to react the transition metal halide 70 with a portion of the substrate 52 to form a relatively stable and low resistance. The value of the metallide (not shown), in the preferred embodiment of the invention, 'this metal telluride is nickel telluride, of course, in other variants, the metal halide may be cobalt telluride And compounds such as titanium telluride. Finally, depending on the process requirements and product characteristics, the strained-silicon transistors can be selectively used in conjunction with the 2008 20081818 contact etch stop layer (CESL), or directly. A chemical vapor deposition (CVD) forms an interlayer dielectric layer (ILD) uniformly covering the entire substrate 52 and the gate structure 60, and sequentially forms a desired contact plug to complete the semiconductor wafer 5. The electrical connection between the individual transistors in ().

在本發明之較佳實施例中,表面氧化處理72係實施於 進行HPM巧洗製程76之前,但在其他的實施例中,表面 乳化處理72亦可#進行SPM·清洗製程之前,就施行在過 渡金屬魏物70上°也就是說,於SPM清洗製程之前, :尤在,度金屬石夕化物7〇上先形成氧化物的保護層% C此 田…丨也可以在ΑΡΜ清洗製程之前,便於過渡金屬矽化 、知上^也以表面氧化處理72。而且本發明不僅可以利用 過乳化氫料表㈣域_成分,也可㈣用臭氧 處理。1^電漿等’來對過渡金屬⑪化物7G進行表面氧化 ΤΙ時。,,利用過氧化氩或者臭氧等進行表面氧化處理 但是,’若、錢製程可與清洗製程於同—製程設備中進行。 製ί二電裝作為表面氧化處理72時,則與清洗 』表程設備中進行。 請參考第7 ^ 進行HPM、、支、圖,第7圖係為第6圖之過渡金屬矽化物 底52上方:洗製程後之随示意圖。如第7圖所示,基 "有數個過渡金屬矽化物70的圖案,而且這些 200807518 70在HPM清洗製程後都沒有受到侵餘, 而得以保有完整的結構。 由於本發明在過渡金屬石夕化物進行清洗處理前,先行 進仃-表面氧化處理,使得過渡金屬魏物上形成一氣化 物性質的㈣層,所以,後續的清洗步驟不會傷害到過渡 金屬矽化物。而且,過渡金屬矽化物係可利用循環交替^ 方式來受到表面氧化處理和清洗處理,所以,過渡金屬矽 化物上方不必要的殘留物,例如:有機粒子、熱穩定性金 屬等皆可藉由清洗處理清除,且已經形成的過渡金屬矽化 物也不會受到清洗處理的傷害。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1至2圖係為先前技術製作金屬矽化物的方法示意圖。 第3圖係為第2圖之未反應的鉑位於金屬矽化物上方的 SEM示意圖。 第4圖係為第2圖之未反應的鉑進行HPM清除製程後之 SEM示意圖。 第5至6圖係為本發明之較佳實施例清除過渡金屬石夕化物 上方殘餘金屬之方法示意圖。 16 200807518 第7圖係為第6圖之過渡金屬矽化物進行HPM清洗製程之 SEM示意圖。 【主要元件符號說明】 10、50 半導體晶片 12 > 52 基底 14、54 閘極絕緣層 16、56 .閘極導電層 18、58 V側壁子 20、60 閘極結構 22、62 .金屬層 24、64 氮化鈦層 26、66 源極/没極延伸區 28、68 源極/汲極 30、70 過渡金屬矽化物 32 未反應的始 42 傷害區域 72 表面氧化處理 74 保護層 76 HPM清洗製程 17In a preferred embodiment of the invention, the surface oxidation treatment 72 is performed prior to performing the HPM process 76, but in other embodiments, the surface emulsification treatment 72 may also be performed prior to the SPM cleaning process. The transition metal material is above 70. That is to say, before the SPM cleaning process, especially, the protective layer of oxide is formed on the metal enamel 7 〇. This field can also be used before the cleaning process. It is convenient for the transition metal to be deuterated, and the surface is also oxidized by the surface 72. Further, the present invention can be used not only by the use of the over-emulsified hydrogen material table (IV), but also by (iv) treatment with ozone. 1) Plasma or the like is used to oxidize the surface of the transition metal 11 7G. The surface oxidation treatment is carried out by using argon peroxide or ozone, etc. However, the "manufacturing process" can be carried out in the same process as the cleaning process. When the 二2 electric device is used as the surface oxidation treatment 72, it is carried out in the cleaning process. Please refer to page 7 ^ for HPM, branch, and figure. Figure 7 is the top of transition metal halide bottom 52 of Figure 6: schematic diagram after washing process. As shown in Figure 7, the base " has a number of transition metal telluride 70 patterns, and these 200807518 70 have not been invaded after the HPM cleaning process, but to maintain a complete structure. Since the present invention advances the ruthenium-surface oxidation treatment before the transition metal cerium compound is subjected to the cleaning treatment, a (four) layer of a vaporized property is formed on the transition metal material, so that the subsequent cleaning step does not damage the transition metal telluride. . Moreover, the transition metal telluride system can be subjected to surface oxidation treatment and cleaning treatment by means of cyclic alternating methods, so that unnecessary residues above the transition metal halide, such as organic particles, thermally stable metals, etc., can be cleaned. The treatment is removed and the transition metal halide that has formed is also not damaged by the cleaning process. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 2 are schematic views showing a method of producing a metal halide in the prior art. Figure 3 is a SEM schematic of the unreacted platinum of Figure 2 above the metal telluride. Figure 4 is a SEM diagram of the unreacted platinum of Figure 2 after the HPM purge process. 5 to 6 are schematic views showing a method of removing residual metal above the transition metallite according to a preferred embodiment of the present invention. 16 200807518 Figure 7 is a SEM diagram of the HPM cleaning process for the transition metal halide of Figure 6. [Major component symbol description] 10, 50 semiconductor wafer 12 > 52 substrate 14, 54 gate insulating layer 16, 56. gate conductive layer 18, 58 V sidewall 20, 60 gate structure 22, 62. metal layer 24 , 64 titanium nitride layer 26, 66 source/nopole extension 28, 68 source/drain 30, 70 transition metal telluride 32 unreacted initial 42 damage area 72 surface oxidation treatment 74 protective layer 76 HPM cleaning process 17

Claims (1)

200807518 十、申請專利範圍: 1· 一種清除殘餘金屬的方法,包含: 提供基底,该基底上方具有至少—過渡金屬石夕化物, 且該過渡金屬矽化物上方又具有該殘餘金屬; 利用-過氧化氫溶液對該過渡金屬石夕化物作一表面氧 化處理,該過氧化氫溶液與該過渡金屬石夕化物反應,並形 _ 成一保護層於該過渡金脣矽化物上方;以及 利用-氣化氫和過氧化氫混合物(hydn>ehlGric add hydrogen peroxide mixture,HPM)清洗步驟清洗該基底,以 清除該殘餘金屬。 2.如申請專利範圍第1項所述之方法,其中該表面氧化處 理和該HPM清洗步驟係依序循環進行於該基底上。 _ 3·如申請專利範圍第1項所述之方法,其中該HPM清洗 步驟完成之後,再進行一次該表面氧化處理。 4·如申請專利範圍第1項所述之方法,其中該殘餘金屬係 包含鉑、鈀、錳、鈕、釘金屬其中之一或其組合。 5·如申請專利範圍第1項所述之方法,其中形成該過渡金 * 屬矽化物之方法,包含·· • 於該基底上方形成一閘極結構,該閘極結構兩側之該基底 18 200807518 _ 中各具有一源極/汲極; 於該基底上方形成一金屬層; 於該金屬層上方形成一氮化鈦層;以及 進行一第一快速熱處理製程,形成談過渡金屬矽化物於該 閘極結構、該源極/汲極上方。 6. 如申請專利範圍第5項所述之方法,其中該過渡金屬矽 瞻化物上之該殘餘金屬清除後,係進行一第二快速熱處理製 程,使得該過渡金屬矽化物成為一金屬矽化物。 7. 如申請專利範圍第6項所述之方法,其中該金屬矽化物 包含有矽化鎳、矽化鈷、矽化鈦其中之一或其組合。 8. —種清除殘餘金屬的方法,包含: 提供一基底,該基底上方具有至少一過渡金屬矽化物, ® 且該過渡金屬矽化物上方又具有該殘餘金屬; 對該過渡金屬矽化物進行一表面氧化處理,以於該金屬 矽化物上方形成一保護層;以及 對該基底進行一清洗步驟,以清除該殘餘金屬。 9. 如申請專利範圍第8項所述之方法,其中該表面氧化處 理和該清洗步驟係依序循環進行於該基底上。 19 200807518 ιο·如申請專利範圍第8項所述之方法,其中該清洗步驟完 成後’再進行一次該表面氧化處理。 Π·如申請專利範圍第1〇項所述之方法,其中該表面氧化 處理係包含利用一過氧化氫、一臭氧其中之一或其組合對 該過渡金屬矽化物作該表面氧化處理。 12·如申請專利範圍第η項所述之方法,其中該過氧化氫、 該臭氧之表面氧化處理係與該清洗步驟於同一製程設備中 進行。 13. 如申請專利範圍第10項所述之方法,其中該表面氧化 處理係包含利用一含氧電漿對該過渡金屬矽化物作該表面 氧化處理。 14. 如申請專利範圍第13項所述之方法,其中該含氧電漿 之表面氧化處理係與該清洗步驟於不同製程設備中進行。 15. 如申請專利範圍第8項所述之方法,其中該清洗步驟係 選自利用硫酸和過氧化氫混合物(sulfuric acid-hydrogen peroxide mixture, SPM)、氨鹽基和過氧化氫混合物 (ammonium hydrogen peroxide mixture,APM)、氣化氫和過 氧化氫混合物(hydrochloric acid hydrogen peroxide mixture, 20 200807518 HPM)其中之一以及其組合對該基底進行清洗。 16. 如申請專利範圍第8項所述之方法,其中該殘餘金屬係 包含鉑、鈀、錳、钽、釕金屬其中之一或其組合。 17. 如申請專利範圍第8項所述之方法,其中形成該過渡金 屬矽化物之方法,包含: 於該基底上方形成一閘極結構,該閘極結構兩侧之該基底 中各具有一源極/汲極; 於該基底上方形成一金屬層; 於該金屬層上方形成一 IL化鈦層;以及 進行一第一快速熱處理製程,形成該過渡金屬矽化物於該 閘極結構、該源極/汲極上方。 18. 如申請專利範圍第17項所述之方法,其中該過渡金屬 矽化物上之該殘餘金屬清除後,係進行一第二快速熱處理 製程,使得該過渡金屬矽化物成為一金屬矽化物。 19. 如申請專利範圍第18項所述之方法,其中該金屬矽化 物包含有矽化鎳、矽化鈷、矽化鈦其中之一或其組合。 21200807518 X. Patent application scope: 1. A method for removing residual metal, comprising: providing a substrate having at least a transition metal lithium above the substrate, and having the residual metal above the transition metal halide; utilizing-peroxidizing Hydrogen solution is subjected to a surface oxidation treatment on the transition metal ruthenium compound, and the hydrogen peroxide solution is reacted with the transition metal ruthenium compound to form a protective layer over the transition gold lip sulphate; and utilizing - gasification hydrogen The substrate is washed with a hydrogen peroxide mixture (hydn> ehlGric add hydrogen peroxide mixture, HPM) cleaning step to remove the residual metal. 2. The method of claim 1, wherein the surface oxidation treatment and the HPM cleaning step are sequentially performed on the substrate. The method of claim 1, wherein the surface oxidation treatment is performed once the HPM cleaning step is completed. 4. The method of claim 1, wherein the residual metal comprises one or a combination of platinum, palladium, manganese, a button, a nail metal. 5. The method of claim 1, wherein the method of forming the transition metal* is a telluride, comprising: forming a gate structure over the substrate, the substrate 18 on both sides of the gate structure 200807518 _ each has a source/drain; a metal layer is formed over the substrate; a titanium nitride layer is formed over the metal layer; and a first rapid thermal processing process is performed to form a transition metal germanide. Gate structure, above the source/drain. 6. The method of claim 5, wherein after the residual metal on the transition metal is removed, a second rapid thermal processing is performed to cause the transition metal halide to become a metal halide. 7. The method of claim 6, wherein the metal halide comprises one or a combination of nickel telluride, cobalt telluride, titanium telluride. 8. A method of removing residual metal, comprising: providing a substrate having at least one transition metal telluride thereon, and having the residual metal thereon over the transition metal halide; performing a surface on the transition metal halide An oxidation treatment to form a protective layer over the metal halide; and a cleaning step on the substrate to remove the residual metal. 9. The method of claim 8, wherein the surface oxidation treatment and the cleaning step are sequentially performed on the substrate. 19 200807518 ιο. The method of claim 8, wherein the surface oxidation treatment is performed once the cleaning step is completed. The method of claim 1, wherein the surface oxidation treatment comprises subjecting the transition metal halide to the surface oxidation treatment using one of hydrogen peroxide, one ozone, or a combination thereof. 12. The method of claim n, wherein the hydrogen peroxide, the surface oxidation treatment of the ozone, and the cleaning step are performed in the same process equipment. 13. The method of claim 10, wherein the surface oxidation treatment comprises subjecting the transition metal halide to the surface oxidation treatment using an oxygen-containing plasma. 14. The method of claim 13, wherein the surface oxidation treatment of the oxygen-containing plasma and the cleaning step are performed in different process equipment. 15. The method of claim 8, wherein the washing step is selected from the group consisting of sulfuric acid-hydrogen peroxide mixture (SPM), ammonium salt base and hydrogen peroxide mixture (ammonium hydrogen). The substrate is cleaned by one of the peroxide mixture, APM), hydrogen chloride acid hydrogen peroxide mixture (20 200807518 HPM), and combinations thereof. 16. The method of claim 8, wherein the residual metal comprises one or a combination of platinum, palladium, manganese, ruthenium, osmium metal. 17. The method of claim 8, wherein the method of forming the transition metal halide comprises: forming a gate structure over the substrate, each substrate having a source on each side of the gate structure Forming a metal layer over the substrate; forming an IL-titanium layer over the metal layer; and performing a first rapid thermal processing process to form the transition metal germanide to the gate structure and the source / Above the bungee. 18. The method of claim 17, wherein after the residual metal on the transition metal halide is removed, a second rapid thermal processing is performed to cause the transition metal halide to become a metal halide. 19. The method of claim 18, wherein the metal telluride comprises one or a combination of nickel telluride, cobalt telluride, titanium telluride. twenty one
TW95126798A 2006-07-21 2006-07-21 Method of striping remnant metal TWI312174B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95126798A TWI312174B (en) 2006-07-21 2006-07-21 Method of striping remnant metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95126798A TWI312174B (en) 2006-07-21 2006-07-21 Method of striping remnant metal

Publications (2)

Publication Number Publication Date
TW200807518A true TW200807518A (en) 2008-02-01
TWI312174B TWI312174B (en) 2009-07-11

Family

ID=44766683

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95126798A TWI312174B (en) 2006-07-21 2006-07-21 Method of striping remnant metal

Country Status (1)

Country Link
TW (1) TWI312174B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509708B (en) * 2011-09-28 2015-11-21 United Microelectronics Corp Method for fabricating mos transistor

Also Published As

Publication number Publication date
TWI312174B (en) 2009-07-11

Similar Documents

Publication Publication Date Title
JP5186486B2 (en) Method for forming a self-aligned metal silicide contact
US7800181B2 (en) Semiconductor device and method for fabricating the same
JP2008513977A (en) Unidirectional diffusion of metal silicide in semiconductor devices.
US20070020925A1 (en) Method of forming a nickel platinum silicide
US7344978B2 (en) Fabrication method of semiconductor device
US9399753B2 (en) Aqua regia and hydrogen peroxide HCL combination to remove Ni and NiPt residues
US7390754B2 (en) Method of forming a silicide
US20060003534A1 (en) Salicide process using bi-metal layer and method of fabricating semiconductor device using the same
US8697573B2 (en) Process to remove Ni and Pt residues for NiPtSi applications using aqua regia with microwave assisted heating
JP5076557B2 (en) Manufacturing method of semiconductor device
US7670952B2 (en) Method of manufacturing metal silicide contacts
TW200807518A (en) Method of striping remnant metal
JP3688727B2 (en) Manufacturing method of semiconductor device
TW200849372A (en) Etch method in the manufacture of a semiconductor device
CN100466199C (en) Method for cleaning residual metal
KR20090113665A (en) Method of manufacturing semiconductor device
US8513117B2 (en) Process to remove Ni and Pt residues for NiPtSi applications
US7595264B2 (en) Fabrication method of semiconductor device
US6368963B1 (en) Passivation of semiconductor device surfaces using an iodine/ethanol solution
US7585767B2 (en) Semiconductor device and method for fabricating the same
TW201117301A (en) Method for fabricating MOS transistor
TW200830386A (en) Method for cleaning salicide
KR20050099327A (en) Forming method of semiconductor device for improvement of removing residu and thermal stability
JPH06204242A (en) Manufacturing method of semiconductor device