TW200806801A - High-temperature resistant alloys with low contents of Co and Ni - Google Patents

High-temperature resistant alloys with low contents of Co and Ni Download PDF

Info

Publication number
TW200806801A
TW200806801A TW095127668A TW95127668A TW200806801A TW 200806801 A TW200806801 A TW 200806801A TW 095127668 A TW095127668 A TW 095127668A TW 95127668 A TW95127668 A TW 95127668A TW 200806801 A TW200806801 A TW 200806801A
Authority
TW
Taiwan
Prior art keywords
alloy
fcc
atomic percentage
bcc
hardness
Prior art date
Application number
TW095127668A
Other languages
Chinese (zh)
Other versions
TWI315345B (en
Inventor
Jien-Wei Yeh
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW095127668A priority Critical patent/TWI315345B/en
Priority to US11/724,976 priority patent/US20080031769A1/en
Publication of TW200806801A publication Critical patent/TW200806801A/en
Application granted granted Critical
Publication of TWI315345B publication Critical patent/TWI315345B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Abstract

A high temperature resistant alloy with low contents of Co and Ni having a face-centered cubic (FCC) crystal structure formed by selecting a proper combination of elements using the design of multiple alloy, which is characterized by excellent ability of deformation, toughness and high-temp strength. Such alloys are so configured that 5 to 7 principal elements are included based on Co, Cr, Fe, and Ni and incorporating at least one of Al, Mo and Ti therein, wherein Co and Ni each has an atomic percentage between 20% and 35%, Cr and Fe each has an atomic percentage between 12.5% and 20%, and the sum of the atomic percentage of Co, Ni, Cr, Fe is no less than 65%, while the sum of the atomic percentage of Al, Mo and Ti lies between 5% and 25%. Further, the property of the alloys can be improved by incorporating sub elements such as Ag, B, C, Cu, Mn, Nb, Ta, Si, V, W, Y, Zr with the sum of the atomic percentage thereof no more than 10%.

Description

200806801 九、發明說明: 【發明所屬之技術領域】 本=侧於-種低轉含量之耐高溫合金,尤經 、 V - · 【先前技術】 習知合金系統以鐵、銅、紹、鎮、欽、錯、錯、銘 類丄長期以來,習知合金系統之開發,主要以 a 兀素為主兀素(原子百分比至少50%以上)並搭配i它 素來改良合金之性質。例如鐵合金 :、 =ί ,但其合金設計以及合金選擇之要點,仍未^ 以一種70素為主的觀念。 二近十餘年來所興起的塊狀非晶質合金材料之研究,1人 计為:⑴兩相異原子半徑差12%以上;⑺至少三個元素ϋϋ =很大的混合賴。但根據齡麵發表之讀,可發現這 S ::個ίΐ為主元素,至少在4〇%原子比以上,例如鐵基, 鈦基、鎂基、錘基之非晶質合金。 鐾於^知δ金系統之開發被偈限在一或兩個主要元素之牟構 中,無形中限制了合金發展之自由度及空間。因此,本發父 199音5文年提新之合金觀念「多元高齡金」,即至少以^個主要 儿素來配置合金,使得合金成分之自由度大騎加,因而辦加新 ,晶體結構、,結構及新性能之發展。具體而言,在熱力曰學上, 多兀合金下的高熵有助於系統自由能的降低 ”、戶 合排列之固溶相,而非有序排^介二= 物因而可減少脆性的現象發生。 六甘结晶具有12個滑動系統,通常具有較佳的變形能 力由於其強度對溫度的變化較不敏感,在高溫下其強度的 5 200806801 損失較少’這也是鎳基、鈷基及鐵基超合金必須以FCC結晶為基 地的主因。由於姑基的原料成本高,其次為鎳基,鐵基最便宜, 本發明乃提供一新穎合金系統,在可降低鈷鎳使用量下,仍能以 FCC結晶構造為主,並因而增加更廣泛之產業利用。 【發明内容】 本發明之目的在於利用多元合金之設計提俣一低鈷鎳含量且 以FCC結晶為主之耐高溫合金,該合金以CoCrFeNi四元合金為 基礎並添加Al、Mo及Ti至少一者為主要元素加以配置成多元合 ‘金’其中C〇及母個元素之原子百分比皆介於20%至35%之間, • Cr及巧每個元素之原子百分比皆介於12·5%至20%之間,且Co、 &、?6及见原子百分比之總和超過65%,而八1、]^〇或11的原 子百分比的總和介於5%及25%。此外,亦可添加Ag、B、C、 :〇1、_1、仰)、乜、义、¥、臀、¥、&等次元素改進合金之特性, 但添加次元素之原子百分比的總和不得超過10%。 該合金系統可以((:0,〇^,>^]^>^之組成加以表示,其中]^[ 兀素可選自Al、Mo及Ti至少一者,is[元素為次要元素如選自於 Ag、B、C、Cu、Mn、Nb、Ta、Si、V、w、Y、Zr 等至少一者, 以原子百分比計算,x^65%、5Sy^25%及〇<zgl〇%,其中 φ Co&Nl每個元素之原子百分比皆介於20%至35%之間,且Cr及 • Fe每個兀素之原子百分比皆介於12.5%至20%之間。該合金可以 ^熱絲加熱法、感應加熱法、真空電弧纟容煉法等傳統的熔鑄法熔 - 鑄而成,亦可以利用快速凝固法、機械合金法及粉末冶金法等來 合成合金,並可供後續之鍛造加工、均質化熱處理及滾壓加工等 金屬加工處理之用。 根據本發明之一實施態樣,利用上述多元合金之設計製備n 種高熵合金試片,以C〇15CrFeNil·5為基礎合金,添加適量之A卜 Μο、Ή,經由真空電弧熔煉鑄造後皆具有不錯之合金性質,其中 Al、Mo、Ti的添加對此合金系統c〇15CrFeNiL5具有不同程度的強 200806801 化作用,顯然Ti的效果最好,其次為Mo,再其次為A1。 根據本發明之一實施態樣,以CouCrFeNiLsTioj之試片進行 ,造加工、均質化熱處理及滾壓加工後,觀察試片在各狀態下之 微結構與硬度之變化。結果顯示此合金具有優越耐溫特性與加工 硬化之能力。 ^ 根據本奋明之一實施態樣,利用上述多元合金之設計製備另 外11種高熵合金試片,以Co2CrFeNi2為基礎合金,添加適量之200806801 IX. Description of the invention: [Technical field to which the invention pertains] This is a high-temperature alloy with a low-rotation content, especially, V - · [Prior Art] Conventional alloy systems are iron, copper, Shao, Zhen, Chin, wrong, wrong, Ming class 丄 For a long time, the development of the conventional alloy system, mainly a 兀 兀 兀 ( ( ( ( (atomic percentage of at least 50%) and with it to improve the properties of the alloy. For example, ferroalloys:, =ί, but the alloy design and the choice of alloys are still not based on a 70-based concept. Two studies on bulk amorphous alloy materials that have arisen in the past ten years or so have been calculated as follows: (1) the difference in the radius of the two-phase heteroatoms is more than 12%; (7) the at least three elements ϋϋ = a large mixture. However, according to the reading published by the age class, it can be found that the S:: ΐ is the main element, at least 4 〇% atomic ratio, such as iron-based, titanium-based, magnesium-based, hammer-based amorphous alloy. The development of the δ-gold system is limited to one or two main elements, which inevitably limits the freedom and space of alloy development. Therefore, the father of the 199-tone five-year-old new concept of the alloy "multiple ageing gold", that is, at least the main element of the alloy to configure the alloy, so that the degree of freedom of the alloy composition is greatly increased, so add new, crystal structure, , the development of structure and new performance. Specifically, in thermal dropout, the high entropy under the multi-ruthenium alloy contributes to the reduction of the system's free energy, and the solid-phase phase of the household arrangement, rather than the ordered arrangement of the second material, thus reducing the brittleness. The phenomenon occurs. Liugan crystal has 12 sliding systems, usually with better deformability. Because its strength is less sensitive to temperature changes, its strength is less than 0 200806801 at high temperatures. This is also nickel-based, cobalt-based and Iron-based superalloys must be based on FCC crystallization. Because of the high raw material cost of the guji, followed by nickel-based, iron-based is the cheapest, the present invention provides a novel alloy system that can reduce the amount of cobalt-nickel used. The invention can be based on the FCC crystal structure, and thus increase the wider industrial utilization. SUMMARY OF THE INVENTION The object of the present invention is to improve the low-cobalt nickel content and the FCC crystal-based high temperature resistant alloy by using the design of the multi-component alloy. The alloy is based on CoCrFeNi quaternary alloy and at least one of Al, Mo and Ti is added as the main element to form a multi-component 'gold'. The atomic percentage of C〇 and parent elements is between 20% and 35%. • Cr and the atomic percentage of each element are between 12.5% and 20%, and the sum of Co, &, ?6 and see atomic percentages exceeds 65%, and 8.1, ^^〇 or The sum of the atomic percentages of 11 is between 5% and 25%. In addition, you can add Ag, B, C, :〇1,_1, Yang), 乜, 义, ¥, hip, ¥, & The characteristics of the alloy, but the sum of the atomic percentages of the added minor elements shall not exceed 10%. The alloy system may be represented by the composition of ((:0,〇^,>^]^>^, where]^[兀素可And at least one selected from the group consisting of Al, Mo, and Ti, wherein the element is a secondary element such as at least one selected from the group consisting of Ag, B, C, Cu, Mn, Nb, Ta, Si, V, w, Y, and Zr. Calculated as atomic percentage, x^65%, 5Sy^25%, and 〇<zgl〇%, where φ Co&Nl has an atomic percentage of each element between 20% and 35%, and Cr and • Fe per The atomic percentage of each element is between 12.5% and 20%. The alloy can be melt-cast and cast by conventional hot-casting methods such as hot wire heating, induction heating, vacuum arc volumetric refining, etc. Rapid solidification method, mechanical alloy And alloying by powder metallurgy or the like, and can be used for metal processing such as subsequent forging processing, homogenization heat treatment and rolling processing. According to an embodiment of the present invention, n kinds of high are prepared by designing the above multi-alloy alloy The entropy alloy test piece, based on C〇15CrFeNil·5, is added with an appropriate amount of A, Μ, Ή, and has good alloy properties after vacuum arc smelting. The addition of Al, Mo and Ti to this alloy system c 〇15CrFeNiL5 has different degrees of strong 200806801, obviously Ti has the best effect, followed by Mo, followed by A1. According to an embodiment of the present invention, after the test piece of CouCrFeNiLsTioj is subjected to processing, homogenization heat treatment and rolling processing, the microstructure and hardness of the test piece in each state are observed. The results show that the alloy has excellent temperature resistance and work hardening ability. ^ According to one of the implementations of this Fen Ming, the other 11 kinds of high-entropy alloy test pieces were prepared by using the above-mentioned multi-alloy design, and the appropriate amount was added with Co2CrFeNi2 as the base alloy.

Al、Mo、Ti,經由真空電弧熔煉鑄造後皆具有不錯之合金性質, 其中Al、Mo、Ti的添加對此合金系統c〇2CrFeNi2具有不同程度 的強化作用’顯然Ti的效果最好,其次為Mo,再其次為A1。 i根據本發明之一實施態樣,以c〇2CrFeNi2Ti〇5之試片進行鍛 k加工、均質化熱處理及滾壓加工後,觀察試片在各狀態下之硬 度與,結構之變化。結果顯示此合金具有優越耐溫特性與加工硬 化之能力。 根據本發明之一貫施恶樣,利用上述多元合金之設計製備另 18種高熵合金試片,其中添加適量之次元素如八§、^、(::〇:1、 ^Nb'Ta、Si、V、W、Y、Zr至少一者以製備多元合金。次 ^素之添加總量不超過原子百分比1〇%,合金試片之硬度值因添 力^之元素而有所差異。因此,可_不同添加量調整硬度、延性 及加工性,以適合不關度下之顧,尤其是高溫結構下之應用。 一又另一實施態樣’該合金亦可在經過真 工电弧熔煉鑄造之後,以高溫時效法進行硬化處理。 且在Ϊ上述多元高熵合金係屬於可加工、可分析之合金材料, 係為-具有良好加工硬化、高溫時效硬化及㈣溫特性之合金。 【實施方式】 睁解以本發明之實施例以促進對本發明之徹底 $其中使用適當、相同的參考符號代表相同的铁^ '心瞭解在此所提出之實施例僅作為說明性、而非限制性之範 200806801 Π此’本發明並不條於所提出之實施例 此 技蟄者所瞭解之任意變化及其同等物。 更此項 在本發明之實施例中關於合金試片之硬度, 試驗f CMATSUZAWASEK·”加以 測丄 面依序以_、㈣0、#240、_0、#_、#_上2 平後再以—㈣•加 負何_為15秒,鑽石針頭下針速率為 Μ。每上 =個不同位置之硬度值,以中間五個平均值平均作為3二 ΐ於巧結構觀察係利用有水冷式砂輪機切割試片,使 之#=影響切割表面之微結構。切割後之試片依= 以#180 #240、_〇、#_、#_、#1細、㈣⑽、#獅之沉 TFm <;4川^> /為,文蝕液浸蝕,再以光學顯微鏡(0M)及 F而、式電子顯微鏡(SEM)進行微結構觀察,並以 EDS(n政佈分析儀)進行成分分析。 γ丄f L卜,於晶體結構之相的鑑^是取約ixi5xi5mm試片進行 系使用邮細刪〇-FM2X射線繞射儀, 你命士盔%射1光源進行x射線強度測量。操作電壓為3〇 kv,操 f⑽為2〇mA,掃描範圍由2〇至100度,掃描速度為4 degrees/min 〇 實施例一: 表1係本實施例所選用之合金組成,試片編號為皿至 ^ C〇L5CrFeNlL5為基礎合金(合金的維氏硬度為HV113, 為m :曰5結構},添加適量的A1、Ti、Mo製備多元合金。配置 戶^^的原料純度皆在99%以上。表2 _為本發明之合金 ^刀t要儿素的個別基本特性,包括原子量、尺寸、溶點、滞 點、後度、晶體結構及晶聽構轉換溫度。 200806801 合金之成分各爸j虎:(右七攔為原子百分比) 編號 成分(以原子比例表示、 Co Cr Fe -曰力、 Ni AI Ti Mo HK1 CoL5CrFeNiL5 Al〇5 27.3 18.2 18.2 27.3 9.0 HE2 CoL5CrFeNiL5Ti〇.5 27.3 18.2 18.2 27.3 0 9.0 0 HE3 CoL5CrFe NiL5Mo〇.5 273 18.2 18.2 273 0 . 0 9.0 HE4 CoL5CrFeNiL5Al 25.0 16.7 16.7 25.0 16.6 0 0 HE5 CoL5CrFeNiL5Ti 25.0 16.7 16.7 25.0 0 16.6 0 HE6 C〇i.5CrFeNiL5Mo 25.0 16.7 16.7 25.0 0 0 16.6 HE7 Co1.5CrFeNiL5Al〇.5Ti〇.5 25.0 16.7 16.7 25.0 83 8.3 0 HE8 Co15CrFeNiL5Al0.5Mo0.5 25.0 16.7 16.7 25.0 8.3 0 8.3 HE9 Co15CrFeNiL5Ti 0.5M00.5 25.0 16.7 16.7 25.0 0 8.3 8.3 HE10 COi.5CrFeNii.5Alo.5Ti 〇.5Μ〇0·5 23.1 15.4 15.4 23.1 7.7 7.7 7.6 HE11 CoL5CrFeNiL5Al〇.25 Ti 0.5M00.25 25.0 16.7 16.7 25.0 4.15 8.3 4.15 9 200806801 表2:合金元素之基本特性 元素 A1 Ti Co Cr Fe Mo Ni 原子量 (g/mole) 26.98 47.867 58.93 52.00 55.85 95.94 58.69 原子半 徑(A) 1·18 L76 1.52 1.66 1.56 1.9 1.49 熔點fc) 660 1668 1495 1907 1538 2623 1455 沸點(°C) 2519 3287 2927 2671 2861 4639 2913 密度 (g/cm3) 2.70 4.053 8.9 7.14 7.87 10.28 8.91 晶體結 構(低溫) FCC HCP HCP BCC BCC BCC FCC 晶體結 構(高溫) FCC BCC FCC FCC FCC、 BCC BCC FCC 晶體結 構轉換 溫度(°C) 417 1840 910 1390 圖1係根據本發明之實施例之合金製備、加工處理流程。如 圖1所示,在本實施例中可採用真空電弧熔煉爐來熔煉合金,並 可供後續鍛造加工、均質化熱處理、滾壓加工及時效硬化處理之 用。然後進行硬度量測、X光繞射分析、微結構觀察及成分分析。 熔煉時先將總重量約50克之純金屬顆粒配比置於水冷銅模上,蓋 上爐子的上蓋,抽取真空至0 01atm,而後通入純氬氣至〇 2atm。 為了避免合金大量氧化,再重複如上所述之抽氣充氣過程三次 ^,方進行熔煉處理,其中熔煉電流為5〇〇安培。當金屬塊已溶 =均勻且待其冷卻後,將金屬塊翻面再進行熔煉,如此反覆數次 直到確摘有的合金元素均已溶解且混合均⑽止,* 部凝固形成鑄件或鑄錠。 …、傻便,、1 10 200806801 依表1所製備的十一種合金,复曰 德 示,皆具有不錯之合金性質。I而二曰曰體j吉構及硬度如表3所Al, Mo, Ti have good alloy properties after vacuum arc smelting. The addition of Al, Mo and Ti has different degrees of strengthening effect on the alloy system c〇2CrFeNi2. Obviously Ti has the best effect, followed by Mo, followed by A1. i According to an embodiment of the present invention, the test piece of c〇2CrFeNi2Ti〇5 was subjected to forging k processing, homogenization heat treatment and rolling processing, and the hardness and structural changes of the test piece in each state were observed. The results show that the alloy has excellent temperature resistance and work hardening ability. According to the consistent application of the present invention, another 18 kinds of high-entropy alloy test pieces are prepared by using the above-mentioned multi-alloy design, wherein an appropriate amount of secondary elements such as 八, ^, (::〇:1, ^Nb'Ta, Si are added. At least one of V, W, Y, and Zr is used to prepare a multi-element alloy. The total amount of the sub-mass is not more than 1% by atom, and the hardness value of the alloy test piece varies depending on the element of the addition force ^. The hardness, ductility and processability can be adjusted according to different addition amounts to suit the unconstrained degree, especially in the application of high temperature structure. One embodiment and another embodiment of the alloy can also be cast after real arc smelting The hardening treatment is carried out by a high-temperature aging method. The above-mentioned multi-equivalent high-entropy alloy is a machinable and analyzable alloy material, and is an alloy having good work hardening, high temperature age hardening, and (four) temperature characteristics. The embodiments of the present invention are intended to facilitate the disclosure of the present invention. Where appropriate, the same reference numerals are used to represent the same. The embodiments described herein are intended to be illustrative only and not limiting. Π This invention is not to be construed as being limited by the embodiments of the present invention, and any equivalents thereof. Further, in the embodiment of the present invention, the hardness of the alloy test piece, test f CMATSUZAWASEK·" The measuring surface is sequentially _, (4) 0, #240, _0, #_, #_上上上平平平平平平平平平平平平平平平平平平平平平平平The hardness value of the position is averaged as the average of the five intermediate averages. The observation structure is made by using a water-cooled grinder to cut the test piece so that it affects the microstructure of the cut surface. #180 #240, _〇, #_, #_, #1细, (4) (10), #狮之沈TFm <;4川^> / For, etching, etching with optical microscope (0M) and F The electron microscopy (SEM) was used to observe the microstructure, and the composition analysis was carried out by EDS (n political cloth analyzer). γ丄f L Bu, the phase of the crystal structure was taken from the ixi5xi5mm test piece. The postal code is deleted - FM2X ray diffractometer, you command the helmet to shoot 1 source for x-ray intensity measurement. The operating voltage is 3〇kv, f (10) is 2〇mA, The scanning range is from 2〇 to 100 degrees, and the scanning speed is 4 degrees/min. Example 1: Table 1 is the alloy composition selected in this example. The test piece number is from the dish to ^ C〇L5CrFeNlL5 as the base alloy (the dimension of the alloy) The hardness is HV113, which is m: 曰5 structure}, and an appropriate amount of A1, Ti, and Mo is added to prepare a multi-component alloy. The purity of the raw materials of the households is above 99%. Table 2 _ is the alloy of the invention The individual basic characteristics of the pigment, including atomic weight, size, melting point, hysteresis, post-degree, crystal structure and crystal structure conversion temperature. 200806801 The composition of the alloy dad j tiger: (the right seven blocks are atomic percentage) In terms of atomic ratio, Co Cr Fe - 曰, Ni AI Ti Mo HK1 CoL5CrFeNiL5 Al〇5 27.3 18.2 18.2 27.3 9.0 HE2 CoL5CrFeNiL5Ti〇.5 27.3 18.2 18.2 27.3 0 9.0 0 HE3 CoL5CrFe NiL5Mo〇.5 273 18.2 18.2 273 0 . 0 9.0 HE4 CoL5CrFeNiL5Al 25.0 16.7 16.7 25.0 16.6 0 0 HE5 CoL5CrFeNiL5Ti 25.0 16.7 16.7 25.0 0 16.6 0 HE6 C〇i.5CrFeNiL5Mo 25.0 16.7 16.7 25.0 0 0 16.6 HE7 Co1.5CrFeNiL5Al〇.5Ti〇.5 25.0 16.7 16.7 25.0 83 8.3 0HE8 Co15CrFeNiL5Al0.5Mo0.5 25.0 16.7 16.7 25.0 8.3 0 8.3 HE9 Co15CrFeNiL5Ti 0.5M00.5 25.0 16.7 16.7 25.0 0 8.3 8.3 HE10 COi.5CrFeNii.5Alo.5Ti 〇.5Μ〇0·5 23.1 15.4 15.4 23.1 7.7 7.7 7.6 HE11 CoL5CrFeNiL5Al 〇.25 Ti 0.5M00.25 25.0 16.7 16.7 25.0 4.15 8.3 4.15 9 200806801 Table 2: Basic characteristics of alloying elements Element A1 Ti Co Cr Fe Mo Ni Atomic weight (g/mole) 26.98 47.867 58.93 52.00 55.85 95.94 58.69 Atomic radius (A 1·18 L76 1.52 1.66 1.56 1.9 1.49 Melting point fc) 660 1668 1495 1907 1538 2623 1455 Boiling point (°C) 2519 3287 2927 2671 2861 4639 2913 Density (g/cm3) 2.70 4.053 8.9 7.14 7.87 10.28 8.91 Crystal structure (low temperature) FCC HCP HCP BCC BCC BCC FCC Crystal Structure (High Temperature) FCC BCC FCC FCC FCC, BCC BCC FCC Crystal Structure Conversion Temperature (°C) 417 1840 910 1390 FIG. 1 is a process for preparing and processing an alloy according to an embodiment of the present invention. As shown in Fig. 1, in the present embodiment, a vacuum arc melting furnace can be used to melt the alloy, and it can be used for subsequent forging processing, homogenization heat treatment, rolling processing, and hardening treatment. Then hardness measurement, X-ray diffraction analysis, microstructure observation and composition analysis were performed. In the smelting, the pure metal particles with a total weight of about 50 g are first placed on a water-cooled copper mold, the upper cover of the furnace is covered, the vacuum is evacuated to 0 01 atm, and then pure argon gas is introduced to 〇 2 atm. In order to avoid a large amount of oxidation of the alloy, the evacuation process as described above is repeated three times, and the smelting process is performed, wherein the smelting current is 5 amps. When the metal block has been dissolved = uniform and after it has been cooled, the metal block is turned over and then smelted, so that it is repeated several times until all the alloying elements have been dissolved and mixed (10), and the * part solidifies to form a casting or ingot. . ..., silly, 1 10 200806801 The eleven alloys prepared according to Table 1, both of which have good alloy properties. I and the two bodies and the hardness and hardness are shown in Table 3.

Ti的添加對此合金系統CGi5Cl:FeN^ 可見’ A1' Mo、 同程度的則咖,顧Ti的效果有不 A1。此外,該三元素的添加量增:硬^^〇’=巧為 會形成BCC(體心立方體)相,但 以?曰曰金 可調整硬度、驗 度下的應s,尤其是高溫賴下的勒。 J5$ 編號 HE1 HE2 合金鑄件之!雙結構與硬度(腳) 或分(以原子比例表示) gouCrFeNi!^^ ^i.5CrFeNiL5Ti〇.5The addition of Ti shows that the alloy system CGi5Cl:FeN^ is visible as 'A1' Mo, and the same degree of coffee, the effect of Ti is not A1. In addition, the addition of the three elements is increased: hard ^ ^ 〇 ' = skillfully will form a BCC (body core cube) phase, but to? Sheet metal can adjust the hardness, the s should be under the test, especially the high temperature. J5$ No. HE1 HE2 Alloy Casting! Double structure and hardness (foot) or minute (in atomic ratio) gouCrFeNi!^^ ^i.5CrFeNiL5Ti〇.5

C〇uCrFeNiL5 Mo〇,5 £〇i:sCrFeNi1.5Al £2uCrFeNiL5TiC〇uCrFeNiL5 Mo〇, 5 £〇i: sCrFeNi1.5Al £2uCrFeNiL5Ti

晶蔓結構 FCC FCC FCC FCC+BCC FCC+BCC 硬度 136 378 193 277 581 HE6 C〇i.5CrFeNiL5MoCrystal vine structure FCC FCC FCC FCC+BCC FCC+BCC hardness 136 378 193 277 581 HE6 C〇i.5CrFeNiL5Mo

FCC+BCC 394 HE7 C〇i^FeNiL5Al〇.5Til 0.5FCC+BCC 394 HE7 C〇i^FeNiL5Al〇.5Til 0.5

FCC+BCC 385 HE8 ££uCrFeNiL5Al〇.5Mo 0.5FCC+BCC 385 HE8 ££uCrFeNiL5Al〇.5Mo 0.5

FCC+BCC 200 HE9 £2L5CrFeNii.5Ti 〇.5M〇, 0.5FCC+BCC 200 HE9 £2L5CrFeNii.5Ti 〇.5M〇, 0.5

FCC+BCC 417 HE10 c〇L5CrFeNiL5Al〇.5 Ti 交.妙0.5FCC+BCC 417 HE10 c〇L5CrFeNiL5Al〇.5 Ti cross. Wonder 0.5

FCC+BCC 561 HE11FCC+BCC 561 HE11

Coi.sCrFeNii.sAlo.^ Ti 〇*5M〇0.25Coi.sCrFeNii.sAlo.^ Ti 〇*5M〇0.25

FCC+BCC 383 實施例二: 如圖1所示之合金製備與加工處理之流程,將實施例一中的 HE2合金CouCrFeNUi^之試片置入高溫爐1000 C持溫15分 鐘,而後取出使用氣動式鎚鍛機(型號:OT-1521280)進行熱鍛, 11 200806801 荷重250kg,加工量為40%。接著,將鍛造試片置入熱處理爐中, 以1UKTC、24小時作均質化處理後,分別進行爐冷與水淬^種冷 卻處理,所得各階段的硬度如表4所示,鍛造後的硬度提升約 30%。均質化爐冷硬度下降,但水淬略'高些,由此可發現此合金並 不呈現1100 C咼溫軟化現象,顯示此合金具有優越耐溫特性。而 各狀悲的結晶構造經X光繞射分析,皆仍呈單一的Fee相。 表4: CouCrFeNii 5Ti〇.5合金經鑄造 度(HV) 南溫鍛造及均質化之硬FCC+BCC 383 Example 2: As shown in Figure 1, the process of preparation and processing of the alloy is carried out. The test piece of the HE2 alloy CouCrFeNUi^ in the first embodiment is placed in a high temperature furnace 1000 C for 15 minutes, and then taken out and pneumatically used. Type hammer forging machine (Model: OT-1521280) for hot forging, 11 200806801 Load 250kg, processing capacity is 40%. Next, the forged test piece was placed in a heat treatment furnace, homogenized at 1 UKTC for 24 hours, and then subjected to furnace cooling and water quenching, respectively. The hardness of each stage was as shown in Table 4, and the hardness after forging. Increase by about 30%. The homogenization furnace has a lower cooling hardness, but the water quenching is slightly higher. It can be found that the alloy does not exhibit a temperature softening phenomenon of 1100 C, indicating that the alloy has superior temperature resistance. The sorrowful crystal structure of each shape is analyzed by X-ray diffraction, and all still have a single Fee phase. Table 4: CouCrFeNii 5Ti〇.5 alloy by casting degree (HV) South temperature forging and homogenization hard

一接著’將均質化爐冷處理之合金試片❹乂咖风瓜…利 =二重式滾壓機(型號:DBR250)進行滚壓加工處理以觀察硬度之 變化’加工量分別為0%、5%、15%、3〇%、8〇%。所得結果如表 5所示,該合金試片隨著滾壓加工處理之加工量增加而有明顯之加 工硬化’加工後硬度皆大量增加,其中加工3〇0/〇後硬度即約增加 為加工前之1·78倍。因而顯示出該合金具有優良加工硬化之特 性。經由X光繞射分析顯示c〇i5CrFeNii5Ti()5合金隨著加工量增 | 加,FCC之繞射峰值逐漸下降,此乃因為合金經加工後,晶格會 • 產生更大的變形扭曲,進而使X光產生大量的漫射效應。 加工量 0% γΐ·5“〇·5,口 5% /孟:經个1 口JZ 15% 丄置浓/¾ 30% 80% 硬度 313 467 452 558 545 貫施例三 表6係本實施例所選用之合金組成,試片編號為HE12至 HE22 ’以Cc^CrFeNi2為基礎合金(合金的維氏硬度為hv108,為 12 200806801 配置所 FCC晶體結構),添加適量的A1、Ti、Mo製備多元合金 用之元素的原料純度皆在99%以上。 & f 6··ΗΕ12-ΗΕ22 合金㉔^右七巧為First, 'the alloy test piece cold-treated in the homogenization furnace is used to control the hardness of the alloy test piece...the type=DBR250 is rolled. The processing volume is 0%, 5 respectively. %, 15%, 3〇%, 8〇%. The results obtained are shown in Table 5. The alloy test piece has obvious work hardening with the increase of the processing amount of the rolling processing. The hardness after processing is greatly increased, and the hardness is about increased after processing 3〇0/〇. 1.78 times before. Thus, the alloy exhibits excellent work hardening characteristics. X-ray diffraction analysis shows that the c〇i5CrFeNii5Ti()5 alloy increases with the processing amount, and the diffraction peak of the FCC gradually decreases. This is because the crystal lattice will produce more deformation and distortion after the alloy is processed. The X-ray produces a large amount of diffusing effect. Processing volume 0% γΐ·5“〇·5, mouth 5%/Meng: via a mouth JZ 15% 丄 浓 / 3⁄4 30% 80% hardness 313 467 452 558 545 Example 3 Table 6 is the embodiment The alloy composition selected, the test piece number is HE12 to HE22 'Cc^CrFeNi2 based alloy (the Vickers hardness of the alloy is hv108, the FCC crystal structure of 12 200806801), and the appropriate amount of A1, Ti, Mo is added to prepare the diversified The raw material purity of the elements used in the alloy is above 99%. & f 6··ΗΕ12-ΗΕ22 Alloy 24^ Right Qi Qiao

Mo、Ti的添加對此合金系絲Γ n /、體而έ,由表7可見,A1、 用,尤其是高溫結構下的應用。工丨生寻,以適合不同強度下的應 13 200806801 表|7: 晶體結構與硬度(Ηγ) 編號 ----- 成分(以原子比例表元) 3¾瓶箱稱兴々更度 晶體結構 FCC 硬度 1 1 丨 124 HE12 Co2CrFeNi2 Al〇 5 ^^' HE13 Co2CrFeNi2 Ti: ^ ----- FCC 340 HE14 Co2CrFeNi2 Mo〇 5 FCC 170 HE15 Cc^CrFeisi: Ai FCC+BCC 230 HE16 Co2CrFeNi2 Ti FCC+BCC 456 HE17 Co2CrFeNi2 Mo FCC+BCC 236 HE18 Co2CrFeNi2Al05Ti0s FCC+BCC 356 HE19 C〇2CrFeNi2Al0.5Mo0、 FCC+BCC 180 HE20 Co2CrFeNi2Ti 〇.5Mo〇 s FCC+BCC 316 HE21 Co2CrFeNi2Al〇.5 Ti 0,5Mon, FCC+BCC 376 HE22 Co2CrFeNi2Al〇.25 Ti 0.5M00.25 FCC+BCC 349 實施例四: 將實施例三中的HE13合金C〇2CrFeNi2Ti〇·5之試片置入高溫濟 1000 C持溫15分鐘,而後取出使用氣動式鎚鍛機(型號: 派 ⑩ OT-1521280)進行熱鍛,荷重250kg,加工量為40%。接著,將鍛 ▲ 造試片置入熱處理爐中,以ll〇〇°C、24小時作均質化處理後,分 別進行爐冷與水淬兩種冷卻處理,所得各階段的硬度如表8所示, ^ 鍛造後的硬度提升約28%。均質化爐冷硬度上升,但水淬約不變, 由此可發現此合金並不呈現1100 C南溫軟化現象’顯示此合金且 有優越耐溫特性。而各狀態的結晶構造經X光繞射分析,皆仍呈 單一的FCC相。 14 200806801The addition of Mo and Ti to this alloy is Γ n /, body and έ, as can be seen from Table 7, A1, especially for applications under high temperature structures. Workers are looking for suitable for different strengths. 13 200806801 Table |7: Crystal Structure and Hardness (Ηγ) No.----- Composition (in atomic scale) 33⁄4 bottle box Hardness 1 1 丨124 HE12 Co2CrFeNi2 Al〇5 ^^' HE13 Co2CrFeNi2 Ti: ^ ----- FCC 340 HE14 Co2CrFeNi2 Mo〇5 FCC 170 HE15 Cc^CrFeisi: Ai FCC+BCC 230 HE16 Co2CrFeNi2 Ti FCC+BCC 456 HE17 Co2CrFeNi2 Mo FCC+BCC 236 HE18 Co2CrFeNi2Al05Ti0s FCC+BCC 356 HE19 C〇2CrFeNi2Al0.5Mo0, FCC+BCC 180 HE20 Co2CrFeNi2Ti 5.5Mo〇s FCC+BCC 316 HE21 Co2CrFeNi2Al〇.5 Ti 0,5Mon, FCC+BCC 376 HE22 Co2CrFeNi2Al 〇.25 Ti 0.5M00.25 FCC+BCC 349 Example 4: The test piece of HE13 alloy C〇2CrFeNi2Ti〇·5 in Example 3 was placed in a high temperature 1000 C for 15 minutes, and then taken out using a pneumatic hammer. Forging machine (model: Pie 10 OT-1521280) for hot forging, load 250kg, processing capacity is 40%. Next, the forged ▲ test piece was placed in a heat treatment furnace, and after homogenization treatment at ll 〇〇 ° C for 24 hours, the furnace cooling and water quenching were respectively carried out, and the hardness of each stage was as shown in Table 8. Show, ^ The hardness after forging is increased by about 28%. The homogenization furnace has a cold hardness increase, but the water quenching is about constant, and it can be found that the alloy does not exhibit a 1100 C south temperature softening phenomenon, indicating that the alloy has superior temperature resistance characteristics. The crystal structures of each state are still analyzed by X-ray diffraction, and all still have a single FCC phase. 14 200806801

He<)2(>FeNi2TiG.5 合金經鑄造 (HV) 高溫緞造及均質化之硬度He<)2(>FeNi2TiG.5 alloy cast (HV) high temperature satin and homogenized hardness

雨溫锻造 421 ㊅質也爐冷 403 328Rain temperature forging 421 Six quality furnace cooling 403 328

Co2CrF^i〇Ti05Co2CrF^i〇Ti05

二重S壓利用 化,加工量分別Α Π()/二〜疋〜取皂抓丄奐埋从觀察硬度之變 所示,該合广15°ί、3。%、7。%。所得結果如表9 二後硬度皆大量增加,其中力…崎硬以g力力: 性。經由\光^7^^而顯示出該合金具有優良加工硬化之特 irr Λ 6繞齡躺1〜讲舰21^合金龄加工量增加, 更大ίίΓί逐漸下降’此乃因為合金經加工後,晶格會產生 更大的變形扭曲,進而使X光產生大量的漫射效應。 加工量 0% 5% 15% 30% 70% " 硬度 328 335 416 515 566 15 1 貫施例五丄 - 表忉係本實施例所選用之合金組成,試片編號為ΗΕ23至 ΗΕ40。此is種合金係以ΗΕ1-ΗΕ9(如表1所示)及ΗΕ12-20(如表 - 6所示)為基礎合金,添加適量的次元素如Ag、Β、C、Cu、Μη、 Nb、Ta、Si、V、W、Υ、Zr等至少一者以製備多元合金。配置所 用之元素的原料純度皆在99%以上。 200806801 表10·· HE23-HE40合金之成分與編號:(右元素欄為原子百分 比) 編號 成分(以原子比例表示) Co Cr Fe Ni Al Ti Mo 其他元 素 HE23 C〇LsCrFeNiL5 Al〇.5Ag〇2 263 17.5 17.5 263 8.9 0 0 Ag:3.5% HE24 Co1.5CrFeNiL5Ti〇.5B〇.1C〇.1 26.3 17.5 17.5 263 0 8.9 0 B 丄 75%, C:L75% HE25 Co15CifeNi1.5Mo0.5Si〇.2 26.3 17.5 17.5 263 0 0 8.9 Si:3.5% HE26 CoL5CrFeNiL5Al Cu〇.2Mn〇3 23.1 15.4 15.4 23.1 15.4 0 0 Cu:3.0%, Mn:4.6% HE27 Co13CrFeNi1.5Tim〇.1V〇2 23.8 15.9 15.9 23.8 0 15.8 0 Nb:1.6%9 V:3.2% HE28 Co15CrFe Nii^MoNbo j V 0.2W03 22.7 15.1 15.1 22.7 0 0 153 Nb:1.5%, V:3%, W:4.6% HE29 CoL5CrFeNiL5Al〇.5Ti〇.5 Ta〇.2Zr0>1 23.8 15.9 15.9 23.8 7.9 7.9 0 Ta:32%, Zr:1.6% HE30 C〇i.5CrFeNiL5Al〇.5Mo〇.5 V0.2Y0.1 23.8 15.9 15.9 23.8 7.9 0 7.9 V:3.2%, Y:1.6% HE31 C〇i.5CrFeNi15Ti 0.5M〇05 Ta〇.iY〇.i 24.2 16.1 16.1 24.2 0 8.1 8.1 Ik 1.6%, Y:L6% HE32 Cc^CrFeNi〕Alas Ag〇.2 29.8 14.9 14.9 29.8 7.4 0 0 Ag:3% HE33 Co2CrFeNi2Tia5BaiCai 29.8 14.9 14.9 29.8 0 7.4 0 Β:1·5%, C:1.5% HE34 Co2CrFeNi2 Mo〇.5 Si〇.2 29.8 14.9 14.9 29.8 0 0 7.4 Si:3% HE35 Co2CrFeNi2 Al Cu〇2Mn〇3 26.7 133 13.3 26.7 13.3 0 0 Cu:2.7%5 Mn:4.0% HE36 Co2CrFeNi2TiNbaiVa2 27.4 13.7 13.7 27.4 0 13.7 0 Nb:1.4%, V:2.7% 16 200806801 HE37 Cc^CrFelSfyVloNbaiVoWM 263 13.2 13.2 263 0 13.2 Nb:L3%, V:2.6%, w-3 g〇/a HK38 CG2CrFeNi2Al〇.5Ti〇.5 Ta〇.2Zr0>i 27.4 13.7 13.7 27.4 6.8 6.8 0 Ta:2.8%, 7r-l 4% HE39 Co2CrFeNi2Al〇.5Mo05 V0.2Y0.1 27.4 13.7 13.7 27.4 6·8 0 6.8 £Λ · 1 .Τ' /〇 V:2.8%, HE40 Co2CrFeNi2Ti 〇.5M〇〇 5 Ta〇.iY〇, 27.8 0 6.9 Y:1.4% Ta:L4%? Y:1.4% 如表&㈣所示)的晶體結構及硬度· a^b ;^u ;The use of double S pressure, the amount of processing Α Π () / two ~ 疋 ~ take the soap to grasp the burial from the observation of the hardness change shown, the wide 15 ° ί, 3. %, 7. %. The results obtained are as shown in Table 9. After the second hardness, the hardness is greatly increased, and the force is strong. It is shown by \光^7^^ that the alloy has excellent work hardening and special irr Λ 6 rounds of lying 1 to the ship 21 ^ alloy age processing volume increased, larger ίίίί gradually decreased 'this is because the alloy is processed, The crystal lattice will produce more distortion and distortion, which in turn will cause a large amount of diffusing effect on the X-ray. Processing amount 0% 5% 15% 30% 70% " Hardness 328 335 416 515 566 15 1 Example 丄 - Table 忉 is the alloy composition selected in this example, the test piece number is ΗΕ23 to ΗΕ40. This is an alloy based on ΗΕ1-ΗΕ9 (as shown in Table 1) and ΗΕ12-20 (as shown in Table-6) as the base alloy, adding appropriate amounts of secondary elements such as Ag, Β, C, Cu, Μη, Nb, At least one of Ta, Si, V, W, yttrium, Zr, etc., to prepare a multi-element alloy. The raw materials used in the configuration have a purity of more than 99%. 200806801 Table 10·············· 17.5 17.5 263 8.9 0 0 Ag: 3.5% HE24 Co1.5CrFeNiL5Ti〇.5B〇.1C〇.1 26.3 17.5 17.5 263 0 8.9 0 B 丄75%, C:L75% HE25 Co15CifeNi1.5Mo0.5Si〇.2 26.3 17.5 17.5 263 0 0 8.9 Si: 3.5% HE26 CoL5CrFeNiL5Al Cu〇.2Mn〇3 23.1 15.4 15.4 23.1 15.4 0 0 Cu: 3.0%, Mn: 4.6% HE27 Co13CrFeNi1.5Tim〇.1V〇2 23.8 15.9 15.9 23.8 0 15.8 0 Nb :1.6%9 V:3.2% HE28 Co15CrFe Nii^MoNbo j V 0.2W03 22.7 15.1 15.1 22.7 0 0 153 Nb: 1.5%, V: 3%, W: 4.6% HE29 CoL5CrFeNiL5Al〇.5Ti〇.5 Ta〇.2Zr0&gt ;1 23.8 15.9 15.9 23.8 7.9 7.9 0 Ta: 32%, Zr: 1.6% HE30 C〇i.5CrFeNiL5Al〇.5Mo〇.5 V0.2Y0.1 23.8 15.9 15.9 23.8 7.9 0 7.9 V: 3.2%, Y: 1.6 % HE31 C〇i.5CrFeNi15Ti 0.5M〇05 Ta〇.iY〇.i 24.2 16.1 16.1 24.2 0 8.1 8.1 Ik 1.6%, Y:L6% HE32 Cc^CrFeNi]Alas Ag〇.2 29.8 14.9 14.9 29.8 7.4 0 0 Ag: 3% HE33 Co2CrFeN i2Tia5BaiCai 29.8 14.9 14.9 29.8 0 7.4 0 Β:1·5%, C:1.5% HE34 Co2CrFeNi2 Mo〇.5 Si〇.2 29.8 14.9 14.9 29.8 0 0 7.4 Si:3% HE35 Co2CrFeNi2 Al Cu〇2Mn〇3 26.7 133 13.3 26.7 13.3 0 0 Cu: 2.7% 5 Mn: 4.0% HE36 Co2CrFeNi2TiNbaiVa2 27.4 13.7 13.7 27.4 0 13.7 0 Nb: 1.4%, V: 2.7% 16 200806801 HE37 Cc^CrFelSfyVloNbaiVoWM 263 13.2 13.2 263 0 13.2 Nb: L3%, V : 2.6%, w-3 g〇/a HK38 CG2CrFeNi2Al〇.5Ti〇.5 Ta〇.2Zr0>i 27.4 13.7 13.7 27.4 6.8 6.8 0 Ta:2.8%, 7r-l 4% HE39 Co2CrFeNi2Al〇.5Mo05 V0.2Y0 .1 27.4 13.7 13.7 27.4 6·8 0 6.8 £Λ · 1 .Τ' /〇V: 2.8%, HE40 Co2CrFeNi2Ti 〇.5M〇〇5 Ta〇.iY〇, 27.8 0 6.9 Y: 1.4% Ta: L4% ? Y: 1.4% as shown in Table & (d)) crystal structure and hardness · a ^ b ; ^ u ;

Mn、Nb、Ta、Si、v、w、Y、 添加之元素而有所差異。此外,將表3、表7及表 :J出除Ag及Cu之添加外,其他次元素之添加♦基本^二J硬 ff升作用。雜部分缝的添加會增加BCC相的^成,;旦主要 曰曰fi?,因此利用不同添加量,可調整硬度、延性 $加工性4,以適合不同強度下的應用,尤其是高溫結構下的應 17 200806801 HE23-HE40合金鎢件之晶體結槿邀廊唐(HV) 編號 成分(以原子比例表示) 、丄丄 \ 晶體結構 硬度 HE23 〇〇! 5CrFeNiL5 Al〇.5Ag〇 2 FCC 125 HE24 C〇i.5CrFeNii.5Ti〇5 B〇 iC〇 1 FCC +领碳化 物相 424 HE25 CoL5CrFeNiL5 Mo〇 5Si〇 2 FCC + BCC 231 人 Λ A 0〇! 5CrFeNii 5A1 Cu〇2ivln〇^ FCC+BCC 257 HE27 CoL5CrFeNiL5TiNb01V02 FCC+BCC 715 HE28 CoL5CrFe NiL5MoNb〇! V〇 9W〇 ^ FCC+BCC 732 HE29 CoL5CrFeNiL5 Al〇>5Ti0 5 Ta〇.2Zr〇! FCC + BCC 590 HE30 CoL5CrFeNiL5Al〇.5Mo〇.5 V〇.2Y〇, FCC+BCC 271 HE31 CoL5CrFeNiL5Ti 〇.5M〇〇 s Ta〇! Y〇, FCC + BCC 626 HE32 Co2CrFeNi2Al〇.5 Ag〇2 FCC 110 HE33 Cc^CrFeNi: Ti〇 5 B〇 jCoji FCC +棚碳化 物相 356 HE34 Co2CrFeNi2 Mo〇,5 Si〇2 FCC 177 HE35 Co2CrFeNi2 A1 Cu〇.2Mn〇 3 FCC + BCC 201 HE36 Co2CrFeNi2 FCC + BCC 529 ΠΕ37 Co2CrFeNi2 Mo Nb〇 H FCC+BCC 580 HE38 C02CrFeNi2Alo.5Tio.5Tao.2Zro」 FCC+BCC 556 HE39 Co2CrFeNi2Al0.5Mo0.5 V〇.2Y(u FCC + BCC 229 HE40 Co2CrFeNi2Ti0,5Mo0.5 Tao.iYo」 FCC+BCC 503 另外,根據本發明之另一實施例,例如,取一 Co^CrFeNiuTio.5 合金試片經由真空電弧熔煉鑄造之後,以高溫時效法進行硬化處 理。將此鑄造態試片置入熱處理爐中,分別以4〇(TC、600°C、800 °C時效Ihr、2hr、5hr、10hr。結果如表12所示,在800T之條 件下,可觀察到罕見之高溫時效硬化現象,時效5hr可使合金之硬 度自378HV提高為513HV。在經過10hr時效後,合金之硬度變 18 200806801 成約時效前之〗·33倍 \時日 、'w\ 間 度\^ Ohr Ihr 2hr 5hr lOhr 400 °C 378±10·0 388±3·8 408+9.1 362±4.2 382+5.9 ^ 378+10.0 400+2.3 387+6.5 384+12.2 387±10.5 800 °C 378110.G 470±7·7 485±6.1 513±4.1 503±7.0 綜合以上所述,可瞭解本發明之合金系統可以 ((^〇,0以,1<^]\471^之組成加以表示,其中]^[元素可選自八1、^^0 及Ti至少一者,N元素為次要元素如Ag、B、c、cu、Mn、:N[b、 Ta、Si、V、W、Y、Zr等至少一者,以原子百分比計算,x^65 %,5$yS25%及OCz^lO%,其中C〇&Ni每個元素之原子百 分比皆介於20%至35%之間,且Cr&Fe每個元素之原子百分比 皆介於12.5%至20%之間。該合金系統在鑄造狀態下的相以Fcc 結晶構造的相為主,在結晶學上,由sFCC相具有12個滑動 統,易於滑動變形,故通常具有相當的延性。此外,FCC相的強 ,對溫度較桃感,在高溫下強賴錄〃、,故本發_合金可 提供不同的強硬度,無論在室溫應用或高溫結構性應用,可 =同強度及延性的需求,藉由成分的調整,而獲得適當特性的人 - ^此外,本發明的合金系統分別含有&與(::〇、见各至少原 :==,於_性及抗氧化 都妒挺^ 升力麵錄的環境及高溫氧化的環境下 % ^ ^^35 盆成太叩貝的〜基泛金(其C〇含量至少50%以上)而t, 賴輯,開㈣ 此外,熟習此項技藝者應瞭解本發明之實施例中,如圖i之 19 200806801 化,,働=====之s力:i理if 其齡。亦喊補縣發日狀功效下進行所 j或處理’而不盡細在此職出之全部處理施行本發 者祕僅詳述本發明之示範性實施例,但凡熟習此項'技藝 私知·上述之說明僅是描述性而非限制性,在不脫離本發明i 改優狀軌下,可根據上述實闕綠行各種變化修 。因此,所有此類修改應視為包含於本發明之專利範疇内。 【圖式簡單說明】 圖1係根據本發明之實施例之合金製備及加工處理之流程。 【主要元件符號說明】 無〇 20Mn, Nb, Ta, Si, v, w, Y, and added elements vary. In addition, Table 3, Table 7, and Table: J are removed from the addition of Ag and Cu, and the addition of other minor elements is ♦ basic ^ 2 hard ff rise. The addition of the interstitial part will increase the BCC phase, and the main 曰曰fi?, so the hardness and ductility can be adjusted by different addition amounts to suit the application of different strengths, especially under high temperature structure. The should be 17 200806801 HE23-HE40 alloy tungsten pieces of crystal knots invited to the Tang (HV) number component (in atomic ratio), 丄丄 \ crystal structure hardness HE23 〇〇! 5CrFeNiL5 Al〇.5Ag〇2 FCC 125 HE24 C 〇i.5CrFeNii.5Ti〇5 B〇iC〇1 FCC + collar carbide phase 424 HE25 CoL5CrFeNiL5 Mo〇5Si〇2 FCC + BCC 231 Human A 0〇! 5CrFeNii 5A1 Cu〇2ivln〇^ FCC+BCC 257 HE27 CoL5CrFeNiL5TiNb01V02 FCC+BCC 715 HE28 CoL5CrFe NiL5MoNb〇! V〇9W〇^ FCC+BCC 732 HE29 CoL5CrFeNiL5 Al〇>5Ti0 5 Ta〇.2Zr〇! FCC + BCC 590 HE30 CoL5CrFeNiL5Al〇.5Mo〇.5 V〇.2Y〇, FCC+BCC 271 HE31 CoL5CrFeNiL5Ti 〇.5M〇〇s Ta〇! Y〇, FCC + BCC 626 HE32 Co2CrFeNi2Al〇.5 Ag〇2 FCC 110 HE33 Cc^CrFeNi: Ti〇5 B〇jCoji FCC + shed carbide phase 356 HE34 Co2CrFeNi2 Mo〇, 5 Si〇2 FCC 177 HE35 Co2CrFeNi2 A1 Cu〇 .2Mn〇3 FCC + BCC 201 HE36 Co2CrFeNi2 FCC + BCC 529 ΠΕ37 Co2CrFeNi2 Mo Nb〇H FCC+BCC 580 HE38 C02CrFeNi2Alo.5Tio.5Tao.2Zro” FCC+BCC 556 HE39 Co2CrFeNi2Al0.5Mo0.5 V〇.2Y(u FCC + BCC 229 HE40 Co2CrFeNi2Ti0,5Mo0.5 Tao.iYo" FCC+BCC 503 Further, according to another embodiment of the present invention, for example, a Co^CrFeNiuTio.5 alloy test piece is cast by vacuum arc melting, at a high temperature Efficient hardening treatment. The cast test piece was placed in a heat treatment furnace at 4 Torr (TC, 600 ° C, 800 ° C for 1 hr, 2 hr, 5 hr, 10 hr. The results are shown in Table 12, under conditions of 800 T, observable To the rare high-temperature age hardening phenomenon, the hardness of the alloy can be increased from 378HV to 513HV after 5hr aging. After 10hr aging, the hardness of the alloy becomes 18 200806801. Before the aging, 33 times\hours, 'w\inter-degree \^ Ohr Ihr 2hr 5hr lOhr 400 °C 378±10·0 388±3·8 408+9.1 362±4.2 382+5.9 ^ 378+10.0 400+2.3 387+6.5 384+12.2 387±10.5 800 °C 378110. G 470±7·7 485±6.1 513±4.1 503±7.0 In summary, it can be understood that the alloy system of the present invention can be represented by ((^, 0, 1 <^]\471^, wherein] ^[The element may be selected from at least one of VIII, ^^0 and Ti, and the N element is a secondary element such as Ag, B, c, cu, Mn, :N[b, Ta, Si, V, W, Y, At least one of Zr and the like, calculated as atomic percentage, x^65%, 5$yS25%, and OCz^lO%, wherein each atomic percentage of C〇&Ni is between 20% and 35%, and The atomic percentage of each element of Cr&Fe is between 1 2.5% to 20%. The phase of the alloy system in the as-cast state is dominated by the phase of the Fcc crystal structure. In crystallography, the sFCC phase has 12 sliding systems, which are easy to slide and deform, so it is usually quite ductile. In addition, the FCC phase is strong, the temperature is more peachy, and it is stronger at high temperatures. Therefore, the alloy can provide different hardness. Whether it is applied at room temperature or high temperature structural application, it can be the same strength. And the need for ductility, the person who obtains the appropriate characteristics by the adjustment of the composition - In addition, the alloy system of the present invention contains & and (:: 〇, see each at least the original: ==, _ _ and anti-oxidation Too 妒^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Those skilled in the art should understand that in the embodiment of the present invention, as shown in FIG. 19, 200806801, the force of 働=====: i is the age of the if. j or processing 'without all the details of this operation, the implementation of this issue, only to explain the exemplary implementation of the present invention Embodiment, whenever skilled in the 'art-known private The above description is merely illustrative and not limiting, without departing from the i-shaped rail of the present invention preferably change, the changes may be revised based on the various lines Que green solid. Accordingly, all such modifications are considered to be included within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing the preparation and processing of an alloy according to an embodiment of the present invention. [Main component symbol description] No flaw 20

Claims (1)

200806801 十、申請專利範圍: 1. -種低_含量之耐高溫合金,該合金之組成為 (Co,CrJFe,M)xMyNz ’ 其中: (〇〇,α:^,Μ)所佔原子百分比以X表示,XS65%,其中p 及Νι每個兀素之原子百分比皆介於2〇%至35%之間,且&另0 每個元素之原子百分比皆介於12·5%至2〇%之間; Fe Μ元素所佔原子百分比以γ表示,%γ^25%,且該& 係選自AL· Mo及Ti至少一者; 几素 N元素所佔原子百分比以z表示,〇<ζ$ 1〇%,且該N » 選自 Ag、B、c、Cu、Μη、她、Ta、Si、v、w、γ、Zr 至小、」糸 _ 者〇 2. 如申凊專利範圍第1項之低鈷鎳含量之耐高溫合金,其中人 金係以真空電孤溶煉法溶鎢而成。 3·如申请專利範圍第1或2項之低鈷鎳含量之耐高溫合金,其 該合金係以FCC結晶相為主。 ^ Τ 4·如申請專利範圍第1或2項之低鈷鎳含量之耐高溫合金,其中 該合金係經由鍛造加工處理。 修 5·如申請專利範圍第1或2項之低钻鎳含量之耐高溫合金,該合 ^ 、金係經由均質化熱處理。 6·如申睛專利範圍弟1或2項之低错鎳含量之耐高溫合金,該合 金係經由滾壓加工處理。 7·如申凊專利範圍弟1或2項之低銘錄含量之耐高溫合金,其中 該合金係經由硬化處理。 十一、圖式: 21200806801 X. Patent application scope: 1. - A low-temperature resistant alloy with a composition of (Co, CrJFe, M) x MyNz ' where: (〇〇, α: ^, Μ) X indicates that XS is 65%, wherein the atomic percentage of each element of p and Νι is between 2% and 35%, and the other atomic percentage of each element is between 12.5% and 2〇. Between %; the atomic percentage of Fe Μ element is represented by γ, % γ ^ 25%, and the & is selected from at least one of AL·Mo and Ti; the atomic percentage of the elemental N element is represented by z, 〇 <ζ$1〇%, and the N » is selected from Ag, B, c, Cu, Μη, her, Ta, Si, v, w, γ, Zr to small, "糸_ 〇2. The high-temperature alloy of low cobalt and nickel content in the first item of the patent scope, wherein the human gold is formed by dissolving tungsten by vacuum electric soaking. 3. A high-temperature alloy of low cobalt nickel content as claimed in claim 1 or 2, which is mainly composed of FCC crystal phase. ^ Τ 4· A high-temperature alloy of low cobalt nickel content as claimed in claim 1 or 2, wherein the alloy is processed by forging. 5. Repair the high-temperature alloy of low-nickel nickel content according to the first or second patent application scope, and the gold and gold are heat treated by homogenization. 6. If the high-temperature alloy of low-loss nickel content of the 1 or 2 item of the patent scope is applied, the alloy is processed by rolling. 7. A high-temperature alloy of low inscription content, such as the claim 1 or 2, in which the alloy is subjected to hardening treatment. XI. Schema: 21
TW095127668A 2006-07-28 2006-07-28 High-temperature resistant alloys TWI315345B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW095127668A TWI315345B (en) 2006-07-28 2006-07-28 High-temperature resistant alloys
US11/724,976 US20080031769A1 (en) 2006-07-28 2007-03-16 High-temperature resistant alloy with low contents of cobalt and nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095127668A TWI315345B (en) 2006-07-28 2006-07-28 High-temperature resistant alloys

Publications (2)

Publication Number Publication Date
TW200806801A true TW200806801A (en) 2008-02-01
TWI315345B TWI315345B (en) 2009-10-01

Family

ID=39029355

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095127668A TWI315345B (en) 2006-07-28 2006-07-28 High-temperature resistant alloys

Country Status (2)

Country Link
US (1) US20080031769A1 (en)
TW (1) TWI315345B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838032A (en) * 2012-10-11 2015-08-12 思高博塔公司 Non-magnetic metal alloy composition and application
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
CN108431262A (en) * 2015-12-10 2018-08-21 日立金属株式会社 High-entropy alloy component, the alloy components manufacturing method and used the manufacture objects of the alloy components
US10100388B2 (en) 2011-12-30 2018-10-16 Scoperta, Inc. Coating compositions
US10105796B2 (en) 2015-09-04 2018-10-23 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
CN111593248A (en) * 2019-02-21 2020-08-28 中国科学院理化技术研究所 High-entropy alloy and preparation thereof, coating comprising alloy and preparation
US10851444B2 (en) 2015-09-08 2020-12-01 Oerlikon Metco (Us) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
US10954588B2 (en) 2015-11-10 2021-03-23 Oerlikon Metco (Us) Inc. Oxidation controlled twin wire arc spray materials
US11279996B2 (en) 2016-03-22 2022-03-22 Oerlikon Metco (Us) Inc. Fully readable thermal spray coating
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129505A1 (en) 2011-03-23 2012-09-27 Scoperta, Inc. Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design
US9340852B2 (en) * 2011-09-26 2016-05-17 National Tsing Hua University Elevated refractory alloy with ambient-temperature and low-temperature ductility and method thereof
US9169538B2 (en) * 2012-05-31 2015-10-27 National Tsing Hua University Alloy material with constant electrical resistivity, applications and method for producing the same
GB201312000D0 (en) * 2013-07-04 2013-08-21 Rolls Royce Plc Alloy
RU2526657C1 (en) * 2013-09-06 2014-08-27 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Refractory alloy
EP3055802B1 (en) 2013-10-10 2023-12-06 Oerlikon Metco (US) Inc. Methods of selecting material compositions and designing materials having a target property
WO2016014851A1 (en) 2014-07-24 2016-01-28 Scoperta, Inc. Hardfacing alloys resistant to hot tearing and cracking
CA2956382A1 (en) 2014-07-24 2016-01-28 Scoperta, Inc. Impact resistant hardfacing and alloys and methods for making the same
US20160201169A1 (en) * 2015-01-09 2016-07-14 Scoperta, Inc. High entropy alloys with non-high entropy second phases
CN108699643B (en) * 2016-02-09 2020-06-23 日立金属株式会社 Alloy member, method for producing alloy member, and product using alloy member
KR101744102B1 (en) * 2016-03-11 2017-06-20 충남대학교산학협력단 High entropy alloy having complex microstructure and method for manufacturing the same
KR101783242B1 (en) 2016-03-18 2017-10-10 충남대학교산학협력단 High entropy alloy having interstitial solid solution hardening and method for manufacturing the same
KR101888300B1 (en) * 2016-03-21 2018-08-16 포항공과대학교 산학협력단 High Entropy Alloy Based Chromium, Iron, Manganese, Nickel and Vanadium
KR101888299B1 (en) * 2016-03-21 2018-08-16 포항공과대학교 산학협력단 Cryogenic High Entropy Alloy
WO2017184778A1 (en) 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt and nickel, and products made therefrom
KR20180115344A (en) 2016-04-20 2018-10-22 아르코닉 인코포레이티드 FCC materials made of aluminum, cobalt, iron, and nickel, and products made therefrom
KR101927611B1 (en) 2016-05-02 2018-12-10 한국과학기술원 High- strength and heat-resisting high entropy alloy matrix composites and method of manufacturing the same
DE102016117682B4 (en) * 2016-09-20 2019-06-19 Infineon Technologies Ag WAFER-CHUCK, USE OF THE WAFER CHUCK, AND METHOD FOR TESTING A SEMICONDUCTOR WAFER
KR101910938B1 (en) * 2017-07-13 2018-10-23 충남대학교 산학협력단 Cr Filament Reinforced CrMnFeNiCu High Entropy Alloy And Method for Manufacturing The Same
CN107739956B (en) * 2017-09-14 2019-10-29 北京理工大学 A kind of Nb microalloying Ni-Co-Fe-Cr-Al high-entropy alloy
EP3693483A4 (en) * 2017-10-25 2021-08-18 Postech Academy-Industry Foundation Transformation-induced plasticity high-entropy alloy, and manufacturing method therefor
US20200290118A1 (en) * 2017-10-31 2020-09-17 Hitachi Metals, Ltd. Alloy article, product formed of said alloy article, and fluid machine having said product
US11359638B2 (en) 2017-10-31 2022-06-14 Hitachi Metals, Ltd. Alloy article, method for manufacturing said alloy article, product formed of said alloy article, and fluid machine having said product
US20190194786A1 (en) * 2017-12-22 2019-06-27 Up Scientech Materials Corp. Hardfacing Material
CN109022735A (en) * 2018-09-29 2018-12-18 武汉钢铁有限公司 A kind of high temperature resistance and high strength drop-bottom stainless steel plate and production method
US20200109467A1 (en) * 2018-10-04 2020-04-09 City University Of Hong Kong High entropy alloy structure and a method of preparing the same
WO2020085755A1 (en) * 2018-10-22 2020-04-30 서울대학교산학협력단 Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
KR102178332B1 (en) * 2018-10-24 2020-11-12 포항공과대학교 산학협력단 High-strength and high-toughness medium entropy alloy and manufacturing method for the same
US11359266B2 (en) * 2018-11-20 2022-06-14 City University Of Hong Kong High entropy alloy structure and a method of preparing the same
US11466344B2 (en) * 2019-03-06 2022-10-11 Energy, United States Department Of High-performance corrosion-resistant high-entropy alloys
US11353117B1 (en) 2020-01-17 2022-06-07 Vulcan Industrial Holdings, LLC Valve seat insert system and method
CN111331280B (en) * 2020-03-05 2022-01-07 西安理工大学 High-entropy alloy preform and TA2/0Cr18Ni9 fusion welding method
CN111676410B (en) * 2020-06-17 2021-08-24 江苏理工学院 High-strength high-toughness CoFeNiTiV high-entropy alloy and preparation method thereof
CN112251659B (en) * 2020-06-19 2022-05-27 沈阳工业大学 AlCrFe2Ni2C0.24High-entropy alloy and preparation method thereof
US11421680B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing bore wear sleeve retainer system
US11421679B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing assembly with threaded sleeve for interaction with an installation tool
CN111961893B (en) * 2020-07-20 2022-02-11 东南大学 High-strength high-plasticity high-entropy alloy and preparation method thereof
US11384756B1 (en) 2020-08-19 2022-07-12 Vulcan Industrial Holdings, LLC Composite valve seat system and method
USD986928S1 (en) 2020-08-21 2023-05-23 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD980876S1 (en) 2020-08-21 2023-03-14 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD997992S1 (en) 2020-08-21 2023-09-05 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
CN112322940B (en) * 2020-11-10 2022-04-05 中南大学 High-strength, high-toughness and corrosion-resistant Ni-rich multi-component alloy and preparation method thereof
CN114645175A (en) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 Light material, preparation method thereof and living appliance
US11391374B1 (en) 2021-01-14 2022-07-19 Vulcan Industrial Holdings, LLC Dual ring stuffing box
TWI776372B (en) * 2021-01-27 2022-09-01 國立清華大學 High hardness and temperature-resistant alloy and use thereof
CN113584371A (en) * 2021-08-03 2021-11-02 北京理工大学 Precipitation strengthening type high-entropy alloy with truss structure and preparation method thereof
CN113755768B (en) * 2021-09-24 2022-05-17 中国人民解放军军事科学院国防科技创新研究院 Al-Ni-Y-Co high-entropy amorphous alloy and preparation method thereof
CN114540808A (en) * 2021-11-10 2022-05-27 兰州荣博特数字智造科技有限公司 Plasma cladding method for TiC-enhanced Al-Co-Cr-Fe-Ni-Nb high-entropy alloy curved surface coating
CN114058922A (en) * 2021-11-16 2022-02-18 中国科学院过程工程研究所 Light hard CoCrAlSiNi high-entropy alloy and preparation method thereof
CN114231765B (en) * 2021-11-26 2022-06-21 北冶功能材料(江苏)有限公司 Preparation method and application of high-temperature alloy bar
CN114657437B (en) * 2022-04-06 2022-08-12 大连理工大学 Co-Cr-Fe-Ni-V-B eutectic high-entropy alloy with excellent thermal modification and preparation method thereof
US11434900B1 (en) 2022-04-25 2022-09-06 Vulcan Industrial Holdings, LLC Spring controlling valve
US11920684B1 (en) 2022-05-17 2024-03-05 Vulcan Industrial Holdings, LLC Mechanically or hybrid mounted valve seat
WO2024010266A1 (en) * 2022-07-05 2024-01-11 주식회사 엘지화학 Alloy material having high-resistivity characteristics, preparation method therefor, and joule-heating tube including same
CN115323238B (en) * 2022-07-06 2023-05-23 太原理工大学 Eutectic high entropy alloy with disordered face-centered cubic and disordered body-centered cubic structure
CN115233003A (en) * 2022-07-28 2022-10-25 北京科技大学顺德研究生院 Production process and surface treatment equipment of corrosion-resistant copper-containing alloy
US20240052499A1 (en) * 2022-08-09 2024-02-15 Zhihong Tang High performance alumina-forming multi- element materials for high temperature applications
WO2024040088A1 (en) * 2022-08-16 2024-02-22 The Johns Hopkins University Multi-principal element alloy (mpea) nanoparticles
CN115404387B (en) * 2022-09-20 2023-08-22 中国科学院兰州化学物理研究所 High-temperature wear-resistant high-entropy alloy and preparation method and application thereof
CN115691931B (en) * 2022-10-21 2023-08-25 中南大学 High-strength and high-toughness multicomponent soft magnetic alloy and preparation method thereof
CN115976391B (en) * 2022-12-07 2023-10-20 哈尔滨工业大学 High-temperature-resistant multi-principal-element intermetallic compound and preparation method thereof
CN116162840A (en) * 2023-01-31 2023-05-26 大连理工大学 Micro Ti-doped high-strength high-plasticity Al-Co-Cr-Fe-Ni eutectic high-entropy alloy, and preparation method and application thereof
CN117305675B (en) * 2023-09-28 2024-04-12 沈阳工业大学 High Wen Gaoshang alloy and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410371A (en) * 1981-05-22 1983-10-18 Liu Chain T Long range ordered alloys modified by group IV-B metals
US20020159914A1 (en) * 2000-11-07 2002-10-31 Jien-Wei Yeh High-entropy multielement alloys
TWI226374B (en) * 2003-06-20 2005-01-11 Ind Tech Res Inst High strength multi-component alloy
TWI298661B (en) * 2005-12-30 2008-07-11 Ind Tech Res Inst Multi metal base hardfacing alloy

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085102B2 (en) 2011-12-30 2021-08-10 Oerlikon Metco (Us) Inc. Coating compositions
US10100388B2 (en) 2011-12-30 2018-10-16 Scoperta, Inc. Coating compositions
US9738959B2 (en) 2012-10-11 2017-08-22 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
CN104838032A (en) * 2012-10-11 2015-08-12 思高博塔公司 Non-magnetic metal alloy composition and application
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
US11111912B2 (en) 2014-06-09 2021-09-07 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US11130205B2 (en) 2014-06-09 2021-09-28 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
US10105796B2 (en) 2015-09-04 2018-10-23 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US10851444B2 (en) 2015-09-08 2020-12-01 Oerlikon Metco (Us) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
US10954588B2 (en) 2015-11-10 2021-03-23 Oerlikon Metco (Us) Inc. Oxidation controlled twin wire arc spray materials
CN108431262A (en) * 2015-12-10 2018-08-21 日立金属株式会社 High-entropy alloy component, the alloy components manufacturing method and used the manufacture objects of the alloy components
CN108431262B (en) * 2015-12-10 2020-06-26 日立金属株式会社 High-entropy alloy member, method for producing same, and product using same
US11279996B2 (en) 2016-03-22 2022-03-22 Oerlikon Metco (Us) Inc. Fully readable thermal spray coating
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
CN111593248A (en) * 2019-02-21 2020-08-28 中国科学院理化技术研究所 High-entropy alloy and preparation thereof, coating comprising alloy and preparation

Also Published As

Publication number Publication date
TWI315345B (en) 2009-10-01
US20080031769A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
TW200806801A (en) High-temperature resistant alloys with low contents of Co and Ni
JP6839213B2 (en) Boron-doped high entropy alloy and its manufacturing method
Wu et al. A casting eutectic high entropy alloy with superior strength-ductility combination
Liu et al. Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder
CN107686928B (en) A kind of high-performance NiCoCrFeMnTi system high-entropy alloy and preparation method thereof
CN107739956B (en) A kind of Nb microalloying Ni-Co-Fe-Cr-Al high-entropy alloy
CN108998714B (en) Design and preparation method of biphase intermediate entropy alloy
CN112725678B (en) Non-equal atomic ratio medium/high entropy alloy containing NiCoCr and preparation method thereof
Moravcik et al. Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0. 5 high entropy alloy
CN107419154B (en) One kind having hyperelastic TiZrHfNbAl high-entropy alloy and preparation method thereof
US9334553B2 (en) Zirconium based bulk metallic glasses
Hsu et al. Microstructure and mechanical properties of new AlCoxCrFeMo0. 5Ni High‐Entropy Alloys
CN112981208B (en) Light refractory high-temperature-resistant eutectic high-entropy alloy and preparation method thereof
CN107142410B (en) CrMoNbTiZr high entropy alloy materials and preparation method thereof
Lee et al. Effect of Fe content on microstructure and mechanical properties of Al0· 5CoCrFexNiTi0. 5 high-entropy alloys
Zhang et al. Effects of Nb additions on the precipitate morphology and hardening behavior of Ni-rich Ni55Ti45 alloys
CN101130844A (en) High-temperature alloy with low content of cobalt and nickel
CN107488803A (en) Magnesium-yttrium-transition metal high-entropy alloy before a kind of bio-medical
US11242585B2 (en) Iron-based superalloy for high temperature 700 ° C. with coherent precipitation of cuboidal B2 nanoparticles
Zadorozhnyy et al. Ti-based nanostructured low-alloy with high strength and ductility
Shkodich et al. Refractory TaTiNb, TaTiNbZr, and TaTiNbZrX (X= Mo, W) high entropy alloys by combined use of high energy ball milling and spark plasma sintering: Structural characterization, mechanical properties, electrical resistivity, and thermal conductivity
CN113186443A (en) Aluminum-cobalt-chromium-iron-nickel high-entropy alloy containing nano strengthening phase gamma' phase and preparation method thereof
CN104630569B (en) A kind of Co V based high-temperature alloys of the orderly γ ` hardening constituents containing high temperature and preparation method thereof
CN110499451A (en) High-strength high-plastic wear-resisting high-entropy alloy of one kind and preparation method thereof
CN110373595A (en) A kind of high entropy high temperature alloy of high-performance and preparation method thereof