TWI301683B - An ultra wide band (uwb) filter with wide stopband - Google Patents

An ultra wide band (uwb) filter with wide stopband Download PDF

Info

Publication number
TWI301683B
TWI301683B TW95114327A TW95114327A TWI301683B TW I301683 B TWI301683 B TW I301683B TW 95114327 A TW95114327 A TW 95114327A TW 95114327 A TW95114327 A TW 95114327A TW I301683 B TWI301683 B TW I301683B
Authority
TW
Taiwan
Prior art keywords
substrate
resonator
ultra
wide
frequency
Prior art date
Application number
TW95114327A
Other languages
Chinese (zh)
Other versions
TW200742161A (en
Inventor
Hsin Hsien Wu
Cheng Yuan Hung
Min Hang Weng
ru yuan Yang
Original Assignee
Advance Design Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Design Technology Inc filed Critical Advance Design Technology Inc
Priority to TW95114327A priority Critical patent/TWI301683B/en
Publication of TW200742161A publication Critical patent/TW200742161A/en
Application granted granted Critical
Publication of TWI301683B publication Critical patent/TWI301683B/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

1301683 、 九、發明說明: 【發明所屬之技術領域】 • 本發明係有關於一種濾波器,其特別有關於一種具寬止帶且 . 快速衰減之超寬頻濾波器,其可被應用於超寬頻無線通訊系統中。 【先前技術】 現今人們所追求無線通訊之主要目標包括有高速、省電、低 φ 發射功率與低成本等。目前採用的無線區域網路(WLAN)與藍芽 (Bluetooth)系統將無法繼續滿足人們對傳輸大量數位資料的要 求。另一方面,有鑑於人類對於健康問題的重視;太強能量的無 、線電磁波將會有害於人類的健康;故低發射功率的無線通訊系統 是目前最迫切需要的。 在一般的無線通系統中,以接收機為例。射頻電路係位於 收發系統的前端。射頻訊號經由天線(Antenna)接收到後,再經由 • 濾波器(Filter)、低雜訊放大(LNA),以及藉著電難制振盛器(VC0) 提供本地振_雖〇 Signal)與射舰號在驗㈣降頻至 中頻訊號(IFSignal),最終輸入至訊號處理器並將其轉成所需的基 頻資訊。在射觸端電路巾,濾波器通常位在天線關後端。其 主要用途就是過濾非必要之峨,響部份訊鮮赠過,而阻 b其他H濾波1§亦是具關鍵性的被動元件之—。以行動電話 為例被動元件佔了主機板上將近05%的面積丨其中又以滤波器 為幸乂具彳胃值的關鍵TL件。因域波器喃轉性會間接影響後端 6 1301683 電路在處理信號時的準確度與失真率,由此可見濾波器頻率特性 的優劣將決定無線通訊系統的品質。 為了要提供一種具有高速傳輸能力與低發射功率的無線通訊 系統’超寬頻(Ultra Wide Band, UWB)系統即可達到此一目標。超 見頻系統是一種嶄新的無線個人區域網路(wpAN)技術標準。 UWB的頻譜範圍極廣,從3432MHz至l〇296MHz,以 做為-個頻帶的單位,將頻譜切割為5個通道(Ch_ei),可用來 進行尚速且大里的資料傳輸(最高可達5〇〇MbpS)。在美國聯邦通訊 委員會(Federal Communications Commission,FCC)訂定的 UWB 系 、、’充通準中’其頻兔範圍需在s 之間。為了符合 的鮮應’在UWB的射頻前端電路中,許多主被動元件需要重 新設計,特別是最具價值之功能性射頻被動元件-遽波器。在傳統 ^線通訊系財,例如卿謝1/a騎與藍芽祕。濾波器多 是用來建構窄頻(Narrow band)的頻率響應,或是用來設計多頻響 應的遽波器。為了符合UWB的頻率響應,傳統窄頻帶的滤波器已 不適用。有需要重新設計一種具有超寬頻特性之渡波器。 為了解決上述問題’有需要提供一種具快速衰減之超寬頻濾 =器以克服先前技術的缺點。職是之故,巾請人乃細試驗與研 究’並-柄而不捨的精神’終於研究出_共振器本身物理結 構達到倍頻的消除以及利用傳輸零點改善通帶外的止帶響應。 13〇1683 【發明内容】 鐘於《上•技術之_,本翻提供—種具寬止帶且快速 衷减之超寬頻濾波器,其可被應用於超寬頻無線通訊李统中。 本^之目的在额供_料寬㈣城速衰叙超寬麟 =改=!?振器本身物理結構形成倍頻的消除以及利用傳輸 v ”、、占改善通帶外的止帶響應。 為達上述目的,本發明提供一 其至少包含-[射_埠;%’ 埠;一楚一 弟一射頻“唬輸出/入 ^域早喊性連接於該第—_信號 :::::連接:該第二射頻信號輪_-第-共振器 減單元且大二 之超寬頻濾波器之传梦參山w 1心、見止絜 作為該且寬止帶之貝’4第—射頻信號輸出/入埠用於 見〜之超寬頻濾波器之信號饋出/入端1301683, IX, invention: [Technical field of the invention] The present invention relates to a filter, and more particularly to an ultra-wideband filter with wide stop band and fast attenuation, which can be applied to ultra-wideband In a wireless communication system. [Prior Art] The main goals of wireless communication today include high speed, power saving, low φ transmit power and low cost. The current wireless local area network (WLAN) and Bluetooth systems will not continue to meet the demand for the transmission of large amounts of digital data. On the other hand, in view of human attention to health issues; the lack of energy and line electromagnetic waves will be harmful to human health; therefore, wireless communication systems with low transmission power are currently the most urgently needed. In a general wireless communication system, a receiver is taken as an example. The RF circuit is located at the front end of the transceiver system. The RF signal is received via the antenna (Antenna), and then provided by the Filter, Low Noise Amplification (LNA), and the Local Vibration by the Electric Diffuser (VC0). In the test (4), the frequency is down-converted to the intermediate frequency signal (IFSignal), and finally input to the signal processor and converted into the required fundamental frequency information. At the end of the circuit, the filter is usually located at the back end of the antenna. Its main purpose is to filter unnecessary shackles, and to send some of the news, and to block other H filters 1 § is also a key passive component. Taking mobile phones as an example, passive components account for nearly 05% of the area on the motherboard, and the filter is a key TL for the fortunate to have a stomach value. Because the domain wave rotatory effect will indirectly affect the accuracy and distortion rate of the back-end 6 1301683 circuit when processing signals, it can be seen that the quality of the filter frequency characteristics will determine the quality of the wireless communication system. This goal can be achieved in order to provide a wireless communication system 'Ultra Wide Band (UWB) system with high-speed transmission capability and low transmission power. The Overclocking System is a new wireless personal area network (wpAN) technology standard. UWB's spectrum range is very wide, from 3432MHz to l〇296MHz, as a unit of one frequency band, the spectrum is cut into 5 channels (Ch_ei), which can be used for data transmission at speed and up to 5〇. 〇MbpS). In the UWB system set up by the Federal Communications Commission (FCC), the range of the frequency of the rabbits must be between s. In order to meet the requirements of the fresh front end of the UWB RF front-end circuit, many active and passive components need to be redesigned, especially the most valuable functional RF passive components - chopper. In the traditional ^ line communication system, such as Qing Xie 1 / A ride with the blue buds. Filters are often used to construct a narrow-band (Narrow band) frequency response or to design a multi-frequency response chopper. In order to comply with the frequency response of UWB, the traditional narrowband filter is no longer applicable. There is a need to redesign a ferrite with ultra-wideband characteristics. In order to solve the above problems, it is desirable to provide an ultra-wideband filter with fast attenuation to overcome the disadvantages of the prior art. The job is the reason, the towel invites people to carefully test and study the 'and the spirit of the handle' and finally researched _ the physical structure of the resonator itself to achieve the elimination of the multiplier and the use of transmission zero to improve the stop band response outside the passband. 13〇1683 [Summary of the Invention] Zhong Yu is on the "Technology", which provides a wide-bandwidth and fast-reducing ultra-wideband filter, which can be used in ultra-wideband wireless communication Li Tongzhong. The purpose of this ^ is in the amount of supply _ material width (four) city speed deflation super wide lin = change =!? The physical structure of the vibrator itself to eliminate the frequency multiplication and the use of transmission v", to improve the stop band response outside the passband. In order to achieve the above object, the present invention provides that it includes at least -[射_埠;%' 埠; one Chu, one brother, one radio frequency, "唬output/input domain, early spoofing connection to the first-_signal::::: Connection: the second RF signal wheel _-the first-resonator minus unit and the so-called ultra-wideband filter of the second-order ultra-wideband filter, the dream of the mountain w 1 heart, see the 絜 as the wide band of the shell '4 first - RF signal Output/input 埠 is used to see the signal feed/in terminal of the ultra-wideband filter

=產生-第-通帶之頻率響應;:T 通帶之頻率響應;該第4於產生-第二 衰減單元產生_衰鱗:早_於產生-衰鱗應;該第二 根據本發明之—牲 之頻率係不同於轉二:,〔雜—共振11所產生之第1帶 振态所產生之第二通帶之頻率, 強的電—方式使得該第一_所產生之第二 1301683 近該弟二 應0 共振器所產生之第二通帶之頻率以得到一 i的通帶響 一共振器與該第二共振器之 一共振器可調整導波長度改 二共振器可調整導波長度改= frequency response of the generation-first passband;: frequency response of the T passband; the fourth generation of the second attenuation unit produces a fading scale: early _ generation-fading scale; the second according to the invention - the frequency of the animal is different from that of the second:, [the frequency of the second passband generated by the first vibration state generated by the hetero-resonance 11, the strong electric-mode makes the second 1301683 generated by the first_ The second passband of the 0 resonator should be near the frequency of the second passband to obtain a passband of a resonator and a resonator of the second resonator. The adjustable pilot length can be adjusted. Wave length change

根據本發明之一特徵,其中該第 最佳長度為四分之一導波長。 根據本發明之一特徵,其中該第 變該第一通帶之頻率。 根據本發明之一特徵,其中該第 變該第二通帶之頻率。 根據本發狀—韻’其巾該第—衰解元触第二衰減單 元之最佳長度為四分之一導波長。 根據本發明之—特徵,其巾該第—衰減單元可罐導波長度 改變該衰減響應中心頻率。 根據本發明之一特徵,其中該第二衰減單元可調整導波長产 改變该衣減響應中心頻率。 根據本發明之一特徵,其中該第一共振器與該第二共振器之 電路形式係為同軸線、微帶線、共面波導線、槽線與帶線所組成 族群中之任何一種結構。 為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂, 下文特舉數個較佳實施例,並配合所附圖式’作詳細說明如下。 【實施方式】 雖然本發明可表現為不同形式之實施例,但附圖所示者及於 9 1301683 :文中^月者係為本發明可之較佳實施例,並請了解本文所揭示 一’、4柯明之_|&例,且並非意關以將本發明限制於圖 不及/或所描述之特定實施例中。 現明茶考第1圖,其顯示根據本發明第一實施例之具寬止帶 之超寬頻渡波器勘之電路方塊(第1(a)圖)與結構(第1(b) 圖^意圖。請參照第!(_,其所稿本發明之第-實施例之 具見止π之超寬頻濾波器細之電路方塊示意圖。根據本發明之 一種具寬止帶之超寬賴波器⑽之第一實施例,其包含概念係 使用-基板110 ;-第―射頻信號輸出/人和Q —第二射頻作號 輸出料m ; -第—衰減單元⑽;一第二衰減單元i3i; ^ 一共振态140 ;及一第二共振器141。 该基板no具有一第一表自m及一第二表面ιΐ2。對於操作 頻率在20GHz以下的具快速衰減之超寬頻濾波器励而言,該基 板110也可選擇一般商用基板,懸浮基板、陶兗基板、玻璃基板、 玻璃纖維基板、碳氫化合物陶絲板、高溫共燒喊、低溫共燒 陶兗、鐵弗絲板、轉龍玻璃鱗基板及鐵弗龍喊基板,其 中懸浮基板為-般義基板支撐—高度在接地所職。使用商用 基板的優點是成本低,且製作料。_,為了能有效地整合主 被動元件至單基板而達到系統單晶片吻伽^ ,sqc),該 基板110可選擇如懸浮基板、秒基板、砍錯基板及神化鎵基板等 半導體性機板。其中,懸浮基板可以採用微機電(聽阳 1301683According to a feature of the invention, the first preferred length is a quarter of a wavelength. According to a feature of the invention, wherein the frequency of the first pass band is changed. According to a feature of the invention, wherein the frequency of the second pass band is changed. According to the present invention, the optimum length of the second attenuation unit of the first-decay element is a quarter-wavelength. According to a feature of the invention, the first attenuation unit of the towel can change the attenuation response center frequency by the can waveguide length. According to a feature of the invention, the second attenuating unit is operative to adjust the pilot wavelength to change the center of the garment response center. According to a feature of the invention, the circuit form of the first resonator and the second resonator is any one of a group consisting of a coaxial line, a microstrip line, a coplanar waveguide line, a slot line and a strip line. The above and other objects, features, and advantages of the present invention will become more apparent and understood by the appended claims. [Embodiment] Although the present invention may be embodied in various forms, the drawings and the description of the present invention are the preferred embodiments of the present invention, and And 4, and are not intended to limit the invention to the specific embodiments described and/or described. A tea chart 1 showing the circuit block (Fig. 1(a)) and structure (Fig. 1(b)) of the ultra-wideband waver with a wide band in accordance with the first embodiment of the present invention Please refer to the section! (_, the schematic diagram of the circuit of the ultra-wideband filter with the π of the first embodiment of the present invention. The ultra-wideband filter with a wide band (10) according to the present invention. The first embodiment comprises a concept system using a substrate 110; - a first radio frequency signal output / a human and a Q - a second radio frequency output material m; - a first attenuation unit (10); a second attenuation unit i3i; a resonant state 140; and a second resonator 141. The substrate no has a first meter from m and a second surface ι2. For ultra-wideband filter excitation with fast decay below 20 GHz, the The substrate 110 can also select a general commercial substrate, a suspension substrate, a ceramic substrate, a glass substrate, a glass fiber substrate, a hydrocarbon ceramic board, a high temperature co-firing, a low temperature co-fired pottery, an iron wire board, and a dragon glass scale. The substrate and the Teflon shout the substrate, wherein the suspended substrate is supported by a substrate In the grounding position, the advantage of using the commercial substrate is that the cost is low, and the material is made. _, in order to effectively integrate the active and passive components to the single substrate to achieve the system single chip kiss gamma, sqc), the substrate 110 can be selected as a floating substrate , a second substrate, a erroneous substrate, and a gallium substrate such as a gallium substrate. Among them, the suspension substrate can be micro-electromechanical (Tianyang 1301683)

Electro-Mechanica卜MEM)技術所形成的薄膜懸浮基板。該第一射 頻信號輸出/入埠12〇設置於該基板110的第一表面lu,作為該 具寬止帶之超寬頻濾波器1〇〇之信號饋出/入端。該第二射頻信號 輸出/入埠121設置於該基板no的第一表面U1,作為該具寬止 帶之超寬頻濾波器1〇〇之信號饋出/入端。該第一射頻信號輸出/ 入埠120與該第二射頻信號輸出/入埠121的最佳設計阻抗為邓 Ω,但亦可狀其他的特性阻抗值。若該該第—射頻信號輸出/入 埠12〇與該第二射頻信號輸出/入淳U1雜抗不為⑽,則與其 他元件連接時,只要作一阻抗轉換即可。該第—㈣信號輸出/入 淳120與該第二射頻信號輸出/入力阜121之特性阻抗係為1〇咖歐 姆0 該第-共振器140設置於該基板110的第一表面m,電性連 接於該第-衰減單元13〇並且用於產生一第一通帶之頻率響應。 該第二共振n m設置於該基板11G的第—表面ω,電性:於 該第二衰減單元131,Α致平行地相對於該第—共振器⑽,以電 磁方式耦合麟第-錄H 14〇,並且用域H通帶之頻^ 響應。該第-共振H 140與該第二共振$ W1平行麵合的方式有 共振器水平平行、共振測斜平行、舰卿分區域平行或共振 器全區域平行’在此最佳_合对為舰水平平^ 在本發明實施例中’該第-共振H 14G與該第二共脑⑷之電 路結構為微帶線(miCrostripline)結構,所以該基板11〇的第二表面 11 1301683 112為接地面。然而需注意是,該具寬止帶之超寬頻濾波器ι〇〇之 該第一共振器140與該第二共振器141亦可以使用其他的電路結 構’如同軸線、微帶線、共面波導線、槽線與帶線所組成族群中 之任何一種結構。此外,在本發明實施例中,該第一共振器14〇 與該第二共振器141係使用線形(Linear)共振器結構。然而,該第 共振為140與該弟一共振态141結構亦可以採用步階式阻抗 (Step Impedance resonator,SIR)共振器、環形(Ring)共振器、髮失型 (Hairpin)共振器、梳型(Combline)、片形(Patch)共振器與介電共振 器(Dielectric resonator,DR)所組成族群中之任何一種共振器結構。 該第一衰減單元130設置於該基板110的第一表面lu,電性 連接於該第一射頻信號輸出/入埠12〇並且用於產生一衰減響應。 該第二衰減單元131設置於該基板110的第一表面111,電性連接 於該第二射頻信號輸出/入埠121並且用於產生一衰減響應。該第 -哀減單元130與該第二衰減單元131可視為一開路捲(〇penstub) 的裝置。藉由該開路樁係可產生傳輸零點(transmissi〇nzer〇),其可 提升通帶外的衰減速率,並且有效阻隔通帶外的雜訊干擾。 請芩照第2(a)與2(b)圖,該具寬止帶之超寬頻濾波器ι〇〇的耦 合響應圖。在本發明實施例中,使用RT-Duroid 5880基板110,該 第射齡5虎輪出/入立皐12〇與該第二射頻信號輸出/入淳121的最 又。十阻抗為5〇·。為求得該具寬止帶之超寬頻濾波器擺的麵 口·#應忒第一衰減單元13〇與該第二衰減單元131需先移除(l=〇 12 1301683 mm)才能進行討論。 根據鏡像阻抗公式: Z{ = 2 ^〇^z〇〇 f · CSC2 θ - (Zoe + ZOQ (1) 其中,0為導波長度、Ζ。。為偶模阻抗及Zq。為奇模阻抗。在 Z°e>Z。。的狀態下,可求得該第一共振器140與該第二共振器141 可設計於二十分之三導波二十分之七導波長之間,其最佳的 設計長度為四分之一導波長度。當物理長度為四分之一導波長 時,將不會有2倍頻的混附波產生。因此四分之一導波長的第一 共振器140與第二共振器141,可自然形成寬止帶響應的超寬遽波 ™ "亥第一共振器140與該第二共振器141都固定為四分之一導 波長(中心頻率為5.2GHz)的狀態下,改變不同的‘與z。。可獲得 不同的通帶響應變化。 現請參照第2⑻圖,當Z〇e=198_ ζ〇〇=67Ω時,該第一共振 器140與該第二共振器141的寬度w=〇 3mm且間距仁〇1腿。當 Zoe- 189Ω與ZTO=8GQ時,該第-共振器14G與該第二共振器141 的紐w=o.3mm且間距s=0.2mm。當^灿與z〇〇=89Q時, 〜第/、振益140與该第二共振器141的寬度w=〇 3麵且間距 3l»m w zoe-176 Ω與Ζ〇〇=96 Ω時’該第一共振器、14〇與該第 二共振器141的寬度w=a3_且間距s=Q4mm。在此可觀察到間 〜越J ¥可獲知到更大的頻寬’因此藉由不同的間距調變,該 具寬止帶之超寬頻驗H !⑻可獲制不_頻寬大小。 13 13〇1683 現請參照第2(b)圖,當Zoe=228Q與Ζ〇〇=74Ω時,該第一共振 口口 140與δ亥弟一共振器141的寬度w=〇.2mm且間距s=0.1mm。當 Zoe=198Q與Ζ00=67Ω時,該第一共振器14〇與該第二共振器141 的見度 w=〇.3mm 且間距 s=〇.imm。當 z〇e=176Q與 ‘=61 Q 時,A film suspension substrate formed by Electro-Mechanica MEM) technology. The first RF signal output/input port 12 is disposed on the first surface lu of the substrate 110 as a signal feed/in terminal of the ultra-wideband filter 1B having a wide band stop. The second RF signal output/input port 121 is disposed on the first surface U1 of the substrate no as a signal feed/in terminal of the ultra-wideband filter 1〇〇 having a wide band stop. The optimal design impedance of the first RF signal output/input 120 and the second RF signal output/input 121 is Deng Ω, but other characteristic impedance values may be used. If the first RF signal output/input 〇12〇 and the second RF signal output/input 淳U1 are not (10), the other components may be connected as long as an impedance conversion. The characteristic impedance of the first (four) signal output/input 120 and the second radio frequency signal output/input voltage 121 is 1 欧姆 ohm 0. The first-resonator 140 is disposed on the first surface m of the substrate 110, and is electrically Connected to the first attenuation unit 13A and used to generate a frequency response of a first passband. The second resonance nm is disposed on the first surface ω of the substrate 11G, and is electrically coupled to the second attenuation unit 131 in an electromagnetically coupled manner with respect to the first resonator (10). 〇, and respond with the frequency of the domain H passband. The first resonance H 140 and the second resonance $ W1 are parallel to each other in such a manner that the resonators are horizontally parallel, the resonance is parallel, the ship is parallel to the region, or the resonator is parallel to the entire region. In the embodiment of the present invention, the circuit structure of the first resonance H 14G and the second common brain (4) is a miCrostripline structure, so the second surface 11 1301683 112 of the substrate 11 is a ground plane. . It should be noted, however, that the first resonator 140 and the second resonator 141 of the ultra-wideband filter having a wide band can also use other circuit structures as the axis, the microstrip line, and the coplanar wave. Any of a group of conductors, slot lines, and strips. Further, in the embodiment of the invention, the first resonator 14 〇 and the second resonator 141 use a linear resonator structure. However, the first resonance 140 and the resonant state 141 structure may also employ a Step Impedance Resonance (SIR) resonator, a Ring resonator, a Hairpin resonator, and a comb type. (Combline), any one of the group of the group consisting of a patch resonator and a Dielectric resonator (DR). The first attenuation unit 130 is disposed on the first surface lu of the substrate 110, electrically connected to the first RF signal output/input 12〇 and used to generate an attenuation response. The second attenuation unit 131 is disposed on the first surface 111 of the substrate 110, electrically connected to the second RF signal output/input port 121 and used to generate an attenuation response. The first-death unit 130 and the second attenuation unit 131 can be regarded as a device for an open circuit. The open-circuit pile system can generate a transmission zero (transmissi〇nzer〇), which can increase the attenuation rate outside the passband and effectively block the noise interference outside the passband. Please refer to Figures 2(a) and 2(b) for the coupling response of the ultra-wideband filter ι〇〇 with wide band. In the embodiment of the present invention, the RT-Duroid 5880 substrate 110 is used, and the first shot age is 5 rounds/in and out of the stack 12 and the second RF signal output/input 121 is the last. The ten impedance is 5〇·. In order to find the face of the ultra-wideband filter pendulum with wide band stop, the first attenuation unit 13A and the second attenuation unit 131 need to be removed first (l=〇 12 1301683 mm) for discussion. According to the image impedance equation: Z{ = 2 ^〇^z〇〇f · CSC2 θ - (Zoe + ZOQ (1) where 0 is the guided wave length, Ζ. It is the even mode impedance and Zq. It is the odd mode impedance. In the state of Z°e>Z, it can be determined that the first resonator 140 and the second resonator 141 can be designed to be between the seven-thousandths of the three-thousand-thirty-eightths of the waveguides, the most The preferred design length is a quarter of the guided wave length. When the physical length is a quarter of the wavelength, there will be no 2 times the frequency of the mixed wave generation. Therefore, the first wavelength of the first resonator 140 and the second resonator 141, the ultra-wide chopping TM " the first resonator 140 and the second resonator 141 which naturally form a wide band-stop response are fixed to a quarter-wavelength (center frequency is 5.2) In the state of GHz), different 'and z' can be changed. Different passband response changes can be obtained. Referring now to Figure 2(8), when Z〇e=198_ ζ〇〇=67Ω, the first resonator 140 and The second resonator 141 has a width w=〇3 mm and a pitch of one leg. When Zoe-189Ω and ZTO=8GQ, the first-resonator 14G and the second resonator 141 have a w=o.3 mm and The spacing s = 0.2 mm. When ^can and z〇〇=89Q, the width of the /, /, and the second resonator 141 w = 〇 3 faces and the spacing 3l » mw zoe - 176 Ω and Ζ〇 When 〇=96 Ω, the width of the first resonator, 14〇 and the second resonator 141 is w=a3_ and the spacing s=Q4mm. Here, it can be observed that the larger the frequency is, the more the J is. The width 'is therefore adjusted by different pitches, the ultra-wideband test H !(8) with a wide band can be obtained without _ bandwidth. 13 13〇1683 Now refer to the picture 2(b), when Zoe=228Q When Ζ〇〇=74 Ω, the width of the first resonant port 140 and the δ 弟 一 resonator 141 is w=〇.2 mm and the spacing s=0.1 mm. When Zoe=198Q and Ζ00=67 Ω, the first The visibility of the resonator 14 〇 and the second resonator 141 is w=〇.3 mm and the spacing s=〇.imm. When z〇e=176Q and '=61 Q,

k弟/、振盎與5亥弟二共振器141的寬度w=0.4mm且間距 s=〇.lmm。當 Z〇e=159_z〇〇=58CM,該第一共振器 14〇 與該第 、振141的見度w=〇 5mm且間距s=〇.imm。在此可觀察到寬 度w的變動會影響到頻寬及通帶的變化,這是由於該第一共振器 140所產生之第—通帶之頻率係不陳該第二共振器⑷所產生 之第二通帶之頻率,藉由增強的電_合方式使得該第一共振器 14〇所產生之第—通帶之_接近該第二共振器⑷所產生之第 二通^之頻率以得到—寬的通帶響應。藉由上面兩_合響應變k width /, Zhen An and 5 Haidi two resonators 141 have a width w = 0.4 mm and a pitch s = 〇.lmm. When Z 〇 e = 159 _ 〇〇 = 58 CM, the visibility of the first resonator 14 〇 and the first vibration 141 is w = 〇 5 mm and the pitch s = 〇.imm. Here, it can be observed that the variation of the width w affects the variation of the bandwidth and the pass band, because the frequency of the first pass band generated by the first resonator 140 is not generated by the second resonator (4). The frequency of the second passband is such that the first passband generated by the first resonator 14A is close to the frequency of the second pass generated by the second resonator (4) by an enhanced electric-coupled manner. - Wide passband response. By the above two _ _ response

相可求的一最佳的耦合結構參數。在本發明實施例中, ^最大且通帶變化量最小的結構參數為:該第一共振請盥 二:,141 _ w=a3mm 且間距 s=〇 imm 由' 调整该弟-絲n 14G ^ 變第-通帶之頻轉轉r、sr 導波長度,其可改 頻率的超寬_波器。通▼之辭,耻可設料不同中心 14 13〇1683 長度為四分之一導波長時,將不會有2倍頻的混附波產生,只會 形成3倍頻的混附波。因此藉由四分之一導波長的衰減單元、 131,可自然形成1和3倍頻的傳輸零點,其可提升通帶外的衰減 速率,並且有效阻隔通帶外的雜訊干擾,故可實現高衰減速率之 超寬頻遽波器。現請觀察第3(a)圖,該第一衰減單元ls〇與該第 二衰減單元131在對稱結構時,改變長度L=5 7 mm、6 7 mm及An optimum coupling structure parameter that can be obtained. In the embodiment of the present invention, the structural parameter with the largest maximum and the variation of the passband is: the first resonance, 盥2:, 141 _ w=a3mm, and the spacing s=〇imm is adjusted by 'the silk-n 14G ^ Change the frequency of the first-passband to r, sr guided wave length, which can change the frequency of the ultra-wide wave. Through the words of the ▼, shame can set different centers 14 13〇1683 When the length is a quarter of the wavelength, there will be no double-frequency mixed wave generation, only 3 times the frequency of the mixed wave. Therefore, by using a quarter-wavelength attenuation unit, 131, the transmission zeros of 1 and 3 frequency can be naturally formed, which can improve the attenuation rate outside the passband and effectively block the noise interference outside the passband. An ultra-wideband chopper that achieves high attenuation rates. Now, in view of Fig. 3(a), when the first attenuation unit ls〇 and the second attenuation unit 131 are in a symmetrical structure, the length L=5 7 mm, 6 7 mm and

7.7 mm (寬度=〇.3麵及阻抗=1則)會分別在9 sgHz、8奶舰 及7.44GHz各產生-傳輸零點。因此藉由調整該第一衰減單元⑽ 與該第二衰減單元131的導波長度,可調整通帶右邊的衰減特性。 現請觀察第3(b)圖,該第一衰減單元13〇與該第二衰減單元i3i 在對稱結構時,改變長度L=19 7 _、217 _及23 7 _ (寬度= 〇.3咖及阻抗=138Ω)會分別在289GHz、2 63GHz及贿又產 生一倍頻⑽鮮點及在8.67GHz、7 89GHz及7 2GHz產生三倍 ,的傳輸零點。因此藉由調整該第—衰減單元i3Q與該第二衰減 早凡说的導波長度,可直接調整通帶左、右邊的衰減特性。除 此之外,當該第一衰減單元13〇盥箆- 一 早疋㈣與知—哀減早兀131為非對稱 -構π,其可設計兩組不關麵傳輸零點。 考^ 4圖’其顯示微小化之具寬止帶之超寬頻遽波器 。额械之磁帶之_咖2〇〇與該 、▼之起ι頻遽波器1〇〇之及理盘ό士娃加丄 之處在於_丨^ ^ 之原理與結構都大致相同,其不同 … 4止帶之超寬_波器·的該第-衰減 15 1301683 單元230與該第二衰減澤^ __ 我早7° 231可精由彎曲232、233縮小面積。 現請觀察第5(a)、(b)圖, 啡貝 匕之具見止▼之超寬頻濾波器頻率 #應圖。在圖5(a)中可觀察到,去 田衣減卓凡130、131、230及231 的導波長度L·都為6.7mm時, 夂 哭200料且、册 $ 5亥則、化之具寬止帶之超寬親波 見止以超寬賴波器勘之頻率響應差異不大, 蚊其面編4倍。邮(a)村贿到,# 戰⑽導嶋_217_時,购、 丨之超寬頻濾波器200盥兮且命,册 ▼ .^ 見止f之超寬頻濾波器100之頻率塑 應差異不大,但是其面藉相兰 、曰 ⑽一甘、 ^差6·4‘。因此,藉由多次彎曲該衰減 單7〇 ’其可達到微小化、古妄、士 題止帶的超寬親波器。 、、、不上所述’根據本發明之一錄1命L册 由姓入丘η丄 4止π之超寬頻濾波器娜, 單元’以產生3_dB頻寬比大於㈣上 波請,其同時具有以下列優點:高頻 "知b易5周整頻寬、易整合於半導體製程及且有高 業化價值,各種材料之基板2() : U、° 寬頻: 損失與高品嶋,可廣泛應用於超 見頻無線通訊系統中。 雖然本發明已以前述較佳實-笋明心例揭不’然其並非用以限定本 ^乍各種k狀縣者,麵_本㈣之精神和顧内,當 *===㈣墙_,咖物式的修正 、匕而不會破壞此發明的精神。因此本發明之保護細當視 16 1301683 後附之申請專利範圍所界定者為準。7.7 mm (width = 〇.3 face and impedance = 1) will produce a transmission zero at 9 sgHz, 8 milk ship and 7.44 GHz, respectively. Therefore, by adjusting the guided wave length of the first attenuating unit (10) and the second attenuating unit 131, the attenuation characteristic on the right side of the pass band can be adjusted. Now observe the 3(b) diagram. When the first attenuation unit 13〇 and the second attenuation unit i3i are in a symmetrical structure, the lengths are changed to L=19 7 _, 217 _, and 23 7 _ (width = 〇.3 coffee) And the impedance = 138 Ω) will produce a doubling (10) fresh spot at 289 GHz, 2 63 GHz and bribe, and triple the transmission zero at 8.67 GHz, 7 89 GHz and 7 2 GHz. Therefore, by adjusting the length of the guided wave which is earlier than the second attenuation and the second attenuation, the attenuation characteristics of the left and right sides of the passband can be directly adjusted. In addition, when the first attenuating unit 13〇盥箆-一早疋(4) and the knowing-mind 兀131 are asymmetric-consistent π, it is possible to design two sets of non-closed transmission zeros. Test ^ 4 Figure 'It shows the ultra-wideband chopper with a wide stop band. The tape of the machine is the same as the structure of the _ 〇〇 ^ ^ ... 4th band extra wide _ waver · the first attenuation 15 1301683 unit 230 and the second attenuation _ __ I am 7 ° 231 fine can be reduced by bending 232, 233 area. Please observe the 5th (a) and (b) figures, and the ultra-wideband filter frequency of the 贝 匕 ▼ ▼ # 应 应 应. It can be observed in Fig. 5(a) that when the guided wave length L· of the smear of the smudges 130, 131, 230, and 231 is 6.7 mm, the crying is 200, and the book is $5 hai, and it is The ultra-wide wave with a wide band has a small frequency difference, and the frequency response of the ultra-wide wave is less than 4 times. Post (a) village bribes, #战(10) 导嶋_217_, purchase, 丨 ultra-wideband filter 200 盥兮 and life, book ▼ .^ See f f-bandwidth filter 100 frequency plasticity difference Not big, but its face borrows from the blue, 曰 (10) one Gan, ^ poor 6.4'. Therefore, by bending the attenuation single 7 〇 ' multiple times, it is possible to achieve an ultra-wide wave cutter which is miniaturized, ancient, and dead. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , It has the following advantages: high frequency " know b easy 5 weeks full bandwidth, easy to integrate into the semiconductor process and has high industrial value, substrate 2 of various materials: U, ° Broadband: loss and high quality, Can be widely used in ultra-frequency wireless communication systems. Although the present invention has been exemplified by the above-mentioned preferred real-bamboo, it is not intended to limit the various k-shaped counties of the present, the spirit of the face (the fourth) and the inner, when *===(four) wall _ The correction of the coffee style, without damaging the spirit of the invention. Therefore, the protection of the present invention is defined by the scope of the appended claims.

17 1301683 【圖式簡單說明】 r電==據本鶴—實施例之具寬止帶之超寬頻舰器之 ()電路方塊與(b)結構示意圖; 第2圖為具寬止帶之超寬頻_之齡響應圖⑻寬度為 第不同的間距變化(b)間距為〇1_與不同的寬度變化; f圖扣為衰減單元長度⑻L=5.7、6 7及7 7⑼l一一Μ"、Μ 23·7之具寬止帶之超寬趣波n頻率響應圖; ^圖顯示為微小化之具寬止帶之超__;以及 ^=4_單元長度(b) L=217之微小化之具寬止 π之超I頻濾波器頻率響應圖。 【主要元件符號說明】 100具寬止帶之超寬頻濾波器17 1301683 [Simple description of the diagram] r == According to the crane - the circuit block and (b) structure diagram of the ultra-wideband ship with a wide band of the embodiment; the second picture shows the super band with a wide band Broadband _ age response diagram (8) width is the same pitch variation (b) spacing is 〇1_ and different width changes; f buckle is the attenuation unit length (8) L = 5.7, 6 7 and 7 7 (9) l one Μ ", Μ The ultra-wide wave n frequency response diagram of the wide band of 23·7; ^The figure shows the super-wide band with super-__; and ^=4_unit length (b) L=217 miniaturization The frequency response diagram of the ultra-I-frequency filter with a width of π. [Main component symbol description] 100 wide band anti-wideband filter

200微小化之具寬止帶之超寬頻遽波器 112、212第二表面 11〇、21〇基板m、211第一表面 120、 220第-射頻信號輸出/入埠 121、 221第二射頻信號輸出/入埠 ⑽、珈第-衰減單元131、231第二衰減單元 140 240第-共振器、141、241第二共振器 232、233 彎曲 18200 miniaturized ultra-wideband choppers 112, 212 second surface 11〇, 21〇 substrate m, 211 first surface 120, 220 first-radio frequency signal output/input 121, 221 second radio frequency signal Output/input 埠 (10), 珈 first-attenuation unit 131, 231 second attenuation unit 140 240 first-resonator, 141, 241 second resonator 232, 233 bent 18

Claims (1)

1301683 月9哺忮)正替換頁丨 申請專利範圍: 一種具寬止帶之超寬頻濾波器,其至少包含·· 一基板,具有一第一表面及一第二表面; 、第一射頻信號輸出/入槔,設置於該基板的第—表面,用於作 為該具寬止帶之超寬頻濾波器之信號饋出/入端; 一第二射頻信號輸出/入埠,設置於該基板的第_表面,用於作 為該具寬止帶之超寬頻濾波器之信號饋出/入端; 1 一衰減單元,設置於該基板的第—表面,係紐連接於該 第一射頻信號輸出/入埠,其用於產生一衰減響應; =第二衰減單元’設置於絲板㈣—表面,輕性連接於該 第二射頻信號輸出/入埠,其用於產生一衰減響應; I第j振11 ’設置於該基板的第—表面,係電性連接於該第 一衰減單元,其用於產生一第一通帶之頻率響應; 一第二共振器’設置於該基板的第—表面,係電性連接於該第 -哀減單元,大致平行地相對於該第—共振器,以電 合於該第-共振器’於產生—第二通帶之頻率響應/ 其中, 9 Μ, 該第一共振輯產生ϋ帶之鮮係不同於 ===通帶之頻率,藉由增強的電磁輕合方式使_ 生之第ϋ—通▼之頻率接近該第二共振器所產 生之第一知之頻料制—寬騎帶麵,料—共振器與 19 1301683 :1 月#修(更)正替換頁 邊卓一共振器係介於一十分之三導波長到二十分之七導波長 之間。 2·如巾請專利範圍第丨項所述之具寬止帶之超寬頻濾波器,其中 該基板係選自懸浮基板、矽基板、砷化鎵基板、陶瓷基板、玻 璃基板、玻璃纖維基板、碳氫化合物陶瓷基板、鐵弗龍基板、 鐵弗龍玻璃纖維基板及鐵弗龍陶瓷基板之一。 3·如申料利縫第3項所述之具寬止帶之超寬麟波器,其中 -亥第一共振器與該第二共振器之長度為四分之一導波長。 4·如申請專職圍第丨項所述之具寬止帶之超寬雜邮,其中 該第-共振器可調整導波長度改變該第—通帶之頻率。 5·如申明專利减第丨項所述之具寬止帶之超寬雜、波器,其中 該第二共振H可調整導波長度改變該第二通帶之頻率。 6如^月專利範圍第1項所述之具寬止帶之超寬頻滤波器,其中 該第-衰減單福糾二韻單元之最佳長料时之 波長。 :利細第7項所述之具寬止帶之超寬頻濾波器,其中 該第一衰減單讀鄉二韻單元可藉由彎曲縮小面積。 巧圍第1項所述之«止帶之超寬頻濾波器,其中 ^衰減單(可調整導波長歧變該衰減響應巾心頻率。 =糊補第丨項所狀具寬止帶之超寬铺波器,其中 該第二I減單元可調整導波長度改變該衰減響應中心頻率。 20 1301683 10.如申請專利範圍第丨項所述之且寬止帶〇 兮笛—心 仪之-見止,之超寬頻滤波器,其中 線、振器與該第二共振器之電路形式係為同轴線、微帶 24利賴第i項所述之具寬止帶之超寬賴波器,其中 =广共振賴該第二共振社結構係輕階式阻抗共振 二衣料綠、敎型錄!!、_餘器、㈣共振器、 =電共振器與線形共振器所組成族群中之任何一種共振器結1301683月9忮)) Replacement Page 丨 Patent Application Range: An ultra-wideband filter with a wide band, comprising at least one substrate having a first surface and a second surface; first RF signal output The second surface of the substrate is disposed on the first surface of the substrate for use as a signal feed/in port of the ultra-wideband filter with a wide band; a second RF signal output/input is provided on the substrate a surface for use as a signal feed/in port of the ultra-wideband filter with a wide band; 1 an attenuation unit disposed on a first surface of the substrate, the button being connected to the first RF signal output/input埠, which is used to generate an attenuation response; = the second attenuation unit is disposed on the wire (four)-surface, and is lightly connected to the second RF signal output/input, which is used to generate an attenuation response; 11' is disposed on the first surface of the substrate, electrically connected to the first attenuation unit for generating a frequency response of a first passband; and a second resonator is disposed on the first surface of the substrate, Electrically connected to the first-death unit, The frequency response of the first-resonator to the second-passband is substantially parallel to the first-resonator, wherein 9 Μ, the first resonance series is different from the 共振-band ===The frequency of the passband, the frequency of the first ϋ-通▼ of the _sheng is close to the first known frequency material produced by the second resonator by the enhanced electromagnetic light-synchronization method. Resonator and 19 1301683: January #修(more) is replacing the margin of the resonator between the three-conductor wavelength and the seven-decimal wavelength. 2. The ultra-wideband filter with a wide band as described in the scope of the patent application, wherein the substrate is selected from the group consisting of a suspension substrate, a germanium substrate, a gallium arsenide substrate, a ceramic substrate, a glass substrate, a glass fiber substrate, One of a hydrocarbon ceramic substrate, a Teflon substrate, a Teflon glass fiber substrate, and a Teflon ceramic substrate. 3. The ultra-wide beam device with a wide band as described in claim 3, wherein the length of the first resonator and the second resonator is a quarter wavelength. 4. If applying for a wide-width miscellaneous post with a wide stop band as described in the full-time sub-paragraph, wherein the first-resonator can adjust the length of the guided wave to change the frequency of the first pass band. 5. The ultra-wideband and wave device having a wide stop band as claimed in claim </ RTI> wherein the second resonance H adjusts the length of the guided wave to change the frequency of the second pass band. 6 The ultra-wideband filter with a wide band as described in the first paragraph of the patent scope, wherein the first-attenuation single-fused two-tone unit has the best long-wavelength wavelength. : The ultra-wideband filter with a wide band as described in Item 7, wherein the first attenuating single-reading rhyme unit can be reduced in area by bending. The ultra-wideband filter described in Item 1 of the first paragraph, in which the ^ attenuation single (adjustable wavelength variation can be adjusted to respond to the center frequency of the cone. = 糊 丨 丨 所 所 所 所 超a wave filter, wherein the second I minus unit adjusts the length of the guided wave to change the attenuation response center frequency. 20 1301683 10. As described in the scope of the patent application, the wide stop band flute - the favorite - see The ultra-wideband filter, wherein the circuit form of the line, the vibrator and the second resonator is a coaxial cable, a microstrip 24, and an ultra-wideband filter having a wide band as described in item i, wherein = wide resonance depends on the second resonance mechanism structure, light-order impedance resonance, two materials, green, 敎 type recorded!!, _ residual, (four) resonator, = electric resonator and linear resonator Knot
TW95114327A 2006-04-21 2006-04-21 An ultra wide band (uwb) filter with wide stopband TWI301683B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95114327A TWI301683B (en) 2006-04-21 2006-04-21 An ultra wide band (uwb) filter with wide stopband

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95114327A TWI301683B (en) 2006-04-21 2006-04-21 An ultra wide band (uwb) filter with wide stopband

Publications (2)

Publication Number Publication Date
TW200742161A TW200742161A (en) 2007-11-01
TWI301683B true TWI301683B (en) 2008-10-01

Family

ID=45070302

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95114327A TWI301683B (en) 2006-04-21 2006-04-21 An ultra wide band (uwb) filter with wide stopband

Country Status (1)

Country Link
TW (1) TWI301683B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581495B (en) * 2015-12-30 2017-05-01 義守大學 Step impedance resonator filter
US9748621B2 (en) 2015-12-30 2017-08-29 I-Shou University Step impedance resonator filter

Also Published As

Publication number Publication date
TW200742161A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
Wu et al. Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS
Weng et al. Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs
Chu et al. A novel crossed resonator and its applications to bandpass filters
Lee et al. Balanced dual-band BPF with stub-loaded SIRs for common-mode suppression
Zhang et al. Design of microstrip dual-mode filters based on source-load coupling
Tyurnev et al. Dual-mode split microstrip resonator for compact narrowband bandpass filters
US8942774B2 (en) Radio-frequency filter comprising an even mode resonance of a same phase inside the bandwidth and an odd mode resonance of a reverse phase outside the bandwidth
Zhang et al. A high-temperature superconducting bandpass filter with microstrip quarter-wavelength spiral resonators
TWI301683B (en) An ultra wide band (uwb) filter with wide stopband
CN101714877B (en) Filter and related wireless communication receiver
Xiao et al. Compact split ring SIR bandpass filters with dual and tri-band
Konpang A compact diplexer using square open loop with stepped impedance resonators
Ahmaed Compact dual-band parallel coupled T-shaped SIR filter for WLAN applications
Hu et al. A new wideband triple-band filter using SIR
Chen et al. Design of balanced dual‐band bandpass filter with self‐feedback structure
TW200805880A (en) A wideband filter with interdigital stepped impedance resonators
Tu Sharp-rejection broadband microstrip bandpass filters using loaded open-loop resonator
Ren et al. A novel wideband bandpass filter using a cross-shaped multiple-mode resonator
Chu et al. A high isolation and low loss duplexer based on SISL platform
Chu et al. Design of a compact UWB bandpass filter with notched band
US20070285193A1 (en) Bandpass filter
KR101258034B1 (en) Microstrip dual-band bandpass filter using stepped impedance resonator
Chen et al. Fabrication of a novel diplexer using folded open-loop ring resonators and microstrip lines
Lahmissi et al. Microstrip dual-band bandpass filter design using folded coupled lines
TWM304781U (en) Parallel coupled line ultra wide band (UWB) filter with dual open stubs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees