TW200602269A - Antimonides having novel combinations of properties - Google Patents

Antimonides having novel combinations of properties

Info

Publication number
TW200602269A
TW200602269A TW094116023A TW94116023A TW200602269A TW 200602269 A TW200602269 A TW 200602269A TW 094116023 A TW094116023 A TW 094116023A TW 94116023 A TW94116023 A TW 94116023A TW 200602269 A TW200602269 A TW 200602269A
Authority
TW
Taiwan
Prior art keywords
antimonides
properties
novel combinations
antimonide
substituted
Prior art date
Application number
TW094116023A
Other languages
English (en)
Inventor
Hans-Josef Sterzel
Original Assignee
Basf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Ag filed Critical Basf Ag
Publication of TW200602269A publication Critical patent/TW200602269A/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
TW094116023A 2004-05-18 2005-05-18 Antimonides having novel combinations of properties TW200602269A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004025065A DE102004025065A1 (de) 2004-05-18 2004-05-18 Antimonide mit neuen Eigenschaftskombinationen

Publications (1)

Publication Number Publication Date
TW200602269A true TW200602269A (en) 2006-01-16

Family

ID=34969312

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094116023A TW200602269A (en) 2004-05-18 2005-05-18 Antimonides having novel combinations of properties

Country Status (3)

Country Link
DE (1) DE102004025065A1 (zh)
TW (1) TW200602269A (zh)
WO (1) WO2005114756A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728880A1 (en) * 2005-05-31 2006-12-06 Aarhus Universitet Improved p-type thermoelectric materials, a process for their manufacture and uses thereof
DE102005060040A1 (de) * 2005-12-15 2007-06-21 BSH Bosch und Siemens Hausgeräte GmbH Schaltungsanordnung für ein Peltiermodul
WO2008028852A2 (de) * 2006-09-05 2008-03-13 Basf Se Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20202782U1 (de) * 2002-02-21 2002-04-25 Blum Theodor Wäschetrockner

Also Published As

Publication number Publication date
WO2005114756A2 (de) 2005-12-01
WO2005114756A3 (de) 2006-05-04
DE102004025065A1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
WO2006001915A3 (en) Semiconductor device with multiple semiconductor layers
Thompson et al. Uniaxial-process-induced strained-Si: Extending the CMOS roadmap
WO2005101515A3 (en) Process to improve transistor drive current through the use of strain
US10804166B2 (en) Porous silicon relaxation medium for dislocation free CMOS devices
WO2009125317A3 (en) Seebeck/peltier bidirectional thermo- electric conversion device using nanowires of conductor or semiconductor material
Hashemi et al. High Hole-Mobility Strained-$\hbox {Ge/Si} _ {0.6}\hbox {Ge} _ {0.4} $ P-MOSFETs With High-K/Metal Gate: Role of Strained-Si Cap Thickness
TW200746429A (en) Metal gated ultra short MOSFET devices
US20090095981A1 (en) Complementary metal oxide semiconductor device and method of manufacturing the same
Goo et al. Scalability of strained-Si nMOSFETs down to 25 nm gate length
TW200620554A (en) Patterned strained semiconductor substrate and device
WO2006053258A3 (en) Method to enhance cmos transistor performance by inducing strain in the gate and channel
TW200608548A (en) Thermoelectric nano-wire devices
CN106537554B (zh) 包括鳍松弛的半导体装置的制造方法及相关结构
EP1760777A3 (en) Transistors and methods of manufacture thereof
TW200602269A (en) Antimonides having novel combinations of properties
Hashemi et al. First demonstration of high-Ge-content strained-Si 1− x Ge x (x= 0.5) on insulator PMOS FinFETs with high hole mobility and aggressively scaled fin dimensions and gate lengths for high-performance applications
EP2061074A3 (en) Method for fabricating thin film transistor
WO2009098248A3 (de) Dotierte zinntelluride für thermoelektrische anwendungen
Chui et al. Source/drain germanium condensation for p-channel strained ultra-thin body transistors
CN109887884A (zh) 一种半导体器件的制造方法
Wong et al. Fabrication and low temperature characterization of Ge (110) and (100) p-MOSFETs
JP2015509661A (ja) 単結晶の金属−半導体接合体の製造方法
TW200602259A (en) Tellurides having novel property combinations
Li et al. Experimental investigation on superior PMOS performance of uniaxial strained≪ 110≫ silicon nanowire channel by embedded SiGe source/drain
Kashyap et al. Rollable silicon IC wafers achieved by backside nanotexturing