TW200830386A - Method for cleaning salicide - Google Patents

Method for cleaning salicide Download PDF

Info

Publication number
TW200830386A
TW200830386A TW96101489A TW96101489A TW200830386A TW 200830386 A TW200830386 A TW 200830386A TW 96101489 A TW96101489 A TW 96101489A TW 96101489 A TW96101489 A TW 96101489A TW 200830386 A TW200830386 A TW 200830386A
Authority
TW
Taiwan
Prior art keywords
cleaning process
hpm
spm
vaporized
cleaning
Prior art date
Application number
TW96101489A
Other languages
Chinese (zh)
Inventor
Chao-Ching Hsieh
Tzung-Yu Hung
Chun-Chieh Chang
Yi-Wei Chen
Yu-Lan Chang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW96101489A priority Critical patent/TW200830386A/en
Publication of TW200830386A publication Critical patent/TW200830386A/en

Links

Abstract

A method for cleaning silicide includes providing a substrate having at least an intergraded silicide and residues, sequentially performing an ammonia hydrogen peroxide (APM) mixture cleaning process and a vaporized hydrochloric acid-hydrogen peroxide mixture (HPM) cleaning process to remove the residues, and performing a sulfuric acid-hydrogen peroxide mixture (SPM) cleaning process to remove residuals of the vaporized HPM cleaning process.

Description

200830386 九、發明說明: ' 【發明所屬之技術領域】 本發明係有關於一種金屬矽化物清洗之方法,尤指一種 可避免矽化物於清洗中再度污染之自對準金屬矽化物清洗 方法。 【先前技術】 半導體製程中,由於晶圓必須經過多次反覆沈積、微 • 影、蝕刻以及搬運等製造程序以獲得所要的積體電路圖 案,因此晶圓表面會殘留有許多金屬、無機與有機物等微 粒,此外亦有如自然氧化物(native oxide)的產生,或其他 人為或環境因素所造成的晶圓污染。因此晶圓必須經過多 次清洗製程,隨時維持晶圓表面潔淨度(surface cleanliness),以控制半導體晶片的良率與可靠度。 φ 請參閱第1圖至第2圖,第1圖至第2圖係為一習知自 行對準金屬石夕化物製程之流程示意圖。如第1圖所示,晶 圓10係包含有一基底12,其上形成有一電晶體14,而電 晶體14則包含有一閘極介電層16、一閘極18、位於閘極 18兩侧基底12中之輕摻雜汲極20、位於閘極18周圍之侧 壁子22、以及源極/汲極24。而自行對準金屬矽化物製程 即於形成源極/汲極24之後,於閘極18與源極/汲極24之 > 上利用薄膜沈積(thin film deposition)製程覆蓋一金屬層, 200830386 如鎳金屬層26,與一氮化鈦層28。請參閱第2圖,隨後進 行一第一快速熱處理製程(rapid thermal process,以下簡稱 為RTP),使部分鎳金屬層26與其下方之閘極18以及源極 /汲極24之矽原子反應,生成過渡金屬矽化物30。接著, 利用SPM清洗方法,去除氮化鈦層28和鎳金屬層26中未 反應的鎳。隨後再利用一第二RTP,使得過渡金屬矽化物 轉換成電阻值較低之金屬石夕化物。 ⑩ 目前的金屬石夕化物製程中,為了防止石夕化鎳(nickel silicide,NiSi)於 RTP 中產生結塊(agglomeration)而造成接 面漏電(junction leakage)的情況,常會於鎳金屬層26中添 加低濃度化學性質較穩定的其他金屬,如加入3%〜8%的 鉑(Pt),以增加矽化鎳的熱穩定性,使得鎳化矽得以在相對 較高的溫度中仍不發生結塊的情形。而因應添加的鉑金 屬,業界係於SPM清洗方法之後更加入一次HPM清洗方 φ 法,利用汽化之鹽酸與過氧化氫混合物使得過渡金屬矽化 物30上方未反應的鉑形成可溶性錯離子,而得以去除殘餘 的翻。 然而,由於HPM清洗方法包含有過氧化氫、以及汽化 之鹽酸、氯氣(C12)等高活性氣體,該等成分會造成過渡金 屬石夕化物30損害,甚至使過渡金屬石夕化物30受到侵I虫而 被剝除,並且HPM清洗方法中之氯離子或鹽酸等甚至可能 200830386 與前一階段殘留的液體反應形成鹽類微粒,而該等微粒係 k 殘留在晶圓ι〇與清洗槽中,影響晶圓的潔淨度並造成清洗 槽中的粒子污染。另外,該等殘留物亦可能於晶圓取出時 造成週邊環境之污染以及對作業人員造成危害。 因此,有效清除HPM清洗方法之殘留物,不僅可更增 加具有金屬矽化物之晶圓之表面清潔度,更可避免HPM清 洗方法此一濕式清洗方法中被清洗標的物之再度污染。 • 木 【發明内容】 因此,本發明係於此提供一種金屬矽化物之清洗方法, 可避免矽化物於清洗製程中因清洗不全或於清洗中再度污 染金屬矽化物而影響晶圓之潔淨度。 根據本發明之申請專利範圍,係提供一種金屬矽化物之 φ 清洗方法,該方法首先提供提供一基底,該基底上具有至 少一過渡金屬矽化物與殘餘物。隨後依序進行一氨水與過 氧化虱混合物(ammonia hydrogen peroxide mixture,APM) 清洗製程,以清洗該基底、進行一汽化氯化氫與過氧化氫 混合物(vaporized hydrochloric acid-hydrogen peroxide mixture, HPM)清洗製程,以再次清洗該基底、以及進行一硫酸與過 氧化氫混合物(sulfuric acid-hydrogen peroxide mixture, : SPM)清洗製程,以清除該汽化HPM清洗製程之殘留物。 8 200830386 根據本發明之申請專利範圍,另提供一種金屬矽化物之 清洗方法,該方法首先提供一基底,該基底上具有至少一 過渡金屬矽化物以及一殘餘金屬。隨後進行一汽化氣化氫 與過氧化氫混合物(vaporized HPM)清洗製程,以清除該殘 餘金屬’以及進行一硫酸與過氧化氫混合物(SPM)清洗製 程,以清除該汽化HPM清洗製程之殘留物。 根據本發明之申請專利範圍,更提供一種濕式清洗方 法,該方法係依序進行一汽化氣化氫與過氧化氫混合物 (vaporized HPM)清洗製程,以及進行一硫酸與過氧化氫混 合物(SPM)清洗製程,以清除該汽化HpM清洗製程之殘留 物。 由於本發明所提供之金屬矽化物清洗方法係於汽化 HPM清洗製程後再進行一隨清洗製程,因此汽化 清洗製程後所殘留之氯離子或魏等活性較高之殘留物將 行之該SPM清洗製程中移除乾淨,因此更能確 保清洗晶圓之潔淨度。 【實施方式】 :參:第3圖至第5圖’請至第5圖 k供之金屬魏物清洗方法之第—較佳實施例以㈣。斤 200830386 〜3 μ所示’首域供—待清洗之晶圓5G,晶圓別包 3 一基底52,基底52已完成淺溝隔離(STI)製程以及井 (Wdl)的推雜製程,其上方包含有一電晶體54,電晶體54 、 '有閘極介電層56與閘極58。閘極介電層56可由 虱化虱層、氮化層、氧化層或其他介電層所構成;而閘極 58則可由摻雜多晶石夕等導電結構構成。電晶體μ亦包含 有形成於閑極58兩側之基底52中之輕摻雜汲極60、形成 於閘極58侧壁之侧壁子62、以及形成於侧壁子62兩侧之 ^基底52中之源極/没極64。 請參閱第3圖與第4圖。隨後進行一薄膜沈積製程,以 於基底52以及電晶體54上方形成一金屬層66與一作為阻 障層(barrier layer)之氮化鈦(TiN)層68。金屬層66包含有 用以形成金屬矽化物之第一金屬如鎳(Ni)、鈷(Co)、鈦(Ti) 或其合金等;該金屬層亦包含低濃度之第二金屬,如鉑 _ (Pt)、鈷(Co)、鈀(Pd)、錳(Mo)、鈕(Ta)、釕(Ru)或其合金 等。第二金屬之添加,乃因第一金屬形成金屬石夕化物時, 常發生產生結塊(agglomeration)之情形,而結塊的產生會造 成接觸插塞之電阻(contact resistance)增加,以及接面漏電 (junction leakage)之問題,故於金屬層中加入3〜8%熱穩定 之第二金屬,以增加金屬石夕化物之熱穩定性,避免在形成 金屬矽化物之高溫中產生結塊。於本實施例中,第一金屬 ^ 係為鎳,而第二金屬則為鉑,當然,於實施例之變化型中, 200830386 第一金屬亦可選用鈷或鈦,第二金屬亦可選用鈀、錳、鈕、 釘。接下來’進行—第一快速熱處理製程(Rapid Thermal Process ’以下簡稱為RTp),使覆蓋於閘極%與源極/汲極 64上方之金屬層66與矽反應,生成過渡金屬矽化物7〇。 該等步驟皆為熟習該項技藝者以及通常知識者所熟知,故 於此不再贅述。 請參閱第5圖。為清洗過渡金屬矽化物70並移除其上 _ 方之殘餘物’係將晶圓50置放於一濕式清洗設備内,首先 進行一 Ά化氯化氫與過氧化氫混合物(vap〇rized hydrochloric acid-hydrogen peroxide mixture,以下簡稱為 HPM)清洗製 程120,其實施之時間約為4〜5分鐘,以清洗基底52,並 移除殘餘物,如殘餘金屬鉑、鈷、鈀、錳、钽、釕或其合 金等。另外,如第5圖所示,為更進一步清除過度金屬石夕 化物70上方之殘餘物,係可於汽化HPM清洗製程120前 φ 於濕式清洗設備中先進行一預硫酸與過氧化氫混合物 (pre-sulfuric acid-hydrogen peroxide mixture,以下簡稱為 SPM)清洗製程110。200830386 IX. Description of the invention: 'Technical field to which the invention pertains>> The present invention relates to a method for cleaning metal halides, and more particularly to a method for cleaning a self-aligned metal halide which avoids re-contamination of telluride during cleaning. [Prior Art] In the semiconductor process, since the wafer must undergo multiple fabrication processes such as reverse deposition, micro-shadowing, etching, and handling to obtain the desired integrated circuit pattern, many metal, inorganic, and organic materials remain on the wafer surface. Such as microparticles, in addition to the production of native oxide, or other artificial or environmental factors caused by wafer contamination. Therefore, the wafer must undergo multiple cleaning processes to maintain surface cleanliness at all times to control the yield and reliability of the semiconductor wafer. φ Please refer to Fig. 1 to Fig. 2, and Fig. 1 to Fig. 2 are schematic views showing the flow of a conventional self-aligned metallization process. As shown in FIG. 1, the wafer 10 includes a substrate 12 having a transistor 14 formed thereon, and the transistor 14 includes a gate dielectric layer 16, a gate 18, and a substrate on both sides of the gate 18. The lightly doped drain 20 of 12, the sidewall 22 located around the gate 18, and the source/drain 24 are shown. The self-aligned metal germanide process, after forming the source/drain 24, covers a metal layer on the gate 18 and the source/drain 24 by a thin film deposition process, 200830386. A nickel metal layer 26, and a titanium nitride layer 28. Referring to FIG. 2, a first rapid thermal process (hereinafter referred to as RTP) is performed to cause a portion of the nickel metal layer 26 to react with the germanium atoms of the gate 18 and the source/drain 24 below. Transition metal telluride 30. Next, unreacted nickel in the titanium nitride layer 28 and the nickel metal layer 26 is removed by the SPM cleaning method. A second RTP is then utilized to convert the transition metal halide to a lower metal oxide. 10 In the current metallization process, in order to prevent the occurrence of junction leakage due to agglomeration of nickel silicide (NiSi) in RTP, it is often in the nickel metal layer 26. Adding a low concentration of other metals with relatively stable chemical properties, such as adding 3% to 8% of platinum (Pt), to increase the thermal stability of the nickel telluride, so that nickel bismuth can still not agglomerate at a relatively high temperature. The situation. In view of the added platinum metal, the industry added a HPM cleaning method after the SPM cleaning method, and the vaporized hydrochloric acid and hydrogen peroxide mixture was used to form the unreacted platinum above the transition metal halide 30 to form soluble counter ions. Remove residual turns. However, since the HPM cleaning method contains hydrogen peroxide, and a highly reactive gas such as vaporized hydrochloric acid or chlorine (C12), these components may cause damage to the transition metallization 30, and even cause the transition metallization 30 to be invaded. The insects are stripped, and the chloride or hydrochloric acid in the HPM cleaning method may even react with the liquid remaining in the previous stage to form salt particles, and the particles k remain in the wafer and the cleaning tank. Affects the cleanliness of the wafer and causes particle contamination in the cleaning tank. In addition, these residues may cause contamination of the surrounding environment and damage to workers when the wafer is removed. Therefore, the effective removal of the residue of the HPM cleaning method not only increases the surface cleanliness of the wafer having the metal telluride, but also avoids the re-contamination of the object to be cleaned by the HPM cleaning method in the wet cleaning method. • Wood [Invention] Accordingly, the present invention provides a method for cleaning metal halides, which can prevent the cleanliness of the wafer from being contaminated by the metal halide during the cleaning process due to incomplete cleaning or cleaning. In accordance with the scope of the present invention, a method of cleaning a metal telluride φ is provided, which first provides for providing a substrate having at least one transition metal halide and residue thereon. Then, an ammonia hydrogen peroxide mixture (APM) cleaning process is sequentially performed to clean the substrate, and a vaporized hydrochloric acid-hydrogen peroxide mixture (HPM) cleaning process is performed. The substrate is washed again, and a sulfuric acid-hydrogen peroxide mixture (SPM) cleaning process is performed to remove the residue of the vaporized HPM cleaning process. 8 200830386 In accordance with the scope of the present invention, a method of cleaning a metal halide is provided, which first provides a substrate having at least one transition metal halide and a residual metal. Subsequently, a vaporized hydrogenation and vaporization HPM cleaning process is performed to remove the residual metal and a sulfuric acid and hydrogen peroxide mixture (SPM) cleaning process is performed to remove the residue of the vaporized HPM cleaning process. . According to the scope of the patent application of the present invention, there is further provided a wet cleaning method for sequentially performing a vaporization hydrogenation and vaporized HPM cleaning process, and performing a mixture of sulfuric acid and hydrogen peroxide (SPM). The cleaning process is to remove the residue of the vaporized HpM cleaning process. Since the metal halide cleaning method provided by the present invention is followed by a cleaning process after the vaporization HPM cleaning process, the residue of chlorine ions or Wei and other residues remaining after the vaporization cleaning process will be cleaned by the SPM. The process is removed cleanly, thus ensuring the cleanliness of the cleaning wafer. [Embodiment]: Reference: Fig. 3 to Fig. 5 to the fifth figure k. The metal cleaning method for cleaning the material - the preferred embodiment is (4).斤200830386 ~ 3 μ shown 'first domain supply - wafer 5 to be cleaned, wafer package 3 a substrate 52, substrate 52 has completed shallow trench isolation (STI) process and well (Wdl) doping process, The upper portion includes a transistor 54 having a gate dielectric layer 56 and a gate 58. The gate dielectric layer 56 may be formed of a germanium telluride layer, a nitride layer, an oxide layer or other dielectric layer; and the gate 58 may be formed of a doped polycrystalline conductive structure. The transistor μ also includes a lightly doped drain 60 formed in the substrate 52 on both sides of the idler 58 , a sidewall 62 formed on the sidewall of the gate 58 , and a substrate formed on both sides of the sidewall 62 . Source/52 in 52. Please refer to Figures 3 and 4. A thin film deposition process is then performed to form a metal layer 66 and a titanium nitride (TiN) layer 68 as a barrier layer over the substrate 52 and the transistor 54. The metal layer 66 comprises a first metal such as nickel (Ni), cobalt (Co), titanium (Ti) or alloys thereof for forming a metal telluride; the metal layer also contains a low concentration of a second metal such as platinum _ ( Pt), cobalt (Co), palladium (Pd), manganese (Mo), button (Ta), ruthenium (Ru) or alloys thereof. The addition of the second metal is caused by the occurrence of agglomeration when the first metal forms the metal ceramsite, and the generation of the agglomerates causes an increase in the contact resistance of the contact plug, and the junction There is a problem of junction leakage. Therefore, 3 to 8% of the thermally stable second metal is added to the metal layer to increase the thermal stability of the metallization and avoid agglomeration in the high temperature at which the metal telluride is formed. In this embodiment, the first metal is nickel and the second metal is platinum. Of course, in the variation of the embodiment, the first metal may be cobalt or titanium in 200830386, and the second metal may also be palladium. , manganese, button, nail. Next, the first Rapid Thermal Process (RTP) is performed to react the metal layer 66 over the gate % and the source/drain 64 with the ruthenium to form a transition metal ruthenium. . These steps are well known to those skilled in the art and those of ordinary skill in the art, and therefore will not be described again. Please refer to Figure 5. In order to clean the transition metal halide 70 and remove the residue on it, the wafer 50 is placed in a wet cleaning apparatus, first a mixture of hydrogen chloride and hydrogen peroxide (vap〇rized hydrochloric acid) a -hydrogen peroxide mixture (hereinafter abbreviated as HPM) cleaning process 120, which is carried out for about 4 to 5 minutes to clean the substrate 52 and remove residues such as residual metals such as platinum, cobalt, palladium, manganese, ruthenium, osmium. Or its alloys, etc. In addition, as shown in FIG. 5, in order to further remove the residue above the excessive metallization 70, a presulfuric acid and hydrogen peroxide mixture may be firstly applied to the wet cleaning apparatus before vaporizing the HPM cleaning process 120. (pre-sulfuric acid-hydrogen peroxide mixture, hereinafter abbreviated as SPM) cleaning process 110.

請繼續參閱第5圖。隨後,晶圓50係於同一濕式清設 備内進行一 SPM清洗製程130,以清除汽化HPM清洗製 程120之殘留物。SPM清洗製程130之實施溫度介於95〜 , 120°C ;實施時間約為4〜5分鐘。值得注意的是,汽化HPM 200830386 清洗製程120後所殘留於晶圓50以及濕式清洗設備内之氣 " 離子、鹽酸或鹽類等殘留物等將會於SPM清洗製程13〇中 移除乾淨,因此更能確保清洗晶圓50之潔淨度。 凊參閱弟6圖’弟6圖係為根據本第一較佳實施例提供 之金屬矽化物清洗方法所得之晶圓表面殘留微粒之比較圖。 如第6圖所示,清洗後之晶圓50表面殘留之微粒顆粒可降 至40以下。由此可知,本發明所提供之較佳實施例的確具 _ 有提南晶圓表面潔淨度之功效。 接下來請參閱第7圖,其中第7圖係為本發明所提供之 金屬矽化物清洗方法之第二較佳實施例之流程示意圖。如 第7圖所示,為清洗過渡金屬矽化物7〇並移除其上方之殘 餘物,係將晶圓50置放於一濕式清洗設備内,隨後於3〇 〜70°C之溫度下進行一氨水與過氧化氫混合物(amm〇nia • hydrogenperoxidemixture,以下簡稱為 APM)清洗製程 200,以清洗基底52上之殘餘物。接下來係仍於濕式清洗 設備内繼續進行一汽化ΗΡΜ清洗製程22〇,其實施之時間 約為4〜5分鐘,以清洗基底52,並移除殘餘物,如殘餘 金屬鉑、鈷、鈀、錳、鈕、釘或其合金。另外,如第7圖 所不,為更進一步清除過渡金屬矽化物7〇上方之殘餘物, 亦可於汽化Η Ρ Μ清洗製程2 2 〇前於濕式清洗設備中先進行 、 一預SPM清洗製程210。 12 200830386 請繼續參閱第7圖。為清除汽化HPM清洗製程220之 、 殘留物,接下來係進行一 SPM清洗製程230,以清除汽化 HPM清洗製程220殘留之汽化過氧化氫、氯化氮、氣氣。 SPM清洗製程230之實施溫度介於95-12(TC ;實施時^約 為4〜5分鐘。同理,汽化HPM清洗製程22〇後所殘留於 晶圓50以及濕式清洗設備内之氣離子、鹽酸或鹽類等殘留 物等將會於SPM清洗製程230中移除乾淨,更能確保清、、先 晶圓50之潔淨度。 請參閱第8圖,第8圖係為根據本第二較佳實施例提供 之金屬矽化物清洗方法所得之晶圓表面殘留微粒之比較圖。二 第8圖所不,清洗後之晶圓5〇表面殘留之微粒顆粒可降至 2〇左右’低於期待值30。由此可知,本發明所提供之第一 較佳實施例亦具有提高晶圓表面潔淨度之功效。 • 接下來請參閱第9圖,第9圖係為後續製作金屬矽化物 之示意圖。如第9圖所示,隨後對晶圓50進行一第二RTp, 以將過渡金屬石夕化物70轉換為一金屬石夕化物。金屬石夕化 物90可為矽化鎳、矽化鈷、矽化鈦或其組合,而於本第一 與第二較佳實施例中’金屬石夕化物90係為石夕化鎳。 根據本發明之第一與第二較佳實施例所提供之金屬矽化 物清洗方法,係於汽化HPM清洗製程12〇、220後再進行 13 200830386 • 一 SPM清洗製程13〇、230,因此汽化HpM清洗製程12〇、 '220後所殘留之氯離子、鹽酸或鹽類等殘留物等將會於SPM 清洗製程B0、230中移除乾淨,更能確保清洗晶^5〇之 潔淨度。 綜上所述,可知本發明係提供一種可應用於清洗金屬矽 化物之濕式清洗方法,主要用於清除汽化HPM清洗製程之 殘留物。由於汽化HPM清洗製程所包含的汽化之過氧化 ⑩氫、氣化氫、氯氣等成分會殘留於被清洗物以及濕式清洗 設備中,甚至與前段清洗製程殘餘物反應生成鹽類或其他 微粒,而造成被清洗物之再度污染。因此係於汽化HpM清 洗製程之後進行一 SPM清洗製程,於95〜120°C之溫度下 進行4〜5分鐘,以移除汽化JJPM清洗製程之殘留物。。 而當本發明提供之方法應用於清洗金屬矽化物時,由於 φ 在汽化ΉΡΜ清洗製程後再進行一 SPM清洗製程,因此汽 化ΗΡΜ清洗製程後所殘留之氯離子、鹽酸或鹽類等殘留物 等將會於SPM清洗製程中移除乾淨,更能確保清洗晶圓之 >1;淨度’除此之外,更可避免該等殘留之離子於取出晶圓 時造成週邊環境之污染以及對從業人員之危害。 以上所述僅為本發明之較佳實施例,凡依本發明申請專 , 利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 14 200830386 ' 【圖式簡單說明】 " 第1圖至第2圖係為習知金屬矽化物製程之流程示意圖。 第3圖至第5圖係為本發明所提供之金屬矽化物清洗方法 之第一較佳實施例之示意圖。 第6圖係為根據本第一較佳實施例提供之金屬矽化物清洗 方法所得之晶圓表面殘留微粒之比較圖。 第7圖係為本發明所提供之金屬矽化物清洗方法之第二較 佳實施例之示意圖。 • 第8圖係為根據本第二較佳實施例提供之金屬矽化物清洗 方法所得之晶圓表面殘留微粒之比較圖。 第9圖係為製作金屬矽化物之示意圖。 【主要元件符號說明】 10 晶圓 12 基底 14 電晶體 16 閘極介電層 18 閘極 20 輕摻雜没極 22 侧壁子 24 源極/汲極 26 鎳金屬層 28 11化鈦層 30 過渡金屬矽化物 50 晶圓 52 基底 54 電晶體 56 閘極介電層 58 閘極 60 輕摻雜没極 62 侧壁子 64 源極/没極 15 200830386 66 金屬層 68 氮化鈦層 70 過渡金屬石夕化物 90 金屬矽化物 110 預SPM清洗製程 120 汽化HPM清洗製程 130 SPM清洗製程 200 APM清洗製程 210 預SPM清洗製程 220 汽化HPM清洗製程230 SPM清洗製程 16Please continue to see Figure 5. Subsequently, the wafer 50 is subjected to an SPM cleaning process 130 in the same wet cleaning apparatus to remove the residue of the vaporized HPM cleaning process 120. The implementation temperature of the SPM cleaning process 130 is between 95 and 120 ° C; the implementation time is about 4 to 5 minutes. It is worth noting that the residue of ions, hydrochloric acid or salts remaining in the wafer 50 and the wet cleaning equipment after the HPM 200830386 cleaning process 120 is removed will be removed in the SPM cleaning process 13〇. Therefore, the cleanliness of the cleaning wafer 50 is more ensured. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6 is a comparison diagram of residual particles on the surface of a wafer obtained by the metal halide cleaning method according to the first preferred embodiment. As shown in Fig. 6, the particulate particles remaining on the surface of the wafer 50 after cleaning can be reduced to 40 or less. It can be seen that the preferred embodiment provided by the present invention has the effect of improving the surface cleanliness of the wafer. Next, please refer to FIG. 7, wherein FIG. 7 is a schematic flow chart of a second preferred embodiment of the metal halide cleaning method provided by the present invention. As shown in Fig. 7, in order to clean the transition metal halide 7〇 and remove the residue above it, the wafer 50 is placed in a wet cleaning apparatus, and then at a temperature of 3 〇 to 70 ° C. A cleaning process 200 of a mixture of ammonia and hydrogen peroxide (hereinafter referred to as APM) is performed to clean the residue on the substrate 52. Next, the vaporization cleaning process 22 is continued in the wet cleaning apparatus, and the implementation time is about 4 to 5 minutes to clean the substrate 52 and remove residues such as residual metal platinum, cobalt, and palladium. , manganese, buttons, nails or alloys thereof. In addition, as shown in Fig. 7, in order to further remove the residue above the transition metal halide 7〇, it may be first performed in the wet cleaning apparatus before the vaporization process, and a pre-SPM cleaning is performed. Process 210. 12 200830386 Please continue to see Figure 7. To remove the residue from the vaporized HPM cleaning process 220, an SPM cleaning process 230 is performed to remove vaporized hydrogen peroxide, nitrogen chloride, and gas remaining in the vaporized HPM cleaning process 220. The implementation temperature of the SPM cleaning process 230 is between 95-12 (TC; when implemented ^ is about 4 to 5 minutes. Similarly, the vapor ions remaining in the wafer 50 and the wet cleaning equipment after vaporizing the HPM cleaning process 22 〇 Residues such as hydrochloric acid or salts will be removed from the SPM cleaning process 230 to ensure the cleanliness of the wafers 50. Please refer to Figure 8 and Figure 8 is based on this second. A comparison diagram of residual particles on the surface of the wafer obtained by the metal halide cleaning method provided in the preferred embodiment. In the eighth diagram, the particles remaining on the surface of the wafer after cleaning can be reduced to about 2 ' 'lower than It is expected that the value of 30. It can be seen that the first preferred embodiment provided by the present invention also has the effect of improving the cleanliness of the wafer surface. • Next, please refer to Figure 9, which is the subsequent production of metal telluride. Schematically, as shown in Fig. 9, a second RTp is subsequently performed on the wafer 50 to convert the transition metallide 70 into a metal cerium compound. The metal cerium 90 can be nickel hydride, cobalt hydride, germanium Titanium or a combination thereof, and the first and second preferred embodiments The metal lithium 90 system is a shixi nickel. The metal ruthenium cleaning method according to the first and second preferred embodiments of the present invention is carried out after the vaporization HPM cleaning process 12 〇, 220 and then 13 200830386 • An SPM cleaning process of 13〇, 230, so the vaporized HpM cleaning process 12〇, residues of chlorine ions, hydrochloric acid or salts remaining after '220 will be removed in the SPM cleaning process B0, 230, more It can be ensured that the cleanliness of the cleaning crystals is improved. In summary, the present invention provides a wet cleaning method which can be applied to cleaning metal halides, mainly for removing residues of the vaporized HPM cleaning process. The vaporized peroxidation 10 hydrogen, vaporized hydrogen, chlorine and other components contained in the cleaning process will remain in the object to be cleaned and the wet cleaning equipment, and even react with the residue of the previous cleaning process to form salts or other particles, resulting in Re-contamination of the cleaning product. Therefore, an SPM cleaning process is carried out after the vaporization HpM cleaning process, and is carried out at a temperature of 95 to 120 ° C for 4 to 5 minutes to remove the residue of the vaporized JJPM cleaning process. When the method provided by the present invention is applied to the cleaning of the metal telluride, since the φ is subjected to an SPM cleaning process after the vaporization cleaning process, the chlorine ions, hydrochloric acid or salts remaining after the vaporization cleaning process are vaporized. Residues, etc. will be removed from the SPM cleaning process, ensuring the cleaning of the wafer >1; clarity? In addition, it can prevent the residual ions from causing the surrounding environment when the wafer is taken out. The above is only a preferred embodiment of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention. 14 200830386 ' [Simple description of the drawing] " Figures 1 to 2 are schematic diagrams of the process of the conventional metal telluride process. 3 to 5 are schematic views showing a first preferred embodiment of the metal halide cleaning method of the present invention. Fig. 6 is a comparison diagram of residual particles on the surface of the wafer obtained by the metal halide cleaning method provided in the first preferred embodiment. Figure 7 is a schematic view showing a second preferred embodiment of the metal halide cleaning method provided by the present invention. • Fig. 8 is a comparison diagram of residual particles on the wafer surface obtained by the metal halide cleaning method provided in the second preferred embodiment. Figure 9 is a schematic diagram of the fabrication of metal halides. [Main component symbol description] 10 Wafer 12 Substrate 14 Transistor 16 Gate dielectric layer 18 Gate 20 Lightly doped gate 22 Sidewall 24 Source/drain 26 Nickel metal layer 28 11 Titanium layer 30 Transition Metal Telluride 50 Wafer 52 Substrate 54 Transistor 56 Gate Dielectric Layer 58 Gate 60 Lightly Doped Nom 62 Sidewall 64 Source/Nopole 15 200830386 66 Metal Layer 68 Titanium Nitride Layer 70 Transition Metal夕化90 Metal Telluride 110 Pre-SPM Cleaning Process 120 Vaporization HPM Cleaning Process 130 SPM Cleaning Process 200 APM Cleaning Process 210 Pre-SPM Cleaning Process 220 Vaporization HPM Cleaning Process 230 SPM Cleaning Process 16

Claims (1)

200830386 十、申請專利範圍: 1· 一種金屬矽化物之清洗方法,包含有以下步驟: 提供一基底,該基底上具有至少一過渡金屬矽化物與殘 餘物; 進行一氨水與過氧化氫混合物(ammonia hydrogen peroxide mixture,APM)清洗製程,以清洗該基底; 進行一汽化氯化氫與過氧化氫混合物(vaporized hydrochloric acid-hydrogen peroxide mixture,HPM)清洗製 程,以再次清洗該基底;以及 進行一硫酸與過氧化氫混合物(sulfuric acid-hydrogen peroxide mixture,SPM)清洗製程,以清除該汽化HPM清 洗製程之殘留物。 2·如申請專利範圍第1項所述之方法,其中該人卩1\1清洗 製程係用清除該基底表面之該等殘餘物。 3·如申請專利範圍第1項所述之方法,其中該APM清洗 製程之實施溫度介於3〇-70°C。 4.如申請專利範圍第1項所述之方法,更包含於該αρμ 清洗製程後進行一預SPM (pre-SPM)清洗製程。 3 5·如申請專利範圍第4項所述之方法,其中該預SPM清 € 17 200830386 洗製程係用以清除該基底上之該等殘餘物。 6. 如申請專利範圍第1項所述之方法,其中該汽化HPM 清洗製程係用以清除該基底上之該等殘餘物。 7. 如申請專利範圍第6項所述之方法,其中該等殘餘物係 包含鈾、鉛、把、猛、组、舒或其合金。 • 8.如申請專利範圍第1項所述之方法,其中該HPM係包 含有汽化之過氧化氫、氯化氫、氣氣等。 9. 如申請專利範圍第1項所述之方法,其中該汽化HPM 清洗製程之實施時間約為4-5分鐘。 10. 如申請專利範圍第1項所述之方法,其中該SPM清洗 製程之實施溫度介於95-120°C。 Π.如申請專利範圍第1項所述之方法,其中該SPM清洗 製程之實施時間約為4-5分鐘。 12.如申請專利範圍第1項所述之方法,其中該APM清洗 製程、該汽化HPM清洗製程、與該SPM清洗製程係實施 於同一濕式清洗設備。 18 4 200830386 13·如申請專利範圍第1項所述之方法,更包含以下步驟, " 用以形成該過渡金屬矽化物: 於該基底上形成一閘極結構,且該閘極結構兩侧之該基 底内係形成有一源極/汲極; 於該基底上形成一金屬層; 於該金屬層上形成一 Ιι化鈦層;以及 進行一第一快速熱處理製程,以於該閘極結構、該源極 /汲極上方形成該過渡金屬矽化物。 14. 如申請專利範圍第13項所述之方法,更包含一第二快 速熱處理製程,進行於該SPM清洗製程之後,用以轉換該 過渡金屬石夕化物成為一金屬石夕化物。 15. 如申請專利範圍第14項所述之方法,其中該金屬矽化 物係包含有矽化鎳、矽化鈷、矽化鈦或其組合。 16. —種金屬矽化物之清洗方法,包含有以下步驟: 提供一基底,該基底上具有至少一過渡金屬矽化物以及 一殘餘金屬; 進行一汽化氣化氫與過氧化氫混合物(vaporized HPM) 清洗製程,以清除該殘餘金屬;以及 進行一硫酸與過氧化氫混合物(SPM)清洗製程,以清除 ’ 該汽化HPM清洗製程之殘餘物。 19 200830386 17. 如申請專利範圍第16項所述之方法,其中該殘餘金屬 包含有銘、钻、把、猛、钽、釕或其合金。 18. 如申請專利範圍第16項所述之方法,其中該HPM係 包含有汽化之過氧化氫、氣化氫、氯氣等。 19. 如申請專利範圍第16項所述之方法,其中該汽化HPM 清洗製程之貫施時間約為4-5分鐘。 20. 如申請專利範圍第16項所述之方法,其中該SPM清 洗製程之實施溫度介於95-120°C。 21·如申請專利範圍第16項所述之方法,其中該SPM清 洗製程之實施時間約為4-5分鐘。 22. 如申請專利範圍第16項所述之方法,其中該汽化HPM 清洗製程與該SPM清洗製程係實施於同一濕式清洗設備。 23. 如申請專利範圍第16項所述之方法,更包含有以下步 驟,用以形成該過渡金屬矽化物: 於該基底上形成一閘極結構,且該閘極結構兩側之該基 底内係形成有一源極/汲極; 於該基底上形成一金屬層; 於該金屬層上形成一氮化鈦層;以及 20 200830386 進行一第一快速熱處理製程,以於該閘極結構、該源極 ' /汲極上方形成該過渡金屬矽化物。 24. —種濕式清洗方法,包含有以下步驟: 進行一汽化氯化氫與過氧化氫混合物(vaporized HPM) 清洗製程;以及 進行一硫酸與過氧化氫混合物(SPM)清洗製程,以清除 該汽化HPM清洗製程之殘餘物。 25. 如申請專利範圍第24項所述之方法,其中該HPM係 包含有汽化之過氧化氫、氯化氫、氯氣等。 26. 如申請專利範圍第24項所述之方法,其中該汽化HPM 清洗製程之實施時間約為4-5分鐘。 27. 如申請專利範圍第24項所述之方法,其中該SPM清 養 洗製程之實施溫度介於95_120°C。 28. 如申請專利範圍第24項所述之方法,其中該SPM清 洗製程之實施時間約為4-5分鐘。 29. 如申請專利範圍第24項所述之方法,其中該汽化HPM , 清洗製程與該SPM清洗製程係實施於同一濕式清洗設備。 21200830386 X. Patent application scope: 1. A method for cleaning a metal halide, comprising the steps of: providing a substrate having at least one transition metal halide and a residue; performing a mixture of ammonia water and hydrogen peroxide (ammonia) a hydrogen peroxide mixture (APM) cleaning process to clean the substrate; performing a vaporized hydrochloric acid-hydrogen peroxide mixture (HPM) cleaning process to clean the substrate again; and performing sulfuric acid and peroxidation A sulfuric acid-hydrogen peroxide mixture (SPM) cleaning process to remove residues from the vaporized HPM cleaning process. 2. The method of claim 1, wherein the person 卩1\1 cleaning process uses the residue to remove the surface of the substrate. 3. The method of claim 1, wherein the APM cleaning process is carried out at a temperature between 3 〇 and 70 °C. 4. The method of claim 1, further comprising performing a pre-SPM (pre-SPM) cleaning process after the αρμ cleaning process. The method of claim 4, wherein the pre-SPM clearing is used to remove the residue on the substrate. 6. The method of claim 1, wherein the vaporized HPM cleaning process is to remove the residue on the substrate. 7. The method of claim 6, wherein the residue comprises uranium, lead, palladium, turmeric, group, sulphide or alloy thereof. 8. The method of claim 1, wherein the HPM package contains vaporized hydrogen peroxide, hydrogen chloride, gas, and the like. 9. The method of claim 1, wherein the vaporizing HPM cleaning process is performed for about 4-5 minutes. 10. The method of claim 1, wherein the SPM cleaning process is carried out at a temperature between 95 and 120 °C. The method of claim 1, wherein the SPM cleaning process is performed for about 4-5 minutes. 12. The method of claim 1, wherein the APM cleaning process, the vaporized HPM cleaning process, and the SPM cleaning process are performed in the same wet cleaning apparatus. 18 4 200830386 13 The method of claim 1, further comprising the steps of: forming the transition metal halide: forming a gate structure on the substrate, and both sides of the gate structure Forming a source/drain in the substrate; forming a metal layer on the substrate; forming a layer of titanium oxide on the metal layer; and performing a first rapid thermal processing process to form the gate structure, The transition metal halide is formed over the source/drain. 14. The method of claim 13, further comprising a second rapid heat treatment process for converting the transition metal cerium compound into a metal cerium compound after the SPM cleaning process. 15. The method of claim 14, wherein the metal telluride comprises nickel telluride, cobalt telluride, titanium telluride or a combination thereof. 16. A method of cleaning a metal halide comprising the steps of: providing a substrate having at least one transition metal halide and a residual metal; performing a vaporized hydrogenated hydrogen peroxide mixture (vaporized HPM) The cleaning process is performed to remove the residual metal; and a sulfuric acid and hydrogen peroxide mixture (SPM) cleaning process is performed to remove the residue of the vaporized HPM cleaning process. 19. The method of claim 16, wherein the residual metal comprises inscriptions, drills, handles, smashes, sputum, bismuth or alloys thereof. 18. The method of claim 16, wherein the HPM system comprises vaporized hydrogen peroxide, hydrogenated hydrogen, chlorine, and the like. 19. The method of claim 16, wherein the vaporized HPM cleaning process has a duration of about 4-5 minutes. 20. The method of claim 16, wherein the SPM cleaning process is carried out at a temperature between 95 and 120 °C. 21. The method of claim 16, wherein the SPM cleaning process is performed for about 4-5 minutes. 22. The method of claim 16, wherein the vaporized HPM cleaning process and the SPM cleaning process are performed in the same wet cleaning apparatus. 23. The method of claim 16, further comprising the step of forming the transition metal halide: forming a gate structure on the substrate, and the substrate is on both sides of the gate structure Forming a source/drain; forming a metal layer on the substrate; forming a titanium nitride layer on the metal layer; and 20 200830386 performing a first rapid thermal processing process to the gate structure, the source The transition metal telluride is formed above the pole' / drain. 24. A wet cleaning method comprising the steps of: performing a vaporized hydrogen chloride and hydrogen peroxide mixture (vaporized HPM) cleaning process; and performing a sulfuric acid and hydrogen peroxide mixture (SPM) cleaning process to remove the vaporized HPM The residue of the cleaning process. 25. The method of claim 24, wherein the HPM system comprises vaporized hydrogen peroxide, hydrogen chloride, chlorine, and the like. 26. The method of claim 24, wherein the vaporizing HPM cleaning process is performed for about 4-5 minutes. 27. The method of claim 24, wherein the SPM cleansing process is carried out at a temperature between 95 and 120 °C. 28. The method of claim 24, wherein the SPM cleaning process is performed for about 4-5 minutes. 29. The method of claim 24, wherein the vaporizing HPM, the cleaning process and the SPM cleaning process are performed in the same wet cleaning apparatus. twenty one
TW96101489A 2007-01-15 2007-01-15 Method for cleaning salicide TW200830386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96101489A TW200830386A (en) 2007-01-15 2007-01-15 Method for cleaning salicide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96101489A TW200830386A (en) 2007-01-15 2007-01-15 Method for cleaning salicide

Publications (1)

Publication Number Publication Date
TW200830386A true TW200830386A (en) 2008-07-16

Family

ID=44818298

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96101489A TW200830386A (en) 2007-01-15 2007-01-15 Method for cleaning salicide

Country Status (1)

Country Link
TW (1) TW200830386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105632924A (en) * 2014-10-30 2016-06-01 中芯国际集成电路制造(上海)有限公司 Method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105632924A (en) * 2014-10-30 2016-06-01 中芯国际集成电路制造(上海)有限公司 Method for manufacturing semiconductor device
CN105632924B (en) * 2014-10-30 2019-01-22 中芯国际集成电路制造(上海)有限公司 A method of it is used for producing the semiconductor devices

Similar Documents

Publication Publication Date Title
TWI414041B (en) Semiconductor device manufacturing method
TWI415174B (en) Method for forming self-aligned metal silicide contacts
TW200824045A (en) Method for fabricating semiconductor device
US9399753B2 (en) Aqua regia and hydrogen peroxide HCL combination to remove Ni and NiPt residues
US7344978B2 (en) Fabrication method of semiconductor device
US9379207B2 (en) Stable nickel silicide formation with fluorine incorporation and related IC structure
JP4531068B2 (en) Method for selective removal of unsilicided metal
US8697573B2 (en) Process to remove Ni and Pt residues for NiPtSi applications using aqua regia with microwave assisted heating
US20080305601A1 (en) Method for forming semiconductor device using multi-functional sacrificial dielectric layer
CN106683996B (en) Metal silicide and method for manufacturing contact hole on metal silicide
TW200830386A (en) Method for cleaning salicide
Hussain et al. Metal wet etch issues and effects in dual metal gate stack integration
WO2012027987A1 (en) Surface treatment method for germanium-based part
WO2008118840A2 (en) Method of manufacturing metal silicide contacts
WO1998049724A1 (en) Process for manufacturing semiconductor device
Chao et al. Characterization of copper germanide as contact metal for advanced MOSFETs
Carr et al. Impact of surface preparation for n-type Si: P and p-type SiGe: B semiconductors on low resistance silicide contacts
CN100466199C (en) Method for cleaning residual metal
Wu et al. Improved electrical characteristics of CoSi 2 using HF-vapor pretreatment
US20080171449A1 (en) Method for cleaning salicide
TWI312174B (en) Method of striping remnant metal
Ji et al. Optimal Nitrogen Incorporation in Nickel Silicide for Thermally Stable Contact Formation
US20130122671A1 (en) PROCESS TO REMOVE Ni AND Pt RESIDUES FOR NiPtSi APPLICATIONS
Lin et al. Metal Hard Mask Employed Cu/Low k Film Post Ash and Wet Clean Process Optimization and Integration into 65nm Manufacturing Flow
TWI237327B (en) Method of forming barrier layer