TW200618169A - Method of forming a component having dielectric sub-layers - Google Patents

Method of forming a component having dielectric sub-layers

Info

Publication number
TW200618169A
TW200618169A TW094132826A TW94132826A TW200618169A TW 200618169 A TW200618169 A TW 200618169A TW 094132826 A TW094132826 A TW 094132826A TW 94132826 A TW94132826 A TW 94132826A TW 200618169 A TW200618169 A TW 200618169A
Authority
TW
Taiwan
Prior art keywords
layers
component
forming
dielectric sub
dielectric
Prior art date
Application number
TW094132826A
Other languages
English (en)
Inventor
Peter Mardilovich
Laura Kramer
Gregory S Herman
Randy Hoffman
David Punsalan
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW200618169A publication Critical patent/TW200618169A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
TW094132826A 2004-10-22 2005-09-22 Method of forming a component having dielectric sub-layers TW200618169A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/971,337 US7265063B2 (en) 2004-10-22 2004-10-22 Method of forming a component having dielectric sub-layers

Publications (1)

Publication Number Publication Date
TW200618169A true TW200618169A (en) 2006-06-01

Family

ID=36205427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094132826A TW200618169A (en) 2004-10-22 2005-09-22 Method of forming a component having dielectric sub-layers

Country Status (5)

Country Link
US (2) US7265063B2 (zh)
EP (1) EP1807867A2 (zh)
CN (1) CN101069273A (zh)
TW (1) TW200618169A (zh)
WO (1) WO2006047025A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262463B2 (en) * 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP4502382B2 (ja) * 2004-11-02 2010-07-14 キヤノン株式会社 有機トランジスタ
EP1770788A3 (en) * 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
US7960718B2 (en) * 2006-07-10 2011-06-14 Applied Nanotech Holdings, Inc. Printable thin-film transistor for flexible electronics
US8659158B2 (en) * 2006-08-16 2014-02-25 Funai Electric Co., Ltd. Thermally inkjettable acrylic dielectric ink formulation and process
CN101399316B (zh) * 2007-09-27 2010-09-15 财团法人工业技术研究院 有机薄膜晶体管以及控制高分子材料层表面能的方法
KR101270174B1 (ko) * 2007-12-03 2013-05-31 삼성전자주식회사 산화물 반도체 박막 트랜지스터의 제조방법
US8106387B2 (en) * 2008-10-14 2012-01-31 Xerox Corporation Organic thin film transistors
US8969867B2 (en) * 2012-01-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102123529B1 (ko) * 2013-03-28 2020-06-17 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR102581899B1 (ko) * 2015-11-04 2023-09-21 삼성전자주식회사 투명 전극 및 이를 포함하는 소자
US11911825B2 (en) * 2018-03-13 2024-02-27 Hewlett-Packard Development Company, L.P. Fusing electronic components into three-dimensional objects via additive manufacturing processes
GB2577112A (en) * 2018-09-14 2020-03-18 Flexenable Ltd Forming dielectric for electronic devices

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609614A (en) * 1985-06-24 1986-09-02 Rca Corporation Process of using absorptive layer in optical lithography with overlying photoresist layer to form relief pattern on substrate
US5399604A (en) * 1992-07-24 1995-03-21 Japan Synthetic Rubber Co., Ltd. Epoxy group-containing resin compositions
US5796708A (en) * 1993-06-11 1998-08-18 Kabushiki Kaisha Toshiba Optical recording medium and recording system
WO1998020557A1 (en) * 1996-11-08 1998-05-14 W.L. Gore & Associates, Inc. Method for reducing via inductance in an electronic assembly and device
DE69931334T2 (de) * 1998-12-22 2007-02-01 Matsushita Electric Industrial Co., Ltd., Kadoma Flexibler Dünnfilmkondensator und Herstellungsverfahren
TW495809B (en) * 2000-02-28 2002-07-21 Semiconductor Energy Lab Thin film forming device, thin film forming method, and self-light emitting device
US6936533B2 (en) * 2000-12-08 2005-08-30 Samsung Electronics, Co., Ltd. Method of fabricating semiconductor devices having low dielectric interlayer insulation layer
KR100518051B1 (ko) * 2001-01-11 2005-09-28 엔이씨 엘씨디 테크놀로지스, 엘티디. 능동 매트릭스형 액정 디스플레이 장치와 그 제조 방법
US6656313B2 (en) * 2001-06-11 2003-12-02 International Business Machines Corporation Structure and method for improved adhesion between two polymer films
JP2003100738A (ja) 2001-09-25 2003-04-04 Jsr Corp 積層体、積層体の形成方法、絶縁膜ならびに半導体用基板
JP2003273111A (ja) * 2002-03-14 2003-09-26 Seiko Epson Corp 成膜方法及びその方法を用いて製造したデバイス、並びにデバイスの製造方法
US7098525B2 (en) * 2003-05-08 2006-08-29 3M Innovative Properties Company Organic polymers, electronic devices, and methods
US7842347B2 (en) * 2005-06-09 2010-11-30 Lexmark International, Inc. Inkjet printing of layers

Also Published As

Publication number Publication date
EP1807867A2 (en) 2007-07-18
US7265063B2 (en) 2007-09-04
US20070284701A1 (en) 2007-12-13
WO2006047025A2 (en) 2006-05-04
CN101069273A (zh) 2007-11-07
US8143706B2 (en) 2012-03-27
US20060086976A1 (en) 2006-04-27
WO2006047025A3 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
TW200618169A (en) Method of forming a component having dielectric sub-layers
TW200620490A (en) Method of forming a thin film component
TW200625453A (en) Method of forming a solution processed transistor having a multilayer dielectric
TW200623322A (en) A method to form an interconnect
TW200612563A (en) Method of forming a solution processed device
TW200618110A (en) Method of forming a transistor having a dual layer dielectric
TW200707466A (en) Conductive patterning
MXPA03002617A (es) Metodo y aparato para mejorar el rendimiento de sistemas de filtracion de grava.
TW200614594A (en) Multi-portion socket and related apparatuses
AU2003900746A0 (en) Methods, systems and apparatus (NPS041)
EP2579271B8 (en) Particle-optical systems and arrangements and particle-optical components for such systems and arrangements
WO2003005244A3 (en) Method and apparatus for peer-to-peer services
AU2003900865A0 (en) Methods, systems and apparatus (NPW010)
AU2003233103A1 (en) Method for authentication between devices
TW200627594A (en) A method to form a passivation layer
GB0703843D0 (en) Devices, systems, and methods for flow-compensating pump-injector sychronization
WO2005107417A3 (en) System and method for communicating with electronic devices
AU2003273003A1 (en) Oxonitride phosphor and method for production thereof, and luminescent device using the oxonitride phosphor
AU2003276885A1 (en) System and method for encrypted communications between electronic devices
AU2003900983A0 (en) Methods, systems and apparatus (NPT023)
WO2007145875A3 (en) Data coding
WO2005086709A3 (en) Controlling jitter effects
AU2003239476A1 (en) Hardware systems, methods and apparatuses for an automated dialysis machine
WO2005122731A3 (en) Method to form a conductive structure
AU2003234811A1 (en) Substrate processing device, substrate processing method, and developing device