TW200534519A - Probe arrays and method for making - Google Patents
Probe arrays and method for making Download PDFInfo
- Publication number
- TW200534519A TW200534519A TW93141482A TW93141482A TW200534519A TW 200534519 A TW200534519 A TW 200534519A TW 93141482 A TW93141482 A TW 93141482A TW 93141482 A TW93141482 A TW 93141482A TW 200534519 A TW200534519 A TW 200534519A
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- probes
- probe
- permanent
- contact
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R3/00—Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Micromachines (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
Description
200534519 九、發明說明: I:發明戶斤屬之技術領域3 相關申請銮 本申請案係請求分別於2003年12月31日、2003年12月 5 31日、2004年1月15日、以及2004年1月29日提出申請的美 國臨時專利申請案第 60/533,947、60/533,933、60/533,933、 60/536,865及60/540,511號之權益。本申請案係分別為於 2004年2月4日及2004年9月24日提出申請的美國正式申請 案第10/772,943及10/949,738號之部分延續申請案。所有上 10 述申請案於此併入本案以為參考資料。 發明領域 本發明一般係有關於微電子探針(例如,一種用於轉移介 於一第一電路或電路元件與一第二電路或電路元件間電信號 的微尺度或是中尺度界面結構),以及用於製作該等探針的電化 15 學製程。 C先前技術3 發明背景 由Adam L. Cohen所發明之由複數之黏合層構成三維 結構(例如,部件、元件、裝置及相似物)的一技術,並係為 20 所熟知的電化學製造。並由以EFAB™為名之加州、Burbank 之Microfabrica Inc.(即為從前的MEMGen®公司)作商業推 廣。此技術係於2000年2月22曰核發之美國專利第6,027,630 號中加以說明。此電化學沉積技術容許利用包含使用光罩 的一獨特的遮光技術’選擇性地儿積材料’包括在一與進 200534519 4亍電鍍之基板無關的輔助結構上的圖案化調和材料。當需 要利用光罩執行電沉積時,該光罩之調和部分係與一基板 接觸’同時存在電鍍溶液致使光罩之調和部分與基板接 觸,抑制在選定位置處沉積。就方便起見,該等光罩一般 5 稱為调和式接觸光罩(conformable contact mask);該遮光技 術一般稱為調和式接觸光罩電鍍製程。更特定言之,就加 州、Burbank之Microfabrica Inc·(即為從前的MEMGen⑧公司) 之專門術語而言,該等光罩係為所熟知的instant MASK™及所熟知製程INSTANT MASKINGTM或INSTANT 10 MASKTM電鍍。利用調和式接觸光罩電鍍的選擇性沉積, 可用以構成單一材料層,或可用以構成多層結構。,630專 利之技術於此以全文引用的方式併入本案以為參考資料。 由於提交完成上述著名專利的專利申請案,所以相關於調 和式接觸光罩電鍍(亦即,INSTANT MASKING)及電化學製 15 造的不同文件已公開之: (l.)A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis及P· Will,”EFAB :具微尺度特徵之功能性、完全致密 金屬部件的批量生產(EFAB : Batch production of functional,fully-dense metal parts with micro-scale 20 features)” ,Proc.9th Solid Freeform Fabrication,The University of Texas at Austin,pl61,1998年8 月。 (2·)Α· Cohen,G. Zhang, F. Tseng,F. Mansfeld,U. Frodis及P. Will,“EFAB :高深寬比真實3維微機電系統之快 速、低成本桌上微加工作業(EFAB : Rapid,Low-Cost Desktop 6 200534519200534519 IX. Description of the invention: I: The technical field of the inventors 3 Related applications: This application is requested on December 31, 2003, December 5, 31, 2003, January 15, 2004, and 2004 US Provisional Patent Applications Nos. 60 / 533,947, 60 / 533,933, 60 / 533,933, 60 / 536,865, and 60 / 540,511 filed on January 29, This application is part of the US Continuation Application Nos. 10 / 772,943 and 10 / 949,738, filed on February 4, 2004 and September 24, 2004, respectively. All the above 10 applications are hereby incorporated into this case for reference. FIELD OF THE INVENTION The present invention relates generally to microelectronic probes (for example, a microscale or mesoscale interface structure for transferring electrical signals between a first circuit or circuit element and a second circuit or circuit element), And the electrochemical process used to make these probes. C Prior Art 3 Background of the Invention A technique invented by Adam L. Cohen for forming three-dimensional structures (e.g., parts, components, devices, and the like) from a plurality of adhesive layers, and is a well-known electrochemical fabrication technique. Commercially promoted by Microfabrica Inc. (formerly MEMGen®) of Burbank, California, Burbank, California under the name EFAB ™. This technology is described in US Patent No. 6,027,630 issued on February 22, 2000. This electrochemical deposition technique allows the use of a unique light-shielding technique including the use of a photomask to selectively 'selectively deposit the material' by including a patterned harmonizing material on an auxiliary structure that is not related to a substrate which is electroplated in 200534519. When a photomask is required to perform electrodeposition, the harmonized part of the photomask is in contact with a substrate 'and the presence of a plating solution causes the harmonized part of the photomask to contact the substrate, suppressing deposition at a selected location. For convenience, these photomasks are generally referred to as conformable contact masks; this shading technique is generally referred to as the conformal contact mask plating process. More specifically, in the terminology of Microfabrica Inc. (formerly MEMGen⑧) of Burbank, California, these masks are known as instant MASK ™ and well-known processes INSTANT MASKINGTM or INSTANT 10 MASKTM plating . The selective deposition using the harmonic contact mask plating can be used to form a single material layer, or can be used to form a multilayer structure. The technology of 630 patents is hereby incorporated by reference in its entirety as reference material. Since the patent application for the above-mentioned famous patent was filed, different documents related to the harmonized contact mask electroplating (that is, INSTANT MASKING) and electrochemical manufacturing have been published: (l.) A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis and P. Will, "EFAB: Batch production of functional, fully-dense metal parts with micro-scale features (EFAB: Batch production of functional, fully-dense metal parts with micro-scale 20 features) ", Proc. 9th Solid Freeform Fabrication, The University of Texas at Austin, pl61, August 1998. (2 ·) Α · Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis, and P. Will, "EFAB: Fast, Low-cost Desktop Micromachining with Real 3D MEMS with High Aspect Ratio (EFAB: Rapid, Low-Cost Desktop 6 200534519
Micromachining of High Aspect Ratio True 3-D MEMS),,, Proc· 12th IEEE Micro Electro Mechanical Systems Workshop, IEEE,p244, 1999年1 月。 (3·)Α· Cohen,“藉由電化學製造之3維微加工作業(3-D 5 Micromachining by Electrochemical Fabrication),,, Micromachine Devices,1999年 3 月。Micromachining of High Aspect Ratio True 3-D MEMS) ,, Proc. 12th IEEE Micro Electro Mechanical Systems Workshop, IEEE, p244, January 1999. (3 ·) Α · Cohen, "3-D 5 Micromachining by Electrochemical Fabrication," Micromachine Devices, March 1999.
(4.)G· Zhang,A. Cohen,U. Frodis,F· Tseng,F. Mansfeld 以及P· Will,“EFAB :真實3維微結構之快速桌上製造 (EFAB · Rapid Desktop Manufacturing of True 3-D 10 Microstructures)’’,Proc. 2nd International Conference on(4.) G. Zhang, A. Cohen, U. Frodis, F. Tseng, F. Mansfeld, and P. Will, "EFAB: Rapid Desktop Manufacturing of True 3D Microstructure (EFAB · Rapid Desktop Manufacturing of True 3 -D 10 Microstructures) '', Proc. 2nd International Conference on
Integrated MicroNanotechnology for Space Applications,The Aerospace Co.,1999年4月。Integrated MicroNanotechnology for Space Applications, The Aerospace Co., April 1999.
(5.)F. Tseng, U· Frodis,G· Zhang,A· Cohen,F· Mansfeld 及P· Will,“EFAB :利用低成本自動批量製程之高深寬比、 15 任意3維金屬微結構(EFAB ·· High Aspect Ratio,Arbitrary 3-D(5.) F. Tseng, U. Frodis, G. Zhang, A. Cohen, F. Mansfeld, and P. Will, "EFAB: High-aspect ratio of low-cost automated batch processes, 15 arbitrary 3-dimensional metal microstructures ( EFABHigh Aspect Ratio, Arbitrary 3-D
Metal Microstructures using a Low-Cost Automated Batch Process)”,3rd International Workshop on High Aspect Ratio Microstructure Technology (HARMST’99),1999年6月。 (6·)Α. Cohen,U. Frodis,F. Tseng,G. Zhang,F· 20 Mansfeld,及P· Will,“EFAB :任意3維微結構之低成本自動 電化學批量製造(EFAB : Low-Cost, AutomatedMetal Microstructures using a Low-Cost Automated Batch Process ", 3rd International Workshop on High Aspect Ratio Microstructure Technology (HARMST'99), June 1999. (6 ·) Α. Cohen, U. Frodis, F. Tseng, G Zhang, F. 20 Mansfeld, and P. Will, "EFAB: Low-Cost, Automated, Low-Cost, Automated
Electrochemical Batch Fabrication of Arbitrary 3-D Microstructures)”,Micromachining and Microfabrication Process Technology, SPIE 1999 Symposium on 200534519Electrochemical Batch Fabrication of Arbitrary 3-D Microstructures) ", Micromachining and Microfabrication Process Technology, SPIE 1999 Symposium on 200534519
Micromachining and Microfabrication,1999年9月。 (7.)F· Tseng,G. Zhang,U· Frodis,A· Cohen,F. Mansfeld, 及P· Will,“EFAB ··利用低成本自動批量製程之高深寬比、 任意 3維金屬微結構(EFAB : High Aspect Ratio,Arbitrary 3-D 5 Metal Microstructures using a Low-Cost Automated Batch Process)”,MEMS Symposium, ASME 1999 International Mechanical Engineering Congress and Exposition,1999年 11 月。 (8·)Α· Cohen,“電化學製造(EFABTM)(electrochemical 10 Fabrication(EFABTM)),,,Chapter 19 of The MEMS Handbook, edited by Mohamed Gad-El-Hak?CRC Press, 2002 年。 (9·)‘微製造·快速原型殺手級應用(Microfabrication-Rapid Prototyping’s Killer Application)”, pages 1-5 of the 15 Rapid Prototyping Report, CAD/CAM Publishingjnc., 1999 年6月。 該九項刊物之揭露内容,於此係以全文引用方式並入 本文以為參考資料。 能夠以如上述專利及刊物中所提出之複數種不同方式 20完成電化學沉積製程。於一形式中,於形成每一結構層期 間此製程包含執行三個個別動作,其係如下般地構成: 1·藉由電沉積在基板之一或更多所需區域上而選擇性 地至少沉積一材料。 2·接著’藉由電沉積而至少覆蓋沉積一附加材料,因 200534519 此5亥附加沉積物覆蓋該二事先選擇性沉積於其上的二區 或、及未接又任何事先所施加之選擇性沉積的該等基板 之區域。 最後將於第—及第二作業期間沉積之材料平面 5化肖乂產生至)具有一包含至少一材料的區域以及至少 匕3至v附加材料的區域的一所需厚度之第一層的平 滑表面。 在構成δ亥第—層之後,緊接著前面層相鄰地構成-或 更多附加層,並與該前面層之平滑表面黏合。該等附加層 Π)係藉由重複該第-至第三作業一或更多次而構成,其中所 構成之每純層將先前所構狀該冑層及初使基板處理 成為新的且加厚之基板。 -旦完成構成所有層,至少其中之一所沉積材料的至 少一部分,-般係藉由-餘刻製程加以去除用以曝光或將Micromachining and Microfabrication, September 1999. (7.) F. Tseng, G. Zhang, U. Frodis, A. Cohen, F. Mansfeld, and P. Will, "EFAB ·· High-aspect-ratio ratio of any low-cost automated batch process, arbitrary 3-dimensional metal microstructure (EFAB: High Aspect Ratio, Arbitrary 3-D 5 Metal Microstructures using a Low-Cost Automated Batch Process) ", MEMS Symposium, ASME 1999 International Mechanical Engineering Congress and Exposition, November 1999. (8 ·) Α Cohen, "Electrochemical Manufacturing (EFABTM) (electrochemical 10 Fabrication (EFABTM))," Chapter 19 of The MEMS Handbook, edited by Mohamed Gad-El-Hak? CRC Press, 2002. (9 ·) 'Microfabrication-Rapid Prototyping's Killer Application ", pages 1-5 of the 15 Rapid Prototyping Report, CAD / CAM Publishingjnc., June 1999. The disclosures of these nine publications are hereby incorporated by reference in their entirety for reference. The electrochemical deposition process can be performed in a number of different ways 20 as proposed in the aforementioned patents and publications. In one form, this process includes performing three individual actions during the formation of each structural layer, which is structured as follows: 1. Selectively at least by electrodeposition on one or more desired areas of the substrate Deposit a material. 2. Then 'cover and deposit at least one additional material by electrodeposition, since 200534519 this additional Hai Hai deposit covers the two areas where the two are selectively deposited on it in advance, and missed any previously applied selectivity Area of the substrates deposited. Finally, the material planes to be deposited during the first and second operations are produced.) The smoothing of the first layer having a desired thickness having an area containing at least one material and at least 3 to v additional material areas. surface. After forming the δ-Hilti-layer, the front layer is formed next to-or more additional layers, and adheres to the smooth surface of the front layer. The additional layers (ii) are constituted by repeating the first to third operations one or more times, wherein each pure layer constituted will previously shape the puppet layer and initially make the substrate processing new and add Thick substrate. -Once all layers have been completed, at least a portion of at least one of the deposited materials is-generally removed by-an epitaxial process for exposure or exposure
意欲構成之三維結構脫模。 執行包括在第-作業中的選擇性電沉積之較佳方法, 係藉由調和式接觸光罩電鑛。於此類型之電錢中,首先構 成-或更多的調和式接觸(cc)光罩。該調和式接觸㈣光 罩包括一圖案化調和介電材料係黏合或構成於其上的輔助 結構。每-光罩所用之調和材料係根據所電錢材料之一特 疋棱截面製作成形。至少—調和式接觸(cc)光罩係為每一 電鍍之獨特橫截面圖案所需。 調和式接觸(cc)光罩所用之輔助結構,典型地係為由 -選擇性電鑛並且電鍍材料會自其溶解的金屬所構成之一 200534519 =結構。於:典型的方法中’在電_該輔助結 構係使用作為一陽極。於—可任摆 旅mi , 的方法中,該輔助結構 係可替代地為—多孔或是其他穿孔_,在電鑛作孝期間 儿積材料通過該多孔或是其他穿孔材料自—末端陽極至一 沉積表面。於任-方法中,該調和式接觸(cc)光罩能夠丑 10 Γ共同關助結構,亦即,料電衫重材料層之鮮 ”電材料之圖案可位在-單—輔助結構的不同_中。各 一單-輔助結構包含多重替』案時,祕體結構係視^ 調和式接觸(cc)光罩,同時該等個別的電鑛光罩可視為,,子 光罩”。於本申請案中,僅在與—完叙特定位置相關時才 有該一區別。 就執行第-作業之選擇性沉積之製備而言,該調和式 接觸(CC)光罩之調和部分係經配置對準並壓按靠著於其上 進行沉積的基板之-選定部分(或是在一先前構成層或一 15層之先前沉積部分上)。將調和式接觸(CC)光罩之調和部分 中所有開口包含電鑛溶液,以該一方式進行將該調和式接 觸(CC)光罩與基板壓按在一起。與基板接觸的調和式接觸 (CC)光罩之調和材料,係使用作為電沉積之一阻障物,同 時以電鍍溶液填注之位在調和式接觸(cc)光罩中的開口, 20在供給一適當電位及/或電流時,使用作為將材料自一陽極 (例如,調和式接觸(CC)光罩輔助結構)轉移至基板的未接觸 部分(在電鍍作業期間其係使用作為陰極)。 於第1A-1C圖中所示係為一調和式接觸(CC)光罩及調 和式接觸(CC)光罩電鐘的一實例。第1A圖係為由在一陽極 200534519 12上圖案化而成的調和或可變形的(例如,彈性體的)絕緣體 10所構成的一調和式接觸(CC)光罩δ的一側視圖。陽極具有 二功能。第1Α圖亦圖示與該光罩8分開的一基板6。由於該 圖案係表面結構上複雜(topologically complex)(例如,包含 5 、纟巴緣體材料之隔離“島”),所以其中一功能係作為圖案化絕 緣體10用以維持其之整體性及對準所用的輔助材料。另一 功能係作為一電鍍作業用陽極。如第1B圖中所示,調和式 接觸(CC)光罩電鍍簡單地藉由將絕緣體壓按靠著基板接著 將材料電沉積通過絕緣體中的孔口 26a及26b而選擇性地將 10材料22沉積在一基板6上。在沉積之後,如第lc圖中所示, 該調和式接觸(CC)光罩較佳係非破壞地與該基板6分開。調 和式接觸(CC)光罩電鍍製程與“透過光罩(through-mask),,式 私鍍製私不同之處在於,該一透過光罩式電鍍製程中將遮 光材料與基板分離係具破壞性。就透過光罩式電鍍而言, 15調和式接觸(CC)光罩電鍍選擇性且同時地將材料沉積覆蓋 忒整層。電鍍區域可由一或更多的隔離電鍍區域所組成, 其中該等隔離電鍍區域可屬所構成之一單一結構,或可屬 同日守構成的多重結構。就調和式接觸(cc)光罩電鍍而言, 在去除製程中並非故意破壞該等個別光罩,所以在多重電 20艘作業中其仍為可用。 於第1D-1F圖中所示係為一調和式接觸(cc)光罩及調 和式接觸(CC)光罩電鍍的另一實例。第113圖係顯示與包括 圖案化調和材料1〇’及一輔助結構2〇的一光罩8,分開的一 陽極12’。第id圖亦圖示與該光罩8,分開的基板6。第比圖 11 200534519 圖示光罩8’與基板6接觸。第1F圖係圖示自陽仙,將電流傳 導至基板6所造成之沉積物22,。第1(3圖係圖示在與二, 分開後,位在基板6上的沉積物22,。於此實例中,將一適 當的電解液配置在基板6與陽極12,之間,並將來自於溶液 及陽極其中之_或二者的離子電流經由光罩中之開口傳導 至沉積材料之基板。此類型之光罩可視為—絕緣 瞻T MASKTM(aim)或以—絕緣 (anodeless)調和式接觸(ACC)光罩。The three-dimensional structure intended to be demolded. A preferred method of performing selective electrodeposition, including in the first operation, is through the use of a harmonic contact photomask. In this type of electronic money, first-or more harmonized contact (cc) photomasks are constructed. The harmonic contact calender includes an auxiliary structure to which a patterned harmonic dielectric material is bonded or formed. The blending material used in each photomask is made according to a special cross section of one of the materials used. At least—harmonic contact (cc) masks are needed for each plated unique cross-sectional pattern. Auxiliary structures used in harmonic contact (cc) photomasks are typically one of -selective electro-mineral and metal from which the plating material will dissolve. 200534519 = structure. Yu: In a typical method, the auxiliary structure is used as an anode. In the method of arbitrarily pendulum mi, the auxiliary structure may alternatively be-porous or other perforated _, during the period of power ore filial piety material through the porous or other perforated material from the end anode to A deposition surface. In any method, the harmonized contact (cc) mask can be used together to assist the structure, that is, the pattern of the fresh material of the heavy material layer of the electric shirt. The pattern of the electric material can be located in the difference between the single and auxiliary structure. _In. When each single-auxiliary structure includes multiple replacements, the secret structure is regarded as a ^ harmonic contact (cc) mask, and the individual power mining masks can be regarded as, sub-masks. " In this application, this distinction is only relevant when it relates to a specific location. For the preparation of the first selective deposition, the harmonized portion of the harmonized contact (CC) mask is configured to align and press the -selected portion of the substrate against which it is deposited (or On a previously formed layer or a previously deposited portion of a 15 layer). All openings in the reconciling part of the harmonized contact (CC) reticle contain a battery solution, and in this way, the harmonized contact (CC) reticle is pressed against the substrate. Harmonic contact (CC) mask material used in contact with the substrate is an opening in the harmonic contact (cc) mask used as a barrier for electrodeposition and filled with a plating solution at the same time. When an appropriate potential and / or current is supplied, it is used to transfer material from an anode (for example, a Harmonic Contact (CC) mask auxiliary structure) to a non-contact portion of a substrate (which is used as a cathode during a plating operation). Shown in Figures 1A-1C is an example of a Harmonic Contact (CC) Mask and Harmonic Contact (CC) Mask Clock. Figure 1A is a side view of a harmonic contact (CC) mask δ formed by a harmonic or deformable (e.g., elastomeric) insulator 10 patterned on an anode 200534519 12. The anode has two functions. FIG. 1A also illustrates a substrate 6 separated from the photomask 8. Since the pattern is topologically complex on the surface (for example, an isolated "island" that contains 5, cymbal marginal material), one of the functions is as a patterned insulator 10 to maintain its integrity and alignment. Auxiliary materials used. The other function is to serve as an anode for electroplating operations. As shown in Figure 1B, the Harmonic Contact (CC) photomask plating selectively applies 10 materials 22 by pressing the insulator against the substrate and then electrodepositing the materials through the apertures 26a and 26b in the insulator. Deposited on a substrate 6. After deposition, as shown in FIG. 1c, the harmonized contact (CC) mask is preferably non-destructively separated from the substrate 6. Harmonic contact (CC) mask electroplating process is different from "through-mask" in that private plating is different in that the light-shielding material is separated from the substrate during the process of photomask plating. As far as through photomask plating is concerned, 15 Harmonic Contact (CC) mask plating selectively and simultaneously deposits material to cover the entire layer. The plating area can be composed of one or more isolated plating areas, where the The isolating plated area may be a single structure formed by the same structure, or it may be a multiple structure formed by the same day. As far as harmonic contact (cc) photomask plating is concerned, the individual photomasks are not intentionally destroyed during the removal process, so It is still available in multiple electric 20-ship operations. Shown in Figures 1D-1F is another example of a Harmonic Contact (CC) mask and Harmonic Contact (CC) mask plating. Figure 113 Shows a photomask 8 including a patterned blending material 10 'and an auxiliary structure 20, and an anode 12' separated. Figure id also illustrates the substrate 6 separated from the photomask 8. Figure 3 11 200534519 The photomask 8 'is in contact with the substrate 6. The 1F diagram shows the deposit 22, which is caused by conducting current to the substrate 6 from Yangxian. The first (3 diagram is the deposit 22, which is located on the substrate 6 after being separated from the second, and In this example, an appropriate electrolyte is disposed between the substrate 6 and the anode 12, and an ion current from one or both of the solution and the anode is conducted to the substrate of the deposited material through the opening in the photomask. This type of reticle can be regarded as-insulation MASKTM (aim) or-insulation (anodeless) harmonic contact (ACC) reticle.
10 1510 15
與透過光罩式電鑛不同,調和式接觸(cc)光罩電鍵容 终職成之調和式接觸(cc)光罩係與進行電鑛之基板之製 造完钱蝴例如’係與―所構紅3維㈣結構分開)。 可以硬數種方式構成該調和式接觸(cc)光罩,例如,可使 用士光微影_製程。在結構製造之前而非製造期間,可同 =構成所有的光罩。如此之分離狀況始能成.簡單、 =本、自動化、自足式、以及内部潔淨幾乎任何位置皆 的“桌上製造廠,,用以製造3維結構,由維修單位或 2早位執行訂諸如光«彡__任何所需之潔淨室 I程〇 第2A 2F圖中所不係為上述說明之電化學製程的一實 20二。該等圖式顯示該製程包括沉積係為一犧牲材料的一第 才料2 ’ W及係為一結構材料的一第四材料4。於此實例 一 „周和式接觸(CC)光罩8包括—圖案化調和材料(例如, 弓早座體介電材料)1()及一由沉積材料2製成的辅助結構 。寻式接觸(CC)光罩之調和部分,係以配置在調和材 12 200534519 料之開口 16中的電錢溶液14壓按靠著基板6。接著來自電 源18的包,爪經由(a)同時作為陽極的辅助結構a及(b)同時 作為陰極的基板6通過電鍵溶液14。第2A圖係圖示電流通過 致使电鑛/谷液中的材料2以及材料2,自陽極12選擇性地轉 5私並私鍍在陰極6上。在利用調和式接觸(CC)光罩8將第一 ’儿積材料2電鍍在基板6上之後,如第2B圖中所示,去除該 凋牙式接觸(CC)光罩8。第2C圖圖示第二沉積材料4已覆蓋 /儿積(亦即,未選擇地沉積)涵蓋先前沉積的第一沉積材料 乂及復盍基板6之其他部分。藉由自一由第二材料所構 10成的陽極(未顯示)通過一適當的電鍍溶液,並電鍍至陰極/ 基板6而進行覆蓋式沉積。如第2D圖中所示,接著將整個二 材料層平面化用以達到精確的厚度及平坦度。如第2£圖中 所不,針對所有層重複此製程之後,將由第二材料4(亦即, 結構材料)構成的多層結構2〇嵌入在第一材料2(亦即,犧牲 15材料)中。如第2F圖中所示,將該嵌入結構蝕刻用以產生所 需元件,亦即,結構2〇。 如第3A-3C圖中所示,係為一示範性手動電化學製造系 統32的不同元件。系統32係由數個子系統34、36、38及40 所組成。第3A至3C圖之每一上部分中所示係為一基板固持 2〇子系統34,並包括複數之元件:(1)一托架48(2)該等層沉積 於其上的一金屬基板6、以及(3)一線性滑座42能夠因應得自 於致動态44之驅動力,將基板6相對於該托架48上下地移 動。子系統34亦包括一指示器46,用於測量基板之垂直位 置上的差異,其可用以設定或是確定層厚度及/或沉積厚 13 200534519 其能夠精確 度。该子系統34進一步包括托架48用腳件68 地安裝在子系統36上。 第3A圖之下部分中所示的調和式接觸(CC)光罩子系統 36’包括複數之元件:⑴一調和式接觸(cc)光罩8其實際上 5係以複數之共用一共同的輔助結構/陽極12的調和式接觸 (CC)光罩(亦即,子光罩)所構成,(2)精度X平台54,(3)精 度Y平台56,(4)子系統34之腳件68安裝於其上的框架D, 以及(5)用於包含電解液16的一槽58。子系統地%亦包括 適當的電連接裝置(未顯示),用於連接至一適當的電源,用 10以驅動該調和式接觸(CC)遮光製程。 第3B圖之下部分中所示係為覆蓋式沉積子系統38,並 包括複數之元件:(1)一陽極62 ’(2)—電解液槽64用於固持 該電鍍溶液66,以及(3)子系統34之腳件68安置於其上的框 架74。子系統38亦包括適當的電連接裝置(未顯示),用於將 15陽極與一適當的電源連接,用以驅動該覆蓋式沉積製程。 弟3C圖之下部分中所示係為平面化子系統4〇,並包括 一重疊板52以及所結合之移動及與控制系統(未顯示),用於 將沉積物平面化。 由電鍵金屬構成微結構的另一方法(亦即,使用電化學 20 製造技術),係於頒給Henry Guckel之美國專利第5J90 637 號,標題為“藉由利用犧牲金屬層之多級深部X射線微影银 刻術構成微結構(Formation of Microstructures by MultipleDifferent from the photomask-type electric mine, the harmonic contact (cc) mask electric key capacity is the final type of the harmonious contact (cc) mask and the production of the substrate of the electric mine. The red 3-dimensional puppet structure is separated). The harmonized contact (cc) reticle can be constructed in several ways, for example, the Shiguang lithography process can be used. Before the structure is manufactured, but not during manufacturing, all the photomasks can be formed identically. Such a separation can be achieved. Simple, ======================================================= ?? where the table-making factory is used to manufacture a three-dimensional structure; «彡 __ Any required clean room process. Figures 2A and 2F are not examples of the electrochemical process described above. These diagrams show that the process includes deposition of a sacrificial material. Material 2 ′ W and a fourth material 4 which is a structural material. In this example, a “circumferential contact (CC) photomask 8 includes—patterned blending material (for example, a bow early body dielectric material). ) 1 () and an auxiliary structure made of deposition material 2. The reconciling part of the seek-type contact (CC) reticle is pressed against the base plate 6 with the electric power solution 14 disposed in the opening 16 of the reconciling material 12 200534519. Following the bag from the power source 18, the claws pass through the bond solution 14 via the substrate 6 which is (a) the auxiliary structure a which is also the anode and (b) the cathode which is also the cathode. Figure 2A illustrates the passage of current to cause material 2 and material 2 in the ore / valley fluid to be selectively transferred from the anode 12 and plated on the cathode 6. After the first contact material (CC) mask 8 is used to electroplat the first substrate 2 on the substrate 6, as shown in FIG. 2B, the withered contact (CC) mask 8 is removed. FIG. 2C illustrates that the second deposition material 4 has covered (ie, not selectively deposited) covering the previously deposited first deposition material 乂 and the rest of the substrate 6. Overlay deposition is performed by passing an anode (not shown) made of a second material through a suitable plating solution and plating onto the cathode / substrate 6. As shown in Figure 2D, the entire two material layers are then planarized to achieve precise thickness and flatness. As shown in the second figure, after repeating this process for all layers, the multilayer structure 20 composed of the second material 4 (ie, the structural material) is embedded in the first material 2 (ie, the sacrificial 15 material). . As shown in Figure 2F, the embedded structure is etched to produce the desired component, i.e., the structure 20. As shown in Figures 3A-3C, the various components of an exemplary manual electrochemical manufacturing system 32 are shown. The system 32 is composed of several subsystems 34, 36, 38, and 40. Shown in each upper part of Figures 3A to 3C is a substrate holding 20 subsystem 34 and includes a plurality of components: (1) a bracket 48 (2) a metal on which the layers are deposited The base plate 6 and (3) a linear slide 42 can move the base plate 6 up and down relative to the bracket 48 in response to the driving force obtained from the dynamic force 44. The subsystem 34 also includes an indicator 46 for measuring the difference in the vertical position of the substrate, which can be used to set or determine the thickness of the layer and / or the thickness of the deposit 13 200534519 which can be accurate. The subsystem 34 further includes a bracket 48 mounted on the subsystem 36 with feet 68. The harmonic contact (CC) mask subsystem 36 'shown in the lower part of FIG. 3A includes a plurality of elements: a harmonic contact (cc) mask 8 which is actually 5 shared by a common auxiliary Structure / Harmonic contact (CC) reticle (ie, sub-reticle) of the structure / anode 12, (2) Precision X stage 54, (3) Precision Y stage 56, (4) Footware 68 of subsystem 34 A frame D mounted thereon, and (5) a groove 58 for containing the electrolyte 16. The subsystems also include appropriate electrical connections (not shown) for connecting to an appropriate power source, and 10 to drive the harmonized contact (CC) shading process. Shown in the lower part of FIG. 3B is an overlay deposition subsystem 38, and includes a plurality of components: (1) an anode 62 '(2)-an electrolyte tank 64 for holding the plating solution 66, and (3 The frame 74 on which the feet 68 of the subsystem 34 are placed. Subsystem 38 also includes appropriate electrical connections (not shown) for connecting the 15 anode to a suitable power source to drive the overlay deposition process. Shown in the lower part of Figure 3C is a planarization subsystem 40 and includes an overlay plate 52 and a combined movement and control system (not shown) for planarizing the sediment. Another method of forming microstructures from bonded metal (ie, using electrochemical 20 manufacturing technology) is based on US Patent No. 5J90 637 issued to Henry Guckel, entitled "Multilevel Deep X by Using Sacrificial Metal Layer 1. formation of microstructures by multiple lithography
Level Deep X-ray Lithography with Sacrificial Metal layers)”一文中講授。該專利講授利用光罩曝光而構成金屬 14 200534519 、、、口構將主要金屬之第一層電鍛在一暴露的電艘基材上, 、、-位在光阻劑中的空隙,接著將光阻劑去除以及將 輔力至屬a鍍覆I該第—層及覆蓋該钱基材。接著將 輔助金屬之暴露表面向下加工至露出第一金屬的一高度, 5用以產^延伸涵蓋該二主要及輔助金屬的—平坦均句表 接著藉由%以一光阻劑層覆蓋該第一層而開始構成一 第一層,亚接著重複該用以產生第一層之製程。接著重複 3製私直至構成整個結構為止,並藉由蝕刻去除該輔助金 屬藉由‘造方式將光阻劑構成覆蓋該電鍵基材或是先前 ίο層並藉經由X射線或紫外光輻射將光阻劑通過一圖案化光 罩而曝光,在光阻劑中構成空隙。 電化學製造提供在合理成本及時間下構成微型物件、 部件、結構、元件及相似物之原型及商業量產的能力。事 貝上’電化學製造係為一輔助技術(enabler),用於構成多數 15迄今無法產生之結構。電化學製造開啟在多數工業領域中 新設計及產品之範圍。即使電化學製造提供此新穎能力, 並且應瞭解的是電化學製造技術能夠與不同領域内所熟知 的設計及結構結合用以產生新結構,就發展中之科技的目 前進步水準而言,提供設計、結構、能力及/或特性的電化 2〇學製造之特疋用途並非廣為熟知或顯著的。 於複數領域中,存在著對於具改良特性、減少製造時 間、降低製造成本、簡化的製程及/或在幾何構形與選定製 程之間更具獨立性的微型元件之需求。在微型(亦即,中尺 度的及微尺度的)元件製造領域中,亦存在著對於改良製作 15 200534519 方法及裝置的需求。 於電化學製造領域中,亦存在著強化對於補充該等於 該領域中已為所熟知之用以容許在元件設計上具更多用 途、改良材料之選擇、改良材料特性、更具成本效益及較 小的製造该等元件之風險及相似因素的技術之需求。 【明内3 發明概要 本發明之一些觀點的一目的在於提供一能夠製造改良 式探針陣列結構的電化學製造技術。 10 15 20 本發明之-些觀點的-目的在於提供一能夠製造探針 陣列結構的改良式電化學製造技術。 熟知此技藝之人士一旦檢閱於此的講授内容,對於本 發明之複數觀關其他目的與優_為顯㈣見的。本發 明之複數觀點,於此明確地提出或是以其他方法於此由講 授内容查明,可獨自或是結合地提出上述—或更多之目 的’或是可任擇地提出由此之講授内容所查明的本發明之 其他目的。即使與-些觀點有_情況—樣,但並非必定 意欲所有目的係藉由本發明之任—單—觀點提出。& 本發明之第-觀點提供—種用於製造探針陣列的方 法,其包括:在-暫時基板上製造複數之每—探針的至少 -部分;將該等探針自暫時基板轉移至一永久 本發明之第二觀點提供—種用於製造微探=方法 其包括·在-暫時基板上製造微探針的至少Level Deep X-ray Lithography with Sacrificial Metal layers) ". This patent teaches the use of photomask exposure to form a metal. 14 200534519, the first structure of the main metal is electroforged on an exposed electric ship substrate , ,,-are located in the gap in the photoresist, and then the photoresist is removed and the auxiliary force is plated to the first layer and the substrate is covered. Then the exposed surface of the auxiliary metal is directed downward. Processed to a height where the first metal is exposed, 5 is used to produce ^ extending the two main and auxiliary metals—a flat uniform sentence list, and then begins to form a first by covering the first layer with a photoresist layer Layer, and then repeating the process for generating the first layer. Then repeating 3 steps until the entire structure is formed, and the auxiliary metal is removed by etching, and the photoresist composition is covered by the fabrication method to cover the key substrate or It is the previous layer and exposes the photoresist through a patterned photomask through X-ray or ultraviolet radiation to form a void in the photoresist. Electrochemical manufacturing provides micro-objects and components at reasonable cost and time. , Prototyping, structures, components, and similar prototypes and commercial mass production capabilities. "Electrochemical manufacturing is an enabler that is used to form most structures that have not been produced so far. Electrochemical manufacturing opens in most industries. The range of new designs and products in the field. Even if electrochemical manufacturing provides this novel capability, it should be understood that electrochemical manufacturing technology can be combined with well-known designs and structures in different fields to produce new structures, and technology is under development. In terms of the current level of advancement, the special use of electrochemical manufacturing that provides design, structure, capability, and / or characteristics is not widely known or significant. In the plural field, there are improvements to improve characteristics and reduce manufacturing time. , The need to reduce manufacturing costs, streamlined manufacturing processes, and / or micro-components that are more independent between geometric configuration and customized processes. In the field of micro (ie, meso-scale and micro-scale) component manufacturing, also There is a need for improved manufacturing methods and devices. 15 200534519. In the field of electrochemical manufacturing, there are also enhancements and supplements. Equal to the technology already known in the field to allow more uses in component design, improved material selection, improved material characteristics, more cost-effective and less risky and similar factors for manufacturing these components [Meichi 3 Summary of the Invention An object of some aspects of the present invention is to provide an electrochemical manufacturing technique capable of manufacturing an improved probe array structure. 10 15 20 Some of the aspects of the present invention are to provide a capable of manufacturing Improved electrochemical manufacturing technology of probe array structure. Once those who are familiar with this technology have reviewed the teaching content here, it is obvious that the plural view of the present invention is related to other purposes and advantages. The plural view of the present invention is in This expressly proposes or is otherwise identified by the teaching content here, the above-mentioned or more purposes may be proposed alone or in combination, or the present invention identified by the teaching content is optionally proposed. For other purposes. Even if there are situations with some viewpoints, it is not necessarily intended that all purposes are raised by any one-of-a-kind viewpoint of the present invention. & A first aspect of the present invention provides a method for manufacturing a probe array, comprising: manufacturing at least a portion of each of a plurality of probes on a temporary substrate; and transferring the probes from the temporary substrate to A second aspect of the present invention provides a method for manufacturing a microprobe = including at least a method of manufacturing a microprobe on a temporary substrate.
探針自暫時基板轉移至一永久基板。 1刀,將U 16 200534519 本發明之第三觀點提供一種用於製造順應式電接觸元 件陣列的方法,其包括:在一暫時基板上製造順應式電接 觸元件的至少一部分;將該等順應式電接觸元件自暫時基 板轉移至一永久基板。 5 本發明之第四觀點提供一種用於製造黏附至一永久基 板的順應式電接觸元件的方法,其包括:在一暫時基板上 製造順應式電接觸元件的至少一部分;將該順應式電接觸 元件自暫時基板轉移至一永久基板。 # 熟知此技藝之人士一旦檢閱於此提出之講授内容,應 10 可瞭解本發明之該等觀點。本發明之其他觀點可包含結合 上述提及的觀點。本發明之其他觀點包括能夠用以執行上 述本發明之一或更多方法觀點的裝置。本發明之該等其他 觀點可提供上述觀點之不同結合方式以及提供其他構形、 結構、功能關係、以及上述並未特別提出的製程。 15 圖式簡單說明 第1A-1C圖係為一調和式接觸光罩電鍍製程於不同階 • 段的概略側視圖,同時第1D-1G圖係為使用一不同型式的調 和式接觸光罩的一調和式接觸光罩電鍍製程的不同階段的 概略側視圖。 20 第2A-2F圖係為用以構成一特定結構之電化學製程於 不同階段的概略側視圖,該結構中選擇性地沉積一犧牲材 料同時覆盖式沉積一結構材料。 第3A-3C圖係為不同示範性子總成的概略側視圖,其可 用以手動地執行第2A-2F圖中所示之電化學製造方法。 17 200534519 第4A-4I圖係概略地圖示使用黏著光罩電鍍所構成的 一結構之第一層,其中一第二材料之覆蓋式沉積將介於第 一材料之沉積位置與第一材料本身之間的開口覆蓋。 第5圖係為在一暫時基板上構成複數之探針的至少一 5 部分並接著將其轉移至一永久基板,所需之本發明的一觀 點之一第一廣義具體實施例的一製程之一方塊圖。 第6圖係為該第一廣義具體實施例的一第一變化形式 的一製程之一方塊圖,其中該等探針係以一次一個的方式 • 轉移至永久基板。 10 第7圖係為該第一廣義具體實施例的一第二變化形式 的一製程之一方塊圖,其中該等探針係以一陣列方式同時 地轉移至永久基板。 第8圖係為該第一廣義具體實施例的一第三變化形式 的一製程之一方塊圖,其中該等探針係以一系列分開配置 15 陣列方式轉移至永久基板。 第9圖係為該第一廣義具體實施例的一第四變化形式 • 的一製程之一方塊圖,其中該等探針首先構成接點以及最 後構成安裝區域,並於之後進行將其轉移至永久基板,接 著將暫時基板去除。 20 第10圖係為該第一廣義具體實施例的一第五變化形式 的一製程之一方塊圖,其中該等探針首先構成接點以及最 後構成安裝區域並於之後將暫時基板去除,接著進行將其 轉移至永久基板。 第11圖係為該第一廣義具體實施例的一第六變化形式 18 200534519 的-製程之-方塊圖’其中鱗探針首先構成安裝區域以 及最後構成接點’於之後將暫時基板去除,接著附裝永久 基板。 弟12圖係為該第一廣義具體實施例的一第 的一製程之—方額’其中該等探針首_成安裝區域以 及最後構成接點,於之後附裝—第二暫時基板,接著將第 一暫時基板去除並於其之位置㈣永久基板。 第13圖係為該第—廣義具體實施例的一第八變化形式 10 15 20 的二製程之—方塊圖,其中該等探針僅在轉移至永久基板 之可部分地構成,並於之後完成探針製作。 弟14圖係為該第-廣義具體實施例的一第七變化形式 之—方塊圖,其中該等探針在轉移至永久基板之 刖至少部分地自一犧牲材料脫模。 ^圖係為該第-廣義具體實施例的—第九變化形式 1並去t塊圖’其中該等探針在轉移至永久基板之 則並未自至少一犧牲材料 犧牲材料脫模。 之後將该等探針自至少一 為該第-廣義具體實施例的—第十變化形式 、 衣秋之一方塊圖’其中該箄控紅^ , 13寺^針之構成作業包括該等 刼針在與永久基板接觸之前, 上^ # 擇性地在探針之安裝區域 上配置一傳導性黏合材料。 苐17圖係為該第一廣義呈辦每 '、我”體貝施例的一第十一變化形 八的一製程之一方塊圖, . /、 擇性地將一傳導性黏合材 枓配置在水久基板上的該等位置 罝處,其中完成附裝至探針 19 200534519 並於之後附裝探針及永久基板。 第18圖係為該第一廣義具體實施例的一第十二變化形 式的一製程之一方塊圖,其中該等探針之構成作業包括在 將探針與永久基板接觸之前,選擇性地在探針之安裝區域 5 上配置一第一傳導性黏合材料,以及其中一第二傳導性黏 合材料係選擇性地配置在永久基板上的該等位置處,其中 完成附裝至探針並於之後利用第一及第二黏合材料附裝探 針及永久基板。 • 第19圖係為該第一廣義具體實施例的一第十三變化形 10 式的一製程之一方塊圖,其中在轉移之前該犧牲材料之至 少一部分並未移除,以及在永久基板與探針結合作業期 間,將其中一防護材料配置在黏合材料與任一犧牲材料之 間。 第20圖係為該第一廣義具體實施例的一第十三變化形 15 式的第一延伸部分的一製程之一方塊圖,其包括在結合作 業之後去除犧牲材料及防護材料。 • 第21圖係為該第一廣義具體實施例的一第十三變化形 式的第二延伸部分的一製程之一方塊圖,其包括在結合作 業之後去除犧牲材料但保留防護材料。 20 第22圖係為該第一廣義具體實施例的一第十四變化形 式的一製程之一方塊圖,其中在結合作業之前將探針熱處 理用以改良已構成該等探針之該等結構材料層之間的黏合 性。 第23圖係為該第一廣義具體實施例的一第十五變化形 20 200534519 式的-製程之-方塊圖,其中在結合作業之後將探針熱處 理用以改良已構成該等探針之該等結構材料層之間的黏合 性。 第24A-24C圖係為_製程之一實例的三階段之概略透 5 二其中所構成之多重探針陣列係為顛倒、經切割並接 者如第8圖之方塊圖中所例示般轉移至一永久基板用以構 成較大的陣列群組。 第25A-25J圖係為用於在一暫時基板上構成一多層式 二το件探針陣列的_製程之—實例的不同狀態的概略側視 圖,其中接著將已構成結構轉移並與一永久基板結合,該 基板係由犧牲材料所構成並且其中該製程包括在第9及15 圖之方塊圖中所例示之該等元件。 第26A-26E圖係為用於在一暫時基板上構成多重、多 層、多元件式探針陣列的一製程之一實例的不同狀態的概 15略側視圖,其中接著將已構成結構轉移並與一永久基板結 合,該探針元件之接點係模塑於一圖案化基板中,並在脫 模作業之前但在轉移及結合作業之後進行擴散黏合作業, 其中該製程包括在第9、15及23圖之方塊圖中所例示之該等 元件。 第27A-27C圖係為在第26A-26E圖之探針上構成增大 探針接點的一製程之不同狀態的概略側視圖。 苐28A-28I圖係為用於在一暫時基板上構成多層、多元 件式探針陣列的一製程之一實例的不同狀態的概略側視 圖,其接著將已構成結構轉移並與一永久基板結合,該探 21 200534519 針元件之接點係模塑於一與結構材料不同的接點材料之一 圖案化基板中,並在轉移作業之前針對高產量可能性分析 以及之後針對使用或不使用而選定一個別探針陣列,以及 其中該製程包括在第9、15及23圖之方塊圖中所例示之該等 5 元件。 第29A-29L圖係為用於在一暫時基板上構成多層、多元 件式探針陣列的一製程之一實例的不同狀態的概略側視 圖,其接著將已構成結構轉移並與一永久基板結合,其中 > 探針接點係經由一由犧牲材料所構成之一模具製作而成, 10 其中探針元件係藉由一可熔化材料與該暫時基板分離,以 及其中該製程包括在第9、15及22圖之方塊圖中所例示之該 等元件。 第30A-30H圖係為用於在一暫時基板上構成多層、多 元件式探針陣列的一製程之一實例的不同狀態的概略側視 15 圖,其係與第29A-29L圖中所示相似,不同之處在於第一金 屬係由一介電材料所取代。 • 第31A-31W圖係為用於在一暫時基板上構成多層、多 元件式探針陣列的一製程之另一實例的不同狀態的概略側 視圖。 20 第32A-32Z圖係為一示範製程的不同狀態的概略側視 圖,其係與第31A-31W圖之製程相似但附加地包含塗佈探 針作業。 第33A-33T圖繪示出一與第32A-32T圖相似之示範製 程的不同狀態的概略側視圖,除了其僅利用單一犧牲材料 22 200534519 626來取代一個犧牲材料626與6i6,而第%u_33W圖繪示出 該製程的其他狀態。 【實施方式】 較佳實施例之詳細說明 5 第1A~1G、2A_2F&3A-3C圖係圖示所熟知之電化學的 升y式之不同的特徵。其他的電化學製造技術係於以上參 考的630專利、先前不同的合併公開案、不同的其他專利 以及於此併入本案以為參考資料的專利申請案中提出,而 仍有其他的技術可由結合於該等公開案、專利以及申請案 1〇中所說明之方法衍生而得,或為由熟知此技藝之人士以其 他方法自於此提出之講授内容中所熟知或可確定的。所有 該等技術可與本發明之不同觀點的不同具體實施例結合, 用以產生強化的具體實施例。仍有該等其他的具體實施例 係結合於此明確地提出的不同具體實施例所衍生而的。 15 第4A-41圖係圖示於構成一多層製程之單一層的不同 階段’其中一第二金屬係沉積在一第一金屬上以及位在第 一金屬中的開口中,其之沉積物構成部分之層。於第4A圖 中,所示係為一基板82的一側視圖,如第4B圖中所示將一 可圖案化光阻劑84澆鑄在基板上。於第4C圖中,所示係為 20將光阻劑固化、曝光及顯影所造成之光阻劑圖案。光阻劑 84之圖案化造成開口或孔口 92A-92C,其係自光阻劑之一表 面86延伸穿過光阻劑之厚度到達基板82之表面88。於第4D 圖中,如圖所示已將金屬94(例如,鎳)電鍍進入開口 92A-92C中。於第4E圖中,已自基板去除(亦即,以化學方 23 200534519 式剝除)光阻劑用以露出基板82之未以第一金屬94覆蓋的 該等區域。於第4F圖中,如圖所示已將第二金屬96(例如, 銀)以覆蓋式電鍍覆蓋基板82之整個露出部分(其係具傳導 性)以及覆蓋該第一金屬94(其亦係具傳導性)。第4(3圖係圖 5示所完成結構之第一層,其係將第一及第二金屬向下平面 化至露出第一金屬的一高度而構成並設定第一層之厚度。 於第4H圖中,係為重複第4B-4G圖中所示製程步驟數次用 以構成一多層結構的結果,該多層結構中之每一層係由二 材料所組成。就大多數之應用而言,如第41圖中所示,去 10除該等材料的其中之一材料,用以產生一所需的3維結構 98(例如,組件或元件)。 於此所揭露之不同的具體實施例、可任擇方案及技術 可在所有層上利用一單一圖案化技術或是在不同層上利用 不同的圖案化技術構成多層結構。例如,在一些層上可使 15用不同型式的圖案化光罩及遮光技術,同時在構成其他層 期間可使用直接選擇性沉積。例如,在一些層上可使用調 和式接觸光罩及/或不調和式接觸光罩與遮光作業,同時可 使用其他的技術構成其他層。可使用接近光罩(pr〇ximity mask)及遮光作業(亦即,使用光罩之作業,即使未接觸亦 20使其接近基板而至少部分選擇性地保護一基板),並可使用 黏著光罩及遮光作業(光罩以及使用光罩之作業,該等光罩 係黏附至一其上具有選擇性沉積物的基板,或是與僅係與 其接觸之相對處進行钱刻)。 第5圖係為在一暫時基板上構成複數之探針的至少一 24 200534519 部分並接著將其轉移至一永久基板,所需之本發明的一觀 點之一第一廣義具體實施例的一製程之一方塊圖。 方塊100係說明在一暫時基板上建構複數探針之至少 每一探針的至少一部分。可以複數種不同的方式執行方塊 5 100之建構作業。例如,建構作業可包括諸如早先於此所說 明之ό亥寻作業’以及在不同專利及於此併入本案以為參考 賀料的该專專利申請案中所說明的該等作業之電化學製造 作業。建構作業可包括在一些層上使用多於一之結構材 • 料,或是在一些層上使用多於一之犧牲材料。 10 该等建構技術可包括每層使用一次以上的平面化作 15 積作業、 業,並且於一些狀況下,在一些層上並無使用平面化作業。 該等沉積作業可為具選擇性及/或覆蓋型式,並且在選擇性 或覆蓋型式下執行蝕刻作業。沉積作業可包括電鍍作業、 電冰/儿積作業、無電電鍍作業、不同的物理及化學氣相沉 可為所有的傳導性型式或是—些可為電介f。進一步的沉 熱喷霧金屬沉積作業以及相似作業。沉積之材料 g 〇ver)、散佈、噴霧、噴墨分配The probe is transferred from the temporary substrate to a permanent substrate. 1 knife, U 16 200534519 A third aspect of the present invention provides a method for manufacturing an compliant electrical contact element array, which includes: manufacturing at least a portion of a compliant electrical contact element on a temporary substrate; The electrical contact element is transferred from the temporary substrate to a permanent substrate. 5 A fourth aspect of the present invention provides a method for manufacturing a compliant electrical contact element adhered to a permanent substrate, comprising: manufacturing at least a part of a compliant electrical contact element on a temporary substrate; The component is transferred from the temporary substrate to a permanent substrate. # Those who are familiar with this art should understand the viewpoints of the present invention once they have reviewed the teaching content presented here. Other viewpoints of the present invention may include the viewpoints mentioned above in combination. Other aspects of the invention include means that can be used to perform one or more of the method aspects of the invention described above. These other perspectives of the present invention can provide different combinations of the above perspectives and provide other configurations, structures, functional relationships, and processes not specifically mentioned above. 15 Schematic illustrations 1A-1C is a schematic side view of a harmonic contact mask electroplating process at different stages. At the same time, 1D-1G is a schematic view of a different type of harmonic contact mask. Schematic side view of the different stages of the harmonic contact mask plating process. 20 Figures 2A-2F are schematic side views of an electrochemical process used to form a specific structure at different stages, in which a sacrificial material is selectively deposited while a structural material is deposited overlying. Figures 3A-3C are schematic side views of different exemplary sub-assemblies, which can be used to manually perform the electrochemical fabrication methods shown in Figures 2A-2F. 17 200534519 Figure 4A-4I is a diagrammatic illustration of the first layer of a structure constructed using an adhesive mask electroplating, in which the overlay deposition of a second material will be between the deposition position of the first material and the first material itself Covered between the openings. FIG. 5 is a process for forming at least a part 5 of a plurality of probes on a temporary substrate and then transferring it to a permanent substrate, which is one of the viewpoints of the present invention, one of the first generalized embodiments. A block diagram. Figure 6 is a block diagram of a process in a first variation of the first generalized embodiment, where the probes are transferred to the permanent substrate one at a time. 10 FIG. 7 is a block diagram of a process of a second variation of the first generalized embodiment, in which the probes are simultaneously transferred to a permanent substrate in an array manner. Fig. 8 is a block diagram of a process of a third variation of the first generalized embodiment, in which the probes are transferred to a permanent substrate in a series of separately arranged 15 arrays. Fig. 9 is a block diagram of a process of a fourth variation of the first generalized embodiment, in which the probes first form the contacts and finally the installation area, and then they are transferred to The permanent substrate is then removed. 20 FIG. 10 is a block diagram of a process of a fifth variation of the first generalized embodiment, in which the probes first constitute a contact and finally an installation area, and then the temporary substrate is removed, and then Perform transfer to a permanent substrate. FIG. 11 is a sixth process form 18200534519 of the first generalized embodiment of the present invention, wherein the scale probe first constitutes an installation area and finally a contact, and then a temporary substrate is removed, and then Attach a permanent substrate. Figure 12 is the first process of the first generalized embodiment-the square amount, in which the probes are first formed into the installation area and the last contact, and then attached-the second temporary substrate, then The first temporary substrate is removed and a permanent substrate is placed in its place. FIG. 13 is a block diagram of the second process of an eighth variation 10 15 20 of the first generalized embodiment, in which the probes are only partially constructed after being transferred to a permanent substrate, and are completed thereafter Probe making. Figure 14 is a block diagram of a seventh variation of the first generalized embodiment, in which the probes are at least partially demolded from a sacrificial material when transferred to a permanent substrate. ^ The figure is the ninth generalized embodiment of the ninth variation 1 and the block diagram is removed. The probes are not demolded from at least one sacrificial material when transferred to the permanent substrate. Afterwards, these probes are from at least one of the tenth variation of the first generalized embodiment, a block diagram of Yiqiu, where the control of the red ^, 13 temple ^ needles includes Before contacting the permanent substrate, a conductive adhesive material is selectively placed on the mounting area of the probe.苐 17 is a block diagram of a process of an eleventh variation of the first generalized rendering of the 我, ”, and 施 examples,. /, A conductive adhesive material is selectively arranged. At these positions 水 on the Mizuhisa substrate, the attachment to the probe 19 200534519 is completed, and then the probe and the permanent substrate are attached. FIG. 18 is a twelfth variation of the first generalized embodiment. A block diagram of a form of a process, wherein the formation of the probes includes selectively placing a first conductive adhesive material on the probe mounting area 5 before contacting the probes with a permanent substrate, and wherein A second conductive adhesive material is selectively disposed at these positions on the permanent substrate, where the attachment to the probe is completed and then the probe and the permanent substrate are attached with the first and second adhesive materials. 19 is a block diagram of a process of a thirteenth variation 10 of the first generalized embodiment, in which at least a part of the sacrificial material is not removed before the transfer, and the permanent substrate and the probe During combined operation One of the protective materials is arranged between the adhesive material and any sacrificial material. FIG. 20 is a block diagram of a process of the first extension part of the thirteenth variation 15 of the first generalized embodiment. , Which includes removing the sacrificial material and the protective material after the bonding operation. Figure 21 is a block diagram of a process of a second extension of a thirteenth variation of the first generalized embodiment, which includes The sacrificial material is removed but the protective material is retained after the bonding operation. 20 FIG. 22 is a block diagram of a process of a fourteenth variation of the first generalized embodiment, in which the probe is heat-treated before the bonding operation. Improve the adhesion between the structural material layers that have constituted the probes. Figure 23 is a fifteenth variation of the first generalized embodiment 20 200534519 of the formula-process-block diagram, where Heat treatment of the probes after the bonding operation is used to improve the adhesion between the layers of structural materials that have formed the probes. Figures 24A-24C are schematic diagrams of the three stages of an example of a process The multi-probe array formed by Toshiba 2 is reversed, cut and concatenated, as shown in the block diagram of Figure 8, and transferred to a permanent substrate to form a larger array group. 25A-25J The figure is a schematic side view of different states of an example of a _process used to construct a multilayer two-tau probe array on a temporary substrate, where the constructed structure is then transferred and combined with a permanent substrate. The substrate is composed of sacrificial materials and the process includes the components illustrated in the block diagrams of Figures 9 and 15. Figures 26A-26E are used to form multiple, multilayer, and multiple components on a temporary substrate. 15 is a schematic side view of an example of a manufacturing process of an example of a probe array in which the structure is transferred and combined with a permanent substrate, and the contacts of the probe element are molded in a patterned substrate. The diffusion bonding process is performed before the demolding operation but after the transfer and bonding operations. The process includes the components illustrated in the block diagrams of Figures 9, 15 and 23. Figures 27A-27C are schematic side views of the different states of a process of increasing the probe contacts on the probes of Figures 26A-26E.苐 28A-28I is a schematic side view of different states of an example of a process for forming a multilayer, multi-element probe array on a temporary substrate, which then transfers the formed structure and combines it with a permanent substrate The probe 21 200534519 contact of the pin element is molded in a patterned substrate that is one of the contact materials different from the structural material, and is selected for high-yield possibility analysis before the transfer operation and later for use or non-use A unique probe array, and the process includes the 5 elements illustrated in the block diagrams of Figures 9, 15 and 23. Figures 29A-29L are schematic side views of different states of one example of a process for constructing a multilayer, multi-element probe array on a temporary substrate, which then transfers the constructed structure and combines it with a permanent substrate , Where > the probe contact is made through a mold made of a sacrificial material, 10 where the probe element is separated from the temporary substrate by a meltable material, and where the process is included in the ninth, These elements are illustrated in the block diagrams of Figures 15 and 22. Figures 30A-30H are schematic side views 15 of different states of one example of a process for forming a multilayer, multi-element probe array on a temporary substrate, which are shown in Figures 29A-29L Similarly, the difference is that the first metal is replaced by a dielectric material. • Figures 31A-31W are schematic side views of different states of another example of a process for forming a multi-layer, multi-element probe array on a temporary substrate. 20 Figure 32A-32Z is a schematic side view of the different states of an exemplary process, which is similar to the process of Figure 31A-31W but additionally includes a coating probe operation. Figures 33A-33T show schematic side views of different states of an exemplary process similar to Figures 32A-32T, except that it uses only a single sacrificial material 22 200534519 626 to replace one sacrificial material 626 and 6i6, and the% u_33W The drawing shows other states of the process. [Embodiment] Detailed description of the preferred embodiment 5 The first 1A to 1G, 2A_2F & 3A-3C diagrams show different characteristics of the well-known electrochemical ascending y formula. Other electrochemical manufacturing technologies are proposed in the above-referenced 630 patent, previously different combined publications, different other patents, and patent applications incorporated herein as reference materials, but there are still other technologies that can be incorporated in These publications, patents, and the methods described in Application 10 are derived, or are known or ascertainable from other teachings proposed by those skilled in the art. All of these techniques can be combined with different embodiments of different aspects of the present invention to produce enhanced embodiments. There are still these other specific embodiments derived from the combination of the different specific embodiments explicitly set forth herein. 15 Figures 4A-41 are diagrams illustrating different stages of forming a single layer of a multi-layer process, in which a second metal system is deposited on a first metal and in an opening located in the first metal, and its deposits Layers of components. In FIG. 4A, a side view of a substrate 82 is shown. As shown in FIG. 4B, a patternable photoresist 84 is cast on the substrate. In Fig. 4C, the photoresist pattern resulting from curing, exposing, and developing the photoresist is shown. The patterning of the photoresist 84 results in openings or apertures 92A-92C, which extend from one surface 86 of the photoresist through the thickness of the photoresist to the surface 88 of the substrate 82. In Figure 4D, a metal 94 (eg, nickel) has been plated into the openings 92A-92C as shown. In FIG. 4E, the photoresist has been removed from the substrate (that is, stripped chemically 23 200534519) to expose the areas of the substrate 82 that are not covered with the first metal 94. In FIG. 4F, the second metal 96 (for example, silver) has been plated to cover the entire exposed portion of the substrate 82 (which is conductive) and the first metal 94 (which is also Conductive). Fig. 4 (3) is the first layer of the completed structure shown in Fig. 5, which is formed by planarizing the first and second metals downward to a height where the first metal is exposed and setting the thickness of the first layer. Figure 4H is the result of repeating the process steps shown in Figures 4B-4G several times to form a multilayer structure, and each layer in the multilayer structure is composed of two materials. For most applications As shown in Fig. 41, one of the materials is divided by 10 to generate a desired three-dimensional structure 98 (for example, a component or a component). Different specific embodiments disclosed herein Optional schemes and technologies can use a single patterning technique on all layers or use different patterning techniques on different layers to form a multilayer structure. For example, on some layers, 15 different types of patterned light can be used Masks and shading techniques, while direct selective deposition can be used during formation of other layers. For example, harmonized contact masks and / or irreconcilable contact masks and shading operations can be used on some layers, while other techniques can be used Make up other layers. Proximity mask and shading operations (that is, using a mask, even if it is not in contact, it is brought close to the substrate and at least partially protects a substrate), and an adhesive mask and light shielding can be used Operation (photomasks and operations using photomasks, which are either adhered to a substrate with selective deposits on them, or are engraved with money opposite to those that are only in contact with them). Figure 5 shows the A temporary substrate constitutes at least one 24 200534519 portion of a plurality of probes and then is transferred to a permanent substrate, which is a block diagram of a process of a first generalized embodiment of an aspect of the present invention required. 100 refers to the construction of at least a portion of at least each probe of a plurality of probes on a temporary substrate. The construction operations of block 5 100 can be performed in a number of different ways. For example, the construction operations may include issues such as those described earlier herein. 'Hai Xun operation' and the electrochemical manufacturing operations described in different patents and the patent application which is incorporated herein by reference for this patent application. Construction operations This may include the use of more than one structural material on some layers, or the use of more than one sacrificial material on some layers. 10 Such construction techniques may include the use of more than one planarization operation per layer for 15 layers, Industry, and under some conditions, no planarization operation is used on some layers. These deposition operations may be selective and / or cover types, and etching operations are performed under selective or cover types. The deposition operations may include Plating operations, electro-ice / child product operations, electroless plating operations, different physical and chemical vapor depositions can be all conductive types or some can be dielectric f. Further sinking spray metal deposition operations and similar Operation: deposited materials (g 〇ver), spreading, spraying, inkjet distribution
積技術可包括溢出(floWin 及相似作業。藉由選擇性 融作業以及相似作業,將: 25 200534519 。亥等仏針可構成為複數之形式,其巾-些形式係於由Product technology can include overflow (floWin and similar operations. By selective fusion operations and similar operations, 25 200534519. Hai and other needles can be formed into plural forms, the form of which is based on
Arat等人在2GG3年12月31日提出申請的美ϋ專利巾請案第 60/533,933 號,拇日κ ” U ^題為“電化學製作微探針 ( emically Fabricated Microprobes)” 中加以說明。 …該等探針可包括以任一複數之不同方式所構成且可採 用複數之不同形狀的該等接點。由Kim等人於2⑼3年η月3丄 曰提出申明,私題為“微探針接點及其製作方法(MicmF〇beArat et al. Described in US Patent Application No. 60 / 533,933, filed on December 31, 2GG3, U.K., entitled "Electically Fabricated Microprobes". … The probes may include these contacts that are constructed in any of a plurality of different ways and may adopt a plurality of different shapes. A statement was made by Kim et al. Pin contact and its manufacturing method (MicmF〇be
Tips and Methods for Making)”之美國專利申請案第 6〇/533,975號中包括該等接點形式及構成方法之實例。 於一些具體實施例中,可由複合材料構成該等探針。 由Cohen等人於2〇〇3年12月31日提出申請,標題為“構成多 層多種材料微探針結構所用的電化學製程(Electr〇chemicaiTips and Methods for Making) "U.S. Patent Application No. 60 / 533,975 includes examples of the contact forms and construction methods. In some embodiments, these probes can be composed of composite materials. Cohen et al. An application was filed on December 31, 2003 under the heading "Electrochemicai
Fabrication Process for Forming Multilayer Multimaterial Microprobe structures),,之美國專利中請案第 6〇/533,897號 15中提供用於構成該等複合材料探針之技術的該等實例。 於一些具體實施例中,探針之構成作業可包括在轉移 並與永久基板結合之前或是之後進行之不同的貼層構成作 業。一些該等作業包括擴散黏合技術,有助於增強層間黏 著性。一些具體實施例利用擴散黏合作業或是相似方式, 20用以增強材料的連續層之間的黏著性。由Cohen等人於2003 年12月31日提出申請,標題為“用於製造包括製備沉積一第 二材料的一第一材料之表面處理的三維結構的方法 (Method for Fabricating Tree-Dimensional StructuresFabrication Process for Forming Multilayer Multimaterial Microprobe structures), US Patent Application No. 60 / 533,897 15 provides these examples of the technology used to construct these composite probes. In some embodiments, the formation of the probe may include different layer formation operations before or after being transferred and combined with the permanent substrate. Some of these operations include diffusion bonding techniques that help enhance interlayer adhesion. Some embodiments use a diffusion bonding process or a similar method to enhance adhesion between successive layers of material. Application by Cohen et al. On December 31, 2003, entitled "Method for Fabricating Tree-Dimensional Structures
Including Surface Treatment of a First Material in 26 200534519Including Surface Treatment of a First Material in 26 200534519
Preparation for Deposition of a Second Material)”之美國專 利申請案第6〇/534,204號中提出與在電化學製程中使用擴 散黏合作業有關的不同講授内容,於此以全文引用方式併 入本案以為參考資料。 5 如上所述,探針之構成作業可包含使用結構或是犧牲 介電材料,其可以複數之不同方式與本發明之具體實施例 結合。與在介電基板上構成結構及/或構成結構其中將介電 材料併入構成製程並可能與最終結構結合有關的附加講授 # 内容,係於複數之在2003年12月31日提出申請的專利申請 1〇 案中提出。該等文件檔案中的第一槽案係為美國專利申請 案第60/534,184號,標題為“結合介電材料及/或使用介電基 板的電化學製造方法(Electrochemical Fabrication Methods“Preparation for Deposition of a Second Material)” in US Patent Application No. 60 / 534,204 proposes different teaching content related to the use of diffusion bonding in electrochemical processes, which is hereby incorporated by reference in its entirety for reference. 5 As mentioned above, the construction of the probe may include the use of a structure or a sacrificial dielectric material, which may be combined with specific embodiments of the present invention in a plurality of different ways. And the structure and / or structure on the dielectric substrate Among them, the additional lectures # that incorporate dielectric materials into the manufacturing process and may be related to the final structure are filed in a number of Patent Application 10 applications filed on December 31, 2003. The first case is US Patent Application No. 60 / 534,184, entitled "Electrochemical Fabrication Methods Combining Dielectric Materials and / or Using Dielectric Substrates"
Incorporating Dielectric Materials and/or Using Dielectric Substrates)”。該等文件檔案中的第二檔案係為美國專利申 15 請案第60/533,932號,標題為“使用介電基板的電化學製造 方法(Electrochemical Fabrication Methods Using Dielectric 0 Substrates)”。該等文件檔案中的第三檔案係為美國專利申 請案第60/534,157號,標題為“結合介電材料的電化學製造 方法(Electrochemical Fabrication Methods Incorporating 20 Dielectric Materials)”。該等文件樓案中的第四槽案係為美 國專利申請案第60/533,891號,標題為“結合經由平面化部 分地去除的介電薄片及/或種晶層的電化學製造結構的方 >去(Methods for Electrochemically Fabricating StructuresIncorporating Dielectric Materials and / or Using Dielectric Substrates ". The second of these documents is US Patent Application No. 60 / 533,932, entitled" Electrochemical Fabrication Using Dielectric Substrates (Electrochemical Fabrication Methods Using Dielectric 0 Substrates ". The third file in these files is US Patent Application No. 60 / 534,157, entitled" Electrochemical Fabrication Methods Incorporating 20 Dielectric Materials ". The fourth slot in these documents is US Patent Application No. 60 / 533,891, entitled" Electrochemistry Incorporating Dielectric Sheets and / or Seed Layers Partially Removed by Planarization " Methods of Manufacturing Structures> (Methods for Electrochemically Fabricating Structures
Incorporating Dielectric sheets and/or Seed layers That Are 27 200534519Incorporating Dielectric sheets and / or Seed layers That Are 27 200534519
Partially Removed Via Planarization)”。該等文件檔案中的第 五檔案係為美國專利申請案第60/533,895號,標題為“用於 在一多孔電介質上生產多層三維結構的電化學製造方法 (Electrochemical Fabrication Method for Producing 5 Multi-layer Three-Dimensional Structures on a Porous Dielectric)’’。該每一專利文件檔案於此以全文引用方式併 入本案以為蒼考貧料。 與將該等層平面化並設定該等層厚度及相似作業有關 的進一步講授内容係於以下在2003年12月31日提出申請的 10 美國專利申請案中提出:(1)由Cohen等人提出申請,標題 為“包括在材料沉積之平面化作業中使用鑽石加工的用於 製造多層結構的電化學製造方法(Electrochemical Fabrication Methods for Producing Multilayer Structures Including the use of Diamond Machining in the Planarization 15 〇f Deposits of Material)”的美國專利申請案第 60/534,159號 以及(2)由Cohen等人提出申請的美國專利申請案第 60/534,183號,標題為“於電化學製造結構期間用於保持層 之平行及/或達成所需之層厚的方法與裝置(Method and Apparatus for Maintaining Parallelism of Layers and/or 20 Archieving Desired Thicknesses of Layers During thePartially Removed Via Planarization ". The fifth file in these files is US Patent Application No. 60 / 533,895, entitled" Electrochemical Manufacturing Method for the Production of Multilayer Three-Dimensional Structures on a Porous Dielectric (Electrochemical Fabrication Method for Producing 5 Multi-layer Three-Dimensional Structures on a Porous Dielectric) ''. Each of these patent document files is hereby incorporated by reference in its entirety for the sake of lack of reference. Further lectures related to planarizing the layers and setting the thickness of the layers and similar operations are presented in the following 10 US patent applications filed on December 31, 2003: (1) by Cohen et al. Application entitled "Electrochemical Fabrication Methods for Producing Multilayer Structures Including the use of Diamond Machining in the Planarization 15 〇f Deposits of Material) "U.S. Patent Application No. 60 / 534,159 and (2) U.S. Patent Application No. 60 / 534,183 filed by Cohen et al., Entitled" for the retention of layers during electrochemical fabrication of structures Method and Apparatus for Maintaining Parallelism of Layers and / or 20 Archieving Desired Thicknesses of Layers During the
Electrochemical Fabrication of Structures)”。該等專利文件 檔案於此以全文引用方式併入本案以為參考資料。 上述段落中所提出之每一專利申請案於此以全文引用 方式併入本案以為參考資料。 28 200534519 第6圖係為該第一廣義具體實施例的一第一變化升^式 的一製程之一方塊圖,其中該等探針係以一次一個的方1 轉移至永久基板。 第6圖之方塊110係與第5圖之方塊1〇〇相似,係為在— 5 暫時基板上建構複數之探針的至少一部分。 第6圖之方塊112係為在一永久基板上將一單一探針轉 移並與一所需位置結合,而方塊114係為重複該轉移及奸人 作業複數次直至已轉移所需之複數探針為止。 弟7圖係為該第一廣義具體實施例的一第二變化形气 10的一製程之一方塊圖,其中該等探針係以一陣列方式同時 地轉移至永久基板。 第7圖之方塊120係分別與第6及5圖之方塊11〇及1〇〇相 似,其係為在一暫時基板上建構至少複數探針之至少一部 分。 15 方塊122係為將一探針陣列同時地轉移並與一永久基 板結合。 第8圖係為該第一廣義具體實施例的一第三變化形式 的一製程之一方塊圖,其中該等探針係以一系列分開配置 陣列方式轉移至永久基板。 2〇 第8圖之方塊130係為在一暫時基板上建構至少複數探 針之每一探針的至少一部分。第8圖之方塊132係為與第7圖 之方塊122的作業相似,將一探針陣列同時地轉移並與一永 久基板結合。 接著繼續進行第8圖之方塊134的製程,重複方塊132 29 200534519 之轉移及結合作業-或更多次,直至已將所有需要之探針 陣列移至永久基板用以構成一或更多之探針陣列群組為 止。 第9圖係為該第一廣義具體實施例的一第四變化形式 5的-製程之-方塊圖,其中該等探針首先構成接點以及最 後構成安裝區域,並於之後進行將其轉移至永久基板,接 著將暫時基板去除。 第9圖之方塊140係為構成複數之探針,其中每一探針 包括一永久基板安裝區域及一接點區域。該接點區域係配 10置在接近構成探針的-暫時基板上,以及該安裝區域係配 置位在暫時基板之末端的一位置處。在構成該等探針後, 製程向前進行方塊142,其係為將複數之探針轉移並黏合至 永久基板上的所品位置,之後製程向前進行至方塊142, 其係去除暫時基板。 15 第10圖係為該第一廣義具體實施例的一第五變化形式 的製私之一方塊圖,其中該等探針首先構成接點以及最 後構成安裝區域並於之後將暫時基板去除,接著進行將其 轉移至永久基板。 第10圖之製程係與第9圖相似,不同之處在於將複數之 20彳采針轉移及黏合至永久基板(方塊154)之前,進行去除暫時 基板(方塊152)。 第11圖係為該第一廣義具體實施例的一第六變化形式 的一製程之一方塊圖,其中該等探針首先構成安裝區域以 及最後構成接點,於之後將暫時基板去除,接著附裝永久 30 200534519 基板。 第11圖之製程於多方面係與第l〇圖相似,在構成該等 探針(方塊160)後進行將該等探針自暫時基板去除(方塊 162),之後與永久基板黏合(方塊164)。第10圖與第丨丨圖之 5製程差異性在於第11圖之製程中該建構探針之製程(方塊 160)包含構成與暫時基板接近的該等探針之永久基板安裝 區域部分,同時該等探針之接點係構成位在暫時基板之末 端的該等位置處,然而將第1〇圖之製程反向亦為正確可行。 • 當然,在第1〇及11圖之製程的進一步變化形式中,應 ίο 瞭解的是製程之間亦存在其他差異。 第12圖係為該第一廣義具體實施例的一第七變化形式 的一製程之一方塊圖,其中該等探針首先構成安裝區域以 及最後構成接點,於之後附裝一第二暫時基板,接著將第 一暫時基板去除並於其之位置附裝永久基板。 15 第12圖之製程係以方塊Π0開始作業,其建構複數之探 針,該每一探針包括一永久基板安裝區域及一接點區域, • 其中該安裝區域係配置位在接近該等探針構成於其上的一 第一暫時基板處,而該接點區域係位在一末端位置處。 在構成該等探針後,製程向前進行至方塊172,其係附 20裝一第二暫時基板。於此製程的一些執行作業上,可將第 一暫日守基板附裝至一平面中的該等探針,該平面大體上與 第一暫時基板之安裝平面平行並且相對。 於其他執行作業中,輔助基板可安裝至製作構成該等 探針之個別層的材料之一或更多側邊。 31 200534519 製程由方塊172向前進行至方塊174,其係去除第一暫 時基板。之後製程向前進行至方塊176,其係為將複數之探 針轉移並黏合至一永久基板上的所需位置。必需在轉移並 黏合至永久基板之前進行去除暫時基板(方塊174),在第一 5 暫時基板及附裝永久基板的該等位置之定位作業中具有至 少一些重疊狀況。 弟13圖係為遺弟一廣義具體實施例的一第八變化形式 的一製程之一方塊圖,其中該等探針僅在轉移至永久基板 之前部分地構成,並於之後完成製作探針。 10 第13圖之製程係以方塊180開始作業,其係在一暫時基 板上僅建構至少每-複數之探針之一部分。在部分地完成 建構作業之後’製程向前進行至方塊182,其係將複數之探 針轉移並黏合至一永久基板。 在完成轉移作業之後’該製程向前進行至方塊184,其 15 係完成製作該等探針。Electrochemical Fabrication of Structures ". These patent document files are hereby incorporated by reference in their entirety as references. Each patent application filed in the above paragraph is hereby incorporated by reference in their entirety as references. 28 200534519 Figure 6 is a block diagram of a process of a first variation of the first generalized embodiment of the first generalized embodiment, in which the probes are transferred to the permanent substrate one by one at a time. Figure 6 of Block 110 is similar to block 100 in Figure 5 and is used to construct at least a portion of a plurality of probes on a -5 temporary substrate. Block 112 in Figure 6 is to transfer a single probe on a permanent substrate. And combined with a desired position, and the block 114 is to repeat the transfer and the treacherous operation multiple times until the multiple probes required for the transfer have been made. The figure 7 is a second variation of the first generalized embodiment. A block diagram of a process of Xingqi 10, in which the probes are simultaneously transferred to a permanent substrate in an array. Block 120 in Figure 7 is in contrast to blocks 11 and 100 in Figures 6 and 5, respectively. Similarly, it is to construct at least a part of at least a plurality of probes on a temporary substrate. 15 Block 122 is to simultaneously transfer and combine a probe array with a permanent substrate. Figure 8 shows the first generalized implementation. A block diagram of a process in a third variation of the example, in which the probes are transferred to a permanent substrate in a series of separately arranged arrays. 2 Box 130 in Figure 8 is to construct at least a temporary substrate At least a part of each of the plurality of probes. Block 132 in FIG. 8 is similar to the operation in block 122 in FIG. 7 in that a probe array is simultaneously transferred and combined with a permanent substrate. The process of block 134 in Figure 8 repeats the transfer and combination operations of block 132 29 200534519-or more, until all required probe arrays have been moved to the permanent substrate to form one or more probe array groups. Fig. 9 is a block diagram of the -process-a fourth variation 5 of the first generalized embodiment, in which the probes first form the contacts and finally the installation area, and After that, it is transferred to the permanent substrate, and then the temporary substrate is removed. Block 140 in FIG. 9 is a plurality of probes, each of which includes a permanent substrate mounting area and a contact area. The contact area The system 10 is placed on the temporary substrate near the probe, and the installation area is located at a position on the end of the temporary substrate. After forming the probes, the process proceeds to block 142, which is The plurality of probes are transferred and bonded to the desired position on the permanent substrate, and then the process proceeds to block 142, which removes the temporary substrate. 15 FIG. 10 is a fifth variation of the first generalized embodiment. A block diagram of a form of manufacturing, in which the probes first form the contacts and finally the installation area and then the temporary substrate is removed and then transferred to the permanent substrate. The process of Fig. 10 is similar to that of Fig. 9, except that a plurality of 20 彳 needles are transferred and bonded to the permanent substrate (block 154) before removing the temporary substrate (block 152). FIG. 11 is a block diagram of a process of a sixth variation of the first generalized embodiment, in which the probes first constitute an installation area and finally a contact, and then a temporary substrate is removed, and then attached Install the permanent 30 200534519 substrate. The process of Figure 11 is similar to Figure 10 in many respects. After the probes (block 160) are formed, the probes are removed from the temporary substrate (block 162), and then bonded to the permanent substrate (block 164). ). The difference between Fig. 10 and Fig. 5 is that the process of constructing the probe (block 160) in the process of Fig. 11 includes the part of the permanent substrate mounting area constituting the probes close to the temporary substrate. The contacts of the isoprobe are located at these positions on the end of the temporary substrate, however, it is also correct and feasible to reverse the process of FIG. 10. • Of course, in the further variations of the processes in Figures 10 and 11, it should be understood that there are other differences between processes. FIG. 12 is a block diagram of a process of a seventh variation of the first generalized embodiment, in which the probes first constitute an installation area and finally a contact, and a second temporary substrate is attached afterwards Then, the first temporary substrate is removed and a permanent substrate is attached at its position. 15 The process in Figure 12 starts with block Π0, and it constructs a plurality of probes. Each probe includes a permanent substrate mounting area and a contact area. • The mounting area is located close to the probes. The needle is formed on a first temporary substrate, and the contact area is located at an end position. After forming the probes, the process proceeds to block 172, where a second temporary substrate is attached. On some executions of this process, the first temporary sunscreen substrate may be attached to the probes in a plane that is substantially parallel and opposite to the mounting plane of the first temporary substrate. In other executions, the auxiliary substrate may be mounted to one or more sides of the material that makes up the individual layers of the probes. 31 200534519 The process proceeds from block 172 to block 174, which removes the first temporary substrate. The process then proceeds to block 176, which is a process of transferring and adhering a plurality of probes to a desired location on a permanent substrate. The temporary substrate must be removed (block 174) before being transferred and bonded to the permanent substrate, with at least some overlap in the positioning operations of the first 5 temporary substrates and the locations where the permanent substrates are attached. Figure 13 is a block diagram of a process of an eighth variation of a generalized embodiment of the younger brother, in which the probes are only partially formed before being transferred to the permanent substrate, and the probes are completed afterwards. 10 The process of Figure 13 begins with block 180, which involves constructing at least a portion of each-plurality of probes on a temporary substrate. After the construction operation is partially completed, the process proceeds to block 182, where a plurality of probes are transferred and bonded to a permanent substrate. After the transfer operation is completed, the process proceeds to block 184, where 15 is completed making the probes.
第14圖係為該第-廣義具體實施例的一第七變化形式 =-製程之-方塊圖,其中該等探針在轉移至永久基板之 前至少部分地自一犧牲材料脫模。 第14圖之製程係以方塊19〇開始作業其係在一暫時基 板上建構至少每一複數之探針之至少一部分。 在建構作業已進行至-所需程度後,該製程向前進行 以塊.錢為將該特針自犧牲㈣之至少—部分脫 杈,该作業係在構成該等探針期間使用。 其係用於將複數之探 接著,製程向前進行至方塊194, 32 200534519 針轉移並黏合至一永久基板。 第15圖係為該第-廣義具體實施例的—第九變化形式 二-製程之-方塊圖,其t該等探針在轉移至永久基板^ 前並未自至少一犧牲材料脫模,之後將該等探針自至少一 5犧牲材料脫模。 第15圖之製程係以方塊200開始作業,其係在一暫時美 板上建構至少每一複數之探針之至少一部分。在建構作業 已達到-所需程度後,如方塊202所示將該等探針轉移並黏 合至一永久基板。 1〇 在轉移及黏合作業之後,如方塊204中所示,在建構作 業期間該等探針係自一犧牲材料之至少一部分脫模。 第16圖係為該第一廣義具體實施例的一第十變化形弋 的一製程之一方塊圖,其中該等探針之構成作業包括該等 探針在與永久基板接觸之前,選擇性地在探針之安裝區域 15 上配置一傳導性黏合材料。 第16圖之製程係以方塊210開始作業,其係在一暫時基 板上建構至少每一複數之探針之至少一部分,其中該探針 之構成作業包括構成一安裝區域,其包含一用於將該等探 針黏合至-永久基板的黏合材料。在包括配置黏合材料的 20探針構成作業之後,該製程向前進行至方塊212,其係使用 黏合材料將複數之探針轉移並黏合至一永久基板。 苐17圖係為该弟一廣義具體實施例的_第十一鐵化开^ 式的一製程之一方塊圖,其中選擇性地將一傳導性黏合材 料配置在永久基板上的該等位置處,其中完成附裝至探針 33 200534519 並於之後附裝探針及永久基板。 第17圖之製程係以方塊220開始作業,其係在一暫時基 板上建構至少每一複數之探針之至少一部分,之後該製程 向前進行至方塊222,其係將複數之探針轉移並黏合至一永 5 久基板,其中該永久基板包括選擇性地配置用於將複數探 針黏合至永久基板的黏合材料。 弟18圖係為該第一廣義具體貫施例的_第十二變化形 式的一製程之一方塊圖,其中該等探針之構成作業包括在 將探針與永久基板接觸之前,選擇性地在探針之安裝區域 10上配置一第一傳導性黏合材料,以及其中一第二傳導性黏 合材料係選擇性地配置在永久基板上的該等位置處,其中 完成附裝至探針並於之後利用第一及第二黏合材料附裝探 針及永久基板。 事實上,第18圖之製程係為第16及17圖所提出之製程 15的合併。第18圖之製程係以方塊230開始作業,其係建構至 少每一複數之探針之至少一部分,其中亦構成探針用的一 安裝區域,並且包括一第一黏合材料。 接著,製程向前進行至方塊232,其係將複數之探針轉 移並黏合至一永久基板,其中該永久基板係經 20括、s F巾U包 k擇性地配置一第二黏合材料的該等區域,其中該第〜 及第二黏合材料係用於將探針及永久基板黏合在一起。 於此變化形式的一些執行作業中,該第一及第二黏八 材料可為相同,而於其他執行作業中,該等材料可為 的村料。 34 200534519 10 15 第19圖係為該第一廣義具體實施例的一筮丄- 罘十三變化形 式的一製程之一方塊圖,其中在轉移之前該犧牲材料之至 少一部分並未移除,以及在永久基板與探針纟士人作業 間,將其中一防護材料配置在黏合材料與住〜犧牲材料’ 間。 、之 第19圖之製程係以方塊240開始作業,复你 一你在一暫時基 板上建構複數之探針,其中製作探針之一安裝區域用、 括一黏合材料並且將一防護材料配置在黏合材料盥用:包 牲材料之間。在包括所結合之黏合材料與㈣^犧 針轉移並黏合至-永久^ 其細複數之探 基於使用黏合材料,並且n、其中紐合作業至少部分地 材料保持在適當位置。)在結合製程期間其中該防護 第20圖係為該第一廇 式的第-延伸部分的—制,體實施㈣―第十三變化形 業之後去除犧牲材料及=之—方塊圖,其包括在結合作 — …缓材料。 第2〇圖之製程係以蚨 塊240及242開始作業,^相關於第19圖之上述說明的 方 在此變化形式之 之後向前進行至方塊244^ 20 牲材料以及去除防護材=行作業中,方塊244]係去除犧 護材料。 、。可在去除犧牲材料之前去除防 於其他執行作業中, 材料 了在去除防護材料之前去除 犧牲 於進-步的執行作業中, 可同時地去除犧牲材料及防 35 200534519 護材料。 第21圖係為該第一廣義具體實施例的一第十三變化形 式的第一延伸部分的一製程之一方塊圖,其包括在結合作 業之後去除犧牲材料但保留防護材料。 5 第21圖之製程係以上述說明的方塊240及242開始作 業’並於之後進行至方塊244-2。 方塊244_2係為去除犧牲材料並保留防護材料。此保留 的防護材料在一或更多方式上係為有用的,例如,其可用 於穩定該等探針彼此相對的位置,並亦可用於增強探針陣 1〇列與基板之間的黏合性。 第22圖係為該第一廣義具體實施例的一第十四變化形 式的一製耘之一方塊圖,其中在結合作業之前將探針熱處 理用以改良已構成該等探針之該等結構材料層之間的黏合 性。 15 帛22®之製㈣以方塊250開始作業,其係在-暫時基 板上建構複數探針。在建構探針作業之後,該製程向前進 灯至方塊252,其係將探針熱處理用以改良已構成該等探針 之該等結構材料層之間的黏合性。 在熱處理之後,該製程向前進行至方塊Μ,其係將複 2〇數之仏針轉移亚黏合至一永久基板。於第^圖之製程的一 二執仃作業中’可在去除犧牲材料之前及/或將該等探針自 暫時基板分離之前進行熱處理。 於其他執行作業中,可在熱處理之後但在轉移及結合 作業之前,進行將探針自犧牲材料及域基板分離作業,而 36 200534519 於其他執行作業中’可在轉移及結合作業之後進行自犧牲 材料及暫時基板分離作業。 第23圖係為該第一廣義具體實施例的一第十五變化形 式的一製程之一方塊圖,其中在結合作業之後將探針熱處 5理用以改良已構成該等探針之該等結構材料層之間的黏合 性。 第23圖之製程係以方塊26〇開始作業,其係在一暫時基 板上建構複數探針,之後向前進行至方塊262,其係將複數 之探針轉移並黏合至一永久基板。 1〇 在轉移及結合作業之後,該製程向前進行至方塊264, 其係對該等探針進行熱處理用以改良層間黏合性。於第23 圖之製程的一些執行作業中,可在方塊26〇及262作業中 間、方塊262及264作業中間或是在方塊264作業之後進行將 該等探針自犧牲材料及/或暫時基板分離作業。 15 第24A_24C圖係為一製程之一實例的三階段之概略透 視圖’其中所構成之多重探針陣列係為顛倒、經切割並接 著如第8圖之方塊圖中所例示般轉移至一永久基板用以構 成較大的陣列群組。 第24A圖係圖示製程在一暫時基板上已由複數之黏合 2〇層建構複數之包括黏合材料304之探針302,並接著切割為 晶粒300之後的一狀態。 第24B圖係圖不製程在已將一個別晶粒3〇〇轉移至一永 久基板310並經由黏合材料3〇4致使該等探針3〇2之間接觸 之後的一狀態。 37 200534519 第24C圖係圖示製程在已執行複數之作業後的一狀 態。該等作業包括將探針3〇2自犧牲材料3〇8脫模、將探針 與暫日π基板3G6分離、以及將複數之探針陣列綱黏合至一 永久基板310。 5 帛25Α_25ΙΚΙ係為用於在-暫時基板上構成-多層式 一元件板針陣列的一製程之一實例的不同狀態的概略側視 圖,其中接著將已構成結構轉移並與一永久基板結合,該 基板係由犧牲材料所構成並且其中該製程包括在第9及15 圖之方塊圖中所例示之該等元件。 10 第25Α圖係圖示製程在配置一基板352之後的狀態。該 基板352較佳地係以犧牲材料製作而成,其係在結構之構成 作業期間使用。於一些具體實施例中,例如,該基板可為 銅。 第25Β圖係圖示製程在完成一多層式探針之該等層的 15構成作業之後的狀態。於第25Β圖中,該探針係以一第一層 354及一第二層356所製作而成。每一層係以一結構材料358 ® 及一犧牲材料352所組成。熟知此技藝之人士應瞭解的是實 務上探針可由於此圖式中所例示之多於二層之該等層所組 成。 20 第25C圖係圖示製程在將一遮光材料362與其中構成具 有開口 364的層356接觸或黏合後的狀態。將連同一黏合材 料配置該等與結構材料之一最後層的位置相對應之開口 364 〇 第25D圖係圖示製程在開口 364及光罩362已接受結構 38 200534519 材料358之沉積物及黏合材料366之沉積物後的狀態。於此 製程之一些變化形式中,該結構材料可為鎳以及該黏合材 料可為錫。 第25E圖係顯示製程在已去除遮光材料362,顯露出已 5由黏合材料366沉積覆蓋之該結構材料358的第三層36〇後 的狀態。於此製程之一些變化形式中,例如,該遮光材料 可為正或負型之一液態光阻劑或是一乾膜光阻劑。 第25F圖係顯示製程在黏合材料366已流回使其造成一 圓形或球形狀後的狀態。 1〇 第25G圖係顯示製程在已進行切割作業用以將個別晶 粒隔離後,以及在已進行切片作業用以修整基板35〇之厚度 後的狀態。於此製程的變化形式中,在切割作業及切片作 業之前,探針及黏合材料之露出部分可以一防護材料加以 覆蓋,其可立即地與構成的結構分離,該處在切片作業及 15切割作業之後可去除該防護材料(如第25G圖中所示)。 第25H圖係顯示製程在整個結構及經切割基板37〇已翻 轉反向,並與一包括一永久基板382、一黏合層材料384、 一種晶層材料380、以及一焊墊材料388的永久基板層合物 3 80接觸。 2〇 於該等具體實施例之一些變化形式中,焊墊材料388 可與結構材料358為相同的材料。於該等具體實施例之其他 變化形式中,在層合物380與結構370接觸之前,以一黏合 材料覆蓋塗佈該焊墊材料388。 在永久基板382上黏合層、種晶層及焊墊材料之具選擇 39 200534519 性位置,係經選定與在結構370上進行與黏合材料接觸的該 專位置相對應。結構370與焊墊位置380之間的對準,在初 始時可為初步對準(r0Ugh alignment)。 第251圖係顯示製程在黏合材料366第二次流回後的狀 5態,其可造成探針與焊墊位置之進一步對準並亦造成探針 與永久基板黏合。 第25J圖係顯示製程在去除暫時基板連同組成該等探 針之層的-。P分的犧牲材料—起去除之後的狀態。第Μ】圖 顯示製程的完成狀態,其中探針元件392及394係配置在永 1〇久基板382上並與之黏合。如第⑸圖中所示,並#陣列中 所有的探針結構需要為相同尺寸,或甚至為相同的結構化 或定向。 15Figure 14 is a block diagram of a seventh variation of the -generalized embodiment, where the probes are at least partially demolded from a sacrificial material before being transferred to a permanent substrate. The process of FIG. 14 begins at block 190, which involves constructing at least a portion of each of the plurality of probes on a temporary substrate. After the construction operation has been performed to the required level, the process proceeds forward. At least partly, the special needle is decoupled from the sacrifices. This operation is used during the construction of the probes. It is used for plural exploration. Next, the process proceeds to block 194, 32 200534519. The needle is transferred and bonded to a permanent substrate. FIG. 15 is a block diagram of the ninth generalized embodiment of the ninth variation of the second embodiment of the process. The probes have not been demolded from at least one sacrificial material before being transferred to the permanent substrate. The probes are demolded from at least one 5 sacrificial material. The process of FIG. 15 begins with block 200, which involves constructing at least a portion of each of the plurality of probes on a temporary board. After the construction operation has reached the required level, the probes are transferred and bonded to a permanent substrate as shown in block 202. 10 After the transfer and adhesion operation, as shown in block 204, the probes are demolded from at least a portion of a sacrificial material during the construction operation. FIG. 16 is a block diagram of a process of a tenth variation of the first generalized embodiment, wherein the constitution of the probes includes the probes selectively contacting the permanent substrate before contacting them. A conductive adhesive material is arranged on the mounting area 15 of the probe. The manufacturing process of FIG. 16 starts with block 210, which is to construct at least a part of each of a plurality of probes on a temporary substrate, wherein the constituting operation of the probe includes forming an installation area including a The probes are bonded to a bonding material of a permanent substrate. After the 20-probe configuration operation including the placement of the adhesive material, the process proceeds to block 212, which uses adhesive material to transfer and adhere the plurality of probes to a permanent substrate.苐 17 is a block diagram of a process of the eleventh generalized embodiment of the eleventh generalized embodiment of the brother, in which a conductive adhesive material is selectively arranged at the positions on the permanent substrate , Which completes the attachment to the probe 33 200534519 and then attaches the probe and the permanent substrate. The process of FIG. 17 starts with block 220, which constructs at least a portion of each of the plurality of probes on a temporary substrate, and then the process proceeds to block 222, which transfers the plurality of probes and Adhering to a permanent substrate, the permanent substrate includes an adhesive material selectively configured to adhere a plurality of probes to the permanent substrate. Figure 18 is a block diagram of a process in the twelfth variation of the first generalized embodiment. The formation of the probes includes selectively before contacting the probes with the permanent substrate. A first conductive adhesive material is disposed on the mounting area 10 of the probe, and one of the second conductive adhesive materials is selectively disposed at the positions on the permanent substrate, where the attachment to the probe is completed and the The first and second adhesive materials are then used to attach the probe and the permanent substrate. In fact, the process of Figure 18 is a combination of Process 15 proposed in Figures 16 and 17. The process of FIG. 18 starts with block 230, which is to construct at least a part of each of the plurality of probes, which also constitutes a mounting area for the probes and includes a first adhesive material. Next, the process proceeds to block 232, which transfers and bonds a plurality of probes to a permanent substrate, wherein the permanent substrate is selectively arranged with a second adhesive material through a 20-fold, 20-fold U-folded package. In these areas, the first to second bonding materials are used to bond the probe and the permanent substrate together. In some implementations of this variation, the first and second materials may be the same, while in other implementations, these materials may be the materials of the village. 34 200534519 10 15 FIG. 19 is a block diagram of a process of a thirteenth to thirteenth variation of the first generalized embodiment, in which at least a part of the sacrificial material has not been removed before the transfer, and One of the protective materials is disposed between the adhesive material and the sacrificial material 'between the permanent substrate and the probe warrior operation. The process of Figure 19 starts with block 240. You construct a plurality of probes on a temporary substrate. One of the probes is used to make a mounting area, including an adhesive material, and a protective material is arranged on the substrate. Adhesive material for toileting: between animal materials. The exploration of the inclusion of the bonded material and the sacrifice pin and the attachment to the permanent multiple is based on the use of the bonded material, and n, where at least part of the material is kept in place. ) During the bonding process, the protection figure 20 is a system of the first extension of the first method, and the sacrificial material is removed after the implementation of the thirteenth modification. The block diagram includes: Working together —… easing materials. The process of Figure 20 starts with blocks 240 and 242. ^ The party described above with reference to Figure 19 moves forward to this block after moving to block 244 ^ 20 Material removal and protective material = line operations In block 244, the sacrificial material is removed. . It is possible to remove the sacrificial material before removing the sacrificial material in other execution operations, and to remove the sacrificial material before removing the protective material. In the further execution operation, the sacrificial material and the prevention material can be simultaneously removed. Fig. 21 is a block diagram of a process of a first extension of a thirteenth variation of the first generalized embodiment, which includes removing the sacrificial material but retaining the protective material after the business is completed. 5 The process of Fig. 21 starts with blocks 240 and 242 described above 'and proceeds to block 244-2. Block 244_2 is for removing the sacrificial material and retaining the protective material. This reserved protective material is useful in one or more ways, for example, it can be used to stabilize the positions of the probes relative to each other, and can also be used to enhance the adhesion between the 10th array of probe arrays and the substrate. . FIG. 22 is a block diagram of a fourteenth variation of the first generalized embodiment, in which the probes are heat-treated to improve the structures that constitute the probes before the bonding operation. Adhesion between material layers. 15 帛 22® system starts with block 250, which constructs a plurality of probes on a temporary substrate. After the probe is constructed, the process proceeds to block 252, where the probe is heat treated to improve the adhesion between the layers of structural materials that have formed the probes. After the heat treatment, the process proceeds to block M, which transfers and sub-bonds a plurality of 20 needles to a permanent substrate. In the first and second execution operations of the process of FIG. ^, Heat treatment may be performed before the sacrificial material is removed and / or the probes are separated from the temporary substrate. In other execution operations, the separation of the probe from the sacrificial material and the domain substrate can be performed after heat treatment but before the transfer and bonding operation. Material and temporary substrate separation operation. FIG. 23 is a block diagram of a process of a fifteenth variation of the first generalized embodiment, in which the heat treatment of the probe is used to improve the Adhesion between layers of structural materials. The process of FIG. 23 starts at block 260, which constructs a plurality of probes on a temporary substrate, and then proceeds to block 262, which transfers and bonds the plurality of probes to a permanent substrate. 10 After the transfer and bonding operations, the process proceeds to block 264, where the probes are heat treated to improve interlayer adhesion. In some of the execution operations of the process of Figure 23, the probes can be separated from the sacrificial material and / or the temporary substrate in the middle of operations 26, 262, 262, and 264, or after operation 264. operation. 15 Figure 24A_24C is a schematic three-stage perspective view of an example of a process. 'The multiple probe array is constructed upside down, cut and then transferred to a permanent as illustrated in the block diagram of Figure 8. The substrate is used to form a larger array group. FIG. 24A illustrates a state in which a plurality of probes 302 including an adhesive material 304 have been constructed from a plurality of layers of adhesive 20 on a temporary substrate, and then cut into chips 300. FIG. 24B is a diagram showing a state after a process in which a different die 300 has been transferred to a permanent substrate 310 and contact between the probes 300 through the bonding material 300 is made. 37 200534519 Figure 24C is a diagram showing the state of the process after a plurality of operations have been performed. These operations include demolding the probe 30 from the sacrificial material 30, separating the probe from the temporary π substrate 3G6, and bonding a plurality of probe arrays to a permanent substrate 310. 5 帛 25Α_25ΙΚΙ is a schematic side view of different states of an example of a process for forming a multi-layer one-component plate pin array on a temporary substrate, where the constructed structure is then transferred and combined with a permanent substrate. The substrate is made of a sacrificial material and the process includes the components illustrated in the block diagrams of Figures 9 and 15. 10 FIG. 25A illustrates a state of the process after a substrate 352 is disposed. The substrate 352 is preferably made of a sacrificial material, which is used during the construction of the structure. In some embodiments, for example, the substrate may be copper. Figure 25B is a diagram illustrating the state of the process after completion of the 15-layer constituting operation of the layers of a multilayer probe. In Fig. 25B, the probe is made of a first layer 354 and a second layer 356. Each layer is composed of a structural material 358 ® and a sacrificial material 352. Those skilled in the art should understand that, in practice, the probe can be composed of more than two layers illustrated in this diagram. Fig. 25C is a diagram illustrating a state of the manufacturing process after a light-shielding material 362 is in contact with or adhered to a layer 356 having an opening 364 therein. The openings 364 corresponding to the position of one of the last layers of the structural material will be arranged with the same adhesive material. Figure 25D shows the process in which the opening 364 and the photomask 362 have accepted the structure 38 200534519 Material 358 deposits and adhesive materials. The state after the deposit of 366. In some variations of this process, the structural material may be nickel and the bonding material may be tin. Figure 25E shows the state of the process after the light-shielding material 362 has been removed, revealing the state of the third layer 36 of the structural material 358 which has been deposited and covered with the adhesive material 366. In some variations of this process, for example, the light-shielding material may be a positive or negative liquid photoresist or a dry film photoresist. Figure 25F shows the state of the process after the bonding material 366 has flowed back so that it has a circular or spherical shape. 10 Figure 25G shows the state of the manufacturing process after a cutting operation has been performed to isolate individual crystal grains, and after a slicing operation has been performed to trim the thickness of the substrate 35 °. In a variation of this process, before the cutting operation and the slicing operation, the exposed part of the probe and the adhesive material can be covered with a protective material, which can be immediately separated from the structure, which is in the slicing operation and 15 cutting operation. This protective material can then be removed (as shown in Figure 25G). Figure 25H shows that the process has been reversed in the entire structure and the cut substrate 37, and a permanent substrate including a permanent substrate 382, an adhesive layer material 384, a crystal layer material 380, and a pad material 388. Laminate 3 80 was in contact. 20 In some variations of the specific embodiments, the pad material 388 and the structural material 358 may be the same material. In other variations of these embodiments, the pad material 388 is covered with an adhesive material before the laminate 380 contacts the structure 370. The selective position of the bonding layer, seed layer, and pad material on the permanent substrate 382 is selected to correspond to the special position on the structure 370 for contact with the bonding material. The alignment between the structure 370 and the pad position 380 may be a preliminary alignment (r0Ugh alignment) at the beginning. Figure 251 shows the state of the process after the second return of the bonding material 366, which can cause further alignment of the probe and pad positions and also cause the probe to adhere to the permanent substrate. Figure 25J shows the process of removing the temporary substrate along with the layers that make up these probes. The sacrificial material of P points-the state after removal. Figure M] shows the completed state of the process, in which the probe elements 392 and 394 are arranged on the substrate 382 and adhered thereto. As shown in Figure VII, all probe structures in the #array need to be the same size, or even the same structured or oriented. 15
20 圖係為用於在-暫時基板上構成多重、 層、多元件式探針陣列的一製程之-實例的不同狀態白 略側視圖其巾接著將已構成結構之至少—部分轉移』 水久基板、,,她針元件之接㈣模塑於—圖案七 =Γ::業之前但在轉移及結合作業之後射 政黏&作業’其中該製程包括在第9、15及 所例示之該等元件。 於苐26A-26E圖中所也丨— 斤例不之製程,包括以下主要作1 。基板上製作處在顛倒定向的多重探針蹲 ==?基板-行二 …探針陣列可-電化學州 40 200534519 2.選擇性地沉積—焊墊材料。該焊塾材料,例如,可 由金、金與錄或其他金屬或是金屬結合物所構成。該等焊 塾或接&塾例如,可藉由在一圖案化光阻劑層中電鑛通 過該等開口而構成,並典型地在數量及位置上係與探針陣 5列中的探針位置相對應,並亦與探針陣列將轉移至之永久 基板上的接合墊相對應。 3·進行切割作業用以將個別探針陣列分離。 4·將探針陣列覆晶黏合至永久基板。 基板,例如,可為一具有内部及/或外部線路結構的聚 10合或陶瓷封裝,其可用於來自一元件之信號選路,其中探 針接點與和基板連接的其他元件接觸。此作業典型地包含 將探針陣列對準並配置在基板上的選定位置上。熟知此技 藝之人士對於將探針上焊墊及永久基板之黏合作業所用之 方法係廣為熟知的,例如,包括金-金擴散黏合、利用金_ 15錫共晶合金、或利用鉛-錫焊料之黏合作業。例如,可適度 加熱(例如,〜40(TC)及加壓(例如,〜100磅/焊墊)進行擴散 黏合作業。 5 ·例如’利用對於犧牲金屬敏感的姓刻劑,溶解陣列 結構之该專層的犧牲金屬成分(例如,銅)。於此作業期間, 20亦去除該暫時基板。此作業完成該完整組裝探針封裝之構 成作業。 第26A圖係顯示製程在已完成一探針陣列封裝的構成 作業後之狀態。完成之封裝402包括由複數之探針4〇4-1至 404-7所組成之一或更多電化學地構成之探針陣列4〇4。每 41 200534519 一板針兀件係藉由焊墊408~ 1至408-7與一亦係為功能性基 反勺永久基板4〇6結合。該基板包括電導線412-1至412-7, 於本貝例中其係延伸至配置在基板之背側上的接觸墊 414-1 至414-7。 520 The picture is a side view of a different state of an example of a process for forming a multi-layer, multi-layer, and multi-element probe array on a temporary substrate. A side view of the towel is then transferred to at least-part of the structure. Shuijiu The substrate, and her pin components are molded in-pattern seven = Γ :: before the industry but after the transfer and bonding operations, & operation 'where the process includes the 9th, 15th and the And other components. In the 26A-26E picture, the process of the case is as follows, including the following main operations1. Multi-probe squatting in an upside-down orientation on a substrate ==? Substrate-line two… probe array can-electrochemical state 40 200534519 2. Selective deposition-pad material. The solder material, for example, may be composed of gold, gold and metal, or other metals or metal combinations. The solder joints or junctions can be formed, for example, by the electric ore passing through the openings in a patterned photoresist layer, and are typically connected to the probes in 5 rows of probe arrays in number and location. The needle positions correspond to the bonding pads on the permanent substrate to which the probe array will be transferred. 3. Perform a cutting operation to separate individual probe arrays. 4. Bond the probe array to the permanent substrate. The substrate, for example, can be a polymer or ceramic package with internal and / or external circuit structures, which can be used for signal routing from a component, where the probe contacts are in contact with other components connected to the substrate. This operation typically involves aligning and positioning the probe array at a selected location on the substrate. Those skilled in the art are familiar with the methods used in the bonding of solder pads and permanent substrates on probes, including, for example, gold-gold diffusion bonding, using gold _ 15 tin eutectic alloy, or using lead-tin Solder adhesion. For example, moderate heat (for example, ~ 40 (TC) and pressure (for example, ~ 100 lbs / pad)) can be used for diffusion bonding. 5 · For example, 'using the last name etchants sensitive to the sacrificial metal to dissolve the array structure. The sacrificial metal component of the monolayer (for example, copper). During this operation, 20 also removes the temporary substrate. This operation completes the construction of the fully assembled probe package. Figure 26A shows that the process has completed a probe array. The state of the package after completion of the operation. The completed package 402 includes one or more electrochemical arrays of 404 consisting of a plurality of probes 404-1 to 404-7. Each 41 200534519 one The pin-pin component is combined with a permanent substrate 4 which is also a functional base via solder pads 408 ~ 1 to 408-7. The substrate includes electrical leads 412-1 to 412-7. In this example It extends to the contact pads 414-1 to 414-7 arranged on the back side of the substrate. 5
10 1510 15
20 於可任擇之具體實施例中,基板可包括附加的元件, 諸如電容器、電阻器、以及電感器及/或屏蔽導體,適當地 %線412俾便減小信號損失並改良信號完整性。 第26B圖係顯示製程在配置一暫時基板422並以電化學 方式構成具有面向但未接觸該暫時基板422的探針接點424 之夕重陣列糾如、仙扑及仙如後的狀態。亦如第湖圖中所 厂、/探針、、、口構係藉由,例如為銅,一犧牲材料杨所圍繞, 其係在層層式建構期間沉積用以構成該等探針陣列。於一 些執行作業巾’可由鎳構成該等探針結構。 第26C圖係顯示製程在焊墊4〇8,已構成在探針陣列*⑽ 中每-探針之背側上後的狀態。 第26D圖係顯示製程在探針陣列404a、404b及404c已切 d為匕括^刀之暫時基板422、犧牲材料似連同探針及焊 墊的個別陣列部分後的狀態。 第26E圖係顯示製程在如第26]〇圖中所示的一未脫 楝針陣列,經由焊墊侧_i至购而與一永久基板4 、·“後的狀態。為完成該製程,犧牲材料似係自会士構 刻’致使去除犧牲材料及暫時基板422之切割部分。第2| 圖憎示係為,模的最終探針陣列封裝。 第A 27C圖係為在第26Α_26Ε圖之探針上構成增 42 200534519 探針接點的一製程之不同狀態的概略側視圖。 假若需要特別的探針接點形式或材料,則可藉由增加 -初始作業增進上述與第26Α·26Ε__及的製程。此初 始作業包含㈣等孔之-圖案將暫時基板圖案化,該等孔 之位置係與所構成之探針的位置相對應,並且形狀係盥探 針接點之所需形狀相對應。該等開π因而可在繼續該經由 電化學製造作業的探針製作之後接受—所需的探針接點材20 In alternative embodiments, the substrate may include additional components such as capacitors, resistors, and inductors and / or shielded conductors, as appropriate, to reduce signal loss and improve signal integrity. FIG. 26B shows a state in which the process is configured with a temporary substrate 422 and electrochemically constitutes a re-array correction, immortalization, and immortalization with probe contacts 424 facing but not in contact with the temporary substrate 422. Also, as shown in the figure above, the / probe,, and port structures are surrounded by, for example, copper, a sacrificial material, which is deposited during layer-by-layer construction to form the probe arrays. In some execution towels, the probe structures may be composed of nickel. FIG. 26C shows a state in which the process is performed on the pad 408, which has been formed on the back side of each probe in the probe array * ⑽. Fig. 26D shows the state of the manufacturing process after the probe arrays 404a, 404b, and 404c have been cut into a temporary substrate 422, and the sacrificial material appears to be in combination with the individual array portions of the probes and pads. Fig. 26E shows the state of the process in a non-disengaged needle array as shown in Fig. 26] through the pad side _i to the purchase and a permanent substrate 4, "". To complete the process, The sacrificial material appears to have been carved from the fellow to cause the removal of the sacrificial material and the cut portion of the temporary substrate 422. Figure 2 | The figure shows the final probe array package of the mold. Figure A 27C is shown in Figure 26A-26E The probe is a schematic side view of the different states of a process of forming a contact of 200534519 probe contact. If a special probe contact form or material is required, the above and the 26th and 26th 26_ 26E__ can be enhanced by adding-initial operations. This initial operation consists of a pattern of ㈣ and other holes, which will temporarily pattern the substrate. The positions of the holes correspond to the positions of the formed probes, and the shape is the required shape of the probe contact. Correspondingly, these openings can then be accepted after the probe fabrication by the electrochemical manufacturing operation is continued—the required probe contact material
第27Α圖係顯示 10 、程之狀態,其中位於暫時基板42: 中的該等孔已以-所需探針接轉料奶填注並將表 坦化。 第2则_㈣財以祕針㈣㈣業 ^塾材料權,後的狀態。第27B圖中製程之狀態係與 圖中所示之製程狀態類似。 15Figure 27A shows the state of the process 10, in which the holes in the temporary substrate 42: have been filled with the required probe transfer milk and the table is frankized. The second rule _ ㈣ 以 以 秘 秘 ㈣㈣ ㈣㈣ 塾 塾 塾 塾 塾 塾 塾 material rights, the state after. The state of the process in Figure 27B is similar to the state of the process shown in the figure. 15
20 能第細健示製程在已完成探針陣列封細細 心,其中该等取終板針具有增大的接點抓Lp 疋#地包括—聚合材料,諸如一光㈣ ::聚醯亞胺。於該等狀況中,在結合作業之後,例如 ㈣、化料除或是相財法去除聚合材料。方 保留作為部分之最終結構。也配置♦合材料’貝⑻ 件式Π:81圖:為用於在—暫時基板上構成多層、多, …P列的—製裎之—實例的不同狀態的概略側ϋ 43 200534519 圖,其接著將已構成結構轉移並與一永久基板結合,該探 針元件之接點係模塑於一與結構材料不同的接點材料之一 圖案化基板中’並在轉移作業之前針對高產量可能性分析 以及之後針對使用或不使用而選定一個別探針陣列,以及 5其中该製釭包括在第9、15及23圖之方塊圖中所例示之該等 元件。 第28A圖係顯示製程在將一暫時基板幻2選擇性地蝕刻 用以在構成探針接點之該等位置處構成空隙454後的狀 態,其中將該等空隙圖案化所具有之形狀係為接點所需形 10狀。於本製程之一些執行作業中,基板452可為矽並且藉由 非等向性蝕刻可達到尖銳點或楔狀,然而藉由等向性蝕刻 可得半球狀或是其他圓形狀。 第28B圖係圖示製程在將一遮光材料456施加至基板 452,並經圖案化用以產生開口 458覆蓋該等構成探針接點 15之空隙區域454後的狀態。於一些執行作業中,在施加遮光 材料並加以圖案化之前,需施以一種晶層至基板表面並進 入空隙454。 附加地或可任擇地,如有需要,可將一脫模層材料施 加至基板表面並進入空隙中,有助於將探針及探針接點自 20基板脫開。於其他變化形式中,如有需要,可在施加遮光 材料並將遮光材料圖案化之後施加種晶層材料。同樣地, 如有需要,可施加一脫模材料覆蓋遮光材料並進入基板452 的空隙中。 第28C圖係圖示製程在一探針接點材料462已沉積進入 44 200534519 如 遮光材料之開口 458中以及基板 ^ 反之工隙454中後的狀態^ 有品要(例如,於該等具體實施 JΎ 種晶層或脫模層覆》 該遮光材料),則接點材料462 ^ ^ 及遮光材料456可加以 平面化至一大於第一層厚度之 ,^ 、/ 阿度。假若利用平面化作業 去除配置在犧牲材料456上:^的種Β ” τ里日日嘈或脫极層材料,則平 :::高度係仍大於該層厚度或等於該層厚度但小於沉積 遮光材料之厚度。 、 4 圖係圖示製程在已去除遮光材料伙並已沉積犧 牲材料偏,以及接點材料及犧牲材料之沉積物平面化至第 1〇 一層厚之高度後的狀態。於本製程之變化形式中,初始使 用的遮光材料可覆蓋空隙454,以及犧牲材料已選擇性地沉 積,去除遮光材料並接著電鍍結構材料,從而可得第獅 圖中所圖示之相同結果。 第28Ε圖係圖示製程在已由犧牲材料464及結構材料 15 466構成探針之多重層後的狀態。於本製程之-些執行作業 中,探針接點㈣偏及結構材料偏可為-種且相同的材 料,而於其他執行作業中,其可為不同的材料。 第28F圖係圖示製程在將結構材料楊之一附加層的選 擇性沉積物添加至探針之高度後,以及在將一焊墊材料偏 20選擇性地沉積在結構材料偏上後的狀態。結構材料及焊塾 材料之選擇性沉積,可經由一圖案化光罩進行,其中在沉 積作業後可去除该遮光材料。於本製程之變化形式中,可 任擇地將焊料凸塊施加至結構材料,取代沉積焊塾材料以 及可能的結構材料之附加層。 45 200534519 第28G圖係顯示製程在進行切割個別陣列部分後的狀 態,其造成轉移至一永久基板的所需形式之陣列圖案。第 28G圖亦圖示本製程之一可能的變化形式,其中所示一或更 多的犧牲材料464之第一層472可與在接續層上所用的犧牲 5 材料不同。 第28H圖係圖示製程在已將未脫模探針陣列们4轉移瓦 黏合至一永久基板476後的狀態。 10 15 20 第281圖係圖示製程在暫時基板452將犧牲材料464之 首先構成層472及犧牲材料464之其餘層自基板去除用以產 生附裝至一永久基板的一最終探針陣列後的狀態。附裝至 永久基板的脫模探針陣列,可視為一探針陣列封裝。應瞭 解的是,儘管在本實例中以及於此所提出的其他實财並 無顯示特定的探針結構形式,但包括螺旋狀形式、懸臂襟 形式以及其他可能形式的複數觀針形式㈣適合的。該 等形式之實例係於先前參考龍4勒年12月31日提出 申請的美國專利中請案第6〇/533,933號中提出。亦應瞭解的 是在此製程的變化形式中,其他的探針接點形式係為適合 的並可使用其他的探針接點構成製程。 其他的探針接點形式及用於構成該等探針接點的該等 製程係於先前參考資料:美國專利申請案第術533,975號中 提出。於本㈣1之其他變化形式巾,該最終探針陣列封裝 可包括夕錄針①件陣列,其可分離地或同時地附裝至永 久基板476 ’亚且如果探針元件故障,可整組更換或是 個別探針陣列。 、 46 200534519 於本製程之一些變化形式令,該永夂基板可為—空間 轉換為、-電路板或甚至是—可程式化間極陣列。在構成 封裝後,或更特定言之,在將探針接點自暫時基板松脫模 之後,可修改探針接點形式,例如,藉由使用化學或電化 5學钮刻或是沉積製程及相似製程用以將該等接點尖銳化或 是使其平坦化。 第29A-29L®係為用於在—暫時基板上構成多層、多元 件式探針陣列的-製程之—實例的不同狀態的概略側視 圖’其接著將已構成結構轉移並與一永久基板結合,其中 10探針接點係經由-由犧牲材料所構成之一模具製作而成, 其中探針元件係藉由-可炼化材料與該暫時基板分離以 及其中該製程包括在第9、15及22圖之方塊圖中所例示之該 等元件。 於第29A-29L圖中例示之製程包括以下作業: 15 ⑴在製作探針開始作業之前’將—第-金屬層沉積在 基板表面上並加以平面化。所選定之第一金屬其之炼點係 南於不同建構作業(亦即,光微影姓刻製程、沉積製程等) 中所使用之溫度,但低於所使用之任何基於炫融的結合或 黏合材料(例如’焊料或錫)所需之溫度。於一此執行作業 π中,例如,該第-金屬可為銦。 ⑺-旦沉積第-金屬’便亦沉積i牲材料(例如, 之厚層並加以平面化。 (3)在經平面化的表面上,複數層之建構作業首先進行 建構接』接著構成探針主體(例如,螺旋彈簀結構,以及 47 200534519 相似結構)其中每_層之建構物包括—結構材料(例如,錄) 以及一犧牲材料(例如,銅)或是多於該每一材料中並中 料。 八 (4) 在構成最後完成狀後,選擇性地沉積相同或是不 5同類型的附加結構材料,用以構成焊塾並在焊塾上方添加 一黏合或是結合材料(例如,錫或焊料)。 (5) 接著’第一材料沉積在暫時基板上並於其上完成建 構作業’將暫時基板切片使其變薄用以更具有晶圓狀形 式’並將個別晶粒切單(singulated)。 1〇 (6)接著,將晶粒熱處理用以增強層間黏合性(例如,藉 由提升低溫擴散黏合)。於此製程期間,可或不需將溫度升 南至尚於第_金屬之熔點,但假若達到熔點,則咸信熔態 第一金屬之表面張力將使晶粒襯墊(die-backing)保持在適 當位置。於製程之變化形式中,可延遲擴散黏合作業直至 15進行轉移至永久基板作業之後。 (7) 接著,將個別晶粒配置在(亦即,轉移至)永久基板 上並與其黏合。於製程之一些變化形式中,在犧牲材料脫 杈之則,將一底膠(underfill)材料嵌入於永久基板與探針之 間。使用回填材料(back fill material)有助於防護黏合材料不 20致與犧牲材料或是去除犧牲材料作業中所使用之蝕刻劑發 生負面影響。於其他變化形式中,可增加一中間材料以代 替構成探針所使用之最後層或二犧牲材料。 (8) 接著,將晶粒/封裝進行熱循環處理,其中只有將溫 度升南到足以熔化第一金屬。在此溫度下,潛在地將暫時 48 200534519 基板連同一些或是所有的第一金屬一併去除。若有需要, 可利用另一作業去除任何殘留的第一材料(例如,平面化作 業、選擇性蝕刻作業或是相似作業)。該等作業造成暴露現 與永久基板黏合之位在建構晶粒上的犧牲材料(例如,銅)。 5 (9)最後,於一脫模製程中蝕刻犧牲材料,俾便產生完 整的探針封裝。 第29A圖係顯示製程在將一基板502以一種晶層504覆 蓋(若有需要)、以一第一金屬506電鍍、平面化、以一犧牲 材料508(例如,銅)電鍍、平面化,接著以一光阻劑512塗佈, 10 而在配置探針接點的該等區域中的電鍍中止部分將光阻劑 圖案化後的狀態。 第29B圖係顯示製程在沉積附加犧牲材料508後之狀 態,其中係自先前沉積的犧牲材料向上電鍍並同時蕈形化 覆蓋該圖案化光阻劑512。 15 第29C圖係顯示製程在將一種晶層材料514薄膜沉積用 以橋接電鍍中止部分之介電部分後的狀態。例如,可藉由 物理氣相沉積法沉積該種晶層材料。於此製程之一些變化 形式中,可在沉積一黏合層材料之前進行種晶層材料之沉 積作業。 20 第29D圖係顯示製程在進行覆蓋式沉積一接點材料518 後的狀態。於本製程之變化形式中,可利用一適當的圖案 化光罩選擇性地沉積接點材料,並且其係可為與扼要說明 之結構材料516為相同之材料。 於本製程之進一步變化形式中,在沉積種晶層514之後 49 200534519 且在沉積接點材料518之前,可進行接點塗層材料或是接觸 材料之覆蓋式或選擇性沉積。與接點之總高度相較,此接 點塗層或是接觸材料係極薄的。 第29E圖係顯示製程在已將一研磨盤(kpping piate)52〇 5移動進入適當位置後的狀態,&了研磨該|蓋式沉積接點 材料並接著進行拋光。 第29F圖係顯不製程在完成平面化作業後的狀態,其從 而產生一係由犧牲材料5〇8、接點材料518及種晶層材料514 φ 之該等區域所組成之表面。 1〇 帛29G圖係顯示製程在已構成複數之犧牲及傳導性材 料層用以建構大多數探針結構後之狀態。可利用於此所說 明之電化學>儿積技術、利用於此併入本案以為參考資料 的其中之-專利或是專利申請案中所說明之電化學沉積技 術或疋利用一些用於構成所需材料之該等圖案化層的其 15他技術,進行製作該複數層之每一層。 第29H圖係顯示製程在施加一光阻劑524(例如,一固化 籲 液基光阻劑或是一乾膜光阻劑)之厚層並加以圖案化,並進 打沉積結構材料523進入該圖案化光阻劑之該等開口中用 以構成焊墊’並進行沉積黏合材料522覆蓋該等焊塾後之狀 20 態。 於本衣耘之一些執行作業中,該焊墊材料可為錫,同 時於其他具體實施例中,可使用一錫合金及/或可使用一些 其他材料。 第291圖_示製程已將第29關之圖案化光阻劑材料 50 200534519 524去除之後,以及將基板502切片使其變薄用以構成基板 502’以後,以及在執行切割作業(未區別)用以將結構分割為 個別晶粒。 在切割作業之前或之後,所構成結構接受可增強層間 5黏合性之熱處理,俾便構成一具有更為均勻性質的結構。 第29J圖係顯示製程在利用焊墊材料532以及一配置在 基板532上的第二焊墊材料534將晶粒526以覆晶方式黏合 至一永久基板532後的狀態。20 The energy-saving process shows that the completed probe array is sealed carefully, in which the end-plate needles have increased contact points Lp. Included-polymeric materials, such as a light beam :: polyimide . In these situations, the polymer material is removed after the combined operations, such as tritium, chemical removal, or phase wealth methods. The party retains the final structure as part. It is also equipped with a composite material, which is shown in Figure Π: 81. It is a schematic side view of the different states of the example used to form multiple layers on a temporary substrate. The constructed structure is then transferred and combined with a permanent substrate. The contacts of the probe element are molded in a patterned substrate of one of the contact materials different from the structural material 'and targeted at high-yield possibilities before the transfer operation. Analyze and later select a different probe array for use or not, and 5 where the system includes the components illustrated in the block diagrams of Figures 9, 15 and 23. FIG. 28A shows the state of the process after a temporary substrate 2 is selectively etched to form voids 454 at the positions constituting the probe contacts, wherein the shape of the patterned voids is The contact needs to be 10-shaped. In some executions of this process, the substrate 452 can be silicon and can be sharpened or wedge-shaped by anisotropic etching, but hemispherical or other circular shapes can be obtained by isotropic etching. FIG. 28B illustrates the state of the process after a light-shielding material 456 is applied to the substrate 452 and patterned to generate an opening 458 to cover the void regions 454 constituting the probe contact 15. In some operations, before applying the light-shielding material and patterning it, a crystal layer is applied to the surface of the substrate and enters the gap 454. Additionally or alternatively, if necessary, a release layer material may be applied to the surface of the substrate and enters the gap, which helps to release the probe and probe contacts from the 20 substrate. In other variations, if necessary, a seed layer material may be applied after the light-shielding material is applied and the light-shielding material is patterned. Similarly, if necessary, a release material may be applied to cover the light-shielding material and enter the space of the substrate 452. FIG. 28C illustrates a state where the manufacturing process of a probe contact material 462 has been deposited into 44 200534519, such as the opening 458 of the light-shielding material and the substrate ^ and the working gap 454. ^ There are products (for example, in the specific implementation JΎ seed layer or release layer covering the light-shielding material), the contact material 462 ^ ^ and the light-shielding material 456 can be planarized to a thickness greater than the thickness of the first layer, ^, / Ah. If the flattening operation is used to remove the species B ”^ from the sacrificial material or the depolarizing layer material, then the height of the ::: is still greater than the thickness of the layer or equal to the thickness of the layer but less than the deposition shading The thickness of the material. Figure 4 shows the state of the process after the shading material has been removed and the sacrificial material has been deposited, and the deposits of the contact material and the sacrificial material have been planarized to a height of the 10th layer. In a variation of this process, the light-shielding material initially used can cover the gap 454, and the sacrificial material has been selectively deposited, the light-shielding material is removed, and then the structural material is plated, so that the same results as shown in the figure can be obtained. The 28E diagram illustrates the state of the process after the probe has multiple layers of sacrificial material 464 and structural material 15 466. In some of the operations of this process, the probe contact deviation and the structural material deviation can be- And the same material, but in other operations, it can be a different material. Figure 28F is a diagram showing the process of adding a selective deposit of an additional layer of structural material Yang to the height of the probe And the state after a pad material is selectively deposited on the structure material. The selective deposition of the structure material and the welding material can be performed through a patterned photomask, wherein after the deposition operation, Remove the light-shielding material. In a variation of this process, solder bumps can be optionally applied to the structural material, instead of depositing soldering material and additional layers of possible structural material. 45 200534519 Figure 28G shows the process in progress The state after cutting individual array portions, which results in an array pattern of the desired form transferred to a permanent substrate. Figure 28G also illustrates one possible variation of this process, where one or more of the sacrificial materials 464 are shown. The first layer 472 may be different from the sacrificial 5 material used on the connection layer. Figure 28H illustrates the state of the process after the unmolded probe arrays 4 transfer tiles have been bonded to a permanent substrate 476. 10 15 20 FIG. 281 illustrates a process in which the first constituent layer 472 of the sacrificial material 464 and the remaining layers of the sacrificial material 464 are removed from the substrate on the temporary substrate 452 to generate a substrate attached to a permanent substrate. The state after the final probe array. A demolding probe array attached to a permanent substrate can be considered as a probe array package. It should be understood that although not shown in this example and other real money presented here Specific probe structure forms, but including helical forms, cantilevered forms, and other possible forms of plural pin sightings are not suitable. Examples of these forms are in the United States of America previously filed on December 31, 1998. It is proposed in the patent application No. 60 / 533,933. It should also be understood that in the variation of this process, other probe contact forms are suitable and other probe contacts can be used to constitute the process. Others The probe contact form and the processes used to form the probe contacts are proposed in a previous reference: US Patent Application No. 533,975. In other variants of this item, the final probe array package may include an array of recording needles ①, which can be attached separately or simultaneously to the permanent substrate 476 'and if the probe element fails, the entire set can be replaced Or individual probe arrays. 46 200534519 In some variations of this process, the permanent substrate can be-space converted,-a circuit board, or even-a programmable stellar array. After the package is formed, or more specifically, after the probe contacts are released from the temporary substrate, the probe contact form can be modified, for example, by using chemical or electrochemical processes or deposition processes and Similar processes are used to sharpen or flatten these contacts. Sections 29A-29L® are schematic side views of different states of an example of a process for forming a multilayer, multi-element probe array on a temporary substrate. It then transfers the formed structure and combines it with a permanent substrate Among them, 10 probe contacts are made through a mold made of a sacrificial material, wherein the probe element is separated from the temporary substrate by a refinable material and wherein the process is included in the 9th, 15th, and These elements are illustrated in the block diagram of FIG. 22. The process exemplified in Figures 29A-29L includes the following operations: 15 制作 Before the probe fabrication process begins, the -first-metal layer is deposited on the substrate surface and planarized. The melting point of the selected first metal is the temperature used in different construction operations (that is, the photolithography process, the deposition process, etc.), but it is lower than any combination based on fusion or The temperature required for the bonding material (such as 'solder or tin'). In performing the operation π one by one, for example, the first metal may be indium.旦 -Den deposition of the first metal also deposits i-materials (for example, a thick layer and planarizes it. (3) On a planarized surface, the construction of a plurality of layers is carried out first. Then the probe is formed.) The main body (for example, the spiral impeachment structure and similar structures of 47 200534519) where each layer of the structure includes-a structural material (for example, a recording) and a sacrificial material (for example, copper) or more than each of these materials and Eight (4) After forming the final finish, selectively deposit additional structural materials of the same or different types to form a welding pad and add an adhesive or bonding material (eg, Tin or solder). (5) Then 'the first material is deposited on the temporary substrate and the construction operation is completed thereon'. The temporary substrate is sliced and thinned to have a more wafer-like form. (Singulated). 10 (6) Next, heat-treating the grains to enhance interlayer adhesion (for example, by promoting low temperature diffusion bonding). During this process, the temperature may or may not be raised to as low as The melting point of the metal, but if At the melting point, the surface tension of the molten first metal will keep the die-backing in place. In the variation of the process, the diffusion bonding process can be delayed until 15 to transfer to the permanent substrate operation (7) Next, the individual dies are arranged (that is, transferred to) the permanent substrate and adhered to it. In some variations of the process, an underfill is used when the sacrificial material is decoupled. The material is embedded between the permanent substrate and the probe. The use of back fill material helps to prevent the bonding material from negatively affecting the sacrificial material or the etchant used in the removal of the sacrificial material. Among other changes In the form, an intermediate material can be added instead of the last layer or two sacrificial materials used to form the probe. (8) Next, the die / package is subjected to thermal cycling, only the temperature is raised to the south enough to melt the first metal. At this temperature, potentially remove the temporary 48 200534519 substrate together with some or all of the first metal. If necessary, another job can be used to remove any Residual first material (for example, a planarization operation, a selective etching operation, or the like). These operations result in exposing the sacrificial material (for example, copper) on the construction die that is now bonded to the permanent substrate. 5 ( 9) Finally, the sacrificial material is etched in a demolding process, and a complete probe package is produced. Figure 29A shows that the process is to cover a substrate 502 with a crystal layer 504 (if necessary) and a first The metal 506 is plated, planarized, plated and planarized with a sacrificial material 508 (eg, copper), and then coated with a photoresist 512. 10 The plating stop portions in those areas where the probe contacts are configured will be Photoresist patterned state. FIG. 29B shows the state of the process after the additional sacrificial material 508 is deposited, wherein the patterned photoresist 512 is plated up from the previously deposited sacrificial material and simultaneously mushroomed. 15 Figure 29C shows the state of the process after a thin film of a crystalline layer material 514 is deposited to bridge the dielectric portion of the electroplating stop portion. For example, the seed layer material can be deposited by a physical vapor deposition method. In some variations of this process, the seed layer material can be deposited before depositing an adhesive layer material. 20 Figure 29D shows the state of the process after the overlay deposition of a contact material 518. In a variation of this process, a suitable patterned mask can be used to selectively deposit the contact material, and it can be the same material as the structural material 516 described briefly. In a further variation of this process, after the seed layer 514 is deposited 49 200534519 and before the contact material 518 is deposited, the contact coating material or the contact material may be covered or selectively deposited. Compared with the total height of the contact, the coating or contact material of this contact is extremely thin. Fig. 29E shows the state of the manufacturing process after a grinding piate 5205 has been moved into an appropriate position, & the cap-deposited contact material is ground and then polished. Figure 29F shows the state of the manufacturing process after completing the planarization operation, which results in a surface composed of these areas of the sacrificial material 508, the contact material 518, and the seed layer material 514 φ. The 10 帛 29G diagram shows the state of the process after a plurality of layers of sacrificial and conductive materials have been used to construct most probe structures. The electrochemical > pediatric technology described here, the electrochemical deposition technology described in the patent or patent application, which is incorporated herein as reference, or some Other techniques of the patterned layers of materials are required to make each of the plurality of layers. Figure 29H shows the process of applying a thick layer of a photoresist 524 (for example, a cured liquid-based photoresist or a dry film photoresist) and patterning it, and depositing a structural material 523 into the patterning. In the photoresist, the openings are used to form the bonding pads, and the bonding adhesive material 522 is deposited to cover the welding pads. In some of the operations performed by the clothing, the pad material may be tin, and in other embodiments, a tin alloy may be used and / or some other materials may be used. Figure 291_shows that after the process has removed the patterned photoresist material 50 of Level 29, 200534519 524, and after the substrate 502 is sliced and thinned to form the substrate 502 ', and the cutting operation is performed (not distinguished) It is used to divide the structure into individual grains. Before or after the cutting operation, the structure is subjected to a heat treatment that enhances the adhesion between the layers 5 to form a structure with more uniform properties. FIG. 29J shows the state of the manufacturing process after bonding the die 526 to a permanent substrate 532 in a flip-chip manner by using the pad material 532 and a second pad material 534 disposed on the substrate 532.
弟圑係顯示製程在使 10 15Younger brother shows that the process is in progress 10 15
20 。7. 板532與犧牲材料508之間的空隙538之後,以及將結構加^ 至一足以熔化第一金屬的溫度並將結構自暫時基板5〇2,| 離後的狀態。 第29L圖係顯示製程在將犧牲材料5〇8及電鍍中止材^ 512去除,從而將所完成探針脫模並構成探針封裝538後^ 狀態。 熟知此技藝之人士-旦檢閱於此之講授内容便能_ 上述製程能夠有複數種附加的變化形式,並且該等變化子 式於此併入本案以為茶考資料。 第3013_係為用於在—暫時基板上構成多層、^ 元件式探針_的-製程之—實_不同絲的㈣術 圖,其係與第29A-29L圖中所示相似,不同之處在於第一 ^ 屬係由一介電材料所取代。 β 第30A-30H圖中戶斤例示之製程包括以下作業: ⑴以-第-介電材料塗佈—基板(例如,麵材料或是 51 200534519 其他材料),其可自一暫時基板與沉積用以建構結構的該等 材料層之間脫模(例如,介電材料可為一聚酿亞胺材料)。若 為所需,該介電材料可經旋轉塗佈、固化並黏附至基板上 之表面。 5 ⑺針對⑽作業,施加—種晶層覆蓋介電材料供電連 接所用。 # (3)沉積(例如,藉由電錢)一犧牲材料(例如,銅)之厚層 並接著研磨並將其拋光。 曰 ⑷以上述相關於第29A-29LS)說明之相似方式,構成 10接點、探針主體、焊墊、以及凸塊。 (5) 將結構及暫時基板切片及切割。 (6) 如相關於第29A-29L圖之說明般將晶粒安裝並黏合 至一永久基板。. (7) 將暫時基板脫模。例如,假若第一介電材料係為聚 15醯亞胺以及暫時基板係為玻璃,則可將結構及暫時基板浸 沒入沸騰水中。水會影響聚醯亞胺對玻璃之黏著性,並致 使聚醯亞胺分層。如此將有效地容許去除玻璃並接著可利 用電漿或是濕式蝕刻手動地將聚醯亞胺層剝除或是蝕刻去 除。如此將造成犧牲材料之曝光。 20 (8)因而可藉由蝕刻作業將犧牲材料去除用以將結構脫 模。 第30A圖係圖示製程在構成探針接點的該等區域中,將 一暫時基板552(例如,由玻璃所構成)以一介電材料554(例 如,聚醯亞胺)塗佈,依序以一種晶層材料556塗佈,依序 52 200534519 以一犧牲材料557(例如,電鍍銅)之厚層塗佈,依序以一圖 案化光阻劑材料559塗佈後的狀態。 第30B圖係圖示製程的狀態,其係與第29D圖中所示狀 態類似。 5 第3〇C圖係圖示製程的狀態,其係與第29F圖中所示狀 態類似。 第30D圖係圖示製程的狀態,其係與第291圖中所示狀 態類似,而第30E圖係圖示製程的狀態,其係與第29j圖中 所示狀態類似。 10 第30F圖係圖示製程在將薄化暫時基板552自介電塗層 554分離後的狀態。就玻璃基板及聚醯亞胺介電材料而言, 如圖所示藉由將結構浸沒入沸水564槽562中進行分離作 第30G圖係圖示製程在,例如,藉由剝離或是電漿或濕 15式蝕刻去除介電材料之後,以及在將底膠材料配置在永久 基板之暴露部分與用於構成該等結構層之犧牲材料之間後 的狀態。 第30H圖係顯示製程在去除犧牲材料留下探針元件 572(a)-572(c)後之狀態,其中該等探針元件係藉由黏合材料 20 576及578以及潛在地藉由底膠材料580黏附至一永久義板 本發明之下一具體實施例係有關於利用電化學製造 術製作微探針之方法,其包括製造(具接點)、轉移及翻=技 一空間轉換器或是其他基板、以及(可任擇地)塗佈作業士 53 200534519 上所述’用於製作接點幾何形狀之不同的方法係為可用 的,並在於此併入本案以為參考資料的專利申請案第 60/533,975號中提出。為簡單起見,於以下具體實施例中, 選定一單接點製造方法,但熟知此技藝之人士應瞭解的 是,在具體實施例之變化形式中亦可使用其他的製造技 術。特別地,於以下具體實施例中,使用_根據犧牲材料 之”蕈形化作業(mushrooming),,覆蓋光阻劑特徵的方法,用 以界定接點幾何形狀。20. 7. After the gap 538 between the plate 532 and the sacrificial material 508, and after the structure is heated to a temperature sufficient to melt the first metal and the structure is removed from the temporary substrate 502, | FIG. 29L shows the state of the process after removing the sacrificial material 508 and the plating stop material 512, thereby demolding the completed probe and forming the probe package 538. Those who are familiar with this technique-once reviewing the teaching content here-the above process can have multiple additional variations, and these variations are hereby incorporated into this case as tea test materials. 3013_ is a process chart for forming a multilayer, ^ -element probe on a temporary substrate, a process, and a solid wire, which is similar to that shown in the 29A-29L diagram, except that The first genus is replaced by a dielectric material. β The process illustrated by households in Figures 30A-30H includes the following operations: ⑴ Coating with a -dielectric material-a substrate (for example, a surface material or 51 200534519 other materials), which can be used from a temporary substrate and deposition The structures are demolded between the layers of material (eg, the dielectric material may be a polyimide material). If desired, the dielectric material may be spin-coated, cured, and adhered to a surface on a substrate. 5 ⑺For ⑽ operation, application-seed layer covering dielectric material for power connection. # (3) Deposit (e.g., by money) a thick layer of sacrificial material (e.g., copper) and then grind and polish it. In a similar manner as described above in relation to 29A-29LS), 10 contacts, a probe body, a pad, and a bump are formed. (5) Slice and cut the structure and temporary substrate. (6) Mount and bond the die to a permanent substrate as described in relation to Figures 29A-29L. (7) Release the temporary substrate. For example, if the first dielectric material is polyimide and the temporary substrate is glass, the structure and the temporary substrate may be immersed in boiling water. Water can affect the adhesion of polyimide to glass and cause delamination of polyimide. This will effectively allow the glass to be removed and then the polyimide layer can be manually peeled off or etched away using plasma or wet etching. This will cause exposure of the sacrificial material. 20 (8) Therefore, the sacrificial material can be removed by an etching operation to release the structure. FIG. 30A illustrates a process in which the temporary substrate 552 (for example, made of glass) is coated with a dielectric material 554 (for example, polyimide) in the areas constituting the probe contacts, and It is sequentially coated with a crystalline layer material 556, followed by 52 200534519 with a thick layer of a sacrificial material 557 (for example, electroplated copper), and sequentially coated with a patterned photoresist material 559. Fig. 30B shows the state of the process, which is similar to the state shown in Fig. 29D. 5 Figure 30C shows the state of the process, which is similar to the state shown in Figure 29F. Figure 30D shows the state of the process, which is similar to the state shown in Figure 291, and Figure 30E shows the state of the process, which is similar to the state shown in Figure 29j. 10 FIG. 30F illustrates the state of the process after the thin temporary substrate 552 is separated from the dielectric coating 554. As for the glass substrate and polyimide dielectric material, as shown in the figure, the structure is separated by immersing the structure in a boiling water 564 tank 562 as the 30G diagram. The process is illustrated in, for example, by peeling or plasma Or wet 15 type etching, after removing the dielectric material, and after disposing the primer material between the exposed portion of the permanent substrate and the sacrificial material used to form the structural layers. Figure 30H shows the state of the process after the sacrificial material is removed leaving probe elements 572 (a) -572 (c), where the probe elements are made of adhesive materials 20 576 and 578 and potentially by primer Material 580 is adhered to a permanent prosthesis. A specific embodiment of the present invention relates to a method for fabricating a microprobe using electrochemical fabrication, which includes manufacturing (with contacts), transfer and translation, a space converter or Other substrates and (optionally) coating operators 53 200534519 The different methods for making contact geometries are available and are hereby incorporated by reference into this patent application Proposed in No. 60 / 533,975. For simplicity, in the following specific embodiments, a single contact manufacturing method is selected, but those skilled in the art should understand that other manufacturing techniques can also be used in variations of the specific embodiments. In particular, in the following specific embodiments, a method of covering photoresist features using _mushrooming according to sacrificial materials is used to define the contact geometry.
10 1510 15
20 第31A-31W圖係概述與—範例製程相_該等作業 其中不包含探針之塗佈作業。於第31A圖中,所示係為一 時晶圓604,於此假定其係為諸如氧化_介電材料1 以種晶層608及黏合層606塗佈。該等金屬化層並未存在 =’相_度)區域中(例如,由於姓刻或剝: ⑽’),用以露出晶圓表面並因而構成未電鍍端點偵 侧。料31B圖中,已電鑛厚犧牲材料616(例如,銅) 以及於弟31C圖中’此”脫模,,声已平 已將薄光_618(妓其他介„料) :=能_形化覆蓋其上二Si 瓜狀以及於第3糊中,已藉由電錄將銅蕈形化 部分持續-段控制時間用以構復一 第训圖巾了祕㈣狀y 或是条鐘沉積銅622(通常在沉積 精由贺: ㈣,並已將銅膜自端點指向墊614去^曰較佳, 或藉由去除防止沉積之-料材料)。應^=:藉由也Μ的疋,假若彡 54 200534519 由物理氣相沉積(亦即,藉由噴濺或蒸鍍)施加在 艾中 所施加之接點塗層材料624,則可省略此步驟。假若在接浐 步驟中將僅施加-單一接點材料,或假若一2層式接點之^ 一層係相對為厚,則此步驟亦可省略;於該二狀況中,弟 5點材料之厚重電鑛可導致自銅之側壁的充分簟形化作業接 用以谷彳i鐘覆盍光阻劑而不需一種晶層。最後,假若已 使用由Kieun Kim揭露之,,鑽孔作業(drilHng),,蝕刻技術用ρ 將其中曝光穿過銅之光阻劑穿孔,並因而使與下面的乂 性材料接觸,則能夠省略此步驟。 、導 10、接續圖式假定該等接點事實上係由二不同材料 ^。於第31G圖中,沉積接點塗層材料624(例如,铑)(例士 藉由電〉儿積)。此沉積物可相當薄(例如,丨_3微米),用ρ ==料論族金屬不同)中之與應力相關的= 一失現象降至最低。於一些狀況中應注意的是,該等 j月匕夠凡全地以接點塗層材料製作而成且不需背襯材料。 …、而γ就過軟(例如,金)或是當沉積時具有過多殘留應力(例 如,可能為銖或铑)的接點塗層而言,較佳地使用薄塗層, 以其他材料為背襯。於第31H圖中,已電鑛-輔助,,北 接點材料626用以構成多量之接點 ,以及於第311圖中, 20將晶圓平面化。 已 、於第31J圖中,已沉積結構材料(例如,鎳)之多重層628 2以構成料探針。假定以—探針基材Μ:構成為部分之探 、’、17最上層(最終為最下層));如此可具有一圓盤形 '、之直彳空係與探針直徑相似。於第31K圖中,沉積厚光 55 200534519 阻劑634並圖案化,以及於第31L圖中,已將焊料636(例如, 錫-船’但亦可為純錫)或相似材料電鑛進入光阻劑之特徵 中。假若並無構成一探針基材,則在電鍍焊料之前可電鍍 鎳用以構成基材。基材,不論如何構成,提供一焊料球所 5 用之可濕性墊以及一探針用穩定基座。 於第31M圖中,將光阻劑剝除,以及於第31N圖中,該 焊料636流回用以構成一凸塊。應注意的是,可於之後進行 流回(一旦將晶圓切單),並且在黏合作業之前並非嚴格地需 擊 要流回(見弟1R-1S圖)。亦應注意的是,在流回之前需執行 10如第31Q圖中所示之回蝕(etch-back)作業(或可任擇地,能殉 進行二回蝕作業),為了使凹進鎳下方之銅表面致使一旦熔 融焊料無法芯吸覆蓋銅表面。 於第310圖中,在切割作業之前,已對晶圓_施加〜 防護塗層638,以及於第31P圖中,已切割晶圓6〇4。切割作 15業在銅表面上留下芒刺狀部分640,其對接續的黏合作業造 成干擾。藉由明智審慎地選擇防護圖層(較佳地係諸如同由 鲁 Arernco所生產之單晶膠(cryStaib〇n(j)5〇9的一種可溶解虫氣 的一硬質材料),此芒刺狀部分64〇之尺寸可維持為小的。 於第31Q圖中,已執行銅之回蝕作業。此回蝕作業具多種目 2〇的·勾去除該芒刺狀部分;b)凹進位在焊料表面下方的銅表 面。完成該後者作業係針對二原因:丨)如上所述,消除烊 料芯吸涵蓋銅以及與相鄰探針縮短在一起之風險;幻將垾 料與銅分離,容許焊料嵌入底膠中,在銅脫模期間受到保 護。 56 200534519 假若使用-永久底膠,該回餘作業較佳地完成到使銅 表面不低於探針基材之底部的一程度,因為銅表面將界定 底膠之頂部(見第31T圖)。假若未使用底膠或是僅使用一暫 時底膠,將銅進一步蝕刻,有助於並減少之後完全脫模所 5需之時間;就這一點而言,該脫模作業可較於此僅因需要 而限定所示更進-步持續作業用以a)將所有探針維持在良 好的對準狀態直至結合為止;b)將對探針造成的風險降至 最低直至結合為止;c)防止底膠聚合物(如有使用)不致包覆 | 探針以及干擾其之順從性(當然,假若間隙太大,則由於毛 10細壓力降低以致無法適當地芯吸底膠)。除回蝕作業用以去 除芒刺狀部分外,可使用電拋光或是機械加工(砂磨 (sanding)、研磨GaPPing)、抛光、噴砂)。 除了第31Q圖中所示之贿作業外,在賴作業之前或 之後,已執行擴散黏合(未顯示)。後者係為較佳的,由於具 15有較少銅並因而因銅與其他材料之間的熱膨脹係數(CTE) 差異而發生應力的風險較低。再者,由於蝕刻,相對於鎳 • 該銅已凹進,所以於擴散黏合時所進行流回期間,位在表 面上的焊料凸塊係更可能維持在適當位置。應注意的是, 無論如何由於在擴政黏合期間(例如,在250。〇下)凸塊可能 20流回,所以可越過使其流回的較早步驟(第31N圖)。亦應注 意的是,雖然應力太大以致無法容許此作業,除非首先藉 由部分切割穿過(例如,切割穿過所有沉積層但僅稍微進入 暫時晶圓)而射晶圓”作記號(⑽red),,,但在晶圓級下能夠且 需要擴散黏合作業(例如,在第3U圖之後)。亦應注意的是, 57 200534519 假若空間轉換器可承受溫度,則能夠在第31S圖之步驟或與 其同時進行之步驟後,進行擴散黏合作業。 於第31R圖中,晶粒646已翻轉並初步地(例如,達+/-5 微米)與位在一空間轉換器、ic封裝或是其他基板648(例 5 如,一印刷電路板)上的凸塊642對準。應注意的是,在暫 時晶圓604上極為接近地製造的多數晶粒,因而能夠廣泛地 散佈涵蓋一較大的基板,例如,用於製作記憶體用探針卡 (其之特徵在於大面積但探針密度相對為低)。藉由業界所熟 知諸如由Palomar Technologies(例如,model 6500)所生產或 10 SSemiconductor Equipment公司所生產(例如,具有一熱氣 加熱态級(hot gas heater stage)的System 850)之晶粒黏合用 设備,執行對準作業。當面對面時該設備使用多重攝影機, 例如,用以對晶粒及空間轉換器攝影擷取影像,將晶粒及 空間轉換一起對準並將其加熱用以執行黏合作業。如圖 所示假疋工間轉換器包括凸塊或其他隔離金屬觸點。假 右3等觸點係由焊料所組成,如已說明,則其不需對探針 幻才施加附加的焊料,其中能夠直接地自空間轉換器648將 知料黏口至^木針基材。已將液態助焊劑或助焊膏Μ4施加至 晶粒646或空間轉換器⑽任一者或二者上,用以a)暫時地 〇將.玄一者充分地黏合在一起,用以保持對準狀態直至結合 為止,b)將會影響良好結合作業的氧化物構成機會降至最 低。為_後者有所助益,“活性,,助焊義為較佳的。 ;^ S圖中,焊料636已流回,將晶粒646自對準,並 1由適田的洛劑將助焊劑644去除。於第31丁圖中,已 58 200534519 芯吸一底膠材料652用以填注晶粒下空間。假若需要一永久 底膠用以對最終元件提供附加強度,則此係可為一諸如環 氧或覆晶底膠的材料。或者,該底膠可為一諸如蠟(例如,20 Figures 31A-31W are overview and—example process phase—these operations do not include probe coating operations. In FIG. 31A, the system is shown as a temporary wafer 604, and it is assumed here that the system is coated with a seed layer 608 and an adhesive layer 606 such as an oxide-dielectric material 1. These metallization layers are not present in the region of 'phase_degree' (for example, because of the last name or peeling: ⑽ '), and are used to expose the surface of the wafer and thus constitute an unplated endpoint detection side. In the material 31B, the thickness of the sacrificial material 616 (for example, copper) has been mined, and in the 31C figure, the “this” has been released. The shape covers the two Si melon shapes and in the 3rd paste, the copper mushroom shape has been continued for a period of time through the recording to control the first training image to form a secret y or a bell. Deposition of copper 622 (usually in the deposition process), and it is better to point the copper film from the end point to the pad 614, or to prevent the deposition of material. Should be ^ =: With 彡, if 彡 54 200534519 is applied by physical vapor deposition (ie, by sputtering or evaporation) to the contact coating material 624 applied to Ai, this can be omitted step. This step can also be omitted if only a single contact material will be applied in the connection step, or if the ^ layer of a 2-layer contact is relatively thick, in this two conditions, the thickness of the 5 points material Electric ore can lead to a full-textured operation from the side walls of copper, which can be used to cover the photoresist without a crystal layer. Finally, if it has been used by Dr. Kieun Kim, the drilling operation (drilHng), the etching technique uses p to perforate the photoresist exposed through copper, and thus makes contact with the underlying material, it can be omitted This step. 10. The continuation pattern assumes that these contacts are actually made of two different materials. In Figure 31G, a contact coating material 624 (e.g., rhodium) is deposited (for example, by electricity> child product). This deposit can be quite thin (for example, __ 3 microns), and the stress-dependent loss phenomenon in ρ == different material groups is minimized. In some situations, it should be noted that these jigsaws are made of contact coating materials without any backing material. ..., and γ is preferably a thin coating for contact coatings that are too soft (e.g., gold) or have excessive residual stress (e.g., baht or rhodium) when deposited, and other materials are preferred Backing. In Fig. 31H, the electric ore-assisted, north contact material 626 is used to form a large number of contacts, and in Fig. 311, 20 planarizes the wafer. In Figure 31J, multiple layers 6282 of a structural material (for example, nickel) have been deposited to form a material probe. It is assumed that the probe base material M: part of the probe, ′, 17 is the uppermost layer (finally the lowermost layer); in this way, it may have a disc shape, with a straight space similar to the diameter of the probe. In Fig. 31K, thick light 55 200534519 resist 634 is deposited and patterned, and in Fig. 31L, solder 636 (for example, tin-boat 'but also pure tin) or similar material power mine has been entered into the light The characteristics of the resist. If a probe substrate is not formed, nickel may be plated to form the substrate before the solder is plated. The substrate, however constructed, provides a wettable pad for solder balls 5 and a stabilizing base for probes. In Fig. 31M, the photoresist is removed, and in Fig. 31N, the solder 636 flows back to form a bump. It should be noted that the flow-back can be performed later (once the wafer is singulated), and it is not strictly required to flow-back before the bonding industry (see Figure 1R-1S). It should also be noted that 10 etch-back operations (or optionally, two etch-back operations can be performed) as shown in Figure 31Q are required before flowing back. The copper surface underneath makes it impossible to wick to cover the copper surface once molten solder. In FIG. 310, the wafer _ has been applied with a protective coating 638 before the dicing operation, and in FIG. 31P, the wafer 604 has been diced. The cutting operation leaves a thorn-like portion 640 on the copper surface, which interferes with the subsequent adhesion industry. By judiciously and carefully selecting a protective layer (preferably a hard material such as crystaibon (j) 509 which is a hard material that can dissolve insects such as the one produced by Lu Arernco), this burr The size of the portion 64 can be kept small. In Fig. 31Q, the copper etch-back operation has been performed. This etch-back operation has a variety of eye-shaped hooks to remove the burr-like portion; b) the recess is in the solder Copper surface below the surface. Completing the latter operation is for two reasons: 丨) As mentioned above, the risk of wicking of copper to cover copper and shortening with adjacent probes is eliminated; the material is separated from copper to allow solder to be embedded in the primer. Protected during copper release. 56 200534519 If a permanent primer is used, the rest of the work is better done to a level where the copper surface is not lower than the bottom of the probe substrate, as the copper surface will define the top of the primer (see Figure 31T). If no primer is used or only a temporary primer is used, further etching of copper will help and reduce the time required for complete demolding in the future; in this regard, this demolding operation can be more than just this It is necessary to limit the shown further-continuous continuous operation to a) maintain all probes in good alignment until they are combined; b) minimize the risk to the probes until they are combined; c) prevent the bottom The gel polymer (if used) will not cover the probe and interfere with its compliance (of course, if the gap is too large, the capillary pressure will not be properly wicked if the gap is too large). In addition to the etch-back operation to remove burr-like parts, electropolishing or machining (sanding, grinding GaPPing, polishing, sandblasting) can be used. In addition to the bribe operation shown in Figure 31Q, diffusion bonding (not shown) has been performed before or after the operation. The latter is preferred because it has less copper and therefore has a lower risk of stress due to differences in the coefficient of thermal expansion (CTE) between copper and other materials. Furthermore, the copper has been recessed relative to nickel due to the etching, so the solder bumps on the surface are more likely to remain in place during the flow-back during diffusion bonding. It should be noted that anyway, since the bumps may flow back during the expansion cohesion (for example, at 250 °), the earlier step of causing them to flow back can be skipped (Figure 31N). It should also be noted that although the stress is too great to allow this operation, unless the wafer is first shot by partially cutting through (for example, cutting through all the deposited layers but only slightly into the temporary wafer), mark "⑽red" ), But at the wafer level can and needs to spread the adhesion industry (for example, after Figure 3U). It should also be noted that 57 200534519 If the space converter can withstand the temperature, it can be in the step of Figure 31S Or after the simultaneous steps, the diffusion bonding industry is performed. In Figure 31R, the die 646 has been flipped and initially (for example, up to +/- 5 microns) with an in-space converter, IC package, or other The bumps 642 on the substrate 648 (e.g., a printed circuit board) are aligned. It should be noted that most of the dies fabricated on the temporary wafer 604 are very close, so they can be widely spread to cover a larger Substrates, for example, used to make probe cards for memory (characterized by large area but relatively low probe density). Well known in the industry such as those produced by Palomar Technologies (for example, model 6500) or 10 SSemicond UCtor Equipment (for example, System 850 with a hot gas heater stage) is used for die bonding equipment to perform alignment operations. When face to face, the equipment uses multiple cameras, for example, to Photograph and capture the die and space converter, align the die and space converter together and heat them to perform the bonding industry. As shown in the figure, the dummy converter includes bumps or other isolated metal contacts. The fake right third contact is composed of solder. As already explained, it does not require additional solder to be applied to the probe pin. Among them, the material can be directly stuck to the wooden needle base from the space converter 648. A liquid flux or solder paste M4 has been applied to either or both of the die 646 or the space converter (a) for a) temporarily, and the xuan one is fully bonded together to Keep the alignment state until the bonding, b) will minimize the chance of oxide formation that affects the good bonding operation. For the latter, it is helpful, "active, and soldering is better. In the figure, solder 636 has flowed back, the die 646 is self-aligned, and flux 644 is removed by Shida's flux. In the 31st Ding diagram, 58 200534519 wicking a primer material 652 is used to fill the space under the die. If a permanent primer is needed to provide additional strength to the final component, this can be a material such as epoxy or flip-chip primer. Alternatively, the primer may be a material such as wax (e.g.,
Crystalbond 509)、快乾漆等材料,其係在將銅脫模之後去 5除。於任一狀況下,為了容許蝕刻銅而不致損及焊料,大 體上需要使用底勝’因為焊料易於銅蝕刻劑中受到蝕刻, 所以其係使用作為一犧牲陽極。應注意的是,由於傾向於 蝕刻該暴露焊料而不蝕刻銅,所以第31Q圖中所示之回蝕步 驟係難以完成的;此狀況係由以下二作業所操作· i)暫時 10地以佈該焊料(例如,將谭料浸人旋轉塗佈在 -平板上的-薄聚合物層中);2)以金塗佈谭料(例如,經由 浸潰而浸沒金)。 珂π上述低膠的 15 20 段使用-塗層(例如’無電電鍍或是浸潰金),為了塗佈位名 晶粒646及/或空間轉換器_上的焊料伽,並保講 姓刻齊m刻。此塗層之—薄層亦可沉積在銅之^面^ 由於-旦_銅其係橋麟針並無任何機械切物,納 輕易地將其去除(例如,藉由超 " —))。 “波振逢⑻一 i, β於第仙圖中,晶粒祕已完全地自鋼脫模。應 疋’保持該等探針至少部分麟人銅中直至提供二 堅固性為止,並且在黏合期間用於操作並將所有社構二 :吳的6軸式對準狀況下。於此製料間,典型地較早: 木化的銅包覆光阻劑特徵已消失或為溶解。如、^圖 所茜,- 59Crystalbond 509), quick-drying paint and other materials, which are removed after removing copper from the mold. In either case, in order to allow the copper to be etched without damaging the solder, it is generally necessary to use a substrate. Because the solder is easily etched in the copper etchant, it is used as a sacrificial anode. It should be noted that the etch-back step shown in Figure 31Q is difficult to complete because it tends to etch the exposed solder without etching copper; this condition is operated by the following two operations i) temporarily The solder (for example, a tan material is spin-coated in a thin polymer layer on a flat plate); 2) the tan material is coated with gold (for example, immersion of gold through immersion). Kepi 15-20 sections of the above-mentioned low glue use-coating (such as' electroless plating or immersion gold), in order to coat the solder chip on the die 646 and / or the space converter _, and keep the last name engraved Qi m moment. The thin layer of this coating can also be deposited on the surface of copper ^ Since -denier_copper has no mechanical cuts, it can be easily removed (for example, by ultra " —)) . "Bo Zhenfeng ⑻i, β in the first figure, the grains have been completely demolded from the steel. Should be 'keep these probes at least part of the human Ren copper until two solidity is provided, and in the bonding During the operation and all the social structure 2: Wu's 6-axis alignment conditions. In this production room, typically earlier: the characteristics of the woodized copper-coated photoresist have disappeared or are dissolved. For example, ^ Tusuo Qian,-59
200534519 5 10 15200534519 5 10 15
旦光阻劑已曝光職夠停域模製如及 =接著峨嶋。終蝴要,能夠將^點好 利用一錄鞋刻劑,能夠選擇其他材料,諸如接 ·,,,科)用以去除任何外來的材料。此敍刻劑之另一效果係 ::謂“呈_”區域自探針接點去除。經由上述說明 單形化”料所製作之接點,應具有第31v财所示之外 4而’貫際上接點的頂部係較頂部與底部間的中間部 第卿圖),造成—呈㈣形展開的效果,擴大介於 〜、k針楝查表面之間的有效接觸面積。若有 刻劑亦能夠使接點之角落圓滑。 應注意的是,利用焊料將晶粒黏合至空間轉換器的一 二第Γ方< 係利用熱壓縮黏合,例如金。於此狀況下’ 為7圖中具有钱金對上焊料,以及”轉換器觸點亦 2金塗佈。使二金表面接觸,施以熱量及壓力用以將晶 間並無焊_漆㈣於錢_乍業期 蚀刻劑财)。 不㊉使胁何底樹麵常不受銅 仇弟 31A-31W1 20 合匕豹制 厅不者之進一步擴大延伸而言, 二=轉移/黏合探針外其他結構與元件,對於最終 2有用的,亦對空間轉換器有用。該等實例包括i置(跡線、微波傳輪帶、同軸傳輸線)、切換元件、電口°、電阻器及電感器。 60 200534519 層(例如,金或銅塗層用以降低探針電阻,或鎳塗層(例如, 銅或金^木針之鎳塗層)用以增加探針機械剛性假定對探針 不响施加何塗層,並不品對接點施加此相同的塗層。在側 邊兀成塗佈塗層但該等接點不具塗層係為具挑戰性的,但 5 本具體實施例提供該一解決方案實例。 第32A-32T圖係與第31A-31T圖類似(應注意的是,在第 32Q圖中未顯示該切割芒刺狀部分)。然而,在製程流程中 提供一脫模層654(第32A圖),為了考量探針接點開始之部 分銅脫模,容許其如第32W圖中所示般接受塗佈656。此脫 10杈層654較佳地係為一傳導性材料(例如,銦”其能夠熔化 用以將暫時建構晶圓脫模。於第32u圖中,已去除脫模層 654(在熔融後,會有此層之殘留物,需藉由蝕刻、拋光/研 磨等方式去除)。於第32V圖中,部分地蝕刻銅用以露出接 點658。於第32W圖中,接著藉由浸潰、旋轉塗佈、喷霧或 15疋其他適合方法以一聚合物(例如,銅餘刻劑相容光阻劑(諸 如Shipley BPR 100)或蠟(例如,Crystalb〇nd》塗佈656該等 接點658。該等接點亦能夠以一非聚合材料塗佈,只要在去 除材料時(例如,一剝落式製程)第32χ圖中施加之塗層656 不〉儿積在材料上、沉積物不附著、或是會脫離即可。 20 於第32Χ圖中,已環繞著探針對銅進行蝕刻。應注意的 是,由於存有聚合物,所以僅能自側邊進行蝕刻作業。於 第32Υ圖中,探針664已進行塗佈662(例如,藉由無電電鍍 法、或可能藉由化學氣相沉積、物理氣相沉積、或是電鑛)。 最後,於第32Ζ圖中,已將聚合物自接點658去除,使其無 61 200534519 塗層。 為了改良塗層與探針之黏合作業,需要在沉積塗層(未 顯示)後進行熱處理。假若在塗佈作業之前尚未執行擴s散黏 合作業,則可同時執行擴散黏合及塗層黏合作業,〇 、/、要 5 10 15 20 間轉換器648能夠承受擴散黏合作業所需之溫度(該溫声可 能高於增強塗層黏合所需之溫度)。 第32圖中所示係為本具體實施例之一變化形式的一車六 佳具體實施例(未顯示),其如下所述:並非如第32w圖中所 示施加聚合物,而僅對接點施以聚合物,在該等探針間留 下無聚合物區域。完成此作業的一方式係將一聚合物薄層 旋轉塗佈在一平板上,並小心謹慎地使接點與此層接觸^ 接著將其拉掉。可在第32Y圖中所示之塗佈作業步驟之前^ 任何時刻執行此方法,因而不需如第32V圖中所示般首先進 行部分脫模(並因而不需使用一容許將暫時晶圓去除之脫 模層)。僅對接點進行塗佈作業且未如第32χ圖中所示地構 成-連續聚合物薄膜之優點係為υ假若尚未完成鋼麵刻: 業,則能夠由上向下以及由側邊進行姓刻作業;2)並無 續薄膜對塗佈製程造成干擾(例如,在無電錢沉積的^況 下,用以降低探針暴露至鍍槽並因而降低振盈)。 於另-具體實施例中(未顯示),容許沉積塗層覆 妾^ 接著藉由複數種方法的其中之—方法將其^ 接點中去除,諸如:1)保護探針之其餘部分(例仏、二寺 加.並接著以化學姓刻方式將塗層自接點去除;‘知 與-覆以-_劑薄層之板碰觸,傾賊塗 : 62 200534519 °及上探針之側邊並亦去除該處之塗 式將塗層材料自該等接點去除(例如, 、匕例中(未顯示),藉由在構成拯 積一無法藉由塗層電轳^ u 冓烕接”,、占之耵 塗層沉積在該等接點上 考『)防止片! 理氣相沉積銅。此材料纟 積之杂 ……/ 係具傳導性,但不需嚴袼運 求其具傳導性;假若佶田冰 ^Once the photoresist has been exposed enough to stop the field molding such as and then Emei. In the end, you can make good use of a recording agent, and you can choose other materials, such as picking up, removing, etc. to remove any foreign materials. Another effect of this engraver is the removal of the "present_" region from the probe contacts. The contact made by the above description of "single-shaped" material should have the number 4 and 31 shown in Figure 31, and the top of the contact should be higher than the middle part between the top and the bottom). The effect of the sigmoidal expansion expands the effective contact area between the ~ and k-pin inspection surfaces. If there is an etchant, the corners of the contacts can be smoothed. It should be noted that the solder is used to bond the crystals to the space conversion. The first and second squares of the device are bonded using thermal compression, such as gold. In this case, 'the figure has a gold-to-solder solder, and the converter contacts are also coated with 2 gold. The two gold surfaces were brought into contact, and heat and pressure were applied to make the inter-crystals not soldered. No matter what, the tree surface is often not affected by the further expansion of the Bronze Brothers 31A-31W1. 20 = dagger leopard system, two = transfer / adhesion probe other structures and components, useful for the final 2 Also useful for space converters. These examples include devices (traces, microwave transmission belts, coaxial transmission lines), switching elements, electrical ports, resistors, and inductors. 60 200534519 (for example, a gold or copper coating to reduce the probe resistance, or a nickel coating (for example, a nickel coating of copper or gold ^ wooden needles) to increase the mechanical stiffness of the probe No coating is applied to the contacts. The same coating is applied to the contacts. It is challenging to apply a coating on the sides, but the contacts are not coated. However, this specific embodiment provides this solution. Example of the scheme. The 32A-32T diagram is similar to the 31A-31T diagram (it should be noted that the cut thorn-shaped portion is not shown in the 32Q diagram). However, a release layer 654 is provided in the process flow ( (Figure 32A), in order to consider the part of the copper at the beginning of the probe release, allow it to accept coating 656 as shown in Figure 32W. This 10-layer layer 654 is preferably a conductive material (such as "Indium" which can be melted to release the temporary construction wafer. In Figure 32u, the release layer 654 has been removed (after melting, there will be residues in this layer, which need to be etched, polished / polished, etc. Method to remove). In the 32V picture, the copper is partially etched to expose the contact 658. In the 32W picture, then Coating by dipping, spin coating, spraying, or other suitable methods with a polymer (for example, copper post-etch compatible photoresist (such as Shipley BPR 100) or wax (for example, Crystalbn) 656 These contacts 658. These contacts can also be coated with a non-polymeric material, as long as the coating applied in Figure 32χ when removing the material (for example, a peel-off process) does not accumulate on the material The deposits do not adhere or detach. 20 In Figure 32X, the copper has been etched around the probe. It should be noted that because of the polymer, it can only be etched from the side. In Figure 32, the probe 664 has been coated 662 (for example, by electroless plating, or possibly by chemical vapor deposition, physical vapor deposition, or electro-mineralization.) Finally, in Figure 32Z The polymer has been removed from the contact 658 so that it does not have a 61 200534519 coating. In order to improve the adhesion of the coating to the probe, heat treatment is required after depositing the coating (not shown). If not before the coating operation Expansion and dispersal cooperation can be performed at the same time For bulk adhesion and coating adhesion, 0, /, and 5 10 15 20 converters 648 can withstand the temperature required for diffusion adhesion (the temperature may be higher than the temperature required to enhance coating adhesion). Figure 32 Shown is a six-car specific embodiment (not shown) of a variant of this specific embodiment, which is as follows: instead of applying the polymer as shown in Figure 32w, only the contacts are polymerized Polymer, leaving a polymer-free area between the probes. One way to do this is to spin-coat a thin layer of polymer on a flat plate and carefully contact the contacts with this layer ^ Next It is pulled off. This method can be performed at any time before the coating operation step shown in Fig. 32Y, so there is no need to first perform partial demolding as shown in Fig. 32V (and therefore it is not necessary to use a permissible Release layer for temporary wafer removal). Only the joints are coated and not formed as shown in Figure 32. The advantage of a continuous polymer film is that if the steel surface has not been finished, it can be engraved from top to bottom and from the side. Operation; 2) no continuous film interferes with the coating process (for example, in order to reduce the exposure of the probe to the plating bath and thus reduce the vibration surplus under the condition of no money deposit). In another embodiment (not shown), the coating is allowed to be deposited. Then, one of a plurality of methods is used to remove the ^ contact, such as: 1) to protect the rest of the probe (for example,仏, Ersijia. And then remove the coating self-contact by chemical surname engraving; 'know and-cover with-agent thin layer of the board touch, pour paint: 62 200534519 ° and the side of the upper probe The coating material is also removed from the contacts while removing the coating method there (for example, in the example (not shown), by forming a power supply, it is not possible to connect by the coating electrode). ", Zhan Zhiyan's coating is deposited on these contacts to test") to prevent the sheet! Physical vapor deposition of copper. This material is miscellaneous ... / It is conductive, but it does not need to be conducted strictly. Sex; if Putian Bing ^
黏的因此其不易& 層);3)以機械去除方 猎由抛光或研磨)。 一、、、邑緣材料並接著物理氣相 一種晶層(例如,鋼)戋吉技; ^ )^直接地物理氣相沉積接點材料,則痛 可無困難地進行進一步加工 .τ 。在平面化之後(第321圖)具 -與每一接點結合的絕緣材料環將環内金屬與環外部心 屬分隔;然而,-但將第_層電鍍覆蓋此平面化表面,2 將電鑛蕈形化覆蓋該薄絕緣環並抵達内側金屬,快速地: 其塗佈。 ; 15 於一相關的具體實施例中,在沉積接點材料之前沉積 一銅蝕刻阻障層材料(例如,鎳),其係在薄銅之後,在屬音 之接點材料之後·當執行第32X圖中的最終脫模作業時,冷 佈接點的銅薄層並未完全钱刻,因為其係以鎳覆蓋。因此 當於第32Y圖中施加塗層時,將該塗層塗佈覆蓋接點之鎳作 20 未塗佈接點本身。利用附加的銅蝕刻作業,最終將餘刻海 盍接點之銅’將鎳蓋’(現亦以塗層電錢)脫模,並露出所+ 之接點材料。 於另一具體實施例中,可將暫時晶圓604在將探針轉移 /黏合至空間轉換器648(第32R圖)自探針建構物脫模,對上 63 200534519 此作業之後狀況(第32U圖)。由於探針係以犧牲材料包裝, 所以整個結構(典型地為數百微米厚)可為自給的並較早免 除該暫時晶圓604。 第33A-33T圖係圖不一不範製程之不同狀態的概略側 5視圖,該製程係與第32A-32T圖之製程相似,不同之處在於 僅使用一犧牲材料626以取代使用二犧牲材料626及616。 第33U圖係圖示去除犧牲材料626。 於第33V圖中對探針施以一塗層。 • 在第33W圖中去除暫時基板_以及剩餘的犧牲材料 10 626及光阻劑618。 本發明存在不同的其他具體實施例。該一些具體實施 例可根據於此的講授内容與於此併入本案作為參考資料的 複數講授内容的結合。一些具體實施例可不使用任一覆蓋 式沉積製程,及/或其可不使用一平面化製程。一些具體實 15施例可包含在-單一層或是在不同層上選擇性地沉積複數 之不同材料。一些具體實施例在一些層上可使用選擇性地 春 〉儿積製程或是覆盍式沉積製程,並非為電沉積製程。一些 具體實施例可使用鎳作為_結構材料,而於其他具體實施 例可使用不同材料。一些具體實施例可使用銅作為一結構 20材料,具有或不需1牲材料。一些具體實施例可去除一 犧牲材料,而其他具體實施例可不去除。一些具體實施例 可使用以光罩為基本的選擇性姓刻作業,結合覆蓋式沉積 作業。-些具體貫施例可在一層層式基材(1—γ却切以 base)Ji構成結構’但脫離有助於在層間使材料交織的一製 64 200534519 程的一精確平面層疊式建構製程。該等可任擇的建構製程 係揭露在2003年5月7曰提出申請的美國專利申請案第 10/434,519號,標題為“經由交織層或是經由選擇性蝕刻及 填注空隙的電化學製造結構所用的方法及裝置(Methods of 5 and Apparatus for Electrochemically Fabricating Structures Via Interlaced Layers or Via Selective Etching and Filling of Voids)”,於此以全文引用方式併入本案以為參考資料。 就此该荨溝授内谷而3 ’熟知此技藝之人士對於複數 # 之進一步具體實施例、設計上的可任擇方式以及使用本發 10明之具體實施例係為顯而易見的。就其本身而論,本發明 並不意欲限定在特定的說明性具體實施例、可任擇方式以 及上述用途,而僅藉由之後提出的申請專利範圍加以限定。 【圖式簡單說明3 第1A-1C圖係為一調和式接觸光罩電鍍製程於不同階 15段的概略側視圖,同時第1D-1G圖係為使用一不同型式的調 和式接觸光罩的一調和式接觸光罩電鍍製程的不同階段的 # 概略側視圖。 第2A-2F圖係為用以構成_特定結構之電化學製程於 不同階段的概略側視圖,該結構中選擇性地沉積一犧牲材 20料同時覆蓋式沉積一結構材料。 第3A-3C圖係為不同示範性子總成的概略側視圖,其可 用以手動地執行第2八_邛圖中所示之電化學製造方法。 第4A-4I圖係概略地圖示使用黏著光罩電鍍所構成的 -結構之第_層,其中—第二材料之覆蓋式沉積將介於第 65 200534519 一材料之沉積位置與第一材料本身之間的開口覆蓋。 第5圖係為在一暫時基板上構成複數之探針的至少一 部分並接著將其轉移至一永久基板,所需之本發明的一觀 點之一第一廣義具體實施例的一製程之一方塊圖。 5 第6圖係為該第一廣義具體實施例的一第一變化形式 的一製程之一方塊圖,其中該等探針係以一次一個的方式 轉移至永久基板。 第7圖係為該第一廣義具體實施例的一第二變化形式 的一製程之一方塊圖,其中該等探針係以一陣列方式同時 10 地轉移至永久基板。 第8圖係為該第一廣義具體實施例的一第三變化形式 的一製程之一方塊圖,其中該等探針係以一系列分開配置 陣列方式轉移至永久基板。 第9圖係為該第一廣義具體實施例的一第四變化形式 15 的一製程之一方塊圖,其中該等探針首先構成接點以及最 後構成安裝區域,並於之後進行將其轉移至永久基板,接 著將暫時基板去除。 第10圖係為該第一廣義具體實施例的一第五變化形式 的一製程之一方塊圖,其中該等探針首先構成接點以及最 20 後構成安裝區域並於之後將暫時基板去除,接著進行將其 轉移至永久基板。 第11圖係為該第一廣義具體實施例的一第六變化形式 的一製程之一方塊圖,其中該等探針首先構成安裝區域以 及最後構成接點,於之後將暫時基板去除,接著附裝永久 66 200534519 基板。 第12圖係為該第一廣義具體實施例的一第七變化形式 的一製程之一方塊圖,其中該等探針首先構成安裝區域以 及最後構成接點,於之後附裝一第二暫時基板,接著將第 5 —暫時基板去除並於其之位置附裝永久基板。 第13圖係為該第一廣義具體實施例的一第八變化形式 的一製程之一方塊圖,其中該等探針僅在轉移至永久基板 之前部分地構成,並於之後完成探針製作。 第14圖係為該第一廣義具體實施例的一第七變化形式 10 的一製程之一方塊圖,其中該等探針在轉移至永久基板之 前至少部分地自一犧牲材料脫模。 第15圖係為該第一廣義具體實施例的一第九變化形式 的一製程之一方塊圖,其中該等探針在轉移至永久基板之 前並未自至少一犧牲材料脫模,之後將該等探針自至少一 15 犧牲材料脫模。 第16圖係為該第一廣義具體實施例的一第十變化形式 的一製程之一方塊圖,其中該等探針之構成作業包括該等 探針在與永久基板接觸之前,選擇性地在探針之安裝區域 上配置一傳導性黏合材料。 20 第17圖係為該第一廣義具體實施例的一第十一變化形 式的一製程之一方塊圖,其中選擇性地將一傳導性黏合材 料配置在永久基板上的該等位置處,其中完成附裝至探針 並於之後附裝探針及永久基板。 第18圖係為該第一廣義具體實施例的一第十二變化形 67 200534519 式的一製程之一方塊圖,其中該等探針之構成作業包括在 將探針與永久基板接觸之前,選擇性地在探針之安裝區域 上配置一第一傳導性黏合材料,以及其中一第二傳導性黏 合材料係選擇性地配置在永久基板上的該等位置處,其中 5完成附裝至探針並於之後利用第一及第二黏合材料附裝探 針及永久基板。 第19圖係為該第一廣義具體實施例的一第十三變化形 式的一製紅之一方塊圖,其中在轉移之前該犧牲材料之至 • 少一部分並未移除,以及在永久基板與探針結合作業期 10間,將其中一防護材料配置在黏合材料與任一犧牲材料之 間。 第20圖係為該第一廣義具體實施例的_第十三變化形 式的第-延伸部分的_製程之一方塊圖,其包括在結合作 業之後去除犧牲材料及防護材料。 15 帛21圖係為該第-廣義具體實施例的-第十三變化形 綱二延伸部分的一製程之一方塊圖,其包括在結合作 _ 業之後去除犧牲材料但保留護材料。 、第22圖係為該第一廣義具體實施例的—第十四變化形 丨田、製^ ^方塊圖,其中在結合作業之前將探針熱處 2〇理U改良已構成該等探針之該等結構材料層之間的黏合 第23圖係為該第一廣 、 -、義體貝施例的一第十五變化形 式的一製程之一方塊圖,苴 ,、中在、、、口 口作業之後將探針熱處 層之間的黏合 良已構成該等探針之該等結構材料 68 200534519 性0 第24A-24C圖係為一製程之一實例的三階段之概略透 視圖,其中所構成之多重探針陣列係為顛倒 、經切割並接 著士第8圖之方塊圖中所例示般轉移至一永久基板用以構 5 成較大的陣列群組。Sticky so it's not easy &layer); 3) mechanically remove it by polishing or grinding). I., Yiyuan material and then physical vapor phase A crystal layer (for example, steel) 戋 Jiji; ^) ^ Direct physical vapor deposition of the contact material can be further processed without difficulty. Τ. After planarization (picture 321)-a ring of insulating material combined with each contact separates the metal inside the ring from the outer ring; however,-but the first layer is plated to cover this planarized surface, 2 Mushrooming covers the thin insulating ring and reaches the inner metal, quickly: its coating. 15 In a related embodiment, a copper etch barrier material (for example, nickel) is deposited before the contact material is deposited, which is after thin copper and after the contact material that is a tone. In the final demolding operation in the 32X picture, the copper thin layer of the cold cloth contact was not completely carved because it was covered with nickel. Therefore, when a coating is applied in Fig. 32Y, the coating is coated with nickel covering the contacts as 20 uncoated contacts themselves. Utilizing the additional copper etching operation, the copper of the remaining sea contact ’s nickel ’cover (now also coated with electric money) is finally demolded, and the + contact material is exposed. In another specific embodiment, the temporary wafer 604 can be demolded from the probe structure after the probe is transferred / adhered to the space converter 648 (Figure 32R), and the condition is the same after 63 200534519 (32U) Figure). Since the probe is packaged in a sacrificial material, the entire structure (typically hundreds of microns thick) can be self-sufficient and the temporary wafer 604 can be eliminated earlier. Figure 33A-33T is a schematic side view of the different states of the different process. This process is similar to the process of Figure 32A-32T, except that only one sacrificial material 626 is used instead of the two 626 and 616. Figure 33U illustrates the removal of the sacrificial material 626. A coating was applied to the probe in Figure 33V. • Remove the temporary substrate_ and the remaining sacrificial material 10 626 and photoresist 618 in Figure 33W. There are different other specific embodiments of the present invention. The specific embodiments can be based on the combination of the teaching content here and the plural teaching content incorporated herein as a reference. Some embodiments may not use any overlay deposition process, and / or may not use a planarization process. Some specific embodiments may include-a single layer or selectively depositing a plurality of different materials on different layers. Some specific embodiments may use a selective spring process or overlay deposition process on some layers, which is not an electrodeposition process. Some embodiments may use nickel as the structural material, while other embodiments may use different materials. Some embodiments may use copper as a structural material, with or without a material. Some embodiments may remove a sacrificial material, while other embodiments may not remove it. Some embodiments may use a selective masking operation based on a photomask in combination with a blanket deposition operation. -Some specific examples can be constructed on a layer-by-layer substrate (1-γ but cut to base) Ji ', but it is a precise plane stacking construction process that separates the system 64 200534519 process which helps to interweave materials between layers. . These optional construction processes disclose U.S. Patent Application No. 10 / 434,519, filed May 7, 2003, entitled "Electrochemical Manufacturing via Interleaved Layers or Via Selective Etching and Pouring The methods and devices used in the structure (Methods of 5 and Apparatus for Electrochemically Fabricating Structures Via Interlaced Layers or Via Selective Etching and Filling of Voids) "are hereby incorporated by reference in their entirety. In this regard, it is obvious for those who are familiar with the art of 3 'to know the further detailed embodiments of the plural #, the design alternatives, and the specific embodiments using the present invention. As such, the present invention is not intended to be limited to specific illustrative embodiments, alternatives, and uses described above, but is limited only by the scope of patent applications filed thereafter. [Schematic description 3 Figures 1A-1C are schematic side views of a harmonic contact mask electroplating process at 15 stages of different stages, and Figures 1D-1G are schematic views of a different type of harmonic contact mask. # Rough side view of the different stages of a harmonic contact mask plating process. Figures 2A-2F are schematic side views of the electrochemical process used to form a specific structure at different stages. In this structure, a sacrificial material is selectively deposited and a structural material is deposited over it. Figures 3A-3C are schematic side views of different exemplary sub-assemblies, which can be used to manually perform the electrochemical manufacturing method shown in Figures 28A to 28C. Figures 4A-4I are schematic illustrations of the first layer of a structure that is formed using an adhesive mask electroplating, in which the overlay deposition of the second material will be between 65th, 200534519, and the first material itself. Covered between the openings. FIG. 5 is a block of a process of a first generalized embodiment of the present invention, which is required to form at least a part of a plurality of probes on a temporary substrate and then transfer them to a permanent substrate. Illustration. 5 FIG. 6 is a block diagram of a process of a first variation of the first generalized embodiment, in which the probes are transferred to the permanent substrate one at a time. FIG. 7 is a block diagram of a process of a second variation of the first generalized embodiment, in which the probes are transferred to the permanent substrate simultaneously in an array. Fig. 8 is a block diagram of a process of a third variation of the first generalized embodiment, in which the probes are transferred to a permanent substrate in a series of separately arranged arrays. FIG. 9 is a block diagram of a process of a fourth variation 15 of the first generalized embodiment, in which the probes first constitute a contact and finally an installation area, and then they are transferred to The permanent substrate is then removed. FIG. 10 is a block diagram of a process of a fifth variation of the first generalized embodiment, in which the probes first form a contact and the last 20 form a mounting area, and then the temporary substrate is removed, It then proceeds to transfer it to a permanent substrate. FIG. 11 is a block diagram of a process of a sixth variation of the first generalized embodiment, in which the probes first constitute an installation area and finally a contact, and then a temporary substrate is removed, and then attached Install the permanent 66 200534519 substrate. FIG. 12 is a block diagram of a process of a seventh variation of the first generalized embodiment, in which the probes first constitute an installation area and finally a contact, and a second temporary substrate is attached afterwards Then, the 5th-temporary substrate is removed and a permanent substrate is attached at its position. FIG. 13 is a block diagram of a process of an eighth variation of the first generalized embodiment, in which the probes are only partially formed before being transferred to a permanent substrate, and probe fabrication is completed thereafter. FIG. 14 is a block diagram of a process of a seventh variation 10 of the first generalized embodiment, in which the probes are at least partially demolded from a sacrificial material before being transferred to a permanent substrate. FIG. 15 is a block diagram of a process of a ninth variation of the first generalized embodiment, in which the probes are not demolded from at least one sacrificial material before being transferred to a permanent substrate, and then the Wait until the probe is demolded from at least one 15 sacrificial material. FIG. 16 is a block diagram of a process of a tenth variation of the first generalized embodiment, wherein the constitution of the probes includes that the probes are selectively A conductive adhesive is disposed on the mounting area of the probe. 20 FIG. 17 is a block diagram of a process in an eleventh variation of the first generalized embodiment, in which a conductive adhesive material is selectively arranged at the positions on the permanent substrate, where Finish attaching to the probe and attach the probe and permanent substrate afterwards. FIG. 18 is a block diagram of a process of a twelfth variation 67 200534519 formula of the first generalized embodiment, wherein the formation of the probes includes selecting the probes before contacting the permanent substrate. A first conductive adhesive material is disposed on the mounting area of the probe, and one of the second conductive adhesive materials is selectively disposed at the positions on the permanent substrate, of which 5 is attached to the probe. Then, the first and second adhesive materials are used to attach the probe and the permanent substrate. Fig. 19 is a block diagram of a system of red one of a thirteenth variation of the first generalized embodiment, in which at least a portion of the sacrificial material has not been removed before the transfer, and the permanent substrate and the During the probe bonding operation period, one of the protective materials is arranged between the adhesive material and any sacrificial material. FIG. 20 is a block diagram of a process of the first extended embodiment of the thirteenth modified form of the thirteenth modified embodiment, which includes removing the sacrificial material and the protective material after the cooperation. 15 帛 21 is a block diagram of one process of an extension of the thirteenth modified embodiment of the thirteenth broad embodiment, which includes removing the sacrificial material but retaining the protective material after the cooperation. Fig. 22 is a block diagram of the fourteenth modified embodiment of the first generalized embodiment, a block diagram of the fourteenth modification, in which the probe is thermally treated for 20 minutes before the combination operation has been completed to form such probes. The bonding between the structural material layers is shown in FIG. 23, which is a block diagram of a process of a fifteenth variation of the first wide,-, and prosthetic shell example. After the mouth work, the adhesion between the thermal treatment layers of the probes has constituted the structural materials of the probes. The multi-probe array formed therein is reversed, cut and then transferred to a permanent substrate as illustrated in the block diagram of FIG. 8 to form a larger array group.
第25A-25J圖係為用於在一暫時基板上構成一多層式 -兀件抓針陣列的-製裎之—實例的不同狀態的概略側視 ® ’其中接著將已構成結構轉移並與-永久基板結合,該 基板係由犧牲材料所構成並且其中該製程包括在 第9及15 圖之方塊圖中所例示之該等元件。 第26A-26E圖係為用於在一暫時基板上構成多重、多 層、多元件式探針陣列的_製程之—實例的不同狀 態的概 略側視圖’其中接著將已構成結構轉移並與一永久基板結 合,該探針元件之接點係模塑於一圖案化基板中,並在脫 核作業之月但在轉移及結合作業之後進行擴散黏合作業, 其中該製程包括在第9、15及23圖之方塊圖中所例示之該等 元件。 第27A-27C圖係為在第26A_26E圖之探針上構成增大 叙針接點的一製程之不同狀態的概略側視圖。 第28A_28I圖係為用於在一暫時基板上構成多層、多元 件式探針陣列的—製裎之-實例的不同狀態的概略側視 圖,其接著將已構成結構轉移並與一永久基板結合,該探 針元件之接點係模塑於一與結構材料不同的I點材料之一 圖案化基板中,並在轉移作業之前針對高產量可能性分析 69 200534519 以及之後針對使用或不使用而選定一個別探針陣列,以及 其中該製程包括在第9、15及23圖之方塊圖中所例示之該等 元件。 第29A-29L圖係為用於在一暫時基板上構成多層、多元 5件式探針陣列的一製程之一實例的不同狀態的概略側視 圖,其接著將已構成結構轉移並與一永久基板結合,其中 探針接點係經由-由犧牲材料所構成之一模具製作而成, 其中探針兀件係藉由一可熔化材料與該暫時基板分離,以 及其中該製程包括在第9、15及22圖之方塊圖中所例示之該 10 等元件。 第30A-30H圖係為用於在一暫時基板上構成多層、多 兀件式探針陣列的-製程之一實例的不同狀態的概略側視 圖,其係與第29A-29L圖中戶斤示相似,不同之處在於第一金 屬係由一介電材料所取代。 15 f 31A_31W圖係為用於在-暫時基板上構成多層、多 元件式探針陣列的-製程之另—實例的不同狀 態的概略側 視圖。 第32A-32Z圖係為一示範製程的不同狀態的概略側視 圖,其係與第31A-31W圖之製程相似但附加地包含塗佈探 2〇 針作業。 第33A-33T圖繪示出與第32A_32T圖相似之一示範製 权的不同狀悲的數個概略側視圖,除了其僅利用單一犧牲 材料626來取代二個犧牲材料626與616,而第33U_33W圖繪 示出該製程的其他狀態。 70 25 200534519 【主要元件符號說明】 2…第一材料/輔助結構 56···精度Y平台 4…第四材料/第二沉積材料 58…槽Figures 25A-25J are schematic side views of the different states of an example used to construct a multi-layer, element-needle array of needles on a temporary substrate-'where the structure is then transferred and compared with -Permanent substrate bonding, the substrate is composed of a sacrificial material and wherein the process includes the components illustrated in the block diagrams of Figures 9 and 15. Figures 26A-26E are schematic side views of different states of an example of a process for forming a multi-layer, multi-layer, and multi-element probe array on a temporary substrate. 'The structure is then transferred and combined with a permanent Substrate bonding, the contacts of the probe element are molded in a patterned substrate, and the diffusion bonding process is carried out in the month of denuclearization operation but after the transfer and bonding operation, which process includes the 9th, 15th and 23rd These elements are illustrated in the block diagram of the figure. Figures 27A-27C are schematic side views of different states of a process of increasing the needle contact on the probe of Figures 26A-26E. Figure 28A_28I is a schematic side view of the different states of the "making system" example for forming a multilayer, multi-element probe array on a temporary substrate, which then transfers the constructed structure and combines it with a permanent substrate, The contacts of the probe element are molded in a patterned substrate that is one of the I-point materials different from the structural material, and a high-yield possibility analysis is performed before the transfer operation. 69 200534519 and then selected for use or not. Individual probe arrays, and the processes in which the elements are illustrated in the block diagrams of Figures 9, 15 and 23. Figures 29A-29L are schematic side views of different states of one example of a process for forming a multi-layer, multi-element five-piece probe array on a temporary substrate, which then transfers the constructed structure to a permanent substrate Combination, wherein the probe contact is made by a mold made of a sacrificial material, wherein the probe element is separated from the temporary substrate by a meltable material, and wherein the process is included in the 9th, 15th And the 10th class element is illustrated in the block diagram of FIG. 22. 30A-30H are schematic side views of different states of an example of a process for forming a multi-layer, multi-piece probe array on a temporary substrate, and are shown in the same manner as the household diagrams in FIGS. 29A-29L. Similarly, the difference is that the first metal is replaced by a dielectric material. 15 f 31A_31W is a schematic side view of a different state of an example of a manufacturing process for forming a multilayer, multi-element probe array on a temporary substrate. Figures 32A-32Z are schematic side views of different states of an exemplary process, which are similar to the processes of Figures 31A-31W but additionally include a coating probe operation. Figures 33A-33T show several schematic side views of different examples of exemplary powers similar to Figure 32A_32T, except that it uses only a single sacrificial material 626 to replace the two sacrificial materials 626 and 616, and the 33U_33W The drawing shows other states of the process. 70 25 200534519 [Description of main component symbols] 2 ... First material / auxiliary structure 56 ... Precision Y platform 4 ... Fourth material / Second deposition material 58 ... Slot
6…基板 8,8’···調和式接觸光罩 10…絕緣體 10’···圖案化調和材料 12,12’…陽極 14…電鍍溶液 16…開口 /電解液 18…電源 20…輔助結構 22…材料 22’···沉積物 26a,26b···孔口 32…電化學製造系統 34、36、38、40…子系統 40…平面化子系統 42…線性滑座 44…致動器 46…指示器 48…托架 52…重疊板 54…精度X平台 62…陽極 64…電解液槽 66…電鍍溶液 68…腳件 72…框架 74…框架 82…基板 84…光阻劑 86…光阻劑之表面 88…基板之表面 92A-92C···開口 或孔口 94…第一金屬 96…第二金屬 98···3維結構 300···晶粒/探針陣列 302…探針 304…黏合材料 306···暫時基板 308···犧牲材料 310···永久基板 350…基板 71 200534519 352…基板/犧牲材料 354···第一層 356···第二層 358···結構材料 360···第三層 362…遮光材料 364···開口 366···黏合材料 370…基板 380…永久基板層合物 382…永久基板 384…黏合層材料 386···種晶層材料 388···焊墊材料 392,394…探針元件 402…封裝 404···探針陣列 4〇4a,404b,404c…探針陣列 404-1〜404-7…探針 406…永久基板 408-1〜408-7…焊墊 408’…焊墊 408-1〜408-7…焊墊 412-1 〜412-7···電導線 414-1〜414-7…接觸墊 422…暫時基板 424…探針接點 426···犧牲材料 432…探針接點材料 434···探針陣列封裝 436-1 〜436-7···接點 452…暫時基板 454···空隙 456···遮光材料 458…開口 462…探針接點材料 464…犧牲材料 466…結構材料 468···焊墊材料 472···第一層 474…未脫模探針陣列 476…永久基板 502,502’…基板 504···種晶層 506···第一金屬 508…犧牲材料 509···單晶膠 512···光阻劑/電鍍中止材料 72 2005345196 ... substrate 8, 8 '... Harmonic contact mask 10 ... Insulator 10' ... Patterned harmonic material 12, 12 '... Anode 14 ... Plating solution 16 ... Opening / electrolyte 18 ... Power source 20 ... Auxiliary structure 22 ... material 22 '... deposits 26a, 26b ... aperture 32 ... electrochemical manufacturing system 34, 36, 38, 40 ... subsystem 40 ... planarization subsystem 42 ... linear slider 44 ... actuator 46 ... indicator 48 ... bracket 52 ... overlay plate 54 ... accuracy X stage 62 ... anode 64 ... electrolyte tank 66 ... plating solution 68 ... foot 72 ... frame 74 ... frame 82 ... substrate 84 ... photoresist 86 ... light Resist surface 88 ... Surface 92A-92C of the substrate ... Opening or aperture 94 ... First metal 96 ... Second metal 98 ... 3-dimensional structure 300 ... Die / probe array 302 ... Probe 304 ... Adhesive material 306 ... Temporary substrate 308 ... Sacrificial material 310 ... Permanent substrate 350 ... Substrate 71 200534519 352 ... Substrate / Sacrificial material 354 ... First layer 356 ... Second layer 358 ... · Structure material 360 ··· Third layer 362… Shading material 364 ·· Opening 366 ·· Adhesive material 370… Substrate 380… Permanent base Laminate 382 ... Permanent substrate 384 ... Adhesive layer material 386 ... Seed layer material 388 ... Pad material 392, 394 ... Probe element 402 ... Package 404 ... Probe array 404a, 404b, 404c ... Probe array 404-1 to 404-7 ... Probe 406 ... Permanent substrate 408-1 to 408-7 ... Pad 408 '... Pad 408-1 to 408-7 ... Pad 412-1 to 412-7 · ·· Electric wires 414-1 to 414-7 ... Contact pads 422 ... Temporary substrates 424 ... Probe contacts 426 ... Sacrificial materials 432 ... Probe contact materials 434 ... Probe array packages 436-1 to 436 -7 ... Contact 452 ... Temporary substrate 454 ... Gap 456 ... Light-shielding material 458 ... Opening 462 ... Probe contact material 464 ... Sacrificial material 466 ... Structural material 468. · First layer 474 ... Unreleased probe array 476 ... Permanent substrate 502, 502 '... Substrate 504 ... Seed layer 506 ... First metal 508 ... Sacrificial material 509 ... Single crystal glue 512 ... Light Resistor / Plating stop material 72 200534519
514···種晶層材料 516···結構材料 518···接點材料 520···研磨盤 522…黏合材料 523…結構材料 524···光阻劑 526…晶粒 532…基板/焊墊材料 534···第二焊墊材料 538···空隙/探針封裝 552…暫時基板 554…介電材料 556···種晶層材料 557…犧牲材料 559···圖案化光阻劑材料 562…槽 564···沸水 572(a)-572(c)…探針元件 574···永久基板 576,578…黏合材料 580…底膠材料 604…暫時晶圓 606…黏合層 608···種晶層 614···未電鍍端點偵測墊 616···犧牲材料 618···光阻劑 622···銅 624…接點塗層材料 626…輔助背襯接點材料 628…結構材料之多重層 632…探針基材 634…厚光阻劑 636…焊料 638···防護塗層 640···芒刺狀部分 642…凸塊 644···液態助焊劑或助焊膏 646···晶粒 648···基板/空間轉換器 652…底膠材料 654…脫模層 656···塗佈/塗層 658···接點 662…塗佈 664…探針 73514 ... Seed layer material 516 ... Structural material 518 ... Contact material 520 ... Grinding disc 522 ... Adhesive material 523 ... Structural material 524 ... Photoresist 526 ... Grain 532 ... Substrate / Pad material 534 ... Second pad material 538 ... Gap / probe package 552 ... Temporary substrate 554 ... Dielectric material 556 ... Seed layer material 557 ... Sacrificial material 559 ... Agent material 562 ... Slot 564 ... Boiling water 572 (a) -572 (c) ... Probe element 574 ... Permanent substrate 576,578 ... Adhesive material 580 ... Primer material 604 ... Temporary wafer 606 ... Adhesive layer 608 ... Seed layer 614 ... Unplated endpoint detection pad 616 ... Sacrificial material 618 ... Photoresist 622 ... Copper 624 ... Contact coating material 626 ... Auxiliary backing contact material 628 ... Multiple layers of structural material 632 ... probe substrate 634 ... thick photoresist 636 ... solder 638 ... protective coating 640 ... burr-shaped portion 642 ... bump 644 ... liquid flux or solder paste 646 ... Grain 648 ... Substrate / space converter 652 ... Primer material 654 ... Release layer 656 ... Coating / coating 658 ... Contact 662 ... Coating 664 ... Probe 73
Claims (1)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53393303P | 2003-12-31 | 2003-12-31 | |
US53394703P | 2003-12-31 | 2003-12-31 | |
US53686504P | 2004-01-15 | 2004-01-15 | |
US54051104P | 2004-01-29 | 2004-01-29 | |
US10/772,943 US20050104609A1 (en) | 2003-02-04 | 2004-02-04 | Microprobe tips and methods for making |
US10/949,738 US20060006888A1 (en) | 2003-02-04 | 2004-09-24 | Electrochemically fabricated microprobes |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200534519A true TW200534519A (en) | 2005-10-16 |
Family
ID=34754038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93141482A TW200534519A (en) | 2003-12-31 | 2004-12-30 | Probe arrays and method for making |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200534519A (en) |
WO (1) | WO2005065437A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI383151B (en) * | 2009-04-02 | 2013-01-21 | Cantilever probe card for image sensing wafer testing | |
TWI454709B (en) * | 2012-09-07 | 2014-10-01 | Mpi Corp | The method of leveling the probe card structure |
TWI720576B (en) * | 2018-08-24 | 2021-03-01 | 韓商Sda有限公司 | Manufacturing method of mems probe for inspecting semiconductor by using laser |
TWI757544B (en) * | 2018-01-25 | 2022-03-11 | 韓商韓華精密機械股份有限公司 | Method for checking the coated state of flux onto flip chip |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200921109A (en) * | 2007-11-09 | 2009-05-16 | Univ Nat Chiao Tung | Assembly structure of 3D probe array |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5989994A (en) * | 1998-12-29 | 1999-11-23 | Advantest Corp. | Method for producing contact structures |
US6359454B1 (en) * | 1999-08-03 | 2002-03-19 | Advantest Corp. | Pick and place mechanism for contactor |
US6586955B2 (en) * | 2000-03-13 | 2003-07-01 | Tessera, Inc. | Methods and structures for electronic probing arrays |
-
2004
- 2004-12-30 TW TW93141482A patent/TW200534519A/en unknown
-
2005
- 2005-01-03 WO PCT/US2005/000087 patent/WO2005065437A2/en active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI383151B (en) * | 2009-04-02 | 2013-01-21 | Cantilever probe card for image sensing wafer testing | |
TWI454709B (en) * | 2012-09-07 | 2014-10-01 | Mpi Corp | The method of leveling the probe card structure |
TWI757544B (en) * | 2018-01-25 | 2022-03-11 | 韓商韓華精密機械股份有限公司 | Method for checking the coated state of flux onto flip chip |
TWI720576B (en) * | 2018-08-24 | 2021-03-01 | 韓商Sda有限公司 | Manufacturing method of mems probe for inspecting semiconductor by using laser |
Also Published As
Publication number | Publication date |
---|---|
WO2005065437A2 (en) | 2005-07-21 |
WO2005065437A3 (en) | 2005-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7878385B2 (en) | Probe arrays and method for making | |
US7273812B2 (en) | Microprobe tips and methods for making | |
US7412767B2 (en) | Microprobe tips and methods for making | |
US20100155253A1 (en) | Microprobe Tips and Methods for Making | |
US7640651B2 (en) | Fabrication process for co-fabricating multilayer probe array and a space transformer | |
US20080105355A1 (en) | Probe Arrays and Method for Making | |
TW584950B (en) | Chip packaging structure and process thereof | |
US20080108221A1 (en) | Microprobe Tips and Methods for Making | |
US7363705B2 (en) | Method of making a contact | |
US20050067292A1 (en) | Electrochemically fabricated structures having dielectric or active bases and methods of and apparatus for producing such structures | |
US20040020782A1 (en) | Electrochemically fabricated hermetically sealed microstructures and methods of and apparatus for producing such structures | |
US20040004002A1 (en) | Electrochemically fabricated structures having dielectric or active bases and methods of and apparatus for producing such structures | |
US20090197371A1 (en) | Integrated Circuit Packaging Using Electrochemically Fabricated Structures | |
Fischer et al. | Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires | |
US7241689B2 (en) | Microprobe tips and methods for making | |
US20060053625A1 (en) | Microprobe tips and methods for making | |
US20050142739A1 (en) | Probe arrays and method for making | |
US20070221505A1 (en) | Method of and Apparatus for Forming Three-Dimensional Structures Integral With Semiconductor Based Circuitry | |
US20080105558A1 (en) | Electrochemically Fabricated Hermetically Sealed Microstructures and Methods of and Apparatus for Producing Such Structures | |
TW200534519A (en) | Probe arrays and method for making | |
US20140263582A1 (en) | Low cost interposer and method of fabrication | |
Lin et al. | High density and through wafer copper interconnections and solder bumps for MEMS wafer-level packaging | |
Zhang et al. | Design and fabrication of a silicon interposer with TSVs in cavities for three-dimensional IC packaging | |
US8623450B2 (en) | Method for producing a flexible circuit configuration | |
US20150108002A1 (en) | Microprobe Tips and Methods for Making |