TW200534744A - Electrode substrate and its production method - Google Patents

Electrode substrate and its production method Download PDF

Info

Publication number
TW200534744A
TW200534744A TW93109994A TW93109994A TW200534744A TW 200534744 A TW200534744 A TW 200534744A TW 93109994 A TW93109994 A TW 93109994A TW 93109994 A TW93109994 A TW 93109994A TW 200534744 A TW200534744 A TW 200534744A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
organic
substrate
peak
Prior art date
Application number
TW93109994A
Other languages
Chinese (zh)
Inventor
Hiroshi Shoji
Yoshikazu Nagasaki
Tadao Shibuya
Original Assignee
Idemitsu Kosan Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co filed Critical Idemitsu Kosan Co
Publication of TW200534744A publication Critical patent/TW200534744A/en

Links

Abstract

To aim at a removal of a surface defect layer existing on the surface of an anode of a CCM board, protection of the anode surface, and, by extension, at prevention of rise of drive voltage of an organic EL element as well as maintenance of luminous uniformity. A CCM layer 14 is laminated on a board 12 for making wave-length change of light, and an anode 16 made of an IZO is formed on the CCM layer 14. A surface protection layer 18 made of an inorganic compound is laminated on the anode 16 by a sputtering process with a plasma-supporting magnetron sputter of an inductive coupling type. SiO2 is preferable as the inorganic compound. While removing the surface defect layer of the anode 16, the inorganic compound can maintain a state in which the surface defect is removed. As a result, electric stability of the anode 16 can be maintained for a long period of time to improve display image quality of an organic EL display device 100.

Description

200534744 (1) 玖、發明說明 【發明所屬之技術領域】 本發明爲關於有機EL元件之基板構造及其製造方法 。特別,關於利用CCM法之有機EL元件中所用的電極 基板。更詳言之,關於對於基板陽極之透明電極表面的惡 化施以對策的色轉換(CCM)基板。 【先前技術】 A.[技術背景] 近年,有機EL(電致發光)元件由於做爲發光裝置、 顯示裝置之應用方面而受到注目。例如,已發展利用做爲 資料顯示機器、車輛顯示機器等之彩色及全色彩顯示裝置 (1)有機EL元件的基本構造 一般有機EL元件爲以透明電極做爲陽極,以對向電 極之A1 (鋁)等做爲陰極,並於其兩電極間具有夾住有機物 層之構造。此類有機EL元件已被考慮於各種應用,但其 中亦以對於彩色顯示器之應用的期待大。 (2)CCM 法 本發明爲特別關於應用CCM(Color Changing Medium ’色轉換介質)法的有機EL元件。此處,所謂CCM法, 爲指令顯不裝置彩色化的一種方法。使用有機EL元件構 -5- 200534744 (2) 成彩色顯示裝置時,例如’考慮使用發出三原色(紅、藍 、綠)光線的有機物。但是’使用三種有機物(以下,單稱 爲有機物)乃令製造步驟變得複雜,故期望僅令一種有機 物可彩色化。CCM法爲根據此類要求而設計者,其爲使 用發出一種有機物單色光(例如藍色)的螢光轉換層,且經 由適當轉換成其他波長之光線(例如紅和綠)則可作成三原 色的方式。 此C CM法爲於顯示裝置之彩色化的手法中,由製造 費用及圖案之高精細化(全色彩化)觀點而言,爲最有希望 察見將來性的手法之一。還有,於此CCM法中,不單是 螢光轉換層,且有時亦進行使用彩色濾光片以提高發光色 之純度的功夫。即,已知使用螢光轉換層和/或彩色濾光 片層,令有機EL的發光色變化。 示出使用 CCM法之有機EL顯示裝置10的基本構造 的模型剖面圖示於圖4。如此圖所示般,於透明玻璃的基 板12上,設置CCM層14。此CCM層14爲包含發出綠色螢 光的綠色 CCM層14G,和發光紅色螢光的紅色 CCM層 1 4R,和令有機物層1 8發出的藍色光線就其原樣穿透之透 明材料的藍色CCM層14B,且顯示裝置之畫面上的一個畫 素爲由綠色 CCM層14G,和紅色 CCM層14R,和藍色 CCM層14B所構成。 於C CM層14之上將透明電極之陽極16層合。陽極16 爲使用ITO(氧化鍚銦:Indium Tin Oxide)和IZO(氧化鋅 銦:Indium u Zinc Oxide)。於陽極16上,依序設置有機物 200534744 (3) 層1 8、陰極2 0 (例如鋁(A 1))。此有機物層1 8爲經由電場以 外加而發光,故將其稱爲發光層。 CCM型之有機EL顯示裝置1〇於許多情況爲使用發出 藍色的有有機物層18。此藍色光線爲經由綠色CCm層14 而波長轉換成綠色光,且經由紅色C C Μ層1 4 R而波長轉 換成紅色光。另一方面,藍色CCM層MB爲令有機物層 1 8所發出之藍色光線就其原樣穿透。經由如此之構成,則 可取得紅色、藍色、綠色光之三原色。 還有,於圖4及目前之說明中,雖僅說明CCM方式之 有機EL顯示裝置10的基本構造,但實際上,於CCM層 1 4中含有彩色濾光片用以改善色純度之情況亦多。於有機 物層18中,設置電子注入層和空穴注入層,且將來自陰極 20之電子和來自陽極16之空穴有效率供給至發光層(有機 物層18)的結構亦於實際上被廣泛利用。 還有,有機EL顯示裝置10中,將基板12至陽極16爲 止之構成以附有電極之基板意義下,稱爲「電極基板」。 此電極基板爲於其上將構成EL元件之有機物與陰極予以 層合,則可輕易作成有機EL顯示裝置1 0。更且’於基板 12與陽極16之間設置CCM層14時,則可輕易作成CCM型 的有機EL顯示裝置1 0,將此情況的電極基板特別稱爲 CCM基板24。即,將基板12、CCM層1 4、陽極Μ所構成 之電極基板稱爲CCM基板24。 (3)陽極上之表面不良層 200534744 (4) 有機EL元件爲於基板上所構成,於採用CCM法時 ,於其基板上設置如上述之螢光轉換層和/或彩色濾光片 層。其次,於此螢光轉換層等之上再設置陽極,且以下依 序以有機物層、陰極之順序層合,於基板上形成有機EL 元件。 又,如上述,利用 CCM法時,亦包含其基板、和其 上所層合之螢光轉換層和/或彩色濾光片層、陽極,並將 其稱爲CCM基板24。構成此CCM基板24之陽極16可使用 Indium Zinc Oxide)等透明電極。本案發明者等人爲對於 此陽極之表面不良層的形成進行硏究,且判知下列情事。 ① 作成CCM基板時,此基板的製作步驟數多,且易 進行基板污染,且於陽極表面易形成表面不良層。特別, IZO等之透明電極表面易因過度的洗淨步驟,或因圖案化 之蝕刻殘留度等而受到損傷。更且,成爲水吸附至電極表 面。電極之容積(表面部位以外之內部部分)中所含之微量 雜質原子析出至表面等之原因,所謂具有在陽極上形成表 面不良層的傾向。 ② 更且,CCM層(螢光轉換層)本身多爲由樹脂所形成 之部分,且來自此樹脂之水分等之揮發氣體成分有時慢慢 污染陽極表面。 (4)根據本案發明者等人之硏究乃判知經由此類表面不良 層的存在,乃產生下列現象。 ①有機EL元件的驅動電壓變大。即,所謂的EL性 -8- 200534744 (5) 能降低。 ② 有機EL元件的發光均勻性降低。具體而言於形成 C C Μ面板(使用利用C C Μ法之有機E L元件的顯示面板) 時,觀測到各畫素的縮小現象。 ③ 將上述CCM面板於加熱環境中進行加速評價時, 觀測到畫素縮小的速度被加速之現象(例如利用〜8 5 °C等之 加熱環境)。 如上述之問題點,爲根據本案發明者等人之硏究而判 知。 (5)先前陽極之改善 以往,已進行改善有機EL元件之陽極1 6、與陽極上 所層合之有機物的密合性,導電性的各種功能。 此功夫之一爲在陽極1 6與有機物層之間,將有機化合 物或金屬和半導體無機物以緩衝層型式插入的手法。此手 法爲自以往已被廣泛進行硏究。. 但是,此緩衝層的插入手法爲如上述(3) (4)所示般, 並非作用爲改善透明電極(陽極)表面的惡化。因此,單僅 以所謂插入緩衝層的手法,並無法改質陽極表面的惡化, 故其效果本身可稱爲具有限度。 B.[先前技術文獻之例] 其次,示出具體的先前技術文獻,介紹先前技術,並 且說明其內容、缺點、問題點等。 -9- 200534744 (6) (1)鈍化膜(passivation film) 例如WO 0072 63 7 A1(以下,稱爲文獻i)中揭示含有 由氧化砂所構成之阻擋膜(二鈍化膜(passivation film))之 依據CCM法的有機EL顯示器。 首先,若根據此文獻1,將基板及其上之CCM層(包 含彩色濾光片層)以用以平坦化之有機層覆蓋,且在平坦 化下,即使於其上層合有機EL顯示裝置亦不會發生「切 斷」等。 於層合有機EL元件之面具有段差之情形中,恐在層 合有機E L元件之膜上產生不連續部分。將此不連續部分 稱爲「切斷」。又,用以平坦化之有機層之例,於文獻1 中示出熱硬化型樹脂和紫外線硬化型樹脂之例。 更且,文獻1中,指出於用以平坦化之有機層上,若 令有機E L元件直接層合,則在有機EL層合時和驅動時 之熱令用以平坦化之有機層成分揮發,且其對有機EL之 各構成材料造成不良影響。其結果,於文獻1中指出發生 所謂黑點的非發光區域,且預測無法維持指定品質的發光 〇 於是,於此文獻1中,示出經由在用以平坦化之有機 層與有機EL元件之間層合Si Ox所構成的阻擋層(鈍化膜) ’防止用以平坦化之有機層成分擴散至有機EL元件的各 層材料,並且防止元件的惡化。 但是,此阻擋層(鈍化膜)雖可有效防止有機層及CCM 層中之揮發成分的擴散,但認爲對於來自CCM層以外部 200534744 (7) 分之水分等的混入幾乎完全無效果。 混入元件中的水分爲吸附至陽極1 6與有機物層之間, 令接黏性降低,且電荷的注入性變差。其結果,預測形成 所謂的陽極表面不良層。本發明爲欲實現抑制此類表面不 良層發生之手法(表面保護層)的發明。 (2)對於陽極上層合緩衝層 於陽極上所層合之緩衝層的目的爲改善密合性,以無 機材料改善導電性,利用絕緣體之薄膜層,將陽極表面逆 濺(逆sputtering)等。以下依序說明。 ①於改善陽極/有機物層之密合性(有機物之附著性)之 目的插入緩衝層者 特開平1 0-2 1 46 8 3號公報(以下,稱爲文獻2)中示出多 結晶質之ITO (Indium Tin Oxide)與有機物的結晶狀態爲不 同,故陽極與有機物層不會進行良好接合且部分發生接合 不良,有時發生黑點(dark sput),又,接合不良部分所發 生之熱乃導致有機層惡化等問題。 文獻2中,爲了解決此些問題,乃將導電性之接合改 善層(Αυ、Pt 等之金屬、MoOx,VOx,SnOx,InOx, BaOx等之金屬氧化物、共軛性聚合物等之非晶質膜)以 1〜500μηι之膜厚範圍設置。 又,特開平9-324176號公報(以下,稱爲文獻3)中示 出改善電極與有機膜之密合性且防止非發光部分的發生, 令長期保存性和連續驅動衰減時間提高之技術。爲了達成 -11 - 200534744 (8) 此類目的,於文獻3中揭示令先前使用做爲空穴注入輸送 材料之化合物終端以矽烷偶合劑取代之材料所構成之層中 介存在的技術。 又’特開平9-2 04 9 8 5號公報(以下,稱爲文獻4)爲由 文獻3同樣之觀點,揭示以鈦酸酯系偶合劑將IT0電極本 身予以表面處理的技術。 ②應用無機材料(半導體、傳導體)並以提高傳導性等 爲其目標者 特開平3 - 1 05 89 8號公報(以下,稱爲文獻5)中揭示將 通常由有機物所構成之空穴輸送層或電子輸送層,以成膜 狀態良好之非晶質半導體的Ρ型或Ν型形成,提高發光 性能的技術。 又,特開平1 0-260062(以下,稱爲文獻6)中揭示未使 用昂貴的空穴注入輸送材料,取代形成ITO與無機半導體 的混合層,令電阻率爲20 Ω · cm以下之構成。此構成爲 在低費用下令有機物與ITO直接接續,故由上述密合性之 改善觀點而言亦可取得良好之結果,且可形成抑制黑點發 生等之元件。 又,特開平9-63 77 1號公報(以下,稱爲文獻7)中,於 陽極之ITO與空穴輸送層之間形成5〜30nm功函數値爲比 ITO大之金屬氧化物(RuO,MoO,VOD等),則可減少陽 極與空穴輸送層間之能量障壁,並且提高發光效率。 又,特開平08- 03 1 5 7 3號公報(以下,稱爲文獻8)中, 揭示以碳薄膜形成一部分陽極,或全體陽極之構成。 -12- 200534744 (9) 此外於特開平03 -2 1 07 9 1號公報、特開平03-262 1 70號 公報、特開平06- 1 1 9973號公報中揭示將P型半導體應用 做爲空穴輸送材料。 ③於陽極與有機物層之間形成絕緣體薄膜層者 於美國專利USP 5 8 5 3 905號(以下,稱爲文獻9)中,記 載改善透明電極與有機物之密合性或者積極形成電荷障壁 ,且利用隧道注入機構之新元件構成的提案。 又,於特開平0 8-2 8 8 069號公報(以下,稱爲文獻1〇) 中,揭示爲了迴避連續驅動時所發生的漏電,乃於陽極與 有機物層之間設置50 A左右之氮化鋁等氮化物薄膜之構成 ④預先將陽極表面予以逆濺鍍處理者 於特開平1 1- 1 26689號公報(以下,稱爲文獻1 1),認 定漏電電流或黑點的發生要因爲陽極表面的凹凸,爲了無 此凹凸,乃提案以送濺鏟處理陽極表面。 【發明內容】 發明之揭示 發明所欲解決之課題 於上述「B·[先前技術文獻之例]」之「(2)對於陽極層 合緩衝層」之項①〜③所說明之先前技術中,以提高陽極 與有機物層之密合性等之接合特性的改善、改善由陽極對 有機物層注入空穴特性等爲其目的。 但是’如上述「A.[技術背景]」之「(3)陽極上之表面 不良層」及同(4)所述般,於ITO等之透明電極表面經由 -13- 200534744 (10) 本來存在之表面不良層的存在,乃發生各種不適。例如, 經由表面不良層的存在,使得連續驅動時之驅動電壓的上 升變大,恐發生壽命變短的現象。又,難確保耐熱性,特 別於應用在車輛用各種顯示機器等之時,可預知此點乃變 成問題。更且,特別於高精細的CCM面板之情況,經由 表面不良層的生成及增大造成發光畫素縮小的問題。其特 叩在高溫環境下顯著化。著眼於此點,講述對策之例則仍 未知。 於上述「(2)對於陽極層合緩衝層」之項④中,雖已 提案以逆測鍍處理陽極表面,但根據下列理由認爲其不充 分。即,逆濺鍍後,因爲未層合無機化合物,故於真空中 被污染的可能性高,且於真空槽中存在之水分等亦具有恢 復成原來之表面狀態的可能性,認爲其效果不夠充分。 本發明爲鑑於此些問題點,其目的爲如下。 (1) 除去CCM基板之陽極表面上存在的表面不良層, 及,保護陽極表面爲其目的。 (2) 令有機EL元件特別爲CCM面板之性能安定化, 具體而言。防止驅動電壓上升,維持發光均勻性,提高耐 熱性等爲其目的。 解決課題之手段 本發明爲了解決上述課題,提案將表面不良層除去後 ’層合無機化合物之與以往不同的新構成,經由此無機化 合物之層合,則可達成防止新表面不良層之形成之先前技 -14 - 200534744 (11) 術所來有之效果。 經由本發明表面保護層之存在,則可防止於陽極上形 成表面不良層。例如於全色彩面板用CCM基板之陽極上 形成陰極分離用之障壁層的狀態下,不必特別擔心污染等 地保管、移動。又,於製作爲面板時(有機EL成膜時)若 根據先前指定之製作步驟的原樣步驟實行即可。 本發明具體而言爲採用下列之構成。 本發明爲了解決上述課題,爲包含基板、和含In原 子之化合物所構成的電極、和位於該電極與該基板之間之 層,且用以將入射此層之光波長進行轉換的螢光轉換層的 電極基板,於該電極的表面,對向該螢光轉換層表面之反 側表面上,形成由無機化合物所構成之表面保護層爲其特 徵。經由此類構成,則可防止形成表面不良層。具體而言 ,可有效防止因接觸大氣等而形成表面不良層。 又,本發明其特徵爲上述電極基板之該基板和/或該 電極之構成材料爲透明性材料。經由使用此類透明性之材 料,則可取得可利用於顯示手段的電極基板。 又,本發明其特徵爲對上述電極表面之該電極表面施 以逆濺鍍處理。經由此類構成,則可有效減少電極表面的 表面不良層,可令電極表面與內部爲均質。 又,本發明其特徵爲上述之逆濺鍍處理爲以誘導結合 型RF電漿支援磁控管濺鍍器進行逆濺鍍處理。若爲根據 此類構成,則可輕易取得恰好除去陽極表面之表面不良層 之運動能量的放電氣體離子,故不會損傷電極且可除去表 -15- 200534744 (12) 面不良層。 又,本發明其特徵爲構成該表面保護層之無機化合物 爲由 Ba,Ca,Sr,Yb,Al,Ga,In,Li,Na,K,Cd, Mg,Si,Ta,Ge,Sb,Zn,Cs,Eu,Y,Ce,W,Zr,La ,Sc,Rb,Lu,Ti,Cr,Ho,Cu,Er,Sm,W,Co,S e ,Hf,Tm,Fe,Nb所選出之至少一種以上之金屬氧化物 ,或氮化物、複合氧化物、硫化物、氟化物之任一者。若 爲根據此類構成,則可於電極表面上形成緻密的表面保護 層。 又,本發明其特徵爲該表面保護層爲以測鍍法所形成 。經由此類構成,則可除去電極的表面不良層,並且形成 表面保護層。 又,本發明其特徵爲令該表面保護層,使用誘導結合 型RF電漿支援磁控管濺鍍器之濺鍍法所形成。經由此類 構成,則可有效形成表面保護層。 又,本發明其特徵爲令該表面保護層之膜厚爲 5〜100A範圍內之値。若爲此類構成,則可防止表面不良 層再發生,並且可確保指定的光穿透性。 又,本發明其特徵爲令該電極爲由氧化錫因(I TO)或 氧化鋅銦(IZO)所構成。若爲根據此類構成,則可取得優 良的光穿透性。 又’本發明其特徵爲令該電極爲非晶質氧化物。若爲 根據此類構成,則可取得優良的蝕刻特性。還有,ITO通 常爲結晶性’但於成膜時變成水分環境氣體,又,可經由 200534744 (13) 摻混微量元素等之手法作成非晶質。 又’本發明其特徵爲包含驅動該電極的驅動元件。近 年’特別廣泛利用各像素具備薄膜晶體管(TFT),且提高 顯示性能的液晶顯示裝置和有機EL顯示元件。於是,經 由提供預先設置如TFT般驅動元件的電極基板,則可輕 易製造如上述之TFT方式的液晶顯示裝置和有機el顯示 裝置。 以下,說明關於電極基板的製造方法。 其次,本發明爲了解決上述課題,其爲於含有基板, 和含ϊ η原子之化合物所構成之電極,和位於該電與該基 板之間之層,且用以將入射此層之光波長進行轉換的螢光 轉換層的電極基板的製造方法中,包含於該基板上形成該 螢光轉換層的步驟,和於該形成螢光轉換層上形成該電極 的步驟,和於該形成電極表面施以逆濺鍍處理的步驟,且 在對該電極表面施以逆濺鍍處理的步驟中,於實施逆濺鍍 處理後,或者,於實施逆濺鍍處理時,形成由無機化合物 所構成之表面保護層爲其特徵之電極基板的製造方法。 經由此類構成,則可製造減少電極上之表面不良層的 電極基板。 經由無機化合物的表面保護層,則可保持除去表面不 良層的狀態,且可有效防止表面不良層的再形成。 又,本發明其特徵爲令該逆濺鍍處理,使用誘導結合 型RF電漿支援磁控管濺鍍器實行。若爲根據此類構成, 則可輕易取得恰好除去陽極表面之表面不良層之運動能量 -17- 200534744 (14) 的放電極體離子,故不會損傷電極且可防去表面不良層。 又’本發明其特徵爲於該逆濺鍍處理中,對於該誘導 結合型 RF電漿支援磁控管的螺旋線圈,外加電力 50〜200W、周波數1 3.56〜1 00MHz的高周波,且對於該誘 導結合型RF電漿支援磁控管濺鍍器的陽極,外加電力 200〜5 00W’周波數13.56〜100MHz的高周波,令其電漿放 電’使得該誘導結合型RF電漿支援磁控管濺鍍器之磁控 管磁場強度爲在200〜3 00高斯範圍內之値爲其特徵的製造 方法。 若爲根據此類構成,則可更加有效除去電極表面的表 面不良層。 特別,若以X P S之測定値規定本發明之電極基板, 則如下。 本發明爲了解決上述課題,其爲於含有基板,和含 I η原子之化合物所構成之電極,和位於該電極與該基板 之間之層,且用以將入射此層之光波長進行轉換的螢光轉 換層的電極基板,於該電極之表面,對向該螢光轉換層表 面之反側表面上,形成由無機化合物所構成之表面保護層 爲其特徵的電極基板,電極表面的X射線光電子分光法 的測定結果爲如下之測定値。 即,本發明爲根據X射線光電子分光法,令該電極表面 所測定之In原子之3d%軌道光譜的波峰半寬値以 [In 3 d5/2]h表示,且根據X射線光電子分光法,令該電極 表面所測定之In原子之3d5/2軌道光譜的波峰半寬値以 -18- 200534744 (15)200534744 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a substrate structure of an organic EL element and a manufacturing method thereof. In particular, it relates to an electrode substrate used in an organic EL device using the CCM method. More specifically, a color conversion (CCM) substrate is provided to counteract the deterioration of the transparent electrode surface of the substrate anode. [Prior art] A. [Technical background] In recent years, organic EL (electroluminescence) elements have attracted attention due to their application as light emitting devices and display devices. For example, color and full-color display devices used as data display devices, vehicle display devices, etc. have been developed. (1) Basic structure of organic EL elements Generally, organic EL elements use transparent electrodes as anodes, and A1 of counter electrodes Aluminum) as a cathode, and has a structure sandwiching an organic layer between the two electrodes. Such organic EL elements have been considered for various applications, but there is also great expectation for the application of color displays. (2) CCM method The present invention relates specifically to an organic EL element using a CCM (Color Changing Medium ') method. Here, the so-called CCM method is a method of coloring the instruction display device. Using organic EL elements -5- 200534744 (2) For a color display device, for example, ‘consider using organic materials that emit light in three primary colors (red, blue, and green). However, the use of three kinds of organic substances (hereinafter, simply referred to as organic substances) complicates the manufacturing steps, and it is desirable to make only one organic substance colorable. The CCM method is designed according to such requirements. It uses a fluorescent conversion layer that emits a monochromatic light (such as blue) of an organic substance, and can be converted into light of other wavelengths (such as red and green) by appropriate conversion into three primary colors. The way. This C CM method is one of the most promising methods to see the future from the viewpoint of high-definition (full-colorization) of manufacturing costs and patterns in the colorization of display devices. In addition, in this CCM method, not only the fluorescence conversion layer but also the use of a color filter to improve the purity of the emitted color is sometimes performed. That is, it is known to use a fluorescent conversion layer and / or a color filter layer to change the emission color of the organic EL. A model cross-sectional view showing the basic structure of the organic EL display device 10 using the CCM method is shown in Fig. 4. As shown in the figure, a CCM layer 14 is provided on a transparent glass substrate 12. The CCM layer 14 is a green CCM layer 14G that emits green fluorescence, a red CCM layer 14R that emits red fluorescence, and a blue color of a transparent material that allows blue light emitted by the organic layer 18 to pass through as it is. The CCM layer 14B, and one pixel on the screen of the display device is composed of a green CCM layer 14G, a red CCM layer 14R, and a blue CCM layer 14B. An anode 16 of a transparent electrode is laminated on the C CM layer 14. As the anode 16, ITO (Indium Tin Oxide) and IZO (Indium u Zinc Oxide) were used. On the anode 16, an organic material 200534744 (3) layer 18 and a cathode 20 (for example, aluminum (A 1)) are sequentially disposed. Since this organic substance layer 18 emits light by application of an electric field, it is called a light emitting layer. The organic EL display device 10 of the CCM type uses an organic substance-containing layer 18 which emits blue in many cases. The blue light is converted into green light through the green CCm layer 14 and converted into red light through the red CC M layer 14 R. On the other hand, the blue CCM layer MB allows the blue light emitted from the organic layer 18 to pass through as it is. With this structure, the three primary colors of red, blue, and green light can be obtained. In addition, in FIG. 4 and the present description, only the basic structure of the organic EL display device 10 of the CCM method is described, but in fact, when a color filter is included in the CCM layer 14 to improve color purity, many. In the organic layer 18, an electron injection layer and a hole injection layer are provided, and a structure in which electrons from the cathode 20 and holes from the anode 16 are efficiently supplied to the light emitting layer (organic layer 18) is widely used in practice. . The organic EL display device 10 is referred to as an "electrode substrate" in the sense that the substrate 12 to the anode 16 is constituted by a substrate with electrodes attached thereto. This electrode substrate is formed by laminating an organic substance constituting an EL element and a cathode, so that an organic EL display device 10 can be easily manufactured. Furthermore, when the CCM layer 14 is provided between the substrate 12 and the anode 16, a CCM-type organic EL display device 10 can be easily made. The electrode substrate in this case is particularly called a CCM substrate 24. That is, an electrode substrate composed of the substrate 12, the CCM layer 14, and the anode M is referred to as a CCM substrate 24. (3) Defective layer on the anode 200534744 (4) The organic EL element is formed on a substrate. When the CCM method is used, a fluorescent conversion layer and / or a color filter layer as described above is provided on the substrate. Next, an anode is provided on the fluorescent conversion layer and the like, and an organic EL element is formed on the substrate by laminating the organic layer and the cathode in this order. As described above, when the CCM method is used, the substrate, the fluorescent conversion layer and / or the color filter layer, and the anode laminated on the substrate are also referred to as a CCM substrate 24. As the anode 16 constituting the CCM substrate 24, a transparent electrode such as Indium Zinc Oxide can be used. The inventors of the present case investigated the formation of the surface defect layer of this anode and determined the following. ① When a CCM substrate is made, the number of manufacturing steps of the substrate is large, the substrate is easily contaminated, and a surface defect layer is easily formed on the anode surface. In particular, the surface of transparent electrodes such as IZO is susceptible to damage due to excessive cleaning steps or patterned etching residues. Furthermore, water is adsorbed on the electrode surface. The reason why a trace amount of impurity atoms contained in the volume of the electrode (the internal portion other than the surface portion) is deposited on the surface, etc., is that there is a tendency that a surface defect layer is formed on the anode. ② In addition, the CCM layer (fluorescence conversion layer) itself is mostly formed by a resin, and volatile gas components such as moisture from the resin may contaminate the anode surface slowly. (4) According to the investigation by the inventors of the present case, it is judged that the existence of such a surface defective layer causes the following phenomena. ① The driving voltage of the organic EL element is increased. That is, the so-called EL property -8- 200534744 (5) can be reduced. ② The light emitting uniformity of the organic EL element is reduced. Specifically, when forming a C C M panel (a display panel using an organic EL device using the C C M method), a phenomenon of downsizing of each pixel was observed. ③ When accelerating the CCM panel in a heated environment, it is observed that the pixel shrinking speed is accelerated (for example, using a heating environment of ~ 85 ° C). The above-mentioned problems are judged based on the investigation of the inventors and others of the present case. (5) Improvement of the previous anode In the past, various functions of improving the adhesion and conductivity of the anode 16 of the organic EL element and the organic substance laminated on the anode have been performed. One of the techniques is to insert an organic compound or a metal and a semiconductor inorganic substance in a buffer layer type between the anode 16 and the organic substance layer. This approach has been extensively studied in the past. However, the method of inserting this buffer layer is as shown in (3) and (4) above, and is not intended to improve the deterioration of the surface of the transparent electrode (anode). Therefore, the so-called method of inserting the buffer layer alone cannot improve the deterioration of the anode surface, so the effect itself can be said to have a limit. B. [Examples of prior art documents] Next, specific prior art documents are shown, the prior art is introduced, and its contents, disadvantages, and problem points are explained. -9- 200534744 (6) (1) Passivation film For example, WO 0072 63 7 A1 (hereinafter referred to as Document i) discloses a barrier film (passivation film) composed of oxidized sand. An organic EL display based on the CCM method. First, if according to this document 1, the substrate and the CCM layer (including the color filter layer) are covered with a planarized organic layer, and even under the planarization, an organic EL display device is laminated thereon. No "cut-off" etc. will occur. In the case where there is a step on the surface of the laminated organic EL element, a discontinuous portion may be generated on the film of the laminated organic EL element. This discontinuity is called "cut off". In addition, as an example of an organic layer for planarizing, an example of a thermosetting resin and an ultraviolet curing resin is shown in Document 1. Furthermore, in Document 1, it is pointed out that on the organic layer for planarization, if the organic EL element is directly laminated, the heat during the organic EL layering and driving causes the components of the organic layer for planarization to volatilize. And it has an adverse effect on the constituent materials of the organic EL. As a result, a non-light-emitting area where a so-called black spot is generated is pointed out in Document 1, and it is predicted that light emission of a predetermined quality cannot be maintained. Therefore, Document 1 shows that an organic layer and an organic EL element are used for planarization. A barrier layer (passivation film) composed of interlayered Si Ox ′ prevents the organic layer components used for planarization from diffusing into the materials of each layer of the organic EL element, and prevents deterioration of the element. However, although this barrier layer (passivation film) can effectively prevent the diffusion of volatile components in the organic layer and the CCM layer, it is considered that it is almost completely ineffective for mixing in moisture, etc. from the outside of the CCM layer 200534744 (7). The moisture mixed in the element is adsorbed between the anode 16 and the organic material layer, which reduces the adhesion and reduces the charge injection property. As a result, it is predicted that a so-called anode surface defect layer will be formed. The present invention is an invention to realize a method (surface protective layer) for suppressing the occurrence of such a surface-defective layer. (2) Lamination of a buffer layer on the anode The purpose of the buffer layer laminated on the anode is to improve adhesion, improve conductivity with inorganic materials, and use a thin film layer of an insulator to reversely sputter the anode surface. The following describes them in order. ① Insertion of the buffer layer for the purpose of improving the adhesion of the anode / organic material layer (adhesion of organic materials) Japanese Patent Application Laid-Open No. 1 0-2 1 46 8 (hereinafter referred to as Document 2) shows polycrystalline materials. ITO (Indium Tin Oxide) is different from the crystalline state of organic matter. Therefore, the anode and the organic matter layer will not be well bonded and part of the poor bonding will occur, sometimes dark sput will occur, and the heat generated in the poor bonding part will be Causes problems such as deterioration of the organic layer. In Document 2, in order to solve these problems, a conductive joint-improving layer (metals such as Αυ, Pt, MoOx, VOx, SnOx, InOx, BaOx, metal oxides, etc., and amorphous conjugated polymers, etc. (Plasma membrane) is set in a film thickness range of 1 to 500 μηι. Further, Japanese Patent Application Laid-Open No. 9-324176 (hereinafter referred to as Document 3) discloses a technique for improving the adhesion between an electrode and an organic film and preventing the occurrence of a non-light emitting portion, thereby improving long-term storage stability and continuous drive decay time. In order to achieve -11-200534744 (8), such a technique is disclosed in Document 3 to mediate the existence of a layer composed of a material that was previously replaced with a silane coupling agent as the terminal of a compound used as a hole injection transport material. Also, Japanese Patent Application Laid-Open No. 9-2 04 9 8 5 (hereinafter referred to as Document 4) discloses a technique for surface-treating the IT0 electrode itself with a titanate-based coupling agent from the same viewpoint as Document 3. ② The application of inorganic materials (semiconductors, conductors) for the purpose of improving conductivity, etc. JP-A-Hei 3-1 05 89 8 (hereinafter referred to as "Document 5") discloses the transport of holes normally composed of organic substances. A layer or an electron transport layer is formed by a P-type or an N-type of an amorphous semiconductor having a good film formation state, and a technology for improving light emitting performance. In addition, Japanese Patent Application Laid-Open No. 10-260062 (hereinafter referred to as Document 6) discloses a structure that does not use an expensive hole injection transport material instead of forming a mixed layer of ITO and an inorganic semiconductor and has a resistivity of 20 Ω · cm or less. This structure is to directly connect the organic substance with ITO at a low cost. Therefore, from the viewpoint of improving the adhesion described above, good results can also be obtained, and an element that suppresses the occurrence of black spots can be formed. In Japanese Unexamined Patent Publication No. 9-63 77 1 (hereinafter, referred to as Document 7), a metal function (RuO, RuO, which has a work function of 5 to 30 nm, which is larger than that of ITO, is formed between the anode ITO and the hole transport layer. MoO, VOD, etc.), can reduce the energy barrier between the anode and the hole transport layer, and improve the luminous efficiency. Further, Japanese Patent Application Laid-Open No. 08-03 1 5 7 3 (hereinafter referred to as Document 8) discloses a configuration in which a part of the anode is formed of a carbon thin film or the entire anode. -12- 200534744 (9) In addition, JP 03-2 1 07 9 1, JP 03-262 1 70, JP 06- 1 1 9973 disclose that P-type semiconductor applications are short Cavity Conveying Material. ③ The formation of an insulator thin film layer between the anode and the organic substance layer is described in USP No. 5 8 5 3 905 (hereinafter referred to as Document 9) to improve the adhesion between the transparent electrode and the organic substance or actively form a charge barrier, and Proposal for the use of new components of the tunnel injection mechanism. Furthermore, in Japanese Patent Application Laid-Open No. 0 8-2 8 8 069 (hereinafter referred to as Document 10), it is disclosed that in order to avoid electric leakage that occurs during continuous driving, about 50 A of nitrogen is provided between the anode and the organic layer. Structure of nitride films such as aluminum oxide ④A person who reverse-sputtered the anode surface in advance JP-A No. 1 1-12626689 (hereinafter referred to as Document 1 1) determined that the occurrence of leakage current or black spots was due to the anode In order to avoid the unevenness of the surface, it is proposed to treat the surface of the anode with a shovel. [Summary of the Invention] The problems to be solved by the disclosure of the invention are in the prior art described in items (1) to (3) of "(2) for the anode laminated buffer layer" in the above "B. The purpose is to improve the bonding characteristics such as the adhesion between the anode and the organic layer, and to improve the hole injection characteristics of the organic layer from the anode. However, as described in the above (A. [Technical Background] "" (3) Surface Defective Layer on Anode "and the same as (4), the transparent electrode surface on ITO etc. exists originally through -13-200534744 (10) The existence of a defective surface layer causes various discomforts. For example, the existence of a surface defect layer increases the driving voltage during continuous driving, which may cause a short life. In addition, it is difficult to ensure heat resistance, and it is expected that this will become a problem especially when applied to various display devices for vehicles. Furthermore, especially in the case of a high-definition CCM panel, the problem of shrinking the luminescent pixels is caused by the generation and increase of the surface defect layer. Its characteristics are remarkable in high temperature environments. With this in mind, examples of countermeasures are still unknown. In item (4) of the above (2) For anode laminated buffer layer, although the anode surface has been proposed to be treated by reverse plating, it is considered insufficient for the following reasons. That is, since the inorganic compound is not laminated after the reverse sputtering, the possibility of contamination in a vacuum is high, and the moisture and the like existing in the vacuum tank may also be restored to the original surface state, which is considered as an effect Not enough. In view of these problems, the present invention has the following objects. (1) Remove the surface defect layer existing on the anode surface of the CCM substrate, and protect the anode surface for its purpose. (2) Stabilize the performance of organic EL elements, especially CCM panels, specifically. The purpose is to prevent the driving voltage from increasing, maintain the uniformity of light emission, and improve the heat resistance. Means for Solving the Problem In order to solve the above-mentioned problem, the present invention proposes a new structure different from the past in which an inorganic compound is laminated after removing the surface defective layer. By laminating the inorganic compound, it is possible to prevent the formation of a new surface defective layer. Prior Art-14-200534744 (11) The effect of the technique. The existence of the surface protective layer of the present invention can prevent the formation of a surface defect layer on the anode. For example, in a state where a barrier layer for cathode separation is formed on the anode of a CCM substrate for a full-color panel, it is not necessary to store or move it without particularly worrying about contamination. In the case of forming a panel (in the case of forming an organic EL film), it may be carried out in accordance with the original manufacturing procedure specified previously. Specifically, the present invention adopts the following constitutions. In order to solve the above-mentioned problem, the present invention includes an electrode composed of a substrate, a compound containing an In atom, and a layer between the electrode and the substrate, and used to convert the wavelength of light incident on the layer. The layered electrode substrate is characterized in that a surface protection layer made of an inorganic compound is formed on the surface of the electrode opposite to the surface of the fluorescent conversion layer. With such a structure, formation of a surface defect layer can be prevented. Specifically, it can effectively prevent the formation of a surface defect layer due to exposure to the atmosphere or the like. The present invention is also characterized in that the substrate of the electrode substrate and / or the constituent material of the electrode is a transparent material. By using such a transparent material, an electrode substrate can be obtained which can be used for display means. The present invention is also characterized in that the electrode surface is subjected to a reverse sputtering process. With such a structure, the surface defect layer on the electrode surface can be effectively reduced, and the electrode surface and the inside can be made homogeneous. Further, the present invention is characterized in that the above-mentioned reverse sputtering process is a reverse sputtering process using an induction bonding type RF plasma supporting magnetron sputtering apparatus. According to such a structure, the discharge gas ions that just remove the kinetic energy of the surface defect layer on the anode surface can be easily obtained, so the electrode will not be damaged and the surface defect layer of Table -15- 200534744 (12) can be removed. The present invention is characterized in that the inorganic compound constituting the surface protective layer is made of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, K, Cd, Mg, Si, Ta, Ge, Sb, Zn. , Cs, Eu, Y, Ce, W, Zr, La, Sc, Rb, Lu, Ti, Cr, Ho, Cu, Er, Sm, W, Co, Se, Hf, Tm, Fe, Nb At least one or more metal oxides, or any of nitrides, composite oxides, sulfides, and fluorides. With this structure, a dense surface protective layer can be formed on the electrode surface. In addition, the present invention is characterized in that the surface protective layer is formed by a plating method. With such a configuration, the surface defect layer of the electrode can be removed and a surface protective layer can be formed. In addition, the present invention is characterized in that the surface protective layer is formed by a sputtering method using an induction bonding type RF plasma to support a magnetron sputtering device. With such a structure, a surface protective layer can be effectively formed. In addition, the present invention is characterized in that the film thickness of the surface protective layer is within a range of 5 to 100A. With such a structure, it is possible to prevent recurrence of the surface defect layer, and to ensure a specified light transmittance. The present invention is characterized in that the electrode is made of tin oxide (ITO) or indium zinc oxide (IZO). With such a structure, excellent light transmittance can be obtained. The present invention is characterized in that the electrode is an amorphous oxide. With such a structure, excellent etching characteristics can be obtained. In addition, ITO is usually crystalline ', but it becomes a moisture ambient gas during film formation, and it can be made amorphous by mixing trace elements, etc. in 200534744 (13). Furthermore, the present invention is characterized by including a driving element for driving the electrode. In recent years, a liquid crystal display device and an organic EL display element each including a thin film transistor (TFT) and improving display performance have been widely used. Therefore, by providing an electrode substrate in which a driving element such as a TFT is provided in advance, a liquid crystal display device and an organic el display device of the TFT type as described above can be easily manufactured. Hereinafter, the manufacturing method of an electrode substrate is demonstrated. Secondly, in order to solve the above-mentioned problem, the present invention is an electrode composed of a substrate and a compound containing ϊ η atoms, and a layer located between the electricity and the substrate, and is used for measuring the wavelength of light incident on the layer. The manufacturing method of an electrode substrate for a converted fluorescent conversion layer includes a step of forming the fluorescent conversion layer on the substrate, a step of forming the electrode on the formed fluorescent conversion layer, and applying the electrode surface. A step of performing a reverse sputtering process, and in a step of applying a reverse sputtering process to the electrode surface, a surface made of an inorganic compound is formed after the reverse sputtering process is performed, or when the reverse sputtering process is performed. A protective layer is a method for manufacturing an electrode substrate. With such a structure, an electrode substrate capable of reducing a surface defect layer on an electrode can be manufactured. Through the surface protective layer of the inorganic compound, the state in which the defective surface layer is removed can be maintained, and the formation of the defective surface layer can be effectively prevented. Further, the present invention is characterized in that the reverse sputtering process is performed using an induction bonding type RF plasma supporting magnetron sputtering apparatus. According to such a structure, it is possible to easily obtain the energy of the discharge electrode body -17- 200534744 (14) which just removes the surface defect layer on the anode surface, so it will not damage the electrode and prevent the surface defect layer. The present invention is also characterized in that in the reverse sputtering process, a high frequency of 50 to 200 W and a frequency of 1 3.56 to 100 MHz is applied to the spiral coil of the induction-coupled RF plasma supporting magnetron, and The induction-coupled RF plasma supports the anode of the magnetron sputtering device, and the high frequency of 200 ~ 500W's 13.56 ~ 100MHz is used to cause the plasma to discharge. This makes the induction-coupled RF plasma support the magnetron sputtering. The manufacturing method characterized by the magnetic field strength of the magnetron of the plater in the range of 200 ~ 300 Gauss. With such a structure, the surface defect layer on the electrode surface can be removed more effectively. In particular, if the electrode substrate of the present invention is specified by the measurement of XPS, it is as follows. In order to solve the above problem, the present invention is an electrode composed of a substrate and a compound containing I η atoms, and a layer between the electrode and the substrate, and used to convert the wavelength of light incident on the layer. An electrode substrate of a fluorescent conversion layer is formed on the surface of the electrode opposite to the surface of the fluorescent conversion layer. An electrode substrate having a surface protection layer composed of an inorganic compound as a feature is formed on the surface of the electrode. X-rays on the electrode surface The measurement results of the photoelectron spectroscopy method were as follows. That is, according to the X-ray photoelectron spectroscopy method, the peak half-width 半 of the 3d% orbital spectrum of the In atom measured on the electrode surface is expressed by [In 3 d5 / 2] h, and according to the X-ray photoelectron spectroscopy method, Let the peak half-width of the 3d5 / 2 orbital spectrum of the In atom measured on the electrode surface be reduced by -18- 200534744 (15)

In3d5/2]n表示時,該各半寬値之比率([In3d5/2]h/ [In3d5/2]n)値爲在0.9〜1.2範圍內爲其特徵的電極基板。 經由此類構成,令電極「內部」之In3d5/2軌道光譜 波峰半寬値、與電極「表面」之半寬値比率限制於指定範 圍內之値,則可構成電極上不存在表面不良層的電極基板 還有,於本案發明中,所謂「於表面所測定」爲意指 於表面之一部分或表面之一點所測定。 又,本發明爲含有基板,和含In原子之化合物所構 成的電極,和位於該電極與該基板之間之層。且用以將入 射此層之光波長進行轉換的螢光轉換層的電極基板,於該 電極之表面,對向該螢光轉換層表面之反側表面上,形成 由無機化合物所構成之表面保護層爲其特徵的電極基板, 根據X射線光電子分光法所測定之結果爲如下之測定値 〇 即’本發明爲根據X射線光電子分光法,令該電極 所測定之I η原子之3 d 5 / 2軌道光譜的波峰値以I n p e a k表示 ,且根據X射線光電子分光法,令該電極所測定之Sn原 子之3d5/2軌道光譜波峰値以Sn peak表示,且該電極內部 所測定之各波峰比率以(In peak/Sn peak)n表示時,爲((Sn peak/In peak)h/(Sn peak/In peak)n)<1.5 爲其特徵的電極基 板。 經由此類構成,於電極的內部和外部測定In原子之 波峰値與S η原子之波峰値的比率,並且令其內部和外部 -19- 200534744 (16) 之比率限制在指定範圍內,則可構成電極上不存在表面不 良層的電極基板。 此處所謂之「於表面所測定」爲意指於表面之一部分 或表面之一點所測定,且與目前所述之發明相同。 發明之效果 如上述,若根據本發明之電極基板,則因爲使用減少 表面不良層的電極,故可改善電性安定性。因此,此電極 基板例如使用做爲有機EL元件的陽極,則可達成能延長 元件壽命的效果。更且,可達成能抑制此有機EL元件之 驅動電壓上升的效果。更且,可提高此有機EL元件的耐 熱性。 又,若根據本發明,因爲設置驅動電極基板上之電極 的驅動元件,故可提供例如適於製造TFT方式等之顯示 裝置的電極基板。 又,若將本發明之電極基板使用做爲有機EL元件的 電極,構成有機EL元件,則可取得發光斑和亮度偏差減 少,且畫質提高的有機EL顯示裝置。更且,可提高此有 機EL顯示裝置之畫質品質的經時賴性。 又,若根據本發明之電極基板製造方法,則可製造能 達成上述效果的電極基板。 實施發明之最佳形態 以下,根據圖面說明本發明之最適合實施形態。 -20- 200534744 (17) A .基本構造 本實施形態爲提案於色轉換(C CM)基板之陽極上層合 無機化合物層,並且於其上層合有機物層的構成。於圖1 示出此種有機EL顯示裝置100之構成的模型圖。 如此圖所示般,本實施形態中之特徵爲在於陽極1 6上 設置無機化合物或有機化合物所構成的表面保護層1 02此 點。有機物層18爲被層合於此表面保護層102上。 還有,有機物層1 8爲擔任發光之部分,故亦被稱爲發 光層。又,有機物於許多情況爲化合物,故有時亦稱爲有 機化合物層。此有機物層1 8爲至少具有再結合區域及發光 區域。又,此有機物層18有時亦稱爲有機EL元件層。 關於有機物層18,視需要,除了有機物層18(發光層) 以外,例如亦可設置空穴注入層、電子注入層、有機半導 體層、電子障壁層、附著改善層等之層。於此情形中,一 般將含有此些空穴注入層之複數層稱爲有機物層1 8。其次 ,於此些複數層所構成之有機物層18之上形成陰極20。 於本實施形態中,示出有機EL顯示裝置100之例, 此有機EL顯示裝置相當於申請專利範圍之「發光裝置」 的一例。本來有機EL元件爲發光元件,故構成具有發光 機能的發光裝置。本實施形態雖以說明有機EL顯示裝置 1 〇 〇爲此發光裝置的一例,但本發明之「發光裝置」並非 限定於有機EL元件。示出本實施形態所示之有機EL元 件]〇〇的代表性構成例(變形例)。當然,並非限定於此。 200534744 (18) 有機EL顯示裝置100的基本層構造爲如下。 基板/色轉換膜(CCM層)/鈍化膜/有機EL元件 此處,有機EL元件122爲再具有下列之變形例。 (1) 透明電極(陽極)/表面保護層/發光層/電極(陰極) (2) 透明電極(陽極)/表面保護層/空穴注入層/發光層/ 電極(陰極) (3) 透明電極(陽極)/表面保護層/發光層/電子注入層/ 電極(陰極) (4) 透明電極(陽極)/表面保護層/空穴注入層/發光層/ 電子注入層/電極(陰極) (5) 陽極/表面保護層/有機半導體層/發光層/陰極 (6) 陽極/表面保護層/.有機半導體層/電子障壁層/發光 層/陰極 (7) 陽極/表面保護層/空穴注入層/發光層/附著改善層/ 陰極 如上述之構造。其中,通當以(4)之構造爲較佳使用。 本實施形態中的特徵爲有機EL元件122所含的表面 保護層1 〇 2。 B·關於ITO等之透明電極表面不良層 此處,說明關於電極的表面不良層。 如先前技術之「A·背景技術」之(4)所述般,ITO等之 透明電極表面爲在洗淨步驟中因爲過度洗淨或圖案化之蝕 刻殘留物等而受到損傷。又,因爲表面吸附水、容積所含 -22- 200534744 (19) 之微量雜質原子的析出等原因,而形成如下述所謂的表面 不良層。著眼於此表面不良層之問題且嘗試改善之例子則 仍未知。其結果,以往的有機EL元件爲在陽極伴隨表面 不良層的狀態下被有機物層合,因爲界面的電荷注入性降 低等’故認爲多無法確保本來應得的元件性能。 (1)表面保護層 本實施形態所謂的表面不良層例如爲符合下列要件之 -* 〇 ① 摻混物(Dopant) Sn於表面的析出。IZO之情況可列 舉Zn的缺損。 ② 相同摻混物於氧化空孔的表面上缺落(即氧原子過 多)。 ③ 表面吸附水分。 ④ 容積中所含之微量雜質(氮等)往表面析出。 於此類表面不良層的存在下,察見導電性(空穴注入 性)的降低,於上方層合之有機物的附者性降低區域,察 見表面不良層中之雜質往有機物層的擴散等。 經由此類表面不良層的存在,則可判定產生以下之問 題。 ① 定電流連續驅動時電壓上升大,且變成短壽命。 ② 與表面不良層上層合之有機物的密合性降低,且結 果於高溫下驅動時發光不均勻,又,於高溫保存後後令發 光不均勻化。相同令高溫時之電流注入性及發光效率降氐 -23- 200534744 (20) 等之所謂耐熱性降低。 (2 )表面不良層的檢測方法 分析上爲以X射線光電子分光法(XPS : X-ray Photoelectron Spectroscopy)予以檢測 〇 ①分別求出反應I η原子迴轉狀況之I n原子的光譜 In3d5/2(結合能量444.4eV)的波峰大小(以下,稱爲ιη peak),和Sn原子之Sn3d5/2(結合能量486.2eV)的波峰大 小(以下f冉爲Sn peak)’且根據其比値Sn peak/In peak爲 在表面附近比在電極內部(容積)增大,檢測出表面不良層 的存在。此處,In peak及Sn peak的算出,實際上爲將 求得之値以原子靈敏度予以校正並且求出最終値。 大約Sn peak/In peak爲0.1〜0.2之値,若考慮表面値 爲其容積値的1 . 5倍以上,則認爲S η析出至表面,並且察 見表面不良層的存在。 即,若令電極表面之 Sn peak/In peak値以(Sn peak/In peak)h表示,且電極內部之Sn peak/In peak値以 (Sn peak/In peak)n 表示,則在(Sn peak/ln peak)h/(Sn peak/In peak)n> = 1.5時,察見表面不良層的存在。若反言 之,若作成(Sn peak/In peak)h/(Sn peak/In peak)n<1.5 之電 極,則察見事實上不存在表面不良層。 電極表面之xps的計測一般爲對表面的一部分或表 面的一點進行,故上述之測定亦意指電極表面之一部分或 表面之一點的測定。 -24- 200534744 (21) ②反映In原子旋轉狀況之In原子的光譜In3d5/2的波 峰半値寬((FWHM: Full-Width Half-Maximum)若於表面中 ’比容積中明顯變大,則表面原子組成爲不同,形成表面 不良層以下,說明其例及圖2之模型圖。此模型圖爲縱軸 表示光譜強度(單位爲任意),於橫軸爲表示於結合能量的 模型圖。 例如’將進行通常的有機溶劑洗淨,且UV洗淨終了 之電極(設置於基板上)儘早投入XPS之測定槽且觀測,則 上述半値寬爲1.7eV(圖2中以A表示)。其爲表面之In3d5/2 的波峰半値寬。若將其以氬離子槍濺鍍3 〇秒鐘,且觀測約 5〇人控掘的表面,則半値寬爲l.2eV(圖2中以B表示)。後 者之半値寬爲容積的I TO半値寬。 若令In3d5/2之波峰半値寬的表面値以[In3d5/2]h表示 ’且In3d5/2之波峰半値寬的容積(內部)値以[In3d5/2]h表 示,若兩者之比([In3d5/2]h/[In3d5/2]n)値爲0.9〜1.2之範圍 ’則電極表面之原子組成爲與內部不同,察見存在表面不 良層。例如,若使用上述例計算其値,則求出 ]·7/1·2 = 1·42,因非在0.9〜1.2之範圍,故判斷存在表面不 良層。 對於此②所示之例,對於ΙΤΟ電極上成膜出Si02之 電極,同上述洗淨後,若觀測其表面之In3d5/2的半値寬 ,則爲1 .2eV,與ITO容積値相同。由此結果可知,上述 成膜出 Si02之基板表面爲除去表面不良層。由於 ([In3d5/2])i/nn3d5/2]n)之値爲].0,在 0.9 〜1.2之範圍。還有 200534744 (22) ,此Si02之成膜爲使用旋轉濺鍍器進行。即,此成膜步 驟爲經由測鍍除去表面不良層,且於電極表面成膜出做爲 表面保護層的Si02。 還有,將誘導結合型RF電漿支援磁控管濺鍍器稱爲 「旋轉濺鍍器」。 又,若令旋轉濺鍍器成膜時的放電氣體流量變化,則 可知令成膜出Si02之基板表面的In3d5/2波峰半値寬變化 。具體而言,若放電氣體流量變大,則半値寬變窄,判知 表面不良層有更被除去的傾向。 由以上之情事,經由放電氣體的濺鍍作用則可除去 ITO電極表面的表面不良層,乃由本案發明者等人所察見 的。 本發明中之特徵性情事在於以濺鍍法於電極表面形成 Si02等之無機化合物所構成的表面保護層。經由此濺鍍可 將電極表面之表面不良層除去,並且可設置保護表面的保 護層。 ③上述表面保護層之膜厚爲由5〜100A左右之膜厚中 選取。較佳爲10〜5〇A,更佳爲20〜4〇A。 一般而言,成膜膜厚爲5〜20A則膜變成島狀構造,難 形成一樣的界面。但是,以5A以上之膜厚則可取得效果 的再現性,膜厚20A則至少可均勻成膜係由本發明者等人 透過穿透式電子顯微鏡之觀察所確認,並且已確認濺鍍膜 ,特別是旋轉濺鍍膜可形成安定的緻密膜。 另一方面,若膜厚過厚(100A以上),則因爲3丨02等 200534744 (23) 之無機化合物本來多絕緣物且導電性低的情況多,故具有 成爲陽極與有機物層間之注入障壁的問題,且元件被高電 化故爲不佳。 C.各層之構成 以下說明關於構成有機EL顯示裝置100的各層。 有機EL顯示裝置100爲如上述,具有 基板/色轉換膜(CCM層)/鈍化膜/有機EL元件之構成 。又,有機EL元件122爲具有 透明電極(陽極)/表面保護層/空穴注入層/發光層/電 子注入層/電極(陰極) 之構成例,於以下進行各層之說明。 (1)關於表面保護層102-無機化合物層 首先,說明關於本發明之由無機化合物所形成的表面 保護層102。 此表面保護層102爲與Ba,Ca,Sr,Yb,Al,Ga,When In3d5 / 2] n is expressed, the ratio of each half-width 値 ([In3d5 / 2] h / [In3d5 / 2] n) 値 is an electrode substrate whose characteristic is in the range of 0.9 to 1.2. With such a structure, the half-width width of the In3d5 / 2 orbital spectral peak of the electrode "inside" and the ratio of the half-width width of the "surface" of the electrode to the specified range are limited to form a non-surface defective layer on the electrode In addition, in the present invention, the “measurement on the surface” means that the measurement is performed on a part of the surface or a point on the surface. The present invention is an electrode composed of a substrate and an In atom-containing compound, and a layer between the electrode and the substrate. The electrode substrate of the fluorescent conversion layer for converting the wavelength of the light incident on the layer, on the surface of the electrode, forms a surface protection made of an inorganic compound on the surface opposite to the surface of the fluorescent conversion layer. The electrode substrate with its layer as its characteristic. The result measured by X-ray photoelectron spectroscopy is the following measurement. That is, 'The present invention is based on X-ray photoelectron spectroscopy, so that 3 d 5 / The peaks of the 2 orbital spectrum are represented by Inpeak, and according to the X-ray photoelectron spectroscopy, the 3d5 / 2 orbital spectral peaks of the Sn atoms measured by the electrode are represented by Sn peak, and the peak ratios measured inside the electrode When represented by (In peak / Sn peak) n, it is an electrode substrate characterized by ((Sn peak / In peak) h / (Sn peak / In peak) n) < 1.5. With such a configuration, the ratio of the peak 値 of the In atom to the peak 値 of the S η atom can be measured inside and outside the electrode, and the ratio between the inside and outside of the electrode can be limited to a specified range -19- 200534744 (16). An electrode substrate having no surface defect layer on the electrode. The "measured on the surface" as used herein means that it is measured on a part of the surface or a point on the surface, and is the same as the present invention. Effects of the Invention As described above, according to the electrode substrate of the present invention, since an electrode with a reduced surface defect layer is used, electrical stability can be improved. Therefore, if this electrode substrate is used as an anode of an organic EL element, for example, the effect of extending the life of the element can be achieved. Furthermore, the effect of suppressing the increase in driving voltage of the organic EL element can be achieved. Furthermore, the heat resistance of this organic EL element can be improved. Further, according to the present invention, since a driving element for driving electrodes on the electrode substrate is provided, it is possible to provide an electrode substrate suitable for manufacturing a display device such as a TFT system. In addition, if the electrode substrate of the present invention is used as an electrode of an organic EL element, and the organic EL element is configured, an organic EL display device with reduced emission spots and brightness variation and improved image quality can be obtained. Furthermore, it is possible to improve the image quality of the organic EL display device over time. Furthermore, according to the electrode substrate manufacturing method of the present invention, an electrode substrate capable of achieving the above-mentioned effects can be manufactured. Best Mode for Carrying Out the Invention The most suitable embodiment of the present invention will be described below with reference to the drawings. -20- 200534744 (17) A. Basic structure This embodiment proposes a structure in which an inorganic compound layer is laminated on the anode of a color conversion (C CM) substrate, and an organic substance layer is laminated thereon. A model diagram of the structure of such an organic EL display device 100 is shown in FIG. 1. As shown in the figure, this embodiment is characterized in that the anode 16 is provided with a surface protective layer 102 made of an inorganic compound or an organic compound. The organic material layer 18 is laminated on the surface protection layer 102. The organic layer 18 is also referred to as a light-emitting layer because it is a part that emits light. In addition, since organic matter is a compound in many cases, it is sometimes referred to as an organic compound layer. The organic material layer 18 has at least a recombination region and a light emitting region. The organic material layer 18 may also be referred to as an organic EL element layer. Regarding the organic material layer 18, in addition to the organic material layer 18 (light emitting layer), layers such as a hole injection layer, an electron injection layer, an organic semiconductor layer, an electron barrier layer, and an adhesion improving layer may be provided, if necessary. In this case, a plurality of layers containing these hole injection layers are generally referred to as organic layers 18. Next, a cathode 20 is formed on the organic layer 18 composed of the plurality of layers. In this embodiment, an example of an organic EL display device 100 is shown. This organic EL display device is equivalent to an example of a "light emitting device" in the scope of patent application. Since the organic EL element is a light-emitting element, a light-emitting device having a light-emitting function is configured. Although the present embodiment is described as an example of the light-emitting device, the organic EL display device 100 is not limited to the organic EL element. A typical configuration example (modified example) of the organic EL element shown in this embodiment is shown. Of course, it is not limited to this. 200534744 (18) The basic layer structure of the organic EL display device 100 is as follows. Substrate / Color Conversion Film (CCM Layer) / Passivation Film / Organic EL Element Here, the organic EL element 122 has the following modifications. (1) Transparent electrode (anode) / surface protection layer / light-emitting layer / electrode (cathode) (2) Transparent electrode (anode) / surface protection layer / hole-injection layer / light-emitting layer / electrode (cathode) (3) Transparent electrode (Anode) / Surface protection layer / Light-emitting layer / Electron injection layer / Electrode (Cathode) (4) Transparent electrode (Anode) / Surface protection layer / Hole injection layer / Light-emitting layer / Electron injection layer / Electrode (cathode) (5) ) Anode / Surface Protective Layer / Organic Semiconductor Layer / Light-Emitting Layer / Cathode (6) Anode / Surface Protective Layer / .Organic Semiconductor Layer / Electronic Barrier Layer / Light-Emitting Layer / Cathode (7) Anode / Surface Protective Layer / Hole Injection Layer The / light emitting layer / adhesion improving layer / cathode is structured as described above. Among them, Tongdang is preferably used with the structure of (4). This embodiment is characterized by a surface protection layer 102 included in the organic EL element 122. B. Defective layer on the surface of a transparent electrode such as ITO Here, an explanation will be given on a surface defect layer of an electrode. As described in (4) of "A. Background Technology" of the prior art, the transparent electrode surface of ITO or the like is damaged due to excessive cleaning or patterned etching residues in the cleaning step. In addition, due to reasons such as adsorption of water on the surface and precipitation of trace impurity atoms of -22-200534744 (19) contained in the volume, a so-called surface defect layer is formed as described below. An example focusing on the problem of this defective surface layer and trying to improve is still unknown. As a result, the conventional organic EL device was laminated with an organic substance in a state in which the anode was accompanied by the surface defect layer, and the charge injection property of the interface was reduced. (1) Surface protection layer The surface defect layer in this embodiment is, for example, one of the following requirements-* 〇 ① Dopant Sn is deposited on the surface. In the case of IZO, defects of Zn can be listed. ② The same blend is missing on the surface of the oxidized pores (that is, too many oxygen atoms). ③ The surface absorbs moisture. ④ Trace impurities (nitrogen, etc.) contained in the volume are deposited on the surface. In the presence of such a surface defect layer, a decrease in conductivity (hole-injection property) is observed, a region where the adherence of the organic substance laminated above is reduced, and a diffusion of impurities in the surface defect layer into the organic substance layer is observed. . The existence of such a surface-defective layer can be judged to cause the following problems. ① When the constant current is continuously driven, the voltage rises greatly and the life is short. ② The adhesion to the organic matter laminated on the surface defect layer is reduced, and as a result, the light emission is not uniform when driven at high temperature, and the light emission is not uniform after storage at high temperature. In the same way, the current injection properties and luminous efficiency at high temperatures are reduced. -23- 200534744 (20) etc. reduce the so-called heat resistance. (2) The detection method of the surface defect layer is analytically detected by X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy). ① Calculate the spectra of I n atoms In3d5 / 2 ( The peak size (combined energy 444.4 eV) (hereinafter, referred to as ιη peak), and the peak size of Sn 3d5 / 2 (combined energy 486.2eV) (hereinafter, f peak is Sn peak) 'and according to its ratio 値 Sn peak / In The peak is larger near the surface than inside the electrode (volume), and the presence of a surface defect layer is detected. Here, the calculation of In peak and Sn peak is actually to correct the obtained 値 with atomic sensitivity and obtain the final 値. Approximately Sn peak / In peak is 0.1 to 0.2 値. If the surface 考虑 is more than 1.5 times the volume 値, it is considered that S η is deposited on the surface and the presence of a surface defect layer is observed. That is, if Sn peak / In peak 値 on the electrode surface is represented by (Sn peak / In peak) h, and Sn peak / In peak 値 inside the electrode is represented by (Sn peak / In peak) n, then (Sn peak / ln peak) h / (Sn peak / In peak) n > = 1.5, the presence of a surface defect layer was observed. Conversely, if an electrode of (Sn peak / In peak) h / (Sn peak / In peak) n < 1.5 is produced, it is observed that there is virtually no surface defect layer. The measurement of xps on the electrode surface is generally performed on a part of the surface or a point on the surface. Therefore, the above measurement also refers to a part of the electrode surface or a point on the surface. -24- 200534744 (21) ② The peak half-width of In3d5 / 2 (FWHM: Full-Width Half-Maximum) in the spectrum of In atom reflecting the rotation of In atom. The atomic composition is different and the surface defect layer is formed below. An example and the model diagram of Fig. 2 will be described. This model diagram shows the spectral intensity (the unit is arbitrary) on the vertical axis, and the model diagram of the binding energy on the horizontal axis. For example, ' The electrode (installed on the substrate) that has been cleaned with ordinary organic solvents and UV cleaned is put into the XPS measurement cell as soon as possible and observed. The half-width above is 1.7eV (indicated by A in Figure 2). This is the surface. The half-width of the peak of In3d5 / 2. If it is sputtered with an argon ion gun for 30 seconds, and the surface controlled by about 50 people is observed, the half-width is 1.2 eV (indicated by B in FIG. 2). The half-width of the latter is the ITO half-width of the volume. If the surface of the half-width of the peak of In3d5 / 2 is represented by [In3d5 / 2] h 'and the volume (internal) of the half-width of the peak of In3d5 / 2 is represented by [In3d5 / 2] h means that if the ratio ([In3d5 / 2] h / [In3d5 / 2] n) 値 is in the range of 0.9 ~ 1.2 'The atomic composition of the electrode surface is different from the interior, and the presence of a surface defect layer is observed. For example, if the 値 is calculated using the above example, it is obtained] · 7/1 · 2 = 1.42, because it is not 0.9 ~ 1.2 Range, it is judged that there is a surface defect layer. For the example shown in this ②, for the electrode formed with Si02 on the ITO electrode, after washing the same as above, if the half width of In3d5 / 2 on the surface is observed, it is 1 .2eV, which is the same as the volume of ITO. From this result, it can be seen that the surface of the substrate on which Si02 is formed is to remove the surface defect layer. Since ([In3d5 / 2]) i / nn3d5 / 2] n) is 値] .0 , In the range of 0.9 to 1.2. There is also 200534744 (22), and the film formation of this SiO2 is performed using a rotary sputtering device. That is, this film-forming step is to remove the surface defect layer by plating, and form SiO 2 as a surface protection layer on the electrode surface. The induction-coupled RF plasma-supported magnetron sputtering device is referred to as a "rotary sputtering device". In addition, if the discharge gas flow rate during the film formation of the rotary sputtering device is changed, it can be seen that the In3d5 / 2 peak half-width of the substrate surface where the Si02 is formed is changed. Specifically, as the discharge gas flow rate becomes larger, the half width becomes narrower, and it is determined that the surface defect layer tends to be more removed. From the above, the surface defect layer on the surface of the ITO electrode can be removed by the sputtering effect of the discharge gas, which was observed by the inventors and others of the present case. A characteristic feature in the present invention is that a surface protective layer made of an inorganic compound such as SiO 2 is formed on the electrode surface by a sputtering method. By this sputtering, the surface defect layer on the electrode surface can be removed, and a protective layer for protecting the surface can be provided. ③ The film thickness of the surface protective layer is selected from a film thickness of about 5 to 100A. It is preferably 10 to 50 A, and more preferably 20 to 40 A. Generally, when the film thickness is 5 to 20A, the film becomes an island structure, and it is difficult to form the same interface. However, with a film thickness of 5A or more, the reproducibility of the effect can be obtained, and a film thickness of 20A can be at least uniformly formed. The system was confirmed by the inventors and others through the observation of a transmission electron microscope, and the sputtered film has been confirmed, especially Spin-sputtered films can form stable, dense films. On the other hand, if the film thickness is too thick (100A or more), since inorganic compounds such as 3 丨 02 (200534744 (23)) have many insulators and low electrical conductivity, they often become barriers for injection between the anode and the organic layer. Problems, and the components are not electrified due to high electrification. C. Structure of each layer The following describes the layers constituting the organic EL display device 100. As described above, the organic EL display device 100 has a substrate, a color conversion film (CCM layer), a passivation film, and an organic EL element. The organic EL element 122 is a configuration example having a transparent electrode (anode) / surface protection layer / hole injection layer / light-emitting layer / electron injection layer / electrode (cathode), and each layer will be described below. (1) Regarding the surface protection layer 102-an inorganic compound layer First, the surface protection layer 102 made of an inorganic compound according to the present invention will be described. The surface protection layer 102 is made of Ba, Ca, Sr, Yb, Al, Ga,

In,Li,Na,K,Cd,Mg,Si,Ta,Ge,Sb,Zn , Cs, Ευ,Y,C e,W,Zr,La,S c,Rb,Lu , Ti,Cr,Ηo,Cu ’ Er,Sm,W,Co,Se,Hf,Tm,Fe,Nb 等之金屬的氧 化物、氮化物、複合氧化物、硫化物、氟化物爲適當。此 例中以氧化矽Si Ox(x爲表示原子比)爲有效。 若列舉更佳之具體例則以LiOx,LiNx,NaOx,ΚΟχ ,RbOx,CsOx,BeOx,M g 0 x j MgNx,CaOx,CaNx, 200534744 (24)In, Li, Na, K, Cd, Mg, Si, Ta, Ge, Sb, Zn, Cs, Ευ, Y, C e, W, Zr, La, S c, Rb, Lu, Ti, Cr, Ηo, Cu 'Er, Sm, W, Co, Se, Hf, Tm, Fe, Nb and other metal oxides, nitrides, composite oxides, sulfides, and fluorides are suitable. In this example, Si Ox (x is an atomic ratio) is effective. For more specific examples, LiOx, LiNx, NaOx, KOx, RbOx, CsOx, BeOx, M g 0 x j MgNx, CaOx, CaNx, 200534744 (24)

SrOx,BaOx,ScOx,YOx,Ynx,LaOx,LaNx,CeOx, PrOx,NdOx,SmOx,EuOx,G d Ο x,T b O x,D y Ο x,Η ο O x ,ErOx,TmOx,YbOx,LuOx,TiOx,TiNx,ZrOx, ZrNx,HfOx,HfNx,ThOx,V Ox,VNx,NbOx,NbNx, TaOx,TaNx,CrOx,CrNx,MoOx,MoNx,WOx,WNx ,MnOx,ReOx,Fe Ox 5 FeNx,RuOx ? OsOx,CoOx, RhOx,IrOx,NiOx,PdOx,PtOx,CuOx,CuNx,AgOx ,AuOx,ZnOx,CdOx,HgOx,BOx,BNx,AlOx,AINx ,GaOx,GaNx,InOx,SiNx,GcOx,SnOx,PbOx, P O x 5 PNx,AsOx,SbOx,ScOx,TeOx 等之金屬氧化物 或金屬氧化物亦爲佳。 更且,亦可爲 LiA102 , Li2Si03 , Li2Ti03 , Na2Al 2 2 0 3 4 , NaFe02 , N a4 S i 0 4 , K2 S i Ο 3 , K 2 T i O 3 , K2 W04 , Rb2Cr〇4 , Cs2Cr04 , MgAi204 , MgFe2〇4 , MgTi03,CaTi〇3,CaW04,CaZr03,SrFe12〇19 » SrTi03 ,SrZr〇3 , B a A 12 〇 4 ^ BaFe]2〇i9,B a T i Ο 3,Y 3 A15 Ο 12 5 Y3Fe50】2 ,L a F e 0 3 , L a3 F e 5 0 】2 , La2Ti2〇7 ,C e S n 0 4 , CeTi04 , S m 3 F e 5 〇 : 12 , E u F e 0 3 , Eu3Fe5〇12 ,G d F e 0 3 , G d 3 F e 5 0 1 2,D y F e 0 3,Dy3Fe 5 0 】2, H 0 F e 0 3, H 0 3 F e 5 0 ] 2, E r F e 0 3, Er3Fe5〇i2 ,Tm 3 F e 5〇12 5 L u F e 0 3, L u 3 F e 5 0 j 2 5 NiTi03 , Al2Ti〇3 , FeTi03 , B aZr 0 3,L i Z r 〇 3,MgZr〇3, HfTi04 , NH4VO3 5 A g Y O3, L1VO3 ,B aN b 2 0 6 5 N aN b 0 3 5 SrNb2〇6 ,KTa03 ’ N aT a 0 3, S r Ta2 〇 '6 5 CuCr2 〇4,A g2 C r 0 ,BaCr04 , K2M0O4 , Na2Mo04 , NiMo〇4 , BaW04 , 200534744 (25)SrOx, BaOx, ScOx, YOx, Ynx, LaOx, LaNx, CeOx, PrOx, NdOx, SmOx, EuOx, G d ox, T b O x, D y ox, ο ο O x, ErOx, TmOx, YbOx, LuOx, TiOx, TiNx, ZrOx, ZrNx, HfOx, HfNx, ThOx, V Ox, VNx, NbOx, NbNx, TaOx, TaNx, CrOx, CrNx, MoOx, MoNx, WOx, WNx, MnOx, ReOx, Fe Ox 5 FeN 5N RuOx? OsOx, CoOx, RhOx, IrOx, NiOx, PdOx, PtOx, CuOx, CuNx, AgOx, AuOx, ZnOx, CdOx, HgOx, BOx, BNx, AlOx, AINx, GaOx, GaNx, InOx, SiNxSnx Metal oxides or metal oxides such as PbOx, PO x 5 PNx, AsOx, SbOx, ScOx, TeOx are also preferred. Furthermore, it can also be LiA102, Li2Si03, Li2Ti03, Na2Al 2 2 0 3 4, NaFe02, Na 4 S i 0 4, K2 S i Ο 3, K 2 T i O 3, K2 W04, Rb2Cr〇4, Cs2Cr04, MgAi204, MgFe2O4, MgTi03, CaTi〇3, CaW04, CaZr03, SrFe12〇19 »SrTi03, SrZr〇3, B a A 12 〇4 ^ BaFe] 2〇i9, B a T i Ο 3, Y 3 A15 〇 12 5 Y3Fe50] 2, La F e 0 3, La a3 F e 5 0] 2, La2Ti2 0 7, C e S n 0 4, CeTi04, S m 3 F e 5 0: 12, E u F e 0 3, Eu3Fe5〇12, G d F e 0 3, G d 3 F e 5 0 1 2, D y F e 0 3, Dy3Fe 5 0] 2, H 0 F e 0 3, H 0 3 F e 5 0 ] 2, E r F e 0 3, Er3Fe5〇i2, Tm 3 F e 5〇12 5 Lu Fe 0 3, Lu 3 F e 5 0 j 2 5 NiTi03, Al2Ti〇3, FeTi03, B aZr 0 3, L i Z r 〇3, MgZr〇3, HfTi04, NH4VO3 5 Ag Y O3, L1VO3, B aN b 2 0 6 5 N aN b 0 3 5 SrNb2 0 6, KTa03 'N aT a 0 3, S r Ta2 〇'6 5 CuCr2 〇4, Ag2 C r 0, BaCr04, K2M0O4, Na2Mo04, NiMo〇4, BaW04, 200534744 (25)

Na2W04,SrW04,MnCr2〇4,MnFe2〇4,MnTi03,MnW04 ,CoFe204,ZnFe204,FeW04,c〇Mo04,CoTi03 , C0WO4,NiFe2〇4,NiW〇4,CuFe2〇4,CuMoCU,CuTi03 ,Cu W04,Ag2Mo04,Ag2W04,Z n A12 〇 4,ZnMo04, ZnW〇4,CdSn03,CdTi〇3,CdMo〇4,C d W 0 4,N a A 1 0 2,Na2W04, SrW04, MnCr2O4, MnFe2O4, MnTi03, MnW04, CoFe204, ZnFe204, FeW04, coMo04, CoTi03, C0WO4, NiFe2O4, NiW04, CuFe2O4, CuMoCU, CuTi03, Cu W04, Ag2Mo04 , Ag2W04, Z n A12 〇4, ZnMo04, ZnW〇4, CdSn03, CdTi〇3, CdMo〇4, C d W 0 4, Na A 1 0 2,

MgAl2〇4,SrAl2〇4,Gd3Ga5012,lnFe03,Mgln2〇4, Al2Ti〇5,FeTi03,MgTi〇3,Na2Si〇3,CaSi03,ZrSiCU, K2Ge03,Li2Ge03,Na2Ge03,Bl2Sn3 09,MgSn03, SrSn03 , PbSi03 , PbMo〇4 , PbTi〇3 , Sn02-Sb2〇3 , CuSc〇4 , Na2Se03 , ZnSe03 , K2Te03 , K2Te09 , Na2Te03 ,Na2Te04等之金屬複合氧化物。MgAl2O4, SrAl2O4, Gd3Ga5012, InFe03, Mgln2O4, Al2Ti05, FeTi03, MgTi03, Na2Si03, CaSi03, ZrSiCU, K2Ge03, Li2Ge03, Na2Ge03, Bl2Sn3 09, MgSn03, SrMoSnSn 〇4, PbTi〇3, Sn02-Sb203, CuSc04, Na2Se03, ZnSe03, K2Te03, K2Te09, Na2Te03, Na2Te04 and other metal composite oxides.

又,FeS,AI2S3,MgS,ZnS 等之硫化物,LiF, MgF2,SmF3等之氟化物,HgCl,FeCl2,CrCl3等之氯化 物,AgBr,CuBr,MnBi*2等之溴化物,Pb 1 2,Cul,Fel2 等 之碘化物,或,Si AI ON等之金屬氧化物等亦可適當之材 料。 其中,以氧化物爲佳,特佳爲標準生成Gibbs能量 爲-520kJm〇r]以之安定的氧化物爲佳。可列舉例如Si02(-8 5 5 kJmor1)、Ge02(-497 kJmol·】)、CeO2(-1025 kJmor1) ,Al2〇3(] 58 1 .9 kJmol·】)。 其他之化合物AIN、sic、CaS等亦爲安定的化合物, 故爲佳。 其次,說明電極上成膜上表面保護膜102的手續。 -29- 200534744 (26) 成膜手續之槪要 步驟1 :進行附陽極(透明電極)基板的濕式洗淨。其 _ 與通常之元件成膜前所進行的基板洗淨相同。具體而言, _ 以使用二丙醇等之有機溶劑的超音波洗淨及以純水洗滌的 組合爲有效。又,根據陽極表面之污染程度,進行使用中 性洗淨等之超音波洗淨爲佳。 步驟2 :以旋轉濺鍍等之濺鍍法進行無機氧化物的成 膜。此處,以濺鍍法成膜出無機化合物的理由爲如下。 φ •首先,氧化物或氮化物一般澱積所需之溫度高,以 電加熱方式難澱積。 •更且,雖然可依據電子束澱積法進行成膜,但與濺 鍍不同,無ITO之表面不良層的改質效果。 •因此,以濺鍍法所具有之ITO表面不良層的改良效 果,係因爲電漿所產生的放電氣體離子被電漿所產生之自 我偏壓電場所加速,趕走表面不良層,進行濺鑛洗淨(所 謂的逆濺鍍)。 φ •濺鍍中亦以旋轉濺鑛爲特佳。其理由爲因一般的旋 轉濺鍍爲標的-基板間距離大,故通常的濺鍍爲對於基板 提供過量的能量,對於基盤反而造成損傷,相對地,以實 驗確認旋轉濺鍍爲以恰好除去陽極表面不良層的運動能量 : (0.1 〜lev 左右)。 ’ 成膜手續的具體例 步驟〗:確認真空室內導入氣體前之真空度爲l〇_3Pa -30- 200534744 (27) 台前半。 步驟2:對真空室內導入Ar等之放電氣體。此時之真 空度爲lxl〇GPa至lxl(T2Pa左右。不會過度低壓般,例 如以0.3 P a〜1 . 0 P a爲佳。其係因表面不良層的除去效果在 低壓下減少。放電氣體的種類可由Ar、Xe、Kr等之稀有 氣體中選取,於費用方面以A r爲佳。 步驟3 :依序,對旋轉線圈(誘導結合用線圈)外加 50〜200W , 對陰極外力□ 200〜5 00V , 周波數各 13.56MHz〜100MHz的高周波,引起電漿放電。此時磁控 管磁場的強度大約以200〜3 00高斯左右爲佳。 步驟4 :經由充分的預縣鍍(pre-sputter),進行標的表 面之淸除。最低5分鐘以上,特別於標的更換後之初回進 行10分鐘以上爲佳。 步驟5 :其次打開濺鍍裝置的主要光閘,將無機化合 物成膜至指定膜厚(5〜100 A)。 (2)基板12 本實施形態所用之基板爲具有透明性,且以可支撐彩 色顯示裝B之充分剛直的材料爲佳。本實施形態爲經由配 S S W增強彩色顯示裝置並且提高耐衝擊性等之機械強 度。 具:體的材料可列舉例如玻璃板、陶瓷板、塑膠板(聚 碳酸醋、丙綠酸、氯乙烯、聚對酞酸乙二醇酯、聚醯亞胺 、聚醒樹脂等)等。 -31 - 200534744 (28) (3)CCM 層 1 4 CCM層14(亦稱爲色轉損層)爲吸收有機EL元件122 的發光,且具有發出更長波長螢光的機能。例如,將藍色 光轉換成綠色光或紅色光。還有,除了 CCM層14以外’ 爲了令色再現性良好亦可含有彩色濾光片。Also, sulfides such as FeS, AI2S3, MgS, ZnS, fluorides such as LiF, MgF2, SmF3, chlorides such as HgCl, FeCl2, CrCl3, bromides such as AgBr, CuBr, MnBi * 2, Pb 1 2, Suitable materials are iodides such as Cul and Fel2, and metal oxides such as Si AI ON. Among them, oxides are preferable, and particularly good oxides having a Gibbs energy of -520 kJmr] are preferred as stable oxides. Examples thereof include Si02 (-8 5 5 kJmor1), Ge02 (-497 kJmol ·]), CeO2 (-1025 kJmor1), and Al203 (] 58 1 .9 kJmol ·]). Other compounds, such as AIN, sic, and CaS, are also stable compounds and are therefore preferred. Next, a procedure for forming the upper surface protective film 102 on the electrode will be described. -29- 200534744 (26) Main points of film formation procedure Step 1: Wet clean the substrate with anode (transparent electrode). The _ is the same as the substrate cleaning performed before the film formation of a general device. Specifically, _ a combination of ultrasonic cleaning using an organic solvent such as dipropanol and washing with pure water is effective. Further, it is preferable to perform ultrasonic cleaning using neutral cleaning or the like according to the degree of contamination on the anode surface. Step 2: The inorganic oxide is formed by a sputtering method such as spin sputtering. Here, the reason why an inorganic compound is formed by a sputtering method is as follows. φ • First, the temperature required for oxide or nitride deposition is generally high, which makes it difficult to deposit by electric heating. • Moreover, although film formation can be performed according to the electron beam deposition method, unlike sputtering, there is no modification effect on the surface defect layer of ITO. • Therefore, the improvement effect of the ITO surface defect layer by the sputtering method is because the discharge gas ions generated by the plasma are accelerated by the self-biased electric field generated by the plasma, and the surface defect layer is driven away and the ore is sputtered. Rinse (so-called reverse sputtering). φ • Rotary spatter is particularly preferred in sputtering. The reason for this is that, because of the large distance between substrates in general spin sputtering, the usual sputtering provides excessive energy to the substrate and causes damage to the substrate. On the other hand, it is experimentally confirmed that the spin sputtering is performed to remove the anode. Movement energy of the surface bad layer: (about 0.1 ~ lev). ’Specific example of film formation procedure Steps: Confirm that the degree of vacuum before introducing gas into the vacuum chamber is 10-3Pa -30- 200534744 (27) The first half. Step 2: Introduce a discharge gas such as Ar into the vacuum chamber. The vacuum degree at this time is lx10 GPa to lxl (T2Pa or so. It is not excessively low pressure, for example, 0.3 Pa to 1.0 Pa is preferred. It is reduced under low pressure due to the removal effect of the surface defective layer. Discharge The type of gas can be selected from rare gases such as Ar, Xe, Kr, etc. In terms of cost, Ar is preferred. Step 3: Sequentially, add 50 ~ 200W to the rotating coil (coil for induction combination), and external force to the cathode □ 200 ~ 500V, high frequency of 13.56MHz ~ 100MHz each, causing plasma discharge. At this time, the strength of the magnetron's magnetic field is about 200 ~ 300 Gauss. Step 4: After sufficient pre-plating (pre- sputter) to remove the target surface. The minimum time is more than 5 minutes, especially for the initial return after the target is replaced for more than 10 minutes. Step 5: Secondly, open the main shutter of the sputtering device to form the inorganic compound to the specified film Thick (5 ~ 100 A). (2) Substrate 12 The substrate used in this embodiment is transparent, and it is preferably a sufficiently rigid material that can support the color display device B. In this embodiment, SSW is used to enhance the color display. Install and mention Mechanical strength such as impact resistance. Examples of materials include glass plates, ceramic plates, and plastic plates (polycarbonate, citric acid, vinyl chloride, polyethylene terephthalate, polyimide, Polyester resin, etc.), etc. -31-200534744 (28) (3) CCM layer 1 4 CCM layer 14 (also known as color transfer loss layer) absorbs the light emitted by the organic EL element 122 and emits longer wavelength fluorescent light For example, it converts blue light into green light or red light. In addition to the CCM layer 14, a color filter may be included for better color reproducibility.

各CCM層14爲對應於有機EL元件122之發光區域, 例如,陽極16與陽極20之交叉部分的位置而配置爲佳。陽 極16和陽極20爲對向顯示面以條狀配置,且,兩者爲顯示 平面上以垂直對向設置。陰極16與陽極20於平面上重疊位 置(交叉位置)的有機物層18爲發光。此重疊位置(交叉位 置)爲相當於顯示平面上之「一畫素」。 經由如此構成,令陽極16與陰極20之交叉部分中的有 機物層18(有機EL發光層)發光時,其光線爲令.各CCM層 14受光,且對外部發出不同顏色(波長)的發光。Each CCM layer 14 is preferably arranged corresponding to the light-emitting area of the organic EL element 122, for example, the position of the intersection of the anode 16 and the anode 20. The anode 16 and the anode 20 are arranged in a stripe shape for the opposite display surface, and they are arranged in a vertical direction on the display plane. The organic material layer 18 where the cathode 16 and the anode 20 are superposed (crossed) on a plane emits light. This overlap position (cross position) is equivalent to "one pixel" on the display plane. With this configuration, when the organic layer 18 (organic EL light-emitting layer) at the intersection of the anode 16 and the cathode 20 emits light, the CCM layer 14 receives light and emits light of different colors (wavelengths) to the outside.

此時,特別於有機EL元件122爲發出藍光,且若經 由 CCM層1 4,轉換成綠色、紅色發光,則即使爲由一種 有機物層1 8所構成的有機EL元件1 2 2,亦可取得藍色、 綠色、紅色光線的三原色,且適於全色彩顯示。 (3-1)材料 C CM層1 4之材料並無特別限制。例如,由螢光色素 ,或,螢光色素及黏合樹脂所構成。其中,由螢光色素及 黏合樹脂所構成之CCM層1 4的典型例,可列舉令螢光色 -32- 200534744 (29) 素於顏料樹脂和/或黏合樹脂中溶解或分散的固形狀態者 〇 若說明具體的螢光色素,則於有機EL元件122中之 來自近紫外光之紫色發光轉換成藍色發光的螢光色素可列 舉I·4·雙(2-甲基苯乙烯基)苯(Bis-MBS),反式-4,4,-二苯 基芪(DPS)等之芪系色素、7_羥基甲基香豆素(香豆素4) 等之香豆素系色素。 又,關於有機EL元件122中之令藍色、藍綠色或白 色發光轉換成綠色發光時之螢光色素,可列舉例如2,3, 5,6-1H,4H-四氫-8-三氟甲基哇啉並(9,9a,Ι-gh)香豆 素(香豆素153)、3-(2,·苯並噻唑基)-7-二乙胺基香豆素(香 豆素6)、3-(2’-苯並咪咪基)-7_N,N-二乙胺基香豆素(香豆 素7)等之香豆素色素,其他香豆素色素系染料之基礎黃51 、或溶劑黃1 1、溶劑黃1 1 6等之酞醯亞胺色素。 又,關於有機EL元件122中之藍色轉換成綠色爲止 之發光,或將白色發光由橙色發光成紅色爲止之發光時的 螢光色素,可列舉例如4 -二氰基亞甲基-2-甲基- 6- (對-二 甲胺基苯乙烯基)-4H吡喃(D CM)等之花青系色素,1•乙 基-2-(4-對·二甲胺苯基)-13-酞二烯基吡啶對-鉻酸鹽( 吡啶1)等之吡啶系色素、若丹明B、若丹明6 G等之若丹 明系色素、其他之哼哄系色素等。 更且,各種染料(直接染料、酸性染料、鹼性染料、 分散染料等)若爲螢光性,則亦可選擇做爲螢光色素。 又,將螢光色素於聚甲基丙烯酸酯、聚氯乙烯、氯乙 -33· 200534744 (30) 烯醋酸乙烯酯共聚物、醇酸樹脂、芳香族磺醯胺樹脂、脲 樹脂、蜜胺樹脂、苯並胍胺樹脂等之顏料樹脂中事先混入 予以顏料化亦可。 另一方面,黏合樹脂爲透明的(可見光中之光穿透率 爲5 0 %以上)材料爲佳。可列舉例如聚甲基丙烯酸甲酯、聚 丙烯酸酯、聚碳酸酯、聚乙烯醇、聚乙烯吡咯烷酮、羥乙 基纖維素、羧甲基纖維素等之透明樹脂(高分子)。 還有,爲了令螢光媒體平面性地分離配置,可選擇應 用光微影法的感光性樹脂。可列舉例如丙烯酸系、甲基丙 烯酸系、聚肉桂酸乙烯酯系、環橡膠系等之具有反應性乙 烯基之光硬化型光阻材料。又,於使用印刷法之情形中, 選擇使用透明樹脂的印刷油墨(介質)。例如可使用聚氯乙 烯樹脂、蜜胺樹脂、苯酚樹脂、醇酸樹脂、環氧樹脂、聚 胺基甲酸乙酯樹脂、聚酯樹脂、順丁烯二酸樹脂、聚醯胺 樹脂之單體、低聚物、聚合物、或聚甲基丙烯酸甲酯、聚 丙烯酸酯、聚碳酸酯、聚乙烯醇、聚乙烯吡咯烷酮、羥乙 基纖維素、羧甲基纖維素等之透明樹脂。 (3-2)形成方法 CCM層14主要由螢光色素所構成時,透過取得所欲 CCM層14圖案之光罩以真空澱積或濺鍍法予以成膜爲佳 〇 另一方面,CCM層14由螢光色素和樹脂所構成時, 將螢光色素與樹脂與適當之溶劑混合、分散或可溶化成爲 -34- 200534744 (31) 液狀物,並將該液狀物以旋塗、輥塗、澆鑄等方法成膜, 其後,以光微影法將所欲之CCM層14的圖案予以圖案化 ,且以網版印刷等之方法將所欲之圖案予以圖案化,形成 CCM層14爲佳。 (3-3)厚度 CCM層14之厚度若爲充分接受(吸收)有機EL元件 1 22的發光並且不會妨礙螢光的發光機能,則無特別限制 ,例如,以l〇nm〜l,000nm爲佳,且以Ο.ίμιη〜500μιυ爲更 佳,以5μηι〜ΙΟΟμπι爲更佳。 其理由係因CCM層14之厚度若未滿10nm,則機械強 度降低,層合因難。另一方面,CCM層14之厚度若超過 1mm,則光穿透率顯著降低,且釋出外部的光量降低,或 者有機EL發光裝置的薄型化困難。 (4)鈍化膜 鈍化膜爲阻斷其下方之CCM層14等樹脂膜的揮發成 分與有機EL元件122接觸,且,若在可見光區域爲透明 ,則其材料並無特別限制。 具體的材料可列舉透明無機物。 更具體而言,可列舉Si02、SiOx、SiOxNy、Si3N4、 A 1 203、 AlOxNy、 Ti02、TiOx、 I 丁 O (I n 2 0 3 - S n 0 2)、 IZ0(In2 03 -Zn0)、Sn02、ZnO、銦銅(Culn)、金、鉑、鈀 等之單獨一種或二種以上之組合等之功函數大的透明無機 -35- 200534744 (32) 物。 於利用如上述之透明無機物時,令CCM層14不會惡 化地,於低溫(200 °C以下),減慢成膜速度進行成膜爲佳 ,具體而言以濺鍍、澱積、CVD、離子電鍍(Ion plating) 等之方法爲佳。 此處,鈍化膜之厚度爲根據有機EL元件122的精細 度而異,但可由0.01 μπι〜100 μπι之範圍中選擇,較佳爲 0.05μηι〜ΙΟμιη,更佳爲Ο.ΐμπι〜Ιμπι之膜厚。 膜厚若小於0.0 1 μ m,則無法充分阻斷揮發成分,若大 於ΙΟΟμιη,則有機EL元件122的光線擴散,妨礙所欲之 C CM層14的入射,具有令辨視性降低(滲色、混色、視野 角依賴的可能性。 (5)有機EL元件122 本實施形態中之有機EL顯示裝置100爲在CCM基板 124所含之陰極16上,形成上述之無機化合物層(表面保護 層102),再於其上將有機EL元件122之中心材料有機物層 ]8(亦稱爲有機化合物層)層合。此有機物層1 8爲使用至少 具有再結合區域及發光區域者。此再結合區動及發光區域 多存在於具有發光機能的發光層。因此,於本實施形態中 ,亦可僅使用發光層做爲有機物層1 8,視需要,除了發光 層以外,亦可於有機物層1 8中例如含有空穴注入層、電子 注入層 '有機半導體層、電子障壁層、附著改善層等。於 此些有機物層18上形成陰極20。 200534744 (33) 本實施形態中,將陽極16(透明電極)至陰極20爲止稱 爲有機EL元件122。即,若簡而言之,則有機EL顯示裝 置1〇〇爲於玻璃等之基板12上構成有機EL元件122。本實 施形態中,以有機EL元件已說明之下列構成爲例,由下 簡進行各層之說明。 透明電極(陽極)/表面保護層/空穴注入層/發光層/電子注 入層/電極(陰極) 即,此處爲以有機物層18爲由空穴注入層/發光層/電 子注入層之構成例說明。當然,採用單層之發光層所構成 的有機物層1 8亦無妨。 (6)陽極16(透明電極) 代表性的陽極16材料可列舉功函數大(4eV以上)ITO( 氧化銦錫)和IΖ 0等。陽極1 6爲將此些電極物質以澱積法 和灘鍍法等之方法’形成薄膜即可作成。將來自發光層的 發光由陽極16釋出時’對於陽極16發光之穿透率爲大於 10%爲佳。又,陽極的片電阻爲數百〇/口(〇/1112)以下爲 佳。陽極]6之膜厚爲根據材料而異,但通常以1〇ηιη〜1μηι ,1 0 n m〜2 0 0 n m之範圍爲佳。還有,於本實施形態中,使 用量板電極做爲陽極16。 此處’陽極1 6之材料爲採用非晶質氧化物,且取得良 好之触刻特性亦佳。上述ITO通常爲結晶性,於成膜時變 成水分環境氣體,且經由微量元素的摻混則可作成非晶質 -37- 200534744 (34) (7)發光層 本實施形態中之發光層爲使用一般式(1)At this time, especially the organic EL element 122 emits blue light, and if it is converted into green and red light emission through the CCM layer 14, it is possible to obtain even an organic EL element 1 2 2 composed of one organic layer 18 The three primary colors of blue, green and red light are suitable for full color display. (3-1) Material The material of the C CM layer 14 is not particularly limited. For example, it is made of fluorescent pigment, or fluorescent pigment and adhesive resin. Among them, typical examples of the CCM layer 14 composed of a fluorescent pigment and a binder resin include solid state in which the fluorescent color -32- 200534744 (29) is dissolved or dispersed in the pigment resin and / or the binder resin. 〇 If a specific fluorescent pigment is described, in the organic EL element 122, a fluorescent pigment that converts purple light emission from near-ultraviolet light into blue light emission may include I · 4 · bis (2-methylstyryl) benzene. (Bis-MBS), trans-4,4, -diphenylstilbene (DPS) and other stilbene pigments, and 7-hydroxymethylcoumarin (coumarin 4) and other coumarin pigments. In addition, as the fluorescent dye when blue, cyan, or white light emission is converted into green light emission in the organic EL element 122, for example, 2, 3, 5, 6-1H, 4H-tetrahydro-8-trifluoro may be mentioned. Methyl walolino (9,9a, 1-gh) coumarin (coumarin 153), 3- (2, · benzothiazolyl) -7-diethylaminocoumarin (coumarin 6 ), 3- (2'-benzimidamido) -7_N, N-diethylamine coumarin (coumarin 7) and other coumarin pigments, and other basic coumarin pigment dyes yellow 51 Or Solvent Yellow 1 1, Solvent Yellow 1 1 6 and the like. Further, as the fluorescent dye when the blue light is converted to green or the white light is changed from orange to red in the organic EL element 122, for example, 4-dicyanomethylene-2- Anthocyanin pigments such as methyl-6- (p-dimethylaminostyryl) -4Hpyran (D CM), 1 · ethyl-2- (4-p-dimethylaminephenyl)- Pyridine-based pigments such as 13-phthaladienylpyridine p-chromate (pyridine 1), rhodamine-based pigments such as rhodamine B, rhodamine 6 G, and other humor-based pigments. Moreover, if various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) are fluorescent, they can also be selected as fluorescent dyes. In addition, fluorescent pigments were added to polymethacrylate, polyvinyl chloride, vinyl chloride-33 · 200534744 (30) vinyl acetate copolymer, alkyd resin, aromatic sulfonamide resin, urea resin, and melamine resin. Pigment resins, such as benzoguanamine resin, may be mixed in advance to be pigmented. On the other hand, it is preferable that the adhesive resin is transparent (the light transmittance in visible light is 50% or more). Examples thereof include transparent resins (polymers) such as polymethyl methacrylate, polyacrylate, polycarbonate, polyvinyl alcohol, polyvinylpyrrolidone, hydroxyethyl cellulose, and carboxymethyl cellulose. In order to arrange the fluorescent media in a planar manner, a photosensitive resin using a photolithography method can be selected. Examples of the photocurable photoresist material include a reactive vinyl group, such as acrylic, methacrylic, polyvinylcinnamate, and cyclic rubber. When a printing method is used, a printing ink (medium) using a transparent resin is selected. For example, monomers such as polyvinyl chloride resin, melamine resin, phenol resin, alkyd resin, epoxy resin, polyurethane resin, polyester resin, maleic acid resin, and polyamide resin can be used, Oligomer, polymer, or transparent resin such as polymethyl methacrylate, polyacrylate, polycarbonate, polyvinyl alcohol, polyvinylpyrrolidone, hydroxyethyl cellulose, carboxymethyl cellulose, etc. (3-2) Forming method When the CCM layer 14 is mainly composed of a fluorescent pigment, it is preferable to form a film by vacuum deposition or sputtering method through a mask that obtains a desired pattern of the CCM layer 14. On the other hand, the CCM layer 14 When composed of a fluorescent pigment and a resin, the fluorescent pigment and the resin are mixed, dispersed or dissolved with an appropriate solvent to form -34- 200534744 (31) a liquid substance, and the liquid substance is spin-coated, roller The film is formed by coating, casting, etc., and then the desired pattern of the CCM layer 14 is patterned by photolithography, and the desired pattern is patterned by screen printing or the like to form the CCM layer 14 Better. (3-3) Thickness The thickness of the CCM layer 14 is not particularly limited as long as the thickness of the CCM layer 14 sufficiently receives (absorbs) light from the organic EL element 122 and does not hinder the light-emitting function of the fluorescent light. It is better, and more preferably 0. Ιμιη to 500 μιυ, and more preferably 5 μηι to 100 μπι. The reason for this is that if the thickness of the CCM layer 14 is less than 10 nm, the mechanical strength is reduced and lamination is difficult. On the other hand, if the thickness of the CCM layer 14 exceeds 1 mm, the light transmittance is significantly reduced, and the amount of external light is reduced, or the thickness of the organic EL light-emitting device becomes difficult. (4) Passivation film The passivation film is used to block the volatile components of the resin film such as the CCM layer 14 below it from contacting the organic EL element 122, and the material is not particularly limited if it is transparent in the visible light region. Specific materials include transparent inorganic substances. More specifically, Si02, SiOx, SiOxNy, Si3N4, A 1 203, AlOxNy, Ti02, TiOx, I but O (I n 2 0 3-S n 0 2), IZ0 (In2 03 -Zn0), Sn02 ZnO, ZnO, indium copper (Culn), gold, platinum, palladium, etc. alone or in combination of two or more kinds of transparent inorganic-35-200534744 (32). When using a transparent inorganic material as described above, the CCM layer 14 is preferably formed at a low temperature (below 200 ° C) and at a low temperature (less than 200 ° C), and the film formation is preferably performed. Specifically, sputtering, deposition, CVD, A method such as ion plating is preferred. Here, the thickness of the passivation film varies according to the fineness of the organic EL element 122, but may be selected from the range of 0.01 μm to 100 μm, preferably 0.05 μm to 10 μm, and more preferably 0.ΐ μm to 1 μm. . If the film thickness is less than 0.0 1 μm, the volatile components cannot be blocked sufficiently. If it is larger than 100 μm, the light of the organic EL element 122 is diffused, preventing the incidence of the desired C CM layer 14 and reducing visibility (bleeding). (5) Organic EL element 122 The organic EL display device 100 in this embodiment is formed on the cathode 16 included in the CCM substrate 124 by forming the above-mentioned inorganic compound layer (surface protection layer 102). ), And the center material organic material layer] 8 (also referred to as an organic compound layer) of the organic EL element 122 is laminated thereon. This organic material layer 18 is a one having at least a recombination region and a light emitting region. Most of the dynamic and light-emitting regions exist in the light-emitting layer having a light-emitting function. Therefore, in this embodiment, only the light-emitting layer can be used as the organic layer 18, and if necessary, in addition to the light-emitting layer, the organic layer 18 can also be used. For example, it contains a hole injection layer, an electron injection layer, an organic semiconductor layer, an electron barrier layer, an adhesion improving layer, etc. A cathode 20 is formed on these organic layers 18. 200534744 (33) In this embodiment, The anode 16 (transparent electrode) up to the cathode 20 is referred to as an organic EL element 122. That is, in a nutshell, the organic EL display device 100 includes an organic EL element 122 on a substrate 12 such as glass. This embodiment In the following, the following structure of the organic EL element has been described as an example, and the layers will be described below. Transparent electrode (anode) / surface protection layer / hole injection layer / light emitting layer / electron injection layer / electrode (cathode) That is, Here, the organic material layer 18 is used as an example of the configuration of the hole injection layer / light emitting layer / electron injection layer. Of course, it is also possible to use the organic material layer 18 composed of a single light emitting layer. (6) Anode 16 (transparent (Electrode) Typical anode 16 materials include ITO (indium tin oxide) and IZ 0, which have large work functions (more than 4 eV). The anode 16 is formed by depositing these electrode materials by a deposition method, a beach plating method, or the like. The thin film can be made. When the light emitted from the light emitting layer is released from the anode 16, the transmittance of the light emitted from the anode 16 is preferably greater than 10%. In addition, the sheet resistance of the anode is hundreds of holes per port (0/1112). The following is preferred. The thickness of the anode] 6 varies depending on the material However, the range of 10 nm to 1 μm and 10 nm to 200 nm is generally preferred. In this embodiment, a gauge electrode is used as the anode 16. Here, the material of the anode 16 is Amorphous oxide is used, and good contact characteristics are obtained. The above ITO is usually crystalline, and becomes a moisture ambient gas during film formation, and can be made amorphous by the blending of trace elements -37- 200534744 (34) (7) Light-emitting layer The light-emitting layer in this embodiment uses the general formula (1)

Y YY Y

=CH - Ar - CH = C= CH-Ar-CH = C

m m mm m m

Y Y (I)Y Y (I)

所示之二苯乙烯基伸芳基系化合物做爲發光材料(宿主材 料)。此化合物例如揭示於特開平2-2 4727 8號公報。 於上述一般式中,Y1〜Y4分別表示氫分子、碳數1〜6 個之烷基、碳數1〜6之烷氧基、碳數7〜8之芳烷基、經取代 或未取代之碳數6〜18個的芳基、經取代或未取代之環己基 、經取代或未取代之碳數6〜18個的芳氧基、碳數1〜6個之 烷氧基。 此處,取代基爲表示碳數1〜6個之烷基、碳數1〜6個之 烷氧基、碳數7〜8個之芳烷基、碳數6〜18個之芳氧基、碳 數1〜6個之醯基、碳數】〜6個之醯氧基、羧基、苯乙烯基、 碳數6〜2 0個之芳羰基、碳數6〜20個之芳氧羰基、碳數1〜6 個之烷氧羰基、乙烯基、苯胺羰基、胺甲醯基、苯基、硝 基、羥基、或鹵素。 此些取代基可爲單一或複數的。又,Y1〜γ4爲相同一 或彼此不同,Y1與Y2及Y3與Y4爲彼此與取代基結合,形 成經取代或未取代之飽和五負環或經取代或未取代之飽和| -38- 200534744 (35) 六角環。Ar爲表示經取代或未取代之碳數6〜2〇個的伸芳 基可爲單一取代、或複數取代,且結合部分可爲鄰、對、 間之任一種。但,Ar爲未取代伸苯基時,γ1〜γ4分別由碳 數1〜6個之烷氧基,碳數7〜8個之芳烷基、經取代或未取代 之萘基、聯苯基、環己基、芳氧基中選出。此類二苯乙烯 基伸芳基系化合物可列舉例如下述物質。The illustrated distyryl arylidene compound is used as a light emitting material (host material). This compound is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-2 4727 8. In the above general formula, Y1 to Y4 represent hydrogen molecules, alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, aralkyl groups having 7 to 8 carbon atoms, substituted or unsubstituted An aryl group having 6 to 18 carbon atoms, a substituted or unsubstituted cyclohexyl group, a substituted or unsubstituted aryloxy group having 6 to 18 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms. Here, the substituent is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aralkyl group having 7 to 8 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, Carbonyl group of 1 to 6 carbon atoms] Carbonyl group of 6 to 6 carbon atoms, carboxyl group, styryl group, arylcarbonyl group of 6 to 20 carbon atoms, aryloxycarbonyl group of 6 to 20 carbon atoms, carbon 1 to 6 alkoxycarbonyl, vinyl, aniline carbonyl, carbamoyl, phenyl, nitro, hydroxyl, or halogen. Such substituents may be singular or plural. In addition, Y1 to γ4 are the same or different from each other, and Y1 and Y2 and Y3 and Y4 are combined with a substituent to form a substituted or unsubstituted saturated penta-negative ring or a substituted or unsubstituted saturation | -38- 200534744 (35) Hex ring. Ar is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, which may be single substituted or plural substituted, and the bonding portion may be any of ortho, para, and inter. However, when Ar is unsubstituted phenylene, γ1 to γ4 are respectively alkoxy groups having 1 to 6 carbon atoms, aralkyl groups having 7 to 8 carbon atoms, substituted or unsubstituted naphthyl groups, and biphenyl groups. , Cyclohexyl, aryloxy. Examples of such distyryl arylidene compounds include the following.

Ox<〇KOx < 〇K

C=CHC = CH

NO)NO)

〔DPVB1〕[DPVB1]

ch3〇h^Kch3〇h ^ K

C=CHC = CH

CH=CCH = C

OCHs OCHaOCHs OCHa

CHa CH3_0>c=ch -^H〇>-ch=cCHa CH3_0 > c = ch-^ H〇 > -ch = c

<〇K< 〇K

C=CHC = CH

CH=CCH = C

t — Bu [t-Bu :第三丁基] -39- 200534744 (36) <0^t — Bu [t-Bu: third butyl] -39- 200534744 (36) < 0 ^

C = CHC = CH

CH=C N〇M〇)CH = C N〇M〇)

HaC CHaHaC CHa

C= CHC = CH

CH = C HsC ^〇>-CH3 N〇>-CH3 ^>c=〇h-0-0^〇)-ch=c^ βCH = C HsC ^ 〇 > -CH3 N〇 > -CH3 ^ > c = 〇h-0-0 ^ 〇) -ch = c ^ β

C=CH -CH = C d \〇> β c=ch -0~cH^ch=c( \〇^ CH3〇-0v y0-〇CHc > = CH-0-CH0~ CH=C CH3〇h^/ \〇^〇ch3 -40 - 200534744 (37) 又’其他的較佳發光材料(侣主材料)可列舉8 _經基口奎 啉、或其衍生物的金屬錯合物。具體而言,爲金屬8 _經 基喹啉之嵌合物的金屬嵌合物氧雜型化合物。此類化合物 爲顯示高水準的性能,且可輕易形成薄膜形態。此氧雜型 化合物例爲滿足下述構造式者。C = CH -CH = C d \ 〇 > β c = ch -0 ~ cH ^ ch = c (\ 〇 ^ CH3〇-0v y0-〇CHc > = CH-0-CH0 ~ CH = C CH3〇 h ^ / \ 〇 ^ 〇ch3 -40-200534744 (37) Another 'other preferable light-emitting materials (co-host materials) can be mentioned 8_ metal complexes of quinololine or its derivatives. Specific and In other words, it is a metal chimera oxa compound which is a chimera of a metal quinoline. Such a compound exhibits a high level of performance and can easily form a thin film. Examples of this oxa compound are as follows The structural person.

速有,式中,Mt爲表示金屬,^爲1〜3之整數,z爲 其各個位置爲獨立,表示完成至少二個以上之縮合芳香族 環所必要的原子。Here, in the formula, Mt is a metal, ^ is an integer of 1 to 3, and z is an independent position of each position, and it represents an atom necessary to complete at least two or more condensed aromatic rings.

此處’ Mt所示之金屬爲一價、二價或三價之金屬, 例如鍾、鈉、紳等之鹼金屬、鎂和鈣等之鹼土金屬,或硼 或銘等之土類金屬。一般,以有用之嵌合化合物所已知的 一價、二價或三價金屬均可使用。 又’上式中Z爲去示至少二個以上之縮合芳香族環的 一者爲形成啤D坐或噚畊所構成之雜環的原子。又,爲了迴 避依舊未改善機能的膨鬆分子,乃令Z所示之原子數爲維 持在I 8個以下爲佳。更且,若例示具體的嵌合化氧雜類化 合物’則爲二(8 -羥基d奎畊)鋁、雙(8 _羥基喹啉)鎂、雙(苯 並8-羥基鸣啉)鋅、雙(2_甲基啉酸鹽)氧化鋁、三(8_ -41 - 200534744 (38) 羥基喹啉)銦、三(5 -甲基-8 -羥基D奎啉)鋁、8 -羥基D奎啉鋰 '二(5 -氯· 8 -羥基D奎啉)鎵、雙(5 ·氯-8 _羥基唼啉)鈣、5, 7 -二氯· 8 -羥基D奎啉鋁、三(5,7 _二溴-8 ·羥基咱啉)鋁等。 更且’特開平5-298378號公報所記載之經酚鹽取代8-經基暗啉的金屬錯合物做爲藍色發光材料爲佳。此經酚鹽 取代8 -羥基喹啉之金屬錯合物的具體例可列舉雙(2 _甲基_ 8-喹啉酸鹽)(酚鹽)鋁(in)、雙(2_甲基-8_D奎啉酸鹽)(鄰-甲 酚鹽)鋁(III)、雙(2 -甲基- 8-D奎啉酸鹽)(間-甲酚鹽)鋁(111) 、雙(2-甲基-8-D奎啉酸鹽)(對-甲酚鹽)鋁(ΠΙ)、雙(2-甲基-8-喹啉酸鹽)(鄰-苯基酚鹽)鋁(ΠΙ)、雙(2_甲基-8_D奎啉酸鹽 )(間-苯基酚鹽)鋁(ΙΠ)、雙(2 -甲基-8-D奎啉酸鹽)(對-苯基 酣鹽)鋁(111)、雙(2 -甲基-8 - D奎啉酸鹽)(2,3 -二甲基酚鹽) 鋁(III)、雙(2 -甲基-8-D奎啉酸鹽)(2,6-二甲基酚鹽)鋁(ill) 、雙(2 -甲基-8-喹啉酸鹽)(3,4-二甲基酚鹽)鋁(III)、雙 (2-甲基- 8-[i奎啉酸鹽)(3,二甲基酚鹽)鋁(ΙΠ)、雙(2_甲 基-8-鸣啉酸鹽)(3,5_二-第三丁基酚鹽)鋁(ΠΙ)、雙(2•甲 基- 8-D奎啉酸鹽)(2,6_二苯基酚鹽)鋁(m)、雙(2_甲基·8· 喹琳酸鹽)(2,4,6-三苯基酚鹽)鋁(III)等。此些發光材料 可使用一種,且亦可組合使用二種以上。 以下,更加具體說明發光層。一般發出白色光之情形 中’發光層多爲二層構成。將其稱爲第一發光層、第二發 光層。 本實施形態中所用之第一發光層可使用各種公知的發 光材料,較佳爲於上述氧雜型化合物中微量添加〇·2〜3重 >42- 200534744 (39) 量%之綠色螢光色素做爲第一發光層。此處所添加之綠色 螢光色素爲香豆素系、D奎吖酮系。經由添加此些色素而保 有第一發光層的元件,可實現5〜20(lw/w)之高效率的綠色 發光。另一方面,欲由第一發光層以高效率釋出黃色或橙 色時,可使用對氧雜型化合物添加0.2〜3重量之紅螢烯及 其衍生物、三氰基吡喃衍生物,菲衍生物者。此些元件可 在3〜10(1 w/w)之高效率下發光輸出。又,同時添加綠色螢 光色素和紅色螢光色素亦可爲橙色。例如,較佳亦可同時 使用香豆素和二氰基吡喃系色素、喧吖酮與茈色素、香豆 素與茈色素。其他特佳之第一發光層爲聚伸芳基伸乙烯基 衍生物。其可以高效率輸出綠色或橙色。 本實施形態所用之第二發光層可使用各種公知的藍色 發光材料。例如,二苯乙烯基伸芳基衍生物三苯乙烯基伸 芳基衍生物、烯丙氧基化喹啉酸酯金屬錯合物爲於高效率 下列發出純度高之藍色的藍色發光材料。又,聚合物可列 舉聚對伸苯基衍生物。 本實施形態所用之有機EL元件中之發光層的形成方 法例如可依據澱積法、旋塗法、澆鑄法、LB法等之公知 方法予以薄膜化則可形成,特別以分子堆積膜爲佳。此處 ,所謂分子堆積膜爲指由該化合物之氣相狀態所沈澱形成 的薄膜,和由該化合物之溶融狀態或液相狀態所固體化形 成的膜。通常,此分子堆積膜爲根據L B法所形成之薄膜( 分子累積膜)與凝集構造,高級構造之不同,和其所造成 之機能性的不同則可區別。又,此發光層爲與樹脂等之黏 -43- 200534744 (40) 結材料共同溶於溶劑中作成溶液後,以旋塗法等予以薄膜 化則可形成。關於如此處理所形成之發光層的膜厚並無特 別限制’可根據適當狀況而選擇,但較佳爲1ηιη〜10μιη, 特佳爲5nm〜5μηι之範圍。 (8)空穴注入層 其次,空穴注入層雖並非有機EL顯示裝置1〇0的必 須構成,但一般爲使用於提高發光性能,故於本實施形態 中亦說明使用空穴注入層之例。 此空穴注入層爲幫助空穴注入發光層之層,其空穴移 動度大,且離子化能量通常小至5.5ev以下即可。此類空 穴注入層爲以更低電場對發光層輸送空穴之材料爲佳,且 空穴之移動度,例如於1〇4〜l〇6V/cm之電場外加時,至少 爲l(T6Cni2/V ·秒〜(即,l(T6Cm2/V ·秒以上)爲更佳。關於 此類空穴注入材料若爲具有前述之較佳性質即可,並無特 別限制,以往,於光傳導材料中,可選擇使用慣用做爲空 穴之電荷輸送材料者,和EL元件之空穴注入層所使用之 公知物質中選擇使用任意物質。 具體例可列舉例如三唑衍生物(參照美國專利 3, 11 2,197號說明書等)、哼二唑衍生物(參照美國專利 3,1 8 9,44 7號說明書等)、咪唑衍生物(參照特公昭3 7- 1 6096 號公報等)、聚芳基鏈烷衍生物(參照美國專利3,6 1 5,4 02號 說明書、同第3,820,98 9號說明書、同第3,542,544號說明 書、特公昭45-555號公報、同51-10983號公報、同55-]5 6 9 5 3號公報、同56- 3 665 6號公報等)、吡唑啉衍生物及 200534744 (41) 吡唑酮衍生物(參照美國專利第3,1 8 0,72 9號說明書、同第 4,278,746號說明書、特開昭55-88064號公報、同55-88065 號公報、同4 9 - 1 05 5 3 7號公報、同5 5 - 5 1 0 8 6號公報、同56-80051號公報、同56-88141號公報、同57-45545號公報、 同54-112637號公報、同55-74546號公報等)等。Here, the metal shown by 'Mt' is a monovalent, divalent, or trivalent metal, such as an alkali metal such as bell, sodium, succinyl, alkaline earth metal such as magnesium and calcium, or an earth metal such as boron or indium. Generally, monovalent, divalent, or trivalent metals known as useful chimeric compounds can be used. Also, in the above formula, Z is an atom that shows that at least two or more condensed aromatic rings are a heterocyclic ring formed by beer sitting or plowing. In addition, in order to avoid bulky molecules that have not yet improved their functions, it is better to keep the number of atoms shown in Z to 18 or less. Furthermore, if specific examples of the chimeric oxa compounds are exemplified, they are bis (8-hydroxyd-quinine) aluminum, bis (8-hydroxyquinoline) magnesium, bis (benzo-8-hydroxyquinoline) zinc, Bis (2-methylphosphonate) alumina, tris (8_ -41-200534744 (38) hydroxyquinoline) indium, tris (5-methyl-8-hydroxyDquinoline) aluminum, 8-hydroxyDquino Lithium phosphonate'bis (5-chloro · 8-hydroxyDquinoline) gallium, calcium bis (5 · chloro-8_hydroxyfluoroline), 5,7-dichloro · 8-hydroxyDquinoline aluminum, tris (5 , 7 _ dibromo-8 · hydroxyzanline) aluminum. Furthermore, the metal complex compound substituted with phenate and substituted with 8-acyl dark phthaloline described in Japanese Patent Application Laid-Open No. 5-298378 is preferably used as a blue light-emitting material. Specific examples of the metal complex of phenoxide-substituted 8-hydroxyquinoline include bis (2-methyl-8-quinolinate) (phenate) aluminum (in) and bis (2-methyl- 8_D quinolinate) (o-cresol salt) aluminum (III), bis (2-methyl-8-D quinolinate) (m-cresol salt) aluminum (111), bis (2-methyl -8-D quinolinate) (p-cresol) aluminum (II), bis (2-methyl-8-quinolinate) (o-phenylphenate) aluminum (II), bis (2-Methyl-8_D quinolinate) (m-phenylphenolate) aluminum (II), bis (2-methyl-8-D quinolinate) (p-phenylphosphonium salt) aluminum ( 111), bis (2-methyl-8-D quinolinate) (2,3-dimethylphenate) aluminum (III), bis (2-methyl-8-D quinolinate) ( 2,6-dimethylphenate) aluminum (ill), bis (2-methyl-8-quinolinate) (3,4-dimethylphenate) aluminum (III), bis (2-formyl) -8- [i quinolinate) (3, dimethylphenate) aluminum (ΙΠ), bis (2-methyl-8-naolinate) (3,5-di-third-butyl) Phenate) aluminum (II), bis (2 • methyl-8-D quinolinate) (2,6-diphenylphenate) aluminum (m), bis (2-methyl · 8 · Quinolinate) (2,4,6-triphenylphenolate) Aluminum (III) and the like. These light-emitting materials may be used singly or in combination of two or more kinds. Hereinafter, the light emitting layer will be described more specifically. In general, when a white light is emitted, the 'light-emitting layer is composed of two layers. This is called a first light emitting layer and a second light emitting layer. Various known light-emitting materials can be used as the first light-emitting layer used in this embodiment, and it is preferable to add a slight amount of 0.2 to 3 weights to the above-mentioned oxo compound. 42-200534744 (39)% green fluorescence The pigment is used as the first light-emitting layer. The green fluorescent pigments added here are coumarin-based and D-quinacridone-based. An element that retains the first light-emitting layer by adding these pigments can achieve high-efficiency green light emission of 5 to 20 (lw / w). On the other hand, if yellow or orange is to be released from the first light-emitting layer with high efficiency, 0.2 to 3 weight of rubrene and its derivative, tricyanopyran derivative, and phenanthrene can be added to the oxa compound. Derivatives. These devices can emit light at high efficiency of 3 to 10 (1 w / w). The green fluorescent pigment and the red fluorescent pigment can be added to orange at the same time. For example, coumarin and dicyanopyran pigments, acrylone and osmium pigments, coumarin and osmium pigments can also be preferably used simultaneously. Other particularly preferred first light emitting layers are polyarylene vinylidene derivatives. It can output green or orange with high efficiency. As the second light-emitting layer used in this embodiment, various known blue light-emitting materials can be used. For example, a distyryl arylidene derivative, a tristylenyl arylate derivative, and an allyloxylated quinolinate metal complex are high-efficiency blue light-emitting materials with high purity below. Examples of the polymer include polyparaphenylene derivatives. The method for forming the light-emitting layer in the organic EL element used in this embodiment can be formed by thinning it according to a known method such as a deposition method, a spin coating method, a casting method, or a LB method, and a molecular deposition film is particularly preferred. Here, the molecular deposition film refers to a thin film formed by precipitation of the compound in a gas phase state, and a film formed by solidification of the compound in a molten state or a liquid phase state. Generally, this molecular deposition film is a thin film (molecular accumulation film) formed according to the L B method and an agglomerated structure, a high-level structure, and a difference in a function caused by the structure. In addition, this light-emitting layer can be formed by dissolving a junction material with a resin, etc. -43- 200534744 (40). The junction material can be dissolved in a solvent to make a solution, and then formed into a thin film by spin coating or the like. There is no particular limitation on the film thickness of the light-emitting layer formed in this way, and it can be selected according to appropriate conditions, but it is preferably in the range of 1 nm to 10 μm, and particularly preferably in the range of 5 nm to 5 μm. (8) Hole injection layer Secondly, although the hole injection layer is not a necessary structure for the organic EL display device 100, it is generally used to improve the light emitting performance. Therefore, an example of using the hole injection layer is described in this embodiment. . This hole injecting layer is a layer that assists injecting holes into the light emitting layer. The hole mobility is large, and the ionization energy is usually as small as 5.5 ev or less. This type of hole injection layer is preferably a material that transports holes to the light-emitting layer with a lower electric field, and the mobility of the holes is, for example, at least 1 (T6Cni2 when an electric field of 104 ~ 106V / cm is applied. / V · second ~ (that is, l (T6Cm2 / V · second or more) is more preferable. Such hole injection materials are not particularly limited as long as they have the above-mentioned preferred properties. In the past, they were used in light-conducting materials. Among them, any one that is conventionally used as a hole-transporting charge transporting material and a well-known material used in the hole injection layer of an EL element can be selected. Specific examples include triazole derivatives (refer to US Pat. 11 2,197, etc.), humadiazole derivatives (refer to US Pat. No. 3,18,44,7, etc.), imidazole derivatives (refer to Japanese Patent Publication No. 3 7-1 6096, etc.), polyaryl chains Alkane derivatives (refer to U.S. Patent Nos. 3,6 1 5,4 02, same as 3,820,98 No. 9, same as 3,542,544, Japanese Patent Publication No. 45-555, Japanese Patent Publication No. 51-10983, Japanese Patent Publication No. 55 -] 5 6 9 5 3, same as 56- 3 665 6), pyrazoline derivatives and 20 0534744 (41) Pyrazolone derivatives (refer to U.S. Patent No. 3,18 0,72 No.9, the same as No. 4,278,746, JP 55-88064, No. 55-88065, No. 4 9 -1 05 5 3 7; same as 5 5-5 1 0 8 6; same as 56-80051; same as 56-88141; same as 57-45545; same as 54-112637; 55-74546, etc.).

具體例可列舉例如苯二胺衍生物(參照美國專利第 3,6 1 5,4 04號說明書、特公昭51-10105號公報、同4 6-3 7 1 2 號公報、同4 7 - 2 5 3 3 6號公報、特開昭5 4 - 5 3 4 3 5號公報、同 54-110536號公報、同54-119925號公報等)、芳基胺衍生 物(參照美國專利第3,5 67,45 0號說明書、同第3,1 8 0,703號 說明書、同第3,240,5 97號說明書、同第3,65 8,5 2 0號說明 書、同第4,23 2,103號說明書、同第4,1 7 5,96 1號說明書、 同第4,0 1 2,3 76號說明書、特公昭49-3 5 702號公報、同39-275 77號公報、特開昭5 5- 1 44250號公報、同5 6- 1 1 9 1 3 2號 公報、同5 6-224 3 7號公報、西德專利第151 10,518號說明書 等)、經胺基取代鏈烷衍生物(參照美國專利3,526,5 0 1號說 明書)、曙唑衍生物(於美國專利3,2 5 7,203號說明書等中揭 示者)、芴酮衍生物(參照特開昭5 4 - 1 1 0 8 3 7號公報等)、腙 衍生物(參照美國專利第3,7 1 7,4 62號說明書、特開昭54-59143號公報、同55-52063號公報、同55-52064號公報、 同55-46760號公報、同55- 8 5 495號公報、同57- 1 1 3 5 0號公 報、同57-148749號公報、特開平2-31 1591號公報等)、苯 乙烯蒽衍生物(參照特開昭5 6 - 4 6 2 3 4號公報)、芪衍生物(參 照特開昭6卜2 1 0 3 6 3號公報、同6卜2 2 8 4 5 1號公報、同61- -45- 200534744 (42) 14642號公報、同61-72255號公報、同62-47646號公報、 同62-3 6674號公報、同62- 1 0 6 5 2號公報、同62-3 02 5 5號公 報、同6 0- 93 44 5號公報、同60-94462號公報、同60-1 7 4 7 4 9號公報、同6 0 _ 1 7 5 0 5 2號公報等)、矽氮烷衍生物( 參照美國專利第4,95 0,95 0號說明書)、聚矽烷系(特開平2· 204996號公報)、,苯胺系共聚物(特開平2-2 822 63號公報) 、特開平1 - 2 1 1 3 9 9號公報所揭示之導電性高分子低聚物( 特叩爲噻吩低聚物)等。 φ 空穴注入層之材料可使用上述物質,但以使用卟啉化 合物(特開昭6 3 - 2 9 5 6 9 6 5號公報等中所揭示者)、芳香族三 級胺化合物及苯乙烯胺化合物(參照美國專利第4,127,4 12 號說明書、/特開昭5 3 -2 70 3 3號公報、同5'4-5 8445號公報、 同54-149634號公報、同54-64299號公報、同55-79450號 公報、同55-144250號公報、同56-119132號公報、同6卜 295 5 5 8號公報、同6 1 - 9 83 5 3號公報、同63 -295 695號公報 、特別以使用芳香族三級胺化合物爲佳。 · 上述卟啉化合物之代表例可列舉卟啉、1 ’ 1 0,1 5, 20 -四苯基-21H、23H -卩卜啉酮(II)、1,01,15,20 -四苯 基- 21H,23H-卩卜啉鋅(II)、5,10,15,20-四(五氟苯基)-21H、23Η-Π卜啉、酞菁氧化矽、酞菁氯化鋁、酞菁(無金屬 )、駄菁二鋰、四甲基駄菁酮、狀菁銅、献菁銘、酿菁鈴 、酞菁鉛、酞菁氧化鈦、酞菁鎂、八甲基酞菁酮等。 又,前述芳香族三級胺化合物及苯乙烯胺化合物之代 表例可列舉 >],]^,1^,1^’-四苯基-4,4’-二胺苯基、1^, -46 - 200534744 (43) Ν’ -聯苯基-Ν,Ν'雙- (3 -甲基苯基)_[ι,1,聯苯基卜4,4,-二 胺(以下簡稱爲TPD)、2,2-雙(4-二-對-甲苯胺苯基)丙院 、1 ’卜雙(4-二-對-甲苯胺苯基)環己烷、n,N,N,,N,· 四-對-甲苯基-4,4、二胺苯基、1,卜雙(4-二-對-甲苯胺 苯基)-4-苯基環己烷、雙(4_二甲胺基-2_甲基苯基)苯基甲 烷、雙(4-二-對-甲苯胺苯基)苯基甲烷、n,Ν’-聯苯基·Ν ,:hT雙-二(4 -甲氧基苯基)-4,4,-二胺基聯苯、Ν,Ν,Ν, ,Ν’-四苯基-4,4’-二胺苯醚、4,4、雙(聯苯胺基)聯四苯 、Ν,Ν,Ν-三(對_甲苯基)胺、4•(二·對·甲苯胺基卜4,_[4( 二-對-甲苯胺基)苯乙烯基];g、4 ,Ν-二苯胺基-(2-聯苯 乙烯基)苯、3 -甲氧基-4,-Ν,Ν,-聯苯胺基苯乙烯苯、Ν-苯 基昨哗、美國專利桌5,〇 6 1,5 6 9號所記載之分子內具有二 個縮合芳香族環之例如4,4,-雙[Ν - (1 -萘基)-Ν -苯胺基]聯 苯(以下簡稱爲NPD)、或,特開平4 -3 08 6 8 8號公報所記載 之三苯胺單位爲以三個星爆型連結的4,4,,4"_三[N_(h 甲基苯基)苯胺基]三苯胺(以下簡稱爲MTDATA)等。 又’發光層材料除了前述之芳香族二次甲基系化合物 以外’亦可將p型-Si,p型SiC等之無機化合物使用做爲 空穴注入層的材料。空穴注入層爲將上]述化合物,例如 以真空澱積法、旋塗法、澆鑄法、LB法等之公知方法予 以薄膜化則可形成。空穴注入層的膜厚並無特別限制,通 常爲5nm〜5 μπι。此空穴注入層爲由上述材料之一種或二種 以上所構成之一層所構成,又,亦可將前述空穴注入層與 另一種化合物所構成之空穴注入層予以層合。又,有機半 -47- 200534744 (44) 導體層爲有助於空穴注入或電子注入至發光層之層, 1(T1()S/Cm以上之導電率爲適當。此類有機半導體層 可使用含噻吩低聚物和含芳基胺低聚物等之導電性低 ,含芳基胺樹枝狀物等之導電性樹枝狀物等。 (9)電子注入層,附著改善層 另一方面,電子注入層爲有助於電子注入至發光 層,電子移動大,而附著改善層爲於此電子注入層中 別由陰極附著住之材料所構成的層。電子注入層所用 料可列舉例如8 -羥基喹啉或其衍生物之金屬錯合物, 二唑衍生物爲佳。又,附著改善層所用之材料特別以 基曈啉或其衍生物之金屬錯合物爲適當。上述8-羥基 或其衍生物之金屬錯合物的具體例可列舉含有8-羥基 之嵌合物的金屬嵌合氧雜型化合物。另一方面,鳄二 生物可列舉下列所示之一般式(II)、(III)及(IV)。 …(Π) •·_απ) 具有 材料 聚物 層之 ,特 之材 或口等 8-羥 口奎啉 D奎啉 唑衍Specific examples include phenylenediamine derivatives (refer to US Pat. No. 3,6 1 5,4 04, JP 51-10105, JP 4 6-3 7 1 2, JP 4 7-2 5 3 3 6, Japanese Patent Laid-Open No. 5 4-5 3 4 3 5, Japanese Patent Publication No. 54-110536, Japanese Patent Publication No. 54-119925, etc., and arylamine derivatives (refer to US Patent No. 3,5 Instruction No. 67,45, Instruction No. 3, 1 0 0,703, Instruction No. 3,240,5 97, Instruction No. 3,65 8,5 2 0, Instruction No. 4,23 2,103, Same as No. 4, 1 7 5, 96 No. 1, Same as No. 4, 0 1 2, 3, 76, Japanese Patent Publication No. 49-3 5 702, Japanese Patent Publication No. 39-275 77, Japanese Patent Publication No. 5- No. 1 44250, same as 5 6- 1 1 9 1 3 2, same as 5 6-224 37, West German Patent No. 151 10,518, etc.), alkane derivatives substituted with amine groups (refer to the United States Patent No. 3,526,501 No. 1), Sudazole derivatives (disclosed in US Patent No. 3,2 5 7,203, etc.), fluorenone derivatives (see Japanese Patent Laid-Open No. Sho 5 4-1 1 0 8 3 7 Bulletin, etc.), fluorene derivatives (refer to US Patent No. 3) , 7 1 7,4 62, JP 54-59143, JP 55-52063, JP 55-52064, JP 55-46760, JP 55- 8 5 495, JP 57- 1 1 3 5 0, same as 57-148749, JP-A Hei 2-31 1591, etc.), styrene anthracene derivatives (refer to JP-A 5-6-4 6 2 3 4), Stilbene derivatives (see JP 6 1 2 0 3 6 3, 6 2 2 8 4 5 1, 61-45- 200534744 (42) 14642, 61-72255 Gazette, same as Gazette 62-47646, Gazette 62-3 6674, Gazette 62- 1 0 6 5 2, Gazette 62-3 02 5 5, Gazette 6-93 44 5, Gazette 60 -94462, same as 60-1 7 4 7 4 9 and same 60_ 1 7 5 0 52, etc.), silazane derivatives (refer to US Patent No. 4,95 0,95 0 Specification), polysilane (Japanese Patent Application Laid-Open No. 2 204204), aniline copolymer (Japanese Patent Application Laid-open No. 2-2 822 63), and electrical conductivity disclosed in Japanese Patent Application Laid-Open No. 1-2 1 1 3 9 Polymer oligomers (particularly thiophene oligomers), etc. As the material of the φ hole injection layer, the above materials can be used, but a porphyrin compound (as disclosed in JP 6 3-2 9 5 6 9 65), an aromatic tertiary amine compound, and styrene are used. Amine compounds (refer to U.S. Patent No. 4,127,4 12, JP-A No. 5 3 -2 70 3 3, same as 5'4-5 8445, same as 54-149634, and same as 54-64299 Gazette, same as Gazette 55-79450, Gazette 55-144250, Gazette 56-119132, Gazette 6 295 5 58, Gazette 6 1-9 83 5 3, Gazette 63 -295 695 It is particularly preferred to use an aromatic tertiary amine compound in the bulletin. · Representative examples of the above porphyrin compounds include porphyrin, 1 '10, 15, 20-tetraphenyl-21H, and 23H-pyrrolidone ( II), 1,01,15,20-tetraphenyl-21H, 23H-oxomorpholine zinc (II), 5,10,15,20-tetrakis (pentafluorophenyl) -21H, 23Η-IIoline , Silicon phthalocyanine oxide, aluminum phthalocyanine chloride, metal phthalocyanine (metal-free), dilithium cyanocyanine, tetramethyl cyanocyanone, copper cyanocyanine, cyanocyanine, cyanocyanine, lead phthalocyanine, phthalocyanine oxidation Titanium, magnesium phthalocyanine, octamethyl phthalocyanine, etc. In addition, representative examples of the aforementioned aromatic tertiary amine compound and styrylamine compound include >],] ^, 1 ^, 1 ^ '-tetraphenyl-4,4'-diaminephenyl, 1 ^, -46-200534744 (43) N′-biphenyl-N, N′bis- (3-methylphenyl) _ [ι, 1, biphenylphenyl 4,4, -diamine (hereinafter referred to as TPD ), 2,2-bis (4-di-p-toluidinephenyl) propanate, 1'bubis (4-di-p-toluidinephenyl) cyclohexane, n, N, N ,, N , · Tetra-p-tolyl-4,4, diaminephenyl, 1,4-bis (4-di-p-toluidinephenyl) -4-phenylcyclohexane, bis (4-dimethylamine 2-methylphenyl) phenylmethane, bis (4-di-p-toluidinephenyl) phenylmethane, n, N'-biphenyl · N,: hTbis-bis (4-methyl Oxyphenyl) -4,4, -diaminobiphenyl, N, N, N,, N'-tetraphenyl-4,4'-diaminophenyl ether, 4,4, bis (benzidine) ) Bi-tetraphenyl, Ν, Ν, Ν-tri (p-tolyl) amine, 4 • (di · p-tolylaminob 4, _ [4 (di-p-tolyl) styryl]]; g, 4, N-diphenylamino- (2-distyryl) benzene, 3-methoxy-4,- , N, -benzidine styrene benzene, N-phenyl group, as described in U.S. Patent Table No. 5,06,59,9 having two condensed aromatic rings in the molecule such as 4,4,- Bis [N-(1-naphthyl) -N -anilino] biphenyl (hereinafter abbreviated as NPD), or the triphenylamine unit described in JP-A-4-3 08 6 8 8 is three star bursts Type-linked 4,4,, 4 " _tri [N_ (h methylphenyl) aniline] triphenylamine (hereinafter referred to as MTDATA) and the like. As the material of the light-emitting layer, in addition to the aforementioned aromatic secondary methyl-based compound, inorganic compounds such as p-Si and p-SiC can be used as the material of the hole injection layer. The hole injection layer is formed by thinning the compound described above, for example, by a known method such as a vacuum deposition method, a spin coating method, a casting method, or a LB method. The thickness of the hole injection layer is not particularly limited, but it is usually 5 nm to 5 μm. The hole injection layer is composed of one layer of one or two or more of the above materials. Alternatively, the hole injection layer may be laminated with a hole injection layer made of another compound. The organic semi-47-200534744 (44) conductive layer is a layer that facilitates the injection of holes or electrons into the light-emitting layer, and has a conductivity of 1 (T1 () S / Cm or more). Such organic semiconductor layers may be Use of thiophene-containing oligomers and arylamine-containing oligomers, which have low conductivity, and arylamine-containing dendrimers, etc. (9) Electron injection layer, adhesion improvement layer On the other hand, The electron injection layer is a layer that facilitates the injection of electrons into the light-emitting layer and has a large electron movement, and the adhesion improvement layer is a layer composed of a material that is not adhered to the cathode in the electron injection layer. The materials used for the electron injection layer include, for example, 8 -A metal complex of hydroxyquinoline or a derivative thereof, preferably a diazole derivative. The material used for the adhesion improving layer is particularly preferably a metal complex of oxoline or a derivative thereof. The 8-hydroxy group described above Specific examples of the metal complex of a derivative thereof or a derivative thereof include a metal chimeric oxo compound containing a chimera of 8-hydroxy group. On the other hand, crocodile organisms include the following general formula (II), (III) and (IV) ... (Π) • · αα The other layer, or the mouth of the timber 8-hydroxyquinoline Laid port Kui Kui morpholine morpholine oxazole derivatives D

Ν—Ν Ar12— 〇一Ar A~tΝ—Ν Ar12— 〇Ar A ~ t

Ar (IV) 此各式中,Ar1G〜Ar]3爲分別表示經取代或未取代之 ,Ar1G與Ar11及Ar12與Ar13分別可彼此相同或相異, 芳基 Ar1' 200534744 (45) 爲表示經取代或未取代之伸芳基。 口f三唑衍生物可列舉此些式所示之電子傳遞化合物。 此處,芳基可列舉苯基、聯苯基、蒽基、茈基、芘基等, 伸芳基可列舉伸苯基、伸萘基、伸聯苯基、伸蒽基、伸菲 基、伸茈基等。又,取代基可列舉碳數1〜10個之烷基、碳 數1〜1 〇個之烷氧基或氰基等。此電子傳遞化合物以薄膜形 成性之化合物爲佳。上述電子傳遞化合物之具體例可列舉 下式所示之化合物。 (PBD) C(CH3)3 ·Ar (IV) In this formula, Ar1G ~ Ar] 3 represents substituted or unsubstituted, respectively, Ar1G and Ar11 and Ar12 and Ar13 may be the same or different from each other, respectively, and the aryl group Ar1 '200534744 (45) is used to represent Substituted or unsubstituted arylene. Examples of the triazole derivative include electron-transporting compounds represented by these formulae. Here, examples of the aryl group include phenyl, biphenyl, anthryl, fluorenyl, and fluorenyl. Examples of the arylene include phenyl, naphthyl, phenyl, anthryl, and phenanthryl. Shen Yanji and others. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cyano group. The electron-transporting compound is preferably a film-forming compound. Specific examples of the electron-transporting compound include compounds represented by the following formula. (PBD) C (CH3) 3

(CH3)3C(CH3) 3C

(CH3) (10)陰極20 陰極20爲使用功函數小(4 eV以下)之金屬、合金、導 200534744 (46) 電性化合物及其混合物做爲電極物質。此類電極物質的具 體例可列舉鈉、鈉-鉀合金、鎂、鋰、鎂銀合金、鋁/氧化 鋁(Al2〇3)、鋁鋰合金、銦、稀土類金屬等。此陰極20爲 將此些電極物質以澱積和濺鍍等之方法,形成薄膜則可作 成。又,陰極之片電阻爲數百Ω/□以下爲佳,且膜厚通 常爲由l〇nm〜Ιμιη中選出,特別以50〜200nm.之範圍爲佳 〇 還有,本實施形態所用之有機EL元件中,該陽極1 6 或陽極20之任一者爲透明或半透明爲佳。若爲透明或半透 明,則發光可穿透,故發光的釋出效率佳。 (11)構成有機EL元件122之層的層合方法 a·陽極16(基板電極) 將基板1 2側層合的電極稱爲基板電極。因此,如上述 之陽極1 6爲基板電極。基板電極的層合方法並無特別限制 ’例如以澱積法、濺鍍法、離子電鍍法、電子束澱積法、 DVD 法(CVD 法(CVD: Chemical Vapor Deposition 之化學 氣相堆積法)、MOCVD 法(MOCVD: Metalorganic CVD: 有機金屬化學堆積法)、電漿CVD法等之乾式成膜法爲佳 。陽極1 6亦爲以此類層合方法予以層合。 b .有機物層1 8 以上述「(7)發光層」說明之手法同樣之方法予以層 合。 -50- 200534744 (47) c.對向電極 將對向該基板電極的電極稱爲對向電極。因此,如上 述之陰極20爲對向電極。對向電極亦以上述基板電極同樣 之手法予以層合。 【實施方式】 實施例 以下,關於本實施形態之CCM電極基板及其上構築 有機EL元件時之有機EL顯示裝置(CCM面板),列舉具 體的數據說明實施例。 [實施例1] 本實施例1中,於CCM基板124(亦稱爲CCM電極基 板)上之陽極16上設置表面保護層〗02,使得利用此CCM 基板124作成有機EL元件122(亦稱爲CCM面板)時,證明 此有機EL元件122爲更加高性能化。 ①CCM層124(色轉換基板)之製作其一(至形成色轉換膜 爲止) 於102mmxl33nmxl.lmm之支撐基板(〇A2玻璃:日 本電氣硝子公司製)上,將黑色矩陣(BM)材料之V259BK( 新日鐵化學公司製)予以旋塗,並且以紫外線曝光成格小 狀之圖案,以2 °/〇碳酸鈉水溶液顯像後,以2 0 0 t烘烤 (Bake :煅燒),作成黑色矩陣(膜厚υμη^)的圖案。 -51 - 200534744 (48) 其次,將藍色彩色濾光片材料之V2 5 9 B(新日鐵化學 公司製)予以旋塗,透過取得3 2 0根長方形(90 μηι線、 240μπι間距)之條紋圖案的光罩,配合ΒΜ位置進行紫外 線曝光,以2%碳酸鈉水溶液顯像後,以200 °C烘烤(煅燒) ,形成藍色彩色濾光片(膜厚1.5 μηι)的圖案。 其次,將綠色彩色濾光片材料之V25 9G(新日鐵化學 公司製)予以旋塗,透過取得3 20根長方形(90 μπι線、 2 40μιυ間隙)之條紋圖案的光罩,配合ΒΜ位置進行紫外 線曝光,以2 %碳酸鈉冰溶液顯像後,以2 0 0 °C烘烤(煅燒) ,於藍色彩色濾光片隔壁形成綠色彩色濾光片(膜厚 1 · 5 μιη)的圖案。 其次,將紅色彩色,濾光片材料之 V25 9R(新日鐵化學 公司製)予以旋塗,透過取得320根長方形(90 μπι線、 240 μιη間隙)之條紋圖案的光罩,配合ΒΜ位置進行紫外 線曝光,於藍色彩色濾光片與綠色彩色濾光片之間形成紅 色彩色濾光片(膜厚1·5μΐΏ)的圖案。 其次,將綠色CCM層14G之材料以0.04m〇I/kg(對固 形成分)份量之香豆素6,調製成溶解於丙烯酸系負型光阻 (V2 5 9R、固形成分濃度50% :新日鐵化學公司製)中溶解 的油墨。 將此油墨於先前的基板上旋塗,並於綠色彩色濾光片 上進行紫外線曝光,且以2%碳酸鈉水溶液顯像後,以200 °C烘烤(煅燒),於綠色彩色濾光片上形成綠色轉換膜的圖 案(膜厚1 〇μηι)。 -52- 200534744 (49) 其次,將紅色CCM層14R之材料之香豆素6: 0.53克 基礎紫1 1 : 1 ·5克、若丹明6G : 1 .5克於丙烯酸系負型光阻 (V25 9R、固形成分濃度50% :新日鐵化學公司製)·· 100克 中溶解的油墨。 將此油墨於先前的基板上旋塗,並於紅色彩色濾光片 上進行紫外線曝光,且以2%碳酸鈉水溶液顯像後,以180 °C烘烤(煅燒),於紅色彩色濾光片上形成紅色轉換膜的圖 案(膜厚ΙΟμπι),取得色轉換基板。 ②CCM層124(色轉換基板)之製作其二(至平坦化膜〜陽極 1 6〜形成間隔壁爲止) 其次,將做爲平坦化膜之丙烯酸系熱硬化性樹脂 (V2 5 9R :新日鐵化學公司製)於先前之基板上旋塗,並以 180°C烘烤(煅燒),形成平坦化膜(膜厚5μιη)。 其次,將做爲阻氧層之透明無機膜 SiOxNy(O/O + N = 50% :原子比)以低溫C VD成膜爲2 00nm 之厚度。透濕度爲未滿0.1 g/m2 · day。 其次,將IZO(氧化銦鋅)以濺鍍成膜爲2 00nm膜厚。 其次,於此基板上,透過正型光阻(HP R2 04 :富士軟 片Arch製)90μηι線、20μηι間隙之條紋狀圖案的光罩,且 配合與CCM層或彩色濾光片圖案重疊之位置進行紫外線 曝光’並以ΤΜΑΗ(氫氧化四甲基銨)之顯像液顯像,且以 13 0°C烘烤(煅燒),取得光阻圖案。 其次,以5%草酸水溶液所構成之IZO蝕刻物,將露 200534744 (50) 出部分之IZO予以蝕刻。其次,將光阻以乙醇胺做爲主成 分之剝離液(N 3 0 3 ··長瀨產業製)處理,取得IZO圖案(下 方電極:陽極1 6、線數9 6 0根)。(CH3) (10) Cathode 20 Cathode 20 uses metals, alloys, and conductive materials with a small work function (below 4 eV). 200534744 (46) Electrical compounds and mixtures are used as electrode materials. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium-silver alloy, aluminum / aluminum oxide (Al203), aluminum-lithium alloy, indium, and rare-earth metals. The cathode 20 is formed by depositing, depositing, and sputtering such electrode materials, and can be formed by forming a thin film. The sheet resistance of the cathode is preferably several hundreds Ω / □ or less, and the film thickness is usually selected from 10 nm to 1 μm, and particularly preferably in a range of 50 to 200 nm. Furthermore, the organic material used in this embodiment is In the EL element, it is preferable that either the anode 16 or the anode 20 is transparent or translucent. If it is transparent or translucent, the light can be transmitted, so the light emission efficiency is good. (11) Laminating method of the layers constituting the organic EL element 122 a. Anode 16 (substrate electrode) An electrode in which the substrate 12 is laminated on the side is referred to as a substrate electrode. Therefore, the anode 16 as described above is a substrate electrode. The method of laminating the substrate electrodes is not particularly limited. For example, a deposition method, a sputtering method, an ion plating method, an electron beam deposition method, a DVD method (CVD method (CVD: Chemical Vapor Deposition)), Dry film-forming methods such as MOCVD (MOCVD: Metalorganic CVD) and plasma CVD are preferred. The anode 16 is also laminated in this way. B. Organic layer 18 The method described in the "(7) Light-emitting layer" above is laminated in the same way. -50- 200534744 (47) c. Counter electrode The electrode opposing the substrate electrode is called the counter electrode. Therefore, the cathode as described above 20 is a counter electrode. The counter electrode is also laminated in the same manner as the above-mentioned substrate electrode. [Embodiment] Hereinafter, the CCM electrode substrate of this embodiment and an organic EL display device when an organic EL element is constructed thereon will be described. (CCM panel), enumerating specific data to explain the embodiment. [Embodiment 1] In this embodiment 1, a surface protection layer 02 is provided on the anode 16 on the CCM substrate 124 (also referred to as a CCM electrode substrate). This CC When the M substrate 124 is made into an organic EL element 122 (also referred to as a CCM panel), it is proved that the organic EL element 122 has higher performance. ① One of the CCM layer 124 (color conversion substrate) is produced (until a color conversion film is formed) 102mmxl33nmxl.lmm support substrate (〇A2 glass: manufactured by Nippon Electric Glass Co., Ltd.) was spin-coated with black matrix (BM) material V259BK (manufactured by Nippon Steel Chemical Co., Ltd.) and exposed to ultraviolet light to form a small grid After being developed with a 2 ° / 〇 sodium carbonate aqueous solution, it was baked at 200 t (bake: calcined) to form a black matrix (film thickness υμη ^). -51-200534744 (48) Next, the blue color V2 5 9 B (manufactured by Nippon Steel Chemical Co., Ltd.) of the color filter material was spin-coated, and a mask was obtained by obtaining stripe patterns of 3 20 rectangular (90 μηι lines, 240 μπι pitch) strips, and ultraviolet exposure was performed with the BM position. After being developed with a 2% sodium carbonate aqueous solution, it is baked (calcined) at 200 ° C to form a pattern of a blue color filter (film thickness 1.5 μm). Next, the green color filter material V25 9G ( (Produced by Nippon Steel Chemical Co., Ltd.) Coating, through a mask with 3, 20 stripe patterns of rectangular (90 μπι lines, 2 40 μιυ gaps), UV exposure with BM position, development with 2% sodium carbonate ice solution, and baking at 200 ° C (Calcination), forming a pattern of a green color filter (film thickness 1 · 5 μιη) next to the blue color filter. Next, V25 9R (manufactured by Nippon Steel Chemical Co., Ltd.) with red color and filter material was spin-coated, and a mask with 320 stripe patterns (90 μπι lines and 240 μιη gaps) was obtained by matching the BM position. By ultraviolet exposure, a pattern of a red color filter (film thickness 1.5 μΐΏ) was formed between the blue color filter and the green color filter. Next, the material of the green CCM layer 14G was prepared at a concentration of 0.04 mol / kg (counter solid content) of coumarin 6 to dissolve in acrylic negative photoresist (V2 5 9R, solid content concentration 50%: New Nikkei Chemical Co., Ltd.). This ink was spin-coated on a previous substrate, and exposed to ultraviolet light on a green color filter. After being developed with a 2% sodium carbonate aqueous solution, it was baked (calcined) at 200 ° C and applied to the green color filter. A pattern (film thickness 10 μm) of a green conversion film was formed thereon. -52- 200534744 (49) Next, the coumarin 6 of the material of the red CCM layer 14R: 0.53 grams of basic violet 1 1: 1.5 grams, rhodamine 6G: 1.5 grams are used in acrylic negative photoresist (V25 9R, solid content concentration 50%: manufactured by Nippon Steel Chemical Co., Ltd.) · 100 g of dissolved ink. This ink was spin-coated on the previous substrate, and exposed to ultraviolet light on a red color filter. After being developed with a 2% sodium carbonate aqueous solution, it was baked (calcined) at 180 ° C and applied to the red color filter. A pattern (film thickness 10 μm) of a red conversion film was formed thereon to obtain a color conversion substrate. ② Second production of CCM layer 124 (color conversion substrate) (until planarization film ~ anode 16 ~ formation of partition walls) Second, acrylic thermosetting resin (V2 5 9R: Nippon Steel) as the planarization film (Manufactured by Chemical Co., Ltd.) was spin-coated on a previous substrate and baked (calcined) at 180 ° C to form a flattened film (film thickness: 5 μm). Secondly, a transparent inorganic film SiOxNy (O / O + N = 50%: atomic ratio) as an oxygen blocking layer is formed at a low temperature of C VD to a thickness of 200 nm. The moisture permeability is less than 0.1 g / m2 · day. Next, IZO (indium zinc oxide) was sputtered to a thickness of 200 nm. Next, on this substrate, a mask with a stripe pattern of 90 μm lines and a gap of 20 μm is passed through a positive-type photoresist (HP R2 04: manufactured by Fujifilm Arch), and the position is overlapped with the CCM layer or the color filter pattern. It was exposed to ultraviolet light and developed with a developing solution of TIMA (tetramethylammonium hydroxide), and baked (calcined) at 130 ° C to obtain a photoresist pattern. Secondly, the IZO etched product composed of 5% oxalic acid aqueous solution was used to etch the IZO part exposed from 200534744 (50). Next, the photoresist was stripped with ethanolamine as the main component (N 3 0 · · Nagase Industry Co., Ltd.) to obtain an IZO pattern (lower electrode: anode 16 and wire number 960).

其次,將做爲第一層間絕緣膜之負型光阻(V2 5 9P A : 新日鐵化學公司製)予以旋塗,進行紫外線曝光,並以 TMAH(氫氧化四甲基銨)之顯像液顯像。其次,以180°C烘 烤(煅燒),且覆蓋ITO的邊緣,令IZO之開口部爲70μπι X 2 9 0 μηι 〇 其次,將做爲第二層間絕緣膜(間隔壁)之負型光阻 (ΖΡΝ1100 :日本 Zoon製)予以旋塗,透過20μιη線、 3 1 0 μιη間隙之條紋圖案的光罩,於紫外線曝光後,再進行 曝·光後烘烤(煅燒)。其次,以ΤΜΑΗ(氫氧化四甲基銨)之 顯像液將負光阻予以顯像,形成垂直ΙΖΟ條紋之有機膜的 果一層間絕緣膜(間隔壁)。 ③CCM基板124(色轉換基板)之製作其三(於陽極16上成 膜出表面保護層102) 於如上述處理設置層間絕緣膜的基板上,以誘導結合 型RF電獎支援磁控管濺鍍法(以下稱爲旋轉激鍍法)將 Si〇2成膜爲20Α。詳細手續爲如下。 於上述基板洗淨後,將洗淨後之基板安裝至濺鍍室中 ’進行真空排氣。還有,實驗中所用之裝置爲由5丨〇2之 標的物至基板爲止的距離爲3 0公分。 確認真空度爲2·〇 X 1 〇4 + pa以下後,將放電氣體Ar • 54 - 200534744 (51) 以遮蔽流控制器導入8〇Sccm。此時之真空度爲0.38Pa。 於標的物正上方之主要光閘爲關閉的狀態下,對周波 數13.56MHz之誘導結合用線圈外加50W、對Si02同樣外 加周波數13.5 6 MHZ5 0 0 W之高周波,引起電漿放電。此時 各線圈的反射均爲5 W以下。於此主要光閘關閉的狀態下 繼續上述放電5分鐘,並且洗淨Si02標的物表面。 其後打開主要光閘,並由預先計測之成膜速率値予以 推測,且以6分20秒鐘之電漿放電進行成膜,其結果,於 IZO上形成膜厚20A的Si〇2。 ④於CCM基板124(色轉換基板)上形成有機EL元件及面 板: 密封 將如此處理所得之基板於純水及異丙醇中超音波洗淨 ,並以乾燥氮吹掃予以乾燥。 令基板於有機Μ積裝置(日本真空技術製)內部移動, 並將基板固定至基板支架。 還有’有機澱積裝置中具備鉬製之加熱罐。預先對各 個鉬製之加熱罐,裝入各種材料。 具體而言,裝入4,4,,4,,-三[Ν-(3 -甲基苯基卜Ν-苯 胺基]三苯胺(MTDATA)、4,4’-雙[N-(l-萘基)·Ν-苯胺基] 聯苯(NPD)做爲空穴注入材料。發光材料之主要材料爲裝 入4,4*-雙(2,2-聯苯乙烯基)聯苯(DPVBi)。摻混物爲裝 入1,4-雙[4-(N,N-聯苯胺基苯乙烯基)](DPAVB)。電子 -55- 200534744 (52) 注入材料爲裝入三(8-羥基D奎啉)鋁(人1(})與Li。更且,陰極 2 〇爲裝入A1 a。 其後,將真空槽減壓至5 X l(T7t〇rr爲止之後,以下 、 列手續由空穴注入層層合至陰極20。還有,於層合步驟之 、 途中,以不會暫時破壞真空般,以一回吸真空下依序層合 各層。 首先,將做爲空穴注入層的MTDATA以澱積速度 〇. 1〜0.3nm/秒鐘予以成膜,取得膜厚6〇nm。更且,將NPD φ 以澱積速度0.1〜〇.3nm/秒鐘予以成膜,取得膜厚20nm。又 ’將做爲發光層之DPVBi與DPAVB分別以.澱積速度 0.1〜0.3nm/秒鐘,澱積速度〇.〇3〜0.05nm /秒鐘予以共同锻 積取得膜厚5 0 n m。將做爲電子注入層之A 1 q與L· i分別以 〇·1〜0.3nm/秒鐘、〇.〇〇5nm/秒鐘共同澱積成膜,取得膜厚 20nm。最後,將陰極20之A1以澱積速度0.1〜0.3nm/秒鐘 予以成膜,構成膜厚1 50nm的陰極20。如此處理製作有機 EL元件。 φ 其次,將此基板於乾燥氮氣(露點-5 (TC )循環之球狀 箱內移動,並以102nmxl33nmxl.lnm之藍色玻璃覆蓋顯 示部,且顯示部周邊部爲以陽離子硬化製之接黏劑 (TB3102: 3 Bond製)予以光硬化貼合,製作被動型有機 EL顯示裝置。 ⑤色轉換面板密封的驅動評價 將其下方電極(陰極16 : IZ0)與上方電極(陽極20 : -56- 200534744 (53) A1)以 Duty=l/:120,外加15V之電壓(下方電極:(+ )、上 方電極:(-)時,各電極的交叉部分(畫素)爲發光。 發光亮度爲以色彩色差計(CS100,Minolta製),取得 於監色彩色爐光片部(監色畫素)爲16cd/m2且CIE色度座 標爲Χ = 〇.15、Υ = 0·16之藍色發光,於綠CCM層/綠色彩 色濾光片部(綠色畫素)爲45cd/m2且 CIE色度座標爲 Χ = 0·27、Υ = 〇·67之綠色發光,於紅C CM層/紅色彩色濾光 片部(紅色畫素)爲45cd/m2且 CIE色度座標爲X = 〇.64、 Υ = 〇· 3 5之紅色發光,且取得光的三原色。 還有,此時之有機EL元件的發光亮度爲200cd/m2(相 當於全畫素發光)且CIE色度座標爲X = 0.17、y = 0.28的藍 ^色發光。 其次,於此驅動條件下,於室溫2 2 °C下驅動1 0 0 0小時 之時’藍色畫素爲100 cd/m2(若視初期値爲1,則比率0.67) ,綠色畫素爲27cd/m2(若視初期値爲1,則比率0.60)。紅 色畫素爲9cd/m2(若視初期値爲1,則比率0.60)。有機EL 元件的亮度爲126cd/m2(若視初期値爲1,則比率0.63)。 又,將未附有CCM、以上述成膜手續所製作的有機 EL元件,以通常之乾燥氮氣般之惰性氣體予以密封時之 有機EL元件的亮度惡化爲在上述驅動條件同樣的驅動條 件下’若初期値爲1,則比率0.6 5。 [比較例1 ] 於實施例1中③CCM基板124之製作(於陽極16上成膜 200534744 (54) 出表面保護層102)中未實行做爲表面保護層102之Si 02的 成膜步驟,立即完全同樣進行④於CCM基板124上形成有 機EL元件層及面板密封之處理,製作有機EL顯示裝置( 有機EL面板)。同實施例1,進行⑤色轉換面板密封之驅 動評價,取得如下之結果。Next, a negative photoresist (V2 5 9P A: manufactured by Nippon Steel Chemical Co., Ltd.) as the first interlayer insulating film was spin-coated, exposed to UV light, and displayed with TMAH (tetramethylammonium hydroxide). Image development. Secondly, it is baked (calcined) at 180 ° C and covers the edge of ITO, so that the opening of IZO is 70 μπι X 2 9 0 μηι 〇 Secondly, it will be used as the negative photoresistor of the second interlayer insulating film (partition wall) (ZPN1100: manufactured by Japan Zoon) was spin-coated and passed through a mask with a stripe pattern of 20 μm lines and a gap of 3 10 μm, exposed to ultraviolet light, and then baked and baked (calcined) after exposure. Secondly, a negative photoresist is developed with a developing solution of TMAH (tetramethylammonium hydroxide) to form an interlayer insulating film (partition wall) of an organic film with vertical IZO stripes. ③ Fabrication of CCM substrate 124 (color conversion substrate). Third (form a surface protective layer 102 on the anode 16) on the substrate provided with an interlayer insulating film as described above to induce a combined RF electric award to support magnetron sputtering. The method (hereinafter referred to as the spin-excitation plating method) forms SiO 2 into 20A. The detailed procedures are as follows. After the substrates are cleaned, the cleaned substrates are mounted in a sputtering chamber 'and evacuated. In addition, the device used in the experiment was a distance of 30 cm from the target of 5 2 to the substrate. After confirming that the degree of vacuum was 2.0 × 1 × 4 + pa or less, the discharge gas Ar • 54-200534744 (51) was introduced into 80 ° cm with a shielded flow controller. The degree of vacuum at this time was 0.38 Pa. When the main shutter directly above the target is closed, 50W is applied to the induction coupling coil with a frequency of 13.56MHz, and high frequency with a frequency of 13.5 6 MHZ50 0 W is applied to Si02, causing plasma discharge. At this time, the reflection of each coil is 5 W or less. With the main shutter closed, the above discharge was continued for 5 minutes, and the surface of the Si02 target was washed. After that, the main shutter was opened, and the film formation rate 値, which was measured in advance, was estimated, and the film was formed by a plasma discharge of 6 minutes and 20 seconds. As a result, Si02 having a film thickness of 20 A was formed on IZO. ④ An organic EL element and a panel are formed on the CCM substrate 124 (color conversion substrate): Sealing The substrate thus treated is ultrasonically washed in pure water and isopropyl alcohol, and dried by purging with dry nitrogen. The substrate was moved inside an organic MEMS device (manufactured by Japan Vacuum Technology), and the substrate was fixed to a substrate holder. There is a heating tank made of molybdenum in the organic deposition apparatus. Each heating tank made of molybdenum is filled with various materials in advance. Specifically, 4,4,, 4 ,,-tri [N- (3-methylphenyl, N-anilino] triphenylamine (MTDATA), 4,4'-bis [N- (l- Naphthyl) · N-aniline] Biphenyl (NPD) as a hole injection material. The main material of the light-emitting material is 4,4 * -bis (2,2-distyryl) biphenyl (DPVBi) .The blend is charged with 1,4-bis [4- (N, N-benzylaminostyryl)] (DPAVB). Electron-55- 200534744 (52) The injection material is charged with tris (8-hydroxyl D quinoline) aluminum (person 1 (}) and Li. In addition, the cathode 20 is filled with A1 a. Thereafter, the vacuum tank is decompressed to 5 X l (up to T7 torr), and the following procedures are followed. The hole injection layer is laminated to the cathode 20. Also, during the lamination step, the layers are sequentially laminated under a vacuum so as not to temporarily break the vacuum. First, the hole injection layer will be used as the hole injection layer. MTDATA was deposited at a deposition rate of 0.1 to 0.3 nm / sec to obtain a film thickness of 60 nm. Furthermore, NPD φ was deposited at a deposition rate of 0.1 to 0.3 nm / sec to obtain a film 20nm thick. DPVBi and DPAVB will be used as the light-emitting layer at a deposition rate of 0.1 ~ 0.3nm / The deposition rate is from 0.03 to 0.05 nm / second, and the film thickness is 50 nm. A 1 q and L · i, which are used as the electron injection layer, are set at 0.1 to 0.3 nm / second, respectively. It was co-deposited into a film with a thickness of 0.05 nm / second to obtain a film thickness of 20 nm. Finally, A1 of the cathode 20 was formed at a deposition rate of 0.1 to 0.3 nm / second to form a cathode having a film thickness of 150 nm. 20. Prepare an organic EL device in this way. Φ Next, move the substrate in a spherical box with a dry nitrogen (dew point-5 (TC)) cycle, and cover the display section with blue glass of 102nmxl33nmxl.lnm, and the periphery of the display section The part is made of a cation-curing adhesive (TB3102: 3 Bond) and is light-cured and bonded to produce a passive organic EL display device. ⑤ The driving evaluation of the seal of the color conversion panel consists of the lower electrode (cathode 16: IZ0) and The upper electrode (anode 20: -56- 200534744 (53) A1) with Duty = 1 /: 120, and a voltage of 15V (the lower electrode: (+), the upper electrode: (-), the cross section of each electrode (drawing (E.g.) is the luminescence. The luminous brightness is based on the color difference meter (CS100, manufactured by Minolta), which is obtained in the monitor color. The luminous light section (monitor pixel) is 16 cd / m2 and the CIE chromaticity coordinate is X = 0.15 and Υ = 0 · 16. The light is emitted in the green CCM layer / green color filter section (green picture). Green) is 45cd / m2 and the CIE chromaticity coordinates are X = 0 · 27, Υ = 〇 · 67 for green emission, the red C CM layer / red color filter section (red pixels) is 45cd / m2 and CIE The chromaticity coordinates are red with X = 0.64 and Υ = 0.35, and the three primary colors of light are obtained. In addition, the light emitting luminance of the organic EL element at this time was 200 cd / m2 (equivalent to full-pixel light emission), and the CIE chromaticity coordinates were blue light emission of X = 0.17 and y = 0.28. Secondly, under these driving conditions, when driven at room temperature 2 2 ° C for 100 hours, the blue pixel is 100 cd / m2 (if the initial value is 1, the ratio is 0.67), and the green pixel is It was 27 cd / m2 (when the initial 値 was 1, the ratio was 0.60). The red pixel is 9 cd / m2 (if the initial value is 1, the ratio is 0.60). The organic EL element has a brightness of 126 cd / m2 (if the initial value is 1, the ratio is 0.63). In addition, when the organic EL element manufactured without the CCM and produced by the above-mentioned film formation process is sealed with an inert gas such as ordinary dry nitrogen, the brightness of the organic EL element is deteriorated to the same driving conditions as the above driving conditions. If the initial 値 is 1, the ratio is 0.6 5. [Comparative Example 1] In Example 1, ③ the production of the CCM substrate 124 (film formation on the anode 16 200534744 (54) out of the surface protection layer 102) did not perform the Si 02 film formation step as the surface protection layer 102, immediately The process of forming the organic EL element layer and sealing the panel on the CCM substrate 124 is performed in exactly the same manner, and an organic EL display device (organic EL panel) is produced. In the same manner as in Example 1, the driving evaluation of the sealing of the color conversion panel was performed, and the following results were obtained.

發光亮度爲以色彩色差計(CS100,Minolta製),取得 於藍色彩色濾光片部(藍色畫素)爲llcd/m2且 CIE色度座 標爲Χ = 〇」5、Υ = 0·16之藍色發光、於綠CCM層/綠色彩 色濾光片部(綠部畫素)爲33cd/m2且 CIE色度座標爲 Χ = 0·27、Y = 0.67之綠色發光、於紅CCM層/紅色彩色濾光 片部(紅部畫素)爲12cd/m2且 CIE色度座標爲X = 0.64、 Y = 〇 . 3 6之紅色發光,且取得光的三原色。 還有,此時之EL元件的發光亮度爲150cd/m2(相當於 全畫素發光)且CIE色度座標爲Χ = 0.17、Υ=Ό.27之藍色發 光。The luminous brightness is measured by chromatic aberration (CS100, manufactured by Minolta), obtained from the blue color filter section (blue pixels) is llcd / m2, and the CIE chromaticity coordinate is X = 〇 "5, Υ = 0 · 16 Blue light emission, green light emission in green CCM layer / green color filter section (green pixel) 33cd / m2 and CIE chromaticity coordinates of X = 0.27, Y = 0.67, in red CCM layer / The red color filter part (red part pixel) is 12 cd / m 2 and the CIE chromaticity coordinates are X = 0.64, Y = 0.36. The red light is emitted, and the three primary colors of light are obtained. Also, at this time, the EL element emits blue light with a luminance of 150 cd / m2 (equivalent to full pixel emission) and a CIE chromaticity coordinate of X = 0.17 and Υ = Ό.27.

其次,於此驅動條件下,於室溫22t下驅動1〇〇〇小時 之時,藍色畫素爲6cd/m2(若視初期値爲1,則比率0.55)、 綠色畫素爲16cd/m2(若視初期値爲1,則比率0,48)、紅色 畫素爲6cd/m2(若視初期値爲1,則比率0.50)、有機EL元 件的亮度爲84cd/m2(若視初期値爲1,則比率0.56)。 又,將未附有CCM,未實行表面保護層之成膜步驟 之基板上的有機EL元件,以通常之乾燥氮氣般之惰性氣 體予以密封時之有機EL元件的亮度惡化爲在此驅動條件 下,若初期値爲1,則比率〇. 5 8。 -58- 200534744 (55) 由以上之結果,可理解若於CCIV[基板124之陽極16之 IZO上成膜出表面保護層102,則此未成膜之情況,各色 均對相同電壓的發光亮度增加。即,若根據本實施例,則 可確認發光效率提高。 又,可理解於連續驅動時亦以成膜出表面保護層1 02 比未成膜之情況,可抑制發光亮度之惡化的進行速度。 如此,於陽極1 6上成膜上表面保護層1 02時,可判知 能提高發光性能,且可提高連續驅動時之面板的安定性( 即,壽命)。 實施之形態2構成中含有TFT之例 ,圖1所示之例,爲示出於CCM層14上之陽極16。圖1 中,雖然對於此陽極1 6的驅動方式並無特別示出,例如, 以TFT(Thin Film Transistor:薄膜晶體管)予以驅動爲佳 。此類構成爲示於圖3。於此圖3中,關於圖1所示之一畫 素中的一色部位,示出其剖面模式圖。即,圖1中之紅、 藍、綠中,示出任一色部分的部位。 如此圖所示般,本實施形態爲於基板1 2上設置CCM 層1 4。其次,於C C Μ層1 4上,設置塗覆層2 1 0、鈍化膜 212。於鈍化膜212上,設置薄膜晶體管220的閘極226,再 於其上覆蓋層合絕緣膜2 3 0。 於絕緣膜2 3 0上,形成陽極1 6、與驅動此陽極1 6的薄 膜晶體管220的汲極224與源極222。其次,汲極224爲與陽 極16電性接續。 -59- 200534744 (56) 本實施形態2中的特徵性事項爲在於陽極〗6以薄膜晶 體管(TFT)予以驅動。經由對此薄膜晶體管220的閘極226 外加電位’則可控制對於陽極1 6的電力供給。還有,此薄 膜晶體管220爲相當於申請專利範圍之「驅動元件」的一 例。 本發明之特徵之一可列舉在於陽極16上設置表面保護 1 〇 2此點,但此陽極與同層具備薄膜晶體管2 2 0亦無妨之情 況爲本實施形態2所示。 若換言之,於本實施形態2中,與圖2本質上不同點爲 僅在於以薄膜晶體管220驅動陽極16。即,於陽極及薄膜 晶體管220上,同圖1設置表面保護層102。此表面保護層 學:與目前所說明的表面保、護層1 02相同。 又,與圖1同樣地,於表面保護層102上設置有機物層 18,陽極20,且全體構成有機EL顯示裝置200。 本實施形態2中,示出利用薄膜晶體管220做爲陽極16 的驅動方式中,當然可適當採用其他各種的驅動元件 '驅 動方式。 【圖式簡單說明】 圖1爲示出本發明之合適的有機EL顯不裝置之構成 的剖面模型圖。 圖2爲示出以X P S檢查含I η化合物情之光譜圖的模型 圖。 圖3爲示出實施形態2之有機E L顯示裝置之構成的剖 -60 - 200534744 (57) 面模型圖。 圖4爲先前之CCM型有機EL顯示裝置之剖面模型圖 【主要元件符號說明】 1 :畫素 1 2 :基板 〇 14 : CCM層(+鈍化膜) 16 :陽極 1 8 :有機物層 2 0 :陰極Second, under these driving conditions, when driven at room temperature for 22 hours for 1,000 hours, the blue pixels are 6 cd / m2 (if the initial value is 1, the ratio is 0.55), and the green pixels are 16 cd / m2. (If the initial stage is set to 1, the ratio is 0,48), the red pixels are 6 cd / m2 (if the initial stage is set to 1, the ratio is 0.50), and the brightness of the organic EL element is 84 cd / m2 (if the initial stage is set to 1, then the ratio is 0.56). In addition, the brightness of the organic EL element when the organic EL element on the substrate without the CCM and the surface protective layer film-forming step is sealed with an inert gas such as ordinary dry nitrogen is deteriorated under these driving conditions. If the initial 値 is 1, the ratio is 0.58. -58- 200534744 (55) From the above results, it can be understood that if the surface protection layer 102 is formed on the CCIV [substrate 124 anode 16 IZO], then in the case of no film formation, the luminous brightness of each color increases to the same voltage. . That is, according to this embodiment, it can be confirmed that the luminous efficiency is improved. In addition, it can be understood that the case where the surface protective layer 10 02 is formed as compared with the case where the film is not formed during continuous driving can suppress the deterioration of the emission luminance. In this way, when the upper surface protective layer 102 is formed on the anode 16, it can be judged that the light emitting performance can be improved, and the stability (i.e., life) of the panel during continuous driving can be improved. An example in which the configuration of Embodiment 2 includes a TFT, and the example shown in FIG. 1 is an anode 16 shown on the CCM layer 14. Although the driving method of the anode 16 is not particularly shown in FIG. 1, for example, a TFT (Thin Film Transistor) is preferably used for driving. Such a structure is shown in FIG. 3. In FIG. 3, a cross-sectional view of one color portion in one pixel shown in FIG. 1 is shown. That is, in red, blue, and green in FIG. 1, any color portion is shown. As shown in the figure, in this embodiment, a CCM layer 14 is provided on the substrate 12. Next, a coating layer 2 10 and a passivation film 212 are provided on the CC layer 14. On the passivation film 212, a gate electrode 226 of the thin film transistor 220 is provided, and a laminated insulating film 230 is covered thereon. On the insulating film 230, an anode 16 and a drain 224 and a source 222 of the thin film transistor 220 driving the anode 16 are formed. Secondly, the drain electrode 224 is electrically connected to the anode electrode 16. -59- 200534744 (56) A characteristic feature in the second embodiment is that the anode 6 is driven by a thin film transistor (TFT). By applying a potential to the gate 226 of the thin film transistor 220, the power supply to the anode 16 can be controlled. The thin film transistor 220 is an example of a "driving element" corresponding to the scope of patent application. One of the characteristics of the present invention is that the anode 16 is provided with a surface protection 102. However, the anode and the same layer may be provided with the thin film transistor 2 2 0 as shown in the second embodiment. In other words, the second embodiment is substantially different from FIG. 2 only in that the anode 16 is driven by the thin film transistor 220. That is, a surface protection layer 102 is provided on the anode and the thin film transistor 220 as in FIG. 1. The surface protection layer is the same as the surface protection and protection layer 102 described above. As in Fig. 1, an organic substance layer 18 and an anode 20 are provided on the surface protective layer 102, and the organic EL display device 200 is constituted as a whole. In the second embodiment, a driving method using the thin film transistor 220 as the anode 16 is shown. Of course, various other driving elements may be used as appropriate. [Brief description of the drawings] Fig. 1 is a cross-sectional model diagram showing the structure of a suitable organic EL display device of the present invention. Fig. 2 is a model diagram showing a spectrum of an I? -Containing compound examined by XPS. Fig. 3 is a cross-sectional view showing the structure of an organic EL display device according to the second embodiment in a -60-200534744 (57) plane. FIG. 4 is a cross-sectional model diagram of a conventional CCM type organic EL display device. [Description of main component symbols] 1: Pixels 12: Substrate 〇14: CCM layer (+ passivation film) 16: Anode 18: Organic layer 2 0: cathode

100 :有機EL顯示裝置 102 :表面保護層 122 :有機EL元件 124 : C CΜ 基板 200 :有機EL顯示裝置 2 1 0 :覆蓋層 2 1 2 :鈍化膜 2 20 :薄膜晶體管 2 2 2 :源極 2 2 4 :汲極 2 2 6 :閘極 2 3 0 :絕緣膜 -61 -100: Organic EL display device 102: Surface protection layer 122: Organic EL element 124: CCM substrate 200: Organic EL display device 2 1 0: Cover layer 2 1 2: Passive film 2 20: Thin film transistor 2 2 2: Source 2 2 4: Drain 2 2 6: Gate 2 3 0: Insulating film -61-

Claims (1)

200534744 (1) 拾、申請專利範圍 1.一種電極基板,其特徵爲含有基板、 和含In原子之化合物所構成的電極、 和位於該電極與該基板之間之層,且用以轉變入射此 層之光波長進彳了螢光轉換層的電極基板, 於該電極之表面,對向該螢光轉換層表面與反側之表 面上,形成由無機化合物所構成的表面保護層。200534744 (1) The scope of application and patent application 1. An electrode substrate characterized by containing an electrode composed of a substrate, a compound containing an In atom, and a layer between the electrode and the substrate, and used to transform the incident The wavelength of light of the layer enters the electrode substrate of the fluorescent conversion layer, and a surface protection layer composed of an inorganic compound is formed on the surface of the electrode opposite to the surface of the fluorescent conversion layer and the opposite surface. 2·如申請專利範圍第1項之電極基板,其中該基板和/ 或該電極之構成材料爲透明性材料。 3 ·如申請專利範圍第1項或第2項之電極基板,其中該 電極爲施以逆濺鍍處理的電極。 4 ·如申請專利範圍第3項之電極基板,其中.該逆濺鍍 處理爲以誘導結合型RF電漿支援磁控管濺鍍器予以逆濺 鍍處理。2. The electrode substrate according to item 1 of the scope of patent application, wherein the substrate and / or the constituent material of the electrode is a transparent material. 3. If the electrode substrate of item 1 or item 2 of the scope of patent application, the electrode is an electrode subjected to reverse sputtering. 4 · The electrode substrate according to item 3 of the scope of patent application, wherein the reverse sputtering process is a reverse sputtering process using an induction bonding type RF plasma to support the magnetron sputtering device. 5 ·如申請專利範圍第1項〜第4項中任一項之電極基板 ,其中構成該表面保護層的無機化合物爲由Ba,Ca,Sr ,Yb,A1,Ga,In,Li,Na,K,Cd,Mg,Si,Ta,Ge ’ S b Zn’ Cs’ Eu,Y,Ce,W,Zr,La,Sc,Rb,L υ » Ti,Cr Ho’ Cu’ Er,Sm,W,Co,Se,Hf,Tm,Fe, Nb中選出至少一種以上之金屬的氧化物、或氮化物、複 合氧化物、硫化物、氟化物之任一種。 6.如申請專利範圍第5項之電極基板,其中該表面保 護層爲以濺鍍法所形成。 7 ·如串請專利範圍第6項之電極基板,其中該表面保 - 62- 200534744 (2) 護層爲以使用誘導結合型RF電漿支援磁控管濺鍍器之濺 鍍法所形成。 8 ·如申請專利範圍第1項〜第7項中任一項之電極基板 ,其中該表面保護層之膜厚爲在5〜100A範圍內之値。 9 ·如申請專利範圍第1項〜第8項中任一項之電極基板 ’其中該電極爲氧化錫銅(ITO)或氧化鲜姻(IZO)所構成。 1 0 ·如申請專利範圍第9項之電極基板,其中該電極爲 非晶質氧化物。 η ·如申請專利範圍第1項〜第1 〇項中任一項之電極基 板,其中包含驅動該電極的驅動元件。 12.—種電極基板之製造方法,其特徵爲於製造含有 基板,., 卩 和含In原子之化合物所構成的電極、 和位於該電極與該基板之間之層,且用以轉變入射此 層之光波長螢光轉換層, 之電極基板之方法中,包含 於該基板上形成該螢光轉換層之步驟, 和於該形成之螢光轉換層上形成該電極之步驟, 和於該形成之電極表面施以逆濺鍍處理之步驟, 且於該電極表面施以逆濺鍍處理之步驟中, 於實施逆濺鍍處理後,或者,於實施逆濺鍍處理時, 形成由無機化合物所構成的表面保護層。 1 3 ·如申請專利範圍第I 2項之電極基板之製造方法, 其中該逆源鍍處理爲使用誘導結合型RF電發支援磁控管 200534744 (3) 濺鍍器而實行。 1 4 ·如申請專利範圍第1 3項之電極基板之製造方法, 其中於該逆濺鍍處理中, 對該誘導結合型RF電漿支援磁控管濺鍍器的旋轉線 圈,外加電力50〜200W,周波數13.56〜100MHZ的高周波 且對該誘導結合型RF電漿支援磁控管濺鍍器的陰極 ,外加電力200~500〜,周波數13.56〜1001^1^的高周波, 令電漿放電, 且令該誘導結合型RF電漿支援磁控管濺鍍器之磁控 管磁場的強度爲在200〜3 00高斯範圍內之値。 I5.如申請專利範圍第1項之電極基板,其中根據X射 線光電子分光法,令對向該表面保護層表面所測定之‘ I η 原子的3d5/2軌道光譜的波峰半値寬以[In3d5/2]h表示時, 該各半値寬的比率([In3d5/2]h/[In3d5/2]n)値爲在 0.9〜1.2之範圍內。 1 6 ·如申請專利範圍第1項之電極基板,其中根據X射 線光電子分光法,令該電極所測定之In原子的3d5/2軌道 光譜波峰値以In peak表示, 根據X射線光電子分光法,令該電極所測定之S η原 子的3d5/2軌道光譜波峰値以Sn peak表示, 該電極表面所測定之各波峰比率以(In peak/Sn peak)h 表示, 該電極內部所測定之各波峰比率以(In peak/Sn peak)n 200534744 (4) 表示, ((Sn peak/In peak)h/(Sn peak/In peak)n)<1.5 〇 J5. The electrode substrate according to any one of claims 1 to 4 in the scope of patent application, wherein the inorganic compound constituting the surface protective layer is made of Ba, Ca, Sr, Yb, A1, Ga, In, Li, Na, K, Cd, Mg, Si, Ta, Ge 'S b Zn' Cs' Eu, Y, Ce, W, Zr, La, Sc, Rb, L υ »Ti, Cr Ho 'Cu' Er, Sm, W, Among Co, Se, Hf, Tm, Fe, and Nb, at least one of oxides, or nitrides, composite oxides, sulfides, and fluorides of metals is selected. 6. The electrode substrate according to item 5 of the application, wherein the surface protection layer is formed by a sputtering method. 7 · If the electrode substrate of item 6 of the patent scope is requested, the surface protection-62- 200534744 (2) The protective layer is formed by a sputtering method using an induction bonding type RF plasma to support the magnetron sputtering device. 8. The electrode substrate according to any one of items 1 to 7 of the scope of patent application, wherein the film thickness of the surface protective layer is within a range of 5 to 100A. 9 · The electrode substrate according to any one of claims 1 to 8 in the scope of the patent application ′ wherein the electrode is made of tin oxide copper (ITO) or oxidized oxide (IZO). 10 · The electrode substrate according to item 9 of the patent application scope, wherein the electrode is an amorphous oxide. η The electrode substrate according to any one of the scope of claims 1 to 10 of the scope of patent application, which includes a driving element for driving the electrode. 12. A method for manufacturing an electrode substrate, which is characterized in that an electrode composed of a substrate, ..., thallium, and a compound containing an In atom, and a layer located between the electrode and the substrate are used to transform the incident substrate. The method of forming a layer of light wavelength fluorescent conversion layer and an electrode substrate includes a step of forming the fluorescent conversion layer on the substrate, a step of forming the electrode on the formed fluorescent conversion layer, and a step of forming the electrode. The electrode surface is subjected to a reverse sputtering process, and in the step of applying the reverse sputtering process to the electrode surface, after the reverse sputtering process is performed, or when the reverse sputtering process is performed, an inorganic compound is formed; Composition of a surface protective layer. 1 3 · The method for manufacturing an electrode substrate according to item I 2 of the scope of patent application, wherein the inverse source plating process is performed by using an induction-coupled RF electric generator supporting magnetron 200534744 (3) Sputterer. 14 · The method for manufacturing an electrode substrate according to item 13 of the scope of patent application, wherein in the reverse sputtering process, the induction coil-type RF plasma supports a rotating coil of a magnetron sputtering device, and an electric power of 50 ~ 200W, high frequency with a frequency of 13.56 ~ 100MHZ and the cathode of the magnetron sputter supported by the induction-coupled RF plasma, plus 200 ~ 500 ~, high frequency with a frequency of 13.56 ~ 1001 ^ 1 ^, causing the plasma to discharge In addition, the strength of the magnetic field of the magnetron of the induction-coupled RF plasma supporting magnetron sputtering device is set to be within a range of 200 to 300 Gauss. I5. The electrode substrate according to item 1 of the scope of patent application, wherein according to the X-ray photoelectron spectroscopy, the peak half-width of the 3d5 / 2 orbital spectrum of the 'I η atom measured on the surface of the surface protective layer is set to [In3d5 / 2] When h is expressed, the ratio ([In3d5 / 2] h / [In3d5 / 2] n) of each half-width is in the range of 0.9 to 1.2. 16 · If the electrode substrate of item 1 of the scope of patent application, according to the X-ray photoelectron spectroscopy method, the 3d5 / 2 orbital spectral peak of In atom measured by the electrode is represented by In peak, and according to the X-ray photoelectron spectroscopy method, Let the 3d5 / 2 orbital spectral peak value of the S η atom measured by the electrode be represented by Sn peak, and the ratio of each peak measured on the surface of the electrode is represented by (In peak / Sn peak) h, and each peak measured inside the electrode The ratio is expressed by (In peak / Sn peak) n 200534744 (4), ((Sn peak / In peak) h / (Sn peak / In peak) n) < 1.5 〇 J -65--65-
TW93109994A 2002-10-16 2004-04-09 Electrode substrate and its production method TW200534744A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302152A JP2004139798A (en) 2002-10-16 2002-10-16 Electrode substrate and manufacturing method

Publications (1)

Publication Number Publication Date
TW200534744A true TW200534744A (en) 2005-10-16

Family

ID=32450320

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93109994A TW200534744A (en) 2002-10-16 2004-04-09 Electrode substrate and its production method

Country Status (2)

Country Link
JP (1) JP2004139798A (en)
TW (1) TW200534744A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815118B2 (en) * 2004-10-15 2011-11-16 パナソニック株式会社 Organic electroluminescent device and manufacturing method thereof
JP2006202709A (en) * 2005-01-24 2006-08-03 Victor Co Of Japan Ltd Organic electroluminescent display device
JP2008059824A (en) * 2006-08-30 2008-03-13 Fuji Electric Holdings Co Ltd Active matrix type organic el panel and its manufacturing method
US8242487B2 (en) 2008-05-16 2012-08-14 E I Du Pont De Nemours And Company Anode for an organic electronic device
EP2361445A4 (en) * 2008-12-01 2012-07-04 Du Pont Anode for an organic electronic device
WO2011016347A1 (en) * 2009-08-03 2011-02-10 株式会社アルバック Organic el device, electrode forming method for organic el device, organic el lighting device, and manufacturing method for organic el lighting device
KR101677265B1 (en) 2010-03-31 2016-11-18 삼성디스플레이 주식회사 Organic light emitting diode display
JP5589706B2 (en) * 2010-09-17 2014-09-17 カシオ計算機株式会社 Light emitting device
CN114385018A (en) * 2020-10-20 2022-04-22 宸美(厦门)光电有限公司 Contact structure, electronic device, and method of manufacturing contact structure

Also Published As

Publication number Publication date
JP2004139798A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
TW463528B (en) Organic electroluminescence element and their preparation
TWI236859B (en) Organic-electroluminescence display apparatus and manufacture method thereof
JP5432523B2 (en) Organic electroluminescence device
US20070247066A1 (en) Electrode Substrate and Its Manufacturing Method
JP5255296B2 (en) Materials and compounds for organic electroluminescence devices
JP5097700B2 (en) Organic electroluminescence device
JP5152210B2 (en) Material for organic electroluminescence device and use thereof
TWI430701B (en) Organic electroluminescent elements and full color light emitting devices
WO1996025020A1 (en) Multi-color light emission apparatus and method for production thereof
WO2005091685A1 (en) Organic electroluminescent device and display
JP2838063B2 (en) Organic electroluminescence device
CN101405887A (en) Organic electroluminescent element and color light emitting device
TW201245439A (en) Ink composition, organic electroluminescence element using same and method for manufacturing same
JP2013118288A (en) Material for organic electroluminescent device and application of the same
JP2011173972A (en) Material for organic electroluminescent element and application thereof
TW201308586A (en) Organic light-emitting element
JP2012190863A (en) Material for organic electroluminescent element and use thereof
JP4600857B2 (en) Organic EL device manufacturing method and organic EL device
TW200534744A (en) Electrode substrate and its production method
JP3508805B2 (en) Multicolor light emitting device and method of manufacturing the same
JPH11279426A (en) Rhodamine-based coloring matter, color-changing membrane and organic electroluminescence device
JPH10308286A (en) Organic electroluminescent light emitting device
WO2011039830A1 (en) Organic el device
JP2019114668A (en) Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid
JP4022274B2 (en) Organic EL light emitting device