TW200804919A - Liquid crystal display and glare-proof polarizing film laminate used therein - Google Patents

Liquid crystal display and glare-proof polarizing film laminate used therein Download PDF

Info

Publication number
TW200804919A
TW200804919A TW096108298A TW96108298A TW200804919A TW 200804919 A TW200804919 A TW 200804919A TW 096108298 A TW096108298 A TW 096108298A TW 96108298 A TW96108298 A TW 96108298A TW 200804919 A TW200804919 A TW 200804919A
Authority
TW
Taiwan
Prior art keywords
glare
liquid crystal
retardation plate
polarizing film
film
Prior art date
Application number
TW096108298A
Other languages
Chinese (zh)
Other versions
TWI439761B (en
Inventor
Hirohiko Yakabe
Tsutomu Furuya
Yuuhei Inokuchi
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW200804919A publication Critical patent/TW200804919A/en
Application granted granted Critical
Publication of TWI439761B publication Critical patent/TWI439761B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A liquid crystal display comprising a liquid crystal cell; a pair of linear polarizers placed on the both surfaces of the liquid crystal cell; the first retarder plate having the refractive index relationship: nx > ny ≥ nz between one of cell substrates and the respective linear polarizer, which first retarder plate is placed so that a phase retardation axis of the first retarder plate is in parallel with or at right angles to a transmission axis of the adjacent linear polarizer; the second retarder plate having refractive indices satisfying the refractive index relationship: nx ≃ ny > nz between the first retarder plate and the cell substrate or between the other cell substrate and the linear polarizer; and a glare-proof layer placed on a surface of either one of the linear polarizers in which the glare-proof layer has a haze of 5% or less against vertical incident light, a total reflection definition of 50% or less when the reflection definitions are measured using three optical frequency combs each having a comb width of 0.5 mm, 1.0 mm and 2.0 mm, respectively, and specific reflection profiles against incident light at an incident angle of 30 degrees, and the surface of the glare-proof layer consists of Voronoi polygons with an average area of 50 μm2 to 1,500 μm2, where the polygons are formed by the Voronoi division using the apexes of the convex parts generatrices.

Description

200804919 (1) 九、發明說明 【發明所屬之技術領域】 本發明係有關一種具有改良防眩光性質的液晶顯示器 及有用於此液晶顯示器的防眩光偏光膜疊層板。 ^ 【先前技術】 液晶顯示器逐漸用於攜帶式TV及筆記大小的個人電 Φ 腦等,因爲彼等具有良好的特徵,例如輕質、厚度、低能 量消耗等等。最近,該等液晶顯示器也逐漸用於影像監看 設備,例如具有大螢幕的TV等等。在例如電視機等用於 顯示螢幕的液晶顯示器的情形中,重點放在可見度,特別 是,從正面看螢幕時的對比率及從斜向看螢幕時的對比率 ,換言之,視角問題。爲了改善視角性質,已提出不同的 液晶單元的驅動模式。 有關具有改善視角性質的液晶顯示器,JP 2 548979 B • 揭示垂直對齊(VA)型液晶顯示器,其中具有正或負各 向異性介電常數的棒形液晶分子相對於液晶單元的基材依 垂直方向對齊。因爲,在該VA型中,該液晶分子在處於 顯示器未被驅動狀態下相對於液晶單元的基材依垂直方向 ^ 對齊,光可通過液晶層而沒有偏光度的變化。因此,當一 對線性偏光板置於該液晶面板的正與背面上使該偏光板的 偏光軸相互呈直角時,從正面將能見到實質上完全黑的顯 示且由此獲得高對比率。 然而,在該VA型液晶顯示器僅包含置於該液晶單元 200804919 (2) 上的該等線性偏光板中,從斜向見到該顯示器的螢幕時, 由該線性偏光板的偏光軸所形成的角度可偏離90度且該 單元中的棒形液晶分子顯示雙折射率,所以漏光且由此該 對比率將大幅降低。 ’ 爲了防止該VA型液晶顯示器的漏光,應在液晶單元 、 與線性偏光板之間提供光補償膜。最後,在該液晶單元與 分別偏光板之間插入雙軸阻滯板,或將單軸阻滯板及全雙 φ 軸阻滯板置於該液晶單元的正及背面,或將二阻滯板置於 該液晶顯示器之一表面上。舉例來說,JP-A-20(H- 1 09009 揭示分別在液晶單元與正和背面偏光板之間插入a-板(即 正單軸阻滯板)及c-板(全雙軸阻滯板)的VA型液晶顯 示器。 該正單軸阻滯板意指具有約2的R〇/Rth的延遲膜,其 中Rq爲平面內延遲値且Rth爲厚度方向的延遲値。該全雙 軸阻滯板意指具有約0的平面內延遲値R〇的延遲膜。分 φ 別經由下列式(1 )及(2 )來定義平面內延遲値R〇及厚 度方向的延遲値Rth : R〇=(nx-ny) xd (1)200804919 (1) Description of the Invention [Technical Field] The present invention relates to a liquid crystal display having improved anti-glare properties and an anti-glare polarizing film laminate for use in the liquid crystal display. ^ [Prior Art] Liquid crystal displays are increasingly used in portable TVs and notebook-sized personal computers, because they have good characteristics such as light weight, thickness, low energy consumption, and the like. Recently, such liquid crystal displays have also been gradually used for image monitoring devices, such as TVs with large screens and the like. In the case of a liquid crystal display for displaying a screen such as a television set, emphasis is placed on visibility, in particular, the contrast ratio when viewing the screen from the front and the contrast ratio when viewing the screen from the oblique direction, in other words, the viewing angle problem. In order to improve the viewing angle properties, different driving modes of the liquid crystal cells have been proposed. For a liquid crystal display having improved viewing angle properties, JP 2 548 979 B • discloses a vertical alignment (VA) type liquid crystal display in which a rod-shaped liquid crystal molecule having a positive or negative anisotropic dielectric constant is perpendicular to a substrate of a liquid crystal cell Align. Because, in the VA type, the liquid crystal molecules are aligned in the vertical direction with respect to the substrate of the liquid crystal cell in a state where the display is not driven, and light can pass through the liquid crystal layer without a change in the degree of polarization. Therefore, when a pair of linear polarizing plates are placed on the front and back sides of the liquid crystal panel such that the polarizing axes of the polarizing plates are at right angles to each other, a substantially completely black display can be seen from the front surface and thereby a high contrast ratio can be obtained. However, in the VA type liquid crystal display, only the linear polarizing plates placed on the liquid crystal cell 200804919 (2) are formed, and when the screen of the display is viewed obliquely, the polarizing axis of the linear polarizing plate is formed. The angle can be offset by 90 degrees and the rod-shaped liquid crystal molecules in the unit exhibit birefringence, so light leakage and thus the contrast ratio will be greatly reduced. In order to prevent light leakage from the VA liquid crystal display, a light compensation film should be provided between the liquid crystal cell and the linear polarizing plate. Finally, a two-axis blocking plate is inserted between the liquid crystal cell and the respective polarizing plates, or a single-axis blocking plate and a full double φ-axis blocking plate are placed on the front and back sides of the liquid crystal cell, or the second retarding plate is Placed on one of the surfaces of the liquid crystal display. For example, JP-A-20 (H-1 09009 discloses the insertion of an a-plate (ie, a positive uniaxial retardation plate) and a c-plate (a full dual-axis retardation plate) between a liquid crystal cell and a front and back polarizing plate, respectively. The VA type liquid crystal display. The positive uniaxial retardation plate means a retardation film having R 〇 / Rth of about 2, wherein Rq is an in-plane retardation 値 and Rth is a retardation 厚度 in the thickness direction. The full biaxial retardation The plate means a retardation film having an in-plane retardation 値R 约 of about 0. The φ is defined by the following equations (1) and (2) to define the in-plane retardation 値R〇 and the thickness direction delay 値Rth : R〇=( Nx-ny) xd (1)

Rth = [ ( nx + ny) /2-nz]xd ( 2) 其中nx爲平面內相延遲軸方向的折射率,ny爲原位相( in-piane phase )前進軸方向的折射率,nz爲厚度方向的折 射率及d爲膜的厚度。 200804919 (3) 在正單軸延遲膜的情形中,nz幾乎等於ny ( nz ^ ny ) 且由此R〇/Rth爲約2 ( R〇/Rth ^2)。有關該單軸延遲膜, 該R〇/Rth比可在約1.8與2.2的範圍內變動’取決於該膜 的取向情況。在該全雙軸延遲膜的情形中,ηχ幾乎等於ny (nx e ny )且由此R〇爲約〇 ( R〇三〇 )。有關該全雙軸延 ' 遲膜,因爲僅該厚度方向的折射率不同於(小於)其他的 折射率,所以此延遲膜具有負單軸性且由此將其稱爲具有 φ 法線方向的光學軸之膜。在雙軸延遲膜中,該等折射率具 有此關係:nx > ny > nz。 偏光板通常至少在偏光膜之一表面上具有保護層。該 保護層一般包含三乙醯基纖維素膜。已進行不同嘗試以利 用其他樹脂膜來替代該三乙醯基纖維素膜或賦予該保護層 延遲性質。舉例來說,JP-A-08-43 8 1 2描述由雙折射膜組 成偏光膜的保護層之至少一者。JP-A-07-287 123揭示由降 冰片烯樹脂(環狀烯烴樹脂)製成偏光膜的保護層。 φ 再者,例如液晶顯示器等的影像顯示裝置在彼等的影 像顯示幕反射外來光時將明顯喪失彼等的可見度。由此, 在例如TV、個人電腦的監視幕等之賦予影像品質和可見 度重要性的應用中,該顯示裝置的螢幕表面通常經處理以 防止外來光的反射。有關用於防止反射的手段,在例如大 型個人電腦、監視器、TV等等的應用中較佳爲使用防眩 光處理,其將在表面上形成細小的不規則以散射入射光且 藉以模糊反射影像,因爲此處理在較適度的成本下進行。 有關提供此防眩光性質的膜,JP-A-2002-3654 1 0揭示 200804919 (4) 具有細小的不規則形成在其上面的光學膜,其中反射光模 式滿足當光依從法線-1 〇度角的方向進入到該膜的表面上 且只觀察從該表面的反射光之特定關係。1?-八-2002-1 8 9 1 0 6揭示包含透明樹脂膜及具有細小不規則的離子輻射 可固化樹脂層的防眩光膜,其係經由固化該離子輻射可固 • 化樹脂層同時將該離子輻射可固化樹脂層插入浮凸模與該 透明樹脂膜之間以形成此細小不規則,使得三維1 0點平 φ 均粗糙度及在三維表面粗糙度基準面的相鄰凸面部分之間 的平均距離在分別特定範圍內而形成於該透明樹脂膜表面 上。 JP-A-2004-90 1 87揭示製造輥的方法,該輥係用於其 表面上具有細小不規則的膜之製造,該方法包含在浮凸輥 表面上形成鍍著金屬層,鏡面硏磨該鍍著金屬層的表面, 利用陶瓷珠噴吹該鍍著金屬層經鏡面硏磨的表面,及視需 要地錘打該鍍著金屬層的步驟。 φ 一般而言,可能必須使用具有至少1 〇%高濁度的防眩 光膜來保護外來光的反射且確保充分的可見度,且將具有 此高濁度的防眩光膜廣泛地用於筆記大小的個人電腦、TV 等等。然而,具有至少10%高濁度的防眩光膜具有亮室中 * 測到的對比度由於其寬廣的反射-散射性質而降低的缺點 。再者,該具有高濁度的防眩光膜也會降低在暗室中測到 的對比度也是其缺點,彼爲液晶顯示器本質上具有的缺點 爲了解決那些問題,JP-A-2006-5337 1揭示具有低濁 200804919 (5) 度及特定反射模式的防眩光膜,其利用微細粒子的 經硏磨的金屬板上形成不規則性,在該金屬板的不 面上無電電鍍鎳以減少不規則的深度而形成模子, 模子的表面不規則轉移至透明樹脂膜的表面而製造 > JP-A-2006-3 9270描述經由將其表面被分割成 。 區的防眩光層連同線性偏光膜、單軸或雙軸阻滯板 軸阻滯板應用至該顯示器以改善VA型液晶顯示器 •度。 【發明內容】 本發明之一目的在於提供一種液晶顯示器,特 具有高防眩光性質還有改良的視角性質而不會提高 VA型液晶顯示器。 本發明的另一個目的在於提供適用於此液晶顯 防眩光偏光膜疊層板。 本發明係JP-A-2006-39270的液晶顯示器爲基 包含夾在一對偏光板之間的V A型液晶顯示單元及 液晶單元基板與該偏光板之間的一或二個空間中的 滯板,將具有JP-A-2006-53 3 7 1所揭示的改良反射 防眩光膜應用於該液晶顯示器。接著,進行不同硏 一步改良此液晶顯示器的防眩光性質。結果,據發 示幕側上提供具有特定光學特性及特定表面形狀的 層’也就是說,可顯著改善包含VA型液晶顯不單 於該液晶單元前及背側上的一對線性偏光板、置於 撞擊在 規則表 及將該 〇 特定域 及全雙 的可見 別是, 濁度的 示器的 礎,其 置於該 兩型阻 模式之 究以進 現在顯 防眩光 元、置 一個單 -10- 200804919 (6) 元基板與一個線性偏光膜之間的正單軸或雙軸阻滯板及置 於一個單元基板與一個線性偏光膜之間或其他單元基板與 其他線性偏光膜之間的全雙軸阻滯板。此外,已發現有用 於此液晶顯示器的新穎防眩光偏光膜。接著,本發明經過 進一步硏究之後已經完成。 * 因此,本發明提供一種液晶顯示器,其包含液晶單元 ,該液晶單元包含 φ 一對單元基板及夾在該等單元基板之間的液晶層,其 中在未施加電壓下該基板附近的液晶分子定向於實質上垂 直該基板的方向; 一對置於將該液晶單元夾在其中的個別單元基板的外 表面上之線性偏光膜; 置於單元基板之一與個別線性偏光膜之間的第一阻滯 板,該第一阻滯板具有滿足下列關係的折射率:nx> ny 2 nz φ 其中nx及ny爲膜平面的主要折射率,且ιιζ爲該膜厚 度方向的折射率,且係經放置使該第一阻滯板的相阻滯軸 與相鄰線性偏光膜的透射軸平行或實質上呈直角; 置於該第一阻滯板與該單元基板之間或另一個單元基 * 板和與之面對的該線性偏光膜之間的該第二阻滯板,該第 二阻滯板具有滿足下列關係的折射率:nx ^ ny > nz 其中ιιχ、ny及riz與上述定義相同;及置於面對該液 晶單元的表面相對之該線性偏光膜中任一者的表面上之防 眩光層,其中該防眩光層具有對垂直入射光之5%或更小 -11 - 200804919 (7) 的濁度、當使用由各自分別具有0·5 mm、1.0 mm和2.0 mm寬度之暗線與亮線所組成的三種光頻梳於45度光入射 角測量反射清晰度時的總反射清晰度爲50 %或更小、對於 3〇度入射角進入的入射光具有2 %或更小之30度反射角的 ’ 反射率 R ( 30 )、對30度入射角進入的入射光具有 ‘ 0·003%或更小之40度反射角的反射率R(40),及0.001 或更小之60)對R(30)的比例,其中R(> 60) ^ 爲對度入射角進入的入射光在60度或更大反射角之任 意方向的反射率,且該防眩光層表面由具有50 μηι2至 1,5 00 μιη2平均面積之多邊形組成,較佳爲300μιη2至 1,00 0μιη2,其中該等多邊形係使用表面不規則的凸面部分 的頂點當作母點而芙諾以(Voronoi )分割該表面所形成 〇 在本發明的液晶顯示器中,包含防眩光層、線性偏光 膜及阻滯板的疊層板具有新穎的結構。由此,本發明也提 ^ 供一種防眩光偏光膜疊層板,其包含防眩光層、線性偏光 膜及阻滯板,彼等係依此順序疊層,其中 該防眩光層具有對垂直入射光之5 %或更小的濁度、 當使用由各自分別具有〇·5 mm、1 · 0 mm和2 · 0 mm寬度之 * 暗線與亮線所組成的三種光頻梳於45度光入射角測量反 射清晰度時的總反射清晰度爲50%或更小、對於30度入 射角進入的入射光具有2 °/。或更小之3 0度反射角的反射率 R(30)、對於30度入射角進入的入射光具有0.003 %或 更小之4 0度反射角的反射率R ( 4 0 ),及〇 . 〇 〇 1或更小之 -12- 200804919 (8) R ( k 60)對R ( 30)的比例,其中R ( k 60)爲對 入射角進入的入射光在60度或更大反射角之任意 反射率,且該防眩光層表面由具有50- μητ2至1,500 均面積之多遂形組成,較佳爲3〇0>m2至1:,000μπι2 該等多邊形係使用表面不規則的凸面部分的頂點當 而芙諾以(Voronoi)分割該表面所形成;且 該阻滯板包含至少一個選自具有滿足下列關係 率:nx > ny k nz之第一阻滯板 及具有滿足下列關係的折射率:nx = ny > nz之 滯板所組成之群, 其中nx及ny爲膜平面的主要折射率,且nz爲 度方向的折射率, 附帶條件爲使用該第一阻滯板時,將其放置使 一阻滯板的相阻滯軸實質上與該線性偏光膜的透射 或實質上呈直角。 在本發明的防眩光偏光膜疊層板中,該阻滯板 有下列關係的單一第一阻滯板所組成:nx > ny k nz 情形中,將該阻滯板放置使得其相阻滯軸實質上與 偏光膜的透射軸平行或實質上呈直角。或者,該阻 由具有下列關係的單一第二阻滯板所組成:nx ^ ny 再者,該阻滯板可由第一阻滯板及第二阻滯板的疊 成。在此情形中,將該疊層板有利的放置使得該第 板面對該線性偏光膜,且該第一阻滯板的相阻滯軸 與該線性偏光膜的透射軸平行或實質上呈直角。 30度 方向的 μπι2 平 ,其中 作母點 的折射 第二阻 該膜厚 得該第 軸平行 可由具 。在此 該線性 滯板可 > ηζ 〇 層板組 一阻滯 實質上 -13 _ 200804919 Ο) 在本發明的防眩光偏光膜疊層板中,該防眩光層有利 地由表面上具有細小不規則性的樹脂膜所組成,其係經由 利用微細粒子的撞撃在經硏磨的金屬板上形成不規則性, 在該金屬板的不規則表面上無電鍍著鎳以形成模子,將該 * 模子的表面不規則性轉移至透明樹脂膜的表面,並自該模 - 子移走該樹脂膜而製得。 本發明的液晶顯示器具有良好的防眩光性質且也達到 φ 高對比度且因此其係優於亮度及顯示影像的可見度。本發 明的防眩光偏光膜疊層板具有低濁度,但是其表面上具有 細小不規則性而達成該防眩光性質。因此,當其應用於液 晶顯示器,特別是VA型液晶顯示器時,本發明的防眩光 偏光膜疊層板可達到高對比率。 【實施方式】 本發明將對照所附的圖式來說明。 參照第1圖本發明的液晶顯示器包含液晶單元1 0,一 對夾著該液晶單元1 0之線性偏光膜20、2 1,及置於該線 性偏光膜之一與液晶單元1 0之間的第一阻滯板26。該液 晶單元1 0包含一對包含一對單元基板1 1、1 2及夾在該等 單元基板1 1、1 2之間的液晶層1 7,且該等單元基板1 1、 1 2具有在其表面面對彼此的個別電極1 4、1 5。在該液晶 單元10的液晶層17中,未施加電壓時通常從一個基板至 另一個基板的基板附近的液晶分子定向於實質上垂直該等 基板的方向。也就是說,所謂的垂直對齊(VA )型液晶 200804919 (10) 單元10。 該第一阻滯板26具有滿足下列關係的折射率:nx > ny 2 nz,其中nx及ny爲膜平面的主要折射率,且nz爲該 膜厚度方向的折射率。在此,膜平面中的主要折射率意指 依該膜平面中經最大化的折射率方向(相阻滯軸方向)的 折射率及依垂直該相阻滯軸方向的方向的折射率,也就長 說,折射率最小化的方向(相前進軸方向)。前者以h 表示,而後者以ny表示。因此,該第一阻滯板26爲單軸 者(nx > ny = nz )或雙軸(nx > ny > nz )。將該第一阻滯 板26放置使得其相阻滯軸實質上與該相鄰線性偏光膜20 或21的透射軸平行或實質上呈直角。藉以,可抑制光的 洩漏。在此,在語句「軸實質上平行」或「實質上呈直角 」中的措辭「實質上」意指允許從平行方向或直角方向±5 度的偏離,但是理想上爲完全平行或精確地直角。在較佳 具體例中,將該第一阻滯板26放置使得其相阻滯軸與相 鄰線性偏光膜的透射軸實質上平行。 根據本發明,第二阻滯板2 7係置於相對於該第一阻 滯板26的單元基板與在該側上的線性偏光膜2 1或20之 間(第1A及1B圖),或該第一阻滯板26的單元基板與 該液晶單元1 0之間(第1 C及1D圖)。該第二阻滯板27 具有滿足下列關係的折射率:nx = ny > nz,其中nx、ny及 nz與上述定義相同。這意指該第二阻滯板27爲具有負單 軸性及法線方向的光學軸之膜,或c-板。在此,「nx e ny 」意指nx精確地等於ny,也就是說,式(1 )所示的平面 -15- 200804919 (11) 內阻滯値Ro爲ο (零),但是該平面內對齊實際上可被忽 略,也就是說,該平面內阻滯値在約1 〇 nm以內,較佳地 約-5 nm以內。 再者,根據本發明,將具有特定表面形狀且賦予該液 晶顯示器特定光學性質的防眩光層30置於相對於面對該 液晶單元1 0的表面之線性偏光膜20表面上,也就是說, 在顯示側(觀看側)上的表面。該防眩光層具有其上面形 φ ,成大量細小不規則的防眩光表面,且其具有對垂直入射光 之5 %或更小的濁度、當使用由各自分別具有0.5 mm、1.0 mm和2.0 mm寬度之暗線與亮線所組成的三種光頻梳於 45度光入射角測量反射清晰度時的總反射清晰度爲50%或 更小、對於3 0度入射角進入的入射光具有2 %或更小之3 0 度反射角的反射率R(30)、對30度入射角進入的入射 光具有〇·〇〇3%或更小之40度反射角的反射率R(40), 及0.001或更小之R ( 2 60 )對R ( 30 )的比例,其中R ( φ > 60)爲對30度入射角進入的入射光在60度或更大反射 角之任意方向的反射率,該防眩光層表面由具有5 0 μπι2 至1,500 μπι2平均面積之多邊形組成,較佳爲300 μπι2至 1,〇〇〇 μπι2,其中該等多邊形係使用表面不規則的凸面部 分的頂點當作母點而芙諾以分割該表面所形成。該防眩光 層將詳細說明於下文中。 在第1圖中,當該防眩光層3 0與該顯示側線性偏光 膜2 0的疊層板及該等阻滯板26及/或27係提供在與該液 晶單兀1 0相關的顯不側上時,該防眩光層3 0、該顯示側 -16- 200804919 (12) 線性偏光膜20和該等阻滯板26及/或27的疊層板係顯示 爲該防眩光偏光膜疊層板4 0或4 1。當該線性偏光膜2 1及 阻滯板26及/或27係提供在該液晶單元1〇的背面側時’ 該線性偏光膜2 1 1阻滯板26及/或27的疊W服示爲 * 背面側防眩光偏光膜疊層板50。 - 該防眩光偏光膜疊層板40或41與該液晶單元1〇,及 該背面側偏光膜21或該背面側防眩光偏光膜疊層板5 0與 φ 該液晶單元1 〇通常利用黏著劑60來黏著。有關黏著劑, 一般使用例如丙烯酸系黏著劑等具有良好透明度者。一般 而言,在該背面側偏光膜2 1的背面側上提供背光7 0以供 應光給該液晶單元。 該線性偏光膜20、2 1可爲允許依在該膜平面中相互 垂直之二方向中之一者振盪的線性偏振光通過彼,同時彼 將吸收依該二方向之另一者振盪的線性偏振光之常用的偏 光膜或板。此線性偏振光的指定例爲單軸拉伸的聚乙烯醇 φ 膜,其利用高二色性染料染色且利用硼酸交聯。可使用包 含充當高發色性染料的碘之碘爲底的偏光膜或包含充當高 二色性染料的有機二色染料之染料爲底的偏光膜。該線性 偏光膜可爲此等的聚乙烯醇型偏光膜,或具有至少其表面 * 上具有例如三乙醯基纖維素等的透明聚合物保護膜之聚乙 烯醇型偏光膜。 因爲該防眩光層3 0係提供在該顯示側線性偏光膜20 之一表面上,其可作爲該顯示側線性偏光膜20的保護膜 。當該阻滯板26或27係提供在該顯示側線性偏光膜20 -17- 200804919 (13) 的另一個表面上時,其可作爲該顯示側線性偏光膜20的 保護膜。當該防眩光層3 0係提供在該表面側線性偏光膜 20之一表面上,且如第1D圖所示將該表面輒線性偏光膜 20之另一個表面利用該黏著劑60直接黏到該液晶單元1 〇 ' 時,在相對於該防眩光層30的至少該線性偏光膜20表面 * 上提供如上述的保護膜。 如第ΙΑ、1B及1D圖所示當該阻滯板26或27係提 φ 供在該背面側偏光膜21之一表面上時,其可作爲該線性 偏光膜21的保護膜。在此情形中,如上述的保護膜較佳 地提供在該線性偏光膜2 1的另一表面上。當沒有例如該 阻滯板的層疊層在該背面側偏光膜2 1上時,在該線性偏 光膜21的二表面上提供如上述的保護膜。 該第一阻滯板26具有滿足下列關係的折射率:ηχ > n y 2 η z ’其中n X、n y及η z與上述疋義相问。該平面內阻 滯値Ro係選自30至3 00 nm以內,取決於該液晶單元1〇 • 的特性等等。較佳地,R〇對Rth的比例超過1但是不超過 2。具有此特性的阻滯板可經由單軸或雙軸拉伸在適當條 件下具有正各向異性折射率的透明樹脂膜而製得。具有正 各向異性折射率的透明樹脂膜的例子包括例如三乙醯基纖 ' 維素等等的丙烯酸化纖維素、環狀烯烴樹脂、聚碳酸酯等 等。該環狀烯烴樹脂爲包含,呈單體的形式,例如降冰片 烯、二甲基八氫萘等等的環狀烯烴之樹脂。市面上可購得 的環烯烴聚合物例子爲ARTON (註冊商標)(可自JSR 有限公司購得)、ZEONOR®及 ZEONEX® (二者可自 -18- 200804919 (14) ΖΕΟΝ有限公司購得)等。在這些透明樹脂中,較佳爲 用三乙醯基纖維素及環狀烯烴樹脂,因爲彼等具有低光 性係數且在使用條件下熱應變將引起小的平面內特性變 〇 該該第二阻滯板27具有滿足下列關係的折射率:心 ny > nz,其中nx、ny及nz與上述定義相同。此阻滯性 可經由在該基材上塗佈盤狀液晶,經由以窄間隔在該基 φ 上塗佈膽固醇相液晶,經由在基材上形成例如雲母等的 機成層化合物的層,經由接連或連續雙軸拉伸樹脂膜, 經由提供未拉伸的溶劑鑄形膜而達到。該第二阻滯板 較佳地具有0至10 nm的R〇,及50至3 00 nm的Rth。 阻滯板27的材料或該阻滯板27的基板材料可不受限制 較佳地,該阻滯板27具有可任意形成且利用彼可輕易 Rth控制在低成本下的成層化合物的層。具有此阻滯性 的市售可得的阻滯板例子包括「VAC膜」(註冊商標) ^ 可自Sumitomo有限公司購得)、「FUJITAC膜」(註 商標)(可自FUJIFILM有限公司購得)等等。因爲該 二阻滯板27具有nx = ny的折射率關係且由此約〇 (零 的R〇,所以不一定要定義其相阻滯軸的軸角度,即使用 具有非常小的RQ亦同。 第1 A圖所示的液晶顯示器的具體例包含液晶單元 ,在該液晶單元1 〇之一表面(顯示側表面)上的防眩 偏光膜疊層板40及在該液晶單兀1〇另一個表面(背面 )上的背面側防眩光偏光膜疊層板5 0。在此具體例中, 使 彈 化 質 材 或 27 該 〇 將 質 ( 冊 第 ) 其 10 光 側 該 -19- 200804919 (15) 防眩光偏光膜疊層板40包含防眩光層30、線性偏光膜20 及第一阻滯板26,彼等係從該液晶單元1 0的最遠側依此 順序疊層,且該背面側防眩光偏光膜疊層板5 0包含第二 砠滯板27及線性偏光膜2 1,彼等係從該液晶單元的最近 ' 側依此順序疊層。 • 第1 B圖所示的液晶顯示器的具體例包含液晶單元1 〇 ,在該液晶單元之一表面(顯示側表面)上的防眩光偏光 0 膜疊層板4 0及在該液晶單元1 0另一個表面(背面側)上 的背面側防眩光偏光膜疊層板5 0。在此具體例中,該防眩 光偏光膜疊層板40包含防眩光層30、線性偏光膜20及第 二阻滯板27,彼等係從該液晶單元的最遠側依此順序疊層 ,且該背面側防眩光偏光膜疊層板5 0包含第一阻滯板26 及線性偏光膜2 1,彼等係從該液晶單元的最近側依此順序 疊層。第1A圖的具體例與第1B圖的具體例之間的差異爲 該第一阻滯板26與第二阻滯板27的位置相反。 φ 第1C圖所示的液晶顯示器的具體例包含液晶單元1 〇 ,在該液晶單元之一表面(顯示側表面)上的防眩光偏光 膜疊層板40及在該液晶單元1 〇另一個表面(背面側)上 的線性偏光膜2 1。在此具體例中,該防眩光偏光膜疊層板 ' 40包含防眩光層30、線性偏光膜20、第一阻滯板26及第 二阻滯板27,彼等係從該液晶單元的最遠側依此順序疊層 〇 第1 D圖所示的液晶顯示器的具體例包含液晶單元1 〇 ,在該液晶單元之一表面(顯示側表面)上的防眩光偏光 -20- 200804919 (16) 膜疊層板4 1及在該液晶單元1 0另一個表面(背面側)上 的背面側防眩光偏光膜疊層板50。在此具體例中,該防眩 光偏光膜疊層板4 1包含防眩光層3 0及線性偏光膜20,彼 等係從該液晶單元的最遠側依此順序疊層,且該背面側防 * 眩光偏光膜疊層板50包含第二阻滯板27、第一阻滯板26 - 及線性偏光膜2 1,彼等係從該液晶單元的最近側依此順序 疊層。在第1 C圖的具體例中,在該液晶單元1 0的顯示表 φ 面側上提供該線性偏光膜20、第一阻滯板26及第二阻滯 板27的疊層板,且在該線性偏光膜20上提供該防眩光層 3 0,然而在第1 D圖中,在該液晶單元1 0的顯示表面側上 提供第二阻滯板27、第一阻滯板26及線性偏光膜2 1的疊 層板,且沒在該液晶單元1 〇的顯示表面側上提供阻滯板 〇 在本發明的防眩光偏光膜疊層板中,依第1 A、1 B及 1 C圖所示的順序疊層該防眩光層30、線性偏光膜20及阻 φ 滯板26及/或27。第2圖中槪要地顯示單獨該防眩光偏光 膜疊層板40的斷面,其中該阻滯板25表示第一阻滯板26 及/或第二阻滯板27。也就是說,該阻滯板25可爲具有滿 足下列關係的折射率:nx > ny 2 nz之阻滯板(即上述第一 ' 阻滯板),或具有滿足下列關係的折射率者:ηχ Ξ ny > nz (即上述第二阻滯板),其中nx、ny及nz與上述定義相同 〇 或者,如第3圖所示疊層具有滿足下列關係的折射率 :nx > ny k nz之第一阻滯板26 (即上述第一阻滯板)及 -21 - 200804919 (17) 具有滿足下列關係的折射率:nx e ny > nz之第二阻滯板。 在此具體例中,將該第一阻滯板26係放置使其面對該線 性偏光膜20且其相阻滯軸實質上與該線性偏光膜20的透 射軸平行或實質上呈直角。 ' 該防眩光層3〇具有對垂直入射光之5%或更小的濁度 ‘ 、當使用由各自分別具有0.5 mm、1 ·0 mm和2.0 mm寬度 之暗線與亮線所組成的三種光頻梳於45度光入射角測量 φ 反射清晰度時的總反射清晰度爲50%或更小、對於30度 入射角進入的入射光具有2%或更小之3 0度反射角的反射 率R ( 30 )、對於30度入射角進入的入射光具有0.003 % 或更小之40度反射角的反射率R ( 40 ),及0.001或更小 之R(2 60)對R(3 0)的比例,其中R(2 60)爲對30 度入射角進入的入射光在60度或更大反射角之任意方向 的反射率,且該防眩光層30的表面由具有 50 μηι2至 1,500 μπι2平均面積之多邊形組成,較佳爲 300 μπι2至 φ 1,〇〇〇 μπι2,其中該等多邊形係使用表面不規則的凸面部分 的頂點當作母點而芙諾以分割該表面所形成。 現在,詳細說明該防眩光層3 0。該防眩光層3 〇較佳 爲經由下列說明的方法來製造,且具有細小不規則形成在 * 其上面的防眩光表面,及對該垂直入射光之5 %或更小的 濁度。儘管該防眩光層3 0的表面上具有細小不規則,但 是當其應用液晶顯示器時,其將具有低濁度且由此其可抑 制對比度的降低。 該防眩光層3 0具有對於4 5度入射光之5 0%或更小的 -22- 200804919 (18) 總反射清晰度。該反射清晰度可藉由ns K 7105所述的方 法來測量。在此Jis Κ 7105的方法中,定義且使用由各自 具有0.1 2 5 m m、0.5 m m、1.0 m m和2 · 0 m m寬度之暗線與 亮線(暗線寬度與亮線寬度的比例爲1 : 1 )所組成的四種 光頻梳。在本發明中,在使用四種光頻梳來測量的反射清 晰度中,並未將使用具有0.125毫米的寬度之光頻梳所獲 得者加至總和,因爲就使用根據本發明的防眩光膜而言此 φ 光頻梳所獲得的反射清晰度太小以致測量値具有較大的誤 差。由此,在本發明中,該總反射清晰度爲使用由各自具 有0 · 5毫米、1 · 0毫米及2.0毫米的寬度的暗線及亮線所組 成的三種光頻梳測得的反射清晰度總和。由此,根據上述 定義的總反射清晰度可能的最大値爲3 00%。當該總反射 清晰度超過50%時,例如光源影像等的影像將被反射以致 本發明的防眩光偏光膜疊層板之防眩光性質變差。 當該總反射清晰度爲50 %或更小時,可能難以僅從該 φ 總反射清晰度來評估該防眩光性質的優越性,因爲若該總 反射清晰度爲 50%或更小時,使用由各自具有0.5 mm、 1.0 mm和2·0 mm寬度之三種光頻梳測得的各自反射清晰 度爲至多約10至20%,所以無法忽略測量誤差造成的反 射清晰度波動。 接著,參照第4及5圖來說明反射率對反射角的依賴 度,其係當作用於評估防眩光性質的另一個標準。第4圖 爲顯示與防眩光層(防眩光膜)相關的光入射方向與反射 方向的槪要透視圖。根據本發明,當R ( 3 0 )定義成相對 -23- 200804919 (19) 於從該防眩光層3 0的法線3 5的3 0度角下進入的入射光 36,依30度反射角方向,也就是說,反射方向37,的反 射光的反射率時R ( 3 0 )爲2%或更小。該反射率R ( 3 0 ) 較佳爲1.5%或更小,更佳地0.7%或更小。當該反射率R ' (30 )超過2%時,該防眩光層可能不具有充分的防眩光 • 性質以致該顯示器的可見度降低。在第4圖中,在任意角 Θ下的反射光方向以編號3 8來表示,且在反射率測量時該 φ 反射光的方向37及38存在於包括該入射光的方向36及 該膜的法線3 5之平面3 9中。 第5圖爲描繪與從第4圖的防眩光層3 0法線3 5 3 0 度角下進入的入射光36相關的反射光18之反射率’對該 反射角度(其中座標軸藉由對數刻度來表示)的圖形的實 施例。顯示反射率與反射角的關係之圖形,或從各自反射 角的圖形讀取的反射率係稱爲「反射模式」。如第5圖所 示,該反射率R( 3〇)爲與在30度角下進入的入射光36 φ 有關的反射率峰値,且反射率傾向隨反射方向偏離該反射 方向而降低。 根據本發明,當R ( 40 )定義成相對於從第4圖所示 的防眩光層3 0的法線3 5的3 0度角下進入的入射光3 6 ’ ’ 依4 0度反射角方向的反射光反射率時R ( 4 0 )爲0 · 0 0 3 % 或更小。當R ( 4 0 )超過〇 · 〇 〇 3 %時,該顯示影像傾向變白 。由此,R ( 4〇 )較佳爲不那麼大。當R ( 40 )太小時’ 該防眩光層可能沒有充分的防眩光性質。由此,R(40) 較佳爲至少0.00005%。然而,要嚴密測定R ( 40)的較佳 -24- 200804919 (20) 範圍相當困難,因爲反射或變1白係以眼睛及反映使用者偏 好的特性主觀地判定。 再者,根據本發明,R ( ^ 60 )對R ( 30 )的比例爲 0.001或更小,其中R(k 60)爲在60度或更大反射角之 * 任意方向的反射率。此比例較佳爲0.0005或更小,更佳 - 地0.000 1或更小。在此,「在60度或更大反射角之任意 方向」意指介於60度與90度之間的範圍之反射角。下文 φ 所述的方法所製造的防眩光膜具有第5圖所示的典型模式 ,且在此防眩光膜的情形中,該反射率經常具有依反射方 向的峰且隨著該反射角增加而逐漸降低。因此,該R(2 60) /R(30)比例可藉由R(60) /R(30)來表示,其中 R(60)爲60度反射角下的反射率。當R(>60)/R(30 )比例超過0.0 01時,該防眩光層將見到白色以致顯示幕 的可見度變差。也就是說,當顯示幕上顯示黑色影像加上 在該螢幕前面提供該防眩光層時,整個螢幕將見到反射外 φ 來光的白色。 在第5圖所示的反射模式情形中,該反射率R ( 3 0 ) 爲約 0.4%,R ( 40 )爲約 0.0006%,且 R ( 60 )爲約 0.00 0 03%。 ’ 除了上述的特定反射模式之外,根據本發明的防眩光 層表面由具有5 0 μχη2至1,500 μπι2,較佳爲300 μιη2至 1,000 μπι2,平均面積之多邊形組成,其中該等多邊形係 使用表面不規則的凸面部分的頂點當作母點而芙諾以分割 該表面所形成。 -25- 200804919 (21) 將說明的是用於測定防眩光層不規則表面的凸面部分 頂點的演繹法。當注意力集中在該防眩光層表面上的一個 任意點時,若該任意點周圍沒有比該任意點更高的高度, 且該不規則表面上的任意點高度比該不規則表面上的最高 點高度及最低點高度之間的中間値更高時,該任意點即爲 • 該凸面部分的頂點。具體而言,如第6圖所示,如第6圖 所示,在防眩光層表面上挑選任意點9 1。使用該點9 1當 φ 作與該防眩光層的基底平面93平行的平面內的圓中心來 描繪半徑2 μπι至5 μπι的圓。當沒有比經由投影在該防眩 光層的表面9 3上所描繪的圓9 4中的點9 1的高度高的點 ,且該點9 1的高度比該不規則表面上的最高點高度和最 低點高度之間的中間値高時,將該點9 1判定爲該凸面部 分的頂點。在此情形中,投影的圓9 4具有未將樣品表面 上的微細不規則計入的半徑,且該圓94並不包括多個凸 面部分。由此,該圓94的半徑較佳爲約3 μιη。經由上述 φ 的方法,也可計數該不規則表面每單位面積的凸面部分數 巨。 爲了達到良好可見度而不會引起反射或變白,上述方 法所計數的凸面部分數目較佳爲在200 μπιχ200 μηι的視野 • 中50至150個。若該防眩光層不規則表面上的凸面部分 的數目少,像素千涉將產生眩光以致顯示的影像變得難以 注視,特別是當該防眩光偏光膜疊層板與具有高清晰度的 顯示裝置合倂使用時。再者,該顯示影像的紋理將變差。 當凸面部分的數目太多時,不規則形狀的傾斜角變得非常 -26- 200804919 (22) 陡以致該影像傾向於變白。在200 μιηχ2〇〇 μιη的視野中的 凸面部分的數目較佳爲120個或更少及7〇個或更多。 現在’將說明該芙諾以分割。當平面上散布數個點( 即’母點)時’ 一圖,其可經由決定該平面上的任意點最 接近的母點而分割該平面,爲芙諾以圖形,且經由此圖形 • 的平面分割被稱爲芙諾以分割。第7圖爲描述使用表面上 的凸面部分頂點當作母點而芙諾以分割防眩光層的表面之 φ 芙諾以分割實施例。在第7圖中,點95爲母點,且包括 一個母面的各自多邊形96爲經由該芙諾以分割所形成的 區’且此多邊形被稱爲芙諾以區域或是芙諾以多邊形,且 後文中稱爲芙諾以多邊形。第7圖周圍變暗的區97將在 後文中說明。在該芙諾以圖形中,母點數目等於芙諾以多 邊形數目。簡單的說,在第7圖中,編號95及96分別指 不一部分母點及一部分多邊形。 要計算經由使用該等凸面部分的頂點當作母點而芙諾 φ 以分割所獲得的芙諾以多邊形平均面積,利用例如共焦顯 微鏡、干涉顯微鏡、原子力顯微鏡(AFM )等等的適當裝 置來觀察防眩光層的表面形狀,且測定三維座標値。接著 ,根據下列演繹法而芙諾以分割該防眩光層表面,且計算 ^ 該芙諾以多邊形的平均面積。也就是說,根據上述演繹法 來決定防眩光層的不規則表面,接著在該防眩光層基底平 面上投影凸面部分的頂點。之後,將所有經由表面形狀測 量所獲得的三維座標投影在該基底平面上,且將所有的投 影點指定給最接近的母面而進行該芙諾以分割。計算所有 -27- 200804919 (23) 芙諾以多邊形的面積且予以平均以獲得該芙諾以多邊形的 平均面積。在此測量中’不把毗鄰測量視野邊界的芙諾以 多邊形面積算入以使誤差降至最低。也就是說’在第7圖 的情形中,平均面積的計算中並不包括測量視野邊界附近 變暗的芙諾以多邊形9 7。此外,爲了使測量誤差降至最低 . ,較佳地,在各自具有200 μιηχ200 μπι的視野之至少三個 視野內計算該芙諾以多邊形的平均値’且再將所有平均値 φ 予以均勻並當作測量値。 如上所述,在本發明中,具有充當母點之防眩光層不 規則表面上的凸面部分頂點之芙諾以多邊形的平均面積爲 5 0 μπι2 至 1,5 00 μπι2,較佳爲 3 00 μπι2 至 1,000 μπι2。當該 芙諾以多邊形平均面積小於5〇 μπι2時,該防眩光層表面 不規則的形狀傾斜角度將變得非常陡峭以致影像變白。當 該芙諾以多邊形的平均面積超過1,5〇〇 μπι2時,該防眩光 層的不規則表面將變得粗糙,以致產生眩光且影像的紋理 φ 變差,特別是當該防眩光偏光膜疊層板與高清晰度的顯示 裝置合倂使用時。 使用在此測得的三維座標,可計算斷面曲線的算術平 均高度Pa及最大斷面髙度Pt (其係由JIS Β 060 1 ( =ISO * 4287)所定義者)。再者,可以矩形圖的方式描述在該防 眩光層不規則表面上的各自點高度。爲了達到良好的可見 度而不會引起反射或變白,該斷面曲線的算術平均高度Pa 較佳爲0.08 μπι至0.15 μπι,且該最大斷面高度Pt較佳爲 0·4 μιη至0·9 μπι。當該算術平均高度Pa小於0.08 μπι時 -28- 200804919 (24) ,該防眩光層的表面實質上爲平坦的以致其沒有防眩光性 質。當該算術平均高度Pa超過0.15 μηι時,該防眩光層 的表面形狀將變得粗糙,以致引起例如變白及眩光等的問 題。當該最大斷面高度Pt小於0.4 μηι時,該防眩光層的 表面又再實質上變平的以致其沒有防眩光性質。當該最大 斷面高度Pt超過0·9 μιη時,該防眩光層的表面形狀又再 變得粗糙,以致引起例如變白及眩光等的問題。 當以矩形圖的方式描述該防眩光層不規則表面上的點 高度時,該矩形圖的峰較佳爲存在該不規則表面上的最高 點高度(100%高度)與最低點高度(0%高度)之間的中 間値(50%高度)±20%範圍內。這意指該矩形圖的峰較 佳爲存在最高點高度與最低點高度的高度差之30%與70% 之間的範圍內。若該峰不存在該中間値的±20%範圍內,換 句話說,該峰存在該最高點高度之大於70%或小於30%的 範圍中,該防眩光層的表面形狀將變得粗糙,以致眩光傾 向不欲地發生。此外,外觀的紋理傾向變差。 爲了描述該等高度的矩形圖,測定該防眩光層(防眩 光膜)表面上的高度最高和最低點,然後以各自測量點高 度和最低點高度的差異(即測量點高度)除以最高點高度 與最低點高度的差異(即最大高度差)而獲得各點的相對 局度。接者’利用最局局度爲1 〇 〇 %且最低高度爲〇 %的矩 形圖來描述所得的相對高度而獲得該矩形圖中各自點的峰 位置。該矩形圖應分割成數段以避免數據錯誤的影響,且 一般而言其係分成約1 0至約3 0段。舉例來說,以5 %間 -29- 200804919 (25) 距分割從最低點(〇%高度)至最高點(100%高度)的間 隔,且測定該峰的位置。 構成具有上述特徵的防眩光層之防眩光表面具有被實 質上沒有平坦平面的不規則情形所覆蓋的形狀。具有此表 面形狀的防眩光表面可有利地經由利用微細粒子撞擊而在 硏磨金屬板上形成不規則性,在該金屬板的不規則表面上 無電鍍著鎳以形成模子’將該模子的表面不規則情形轉移 至透明樹脂膜的表面,並自該模子移走具有經轉移不規則 情形之透明樹脂膜而製得。 經由對照第8圖來說明上述方法來製造防眩光層(防 眩光膜)的較佳方法,其槪要地顯示使用金屬板當作模子 本體將該模子的不規則轉移至該樹脂膜而製得其表面上具 有不規則的模子之步驟的斷面圖。第8 A圖顯不經鏡面硏 磨之後該金屬板81的斷面,其具有經硏磨的表面82。利 用微細粒子撞擊(或噴吹)該金屬板8 1的經硏磨的表面 82而在該表面82上形成不規則性。第8B圖槪要地顯示 經撞撃之後該金屬板8 1的斷面,其具有半球形細小凹面 部分83。接下來,利用鎳無電鍍著具有撞撃所形成的不規 則之表面以減小該等不規則的深度。第8 C圖槪要地顯示 經鎳的無電鍍著之後該金屬板81的斷面。在第8C圖中, 在具有細小凹面部分的金屬板8 1表面上形成鍍鎳層84, 且該鍍鎳層84的表面86具有不規則性其經由鎳的無電鍍 著而相較於第圖的凹面83乃具有減小的深度;也就是 說,使該金屬板表面的不規則形狀變鈍。由此,當該金屬 -30- 200804919 (26) 板8 1之具有半球形的細小凹面部分83利用鎳來無電鍍著 時,可獲得實質上沒有平坦平面及適於製造具有較佳光學 性質的防眩光膜的不規則性之模子。 第8D圖槪要地顯示將先前步驟所形成之第8C圖的模 ' 子不規則性轉移至樹脂膜的步驟。也就是說,在該鍍鎳層 ‘ 84的不規則表面上形成樹脂膜。藉以,獲得具有經轉移的 不規則形狀之膜3 0。該膜3 0可由單一熱塑性透明樹脂膜 φ 組成。在此情形中,將加熱狀態下的熱塑性樹脂膜壓至該 模子的不規則表面86且經由熱壓成形。或者,如第8D圖 所示,該膜30可由透明基材膜32及疊層在該基材膜32 表面上的可離子輻射固化的樹脂層3 3組成。在此情形中 ,使該可離子輻射固化的樹脂層3 3與該模子的不規則表 面8 6接觸且經由離子輻射照射以固化該樹脂層3 3。藉以 ,將該模子的不規則形狀轉移至該可離子輻射固化的樹脂 層3 3。這些膜將在後文中說明。第8E圖槪要地顯示從該 φ 模子移除之後的膜3 0的斷面圖。 在第8圖所示的方法中,用於該模子的製造之金屬較 佳例子包括鋁、鐵、銅、不鏽鋼等等。彼等當中,較佳爲 易利用微細粒子撞擊而變形的金屬,也就是說,沒有太高 ^ 硬度者。特別是,較佳爲使用鋁、鐵、銅等等。就成本的 觀點來看,更佳爲鋁及軟質鐵。該模子可呈平坦金屬板或 圓柱形金屬輥的形式。當使用輥狀模子時,可連續製造該 防眩光膜。 利用微細粒子來撞擊或噴吹具有經硏磨表面的金屬。 -31 - 200804919 (27) 特別是,該金屬較佳被硏磨成接近鏡面的狀態,因爲該金 屬板或輥經常,舉例來說,藉由切削或硏磨,機械加工而 達到所欲的精確度,且藉以加工記號經常都留在金屬本體 表面上。若留下深的記號,該金屬本體的表面利用微細粒 ‘ 子撞擊之後可能還有痕量的記號,因爲有些記號的深度比 - 利用微細粒子所形成的不規則深度大,以致痕量的深記號 可能對該防眩光層的光學性質有意想不到的影響。 φ 用於硏磨該金屬表面的方法並沒有限定,且機械硏磨 、電解硏磨及化學硏磨之中任何者都可使用。該機械硏磨 的例子包括超精細(superfinishing )法、精硏、流體硏磨 法、擦光輪硏磨法等等。以中心線平均粗糙度Ra來看, 硏磨之後的表面粗糙度表爲1微米或更小,較佳爲0.5微 米或更小,更佳爲0.1微米或更小。當R a太大時,變形 之前表面粗糙度的影響在利用微細粒子撞擊使金屬表面變 形之後可能還在。Ra的下限可能沒有限制,而是從加工 φ 時間、加工成本等等的觀點可能受限。 以微細粒子撞擊該金屬表面的方法較佳爲噴吹處理法 。該噴吹法的例子包括噴砂法、噴九法及液體搪磨法( liquid honing)等等。有關用於這些處理法的粒子,具有 ’ 接近球形的形狀者比具有尖銳邊緣者更佳。再者,硬質材 料的粒子較佳,因爲彼等在加工以形成尖銳邊緣時並不會 破裂。滿足那些性質的瓷陶粒子的較佳例子爲球形氧化銷 粒、氧化鋁粒等等。較佳的金屬粒子的例子由鋼、不鏽鋼 等等。再者,可使用包含藉由樹脂接合劑上帶有陶瓷或金 -32- 200804919 (28) 屬粒的粒子構成。 當具有10至75 μπι,較佳爲10至35 μηι的平均粒子 尺寸之粒子,特別是,球形微細粒子當作撞撃在該金屬表 面上的微細粒子時,可製造一種防眩光膜,其滿足包括在 50 μπι2 至 1,500 μπι2,較佳爲 3 0 0 μπι2 至 1,000 μπι2 範圍 ^ 內之根據本發明定義的芙諾以多邊形平均面積的形狀因子 。有關該等微細粒子,具有均勻粒子尺寸者,也就是說, φ 特佳爲單一分佈的粒子。當該等微細粒子的平均粒子尺寸 太小時,將難以滿足該金屬表面上的不規則性。此外,不 規則形狀的傾向角度變得非常陡以致影像傾向變白。當該 等微細粒子太大時,該等表面不規則變得粗糙以致眩光可 能發生,且該影像的紋理可能變差。 具有上述方法所形成的不規則之金屬表面接著利用鎳 無電鍍著以減小該等不規則的深度。深度減少的程度取決 於金屬種類、噴吹所形成的不規則的尺寸及深度等等、鍍 φ 著鎳的種類及厚度等等。控制深度減少程度的最重要因子 可爲鍍著鎳的厚度。若該無電鍍著鎳的厚度太小,噴吹所 形成的不規則深度等等可能無法有效地減少,以致具有從 該模子轉移的不規則之防眩光膜的光學性質可能無法充分 ^ 改善。當該無電鍍著鎳的厚度太大時,生產力將降低。由 此,該無電鍍著鎳的厚度較佳爲約3至70 μπι,更佳爲至 少5 μπι及50 μπι或更小。 爲了在金屬表面上形成鍍著層,較佳爲使用可在該金 屬板或輥上形成具有巨觀均勻厚度的鍍著層之無電鍍著, -33- 200804919 (29) 特別是,提供具有高硬度的鍍著層之無電鎳鍍著。該無電 鎳鍍著的較佳例子包括使用含有例如硫、鎳-磷合金鍍著 (低磷型、中磷型或高磷型)等的光澤劑之鍍著浴的光澤 鎳鍍著、鎳-硼合金鍍著等等。 若使用JP-A-2〇02-189106所述的硬質鉻鍍著,特別是 ‘ ,電解鉻鍍著,電場傾向集中在該金屬板或輥的邊緣以致 中心及邊緣的鍍著金屬厚度可能不同。因此,若經由噴吹 φ 等等在該金屬板或輥整個表面上形成具有均勻深度的不規 則性,鍍著的深度減小程度可能在該金屬板或輥整個表面 上隨著位置不同而變化,結果,該等不規則的深度改變。 因此,電解電鍍用於本發明中並不適宜。 再者,該硬質鉻鍍著可形成粗糙表面且由此不適合用 於製造該防眩光層的模子之製造。爲了移除該粗糙表面, 通常硏磨該硬質鉻鍍著的表面。然而,如下文說明的該鍍 著表面的硏磨並不宜用於本發明中。 # 然而,本發明不包括在該無電鎳鍍著之後,在最外表 面形成薄鉻鍍著,也就是說,所謂的閃鍍鉻,以提供表面 硬度。若進行閃鍍鉻,該閃鍍鉻層的厚度儘可能小以避免 充當底層的無電鍍著鎳層的形狀變差,且較佳應爲3 μπι 或更小,更佳爲1 μπι或更小。 而且,本發明中不宜在如 JP-A-2004-90 1 87所揭示的 方式鍍著之後硏磨該金屬板或輥。若硏磨經鍍著的表面, 最外表面可能具有平坦部分以致該防眩光層的光學性質可 能變差’且該不規則的形狀幾乎無法以良好生產力予以控 -34- 200804919 (30) 制,因爲形成控制因子的數目將會提高。第9圖槪要地顯 示經由硏磨具有微細粒子撞擊所形成的不規則之表面而在 其上面形成平坦平面的金屬板,該等不規則的深度已被無 電鎳鍍著減小。也就是說,第9圖相當於硏磨該鍍鎳層84 ’ 的表面之第8C圖的無電鍍著金屬板。由於硏磨的結果, • 形成在該金屬板81上的鍍鎳層84上的表面不規則86的 凸面部分的一部分被硏磨且藉以形成該平坦平面29。 φ 根據本發明,使用第8 C圖所示的具有形成在其表面 上的不規則之模子,且將該等不規則的形狀轉移至該膜3 0 的表面以形成防眩光表面。在此情形中,該模子的表面形 狀可經由任何傳統方法轉移至該膜表面。舉例來說,將熱 塑性樹脂膜熱壓至該模子的不規則表面86以將該模子的 表面不規則轉移至該樹脂膜的表面;在透明樹脂膜表面上 塗佈可離子輻射固化的樹脂,接著將未固化狀態下的可離 子輻射固化的樹脂塗層緊緊地黏到該模子的不規則表面8 6 Φ 且透過該透明樹脂膜利用離子化輻射來照射以固化該可離 子輻射固化的樹脂而將該模子的表面不規則轉移至經固化 的可離子輻射固化的樹脂的表面。轉移之後,如第8E圖 所示從該模子移除該膜而得到該防眩光膜3 0。就例如防止 * 表面裂縫等的機械強度觀點來看較佳爲使用可離子輻射固 化的樹脂的後面方法。 用於上述後者方法中的透明樹脂可爲具有實質光透明 度的任何膜。該透明樹脂的指定例子包括纖維素樹脂(例 如三乙醯基纖維素、二乙醯基纖維素、纖維素醋酸酯丙酸 -35- 200804919 (31) 酯等等)、環烯烴聚合物、聚碳酸酯、聚甲基丙烯酸甲酯 、聚颯、聚醚颯、聚氯乙烯等等。該環烯烴聚合物爲包含 充當單體之例如降冰片烯、二甲基八氫萘等等的環狀烯烴 。市面上可購得的環烯烴聚合物的例子爲ARTON (註冊 商標)(可自 JSR有限公司購得)、ZEONOR®及 ^ ZEONEX® (二者可自ΖΕΟΝ有限公司購得)等。 當中,在適當溫度下將例如聚甲基丙烯酸甲酯、聚碳 φ 酸酯、聚颯、和聚醚颯及環烯烴聚合物等的具有熱塑性的 透明樹脂膜壓著或加壓黏合至具有表面不規則的模子,接 著從該模子剝離藉以將該模子的表面不規則轉移至該膜表 面。再者,使用偏光板當作透明膜且該模子的表面不規則 可直接轉移至該偏光板的表面。 當使用該可離子輻射固化的樹脂來轉移該模子的表面 不規則時,較佳爲使用分子中具有至少一丙靖醯氧基的化 合物之聚合物。爲了提高該防眩光層的機械強度,更佳爲 # 使用具有至少三個官能基的丙烯酸酯,也就是說,具有至 少三個丙烯醯氧基的化合物。此化合物的指定例包括三羥 甲基丙烷三丙烯酸酯、三羥甲基乙烷三丙烯酸酯、丙三醇 三丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯 、二季戊四醇六丙烯酸酯等等。爲了賦予該防眩光層可撓 性以便防止該防眩光層斷裂,較佳爲使用分子中具有胺基 甲酸酯鍵的丙烯酸化合物。此丙烯酸化合物的指定例爲將 分子中除了丙烯醯氧基之外具有至少一個羥基的兩個化合 物分子(例如三羥甲基丙烷三丙烯酸酯、季戊四醇三丙烯 -36 - 200804919 (32) 酸酯等等)加至二異氰酸酯化合物(例如二異氰酸己二酯 、二異氰酸甲苯二酯等等)。此外,可使用經由離子化輻 射的自由基聚合及固化的其他丙烯酸系樹脂,例如醚丙烯 酸酯聚合物、酯丙烯酸酯聚合物等等。 再者,可使用例如環氧樹脂、氧雜環丁烷樹脂等等的 可陽離子聚合之可離子輻射固化的樹脂當作固化之後賦予 不規則的樹脂。在此情形中,此可陽離子聚合之可離子輻 射固化的樹脂之一個例子可從例如1,4-雙[(3-乙基-3-氧 雜環丁烷基甲氧基)甲基]苯、雙[(3-乙基-3-氧雜環丁烷 基甲氧基)甲基]醚等等的可陽離子聚合之多官能基氧雜 環丁烷化合物及例如六氟磷酸(4-甲基苯基)[4- ( 2-甲基 丙基)苯基]銚等等的陽離子光聚合起始劑製得。 當利用UV射線的照射來固化該可離子輻射固化的丙 烯酸樹脂時,使用UV自由基聚合起始劑,其藉由UV射 線的照射產生自由基以引發聚合及固化反應。該UV射線 通常從玻璃模子或透明樹脂膜那側照射。由此,從該透明 樹脂膜那側照射時UV射線時,使用在可見光至UV射線 範圍內引發自由基產生反應的聚合起始劑,以便在光可透 過該膜的UV射線波長範圍中引發自由基產生反應。 利用UV射線照射來引發該自由基產生反應的UV射 線自由基聚合起始劑例子包括1 -羥基環丙基苯基酮、2 -甲 基-1-[4-(甲硫基)苯基]-2-嗎啉基丙-1-酮、2-羥基-2-甲 基-1-苯基丙-1-酮等等。當該UV射線透過含有UV射線吸 收劑的透明樹脂膜來照射時,使用在可見光波長範圍中具 -37- 200804919 (33) 有吸收範圍的自由基光聚合起始劑。此起始劑的例子包括 氧化雙(2,4,6-三甲基苯甲醯基)苯基膦、氧化雙(2,6-二 甲氧基苯甲醯基)-2,4,4-三甲基苯基膦、氧化2,4,6-三甲 基苯甲醯基二苯基膦等等。 ^ 當模子係呈具有表面上含細小不規則的鍍著面之平板 ' 的形式時,該模子的不規則表面能與帶有塗佈至彼的未固 化可離子輻射固化的樹脂之該透明樹脂膜的層接觸使得該 φ 可離子輻射固化的樹脂的塗層緊緊黏至該模子的不規則表 面,接著從透明樹脂膜那側照射離子化輻射以固化該可離 子輻射固化的樹脂。之後,從該模子移除該可離子輻射固 化的樹脂的固化層及該透明樹脂基材膜。藉以,該模子的 不規則形狀將被轉移至該透明樹脂膜上帶有的可離子輻射 固化的樹脂固化層。 當模子係呈具有其周圍表面上含細小不規則的鍍著面 之輥的形式時,該模子的不規則形狀係轉移至可離子輻射 φ 固化的樹脂,利用離子化輻射來照射該可離子輻射固化的 樹脂層及該透明樹脂膜的疊層板,同時使該可離子輻射固 化的樹脂層與該輥形式的模子周圍表面接觸,然後從該模 子移除該可離子輻射固化的樹脂的固化層及該透明樹脂膜 ~ 。藉以,該模子的不規則形狀將被轉移至該透明樹脂膜上 帶有的可離子輻射固化的樹脂固化層。 該離子化輻射可爲UV射線或電子束。從處理容易性 及安全性的觀點來看,較佳爲使用該UV射線。有關該 UV射線的光源,較佳爲使用高壓汞燈、金屬鹵化物燈等 -38- 200804919 (34) 等。當透過含有UV吸收劑的透明樹脂膜來進行照射時, 特佳爲使用包括大量可見光組成部分的金屬鹵化物燈。再 者,較佳地可使用「V-燈炮」及「D-燈炮」(二註冊商標 )(可自Fusion UV Systems JAPAN有限公司購得)。該 離子化輻射強度可充分固化該可UV固化樹脂固化至一程 ' 度使得該固化膜可自該模子移除。爲了改善表面硬度,可 進一步從該可離子輻射固化的樹脂層那側照射該可離子輻 • 射固化的樹脂的固化層及該透明樹脂層的疊層板。 根據上述的方法,可製得具有5%或更小的濁度之防 眩光層(防眩光膜)。濁度藉由JIS K 7136來定義且經由 (擴散透射率/總光透射率)X 1 0 0 ( % )來表示。 如上所述,當使用具有其上面實質上沒有平坦平面的 細小不規則之模子且將此等不規則的形狀轉移至透明樹脂 膜或該透明樹脂膜上所疊層的可離子輻射固化的樹脂固化 層時,該透明樹脂膜的防眩光表面將具有實質上沒有平坦 # 平面的細小不規則性。 將經由上述方法所形成的防眩光層3 0疊層在經進行 . 防眩光處理的表面(防眩光表面)面向外的上述線性偏光 膜20之一個表面上,也就是說,沒有面向該線性偏光膜 20的防眩光表面,同時將第一阻滯板及/或第二阻滯板層 疊在該線性偏光膜20的另一個表面上。藉以,獲得第2 及3圖所示的防眩光偏光膜疊層板40。爲了層疊上述層或 板,有利的是使用例如丙烯酸系黏著劑等的具有良好透明 度的黏著劑。 -39- 200804919 (35) 實施例 後文中,本發明將藉由下列實施例來例示,彼等並未 以任何方式限制本發明的範圍。 實施例1 (a) 模子的製造 鏡面硏磨具有300毫米直徑的鋁輥周圍表面(根據 JIS A5 05 6 )。接著使用噴吹裝置(由 FUJI Manufacturing 有限公司購得),在0.1百萬帕(表壓,下文中都相同) 的噴吹壓力下以鍩珠「TZ-SX-17」(註冊商標,可自 TOSO有限公司購得;平均粒子直徑:20微米)噴吹該鋁 輥經鏡面硏磨的周圍表面而在該表面上形成不規則。將具 有表面不規則的鋁輥無電光澤鍍著鎳而獲得金屬模子。調 整該等鍍著條件而形成具有1 2微米厚度的鎳層。鍍著之 後,利用β -射線膜厚計(可自F i scher Instruments有限公 司購得的「Fisher Scope MMS」)來測量該鎳層的厚度且 爲12.3微米。 (b ) 防眩光膜的製造及評估 將光固化樹脂組合物「GRANDIC 806T」(註冊商標 ,可自Dainippon Ink & Chemicals股份有限公司購得)溶 入醋酸乙酯以獲得具有50 %濃度的溶液,接著,以5重量 份的量對1 0 0重量份可固化樹脂的量將光聚合起始劑「 -40- 200804919 (36) LUCLLIN ΤΡΟ」(可自B AS F有限公司購得;化學名稱: 氧化2,4,6-三甲基苯甲醯基二苯基膦)加入該溶液而獲得 塗佈組成物。將此塗佈組成物塗佈在具有8 0微米厚度的 三乙醯基纖維素(TAC )膜上使乾燥之後的塗層厚度爲5 微米,接著在保持於60 °C的乾燥器中進行乾燥3分鐘。壓 著乾燥之後的TAC膜並利用橡皮輥緊緊接觸(a)中製得 的金屬模子的不規則表面使該光固化樹脂組成物層面向該 模子的鍍鎳表面。在此狀態下,以h-射線換算光量計在 20毫瓦/平方公分的強度下自該TAC膜側照射來自強度 200毫焦耳/平方公分的高壓汞燈的光以固化該光固化樹脂 組成物。之後,自該模子移除帶經固化的樹脂層之TAC 膜而獲得由具有表面不規則之經固化的樹脂層及該TAC 膜的疊層板組成的透明防眩光膜。 使用依照 JIS K 7136的濁度計「HM-150」(可自 Murakami Color Research Laboratory 購得)來測量該防眩 光膜的濁度,且其爲〇·9%。爲了測量,使用光學透明黏 著劑將該防眩光膜樣品黏貼至玻璃板而不規則表面向外以 防止翹曲。 依照JIS Κ 7105使用影像清晰度測量儀「ICM-1DP」 (可自Suga Test Instruments有限公司購得)來測量透射 清晰度。爲了測量,使用光學透明黏著劑將該防眩光膜樣 品黏貼至玻璃板而不規則表面向外以防止翹曲。接著,利 用光從背側照射該樣品(表面與玻璃板接觸),且測量透 射清晰度。結果如下: -41 - 200804919 (37) 具下列寬度的光頻梳 透射清晰度 0.125毫米 3 1.2% 0.5毫米 2 7.9% 1.0毫米 3 2. r % 2.0毫米 5 7.0 % 加總 14 8.2% 使用上述透射清晰度測量所用的相同影像清晰度測量 儀「ICM-1DP」來測量反射清晰度。爲了測量,使用光學 透明黏著劑將該防眩光膜樣品黏貼至玻璃板而不規則表面 向外以防止翹曲。爲了抑制背側玻璃背面的反射,利用水 將具有2毫米厚度的黑色丙烯酸系樹脂板黏貼至經黏貼防 眩光膜之玻璃板的曝光表面。在此狀態下,經由自該防眩 光膜的樣品側照射光而進行測量。結果如下: 具下列寬度的光頻梳 反射清晰度 0」2 5毫米 3.2% * 0.5毫米 1.5% 1.0毫米 5.4% 2.0毫米 14.8% 加總 21.7% * :自反射清晰度的値之加總排除。 利用從該膜法線傾斜3 0度方向的氨-氖雷射之平行光 束照射該防眩光膜的不規則—表面且測量在包括該膜法線及 照射方向之平面內-的反射率變化以測量反射率。該反射率 「32 92 03光學功率感應器」及「32 92光學功率計」(二 -42- 200804919 (38) 者可自 Yokogawa Electric有限公司購得)來測量該反射 率。結果,R ( 30)爲 0.374%,R ( 40)爲 0.00064% 且 R (60 ) /R ( 30 )爲 0.000 1 0。 使用共焦顯微鏡「ΡΙ^μ2300」(可自Sensofar有限公 司購得),觀察該防眩光膜的表面形狀。爲了觀察,利用 光學透明黏著劑將該防眩光膜樣品黏貼至玻璃基板而該不 規則表面向外以防止翹曲。接物鏡的放大倍率爲5 0。所得 φ 之數據根據上述演繹法來處理且算出該芙諾以多邊形的平 均面積爲5 82平方微米。從三維座標資訊來看,確認該防 眩膜整個表面具有細小不規則但是沒有平坦部分。 用於製造模子的條件及該防眩膜的光學性質和表面狀 況(該等芙諾以多邊形的平均面積)總結於表1中。 根據上述表面形狀的觀察所得之三維座標,計算 2 0 0 μ m X 2 0 0 μ m視野內的凸面部分的頂點數目、該斷面曲線 的算術平均高度Pa及最大斷面高度Pt,及該等高度矩形 # 圖的峰位置。將結果顯示於表2中。 (c) 防眩光偏光膜疊層板的製造 提供下列偏光板及阻滯板。 偏光板:二表面上具有由三乙醯基纖維素製成的保護 膜之聚乙烯醇-碘爲底的線性偏光膜(SUMIKARAN SRH 842A (註冊商標),可自Sumitomo Chemical有限公司購 得)。 單軸拉伸的阻滯板:具有100 nm的R〇及50 nm的 -43- 200804919 (39)Rth = [ ( nx + ny) / 2-nz] xd ( 2) where nx is the refractive index in the direction of the retardation axis of the in-plane phase, ny is the refractive index in the direction of the in-phase phase of the in-piane phase, nz is The refractive index in the thickness direction and d are the thickness of the film. 200804919 (3) In the case of a positive uniaxial retardation film, nz is almost equal to ny ( nz ^ ny ) and thus R 〇 / Rth is about 2 ( R 〇 / Rth ^ 2 ). Regarding the uniaxial retardation film, the R〇/Rth ratio can be about 1. 8 and 2. The variation within the range of 2 depends on the orientation of the film. In the case of the full biaxial retardation film, η χ is almost equal to ny (nx e ny ) and thus R 〇 is about 〇 ( R 〇 tri 〇 ). Regarding the full biaxial extension retardation film, since only the refractive index in the thickness direction is different from (less than) other refractive indices, the retardation film has a negative uniaxiality and thus is referred to as having a normal direction of φ. The film of the optical axis. In a biaxial retardation film, the refractive indices have this relationship: nx > ny > nz. The polarizing plate usually has a protective layer on at least one surface of the polarizing film. The protective layer typically comprises a triethylenesulfonated cellulose film. Different attempts have been made to replace the triethyl fluorene cellulose film or impart delayed properties to the protective layer using other resin films. For example, JP-A-08-43 8 1 2 describes at least one of a protective layer composed of a birefringent film as a polarizing film. JP-A-07-287123 discloses a protective layer made of a norbornene resin (cyclic olefin resin) made of a polarizing film. Further, image display devices such as liquid crystal displays will obviously lose their visibility when their image display screens reflect external light. Thus, in applications such as TVs, monitor screens for personal computers, etc. that impart image quality and visibility, the screen surface of the display device is typically processed to prevent reflection of external light. Regarding means for preventing reflection, it is preferable to use an anti-glare treatment in an application such as a large personal computer, a monitor, a TV, etc., which will form fine irregularities on the surface to scatter incident light and thereby blur the reflected image. Because this process is done at a moderate cost. Regarding the film which provides this anti-glare property, JP-A-2002-3654 1 0 discloses 200804919 (4) an optical film having fine irregularities formed thereon, wherein the reflected light mode satisfies when the light follows the normal-1 twist The direction of the angle enters the surface of the film and only the specific relationship of the reflected light from the surface is observed. 1?-八-2002-1 8 9 1 0 6 discloses an anti-glare film comprising a transparent resin film and a fine irregular ion-radiation curable resin layer, which can cure the resin layer by curing the ionizing radiation while The ionizing radiation curable resin layer is interposed between the embossing mold and the transparent resin film to form the fine irregularity, so that the three-dimensional 10 point flat φ average roughness and the adjacent convex portion of the three-dimensional surface roughness reference surface The average distance is formed on the surface of the transparent resin film within a specific range, respectively. JP-A-2004-90 1 87 discloses a method of manufacturing a roll for the manufacture of a film having a fine irregularity on its surface, which comprises forming a plated metal layer on the surface of the embossing roll, mirror honing The surface of the metallized layer is sprayed with a ceramic bead to the mirror-polished surface of the metallized layer, and the metallized layer is optionally hammered. φ In general, it may be necessary to use an anti-glare film with a high turbidity of at least 1% to protect the reflection of external light and ensure sufficient visibility, and to use this anti-glare film with high turbidity for notebook size. Personal computer, TV, etc. However, an anti-glare film having at least 10% high haze has the disadvantage that the contrast measured in a bright room is reduced due to its broad reflection-scattering properties. Furthermore, the anti-glare film having high turbidity also lowers the contrast measured in the dark room, which is also a disadvantage of the liquid crystal display. In order to solve those problems, JP-A-2006-5337 1 discloses that Low turbidity 200804919 (5) degree and anti-glare film of specific reflection mode, which forms irregularities on the honed metal plate of fine particles, electroless nickel plating on the non-surface of the metal plate to reduce irregularity The mold is formed in a depth, and the surface of the mold is irregularly transferred to the surface of the transparent resin film to produce > JP-A-2006-3 9270 describes the division of the surface thereof. The zone's anti-glare layer is applied to the display along with a linear polarizing film, a single-axis or a dual-axis retarder plate, to improve the VA-type liquid crystal display. SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal display which has high anti-glare properties and improved viewing angle properties without improving the VA liquid crystal display. Another object of the present invention is to provide a laminate for a liquid crystal display anti-glare polarizing film. The liquid crystal display of the present invention is a VA type liquid crystal display unit sandwiched between a pair of polarizing plates and a retardation plate in one or two spaces between the liquid crystal cell substrate and the polarizing plate. An improved reflective anti-glare film disclosed in JP-A-2006-53 37 1 is applied to the liquid crystal display. Next, the anti-glare properties of the liquid crystal display are improved differently. As a result, a layer having a specific optical characteristic and a specific surface shape is provided on the screen side. That is, a pair of linear polarizing plates including the VA type liquid crystal and not only the front and back sides of the liquid crystal cell can be significantly improved. In the impact on the rules table and the specific field and the full double visible, the basis of the turbidity indicator, placed in the two-type resistance mode to enter the current anti-glare element, set a single -10 - 200804919 (6) Positive uniaxial or biaxial retardation plates between the meta-substrate and a linear polarizing film and between a unit substrate and a linear polarizing film or between other unit substrates and other linear polarizing films Two-axis blocker. Further, a novel anti-glare polarizing film useful for this liquid crystal display has been found. Next, the present invention has been completed after further investigation. * The present invention therefore provides a liquid crystal display comprising a liquid crystal cell comprising φ a pair of unit substrates and a liquid crystal layer sandwiched between the unit substrates, wherein liquid crystal molecules in the vicinity of the substrate are oriented without applying a voltage a direction perpendicular to the substrate; a pair of linear polarizing films disposed on an outer surface of the individual unit substrate in which the liquid crystal cell is sandwiched; a first resistance disposed between one of the unit substrates and the individual linear polarizing film a retardation plate having a refractive index satisfying the following relationship: nx > ny 2 nz φ wherein nx and ny are the main refractive indices of the film plane, and ιι is the refractive index of the film thickness direction, and is placed Having the phase retardation axis of the first retardation plate parallel or substantially perpendicular to the transmission axis of the adjacent linear polarizing film; disposed between the first retardation plate and the unit substrate or another unit substrate and a second retardation plate between the linear polarizing film facing the second retardation plate having a refractive index satisfying the following relationship: nx ^ ny > nz wherein ιιχ, ny and riz are the same as defined above; and An anti-glare layer on a surface facing the surface of the liquid crystal cell opposite to any of the linear polarizing films, wherein the anti-glare layer has 5% or less of normal incident light -11 - 200804919 (7) Turbidity, when used, each has 0·5 mm, 1. 0 mm and 2. The three kinds of optical frequency combs composed of dark lines and bright lines of 0 mm width have a total reflection resolution of 50% or less when measuring the reflection resolution at a 45-degree light incident angle, and have 2 incident light incidents at an incident angle of 3 degrees. The reflectance R (30) of the reflection angle of 30 degrees or less of 30 degrees, the incident light entering the incident angle of 30 degrees has a reflectance R (40) of a reflection angle of 40 degrees of '0.003% or less, and 0. 001 or 60) the ratio of R(30), where R(> 60) ^ is the reflectance of incident light entering the incident angle of incidence at any angle of 60 degrees or more, and the prevention The surface of the glare layer is composed of a polygon having an average area of 50 μm 2 to 1,500 μm 2 , preferably 300 μm 2 to 1,00 0 μιη 2, wherein the polygons use the vertices of the irregular surface portion as the mother point and the Fino The surface formed by dividing the surface by (Voronoi) In the liquid crystal display of the present invention, the laminated board including the anti-glare layer, the linear polarizing film, and the retardation plate has a novel structure. Accordingly, the present invention also provides an anti-glare polarizing film laminate comprising an anti-glare layer, a linear polarizing film, and a retardation plate, which are laminated in this order, wherein the anti-glare layer has a normal incidence Turbidity of 5% or less of light, when using three kinds of optical frequency combs consisting of *dark and bright lines each having a width of 〇·5 mm, 1·0 mm, and 2·0 mm, respectively, at 45-degree light incidence The total reflection resolution when the angle is measured for reflection resolution is 50% or less, and the incident light entering at 30 degree angle of incidence has 2 °/. Or less than the reflectance of the 30 degree reflection angle R (30), for the incident angle of 30 degrees of incident angle has 0. The reflectance R ( 4 0 ) of the 003 % or smaller 40 ° reflection angle, and 〇 .  〇〇1 or smaller -12- 200804919 (8) R (k 60) to R ( 30) ratio, where R ( k 60) is the incident angle to the incident angle of 60 degrees or more Any reflectance, and the surface of the anti-glare layer is composed of a multi-turn having a uniform area of 50-μητ2 to 1,500, preferably 3〇0>m2 to 1:000μπι2. The polygons are irregularly convex. The apex of the portion is formed by dividing the surface by (Voronoi); and the retardation plate comprises at least one selected from the first retardation plate having the following relationship: nx > ny k nz and having the following relationship Refractive index: nx = ny > nz is a group of hysteresis plates, where nx and ny are the main refractive indices of the film plane, and nz is the refractive index in the direction of the degree, with the condition that when the first retardation plate is used It is placed such that the phase retardation axis of a retardation plate is substantially transmissive or substantially at right angles to the linear polarizing film. In the anti-glare polarizing film laminate of the present invention, the retardation plate is composed of a single first retardation plate having the following relationship: nx > ny k nz In the case where the retardation plate is placed such that its phase retardation The axis is substantially parallel or substantially at right angles to the transmission axis of the polarizing film. Alternatively, the resistance consists of a single second retardation plate having the following relationship: nx ^ ny Further, the retardation plate may be a stack of the first retardation plate and the second retardation plate. In this case, the laminate is advantageously placed such that the first plate faces the linear polarizing film, and the phase retarding axis of the first retarding plate is parallel or substantially perpendicular to the transmission axis of the linear polarizing film. . The μπι2 plane in the direction of 30 degrees, which is the refraction of the mother point, the second resistance, and the thickness of the film is parallel to the axis. Here, the linear retardation plate can be retarded by the ηζ 〇 layer plate group substantially - 13 - 200804919 Ο) In the anti-glare polarizing film laminate of the present invention, the anti-glare layer is advantageously made fine on the surface A regular resin film consisting of irregularities formed on a honed metal plate by bumping with fine particles, and nickel is electrolessly plated on the irregular surface of the metal plate to form a mold, The surface irregularity of the mold is transferred to the surface of the transparent resin film, and the resin film is removed from the mold. The liquid crystal display of the present invention has good anti-glare properties and also achieves a high contrast of φ and thus is superior to brightness and visibility of displayed images. The anti-glare polarizing film laminate of the present invention has low haze, but has fine irregularities on the surface to achieve the anti-glare property. Therefore, the anti-glare polarizing film laminate of the present invention can attain a high contrast ratio when it is applied to a liquid crystal display, particularly a VA type liquid crystal display. [Embodiment] The present invention will be described with reference to the accompanying drawings. Referring to Fig. 1, a liquid crystal display of the present invention comprises a liquid crystal cell 10, a pair of linear polarizing films 20, 21 sandwiching the liquid crystal cell 10, and a layer disposed between one of the linear polarizing films and the liquid crystal cell 10; The first retardation plate 26. The liquid crystal cell 10 includes a pair of unit substrates 1 1 and 1 2 and a liquid crystal layer 17 sandwiched between the unit substrates 1 1 and 1 2 and the unit substrates 1 1 and 1 2 have The surfaces thereof face the individual electrodes 14 and 15 of each other. In the liquid crystal layer 17 of the liquid crystal cell 10, liquid crystal molecules generally in the vicinity of the substrate from one substrate to the other substrate are oriented in a direction substantially perpendicular to the substrates when no voltage is applied. That is to say, the so-called vertical alignment (VA) type liquid crystal 200804919 (10) unit 10. The first retardation plate 26 has a refractive index satisfying the following relationship: nx > ny 2 nz, where nx and ny are the main refractive indices of the film plane, and nz is the refractive index in the thickness direction of the film. Here, the main refractive index in the plane of the film means the refractive index according to the direction of the maximum refractive index (phase-blocking axis direction) in the plane of the film and the refractive index in the direction perpendicular to the direction of the axis of the phase. In the long term, the direction of the refractive index is minimized (phase advance axis direction). The former is represented by h, while the latter is represented by ny. Therefore, the first blocking plate 26 is uniaxial (nx > ny = nz ) or biaxial (nx > ny > nz ). The first retarding plate 26 is placed such that its phase retarding axis is substantially parallel or substantially at right angles to the transmission axis of the adjacent linear polarizing film 20 or 21. Therefore, light leakage can be suppressed. Here, the phrase "substantially" in the phrase "substantially parallel to the axis" or "substantially right angle" means allowing a deviation of ±5 degrees from the parallel direction or the right angle direction, but ideally a completely parallel or precisely right angle. . In a preferred embodiment, the first retarder plate 26 is placed such that its phase retarding axis is substantially parallel to the transmission axis of the adjacent linear polarizing film. According to the present invention, the second retardation plate 27 is placed between the unit substrate with respect to the first retardation plate 26 and the linear polarizing film 21 or 20 on the side (Figs. 1A and 1B), or The unit substrate of the first retardation plate 26 is between the liquid crystal cell 10 (first C and FIG. 1D). The second retardation plate 27 has a refractive index satisfying the following relationship: nx = ny > nz, where nx, ny, and nz are the same as defined above. This means that the second retardation plate 27 is a film of an optical axis having a negative uniaxiality and a normal direction, or a c-plate. Here, "nx e ny " means that nx is exactly equal to ny, that is, the plane -15-200804919 (11) shown in the equation (1) has an internal block 値Ro of ο (zero), but in the plane The alignment can be virtually ignored, that is, the in-plane retardation 値 is within about 1 〇 nm, preferably within about -5 nm. Further, according to the present invention, the anti-glare layer 30 having a specific surface shape and imparting specific optical properties to the liquid crystal display is placed on the surface of the linear polarizing film 20 with respect to the surface facing the liquid crystal cell 10, that is, The surface on the display side (viewing side). The anti-glare layer has a shape φ above it, forming a large number of fine irregular anti-glare surfaces, and has a turbidity of 5% or less for normal incident light, and each has 0. 5 mm, 1. 0 mm and 2. The three kinds of optical frequency combs composed of dark lines and bright lines of 0 mm width have a total reflection resolution of 50% or less when measuring the reflection resolution at a 45-degree light incident angle, and have two incident light incidents at an incident angle of 30 degrees. The reflectance R(30) of the reflection angle of 30% or less, and the incident light entering the incident angle of 30 degrees have a reflectivity R(40) of 反射·〇〇3% or less of a reflection angle of 40 degrees, And 0. Ratio of R ( 2 60 ) to R ( 30 ) of 001 or less, where R ( φ > 60) is the reflectance of incident light entering the incident angle of 30 degrees at any angle of 60 degrees or more. The surface of the anti-glare layer is composed of a polygon having an average area of 50 μm to 1,500 μm, preferably 300 μπ 2 to 1, 〇〇〇μπι 2, wherein the polygons use the vertices of the irregular surface portion as the mother The point is formed by dividing the surface. This anti-glare layer will be described in detail below. In FIG. 1, when the anti-glare layer 30 and the display-side linear polarizing film 20 and the retardation plates 26 and/or 27 are provided in the liquid crystal cell 10 When not on the side, the anti-glare layer 30, the display side-16-200804919 (12) linear polarizing film 20 and the laminated plates of the retardation plates 26 and/or 27 are shown as the anti-glare polarizing film stack Laminate 40 or 41. When the linear polarizing film 21 and the retardation plate 26 and/or 27 are provided on the back side of the liquid crystal cell 1', the stack of the linear polarizing film 21 and the retardation plate 26 and/or 27 is shown as * Back side anti-glare polarizing film laminate 50. - the anti-glare polarizing film laminate 40 or 41 and the liquid crystal cell 1 and the back side polarizing film 21 or the back side anti-glare polarizing film laminate 50 and φ. The liquid crystal cell 1 〇 usually uses an adhesive 60 to stick. As the adhesive, those having good transparency such as an acrylic adhesive are generally used. In general, a backlight 70 is provided on the back side of the back side polarizing film 21 to supply light to the liquid crystal cell. The linear polarizing film 20, 21 may be a linearly polarized light that allows one of the two directions perpendicular to each other in the plane of the film to oscillate, while the other will absorb the linear polarization oscillating according to the other of the two directions. A commonly used polarizing film or plate for light. A designated example of this linearly polarized light is a uniaxially stretched polyvinyl alcohol φ film which is dyed with a high dichroic dye and crosslinked with boric acid. A polarizing film containing iodine as a base of a high coloring dye or a dye as a base containing an organic dichroic dye serving as a high dichroic dye may be used. The linear polarizing film may be a polyvinyl alcohol type polarizing film of this type or a polyvinyl alcohol type polarizing film having a transparent polymer protective film having, for example, triethyl fluorenyl cellulose or the like on its surface. Since the anti-glare layer 30 is provided on one surface of the display-side linear polarizing film 20, it can serve as a protective film for the display-side linear polarizing film 20. When the retardation plate 26 or 27 is provided on the other surface of the display-side linear polarizing film 20-17-200804919 (13), it can serve as a protective film for the display-side linear polarizing film 20. When the anti-glare layer 30 is provided on one surface of the surface-side linear polarizing film 20, and the other surface of the surface-arc linear polarizing film 20 is directly adhered to the surface by the adhesive 60 as shown in FIG. 1D When the liquid crystal cell 1 〇 ', a protective film as described above is provided on at least the surface * of the linear polarizing film 20 with respect to the anti-glare layer 30. When the retardation plate 26 or 27 is provided on the surface of one of the back side polarizing films 21 as shown in Figs. 1B and 1D, it can serve as a protective film for the linear polarizing film 21. In this case, a protective film as described above is preferably provided on the other surface of the linear polarizing film 21. When no laminated layer such as the retardation plate is on the back side polarizing film 21, a protective film as described above is provided on both surfaces of the linear polarizing film 21. The first retardation plate 26 has a refractive index satisfying the following relationship: n χ > n y 2 η z ' wherein n X, n y and η z are in agreement with the above. The in-plane retardation 値Ro is selected from the range of 30 to 300 nm, depending on the characteristics of the liquid crystal cell, and the like. Preferably, the ratio of R 〇 to Rth exceeds 1 but does not exceed 2. The retardation plate having this characteristic can be produced by uniaxially or biaxially stretching a transparent resin film having a positive anisotropic refractive index under appropriate conditions. Examples of the transparent resin film having a positive anisotropic refractive index include acrylated cellulose, cyclic olefin resin, polycarbonate, and the like, such as triethylene fluorene fiber. The cyclic olefin resin is a resin containing a cyclic olefin in the form of a monomer such as norbornene, dimethyl octahydronaphthalene or the like. Commercially available examples of cyclic olefin polymers are ARTON (registered trademark) (available from JSR Ltd.), ZEONOR® and ZEONEX® (both available from -18-200804919 (14) ΖΕΟΝ) Wait. Among these transparent resins, triethyl fluorenyl cellulose and cyclic olefin resins are preferably used because they have a low light transmittance coefficient and thermal strain will cause small in-plane characteristics to deteriorate under the use conditions. The retardation plate 27 has a refractive index that satisfies the following relationship: heart ny > nz, where nx, ny, and nz are the same as defined above. This retardation can be carried out by applying a discotic liquid crystal on the substrate, coating a liquid crystal of the cholesterol phase on the base φ at a narrow interval, and forming a layer of an organic layer-forming compound such as mica on the substrate. Or continuous biaxial stretching of the resin film is achieved by providing an unstretched solvent-formed film. The second retardation plate preferably has an R 0 of 0 to 10 nm and an Rth of 50 to 300 nm. The material of the retardation plate 27 or the substrate material of the retardation plate 27 is not limited. Preferably, the retardation plate 27 has a layer which can be arbitrarily formed and which is layered with a low-cost control layer at a low cost. Examples of commercially available retardation plates having such retardation include "VAC film" (registered trademark) ^ available from Sumitomo Co., Ltd., "FUJITAC film" (trademark) (available from FUJIFILM Co., Ltd.) )and many more. Since the two retardation plates 27 have an index of refraction relationship of nx = ny and thus about 〇 (R 〇 of zero, it is not necessary to define the axis angle of the phase retardation axis, that is, the use of a very small RQ is also the same. A specific example of the liquid crystal display shown in FIG. 1A includes a liquid crystal cell, an anti-glare polarizing film laminate 40 on one surface (display side surface) of the liquid crystal cell 1 and a liquid crystal cell The back side anti-glare polarizing film laminate 50 on the front surface (back surface). In this specific example, the elastic material or the enamel material (the first) is on the 10 light side of the -19-200804919 (15 The anti-glare polarizing film laminate 40 includes an anti-glare layer 30, a linear polarizing film 20, and a first retardation plate 26, which are laminated in this order from the farthest side of the liquid crystal cell 10, and the back side The anti-glare polarizing film laminate 50 includes a second retardation plate 27 and a linear polarizing film 2 1, which are laminated in this order from the nearest 'side of the liquid crystal cell. ・ The liquid crystal display shown in FIG. Specific examples include a liquid crystal cell 1 〇 on one surface (display side surface) of the liquid crystal cell The glare polarizing film laminate 40 and the back side anti-glare polarizing film laminate 50 on the other surface (back side) of the liquid crystal cell 10. In this specific example, the anti-glare polarizing film laminate The plate 40 includes an anti-glare layer 30, a linear polarizing film 20, and a second retardation plate 27, which are laminated in this order from the farthest side of the liquid crystal cell, and the back side anti-glare polarizing film laminate 50 The first blocking plate 26 and the linear polarizing film 2 1 are stacked in this order from the nearest side of the liquid crystal cell. The difference between the specific example of FIG. 1A and the specific example of FIG. 1B is the same. The position of the retardation plate 26 is opposite to that of the second retardation plate 27. φ The specific example of the liquid crystal display shown in Fig. 1C includes the liquid crystal cell 1 〇, and anti-glare on one surface (display side surface) of the liquid crystal cell a polarizing film laminate 40 and a linear polarizing film 21 on the other surface (back side) of the liquid crystal cell 1. In this specific example, the anti-glare polarizing film laminate '40 includes an anti-glare layer 30, The linear polarizing film 20, the first retardation plate 26 and the second retardation plate 27 are from the liquid crystal cell The farthest side is laminated in this order. A specific example of the liquid crystal display shown in FIG. 1D includes a liquid crystal cell 1 〇, anti-glare polarized light on one surface (display side surface) of the liquid crystal cell -20-200804919 ( 16) The film laminate 4 1 and the back side anti-glare polarizing film laminate 50 on the other surface (back side) of the liquid crystal cell 10. In this specific example, the anti-glare polarizing film laminate 4 1 includes an anti-glare layer 30 and a linear polarizing film 20 which are laminated in this order from the farthest side of the liquid crystal cell, and the back side anti-glare polarizing film laminate 50 includes a second retardation plate 27 The first retardation plate 26 - and the linear polarizing film 2 1 are laminated in this order from the nearest side of the liquid crystal cell. In the specific example of FIG. 1C, the laminated plate of the linear polarizing film 20, the first retardation plate 26, and the second retardation plate 27 is provided on the display surface φ side of the liquid crystal cell 10, and The anti-glare layer 30 is provided on the linear polarizing film 20, however, in the first D diagram, the second retardation plate 27, the first retardation plate 26, and the linear polarization are provided on the display surface side of the liquid crystal cell 10 a laminated plate of the film 2 1 and not providing a retardation plate on the display surface side of the liquid crystal cell 1 〇 in the anti-glare polarizing film laminated plate of the present invention, according to the first A, 1 B and 1 C The anti-glare layer 30, the linear polarizing film 20, and the retardation plates 26 and/or 27 are laminated in the order shown. The cross-section of the anti-glare polarizing film laminate 40 alone is schematically shown in Fig. 2, wherein the retarding plate 25 represents the first retarding plate 26 and/or the second retarding plate 27. That is, the retardation plate 25 may be a retardation plate having a refractive index satisfying the following relationship: nx > ny 2 nz (i.e., the above first 'blocking plate), or a refractive index satisfying the following relationship: χ χ ny ny > nz (i.e., the second retardation plate described above), wherein nx, ny, and nz are the same as defined above, or, as shown in Fig. 3, the laminate has a refractive index satisfying the following relationship: nx > ny k The first retardation plate 26 of nz (i.e., the first retardation plate described above) and the-21-200804919 (17) have a refractive index that satisfies the following relationship: nx e ny > nz the second retardation plate. In this embodiment, the first retardation plate 26 is placed so as to face the linear polarizing film 20 and its phase retarding axis is substantially parallel or substantially at right angles to the transmission axis of the linear polarizing film 20. The anti-glare layer 3 has a turbidity of 5% or less for normal incident light ‘, and each has 0. 5 mm, 1 · 0 mm and 2. The three kinds of optical frequency combs composed of dark and bright lines of 0 mm width measure the total reflection resolution of φ reflection resolution at 50 degrees of light incident angle of 50% or less, and the incident light entering for 30 degree angle of incidence has 2 The reflectance R ( 30 ) of the reflection angle of 30% or less, and the incident light entering the incident angle of 30 degrees has 0. The reflectance R ( 40 ) of the reflection angle of 40 degrees or less of 003% or less, and 0. Ratio of R(2 60) to R(3 0) of 001 or less, where R(2 60) is the reflectance of incident light entering a 30 degree angle of incidence in any direction of a reflection angle of 60 degrees or more, And the surface of the anti-glare layer 30 is composed of a polygon having an average area of 50 μm to 1,500 μm, preferably 300 μπ 2 to φ 1, 〇〇〇μπι 2, wherein the polygons are irregularly convex portions. The vertex is used as the parent point and the voucher is formed by dividing the surface. Now, the anti-glare layer 30 will be described in detail. The anti-glare layer 3 is preferably manufactured by the method described below, and has an anti-glare surface on which fine irregularities are formed, and a haze of 5% or less for the normally incident light. Although the anti-glare layer 30 has fine irregularities on the surface, when it is applied to a liquid crystal display, it will have low haze and thus it can suppress a decrease in contrast. The anti-glare layer 30 has a total reflection resolution of -22-200804919 (18) for 50% or less of incident light of 45 degrees. The reflection resolution can be measured by the method described by ns K 7105. In the method of Jis Κ 7105, it is defined and used to have 0. 1 2 5 m m, 0. 5 m m, 1. Four optical frequency combs consisting of a dark line of 0 m m and 2 · 0 m m and a bright line (the ratio of the width of the dark line to the width of the bright line is 1:1). In the present invention, in the reflection clarity measured using four kinds of optical frequency combs, it is not used to have 0. The obtained light-frequency comb of a width of 125 mm is added to the sum because the reflection resolution obtained by the φ optical frequency comb is too small to use the anti-glare film according to the present invention, so that the measurement enthalpy has a large error. Thus, in the present invention, the total reflection resolution is used by each having 0 · 5 mm, 1.0 mm and 2. The sum of the reflection resolutions measured by the three optical frequency combs consisting of a dark line and a bright line of 0 mm width. Thus, the maximum possible 値 of the total reflection resolution according to the above definition is 300%. When the total reflection resolution exceeds 50%, an image such as a light source image or the like is reflected so that the anti-glare property of the anti-glare polarizing film laminate of the present invention is deteriorated. When the total reflection resolution is 50% or less, it may be difficult to evaluate the superiority of the anti-glare property only from the φ total reflection resolution, because if the total reflection resolution is 50% or less, use Has 0. 5 mm, 1. The three types of optical frequency combs of 0 mm and 2·0 mm width have a respective reflection clarity of at most about 10 to 20%, so the reflection sharpness fluctuation caused by the measurement error cannot be ignored. Next, the dependence of the reflectance on the reflection angle will be described with reference to Figs. 4 and 5 as another criterion for evaluating the anti-glare property. Figure 4 is a perspective view showing the direction of light incident and the direction of reflection associated with the anti-glare layer (anti-glare film). According to the present invention, when R(30) is defined as incident light 36 entering at a 30 degree angle from the normal 35 of the anti-glare layer 30, relative to -23-200804919 (19), according to a 30 degree reflection angle The reflectance of the reflected light of the direction, that is, the reflection direction 37, is R (30) of 2% or less. The reflectance R ( 30 ) is preferably 1. 5% or less, more preferably 0. 7% or less. When the reflectance R ' (30) exceeds 2%, the anti-glare layer may not have sufficient anti-glare properties such that the visibility of the display is lowered. In Fig. 4, the direction of the reflected light at any corner 以 is indicated by the number 3 8 , and the directions 37 and 38 of the φ reflected light are present in the direction 36 including the incident light and the film in the reflectance measurement. The normal 3 5 plane is 3 9 in. Figure 5 is a graph depicting the reflectance of reflected light 18 associated with incident light 36 entering at an angle of 3 5 3 0 from the anti-glare layer 3 0 of the anti-glare layer of Figure 4 (where the coordinate axis is by logarithmic scale) An embodiment of a graphic representation. A graph showing the relationship between the reflectance and the reflection angle, or a reflectance read from the pattern of the respective reflection angles is called a "reflection mode". As shown in Fig. 5, the reflectance R (3 〇) is a reflectance peak 有关 related to the incident light 36 φ entering at an angle of 30 degrees, and the reflectance tends to decrease as the reflection direction deviates from the reflection direction. According to the present invention, when R ( 40 ) is defined as incident light 3 6 ' ' at a angle of 30 degrees from the normal line 35 of the anti-glare layer 30 shown in Fig. 4, the angle of reflection is 40 degrees. The reflected light reflectance of the direction is R ( 4 0 ) of 0 · 0 0 3 % or less. When R ( 4 0 ) exceeds 〇 · 〇 〇 3 %, the displayed image tends to whiten. Thus, R ( 4 〇 ) is preferably not so large. When R ( 40 ) is too small, the anti-glare layer may not have sufficient anti-glare properties. Therefore, R(40) is preferably at least 0. 00005%. However, it is quite difficult to closely determine the range of R (40) -24-200804919 (20) because reflection or change of white is subjectively determined by the eye and the characteristics reflecting the user's preference. Furthermore, according to the invention, the ratio of R ( ^ 60 ) to R ( 30 ) is 0. 001 or less, where R(k 60) is the reflectance in any direction of the reflection angle of 60 degrees or more. This ratio is preferably 0. 0005 or smaller, better - ground 0. 000 1 or less. Here, "any direction of the reflection angle of 60 degrees or more" means a reflection angle of a range between 60 degrees and 90 degrees. The anti-glare film manufactured by the method described in the following φ has the typical mode shown in FIG. 5, and in the case of the anti-glare film, the reflectance often has a peak according to the reflection direction and increases with the reflection angle. Gradually decreases. Therefore, the ratio of R(2 60) / R(30) can be expressed by R(60) / R(30), where R(60) is the reflectance at a reflection angle of 60 degrees. When the ratio of R(>60)/R(30) exceeds 0. At 0 01, the anti-glare layer will see white and the visibility of the display will deteriorate. That is to say, when a black image is displayed on the display screen and the anti-glare layer is provided in front of the screen, the entire screen will see white reflecting the light outside the φ light. In the case of the reflection mode shown in Fig. 5, the reflectance R ( 30 ) is about 0. 4%, R ( 40 ) is about 0. 0006%, and R ( 60 ) is about 0. 00 0 03%. In addition to the specific reflection mode described above, the surface of the anti-glare layer according to the present invention is composed of polygons having an average area of from 50 μχη 2 to 1,500 μπ 2 , preferably from 300 μm 2 to 1,000 μπ 2 , wherein the polygons The vertices of the irregularly convex portion are used as the mother point and the voluminous is formed by dividing the surface. -25- 200804919 (21) A deductive method for measuring the apex of the convex portion of the irregular surface of the anti-glare layer will be described. When attention is focused on an arbitrary point on the surface of the anti-glare layer, if there is no higher height around the arbitrary point than the arbitrary point, and the height of any point on the irregular surface is higher than the highest on the irregular surface When the middle 之间 between the height of the point and the height of the lowest point is higher, the arbitrary point is the apex of the convex portion. Specifically, as shown in Fig. 6, as shown in Fig. 6, an arbitrary point 91 is selected on the surface of the anti-glare layer. Using this point 91, a circle having a radius of 2 μm to 5 μm is drawn when φ is the center of a circle in a plane parallel to the base plane 93 of the anti-glare layer. When there is no point higher than the height of the point 9 1 in the circle 9 4 projected on the surface 93 of the anti-glare layer, and the height of the point 9 1 is higher than the highest point height on the irregular surface When the middle 値 height between the lowest point heights is determined, the point 9 1 is determined as the apex of the convex portion. In this case, the projected circle 94 has a radius that does not account for minute irregularities on the surface of the sample, and the circle 94 does not include a plurality of convex portions. Thus, the radius of the circle 94 is preferably about 3 μm. Through the above method of φ, it is also possible to count the convex surface fraction per unit area of the irregular surface. In order to achieve good visibility without causing reflection or whitening, the number of convex portions counted by the above method is preferably 50 to 150 in the field of view of 200 μπι 200 μηι. If the number of convex portions on the irregular surface of the anti-glare layer is small, the pixel may cause glare to make the displayed image difficult to look at, especially when the anti-glare polarizing film laminate and the display device having high definition When used together. Furthermore, the texture of the displayed image will deteriorate. When the number of convex portions is too large, the inclination angle of the irregular shape becomes very -26-200804919 (22) so steep that the image tends to become white. The number of convex portions in the field of view of 200 μm 2 2 μm is preferably 120 or less and 7 or more. Now 'will explain the Fino to split. When a number of points (ie, 'mother points') are scattered on a plane, which can be segmented by determining the closest parent point of any point on the plane, the pattern is Funuo, and via this graphic Planar segmentation is called Fu Nuo to segment. Fig. 7 is a view showing a divisional embodiment in which the apex of the convex portion on the surface is used as a mother point and the surface of the anti-glare layer is divided by φ vomin. In Fig. 7, the point 95 is a mother point, and the respective polygons 96 including one mother face are the regions formed by the segmentation by the Fino, and the polygon is referred to as the Frono region or the Frono polygon. And later referred to as Fu Nuo as a polygon. The area 97 darkened around Fig. 7 will be described later. In the figure, the number of mother points is equal to the number of polygons. Briefly, in Fig. 7, numbers 95 and 96 refer to not a part of the mother point and a part of the polygon, respectively. It is necessary to calculate the average area of the nucleus obtained by dividing the vertices using the convex portions as the mother points by the voicing φ, using a suitable device such as a confocal microscope, an interference microscope, an atomic force microscope (AFM), or the like. The surface shape of the anti-glare layer was observed, and the three-dimensional coordinate 値 was measured. Next, according to the following deduction method, Fu Nuo is used to divide the surface of the anti-glare layer, and the average area of the polygon is calculated. That is, the irregular surface of the anti-glare layer is determined according to the above deductive method, and then the apex of the convex portion is projected on the base surface of the anti-glare layer. Thereafter, all three-dimensional coordinates obtained by surface shape measurement are projected on the plane of the base, and all projection points are assigned to the closest mother face to perform the segmentation. Calculate all -27- 200804919 (23) Fu Nuo is the area of the polygon and averaged to obtain the average area of the Fu Nuo polygon. In this measurement, the Frox of the boundary of the adjacent measurement field is not counted in the polygon area to minimize the error. That is to say, in the case of Fig. 7, the calculation of the average area does not include the measurement of the darkening of the vicinity of the boundary of the visual field by the polygon 97. In addition, in order to minimize measurement errors.  Preferably, the Fouro's average 値' of the polygons is calculated in at least three fields of view each having a field of view of 200 μηη 200 μπι and then all the average 値 φ are evenly averaged and measured as 値. As described above, in the present invention, the average area of the undox of the convex portion having the irregular surface on the irregular surface of the anti-glare layer serving as the mother point is from 50 μm 2 to 1,500 μm 2 , preferably 300 μπ 2 . To 1,000 μπι2. When the average area of the undox is less than 5 〇 μπι 2, the irregular shape of the surface of the anti-glare layer becomes steep so that the image becomes white. When the average area of the undone is more than 1,5 〇〇μπι 2, the irregular surface of the anti-glare layer will become rough, so that glare is generated and the texture φ of the image is deteriorated, particularly when the anti-glare polarizing film The laminate is used in conjunction with a high-definition display device. Using the three-dimensional coordinates measured here, the arithmetic mean height Pa of the section curve and the maximum section strength Pt (which is defined by JIS 060 060 1 (=ISO * 4287)) can be calculated. Furthermore, the respective point heights on the irregular surface of the anti-glare layer can be described in a rectangular pattern. In order to achieve good visibility without causing reflection or whitening, the arithmetic mean height Pa of the cross-sectional curve is preferably 0. 08 μπι to 0. 15 μπι, and the maximum cross-sectional height Pt is preferably from 0·4 μηη to 0·9 μπι. When the arithmetic mean height Pa is less than 0. 08 μπι -28-200804919 (24) The surface of the anti-glare layer is substantially flat so that it has no anti-glare properties. When the arithmetic mean height Pa exceeds 0. At 15 μη, the surface shape of the anti-glare layer becomes rough, causing problems such as whitening and glare. When the maximum section height Pt is less than 0. At 4 μηι, the surface of the anti-glare layer is again substantially flattened so that it has no anti-glare properties. When the maximum sectional height Pt exceeds 0·9 μm, the surface shape of the anti-glare layer becomes rough again, causing problems such as whitening and glare. When the height of a dot on the irregular surface of the anti-glare layer is described in a rectangular diagram, the peak of the histogram preferably has a highest point height (100% height) and a lowest point height (0%) on the irregular surface. The middle 値 (50% height) between the heights is within ±20%. This means that the peak of the histogram is preferably in the range of between 30% and 70% of the height difference between the highest point height and the lowest point height. If the peak does not exist within ±20% of the intermediate crucible, in other words, the peak has a height greater than 70% or less than 30% of the height of the highest point, the surface shape of the anti-glare layer will become rough. As a result, glare tends to occur undesirably. In addition, the texture tends to deteriorate. In order to describe the rectangular map of the heights, the highest and lowest points on the surface of the anti-glare layer (anti-glare film) are measured, and then the difference between the height of the respective measurement point and the height of the lowest point (ie, the height of the measurement point) is divided by the highest point. The difference between the height and the lowest point height (ie, the maximum height difference) is obtained to obtain the relative degree of each point. The receiver's use the rectangular map with the most local degree of 1 〇 〇 % and the lowest height 〇 % to describe the relative heights obtained to obtain the peak positions of the respective points in the histogram. The histogram should be divided into segments to avoid the effects of data errors, and in general it is divided into approximately 10 to about 30 segments. For example, the interval from the lowest point (〇% height) to the highest point (100% height) is divided by 5 % -29-200804919 (25), and the position of the peak is determined. The anti-glare surface constituting the anti-glare layer having the above characteristics has a shape covered by an irregular condition in which there is no flat plane. An anti-glare surface having such a surface shape may advantageously form irregularities on the honed metal sheet by impacting with fine particles, and electroless nickel is formed on the irregular surface of the metal sheet to form a mold 'the surface of the mold Irregular conditions are transferred to the surface of the transparent resin film, and a transparent resin film having a transfer irregularity is removed from the mold. A preferred method for producing an anti-glare layer (anti-glare film) by the above method is described with reference to Fig. 8, which schematically shows that the irregularity of the mold is transferred to the resin film using a metal plate as a mold body. A cross-sectional view of the step of having an irregular mold on its surface. Figure 8A shows a section of the metal plate 81 after mirror honing with a honed surface 82. Irregularities are formed on the surface 82 by impinging (or blowing) the honed surface 82 of the metal plate 8 1 with fine particles. Fig. 8B is a view schematically showing a section of the metal plate 81 after the impact, which has a hemispherical fine concave portion 83. Next, the irregular surface formed by the impact is electrolessly plated with nickel to reduce the irregular depth. Fig. 8C schematically shows the cross section of the metal plate 81 after electroless plating of nickel. In Fig. 8C, a nickel plating layer 84 is formed on the surface of the metal plate 81 having a fine concave portion, and the surface 86 of the nickel plating layer 84 has irregularities which are electrolessly plated with nickel compared to the figure. The concave surface 83 has a reduced depth; that is, the irregular shape of the surface of the metal plate is made dull. Thus, when the metal concave portion 83 having the hemispherical shape of the metal -30-200804919 (26) plate 81 is electrolessly plated with nickel, substantially no flat plane can be obtained and it is suitable for fabricating a preferred optical property. A mold for the irregularity of the anti-glare film. Fig. 8D schematically shows the step of transferring the mold irregularity of the 8Cth image formed in the previous step to the resin film. That is, a resin film is formed on the irregular surface of the nickel plating layer '84. Thereby, a film 30 having a transferred irregular shape is obtained. The film 30 may be composed of a single thermoplastic transparent resin film φ. In this case, the thermoplastic resin film in a heated state is pressed to the irregular surface 86 of the mold and formed by hot press. Alternatively, as shown in Fig. 8D, the film 30 may be composed of a transparent substrate film 32 and an ion-radiation-curable resin layer 33 laminated on the surface of the substrate film 32. In this case, the ionizable radiation-curable resin layer 3 3 is brought into contact with the irregular surface 86 of the mold and irradiated by ionizing radiation to cure the resin layer 33. Thereby, the irregular shape of the mold is transferred to the ionizable radiation-curable resin layer 33. These films will be described later. Fig. 8E is a schematic cross-sectional view showing the film 30 after being removed from the φ mold. In the method shown in Fig. 8, preferred examples of the metal used for the manufacture of the mold include aluminum, iron, copper, stainless steel, and the like. Among them, it is preferable that the metal is easily deformed by the impact of fine particles, that is, it is not too high. In particular, it is preferred to use aluminum, iron, copper or the like. From the standpoint of cost, aluminum and soft iron are more preferred. The mold may be in the form of a flat metal plate or a cylindrical metal roll. When a roll mold is used, the anti-glare film can be continuously produced. The fine particles are used to strike or blow the metal having the honed surface. -31 - 200804919 (27) In particular, the metal is preferably honed to a near-mirror state because the metal plate or roll is often machined to achieve the desired precision by, for example, cutting or honing. Degree, and the processing marks are often left on the surface of the metal body. If a deep mark is left, the surface of the metal body may have trace marks after the impact of the fine particles, because the depth ratio of some marks is larger than the irregular depth formed by the fine particles, so that the trace amount is deep. The mark may have an unexpected effect on the optical properties of the anti-glare layer. φ The method for honing the metal surface is not limited, and any of mechanical honing, electrolytic honing, and chemical honing can be used. Examples of the mechanical honing include a superfinishing method, a fine boring method, a fluid honing method, a buffing wheel honing method, and the like. In view of the center line average roughness Ra, the surface roughness after honing is 1 micrometer or less, preferably 0. 5 micrometers or less, more preferably 0. 1 micron or less. When R a is too large, the influence of the surface roughness before deformation may still be after the deformation of the metal surface by the impact of the fine particles. The lower limit of Ra may not be limited, but may be limited from the viewpoint of processing φ time, processing cost, and the like. The method of striking the metal surface with fine particles is preferably a blowing treatment. Examples of the blowing method include a sandblasting method, a spray method, a liquid honing method, and the like. Regarding the particles used in these treatments, those having a shape close to a sphere are better than those having a sharp edge. Furthermore, the particles of the hard material are preferred because they do not break when processed to form sharp edges. Preferred examples of the ceramic ceramic particles satisfying those properties are spherical oxidized particles, alumina particles and the like. Examples of preferred metal particles are steel, stainless steel, and the like. Further, it is possible to use a particle comprising particles of ceramic or gold-32-200804919 (28) granules on a resin binder. When particles having an average particle size of 10 to 75 μm, preferably 10 to 35 μm, in particular, spherical fine particles are used as fine particles impinging on the metal surface, an anti-glare film can be produced which satisfies A shape factor according to the present invention, defined in the range of 50 μπι to 1,500 μπ 2 , preferably from 3 0 0 μπι 2 to 1,000 μπι 2 , in terms of the average area of the polygon. Regarding such fine particles, those having a uniform particle size, that is, φ are particularly preferably a single particle. When the average particle size of the fine particles is too small, it will be difficult to satisfy the irregularities on the surface of the metal. In addition, the tendency angle of the irregular shape becomes so steep that the image tends to become white. When the fine particles are too large, the surface irregularities become rough so that glare may occur, and the texture of the image may be deteriorated. The irregular metal surface formed by the above method is then electrolessly plated with nickel to reduce the irregular depth. The degree of depth reduction depends on the type of metal, the irregular size and depth of the blown film, the type and thickness of the nickel plated, and the like. The most important factor controlling the degree of depth reduction can be the thickness of the nickel plated. If the thickness of the electroless nickel is too small, the irregular depth formed by the blowing or the like may not be effectively reduced, so that the optical properties of the irregular anti-glare film transferred from the mold may not be sufficiently improved. When the thickness of the electroless nickel is too large, productivity will decrease. Accordingly, the thickness of the electroless nickel is preferably from about 3 to 70 μm, more preferably at least 5 μm and 50 μm or less. In order to form an plating layer on the metal surface, it is preferred to use an electroless plate which can form a plating layer having a macroscopic uniform thickness on the metal plate or roll, -33-200804919 (29), in particular, providing high The hardness of the plated layer is electroless nickel plated. Preferred examples of the electroless nickel plating include gloss nickel plating using a plating bath containing a gloss agent such as sulfur or a nickel-phosphorus alloy plating (low phosphorus type, medium phosphorus type or high phosphorus type), and nickel- Boron alloy plating and so on. If the hard chrome plating described in JP-A-2〇02-189106 is used, especially ', electrolytic chrome plating, the electric field tends to concentrate on the edge of the metal plate or roll so that the thickness of the plated metal at the center and the edge may be different. . Therefore, if irregularities having a uniform depth are formed on the entire surface of the metal plate or the roller by blowing φ or the like, the degree of reduction in plating depth may vary depending on the position on the entire surface of the metal plate or the roller. As a result, these irregular depth changes. Therefore, electrolytic plating is not suitable for use in the present invention. Further, the hard chrome is plated with a mold which can form a rough surface and is thus unsuitable for use in the manufacture of the anti-glare layer. To remove the rough surface, the hard chrome plated surface is typically honed. However, the honing of the plated surface as explained below is not suitable for use in the present invention. # However, the present invention does not include forming a thin chrome plating on the outermost surface after the electroless nickel plating, that is, so-called flash chrome plating to provide surface hardness. If flash chrome plating is performed, the thickness of the flash chrome layer is as small as possible to avoid deterioration of the shape of the electroless nickel layer serving as the underlayer, and preferably should be 3 μm or less, more preferably 1 μm or less. Further, in the present invention, it is not preferable to honing the metal plate or the roll after plating in a manner as disclosed in JP-A-2004-90 1 87. If the plated surface is honed, the outermost surface may have a flat portion such that the optical properties of the anti-glare layer may be deteriorated' and the irregular shape is hardly controlled by good productivity - 34-200804919 (30), Because the number of control factors formed will increase. Fig. 9 schematically shows a metal plate on which a flat surface is formed by honing an irregular surface formed by impact of fine particles, which irregularities have been reduced by electroless nickel plating. That is, Fig. 9 corresponds to an electroless plated metal plate of Fig. 8C in which the surface of the nickel plating layer 84' is honed. As a result of the honing, a portion of the convex portion of the surface irregularity 86 formed on the nickel-plated layer 84 on the metal plate 81 is honed and thereby forms the flat plane 29. φ According to the present invention, an irregular mold having a surface formed on the surface thereof as shown in Fig. 8C is used, and the irregular shapes are transferred to the surface of the film 30 to form an anti-glare surface. In this case, the surface shape of the mold can be transferred to the surface of the film by any conventional method. For example, a thermoplastic resin film is hot pressed to the irregular surface 86 of the mold to irregularly transfer the surface of the mold to the surface of the resin film; an ion-radiation-curable resin is coated on the surface of the transparent resin film, and then The ion-radiation-curable resin coating in an uncured state is tightly adhered to the irregular surface of the mold and is irradiated with ionizing radiation to cure the ion-radiable resin through the transparent resin film. The surface of the mold was irregularly transferred to the surface of the cured ion-radiation curable resin. After the transfer, the film was removed from the mold as shown in Fig. 8E to obtain the anti-glare film 30. The latter method of using an ionizable radiation-curable resin is preferred from the viewpoint of, for example, prevention of mechanical strength such as surface cracks. The transparent resin used in the latter method described above may be any film having substantial light transparency. Specific examples of the transparent resin include cellulose resins (e.g., triethylenesulfonyl cellulose, diethyl cellulose, cellulose acetate propionate-35-200804919 (31) ester, etc.), cycloolefin polymer, poly Carbonate, polymethyl methacrylate, polyfluorene, polyether oxime, polyvinyl chloride, and the like. The cycloolefin polymer is a cyclic olefin comprising, for example, norbornene, dimethyl octahydronaphthalene or the like as a monomer. Examples of commercially available cyclic olefin polymers are ARTON (registered trademark) (available from JSR Co., Ltd.), ZEONOR® and ^ ZEONEX® (both available from ΖΕΟΝ ΖΕΟΝ). Among them, a thermoplastic transparent resin film such as polymethyl methacrylate, polycarboate, polyfluorene, and polyether oxime and cycloolefin polymer is pressure-bonded or pressure-bonded to have a surface at an appropriate temperature. An irregular mold is then peeled from the mold to irregularly transfer the surface of the mold to the surface of the film. Further, a polarizing plate is used as the transparent film and the surface irregularity of the mold can be directly transferred to the surface of the polarizing plate. When the ion-radiation-curable resin is used to transfer the surface irregularities of the mold, it is preferred to use a polymer having at least one propylene group-containing compound in the molecule. In order to increase the mechanical strength of the anti-glare layer, it is more preferred to use an acrylate having at least three functional groups, that is, a compound having at least three acryloxy groups. Specific examples of the compound include trimethylolpropane triacrylate, trimethylolethane triacrylate, glycerol triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, and the like. In order to impart flexibility to the anti-glare layer in order to prevent the anti-glare layer from being broken, it is preferred to use an acrylic compound having an urethane bond in the molecule. A designated example of the acrylic compound is two compound molecules having at least one hydroxyl group in addition to the acryloxy group in the molecule (for example, trimethylolpropane triacrylate, pentaerythritol tripropylene-36 - 200804919 (32) acid ester, etc. And so on) added to a diisocyanate compound (for example, hexamethylene diisocyanate, toluene diisocyanate, etc.). Further, other acrylic resins which are radically polymerized and cured via ionizing radiation, such as an ether acrylate polymer, an ester acrylate polymer and the like, may be used. Further, a cationically polymerizable ion-radiation-curable resin such as an epoxy resin, an oxetane resin or the like can be used as the resin imparted to the irregularity after curing. In this case, an example of the cationically polymerizable ion-radiation-curable resin may be, for example, from 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene. a cationically polymerizable polyfunctional oxetane compound such as bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether or the like, and, for example, hexafluorophosphate (4-A) A cationic photopolymerization initiator of phenyl)[4-(2-methylpropyl)phenyl]anthracene or the like is prepared. When the ionizable radiation-curable acrylic resin is cured by irradiation with UV rays, a UV radical polymerization initiator which generates radicals by irradiation of UV rays to initiate polymerization and curing reaction is used. The UV rays are usually irradiated from the side of the glass mold or the transparent resin film. Thus, when UV rays are irradiated from the side of the transparent resin film, a polymerization initiator which initiates a radical generating reaction in the visible light to UV ray range is used to induce freedom in the wavelength range of UV rays through which the light can pass through the film. The base generates a reaction. Examples of the UV ray radical polymerization initiator which initiates the radical generating reaction by irradiation with UV rays include 1-hydroxycyclopropyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl] -2-morpholinylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and the like. When the UV ray is irradiated through a transparent resin film containing a UV ray absorbing agent, a radical photopolymerization initiator having an absorption range of -37 to 200804919 (33) in the visible light wavelength range is used. Examples of the initiator include bis(2,4,6-trimethylbenzylidene)phenylphosphine oxide, bis(2,6-dimethoxybenzylidene)-2,4,4 oxidized. - Trimethylphenylphosphine, 2,4,6-trimethylbenzimidyl diphenylphosphine, and the like. ^ When the mold is in the form of a flat plate having a fine irregular irregular plating surface, the irregular surface of the mold can be combined with the transparent resin coated with the uncured ion-radiation-curable resin The layer contact of the film causes the coating of the φ ion-radiation-curable resin to adhere tightly to the irregular surface of the mold, followed by irradiation of ionizing radiation from the side of the transparent resin film to cure the ion-radiation-curable resin. Thereafter, the cured layer of the ionizable radiation-curable resin and the transparent resin substrate film are removed from the mold. Thereby, the irregular shape of the mold is transferred to the ionizable radiation-curable resin cured layer carried on the transparent resin film. When the mold is in the form of a roll having a fine irregular plating surface on its peripheral surface, the irregular shape of the mold is transferred to an ionizable radiation φ-cured resin, and the ionizable radiation is used to illuminate the ionizable radiation. a cured resin layer and a laminate of the transparent resin film while contacting the ion-radiation-curable resin layer with a surface of the mold in the form of the roll, and then removing the cured layer of the ion-radiation-curable resin from the mold And the transparent resin film ~. Thereby, the irregular shape of the mold is transferred to the ionizable radiation-curable resin cured layer carried on the transparent resin film. The ionizing radiation can be a UV ray or an electron beam. From the standpoint of ease of handling and safety, it is preferred to use the UV rays. As the light source for the UV rays, a high-pressure mercury lamp, a metal halide lamp, or the like is preferably used -38-200804919 (34). When irradiating through a transparent resin film containing a UV absorber, it is particularly preferable to use a metal halide lamp including a large amount of visible light components. Further, "V-light bulb" and "D-light bulb" (two registered trademarks) (available from Fusion UV Systems JAPAN Co., Ltd.) are preferably used. The ionizing radiation intensity sufficiently cures the UV curable resin to a degree such that the cured film can be removed from the mold. In order to improve the surface hardness, the cured layer of the ion-curable resin and the laminated plate of the transparent resin layer may be further irradiated from the side of the ion-radiation-curable resin layer. According to the above method, an anti-glare layer (anti-glare film) having a haze of 5% or less can be obtained. Turbidity is defined by JIS K 7136 and is expressed by (diffusion transmittance / total light transmittance) X 1 0 0 (%). As described above, the ionizable radiation-curable resin cured by laminating a fine irregular mold having substantially no flat surface thereon and transferring the irregular shape to the transparent resin film or the transparent resin film is used. At the time of the layer, the anti-glare surface of the transparent resin film will have fine irregularities substantially free of the flat # plane. The anti-glare layer 30 formed by the above method is laminated.  The anti-glare-treated surface (anti-glare surface) faces one surface of the above-mentioned linear polarizing film 20, that is, there is no anti-glare surface facing the linear polarizing film 20, and the first retarding plate and/or the first A second retardation plate is laminated on the other surface of the linear polarizing film 20. Thereby, the anti-glare polarizing film laminate 40 shown in FIGS. 2 and 3 is obtained. In order to laminate the above layer or sheet, it is advantageous to use an adhesive having good transparency such as an acrylic adhesive. The present invention will be exemplified by the following examples, which are not intended to limit the scope of the invention in any way. Example 1 (a) Production of a mold A mirror honing surface having an aluminum roller having a diameter of 300 mm (according to JIS A5 05 6). Then use the blowing device (purchased by FUJI Manufacturing Co., Ltd.) at 0. 1 kPa (gauge pressure, the same below) is blown under the injection pressure of TZ-SX-17 (registered trademark, available from TOSO Co., Ltd.; average particle diameter: 20 μm) The aluminum roller is irregularly formed on the surface by mirror-finishing the surrounding surface. A metal mold is obtained by plating nickel with an electroless luster having an irregular surface. These plating conditions were adjusted to form a nickel layer having a thickness of 12 μm. After the plating, the thickness of the nickel layer was measured by a β-ray film thickness meter ("Fisher Scope MMS" available from F i scher Instruments Co., Ltd.) and was 12. 3 microns. (b) Production and evaluation of anti-glare film The photocurable resin composition "GRANDIC 806T" (registered trademark, available from Dainippon Ink & Chemicals Co., Ltd.) was dissolved in ethyl acetate to obtain a solution having a concentration of 50%. Next, the photopolymerization initiator "-40-200804919 (36) LUCLLIN®" (available from B AS F Co., Ltd.) in an amount of 5 parts by weight to 100 parts by weight of the curable resin; : 2,4,6-trimethylbenzimidyldiphenylphosphine oxide was added to the solution to obtain a coating composition. This coating composition was coated on a film of triethylenesulfonyl cellulose (TAC) having a thickness of 80 μm so that the thickness of the coating after drying was 5 μm, followed by drying in a desiccator maintained at 60 ° C. 3 minutes. The dried TAC film was pressed and the irregular surface of the metal mold prepared in (a) was tightly contacted with a rubber roller so that the photocurable resin composition layer faced the nickel plating surface of the mold. In this state, light from a high-pressure mercury lamp having a strength of 200 mJ/cm 2 was irradiated from the TAC film side at an intensity of 20 mW/cm 2 by an h-ray conversion ray meter to cure the photocurable resin composition. . Thereafter, the TAC film with the cured resin layer was removed from the mold to obtain a transparent anti-glare film composed of a laminate having an irregular surface-cured resin layer and the TAC film. The turbidity of the anti-glare film was measured using a haze meter "HM-150" (available from Murakami Color Research Laboratory) in accordance with JIS K 7136, and it was 〇·9%. For measurement, the anti-glare film sample was adhered to the glass plate using an optically clear adhesive to prevent the warpage. The transmission sharpness was measured in accordance with JIS Κ 7105 using an image sharpness measuring instrument "ICM-1DP" (available from Suga Test Instruments Co., Ltd.). For measurement, the anti-glare film sample was adhered to the glass plate using an optically clear adhesive to prevent the warpage from being irregular. Next, the sample was irradiated with light from the back side (the surface was in contact with the glass plate), and the transparency of the transparency was measured. The results are as follows: -41 - 200804919 (37) Optical frequency comb with the following width Transmission clarity 0. 125 mm 3 1. 2% 0. 5 mm 2 7. 9% 1. 0 mm 3 2.  r % 2. 0 mm 5 7. 0 % total 14 8. 2% The reflection sharpness was measured using the same image sharpness measuring instrument "ICM-1DP" used for the above transmission resolution measurement. For measurement, the anti-glare film sample was adhered to the glass plate using an optically clear adhesive to prevent the warpage. In order to suppress reflection on the back side of the back side glass, a black acrylic resin sheet having a thickness of 2 mm was adhered to the exposed surface of the glass sheet to which the antiglare film was adhered. In this state, measurement was performed by irradiating light from the sample side of the anti-glare film. The results are as follows: Optical frequency comb with the following widths Reflective resolution 0" 2 5 mm 3. 2% * 0. 5 mm 1. 5% 1. 0 mm 5. 4% 2. 0 mm 14. 8% plus 21. 7% * : The total elimination of the reflection resolution is excluded. Irradiating the irregularity of the anti-glare film with a parallel beam of ammonia-helium laser tilted from the film normal at a direction of 30 degrees and measuring the change in reflectance in a plane including the film normal and the direction of illumination Measure the reflectivity. The reflectance "32 92 03 optical power sensor" and "32 92 optical power meter" (available from Yokogawa Electric Co., Ltd., pp. 42-200804919 (38)) are used to measure the reflectance. As a result, R ( 30) is 0. 374%, R ( 40) is 0. 00064% and R (60 ) /R ( 30 ) is 0. 000 1 0. The surface shape of the anti-glare film was observed using a confocal microscope "ΡΙ^μ2300" (available from Sensofar Co., Ltd.). For observation, the anti-glare film sample was adhered to the glass substrate with an optically clear adhesive and the irregular surface was outward to prevent warpage. The magnification of the objective lens is 50. The data of the obtained φ is processed according to the above deductive method and the average area of the polygon is calculated to be 5 82 square micrometers. From the three-dimensional coordinate information, it was confirmed that the entire surface of the anti-glare film had fine irregularities but no flat portion. The conditions for producing the mold and the optical properties and surface condition of the anti-glare film (the average area of the polygons in terms of polygons) are summarized in Table 1. Calculating the number of vertices of the convex portion in the field of view of the 0 0 μm X 2 0 0 μm, the arithmetic mean height Pa of the section curve, and the maximum section height Pt according to the three-dimensional coordinates obtained by observing the surface shape Equal height rectangle # The peak position of the graph. The results are shown in Table 2. (c) Fabrication of anti-glare polarizing film laminate The following polarizing plates and retardation plates were provided. Polarizing plate: A polyvinyl alcohol-iodine-based linear polarizing film (SUMIKARAN SRH 842A (registered trademark) commercially available from Sumitomo Chemical Co., Ltd.) having a protective film made of triethylsulfonyl cellulose on both surfaces. Uniaxially stretched retardation plate: R〇 with 100 nm and 50 nm -43- 200804919 (39)

Rth ( nx > ny e nz )之環狀聚烯烴樹脂的單軸拉伸膜( ARTON (註冊商標)可見JSR有限公司購得)。 雙軸拉伸的阻滯板:具有0 nm的〜及11〇11111的1^11 (nx = iiy > nz )之環狀聚烯烴樹脂的雙軸拉伸膜(人尺1(^ (註冊商標)可見JSR有限公司購得)。 利用黏著劑黏著上述偏光板(SUMIKARAN SRH 842A )及單軸拉伸的阻滯板使前者的透射軸及相阻滯軸相互平 φ 行。在該偏光板上,黏著(b )中製造的防眩膜而不規則 表面向外以獲得防眩光偏光膜疊層板。獨立地,利用黏著 劑黏著上述偏光板(SUMIKARAN SRH 8 42A)及雙軸拉伸 的阻滯板而獲得沒有防眩層的偏光膜疊層板。 (d ) 液晶顯示器的製造及評估 從用於個人電腦之帶有VA型液晶顯示裝置之市面上 可購得之監視器顯示表面及背面卸下偏光板。接著,替代 • 原先使用的偏光板,利用黏著劑將(c )所製造的防眩光 偏光膜疊層板黏至該顯示表面側使該單軸拉伸的阻滯板面 向該顯示表面側且該防眩光偏光膜疊層板的透射軸與原先 的偏光板的透射軸方向對齊,且利用黏著劑將(C )所製 造之沒有防眩層之偏光膜疊層板黏至該背面側使該雙軸拉 伸的阻滯板面向該背面側且該防眩光偏光膜疊層板的透射 軸與原先的偏光板的透射軸方向對齊。藉以,組裝具有防 眩層的液晶顯不器。 在暗室中啓動該個人電腦,且使用亮度計「BM5A」 -44 - 200804919 (40) (可自TOPCON有限公司購得)來測量黑色顯示狀態或白 色顯示狀態的液晶顯示器亮度,接著計算對比度。在此, 以白色顯示狀態的亮度對黑色顯示狀態的亮度之比例來表 示對比度。結果,在該暗室中測得的液晶顯示器對比度爲 909 〇 * 之後,將此評估系統移至亮室,且以視覺觀察在黑色 顯示狀態的顯示器上的反射。結果,實質上沒有觀察到反 • 射。這確認該液晶顯示器具有良好的防眩性質。將結果總 結於表3中。 實施例2及3 除了如表1所示改變鎳鍍層的厚度以外,以實施例1 的相同方式製造具有不規則表面之金屬模。使用由此製得 的金屬模,以實施例1的相同方式製造其表面上具有不規 則之固化樹脂層及TAC膜所組成的透明防眩膜。將由此 ^ 得到的防眩光膜之光學特性及表面狀態(該等芙諾以多邊 形的平均面積)總結於表1中。利用各膜,以實施例1中 的相同方法計算在200 μπιχ200 μπι的視野中的凸面部分的 頂點數目、該斷面曲線的算術平均高度Pa及最大斷面高 度Pt,及該等高度矩形圖的峰位置;結果則列示於表2。 此外,以實施例1中的相同方法使用這些膜來組裝具有防 眩層的液晶顯示器,且評估對比度及防眩性質。將結果顯 示於表3中。 -45- 200804919 (41) 比較例1至5 爲作比較,使用各自當作該偏光板「SUMIKARAN」 (可自Sumitomo Chemical有限公司購得)的防眩光膜且 含有分散於可UV固化的樹脂中的塡料之防眩光膜「AG1 」、「AG3」、「AG5」、「AG6」及「AG8」(分別爲比 較例1至5),且將那些防眩光膜的芙諾以多邊形的光學 性質及平均面積與實施例1、2及3的結果一起記載在表1 中。利用那些膜,使用計算該等芙諾以多邊形的平均面積 時測得的三維座標,以實施例1的相同方法來計算在200 μηχχ2 00 μπι的視野中的凸面部分的頂點數目、該斷面曲線 的算術平均高度Pa及最大斷面高度pt,及該等高度矩形 圖的峰位置。將結果與實施例丨、2及3的結果一起記載 在表2中。此外’以實施例1的相同方法使用這些膜來組 裝具有防眩層的液晶顯示器,且評估對比度及防眩性質。 將結果與實施例1、2及3的結果一起記載在表3中。 -46 - 200804919 (42)A uniaxially stretched film of a cyclic polyolefin resin of Rth (nx > ny e nz ) (ARTON (registered trademark) is available from JSR Co., Ltd.). Biaxially stretched retardation plate: biaxially stretched film of cyclic polyolefin resin having 0 nm to 11 and 11 11111 (nx = iiy > nz ) (man ruler 1 (^ (registered The trademark can be found in JSR Co., Ltd.) The polarizing plate (SUMIKARAN SRH 842A) and the uniaxially stretched retardation plate are adhered by an adhesive to make the transmission axis and the phase retardation axis of the former flat with each other. On the upper surface, the irregular surface of the anti-glare film produced in (b) is adhered outward to obtain an anti-glare polarizing film laminate. Independently, the above polarizing plate (SUMIKARAN SRH 8 42A) and biaxial stretching are adhered by an adhesive. Blocking the board to obtain a polarizing film laminate without an anti-glare layer. (d) Manufacturing and evaluation of a liquid crystal display from a commercially available monitor display surface for a personal computer with a VA type liquid crystal display device and The polarizing plate is removed from the back side. Next, instead of the polarizing plate originally used, the anti-glare polarizing film laminate manufactured by (c) is adhered to the display surface side by an adhesive so that the uniaxially stretched retarding plate faces The display surface side and the transmission axis of the anti-glare polarizing film laminate The polarizing plate of the first polarizing plate is aligned in the transmission axis direction, and the polarizing film laminate having no anti-glare layer produced by (C) is adhered to the back side by an adhesive so that the biaxially stretched retarding plate faces the back side And the transmission axis of the anti-glare polarizing film laminate is aligned with the transmission axis direction of the original polarizing plate, thereby assembling a liquid crystal display having an anti-glare layer. The personal computer is activated in a dark room, and a luminance meter "BM5A" is used. -44 - 200804919 (40) (available from TOPCON Co., Ltd.) to measure the brightness of the liquid crystal display in the black display state or the white display state, and then calculate the contrast. Here, the brightness of the state in white is displayed to the brightness of the black display state. The ratio is used to indicate the contrast. As a result, after the liquid crystal display contrast measured in the dark room is 909 〇*, the evaluation system is moved to the bright room, and the reflection on the display in the black display state is visually observed. No anti-reflection was observed on it. This confirmed that the liquid crystal display had good anti-glare properties. The results are summarized in Table 3. Examples 2 and 3 Except as in Table 1. A metal mold having an irregular surface was produced in the same manner as in Example 1 except that the thickness of the nickel plating layer was changed. Using the metal mold thus obtained, an irregular cured resin on the surface thereof was produced in the same manner as in Example 1. A transparent anti-glare film composed of a layer and a TAC film. The optical characteristics and surface state of the anti-glare film thus obtained (the average area of the polygons in the form of a polygon) are summarized in Table 1. Using each film, an example is used. The same method in 1 calculates the number of vertices of the convex portion in the field of view of 200 μπιχ200 μπι, the arithmetic mean height Pa of the section curve and the maximum section height Pt, and the peak positions of the height rectangles; the results are listed In Table 2. Further, these films were used in the same manner as in Example 1 to assemble a liquid crystal display having an anti-glare layer, and the contrast and anti-glare properties were evaluated. The results are shown in Table 3. -45- 200804919 (41) Comparative Examples 1 to 5 For comparison, an anti-glare film each serving as the polarizing plate "SUMIKARAN" (available from Sumitomo Chemical Co., Ltd.) was used and contained in a resin which is UV-curable. The anti-glare films "AG1", "AG3", "AG5", "AG6" and "AG8" (Comparative Examples 1 to 5, respectively), and the optical properties of those anti-glare films The average area and the results of Examples 1, 2 and 3 are shown in Table 1. Using those films, the number of vertices of the convex portion in the field of view of 200 μηχχ2 00 μπι is calculated in the same manner as in Embodiment 1 using the three-dimensional coordinates measured when the average area of the polygons is calculated. The arithmetic mean height Pa and the maximum section height pt, and the peak positions of the height rectangles. The results are shown in Table 2 together with the results of Examples 2, 2 and 3. Further, these films were used in the same manner as in Example 1 to assemble a liquid crystal display having an antiglare layer, and the contrast and antiglare properties were evaluated. The results are shown in Table 3 together with the results of Examples 1, 2 and 3. -46 - 200804919 (42)

盔辁聒撇赵»却#朱£鲣朱趑捏向(鼪姊馨侧鎰另爾)迕«}_鉍屮鄹 I 漱 表面形狀 «暴 B ίΐ | CN (N m 〇〇 卜 m i〇 cn in 2,084 !?762 546 384 345 光學性質 反射模式 g Pi X VsO 0.00010 0.00018 0.00004 0.00018 0.00008 0.00145 0.00639 1 0.00148 1 0.00064 0.00221 0.00013 0.00259 0.00113 0.00409 ! 0.00582 0.00452 m 0.374 0.125 0.726 0.368 0.568 0.100 0.042 0.099 反射清晰度 (%) 21.7 17.9 38.2 15.7 20.1 23.2 21.7 30.3 透射清晰 (%) 148.2 126.3 191.6 52.1 97.1 65.9 40.9 199.8 濁度 (%) a m 寸 o H o 3.6 3.4 10.7 20.1 10.9 模子製造條件 鎳鍍層厚 度(μηι) 12.3 11.6 19.3 AG1 AG3 AG5 AG6 AG8 噴吹壓 力(MPa) t—Η H r—H o o o T-H fs| CO _舞_ 1¾ κ |< 比較例1 比較例2 比較例3 比較例4 比較例5 -47- 200804919 (43) 表2 防眩膜的表面形狀(續) 在 200 μιηχ 200 μηι 視野中的凸面部分 的頂點數目 算術平均高度Pa (μπι) 最大斷面局度Pt (μπι) 高度矩形圖中 的點之峰位置 (%) 實施例1 76 0.089 0.493 45-50 實施例2 119 0.127 0.688 45-50 實施例3 79 0.117 0.615 50-55 比較例1 18 0.184 0.933 25-30 比較例2 22 0.220 1.088 20-25 比較例3 78 0.190 1.107 20-25 比較例4 114 0.284 1.615 20-25 比較例5 139 0.157 0.865 20-25 表3 液晶顯示器的評估辁聒撇 辁聒撇 » » » » 却 » » » » » » » » » » » » » » } } } } } } } } } } } } } } } } } } } } } } } } } } } } In 2,084 !?762 546 384 345 Optical property reflection mode g Pi X VsO 0.00010 0.00018 0.00004 0.00018 0.00008 0.00145 0.00639 1 0.00148 1 0.00064 0.00221 0.00013 0.00259 0.00113 0.00409 ! 0.00582 0.00452 m 0.374 0.125 0.726 0.368 0.568 0.100 0.042 0.099 Reflection resolution (%) 21.7 17.9 38.2 15.7 20.1 23.2 21.7 30.3 Clear transmission (%) 148.2 126.3 191.6 52.1 97.1 65.9 40.9 199.8 Turbidity (%) am Inch o H o 3.6 3.4 10.7 20.1 10.9 Mold manufacturing conditions Nickel plating thickness (μηι) 12.3 11.6 19.3 AG1 AG3 AG5 AG6 AG8 Injection pressure (MPa) t—Η H r—H ooo TH fs| CO _舞_ 13⁄4 κ |<Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 -47- 200804919 (43 Table 2 Surface shape of anti-glare film (continued) The number of vertices of the convex portion in the field of 200 μηηχ 200 μηι The arithmetic mean height Pa (μπι) The maximum cross-sectional degree Pt (μπι) The peak position of the point in the height rectangle ( %) Example 1 76 0.089 0.493 45-50 Example 2 119 0.127 0.688 45-50 Example 3 79 0.117 0.615 50-55 Comparative Example 1 18 0.184 0.933 25-30 Comparative Example 2 22 0.220 1.088 20-25 Comparative Example 3 78 0.190 1.107 20-25 Comparative Example 4 114 0.284 1.615 20-25 Comparative Example 5 139 0.157 0.865 20-25 Table 3 Evaluation of Liquid Crystal Display

對比度 防眩性質η 實施例1 909 A 實施例2 898 A 實施例3 927 A 比較例1 896 B 比較例2 890 B 比較例3 877 A 比較例4 844 A 比較例5 885 AContrast Anti-glare property η Example 1 909 A Example 2 898 A Example 3 927 A Comparative Example 1 896 B Comparative Example 2 890 B Comparative Example 3 877 A Comparative Example 4 844 A Comparative Example 5 885 A

註釋:1 )防眩性質 A :具有充分的防眩性質 B :沒有充分的防眩性質(具有高度反射) 如表1及3所示的結果可見到,實施例1、2及3的 樣品,其符合根據本發明的濁度、反射模式及表面形狀的 定義,顯示優異的防眩性質(沒有反射),且達到高對比 度及良好的可見度。此外,彼等引起較小的眩光及較少變 -48- 200804919 (44) 白。 比較例1及2的樣品並未遭遇變白,因爲R ( 3 0 )小 於 2%,R ( 40 )小於 0.003% 且 R ( 60 ) /R ( 30 )小於 0.001。然而,這些樣品的芙諾以多邊形的平均面積超過 1,500 μηι2,彼等將引起眩光。如表3所示,當使用由比較 例的防眩光偏光膜製得的防眩光偏光膜疊層板來組裝該液 晶顯示器時,比較例1及2中的對比度非常高,分別爲 8 96及8 90,但是該防眩性質並不適宜且可見度低。於比 較例3、4及5的樣品,11(40)超過0.003%且11(60)/尺 (30 )超過0.001。由此,彼等比根據本發明的樣品更爲 變白。在比較例3、4及5中,濁度高且由此對比度傾向 於降低。 【圖式簡單說明】 第1 Α至1 D圖爲根據本發明的液晶顯示器四個實施 例的槪要斷面圖。 第2圖爲本發明的防眩光偏光膜疊層板的一個實施例 的槪要斷面圖。 第3圖爲本發明的防眩光偏光膜疊層板另一個實施例 的槪要斷面圖。 第4圖爲顯示與防眩光層相關的光入射方向與反射方 向的槪要透視圖。 第5圖爲描繪與從第4圖的防眩光層法線30度角下 進入的入射光相關的反射光之反射率,對該反射角度(其 -49- 200804919 (45) 中座標軸藉由對數刻度來表示)的圖形的實施例。 第6圖爲例示用於測定防眩光膜的凸面部分頂點的 '演 繹法槪要透視圖。 第7圖爲顯示使用該防眩光膜凸面部分的頂點當作母 點的芙諾以分割之一個實施例的芙諾以圖。 第8A至8E圖槪要地顯示用於製造防眩光層的較佳方 法的步驟。 • 第9圖爲硏磨之後經無電鎳鍍著的防眩光層的槪要斷 面圖。 【主要元件符號說明】 Θ :任意角度 nx : 主要 折射率 ny : 主要 折射率 nz : 厚度 方向的 折射率 R ( 30 ) :反射 率 R ( 40 ) :反射 率 R ( 60 ) :反射 率 10 : 液晶 單元 11 : :單元 基板 12 : - 早兀 基板 14 : :電極 15 : :電極 17 : :液晶 層. - 50- 200804919 (46) 20 :線性偏光膜 2 1 :線性偏光膜 26 :第一阻滯板 27 :第二阻滯板 2 9 :平坦平面 * 3 〇 :防眩光層 32 :透明基材膜 φ 3 3 :可離子輻射固化的樹脂層 35 :法線 3 6 :入射光 3 7 :反射方向 3 8 :在任意角度下的反射光方向 3 9 :平面 40 :防眩光偏光膜疊層板 4 1 :防眩光偏光膜疊層板 # 5 0 :防眩光偏光膜疊層板 60 :黏著劑 70 :背光 81 :金屬板 82 :經硏磨的表面 83 :半球形細小凹面部分 84 :鍍鎳層 8 6 :不規則表面 91 :任意點 -51 - 200804919 (47) 93 :基底平面 94 :圓 9 5 :母點 96 :多邊形 97 :變暗的芙諾以多邊形Notes: 1) Antiglare property A: Has sufficient antiglare properties B: Does not have sufficient antiglare properties (with high reflection) As shown in Tables 1 and 3, the samples of Examples 1, 2 and 3, It conforms to the definitions of turbidity, reflection mode and surface shape according to the present invention, exhibits excellent anti-glare properties (no reflection), and achieves high contrast and good visibility. In addition, they cause less glare and less change -48- 200804919 (44) White. The samples of Comparative Examples 1 and 2 did not suffer from whitening because R (30) was less than 2%, R(40) was less than 0.003%, and R(60) / R(30) was less than 0.001. However, the Fresno of these samples has an average area of polygons exceeding 1,500 μm 2 and they will cause glare. As shown in Table 3, when the liquid crystal display was assembled using the anti-glare polarizing film laminate obtained by the anti-glare polarizing film of the comparative example, the contrast ratios in Comparative Examples 1 and 2 were very high, 8 96 and 8 respectively. 90, but the anti-glare property is not suitable and the visibility is low. For the samples of Comparative Examples 3, 4 and 5, 11 (40) exceeded 0.003% and 11 (60) / ft. (30) exceeded 0.001. Thus, they are more white than the samples according to the invention. In Comparative Examples 3, 4 and 5, the turbidity was high and thus the contrast tends to decrease. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1D are schematic cross-sectional views showing four embodiments of a liquid crystal display according to the present invention. Fig. 2 is a schematic cross-sectional view showing an embodiment of an anti-glare polarizing film laminate of the present invention. Fig. 3 is a cross-sectional view showing another embodiment of the anti-glare polarizing film laminate of the present invention. Figure 4 is a schematic perspective view showing the direction of incidence of light and the direction of reflection associated with the anti-glare layer. Figure 5 is a graph depicting the reflectance of reflected light associated with incident light entering at a 30 degree angle from the normal to the anti-glare layer of Figure 4, which is the logarithm of the coordinate angle (the -49-200804919 (45) An embodiment of a graphic represented by a scale. Fig. 6 is a perspective view showing the exemplification of the apex of the convex portion of the anti-glare film. Fig. 7 is a view showing a vortex diagram of an embodiment in which the apex of the convex portion of the anti-glare film is used as a mother point to be divided. Figures 8A through 8E schematically show the steps of a preferred method for fabricating an anti-glare layer. • Figure 9 is a schematic view of the anti-glare layer coated with electroless nickel after honing. [Main component symbol description] Θ : arbitrary angle nx : main refractive index ny : main refractive index nz : refractive index R ( 30 ) in the thickness direction: reflectance R ( 40 ) : reflectance R ( 60 ) : reflectance 10 : Liquid crystal cell 11 : : unit substrate 12 : - early substrate 14 : : electrode 15 : : electrode 17 : : liquid crystal layer . - 50 - 200804919 (46) 20 : linear polarizing film 2 1 : linear polarizing film 26 : first resistance Hysteresis plate 27: second retardation plate 2 9 : flat plane * 3 〇: anti-glare layer 32: transparent base film φ 3 3 : ion-radiation-curable resin layer 35: normal line 3 6 : incident light 3 7 : Reflection direction 3 8 : reflected light direction at any angle 3 9 : plane 40 : anti-glare polarizing film laminate 4 1 : anti-glare polarizing film laminate # 5 0 : anti-glare polarizing film laminate 60 : adhesive Agent 70: Backlight 81: Metal plate 82: honed surface 83: Hemispherical fine concave portion 84: Nickel plated layer 8 6: Irregular surface 91: Any point -51 - 200804919 (47) 93: Base plane 94: Circle 9 5: Mother point 96: Polygon 97: Darkened Fu Nuo with polygon

-52--52-

Claims (1)

200804919 (1) 十、申請專利範圍 1. 一種液晶顯示器,其包含液晶單元,該液晶單元包 含一對單元基板及夾在該等單元基板之間的液晶層’其中 在未施加電壓下該基板附近的液晶分子定向於實質上垂直 該基板的方向;一對置於將該液晶單元夾在其中的個別單 元基板的外表面上之線性偏光膜;置於單元基板之一與個 別線性偏光膜之間的第一阻滯板,該第一阻滯板具有滿足 φ 下列關係的折射率:nx > ny k nz,其中nx及ny爲膜平面 的主要折射率,且nz爲該膜厚度方向的折射率,且係經 放置使該第一阻滯板的相阻滯軸與相鄰線性偏光膜的透射 軸平行或實質上呈直角;置於該第一阻滯板與該單元基板 之間或另一個單元基板和與之面對的該線性偏光膜之間的 該第二阻滯板,該第二阻滯板具有滿足下列關係的折射率 :nx = ny > nz,其中nx、ny及nz與上述定義相同;及置 於面對該液晶單元的表面相對之該線性偏光膜中任一者的 • 表面上之防眩光層,其中該防眩光層具有對垂直入射光之 5%或更小的濁度、當使用由各自分別具有0.5 mm、1.0 mm和2.0 mm寬度之暗線與亮線所組成的三種光頻梳於 45度光入射角測量反射清晰度時的總反射清晰度爲50%或 更小、對於30度入射角進入的入射光具有2%或更小之30 度反射角的反射率R ( 3 0 )、對3 0度入射角進入的入射 光具有0.003 %或更小之40度反射角的反射率R ( 40 ), 及0.001或更小之R ( 2 60)對R ( 30)的比例,其中R ( 2 60)爲對30度入射角進入的入射光在6 0度或更大反射 -53- 200804919 (2) 角之任意方向的反射率,且該防眩光層表面由具有* 50 μπι2 至1,500 μπι2平均面積之多邊形組成,其中該等多邊形係 使用表面不規Μ的凸面部分的頂點當作母點而芙諾以( Voronoi)分割該表面所形成。 2.如申請專利範圍第1項之液晶顯示器,其中該第二 阻滯板係置於相對於第一阻滯板的單元基板與面對該單元 基板的線性偏光膜之間。 3·如申請專利範圍第1項之液晶顯示器,其中該第二 阻滯板係置於該第一阻滯板與該單元基板之間。 4 ·如申請專利範圍第1項之液晶顯示器,其中該防眩 光層的多邊形具有3 00 μπι2至1,000 μιη2的平均面積,其 中該等多邊形係使用表面不規則的凸面部分的頂點當作母 點而芙諾以分割該表面所形成。 5 · —種防眩光的偏光膜疊層板,其包含防眩光層、線 性偏光膜及阻滯板,彼等係依此順序疊層,其中 該防眩光層具有對垂直入射光之5%或更小的濁度、 當使用由各自分別具有〇·5 mm、1 ·0 mm和2·0 mm寬度之 暗線與亮線所組成的三種光頻梳於45度光入射角測量反 射清晰度時的總反射清晰度爲50%或更小、對於30度入 射角進入的入射光具有2%或更小之30度反射角的反射率 R ( 30)、對於30度入射角進入的入射光具有0.003 %或 更小之40度反射角的反射率R ( 40 ),及0.001或更小之 R ( 2 60)對R ( 30)的比例,其中R ( 2 60)爲對30度 入射角進入的入射光在60度或更大反射角之任意方向的 -54- 200804919200804919 (1) X. Patent application scope 1. A liquid crystal display comprising a liquid crystal cell comprising a pair of unit substrates and a liquid crystal layer sandwiched between the unit substrates, wherein the substrate is not applied under a voltage The liquid crystal molecules are oriented in a direction substantially perpendicular to the substrate; a pair of linear polarizing films disposed on an outer surface of the individual unit substrate in which the liquid crystal cell is sandwiched; disposed between one of the unit substrates and the individual linear polarizing film a first retardation plate having a refractive index satisfying the following relationship of φ: nx > ny k nz, wherein nx and ny are main refractive indices of the film plane, and nz is a refractive index of the film thickness direction Rate, and is placed such that the phase retardation axis of the first retardation plate is parallel or substantially perpendicular to the transmission axis of the adjacent linear polarizing film; disposed between the first retardation plate and the unit substrate or another a second retardation plate between a unit substrate and the linear polarizing film facing the same, the second retardation plate having a refractive index satisfying the following relationship: nx = ny > nz, where nx, ny, and nz Same as above And an anti-glare layer on the surface of the surface of the linear polarizing film facing the surface of the liquid crystal cell, wherein the anti-glare layer has a haze of 5% or less for normal incident light, When using three kinds of optical frequency combs consisting of dark and bright lines each having a width of 0.5 mm, 1.0 mm, and 2.0 mm, respectively, the total reflection resolution when measuring the reflection resolution at a 45-degree light incident angle is 50% or less, The incident light entering at an angle of incidence of 30 degrees has a reflectivity R ( 30 ) of a reflection angle of 30% of 2% or less, and the incident light entering the incident angle of 30 degrees has a reflection angle of 40 degrees or less of 40 degrees. The reflectance R ( 40 ), and the ratio of R ( 2 60) to R ( 30 ) of 0.001 or less, where R ( 2 60) is the incident light entering the 30 degree angle of incidence at 60 degrees or more. Reflection -53- 200804919 (2) Reflectivity in any direction of the corner, and the surface of the anti-glare layer is composed of polygons having an average area of * 50 μπι to 1,500 μπι, wherein the polygons are convex with irregular surface The vertices of the part are taken as the mother point and the Vonooi is formed by dividing the surface. 2. The liquid crystal display of claim 1, wherein the second retardation plate is disposed between the unit substrate with respect to the first retardation plate and the linear polarizing film facing the unit substrate. 3. The liquid crystal display of claim 1, wherein the second retardation plate is disposed between the first retardation plate and the unit substrate. 4. The liquid crystal display of claim 1, wherein the polygon of the anti-glare layer has an average area of from 300 μm to 1,000 μm, wherein the polygons use the apex of the irregular surface portion as a mother The point is formed by dividing the surface. 5 - an anti-glare polarizing film laminate comprising an anti-glare layer, a linear polarizing film and a retardation plate, which are laminated in this order, wherein the anti-glare layer has 5% of normal incident light or Smaller turbidity, when using three kinds of optical frequency combs consisting of dark and bright lines each having a width of 〇·5 mm, 1·0 mm, and 2.0 mm, respectively, when measuring the reflection resolution at a 45-degree light incident angle The total reflection resolution is 50% or less, the incident light entering the incident angle of 30 degrees has a reflectance R (30) of 2% or less, and the incident light entering the incident angle of 30 degrees has The reflectance R ( 40 ) of the reflection angle of 40 degrees or less of 0.003 % or less, and the ratio of R ( 2 60) to R ( 30) of 0.001 or less, where R ( 2 60) is entered at an angle of incidence of 30 degrees. Incident light in any direction of reflection angle of 60 degrees or more -54 - 200804919 反射率,且該防眩光層表面由具有50 μιη2至1,500 μηι2平 均面積之多邊形組成,其中該等多邊形係使用表面不規則 的凸面部分的頂點當作母點而芙諾以(Voronoi )分割該 表面所形成;且 該阻滯板包含至少一個選自具有滿足下列關係的折射 率:nx>ny2nz之第一阻滯板 及具有滿足下列關係的折射率:iix = ny > nz之第二阻 φ 滯板所組成之群, 其中nx及ny爲膜平面的主要折射率,且112爲該膜厚 度方向的折射率, 附帶條件爲使用該第一阻滯板時,將其放置使得該第 一阻滯板的相阻滯軸實質上與該線性偏光膜的透射軸平行 或實質上呈直角。 6. 如申請專利範圍第5項之防眩光的偏光膜疊層板, 其中該阻滯板由具有下列關係的單一第一阻滯板所組成: Φ nx> nz,且將其放置使得其相阻滯軸實質上與該線性 偏光膜的透射軸平行或實質上呈直角。 7. 如申請專利範圍第5項之防眩光的偏光膜疊層板, 其中該阻滯板由具有下列關係的單一第二阻滯板所組成: nx = ny > nz ° 8 .如申請專利範圍第5項之防眩光的偏光膜疊層板’ 其中該阻滯板由具有下列關係的第一阻滯板:ηχ > ny >〜 及具有下列關係的第二阻滯板:nx = ny > nz的疊層板所組 成,且將其放置使得該第一阻滯板的相阻滯軸實質上與該 -55- 200804919 (4) 線性偏光膜的透射軸平行或實質上呈直角。 9. 如申請專利範圍第5項之防眩光的偏光膜疊層板, 其中該防眩光的偏光膜疊層板之多邊形具有300 μιη2至 1,000 μιη2的平均面積,其中該等多邊形係使用表面不規 則凸面部分的頂點當作母點而芙諾以分割該表面所形成。 10. 如申請專利範圍第5項之防眩光的偏光膜疊層板 ,其中該防眩光層由表面上具有細小不規則的樹脂膜所組 φ 成,其係經由利用微細粒子的撞撃在經硏磨的金屬板上形 成不規則,在該金屬板的不規則表面上無電鍍著鎳以形成 模子,將該模子的表面不規則轉移至透明樹脂膜的表面, 並自該模子移走該樹脂膜而製得。 1 1 .如申請專利範圍第5項之防眩光的偏光膜疊層板 ,其中該透明樹脂膜包含UV-可固化樹脂或熱塑性樹脂。Reflectivity, and the surface of the anti-glare layer is composed of a polygon having an average area of 50 μm 2 to 1,500 μη 2 , wherein the polygons are vertices using irregular surfaces of the surface as a mother point and Voronoi is divided. The retardation plate is formed; and the retardation plate comprises at least one first retardation plate selected from a refractive index satisfying the following relationship: nx > ny2nz and having a refractive index satisfying the following relationship: iix = ny > nz second a group consisting of φ hysteresis, where nx and ny are the main refractive indices of the film plane, and 112 is the refractive index of the film thickness direction, with the condition that when the first retardation plate is used, the first retardation plate is placed such that the first The phase retardation axis of a retardation plate is substantially parallel or substantially at right angles to the transmission axis of the linear polarizing film. 6. The anti-glare polarizing film laminate of claim 5, wherein the retardation plate is composed of a single first retardation plate having the following relationship: Φ nx > nz, and placing it so that its phase The retardation axis is substantially parallel or substantially at right angles to the transmission axis of the linear polarizing film. 7. The anti-glare polarizing film laminate of claim 5, wherein the retardation plate is composed of a single second retardation plate having the following relationship: nx = ny > nz ° 8 . The glare-proof polarizing film laminate of the item 5, wherein the retardation plate is composed of a first retardation plate having the following relationship: nχ > ny >~ and a second retardation plate having the following relationship: nx = a laminate of ny > nz and placed such that the phase retardation axis of the first retardation plate is substantially parallel or substantially perpendicular to the transmission axis of the -55-200804919 (4) linear polarizing film . 9. The anti-glare polarizing film laminate of claim 5, wherein the polygon of the anti-glare polarizing film laminate has an average area of 300 μm 2 to 1,000 μm 2 , wherein the polygons use a surface The vertices of the irregular convex portion are treated as the mother point and the voluminous is formed by dividing the surface. 10. The anti-glare polarizing film laminate of claim 5, wherein the anti-glare layer is formed of a fine irregular resin film on the surface, which is passed through a collision with fine particles. An irregularity is formed on the honed metal plate, nickel is electrolessly plated on the irregular surface of the metal plate to form a mold, the surface of the mold is irregularly transferred to the surface of the transparent resin film, and the resin is removed from the mold Made by film. The anti-glare polarizing film laminate of claim 5, wherein the transparent resin film comprises a UV-curable resin or a thermoplastic resin. -56 --56 -
TW096108298A 2006-03-24 2007-03-09 Liquid crystal display and glare-proof polarizing film laminate used therein TWI439761B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082762A JP4929780B2 (en) 2006-03-24 2006-03-24 Liquid crystal display device and antiglare polarizing film laminate used therefor

Publications (2)

Publication Number Publication Date
TW200804919A true TW200804919A (en) 2008-01-16
TWI439761B TWI439761B (en) 2014-06-01

Family

ID=38631050

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096108298A TWI439761B (en) 2006-03-24 2007-03-09 Liquid crystal display and glare-proof polarizing film laminate used therein

Country Status (6)

Country Link
JP (1) JP4929780B2 (en)
KR (1) KR101468212B1 (en)
CN (1) CN101042491B (en)
MX (1) MX2007003304A (en)
PL (1) PL382057A1 (en)
TW (1) TWI439761B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929780B2 (en) * 2006-03-24 2012-05-09 住友化学株式会社 Liquid crystal display device and antiglare polarizing film laminate used therefor
JP5163943B2 (en) * 2008-02-26 2013-03-13 住友化学株式会社 Anti-glare film, anti-glare polarizing plate and image display device
KR101624232B1 (en) 2009-10-06 2016-05-26 삼성디스플레이 주식회사 Display substrate, method for manufacturing the same, and display device having the display substrate
TWI453509B (en) * 2011-12-14 2014-09-21 Ind Tech Res Inst Biaxial retardation film and fabrication thereof
CN103998953B (en) * 2011-12-26 2017-03-08 大日本印刷株式会社 Anti-glare film, polaroid and image display device
JP6159688B2 (en) * 2014-06-25 2017-07-05 三菱製紙株式会社 Light transmissive conductive material
US10976588B2 (en) 2018-12-18 2021-04-13 Gentex Corporation Concealed displays
CN115268142B (en) * 2022-08-05 2023-08-01 龙华相位新材料(绵阳)股份有限公司 VA display screen compensation film and preparation method and bonding method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984916B2 (en) * 1997-03-24 1999-11-29 日本製紙株式会社 Hard coat film
JP2002139623A (en) * 2000-11-01 2002-05-17 Nitto Denko Corp Optical sheet, polarization plate and liquid crystal display
US7110178B2 (en) * 2001-07-02 2006-09-19 3M Innovative Properties Company Polarizers coated with optically functional layers
JP4271922B2 (en) * 2002-09-30 2009-06-03 富士フイルム株式会社 Antiglare antireflection film, polarizing plate, liquid crystal display device using the same, and method for producing antiglare antireflection film
JP4130928B2 (en) * 2003-08-13 2008-08-13 住友化学株式会社 Anti-glare optical film
JP2006053511A (en) * 2004-07-16 2006-02-23 Sumitomo Chemical Co Ltd Antidazzle polarizing film layered body and liquid crystal display using the same
JP2006039270A (en) * 2004-07-28 2006-02-09 Sumitomo Chemical Co Ltd Liquid crystal display and antiglare polarizing film lamination body used for the same
JP2006053371A (en) * 2004-08-12 2006-02-23 Sumitomo Chemical Co Ltd Antiglare film, method of manufacturing the same, method of manufacturing die therefor and display device
JP4929780B2 (en) * 2006-03-24 2012-05-09 住友化学株式会社 Liquid crystal display device and antiglare polarizing film laminate used therefor

Also Published As

Publication number Publication date
TWI439761B (en) 2014-06-01
KR101468212B1 (en) 2014-12-03
PL382057A1 (en) 2007-10-01
CN101042491A (en) 2007-09-26
KR20070096905A (en) 2007-10-02
JP2007256766A (en) 2007-10-04
JP4929780B2 (en) 2012-05-09
MX2007003304A (en) 2008-11-19
CN101042491B (en) 2010-11-03

Similar Documents

Publication Publication Date Title
TWI514016B (en) Glare-proof polarizing film laminate and liquid crystal display comprising the same
JP5880762B2 (en) Optical film and touch panel
JP5194486B2 (en) Liquid crystal display
JP6212844B2 (en) Optical film, polarizing plate, liquid crystal panel, and image display device
KR101782653B1 (en) Anti-glare film and liquid crystal display apparatus
US6917400B2 (en) Anti-reflection film, polarizing plate comprising the same, and image display device using the anti-reflection film or the polarizing plate
TWI435807B (en) Polarizing plate protection film, polarizing plate, and liquid crystal display device
TW469357B (en) Alignment film with pores
EP2461190B1 (en) Optical film, method for producing same, and method for controlling optical characteristics of same
JP5380029B2 (en) Liquid crystal display
JP6167480B2 (en) Optical film, polarizing plate, liquid crystal panel, and image display device
TWI439761B (en) Liquid crystal display and glare-proof polarizing film laminate used therein
KR20190060685A (en) Optical film and manufacturing method thereof, polarizing plate, and liquid crystal display device
JP6048010B2 (en) Laminated body, polarizing plate, liquid crystal panel, touch panel sensor, touch panel device and image display device
KR20060050119A (en) Anti-glare polarizing film laminate and liquid crystal display device using the same
JPH10333133A (en) Reflection type liquid crystal display device
TWI654085B (en) Laminated body, polarizing plate, liquid crystal panel, touch panel sensor, touch panel device and image display device
JP2006039270A (en) Liquid crystal display and antiglare polarizing film lamination body used for the same