TW200805880A - A wideband filter with interdigital stepped impedance resonators - Google Patents

A wideband filter with interdigital stepped impedance resonators Download PDF

Info

Publication number
TW200805880A
TW200805880A TW95124787A TW95124787A TW200805880A TW 200805880 A TW200805880 A TW 200805880A TW 95124787 A TW95124787 A TW 95124787A TW 95124787 A TW95124787 A TW 95124787A TW 200805880 A TW200805880 A TW 200805880A
Authority
TW
Taiwan
Prior art keywords
impedance
resonator
substrate
impedance resonator
finger
Prior art date
Application number
TW95124787A
Other languages
Chinese (zh)
Other versions
TWI318824B (en
Inventor
Cheng-Yuan Hung
Hsin-Hsien Wu
Yan-Kuin Su
Ru-Yuan Yang
Min-Hang Weng
Original Assignee
Advance Design Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Design Technology Inc filed Critical Advance Design Technology Inc
Priority to TW95124787A priority Critical patent/TWI318824B/en
Publication of TW200805880A publication Critical patent/TW200805880A/en
Application granted granted Critical
Publication of TWI318824B publication Critical patent/TWI318824B/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The present invention discloses a wideband filter with interdigital stepped impedance resonators. It mainly comprises a first RF signal input/output port; a second RF signal input/output port; a first stepped impedance resonator unit and a second stepped impedance resonator unit. By tuning the impedance ratio of the stepped impedance resonators, a wideband filter having a wide bandwidth ratio larger than 95% can be implemented. The disclosed high performance wideband filter can be implemented on various types of substrate, suitable for application in UWB system.

Description

200805880 九、發明說明: 【發明所屬之技術領域】 本發明係《於-種濾波n,其制有種具指插式步 階阻抗共振器之寬頻渡波,其特性具有雙傳輸^點且通帶邊緣快 速城之義’可被_於超_無__財。 - 【先前技術】 _ 現今人們所追求無線通訊之主要目標包括有高速、省電、低 發射功率與減本等。目雜用的無線區域網路(肌AN)與藍芽 • _咖〇_統將無法_滿足人們對傳輸大量數位#料的要 求。另-方面’魏於人類對於健康問題的重視,太強能量的無 線電磁波將會有害於人_健康,故低發射神的鱗通▲系統 是目前最迫切需要的。 在-般的無線通訊級中,以接收機為例。射頻電路係位於 • 收發系統的前端。射頻訊號經由天線(Ante_接收到後,再經由 '滤:波器(Fllter)、低雜訊放大(LNA)’以及藉著電壓控制振盪器(VCO) 提供本祕mt«(LG Signal)無舰餘混波1(Mixe耕頻至 中頻訊號(IF Signal),最終輸入至訊號處理器並將其轉成所需的基 頻資訊。在射頻前端電路中,濾、波器通常位在天線開關後端。其 主要用途就是過遽非必要之訊號,選擇部份訊號予以通過,而阻 隔其他訊號。濾波器亦是具關鍵性的被動元件之一。以行動電話 為例’被動兀件佔了主機板上將近6S%的面積;其中又以遽波器 200805880 為較具價值的關鍵元件。因為濾波器的頻率特性會間接影響後端 電路在處理信號時的準確度與失真率,由此可見濾波器頻率特性 的優劣將決定無線通訊系統的品質。 、 為了要提供一種具有高速傳輸能力與低發射功率的無線通訊 系統’超寬頻(Ultra Wide Band,UWB)系統即可達到此一目標。超 • I頻系統是一種嶄新的無線個人區域網路(WPAN)技術標準。 馨 WB的頻$普範圍極廣’從3432MHz至10296MHz,以528MHz 做為一個頻帶的單位,將頻譜切割為5個通道(Channel),可用來 進行鬲速且大量的資料傳輸(最高可達500Mbps)。在美國聯邦通訊 委員會(Federal Communications Commission,FCC)訂定的 UWB 系 統通訊標準中:,其頻寬範圍需在3·1〜10.6GHz之間。 為了符合UWB的頻率響應,在UWB的射頻前端電路中,許 夕主被動耕f要重新料,制是最具價值之魏性射頻被動 •鲁兀件-濾波器。在傳統無線通訊系統中,例如IEEE 8〇2 li/a/b/g與 ' 孤芽系統。濾波器多是用來建構窄頻匕肪幻的頻率響應, 或以來設計多頻響應的濾波器。為了符合UWB的頻率響應,傳 統窄頻帶的濾波器已不_。有需要重新設計—種具有超寬頻特 性之濾波器。 、 飛為了解決上述問題,有需要提供一種具有雙傳輸零點且寬通 ▼之超見舰波ϋ以克服先前技術的缺點。職是之故,申請人乃 細心試驗與研究,並-本麵不捨的精神,終於研究出利=指插 200805880 式步階阻抗共振器產生雙傳輸零點及調變混附波,以增加快速衰 減及額外的頻寬以形成頻寬比為95%之寬頻濾波器。 【發明内容】 本發明之主要目的在於提供一種具指插式步階阻抗共振器之 寬頻遽波H,其個指插式續阻抗共振器產生雙傳輸零點及調 變混附波。 〜為達上述目的,本發明提供一種具指插式步階阻抗共振器之 寬頻壚波器,其至少包含一第一射頻信號輸出/入埠;一第二射頻 儿輸出/人埠,—第—步階阻抗共振器;及—第二步階阻抗共振 ,。对-射齡號輸出/人埠祕作為該具指插式步階阻抗共振 益之寬爾波H之信號/人端;該第二_錢輸⑽入蜂用於 2該具指插式麵阻抗共脑之寬賴波奴信_出/入端; 2 一步階阻抗共振關於產生—第—通帶之頻率響應;該第二 W白阻抗共振於產生—第二通帶之頻率響應。 根據本發明之一特徵,1中#i 第一通〜似r /、中知—步_抗共鋪所產生之 • ▼之辭料_該第二步階阻抗共振產 ▼之頻率’藉由增強的電方式使得兮塗丰 所產生H 七 Λ1更侍5亥弟一步階阻抗共振器 屋生之弟一通f之頻率接近該上 -通π之頻率以得到—寬的通帶響應。 ^ 根據本發明之一特徵,其中該— 乂匕阻抗共振器與該第二 200805880 步階阻抗雜n係純插趣合結構。 根據本發明之一特徵,其 步_咖係介於四分之波長:共振广第二 根據她之,, 弟-阻抗單元、該第二阻抗單元之導波長敕之該 抗共振器之共振模態。 s該弟-步階阻200805880 IX. INSTRUCTIONS: [Technical Field] The present invention is a kind of filtering n, which has a broadband frequency wave with a finger-type stepped impedance resonator, and has a double transmission point and a pass band. The meaning of the edge of the fast city can be _ Yu Chao _ no _ _ wealth. - [Prior Art] _ The main goals of wireless communication today include high speed, power saving, low transmission power and reduced cost. Miscellaneous wireless local area network (muscle AN) and Bluetooth • _ _ _ _ _ will not be able to meet the requirements of the transmission of a large number of digital materials. On the other hand, Wei Wei's emphasis on health issues, wireless electromagnetic waves that are too strong, will be harmful to people's health, so the system of low-emission gods is the most urgent need. In the general wireless communication level, the receiver is taken as an example. The RF circuit is located at the front end of the • transceiver system. The RF signal is transmitted via the antenna (Ante_ is received, then via 'Filter: Fllter, Low Noise Amplification (LNA)') and by the Voltage Controlled Oscillator (VCO) to provide the secret mt«(LG Signal) Ship's residual wave 1 (Mixe is plunged to the intermediate frequency signal (IF Signal), which is finally input to the signal processor and converted into the required fundamental frequency information. In the RF front-end circuit, the filter and wave are usually located in the antenna. The main purpose of the switch is to pass the unnecessary signal, select some signals to pass, and block other signals. The filter is also one of the key passive components. Take the mobile phone as an example. Nearly 6S% of the area on the motherboard; in addition, chopper 200805880 is a valuable key component. Because the frequency characteristics of the filter will indirectly affect the accuracy and distortion rate of the back-end circuit when processing signals. It can be seen that the quality of the filter frequency characteristics will determine the quality of the wireless communication system. In order to provide a wireless communication system with high-speed transmission capability and low transmission power, an ultra-wideband (UWB) system can achieve this. The ultra-I-frequency system is a new wireless personal area network (WPAN) technology standard. The Xin WB's frequency range is very wide 'from 3432MHz to 10296MHz, with 528MHz as a unit of frequency band, the spectrum is cut into 5 channels, which can be used for idle and large data transmission (up to 500Mbps). In the UWB system communication standard set by the Federal Communications Commission (FCC): its bandwidth range In order to meet the frequency response of UWB, in the RF front-end circuit of UWB, Xu Xi main passive ploughing should be re-stocked, and the system is the most valuable Wei-RF passive passive device. - Filters. In traditional wireless communication systems, such as IEEE 8〇2 li/a/b/g and 'orphan system. Filters are mostly used to construct narrow-frequency, faint frequency response, or multi-frequency design. Response filter. In order to meet the frequency response of UWB, the traditional narrow-band filter is not. There is a need to redesign a filter with ultra-wideband characteristics. In order to solve the above problems, it is necessary to provide a double The zero point and the wide pass ▼ super see the ship wave to overcome the shortcomings of the prior art. The job is the reason, the applicant is careful experiment and research, and - the spirit of reluctance, finally research profit = finger insert 200805880 The step impedance resonator generates a double transmission zero and a modulated mixed wave to increase fast attenuation and additional bandwidth to form a broadband filter having a bandwidth ratio of 95%. SUMMARY OF THE INVENTION The main object of the present invention is to provide a The wide-band chopping H with a finger-type stepped impedance resonator has a double-transmission zero point and a modulated mixed-wave. For the above purposes, the present invention provides a wideband chopper with a finger-type stepped impedance resonator, which includes at least a first RF signal output/input 埠; a second RF output/person 埠, - - step impedance resonator; and - second step impedance resonance. The pair-shot age number output/human secret is used as the signal/human end of the wide-wave H with the finger-stepped stepped impedance resonance; the second_money input (10) is used for the 2 finger-inserted surface The impedance of the common brain is broadly 赖波奴信_出/入端; 2 The one-step impedance resonance is about generating the frequency response of the first passband; the second W white impedance is resonantly generating the frequency response of the second passband. According to a feature of the present invention, the first frequency of the #i first is similar to r /, the middle known - step _ anti-co-shop generated by the lexicon _ the second step impedance resonance production of the frequency 'by The enhanced electrical mode makes the Λ 丰 所 所 所 所 亥 亥 亥 亥 亥 亥 亥 亥 亥 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步 一步According to a feature of the present invention, the 乂匕-impedance resonator and the second 200805880 step-impedance hybrid are purely interesting structures. According to a feature of the present invention, the step _cafe is at a wavelength of four quarters: the resonance is wide, and the resonant mode of the anti-resonator of the second impedance unit is the wavelength of the second impedance unit. state. s the brother - step resistance

第本發明之—特徵,藉_整該第二步階阻抗共振哭之今 =且抗衫、該第錄抗單元之長度 抗共振器之共振模態。 * ’P白阻 =本㈣之—特徵,射該第—步階阻抗共姉與該第二 外阻抗共振H係為_的結構。 +比艮據本發明之—特徵’其+該第_步階阻抗共振器與該第二 W白阻抗共振器之電路形式係為同減、微帶線、共面波導線、 槽線與帶線所組成族群中之任何—種結構。 為讓本發明之上述和其他目的、特徵.、和優點能更明顯易懂, 下文4寸舉數個較佳實施例,並配合所_式,作詳細說明如下。 【實施方式】 雖然本發明可表現為不同形式之實施例,但附圖所示者及於 下文中說明者係為本發明可之較隹實施例,並請了解本文所揭示 者係考量為本發明之一範例,且並梓意圖用以將本發明限制於圖 200805880 示及/或所描述之特定實施例中。 現請參考第1 ®,其顯示根據本發明第一實施例之具指插式 步階阻抗共振器之寬頻滤波器雇之電路方塊(第1(a)圖)與結 構(第1(b)圖)示意圖。請參照第1(a)圖,其所示為本發明之實 施例之具指插式步階阻抗共振器之寬頻渡波器100之電路方塊示 、. 賴。根據本發明之-種具指插式步階阻抗共振器之寬頻滤波器 100之第一實施例’其包含概念係使用-基板110 ; -第-射頻信 ^號輸出/入埠120 ; 一第二射頻信號輸出/入埠121 ; -第-步階阻 抗共振器130 ;及一第二步階阻抗共振器131。 /玄基板no具有一第一表面ln及一第二表面112。對於操作 ~頻率在2〇GHz以下的具快速衰減之超寬頻濾波器1〇〇而言,該基 板110也可選擇-般商用基板,懸浮基板、陶甍基板、賴基板、 玻璃纖維基板、碳氫化合物喊基板、高溫錢喊、低溫共燒 鲁陶瓷、鐵弗龍基板、鐵弗龍玻璃纖維基板及鐵弗龍陶瓷基板,其 一 中懸浮基板為一般商用基板支撐一高度在接地所形成。使用商用 基板的優點是成本低,且製作容易。然而,為了能有效地整合主 被動元件至單一基板而達到系統單晶片(system on chip,soc),該 基板110可選擇如懸浮基板、矽基板、矽鍺基板及砷化鎵基板等 半導體性機板。其中,懸浮基板可以採用微機電(Micro Electn)_Mechanical ’ MEM)技術所形成的薄膜懸浮基板。 該第一射頻信號輪出/入埠120設置於該基板11〇的第一表面 200805880According to the first aspect of the present invention, the second step impedance resonance is crying today and the length of the anti-shirt and the recording unit is anti-resonant resonant mode. * 'P white resistance = the characteristic of (4), the structure in which the first-step impedance conjugate and the second external impedance resonate H are _. + 特征 according to the present invention - the characteristics of the + _ step impedance resonator and the second W white impedance resonator circuit form is the same minus, microstrip line, coplanar waveguide line, slot line and band Any of the structures in the group of lines. The above and other objects, features, and advantages of the present invention will become more apparent and understood. The present invention may be embodied in various forms, and the embodiments shown in the drawings and the following description are set forth in the accompanying drawings. An example of the invention is intended to be used to limit the invention to the particular embodiments shown and/or described in FIG. Reference is now made to FIG. 1 which shows a circuit block (Fig. 1(a)) and structure (1(b)) of a wideband filter with a finger-type stepped impedance resonator according to a first embodiment of the present invention. Figure) Schematic. Referring to Fig. 1(a), there is shown a circuit block diagram of a wideband frequency transformer 100 with a finger-type stepped impedance resonator according to an embodiment of the present invention. A first embodiment of a broadband filter 100 having a finger-type stepped impedance resonator according to the present invention includes a concept system using a substrate 110; a first-radio signal output/input 120; Two RF signal output/input electrodes 121; a first-step impedance resonator 130; and a second step impedance resonator 131. The /substrate substrate no has a first surface ln and a second surface 112. For ultra-wideband filters with fast attenuation of frequencies below 2 GHz, the substrate 110 can also be selected as a general commercial substrate, a suspension substrate, a ceramic substrate, a substrate, a glass fiber substrate, and carbon. The hydrogen compound shouts the substrate, the high temperature money shout, the low temperature co-fired ceramic, the Teflon substrate, the Teflon glass fiber substrate and the Teflon ceramic substrate, and one of the suspended substrates is formed by a general commercial substrate supporting a height at the ground. The advantage of using a commercial substrate is that it is low in cost and easy to manufacture. However, in order to effectively integrate the active and passive components to a single substrate to achieve a system on chip (soc), the substrate 110 may select a semiconductor device such as a floating substrate, a germanium substrate, a germanium substrate, and a gallium arsenide substrate. board. The suspension substrate may be a film suspension substrate formed by Micro Electron (Mechanical 'MEM) technology. The first RF signal wheeling/input 120 is disposed on the first surface of the substrate 11〇 200805880

ui ’作為該具指插式步階阻抗共振器之寬頻濾波器100之信號饋 出/入端。該第二射頻信號輸出/入埠121設置於該基板110的第一 表面111’作為該具指插式步階阻抗共振器之寬頻濾波器1〇〇之信 说饋出/入端。該第一麵信號輸出/入蜂120與該第二射頻信號輪 出/入埠121崎佳設計阻抗為5〇Ω,但亦可以是其他的特性阻抗 值。右遠第-射頻信號輸出/入埠12〇與該第二射頻信號輸出/入埠 121的阻抗不為,則與其他元件連接日夺,只要作一阻抗轉換 即可。該第-射頻信號輸出/入璋12〇與該第二射頻信號輸出/入埠 121之特性阻抗係為10-150歐姆。 ' 該第一步階阻抗共振器130設置於該基板110的第一表夜 11卜電性連接於該第一射頻信號輸出/入璋J如並且用於產生一第 -=之頻率響應。該第二步階阻抗共振器B1設置於該基板山 的第表面111 ’電性連接於該第二射頻信號輸出/入埠⑵,大致 平订地⑽於該第—步階阻抗共振器13G,以電磁方柄合 :飾阻抗共振請,並·於產生一第二之頻率響慮。該 弟-步階阻抗絲器㈣與該第二步階阻抗共顧⑶平行輕合Ui ' acts as a signal feed/in terminal of the wideband filter 100 with the finger-in stepped impedance resonator. The second RF signal output/input port 121 is disposed on the first surface 111' of the substrate 110 as a signal feed/in terminal of the broadband filter 1 of the finger-in stepped impedance resonator. The first surface signal output/input bee 120 and the second radio frequency signal in/out port 121 have a design impedance of 5 〇Ω, but may be other characteristic impedance values. When the impedance of the right-distance-RF signal output/input 埠12〇 and the second RF signal output/input 埠121 is not, it is connected to other components, as long as an impedance conversion is performed. The characteristic impedance of the first RF signal output/input 璋12〇 and the second RF signal output/input 埠121 is 10-150 ohms. The first step impedance resonator 130 is disposed on the first surface of the substrate 110 and is electrically connected to the first RF signal output/input and is used to generate a frequency response of the first. The second step impedance resonator B1 is disposed on the first surface 111' of the substrate mountain and electrically connected to the second RF signal output/input (2), substantially uniformly (10) to the first step impedance resonator 13G, The electromagnetic square handle is combined: the impedance is resonated, and the second frequency is generated. The younger-stepped resistance (4) is in parallel with the second step impedance (3)

的方式有共振器水平平行^L 行或_全區域平二二共振器邹分區域平 平平行。 千仃在此取佳_合方$為共振器全區域水 不同於对—卸·抗共振器、131所產生之第二通帶 藉由該第-步階阻抗共振器 130所產㈣-通帶之頻率係 之頻率,藉 200805880 曰強的電磁耦合方式使得該第一步階阻抗共振器⑽所產生之 Γ通^第^階阻抗共振器⑶所產生之第二通 5頻率以得到—寬的通帶響|。該第—步階阻抗共振器130與 “第"几阻抗共振H⑶係為指插絲合結構,其可視為一多 重,徑傳运域結構。該第一射頻信號輸出/入璋⑼直接鎮入於 該第w白阻抗共振器130及該第二射頻信號輸出/入埠⑵直接 鑌入於糾二步階阻抗共振器⑶,故從第-射頻信號輪出/入埠 通到邊弟一射頻信號輸出/入埠⑵會具有兩條傳送信號的路 徑。_此方法可設計出在通帶兩旁都具有一傳輸零點的現象, 故可使U產生快速衰減形成高選擇率.。藉由適當調整該第一步 階阻抗共振II m與該第二步階阻抗共振器131之間的耦合長度 或間距,其可改_合強度形成窄通帶或寬通帶的職。在本發 月貝關t a第-精阻抗共振器·無第二步_抗共振 器之電路結構為微帶線(mi_吨㈣結構,所以該基板⑽ 的第二表面112為接地面。然而需注意是,該具指插式步階阻抗 共振器之寬頻濾波器刚之該第一步階阻抗共振器⑽與該第二 步階阻抗共振器131亦可以使用其他的電路結構,如同軸線、微 帶線、共Φ波導線、獅與帶線所减鱗巾之任何—種結構。 請參照第2⑻圖,用以說明第1圖中該第-步階阻抗共振器 130之結構圖。該第一步階障抗共振器、13()為一第一阻抗單元1幻 (其阻抗為z2)、-第二阻抗單元133 (其阻抗為Ζι)與一第三阻抗單 12 200805880 元134(其阻抗為Z2)串接所組成。其中該第一阻抗單元132之導波 長與阻抗之健設計鱗於該第三阻抗單元m之導波長與阻 抗。所以可定義出該第-步階阻抗共振器13G之總導波長度㈣ 等於該第-P且抗單元132導波長⑽、該第二阻抗單元133導波長 (2Θ0與該第三阻抗單元134導波長(化)之總和,亦即是% :=2_2)。另外定義一第一阻抗比㈣為第-阻抗單元m之阻抗 / Z2除料二阻抗單元133之阻抗ζι),以及―第-較長比例Xl 籲定義絲第-阻抗單元132與該第三阻抗單元134之總和導波長 (2Θ2)除以總導波長度㈣。經由改變阻抗比&或其姆應的導波 長比例恥可移動該第一步階阻抗共振ϋ 130中不同共振模態(包 ^ 含基本共振模態與混附波模態)的頻率位置。 一同理,第2_用以說明該第二步階阻抗共振器ΐ3ι之結構。 5亥第一步階阻抗共振器131與該第—步階阻抗共振器⑽可為相 同的結構或不同的結構,較佳的設計條件為該第一步階阻抗共振 •器等於該第二步階阻抗共振器131。因此,該第二步階阻抗共 振器131為一第四阻抗單元135 (其阻抗為心)、一第五阻抗 136 (其阻抗為Za)與一第六阻抗單元印(其阻抗為串接所組 成。其中該第四阻抗單元135之導波長與阻抗之較佳設計等於該 第六阻抗單元m之導波長與阻抗。所以可定義出該第二步階阻 抗共振器、131總導波長度㈣等於該第四阻抗單元⑶導波長 ⑽、該第五阻抗單元136知皮長(2θ3)_第六阻抗單元137導^ 13 200805880 長⑽之總和,亦即是θί2,為)。另夕卜定義一第二阻抗比⑽ 為第四阻抗單元135之阻抗&除以第雖抗單元136之阻抗句, 以及第一導波長比例&定義成該第四阻抗單元出與該第六阻 抗單元m之總和導波長⑽)除以總導波長度㈣。經由改變阻抗 比r2或其相對應的導波長_ &,可移動該第二步階阻抗共振器 131中不同共振模態(包含基本共振模態與混附波模態)的頻率位 置。 、 忒第-步階阻抗共振器130與該第二步階阻抗共振器⑶可 二计於四分之-導波顏全導波長之間。藉剌時或部分調整該 第-阻抗比該第-導波長比例Χι,該第二阻抗比(攀該第 二導波長比例χ2 ’可得步階阻抗共鮮13G與該第二步 P她抗共振器131之不同共振模態的辭位置,合該第一步階 阻抗共振器m與該第二步階阻抗共振器131之不同共振模態即 可設計出·達於·以上的寬麵波器。在較㈣實施例中, 該第-wm(Rl)與娜二峨比㈣歧於丨讀值。 請參照第1_’在—具體實施财,該具有步階阻抗共振 盗之平_合寬趣波器觸係製作在㈣证碗涵基板上. 其中心頻率係設計在7.1GHz ;該第—步階阻抗共振器⑽與該第 二步階阻抗共振器131之結構完全相同。因此,該第—步階阻抗 錄器⑽與該第二步階阻抗共振胃m各為第一阻抗單元说、 該第二阻抗單元133及該第三阻抗單元134串接所組成。在選擇 200805880 阻抗比R产R2=2及X产χ2==〇 76,故第一阻抗單元132與第三阻抗 單το 134為138Ω;、線寬為0 3mm,第二阻抗單元133為線寬 為L44mm,其它參數為:g=〇lmm,s=〇imm,卜7咖及 L=11.2mm。請_第3 ^ ’說明該具有步階阻抗共振器之平行輕 合寬頻據波器励之頻率響應圖。由圖中可知,該寬頻遽波器中 心頻率為7.1GHz及頻寬比為95%,且在3 26GHz及n 3GHz都 各具有一個傳輸零點。 、、不上所述根據本發明之一種具指插式步階阻抗共振器之寬 頻濾、波器觸,其藉由_指插式步階阻抗共振器產生雙傳輸零點 及調變混,喊生3_dB頻寬比大於9G%社之具指插式步階 阻抗共振器之寬頻濾波器勘,其同時具有以下列優點:高頻化、 微小化、㈣整頻寬、易整合於半導體縣及具有高度的商業化 價值’各種材料之基板2GG皆可實現該具指插式步階阻抗共振器 之寬頻遽波器100。另外,具有低插入損失與高品質因素,可廣泛 應用於超寬頻無線通訊系統中。 雖然本發明已以前驗佳實施示,並非肋限定本 發明,任何熟f此憾者’在不脫離本發明之精神和範圍内,當 可作各種之更動與修改。如上述的解釋,都可以作各型式的^ 與變化’科會破壞此發明的精神。因此本發明之保護範爵當視 後附之申請專利範圍所界定者為準。 田 15 200805880 【圖式簡單說明】 第I圖顯示根據本發明第一杏 料_顯示為扪财第—步階阻抗共顧之細 ㈣第1圖中為第二步階_^ 弟3 _料·转階峨共 、^ 率響應圖。 ^~娜4㈣波斋之頻 【主要元件符號說明】 100具指插式步階阻抗共振器之寬親波器: 110基板111第一表面112第二表面 12(\第一射頻信號輪出/入琿⑵第二射頻信號輸出/入埠 130第-步階阻抗共振器131第二步階阻抗共振器 132第-阻抗單元133第二阻抗單元m第三阻抗單元 135第四阻抗單元136第五阻抗單元137第六阻抗單元 16The way there are resonators horizontally parallel ^L rows or _ full-area flat two-two resonators Zou sub-regions are flat and parallel. The Millennium is better here. The total energy of the resonator is different from that of the counter-discharger, and the second passband generated by 131 is produced by the first-step impedance resonator 130. With the frequency of the frequency system, the second-pass 5 frequency generated by the first-order impedance resonator (10) is generated by the second-order impedance resonator (10) by the electromagnetic coupling method of the second-order impedance resonator (10) to obtain the width Passing sound |. The first-step impedance resonator 130 and the "first" impedance resonance H(3) are referred to as a plug-in structure, which can be regarded as a multiple, radial transmission domain structure. The first RF signal output/input (9) is directly The first w white impedance resonator 130 and the second RF signal output/input 埠 (2) directly enter the second step impedance resonator (3), so the first-radio signal is turned on/off to the brother An RF signal output/input 埠(2) will have two paths for transmitting signals. _ This method can be designed to have a transmission zero point on both sides of the pass band, so that U can be quickly attenuated to form a high selectivity. Appropriately adjusting the coupling length or spacing between the first-order impedance resonance II m and the second-step impedance resonator 131, which can change the strength to form a narrow passband or a wide passband. Beiguan ta first-precision impedance resonator · no second step _ anti-resonator circuit structure is micro-belt line (mi_ ton (four) structure, so the second surface 112 of the substrate (10) is the ground plane. However, it should be noted that The first step of the broadband filter with the finger-type stepped impedance resonator The resonator (10) and the second step impedance resonator 131 can also use other circuit structures, such as an axis, a microstrip line, a common Φ waveguide line, a lion and a belt to reduce any scale structure. 2(8) is a diagram for explaining the structure of the first-step impedance resonator 130 in Fig. 1. The first step of the anti-resonator, 13() is a first impedance unit 1 (the impedance is z2) The second impedance unit 133 (having an impedance of Ζι) is connected in series with a third impedance unit 12 200805880 134 (the impedance of which is Z2), wherein the first impedance unit 132 has a guiding wavelength and impedance design scale. The wavelength and impedance of the third impedance unit m are defined. Therefore, it can be defined that the total guided wave length (4) of the first-step impedance resonator 13G is equal to the first-P and the anti-cell 132 is guided by the wavelength (10), and the second impedance unit 133 wavelengths (the sum of the wavelengths of 2Θ0 and the third impedance unit 134, that is, %:=2_2). Further, a first impedance ratio (4) is defined as the impedance of the first impedance unit m/Z2. The impedance ζι) of the impedance unit 133, and the “first-longer ratio X1” define the filament first-impedance unit 132 and the first The sum-conducting wavelength (2Θ2) of the tri-impedance unit 134 is divided by the total guided wave length (4). The different resonant modes in the first-order impedance resonating ϋ 130 can be moved by changing the impedance ratio & or its guiding wavelength ratio. The frequency position of the package includes the basic resonance mode and the mixed wave mode. Similarly, the second__ is used to describe the structure of the second step impedance resonator ΐ3ι. The first step impedance resonator (10) may have the same structure or a different structure. Preferably, the first step impedance resonator is equal to the second step impedance resonator 131. Therefore, the first The two-step impedance resonator 131 is a fourth impedance unit 135 (the impedance of which is a heart), a fifth impedance 136 (the impedance of which is Za), and a sixth impedance unit (the impedance is a series connection). The preferred design of the wavelength and impedance of the fourth impedance unit 135 is equal to the wavelength and impedance of the sixth impedance unit m. Therefore, the second step impedance resonator can be defined, the 131 total guided wave length (4) is equal to the fourth impedance unit (3) guiding wavelength (10), and the fifth impedance unit 136 is known to be skin length (2θ3)_the sixth impedance unit 137. 13 200805880 The sum of the long (10), that is, θί2, is). Further, a second impedance ratio (10) is defined as the impedance of the fourth impedance unit 135 & divided by the impedance sentence of the first anti-cell 136, and the first pilot wavelength ratio & defines the fourth impedance unit to be the same The sum of the six impedance units m (10) is divided by the total guided wave length (four). The frequency position of the different resonance modes (including the fundamental resonance mode and the mixed wave mode) in the second step impedance resonator 131 can be shifted by changing the impedance ratio r2 or its corresponding pilot wavelength _ & The first-step impedance resonator 130 and the second-step impedance resonator (3) can be counted between the four-way-guided light-guided wavelengths. When the first impedance is proportional to the first-conducting wavelength ratio Χι, the second impedance ratio (the second-conducting wavelength ratio χ2' can obtain the step-impedance symmetry 13G and the second step P The position of the different resonant modes of the resonator 131, together with the different resonant modes of the first-order impedance resonator m and the second step impedance resonator 131, can design a wide-surface wave of more than In the (4) embodiment, the first-wm(Rl) and the Na-Din (4) are different from the reading value. Please refer to the 1st_'in--the specific implementation, which has the step impedance resonance stolen The wide fun wave contact system is fabricated on the (4) board culvert substrate. The center frequency is designed at 7.1 GHz; the first step impedance resonator (10) is identical in structure to the second step impedance resonator 131. Therefore, The first step impedance recorder (10) and the second step impedance resonance stomach m are each composed of a first impedance unit, the second impedance unit 133 and the third impedance unit 134. The impedance ratio is selected at 200805880. R produces R2=2 and X produces χ2==〇76, so the first impedance unit 132 and the third impedance single το 134 are 138 Ω; It is 0 3mm, the second impedance unit 133 has a line width of L44mm, and other parameters are: g=〇lmm, s=〇imm, Bu 7 coffee and L=11.2mm. Please _ 3 ^ ' description of the step impedance The frequency response diagram of the parallel and light-frequency wide-band data of the resonator is shown in the figure. The center frequency of the broadband chopper is 7.1 GHz and the bandwidth ratio is 95%, and each has a single at 3 26 GHz and n 3 GHz. Transmission zero point, not the wide-band filter and wave device touch with a finger-type stepped impedance resonator according to the present invention, which generates a double transmission zero point and modulation by a _ finger-insertion step impedance resonator Mixed, shouting 3_dB bandwidth ratio greater than 9G% of the wide-band filter with finger-type stepped impedance resonator, which has the following advantages: high frequency, miniaturization, (four) full bandwidth, easy to integrate The semiconductor county and the high-commercial value of the substrate 2GG of various materials can realize the wide-band chopper 100 with the finger-type stepped impedance resonator. In addition, it has low insertion loss and high quality factor, and can be widely applied. Ultra-wideband wireless communication system. Although the invention has been implemented beforehand It is to be understood that the invention is not limited by the scope of the invention, and that various changes and modifications may be made without departing from the spirit and scope of the invention. The Society will destroy the spirit of this invention. Therefore, the protection of the present invention is defined by the scope of the patent application. Field 15 200805880 [Simplified illustration] Figure I shows the first apricot according to the present invention _ The display is for the wealth of the first step-step impedance (four) in the first picture is the second step _^ brother 3 _ material · turn 峨 common, ^ rate response map. ^ ~ Na 4 (four) wave fast frequency [mainly Description of component symbols] 100 wide-wave filter with finger-type stepped impedance resonator: 110 substrate 111 first surface 112 second surface 12 (\first RF signal turn-in/in 珲 (2) second RF signal output/in埠130 first-step impedance resonator 131 second-step impedance resonator 132-impedance unit 133 second impedance unit m third impedance unit 135 fourth impedance unit 136 fifth impedance unit 137 sixth impedance unit 16

Claims (1)

200805880 十、申請專利範圍: 1、心插^步階阻抗共振n之寬乡貞濾波器,其至少包含·· -基板,具有—第—表面及一第二表面; r第一射頻信號輸出/人埠’設置於該基板的第-表面,用於作 亥具⑽式步贿抗共振Ε之寬麵波器之雜饋以入端; 一第二射頻信號輸出/人埠,設置於該基板㈣—表面,用於作 二:、彳日插式步階W/L紐_之寬賴波器之錢饋出/入端; :第:步階阻抗共振器,至少由—阻抗為Ζι之第—阻抗單元與 抗為Z2之第—阻抗單元串接所組成,屬置於絲板的第一 =,係電性連接於該第一射頻信號輸出/入蜂,其用於產生一 弟一通帶之頻率響應; ’至少由―阻抗為&之第三阻抗單元與 抗為&之第四阻抗單元串接所組成,設置於該基板的第一 "、振^,以電磁方式耦合於該第一步階阻 其用於產生—第二通帶之頻率響應; 一中,藉由調整一第一阻括κτ? &除 疋義為第-Ρ且抗單元之阻抗 :时Γγ阻抗單元之阻抗2推—第二阻抗輝2,定義為第 ===较阻抗Ζ4除以第四阻抗單元之阻抗Ζ3),可輕合該 能以2阻ί共振器與該第二步階阻抗共振11之不同共振模 心Μ件到一寬的通帶響應。 200805880 2·如申請專概圍第1項所述之具赫式步酿抗共振器之寬頻 濾波益’其中該基板係選自懸浮基板、矽基板、砷化鎵基板、 陶兗基板、玻璃基板、玻璃纖維基板、碳氫化合物陶曼基板、 鐵弗龍基板、鐵弗龍玻璃纖維基板及鐵弗龍陶瓷基板之一。 3·如申請專纖圍第1項所述之具指插式步階阻抗共振器之寬頻 : 濾、波器,其中該第一步階阻抗共振器與該第二步階阻抗共振器 一 係為指插式耦合結構。 參4·如申請專利範圍第3項所述之具指插式步階興抗共振器之寬頻 濾波器,其中該指插式耦合結構可調整間距改變耦合強度。 .5·如申請專利範圍第1項所述之具指插式步階阻抗共振器之寬頻 , 濾波器,其中該第一步階阻抗共振器與該、第二步階阻抗共振器 係介於四分之一導波長到全導波長之間。: 6·如申請專利範圍第5項所述之具指插式步階阻抗共振器之寬頻 濾波器,其中該第一步階阻抗共振器與該第二步階阻抗共振器 ® 可调整_合長度改變搞合強度。 一 7.如申請翻範®第1項所述之具指插式倾阻抗共振器之寬頻 濾波态,其中藉由調整該第一步階阻抗共振器之該第一阻抗單 兀、該第二阻抗單元之導波長度可調整該第一步階阻抗共振器 之共振模態。 8.如申請專利範圍第1項所述之具指插式步階阻抗共振器之寬頻 濾波器,其中藉由調整該第二步階阻抗共振器之該第四阻抗單 18 200805880 疋、该第五阻抗單元之導波長度可調整該第二步階阻抗共振器、 之共振模態。/ " 9. 如申請專利範圍第】項所述之具指插式步階阻抗共振器之寬頻 濾'波器’其巾_第—步階阻抗共振II與該第二步階阻抗共振器 係為相同的結構。 ··· ° 10. 如申,專利顧第丨項所述之具指插式步階阻抗共振器之寬頻 濾波器’其中該第一步階阻抗共振器與該第二步階阻抗共振器 之電路化式麵同軸線、微帶線、共面波導線、槽線與帶線所 組成族群中之任何一種結構。200805880 X. Patent application scope: 1. The wide-band 贞 filter of the step-in-step impedance resonance n, which at least includes a substrate with a first surface and a second surface; r a first RF signal output/ The human body is disposed on the first surface of the substrate, and is used for making a miscellaneous feed of the wide surface wave device of the anti-resonance 亥 (10) type; a second RF signal output/personality is disposed on the substrate (4) - Surface, used for the second:, the plug-in step W/L button _ the wide-band filter of the money feed / input; : the first: step impedance resonator, at least by - impedance is Ζι The first-impedance unit is composed of a series-impedance unit of the resistance Z2, and is the first= placed on the silk plate, and is electrically connected to the first RF signal output/into bee, which is used to generate a brother-one pass. The frequency response of the band; 'at least consisting of a third impedance unit with an impedance of & and a fourth impedance unit of the impedance & the first impedance of the substrate, electromagnetically coupled In the first step, the first step is used to generate a frequency response of the second pass band; Including κτ? & 疋 为 第 第 Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ 阻抗 — — — — 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二Ζ3), which can be used to achieve a wide passband response between the two resistive resonators and the second step impedance resonance 11 of the resonant cavity. 200805880 2·If you apply for the wide-band filter with the Hercules anti-resonator as described in item 1, the substrate is selected from the group consisting of a suspended substrate, a germanium substrate, a gallium arsenide substrate, a ceramic substrate, and a glass substrate. One of a glass fiber substrate, a hydrocarbon terrarium substrate, a Teflon substrate, a Teflon glass fiber substrate, and a Teflon ceramic substrate. 3. If you apply for the wide frequency of the finger-type step impedance resonator as described in item 1 of the special fiber circumference: filter and wave device, wherein the first step impedance resonator and the second step impedance resonator are Refers to the plug-in coupling structure. A wideband filter having a finger-inserted step-up anti-resonator as described in claim 3, wherein the finger-insertion coupling structure adjusts the pitch to change the coupling strength. .5. The broadband, filter of the finger-type stepped impedance resonator according to claim 1, wherein the first step impedance resonator is interposed with the second step impedance resonator One quarter of the wavelength is between the wavelengths of the full conductance. 6: The wideband filter with a finger-type stepped impedance resonator according to claim 5, wherein the first step impedance resonator and the second step impedance resonator are adjustable The length changes to the strength of the fit. 1. The broadband filter state of the finger-type tilt-impedance resonator according to claim 1, wherein the first impedance unit and the second portion of the first-order impedance resonator are adjusted The guided wave length of the impedance unit adjusts the resonant mode of the first-order impedance resonator. 8. The wideband filter with a finger-type stepped impedance resonator according to claim 1, wherein the fourth impedance single 18 200805880 调整, the first The guided wave length of the five impedance unit can adjust the resonant mode of the second step impedance resonator. / " 9. Broadband filter with a finger-type stepped impedance resonator as described in the scope of the patent application, the towel_first-step impedance resonance II and the second-step impedance resonator The same structure. ··· ° 10. The wide-band filter with a finger-type stepped impedance resonator as described in the patent, the first step impedance resonator and the second step impedance resonator Any of a group of circuitized surface coaxial lines, microstrip lines, coplanar waveguide lines, slot lines and strip lines. 1919
TW95124787A 2006-07-07 2006-07-07 A wideband filter with interdigital stepped impedance resonators TWI318824B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95124787A TWI318824B (en) 2006-07-07 2006-07-07 A wideband filter with interdigital stepped impedance resonators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95124787A TWI318824B (en) 2006-07-07 2006-07-07 A wideband filter with interdigital stepped impedance resonators

Publications (2)

Publication Number Publication Date
TW200805880A true TW200805880A (en) 2008-01-16
TWI318824B TWI318824B (en) 2009-12-21

Family

ID=44766188

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95124787A TWI318824B (en) 2006-07-07 2006-07-07 A wideband filter with interdigital stepped impedance resonators

Country Status (1)

Country Link
TW (1) TWI318824B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416792B (en) * 2009-11-19 2013-11-21 Univ Kun Shan Ultra - wide frequency filter with buried structure
TWI475744B (en) * 2011-05-20 2015-03-01 Univ Kun Shan Planar transparent dual-band bandpass filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466442B (en) 2011-12-07 2014-12-21 Ind Tech Res Inst Inter-digital bulk acoustic resonator
CN110828967B (en) * 2019-11-19 2022-07-29 榆林学院 Multi-frequency miniaturized folding monopole antenna with loading grounding LC structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416792B (en) * 2009-11-19 2013-11-21 Univ Kun Shan Ultra - wide frequency filter with buried structure
TWI475744B (en) * 2011-05-20 2015-03-01 Univ Kun Shan Planar transparent dual-band bandpass filter

Also Published As

Publication number Publication date
TWI318824B (en) 2009-12-21

Similar Documents

Publication Publication Date Title
TWI239116B (en) Dual-band bandpass filter
TW201014027A (en) Filtering device and related wireless communication receiver
US8305283B2 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
Zhang et al. Design of microstrip dual-mode filters based on source-load coupling
US5363073A (en) Saw resonator filter with a multistrip coupler disposed in the resonator gaps
CN109462000A (en) A kind of three rank model filters power splitter of multi layer substrate integrated waveguide
TW200805880A (en) A wideband filter with interdigital stepped impedance resonators
US8260242B2 (en) Bandpass filter, and radio communication module and radio communication device using same
Bai et al. Compact quintuple notched-band UWB BPF with high selectivity and wide bandwidth
TWI301683B (en) An ultra wide band (uwb) filter with wide stopband
TWM306395U (en) A hairpin-line wideband filter
TW200805774A (en) An ultra wide band (UWB) diplexer
Ren et al. A novel wideband bandpass filter using a cross-shaped multiple-mode resonator
CN103281096A (en) Filtering device and related wireless communication receiver
Chu et al. A high isolation and low loss duplexer based on SISL platform
TWM304781U (en) Parallel coupled line ultra wide band (UWB) filter with dual open stubs
TW200937728A (en) A single stepped-impedance resonator ultra wide band filter
Boufouss et al. High Selectivity Dual-Band Bandpass Filter for 5G Mobile Communications
TWM304783U (en) Parallel coupled line wideband filter with stepped impedance resonators
Chieh et al. Development of a wide bandwidth Wilkinson power divider on multilayer organic substrates
TWI307576B (en) An ultra wide band (uwb) filter with enhanced coupling
TWM311129U (en) Hairpin-line wideband filter with the spurious response suppression
TWM295345U (en) An ultra wide band (UWB) filter with interdigital coupled lines
TWI416792B (en) Ultra - wide frequency filter with buried structure
He et al. A simple and planar notched-wideband bandpass filter with multipole Poles and zeros

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees