TW200800569A - Screw element - Google Patents
Screw element Download PDFInfo
- Publication number
- TW200800569A TW200800569A TW096105903A TW96105903A TW200800569A TW 200800569 A TW200800569 A TW 200800569A TW 096105903 A TW096105903 A TW 096105903A TW 96105903 A TW96105903 A TW 96105903A TW 200800569 A TW200800569 A TW 200800569A
- Authority
- TW
- Taiwan
- Prior art keywords
- unit
- diameter
- width
- worm
- worm gear
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/40—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
- B29B7/42—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
- B29B7/421—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw and additionally other mixing elements on the same shaft, e.g. paddles, discs, bearings, rotor blades of the Banbury type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/256—Exchangeable extruder parts
- B29C48/2564—Screw parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/52—Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/57—Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
200800569 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種蜗輪元件,尤指-種用於塑化單_ 拌元件,其具一至少具兩個攪拌單元之螞桿軸,攪拌=之揽 娜-個共同之軸上’例如蝎桿軸, :::以 個幾何形狀。 千兀具有一 於-個例如祕n或射㈣型機崎設 塑膠製備時,會運用各式各樣之製程。其中-種製行 =入填充劑或強化劑、加人顏料或染劑,與各種不 此合’例如塑膠或彈性材料、活化製程等等。所 <材料 ,係_具有順時針轉或逆時針轉之蜗桿之雙軸或 材料内。蝸桿具有所謂的蝸輪元件,而且而採到該 【先前技術】 τ而且、-吊知用多個橋級。 &所謂的攪拌元件係-種特殊蝸輪元件,文獻中亦稱 ==;塊::旋狀之蝎輪元件或由許多依順序排列= 已知之該檀摔單元則具有特定之幾何形狀。於 从、見70件上,其攪拌早70之幾何靴㈣,尤指a寬戶及並 元而且根據塑化單元之尺寸選用,即“射: 經^動器、傳動器,再經由螞桿軸所帶來之機械能量之散逸 決ΐ ίΓ欲加工之塑膠之烚有關,係由使用之蝎輪構造形式所 及其他蜗=====。域取驗,⑽掉頭塊 巧挫主^量轉換與蜗輪元件之幾何形狀之關係,多半經由第一個 見凡、成。該主要能量轉換係來自於剪力。因此,主要決定因 6 200800569 素係螞桿之轉數及攪拌單元之(角)速度、授拌單_ 之間及與雙蝸桿擠壓器之楔形區域内之攪拌單元間、人务丨外"又 一 「]又間隙,及攪採 元件之嚙合面積。由這些數量大小便能計算出合 ^ _ 〜"又切線速度及前 應力。經由剪應力便可使被塑化之材料融化。融化 、人〜一刀 及嚙合之輪桿/輪轂上產生最高機械負載。 、"一件 此類攪拌元件可由已註冊之德國新型專利82 32 ^ 知。该處所揭示之蜗輪元件係包含一攪拌單元, 中得 組合成為一個攪拌元件。該攪掉單元具有相二J二各2 指該撥拌單元之直徑及寬度而言。 4㈣狀,尤 【發明内容】 因此,本發明之基本任務即提出—種前 件,闕輪元件能於較小之機械負載下,使將 ^ = 良好塑化。 丄义何村月匕 、根,本發明,前述任務係經由—具中請專利範㈣丨項 徵之:輪元件加以解決。據此,該蜗輪元件係以如下方式建構 ’即至少有兩倾此銜接設置之揽拌單元之幾何形狀不 何开發明之方式’已可確認能跳脫既知具有相同幾 此祕見择《果白’而使竭輪元件於較小之機械自載下 學入^力及機械負載,並將前逑之製程加以最佳化。 ^大量㈣單元及在不同之製財,均可採 軸、順時針轉或逆時針轉之二 均^慮本發明之_元件。二 之擴拌單元所構成。咳攪拌嚴:正或彼此#〜占在一起 ^才見拌早兀係根據塑化單元之尺寸及各自 7 200800569 及媧件〈心無關。此外,蝎 ^肢和 形式及蝸輪元件之#級無關。_輪元件ϋ德奴鳴合 一種形式之塑化材料上,而且與Da/Di比及蜗應用於任何 亦即讓塑化之材料達到一個連續增加之剪力 別之優點,即剪力非贬大而又钱道二=具有特 之方式導入’例如持續地增加。於機械方::二=讀 良,因為該元件之負载也同樣會於一個較長路優 嶋生影響:於===本發明’會對剪力 以透過不同之效應來^導詩*到辟。該點可 =對-崎顧單之構造而言,至少則晴样元 攪拌單元及擠壓器外殼之間卿成之剪力《, 方向上變大或變小。於一個優良構造中,可於製程 列科置、二。個授摔單元或切面之直徑。授摔單元及依順序排 汉 <概拌元件通常可具有不同之直徑。 直^順序不一定強迫持續增加,也可以有一部分相同或 此二ί著製程任務之不同,也可以考慮所有可能之直徑變化。 <直彳至變化則可以推展至不同之蝸輪元件。 =一特別簡單構造中便能據此使攪拌單元之直徑於製程方 增加。如此一來,該元件之機械負載,便會持續增加散布 =一個較長之路徑上。攪拌單元之直徑變化順序不一定要持續 曰加,也可以有一部分相同或減少。 ^於另一個優良構造中,至少其中兩個攪拌單元之寬度不相 同。如此一來,剪力間隙便會受到影響,因為剪力面積已改變。 200800569 如同改變攪拌單元之畫炉, ^㈣ 式也可以於—個或多個彼此 i =元件内進行。對於蝎輪元件之寬度而士 : :件通常直徑亦不相同。蝸輪元件可以和堝桿内輪 上。因此,蝎輪元件便與長度無關。几伸财夕個螞輪元件 上=另=1優良構造中,授拌單元之寬度可於製程方向
加。1被塑化之材料之剪力即會讀程方向上辦 ” μ万向仙塑化單元之方向歧義,其為及心 ^以魏之㈣之主錢送方向。轉單元之寬度之 、疋要持%增加,有一部分可以相同或減少。 視製程任務之抑,任何—鋪拌單元之變柄有 泣點通用於擾拌單元之直徑變化及寬度變化。因此 =::會直接對蜗輪元件内外之切線速度及剪應= D /τν Γ 機械負載之發展造成影響。此外,攪拌單元之 變 a 〇,可於根據本發明之蝸輪元件中保持為常數,但也可改 。於另一個優良構造中,至少有兩個攪拌單元之直徑及寬产 I以不同。如此一來1可於剪力間隙上產生-個特別大之^ Ϊ程=鶴制建構之婦元件曝特別制於各式各樣之 、以特別優良導入剪力為前提,並著眼於堝輪元件之均衡負 载時,攪拌單元之直徑及寬度可於製程方向上增加。 八 【圖式簡單說明】 有各種可能性能夠以優良之方式實現前述之準則並加以拓 展。針對該點,一方面可以參照申請專利範圍第】項切屬申請 9 200800569 專利範圍,另一方面則可以參照下文依附圖式所述根據本發明 之蝸輪元件之優良實施例。與下文依附圖式所述根據本發明之 蜗輪元件之優良實施例相關,基本上為優良構造及該準則之拓 展亦加以說明。圖式中 圖一俯視之示意圖,根據本發明之蝸輪元件之實施例,其 具變化之直徑,
圖二侧視之示意圖,於圖一所示根據本發明之蜗輪元件之 實施例,其具變化之直徑, 圖三俯視之示意圖,根據本發明之蝸輪元件之另一實施 例,其具變化寬度之攪拌單元,及 圖四侧視之示意圖,於圖三所示根據本發明之蝸輪元件之 實施例,其具變化寬度之攪拌單元。 【實施方式】 所不之貫施例係關於根據本發明之堝輪元件中之攪拌元件 1 一邊單兀係應用於一個未標示之塑化單元,而該塑化單元具一 同樣未標示之蝎桿軸。 攪拌元件1係由攪拌單元2組合而成,於實施例巾,該等單 之此固(連接在—起。該等攪拌單元2可以安裝於—個共同 &處之湖^單元2設有輪齒,而該輪齒可與蜗桿上 之輪 人士 丄 ,…谓u丹啊什 於蜗桿 上n. ’因此’基本上姻1元件無法轉動地固定μ 以,㈣㈣狀’該形狀取決於兩個直㈣及 亦即直徑d1&d2、d34d4。 幾何:ίίΐ:明之方式’兩個彼此前後銜接設置之攪拌單元2之 製程方向I:同;=圖 掉單元丁万;该只施例中具有較小直徑Di之攪 係置於朝向輸人區域之最近處,而具有外徑D4之攪拌單 200800569 7〇2則置於朝向輸出區域之最遠處。因此,於此 中,大於〇3,錢大於D2,而Di則又 Dl<D2<D3<D4 °此處之授拌元件1之内徑Di則保持H 5任-種根據本發明之結構中’健可以考慮使其,是 著或不同於外徑〇&做變化。 * 隨 、圖二所示係以側視之示意圖表示圖一之攪拌元件丨。余★ 中讀拌元件1具有一麵寬度B。攪拌單元2本身則具有=例 、圖三顯示-根據本發明之攪拌元件,其具可變化之 二=元2具有不㈣度b。於該細巾,直徑比‘ f持為讀。此外’亦可見其外徑Da同樣為常數。攪拌單元2、 ^度b於製—程方向上增加。因此,於麟元件丨之寬度B上之材= 剪力便提高。於該明確實施例中,於擾拌元件4被置於朝向輸 入區域之最近處之攪拌單元2之寬度bi小於寬度匕。寬度匕則^ 小於寬度h。下一個攪拌單元2之寬度比則又大於前述之攪拌單 疋2之寬度by最後,於該一攪拌元件2中置於朝向輸出區域之最 遠處之攪拌單元2之寬度b5則大於寬度b4 ’亦即bi<b2<b3<b4。 為避免重覆,其餘細節參照一般說明。 最後必須明確指出,前述之實施例僅為了探討申請專利範 圍所述之準則,並非僅限於該種實施例。 11 200800569 【主要元件符號說明】 1 攪拌元件 2 攪拌單元 Da? Di5 D2, D35 D4 外径
Di 攪拌單元内徑 b 攪拌單元之寬度 B 攪拌元件之寬度
«I 12
Claims (1)
- 200800569 十、申請專利範園: 種蜗輪兀件’尤指用於塑化單元之麟元件 個攪拌單元⑵之蝎桿,揽拌單元(2)’:: 個共同之軸上,例如蝸桿,而該攪拌^ ::個幾何形狀’其特徵為’至少有兩 :2授 择早兀(2)之幾何形狀不相同。 也又置讀 2.根據切糊職第丨輯述之崎元件,其 個攪拌單元⑵之直徑(D1、m⑺、D4; 1 ’ 土乂兩 咖物所述之概件,其特目问拌 4根上 (D1、D2、D3、D4)於製程方向择力 .t申請專利翻第祖第3項中任—傭述曰加。 “特徵為,至少兩個攪拌單元(2) °軲兀件, 5·根據中請專利範圍第丨項至第顿中任—項^、不相同。 ’ 謝71 (2) ^ ⑴於製’ 根據申請專利範圍第5項所述之螞輪元件,其 4。 個授拌單元(2)之直徑(D)及寬产m、/ _、、、’至少兩 •根。據申請專利範圍第i項所述之蜗輪元件,其=為 早几⑺之直徑⑼及寬度(b)於製程方向_^知攙掉 13
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006014692A DE102006014692B3 (de) | 2006-03-28 | 2006-03-28 | Schneckenelement |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200800569A true TW200800569A (en) | 2008-01-01 |
TWI432309B TWI432309B (zh) | 2014-04-01 |
Family
ID=38268426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096105903A TWI432309B (zh) | 2006-03-28 | 2007-02-16 | 蝸輪元件 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20090016147A1 (zh) |
EP (1) | EP2001650B1 (zh) |
JP (1) | JP5130285B2 (zh) |
CN (1) | CN101400500B (zh) |
CA (1) | CA2644925C (zh) |
DE (1) | DE102006014692B3 (zh) |
RU (1) | RU2442688C2 (zh) |
TW (1) | TWI432309B (zh) |
WO (1) | WO2007112861A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4834653B2 (ja) * | 2007-12-19 | 2011-12-14 | 株式会社神戸製鋼所 | 混練スクリュ及び押出機 |
DE102013110671B4 (de) | 2013-09-26 | 2018-05-24 | Kraussmaffei Berstorff Gmbh | Verschleißkörper zur Aufnahme einer Doppelschnecke zur Extrusion von schmelzfähigem Material |
JP6198666B2 (ja) * | 2014-04-22 | 2017-09-20 | 宏平 澤 | 混練装置 |
DE102017007117A1 (de) * | 2016-10-18 | 2018-04-19 | Reifenhäuser GmbH & Co. KG Maschinenfabrik | Schnecke zum Einsatz in einem Extruder und Extruder |
KR20200003780A (ko) | 2017-06-01 | 2020-01-10 | 웬저 매뉴팩쳐링 인코포레이티드 | 높은 비기계적 에너지 압출 스크류 조립체 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1101142A (en) * | 1912-03-28 | 1914-06-23 | Max Mueller | Auger brick-machine. |
US2453088A (en) * | 1945-12-26 | 1948-11-02 | Dow Chemical Co | Mixing torpedo for plastics extruders |
US2607077A (en) * | 1951-06-28 | 1952-08-19 | Dow Chemical Co | Mixing torpedo for plastics extruders |
US3146493A (en) * | 1960-07-25 | 1964-09-01 | Bergwerksgesellschaft Hibernia | Process and apparatus for the production of polyolefine granulates |
DE1502335B2 (de) * | 1965-02-13 | 1971-10-21 | Werner & Pfleiderer, 7000 Stuttgart | Schneckenstrangprese fuer die verarbeitung von kunststoff |
DE1679884B2 (de) * | 1967-12-16 | 1971-08-26 | Werner & Pfleiderer | Mehrwellige kontinuierlich arbeitende misch und knetmaschine fuer plastizierbare massen |
US4015833A (en) * | 1975-10-03 | 1977-04-05 | The B. F. Goodrich Company | Extruder screw |
US4099897A (en) * | 1975-11-04 | 1978-07-11 | Hitachi Cable, Ltd. | Apparatus for producing foamed plastic insulated wires |
DE3026842C2 (de) * | 1980-07-16 | 1984-02-16 | Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover | Doppelschnecken-Entgasungsextruder für thermoplastische Materialien |
US4408887A (en) * | 1981-12-07 | 1983-10-11 | Kishihiro Yamaoka | Continuous kneader |
DE8232585U1 (de) * | 1982-11-20 | 1983-06-23 | Leistritz Maschinenfabrik Paul Leistritz GmbH, 8500 Nürnberg | Knetblock fuer gleichlaufschneckenpressen |
US4663103A (en) * | 1983-08-09 | 1987-05-05 | Collins & Aikman Corporation | Apparatus and method of extrusion |
DE3412258A1 (de) * | 1984-04-02 | 1985-10-10 | Werner & Pfleiderer, 7000 Stuttgart | Gleichdrall-doppelschneckenkneter mit knetscheiben |
EP0213510B2 (en) * | 1985-08-16 | 1995-01-11 | Idemitsu Petrochemical Co. Ltd. | Screw for molding thermoplastic resin |
AU620380B2 (en) * | 1988-03-18 | 1992-02-20 | Denso Corporation | Fiber-reinforced polymer composition and method of producing same |
DE3841728C1 (de) * | 1988-12-10 | 1990-03-01 | Hermann Berstorff Maschinenbau Gmbh, 30627 Hannover | Ein- oder Doppelschneckenextruder zum Einarbeiten von pulverförmigen oder faserförmigen Additiven in eine thermoplastische Kunststoffschmelze |
DE3841729C1 (de) * | 1988-12-10 | 1990-03-01 | Hermann Berstorff Maschinenbau Gmbh, 30627 Hannover | Ein- oder Doppelschneckenextruder zum Entgasen von thermoplastischen Kunststoffschmelzen |
JPH0677679B2 (ja) * | 1991-07-29 | 1994-10-05 | ビーエイチ工業有限会社 | 連続捏和機 |
US5486366A (en) * | 1993-09-24 | 1996-01-23 | Wm. Wrigley Jr. Company | Continuous chewing gum base manufacturing process using a mixing-restriction element |
JP2909577B2 (ja) * | 1993-10-29 | 1999-06-23 | トヨタ自動車株式会社 | 樹脂廃材の再生方法及び装置 |
JP3472391B2 (ja) | 1995-07-19 | 2003-12-02 | 東芝機械株式会社 | 2軸押出機及びその2軸押出機を利用した押出方法 |
US6254266B1 (en) * | 1998-05-22 | 2001-07-03 | Robert A. Barr | Floating ring mixer for extruder |
SE9802350D0 (sv) * | 1998-07-01 | 1998-07-01 | Borealis As | Mixing device |
JP2000037764A (ja) * | 1998-07-23 | 2000-02-08 | Asahi Chem Ind Co Ltd | 押出機及びそれを用いた方法 |
US6241375B1 (en) * | 1998-08-01 | 2001-06-05 | Peter Wang | Shear ring screw |
US6234659B1 (en) * | 1998-09-25 | 2001-05-22 | Hpm Corporation | Surge suppressor for vented injection molding machine screw |
US6132076A (en) * | 1998-12-09 | 2000-10-17 | General Electric Company | Single extruder screw for efficient blending of miscible and immiscible polymeric materials |
DE19860256A1 (de) * | 1998-12-24 | 2000-06-29 | Krupp Werner & Pfleiderer Gmbh | Zwei-Wellen-Extruder |
JP2000296517A (ja) * | 1999-04-15 | 2000-10-24 | Japan Steel Works Ltd:The | ニーディングスクリュピース体 |
DE19950917A1 (de) * | 1999-10-21 | 2001-04-26 | Degussa | Doppelschneckenextruder mit neuen Schneckenelementen |
DE10050295A1 (de) * | 2000-10-10 | 2002-04-11 | Buehler Ag | Mehrwellen-Extruder und Verfahren zur Aufbereitung und/oder Vorarbeitung von mit Füllstoff versetzten Elastomeren |
US7049361B2 (en) * | 2001-03-14 | 2006-05-23 | Sumitomo Chemical Company, Limited | Polyolefin series resinfilm, composition for preparing the same, process for preparing the composition for preparing the same, and apparatus for preparing the same |
DE10233213B4 (de) * | 2002-07-22 | 2004-09-09 | 3+Extruder Gmbh | Extruder |
JP2004202871A (ja) * | 2002-12-25 | 2004-07-22 | Japan Steel Works Ltd:The | 混練押出機用のスクリュ |
DE102004019430A1 (de) * | 2004-04-19 | 2005-11-03 | Basf Ag | Verfahren zur Herstellung von thermoplastischen Formmassen |
US7246936B2 (en) * | 2004-06-04 | 2007-07-24 | Certainteed Corp. | Dynamic mixer screw tip |
US7527493B1 (en) * | 2007-11-01 | 2009-05-05 | Md Plastics Incorporated | Precise control non-return valve |
-
2006
- 2006-03-28 DE DE102006014692A patent/DE102006014692B3/de not_active Expired - Fee Related
-
2007
- 2007-02-16 TW TW096105903A patent/TWI432309B/zh active
- 2007-03-21 JP JP2009501912A patent/JP5130285B2/ja not_active Expired - Fee Related
- 2007-03-21 WO PCT/EP2007/002482 patent/WO2007112861A1/de active Application Filing
- 2007-03-21 CA CA2644925A patent/CA2644925C/en not_active Expired - Fee Related
- 2007-03-21 EP EP07711985.7A patent/EP2001650B1/de active Active
- 2007-03-21 RU RU2008142522/05A patent/RU2442688C2/ru not_active IP Right Cessation
- 2007-03-21 CN CN2007800087319A patent/CN101400500B/zh active Active
-
2008
- 2008-09-16 US US12/211,410 patent/US20090016147A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20090016147A1 (en) | 2009-01-15 |
JP5130285B2 (ja) | 2013-01-30 |
DE102006014692B3 (de) | 2007-08-02 |
CA2644925C (en) | 2013-10-29 |
TWI432309B (zh) | 2014-04-01 |
RU2442688C2 (ru) | 2012-02-20 |
JP2009531199A (ja) | 2009-09-03 |
WO2007112861A1 (de) | 2007-10-11 |
EP2001650B1 (de) | 2016-03-16 |
CN101400500B (zh) | 2013-08-28 |
CA2644925A1 (en) | 2007-10-11 |
RU2008142522A (ru) | 2010-05-10 |
EP2001650A1 (de) | 2008-12-17 |
CN101400500A (zh) | 2009-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200800569A (en) | Screw element | |
Singh et al. | Multi-material additive manufacturing of sustainable innovative materials and structures | |
Yasim-Anuar et al. | Well-dispersed cellulose nanofiber in low density polyethylene nanocomposite by liquid-assisted extrusion | |
La Mantia et al. | Effect of a compatibilizer on the morphology and properties of polypropylene/polyethylentherephthalate spun fibers | |
Swann et al. | Design and application of nanoscale actuators using block-copolymers | |
Osman et al. | Improving the tensile and tear properties of thermoplastic starch/dolomite biocomposite film through sonication process | |
Xie et al. | Effect of diisocyanates as compatibilizer on the properties of BF/PBAT composites by in situ reactive compatibilization, crosslinking and chain extension | |
Nakagaito et al. | Polylactic acid reinforced with mixed cellulose and chitin nanofibers—Effect of mixture ratio on the mechanical properties of composites | |
Hidalgo-Salazar et al. | Injection molding of coir coconut fiber reinforced polyolefin blends: Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study | |
Liu et al. | Poly (acrylonitrile–butadiene–styrene) as a special β-nucleating agent on the toughness of isotactic polypropylene | |
Zhang et al. | Tunable electrical conductivity of carbon-black-filled ternary polymer blends by constructing a hierarchical structure | |
Andrzejewski et al. | The use of agricultural waste in the modification of poly (Lactic acid)-based composites intended for 3d printing applications. the use of toughened blend systems to improve mechanical properties | |
Wang et al. | Effect of micro-mold cavity dimension on structure and property of polylactic acid/polycaprolactone blend under microinjection molding conditions | |
Solorio-Rodríguez et al. | Filament extrusion and its 3D printing of poly (lactic acid)/poly (styrene-co-methyl methacrylate) blends | |
Ishigami et al. | Physical and morphological properties of tough and transparent PMMA-based blends modified with polyrotaxane | |
Mirasadi et al. | 3D and 4D Printing of PETG–ABS–Fe3O4 Nanocomposites with Supreme Remotely Driven Magneto-Thermal Shape-Memory Performance | |
Ruiz-Silva et al. | Rotational molding of poly (lactic acid)/polyethylene blends: Effects of the mixing strategy on the physical and mechanical properties | |
Namathoti et al. | Development of multiwalled carbon nanotubes/halloysite nanotubes reinforced thermal responsive shape memory polymer nanocomposites for enhanced mechanical and shape recovery characteristics in 4D printing applications | |
Lin et al. | Polyamide 6/poly (vinylidene fluoride) blend-based nanocomposites with enhanced rigidity: Selective localization of carbon nanotube and organoclay | |
Gao et al. | Toughening and heat-resistant modification of degradable PLA/PBS-based composites by using glass fiber/silicon dioxide hybrid fillers | |
La Gala et al. | A combined experimental and modeling study for pellet-fed extrusion-based additive manufacturing to evaluate the impact of the melting efficiency | |
Lu et al. | Effects of the processing parameters on the shear viscosity of cyclic olefin copolymer plasticized by ultrasonic vibration energy | |
dos Santos Filho et al. | Tailoring Poly (lactic acid)(PLA) Properties: Effect of the Impact Modifiers EE-g-GMA and POE-g-GMA | |
Sempere-Torregrosa et al. | Effect of Epoxidized and Maleinized Corn Oil on Properties of Polylactic Acid (PLA) and Polyhydroxybutyrate (PHB) Blend | |
Parres et al. | Study of the properties of a biodegradable polymer filled with different wood flour particles |