TW200533765A - Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same - Google Patents

Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same Download PDF

Info

Publication number
TW200533765A
TW200533765A TW93140008A TW93140008A TW200533765A TW 200533765 A TW200533765 A TW 200533765A TW 93140008 A TW93140008 A TW 93140008A TW 93140008 A TW93140008 A TW 93140008A TW 200533765 A TW200533765 A TW 200533765A
Authority
TW
Taiwan
Prior art keywords
steel sheet
less
item
patent application
scope
Prior art date
Application number
TW93140008A
Other languages
Chinese (zh)
Other versions
TWI361223B (en
Inventor
Jeong-Bong Yoon
Won-Ho Son
Ki-Bong Kang
Noi-Ha Cho
Original Assignee
Posco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020030095395A external-priority patent/KR101104981B1/en
Priority claimed from KR1020030095393A external-priority patent/KR101105007B1/en
Priority claimed from KR1020030095394A external-priority patent/KR101105132B1/en
Priority claimed from KR1020030099351A external-priority patent/KR101105025B1/en
Priority claimed from KR1020030099350A external-priority patent/KR101105098B1/en
Priority claimed from KR1020040071395A external-priority patent/KR101115709B1/en
Priority claimed from KR1020040071705A external-priority patent/KR101115763B1/en
Priority claimed from KR1020040084297A external-priority patent/KR101115842B1/en
Application filed by Posco filed Critical Posco
Publication of TW200533765A publication Critical patent/TW200533765A/en
Application granted granted Critical
Publication of TWI361223B publication Critical patent/TWI361223B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A bake-hardenable cold rolled steel sheet, and a method of manufacturing the same, designed to have bake hardenability and excellent formability suitable for automobile bodies, and the like. The steel sheet comprises 0.003~0.005% C, 0.003~0.03% S, 0.01~0.1% Al, 0.02% or less N, 0.2% or less P, 0.03~0.2% Mn and/or 0.005~0.2% Cu, and the balance of Fe and other unavoidable impurities in terms of weight%. When it comprises one of Mn and Cu, the composition of Mn, Cu, and S satisfies one of relationships: 0.58*Mn/S≤10 and 1≤0.5*Cu/S≤10. When it comprises both Mn and Cu, the composition satisfies the relationships: Mn+Cu≤0.3 and 2≤0.5*(Mn+Cu)/S≤20. MnS, CuS, and (Mn, Cu)S precipitates have an average size of 0.2 um or less. The steel sheets allow the content of solid solution to be controlled by fine MnS, CuS, (Mn, Cu)S precipitates, providing improved bake hardenability, formability, yield strength, and yield strength-ductility balance.

Description

200533765 九、發明說明: 【發明所屬之技術領域】 技術領域 本發明係有關於用於汽車車體等之冷軋鋼板。更特別 5地’本發明係有關於藉由以細微沈殿物控制結晶顆粒中之 固溶體碳含量而改良可供烤硬化性及成形性之可供烤硬化 之冷軋鋼板,及其製造方法。200533765 IX. Description of the invention: [Technical field to which the invention belongs] TECHNICAL FIELD The present invention relates to cold-rolled steel plates used in automobile bodies and the like. More specifically, the present invention relates to a cold-rolled steel sheet that can be roast-hardened to improve the hardenability and formability by controlling the solid solution carbon content in the crystalline particles with a fine sinker, and a method for manufacturing the same. .

【先前鮮;J 为景技術 10 對於用於汽車車體外板之材料,烘烤硬化之冷軋鋼板 一般被使用以改良耐衝擊性。烘烤硬化之冷軋鋼板經由加 壓成形具有優異延展性,及於加壓成形後經由烤漆或塗覆 處理具有增加之屈服強度。即,碳或氮係以空隙元素存在 於鋼之固溶體内且修整於加壓成形時產生之錯位,因此, 15烘烤硬化之冷軋鋼板之屈服點被增加。 烘烤硬化之冷軋鋼板包含淨鋁鋼(其係經批式退火之 材料),及極低碳氮鋼(IF鋼)。 於淨紹鋼(aluminum-killed steel)之情況,其係經批式退 火之材料,小量之固溶體碳留於鋼内,且確保耐老化,同時 20於烘烤處理後提供10〜20 MPa等級之可烤烤硬化性。但是, 對於此等批次退火之材料,具有屈服強度增加較低之缺 點,即使於烘烤處理後,及較低生產力。 於極低碳氮鋼之情況,當鋼内之固溶體碳或氮藉由添 加鈦或鈮至鋼而完全沈澱時,鋼之成形性被促進。烘烤硬 200533765 化之極低碳氮鋼係藉由賦予極低碳氮鋼可供烤硬化性而製 造。對於經烘烤硬化之極低碳氮鋼,可輯硬化性可藉由 經控制鈦或鈮之添加量及碳之添加量使適當量之碳留於鋼 内而確保。但,於烘烤硬化之極低碳氮鋼之情況,為使適 5當量之碳留於鋼内之固溶體,需使會與鈦或鈮反應且產生 其沈澱物之硫及氮之添加量控制於極窄範圍内,控制碳、 鈦或鈮之添加量。因此,難以確保高品質之產物,且製造 成本增加。 L 明内3 10 揭露内容 技術問題 因此,本發明係基於上述問題而為之,且本發明之目 的係提供可烘烤硬化之冷軋鋼板,其未添加Ti及Nb而由於 較高之塑性各向異性指數及較低之面内各向異性指數而 15 改良可烘烤硬化性及成形性,及其製造方法。 技術解決方式 依據本發明之一方面,上述及其它之目的可藉由提供 一種可烘烤硬化之冷軋鋼板而完成,其包含:0.003〜0.005 %之C; 0.003 〜〇.〇3 %之S; 0.01 〜〇·1 %之A1; 0.02 %或更 20 少之Ν; 〇·2 %或更少之ρ; 〇·〇3〜0.2。/。之Μη及0.005〜0.2 %之Cu之至少一者;且餘量之Fe及其它不可避免之雜質, 其係重量。/。計,其中,當鋼板包含Μη及Cu之一時,,Μη、 Cu及S之組成物滿足下列關係之一 :0.58*Mn/S^10及1$ 〇.5*Cu/S$l〇(以重量計),且當鋼板包含Μη及Cii二者時, 200533765 Μη、Cu及S之組成物滿足關係式·· Mn+Cu $ 〇·3及2 $ 〇.5*(Mn+Cu)/S$2〇(以重量計),且其中,MnS、CuS及(Mn, Cu)S之沈澱物具有〇·2ι1ηι或更少之平均尺寸。 本發明之冷乾鋼板可依選自Μη及Cu所組成族群之添 5加凡素分類成三種。即,(1)僅添加Μη之鋼(Cii被排除,其 亦稱為MnS沈叙之鋼”),(2)僅添加cu之鋼(Μη被排除,其 亦稱為“CuS沈澱之鋼,,),及添加Μη及Cu之鋼(其亦稱為 MnCu沈殿之鋼”),其等將於下詳細說明。 (1) MnS沈澱之鋼包含:0 003〜0.005 %之C ; 0.005〜 10 〇·03 %之s ; 〇·〇1 〜〇·1 %之A ; 0.02 %或更少之N ; 0.2 %或 更少之P ; 0.05〜0.2 %之Μη ;及餘量之Fe及其它不可避免 之雜質,其係以重量%計,其中,Μη及S之組成物滿足關 係式:0.58*Mn/SS 10(以重量計),且其中MnS之沈殿物具 有〇·2 um或更少之尺寸。製造MnS沈澱之鋼之方法包含步 15 驟係:於Ar3之轉變溫度或更高以精軋術熱軋鋼板提供經 熱乾之鋼板,於使鋼板再次加熱至1,1〇〇 °C或更多之溫度 後’鋼板包含:0.003〜0.005 %之C; 0.005〜0.03 %之S; 0·01〜〇·1 %之A1; 0.02 %或更少之N; 0.2 %或更少之p; 〇·〇5〜〇·2 %之Μη ;及餘量之Fe及其它不可避免之雜質, 20 其係以重量%計,其中,Μη及S之組成物滿足關係式: 〇·58*Μη/ SS10,其係以重量計;以200°C/分鐘或更多之 冷部速率冷卻熱軋鋼板;於700°C或更少之溫度捲繞冷卻 鋼板;將鋼板冷軋;及使冷軋鋼板連續退火。 (2) CuS沈澱之鋼包含:0.003〜0·005 %之C; 0.003〜 200533765 0.025 %之S; 0.01 ~ 0.08 %之Al; 0.02 %或更少之n; 0.2 % 或更少之P; 0.01〜0.2 %之Cu;及餘量之Fe及其它不可避免 之雜質,其係以重量%計,其中,Cu及S之組成物滿足關[Previously Fresh; J is King Technology 10] For materials used for automotive exterior panels, bake-hardened cold-rolled steel sheets are generally used to improve impact resistance. Bake-hardened cold-rolled steel sheets have excellent ductility through press forming, and have increased yield strength after baking or coating after press forming. That is, carbon or nitrogen is present as a void element in the solid solution of the steel and is trimmed for dislocations generated during press forming. Therefore, the yield point of the 15-bake-hardened cold-rolled steel sheet is increased. Baking hardened cold-rolled steel plates include clean aluminum steel (which is a batch-annealed material), and very low carbon nitrogen steel (IF steel). In the case of aluminum-killed steel, it is a batch-annealed material. A small amount of solid solution carbon remains in the steel and ensures aging resistance. At the same time, 20 to 10 is provided after baking treatment. MPa grade can be roasted and hardened. However, for these batch-annealed materials, there is a disadvantage of a lower increase in yield strength, even after baking, and lower productivity. In the case of extremely low carbon nitrogen steel, when solid solution carbon or nitrogen in the steel is completely precipitated by adding titanium or niobium to the steel, the formability of the steel is promoted. Baking hard 200533765 The extremely low carbon nitrogen steel is made by making the extremely low carbon nitrogen steel available for baking hardening. For bake-hardened extremely low carbon nitrogen steel, the hardenability can be ensured by controlling the amount of titanium or niobium and the amount of carbon to keep an appropriate amount of carbon in the steel. However, in the case of baking hardened very low carbon nitrogen steel, in order to keep 5 equivalents of carbon in the solid solution in the steel, it is necessary to add sulfur and nitrogen that will react with titanium or niobium and produce its precipitate. Control the amount of carbon, titanium or niobium in a very narrow range. Therefore, it is difficult to secure a high-quality product, and the manufacturing cost increases. L Ming Nai 3 10 Disclosure of content and technical problems Therefore, the present invention is based on the above problems, and the object of the present invention is to provide a bake-hardenable cold-rolled steel sheet, which does not add Ti and Nb and has high plasticity. Anisotropy index and lower in-plane anisotropy index, while improving baking hardenability and formability, and its manufacturing method. Technical Solution According to one aspect of the present invention, the above and other objects can be accomplished by providing a bake-hardenable cold-rolled steel sheet, which includes: 0.003 to 0.005% C; 0.003 to 0.03% S 0.01 ~ 〇 · 1% of A1; 0.02% or less of N; 〇 · 2% or less of ρ; 〇 · 〇3 ~ 0.2. /. At least one of Mn and 0.005 to 0.2% Cu; and the balance of Fe and other unavoidable impurities, which are weight. /. When the steel sheet contains one of Mn and Cu, the composition of Mn, Cu, and S satisfies one of the following relationships: 0.58 * Mn / S ^ 10 and 1 $ 0.5 * Cu / S $ 10 (in By weight), and when the steel sheet contains both Mn and Cii, the composition of 200533765 Mn, Cu, and S satisfies the relational expressions: Mn + Cu $ 〇3 and 2 $ 〇.5 * (Mn + Cu) / S $ 20 (by weight), and wherein the precipitates of MnS, CuS, and (Mn, Cu) S have an average size of 0.21 m or less. The cold-dried steel sheet according to the present invention can be classified into three types according to Tim 5 plus vanillin selected from the group consisting of Mn and Cu. That is, (1) a steel to which only Mη is added (Cii is excluded, which is also referred to as MnS sinking steel "), (2) a steel to which only cu is added (Mη is excluded, which is also referred to as" CuS precipitated steel, " , And steels with added Mη and Cu (which are also called MnCu Shendian steels), which will be described in detail below. (1) MnS precipitated steels include: 0 003 ~ 0.005% C; 0.005 ~ 10 〇 · 03% of s; 0.001 to 0.1% of A; 0.02% or less of N; 0.2% or less of P; 0.05 to 0.2% of Mn; and the balance of Fe and other inevitable Impurities are based on weight%, where the composition of Mη and S satisfies the relationship: 0.58 * Mn / SS 10 (by weight), and the Shen Dianwu of MnS has a size of 0.2 μm or less. The method for manufacturing MnS precipitated steel includes step 15: providing a hot-dried steel sheet by finishing rolling at a transition temperature of Ar3 or higher, and heating the steel sheet to 1,100 ° C or more After multiple temperatures, the steel sheet contains: 0.003 to 0.005% C; 0.005 to 0.03% S; 0.01 to 0.1% A1; 0.02% or less N; 0.2% or less p; 〇 〇5 ~ 〇2% of Mn; and The balance of Fe and other unavoidable impurities is 20% by weight. Among them, the composition of Mη and S satisfies the relational formula: 0.58 * Mη / SS10, which is based on weight; at 200 ° C / The hot-rolled steel sheet is cooled at a cold part rate of one minute or more; the cooled steel sheet is wound at 700 ° C or less; the steel sheet is cold-rolled; and the cold-rolled steel sheet is continuously annealed. (2) CuS precipitated steel contains: 0.003 ~ 0.005% C; 0.003 ~ 200533765 0.025% S; 0.01 ~ 0.08% Al; 0.02% or less n; 0.2% or less P; 0.01 ~ 0.2% Cu; and the balance of Fe and other unavoidable impurities are based on wt%, of which the composition of Cu and S meets the

係式:1 $ 0.5*Cu/S $ 10,其係以重量計,且其中,cuS 5 之沈澱物具有〇·1 um或更少之平均尺寸。製造CuS沈激之 鋼之方法包含步驟係:於Ah之轉變溫度或更高以精軋術 熱軋鋼板提供經熱軋之鋼板,此鋼板再次加熱至1,1〇〇。〇 或更高之溫度後,鋼板包含0.003〜0.005 %之C; 0.003〜 0.025 %之S; 0.01 〜〇·〇8 %之A1; 0.02 %或更少之N; 0.2 % 10 或更少之P; 0.01〜〇·2 %之Cu ;及餘量之Fe及其它不可避 免之雜質,其係以重量%計,其中,Cu及S之組成物滿足 關係式:l$〇.5*Cu/SS 10,其係以重量計;以300°C/分鐘 或更多之冷卻速率將熱軋鋼板冷卻;於700°C或更少之溫 度捲繞冷卻之鋼板;使鋼板冷軋;及使冷軋鋼板連續退火。 15 (3)MnCu沈澱之鋼包含:0.003 〜0.005 %之C; 0.003 〜 0.025 %之S; 0.01 〜0·08 %之A1; 〇_〇2 %或更少之N; 0.2 % 或更少之Ρ; 〇·〇3〜〇·2 %之Μη; 0.005〜0_2 %之Cu ;及餘 量之Fe及其它不町避免之雜質,其係以重量%計,其中, Mn、Cu及S之、組成物滿足關係式:Mn+Cu $ 0.3且2 $ 20 〇.5*(Mn+Ci〇/S$2〇,其係以重量計,且其中,MnS、CuS 及(Mn,Cu)S沈溅物具有0·2 um或更少之平均尺寸。製造 MnCu沈澱之鋼之方法包含步驟係:於Ar3之轉變溫度或更 高以精札術熱乳鋼板提供經熱札之鋼板’此鋼板再次加熱 至1,100 °C或更高之溫度後’鋼板包含:〇·⑽3〜〇·⑻5 % 200533765 之C; 0.003 〜0.025 %之S; 0·01 〜〇·〇8 %之Al; 0·02 %或更 少之Ν; 0.2 °/〇或更少之Ρ; 〇·〇3 〜〇·2 %之Μη; 0·005 〜〇·2 〇/〇 之Cu ;及餘量之Fe及其它不可避免之雜質,其係以重量〇/〇 計,其中,Mn、Cu及S滿足關係式:Mn+Cu^O.3及2$ 5 0.5*(Mn+Cu)/SS20,其係以重量計;以300°C/分鐘之冷卻 速率冷卻熱冷軋鋼板;於700°C或更少時捲繞冷卻鋼板; 使鋼板冷軋;及使冷軋鋼板連續退火。 本發明之上述可烘烤硬化之冷軋鋼板可被應用於具 240 MPa等級抗張強度之延展性冷軋鋼板,或具有340 MPa 10 等級或更多之抗張強度之高強度冷軋鋼板。 於240 PMa等級之延展性冷軋鋼板之情況,鋼板包含 0.003 〜0.005 %之C, 0.003 〜0.03 %之S; 0.01 〜0.1 %之A1; 0.004 %或更少之N; 0.015 %或更少之P; 0.03〜0.2 %之Μη 及0·005〜0.2 %之Cu之至少一者;及餘量之Fe及其它不可 15 避免之雜質,其係以重量%計,其中,當鋼板包含Μη及Cu 之一時,Μη、Cu及S之組成物滿足下列關係式之一: 〇.58*Mn/S $ 10及1 $ 0.5*Cu/S S 10,其係以重量計,且當 鋼板包含Μη及Cu二者時,Mn、Cu及S之組成物滿足關係 式:Mn+CuS0.3及2$0.5*(Mn+Cu)/S$20,其係以重量 20計,且其中,MnS、CuS及(Mn,Cu)S之沈澱物具有0.2 um 或更少之平均尺寸。 於340 MPa等級或更多之高強度冷軋鋼板之情況,可 分類成含有P、Si及Cr之至少一者(作為固溶體強化劑)之 鋼’及含有更南含置之N(作為沈澱強化劑)之鋼。即,較 200533765 佳係〇·2 %或更少之P,0.1〜0·8 °/。之Si,及0.2〜1.2。/〇之 Cr之至少一者係包含於延展性冷軋鋼板内。若僅p被添加 至延展性冷軋鋼板,P含量較佳係〇 〇3〜0.2 %之範圍。另 外’高強度特性可藉由使N含量增至0.005〜0.02%及添加 5 0·03〜0·〇6°/〇之P之A1N沈澱物而確保。 為進一步促進冷軋鋼板之成形性,鋼板可進一步包含 0.01 〜0.2 %之Mo。 有利功效 由上述描述内容明顯地,依據本發明,可烘烤硬化之 10 冷軋鋼板能藉由細微之MnS、CuS、(Mn,Cu)S沈澱物控制 結晶顆粒内之固溶體含量,藉此,提供改良之可烘烤硬化 性、成形性、屈服強度,及屈服強度-延展性之平衡。 圖式說明 本發明之上述及其它之目的、特徵及其它優點由下列 15結合附圖之詳細說明會被清楚瞭解,其中: 第la至lc圖係顯示結晶顆粒内之固溶體碳含量及沈 殿物尺寸間之關係之圖示,其中,第la圖顯示MnS沈澱之 鋼之情況,第lb圖顯示CuS沈澱之鋼之情況,且第lc圖顯 示MnCu沈殿之鋼之情況; 20 第2a及2b圖係顯示MnS沈澱物尺寸及冷卻速率間之 關係之圖示,其中,第2a圖顯示〇.58*Mn/S <10之情況,且 第2b圖顯示〇.58*Mn/S >10之情況; 苐3a至3c圖係顯示CuS沈澱物尺寸及冷卻速率間之關 係之圖示,其中,第3a圖顯示0.5*Cu/S = 2.56之情況,第 10 200533765 3b圖顯示〇.5*Cu/S = 8·1之情況,且第3c圖顯示0.5*Cu/S = 28之情況;且Formula: 1 $ 0.5 * Cu / S $ 10, which is based on weight, and wherein the precipitate of cuS 5 has an average size of 0.1 μm or less. The method for manufacturing a CuS-excited steel comprises the steps of: hot rolling a steel sheet to provide a hot-rolled steel sheet by finishing rolling at a transformation temperature of Ah or higher, and the steel sheet is heated again to 1,100. After a temperature of 〇 or higher, the steel sheet contains 0.003 to 0.005% C; 0.003 to 0.025% S; 0.01 to 0.08% A1; 0.02% or less N; 0.2% 10 or less P 0.01 ~ 〇 · 2% of Cu; and the balance of Fe and other unavoidable impurities, which are based on weight%, wherein the composition of Cu and S satisfies the relationship: 1 $ 〇.5 * Cu / SS 10, which is based on weight; cooling hot-rolled steel sheet at a cooling rate of 300 ° C / min or more; coiling the cooled steel sheet at a temperature of 700 ° C or less; cold-rolling the steel sheet; and cold-rolling The steel sheet is continuously annealed. 15 (3) MnCu precipitated steel contains: 0.003 to 0.005% of C; 0.003 to 0.025% of S; 0.01 to 0.08% of A1; 〇_〇2% or less of N; 0.2% or less of 〇; 〇3 ~ 〇 · 2% of Mn; 0.005 ~ 0_2% of Cu; and the balance of Fe and other impurities that are not avoided, which are based on weight%, of which Mn, Cu, and S, The composition satisfies the relationship: Mn + Cu $ 0.3 and 2 $ 200.5. * (Mn + Ci0 / S $ 2〇, which is based on weight, and among which, MnS, CuS, and (Mn, Cu) S are splashed The material has an average size of 0 · 2 um or less. The method of manufacturing MnCu precipitated steel includes the steps of: providing the hot-rolled steel plate at the transformation temperature of Ar3 or higher by hot-rolled steel plate, which is heated again After reaching a temperature of 1,100 ° C or higher, the steel sheet contains: 〇 · ⑽3 ~ 〇 · ⑻5% C 200533765; 0.003 ~ 0.025% S; 0.0001 ~ 〇08% Al; 0 · 02 % Or less N; 0.2 ° / 〇 or less P; 0.03 to 0.2% Mn; 0.005 to 0.22 Cu; and the balance of Fe and others Avoided impurities are based on weight 0 / 〇, where Mn, Cu and S satisfy the relationship: Mn + Cu ^ O .3 and 2 $ 5 0.5 * (Mn + Cu) / SS20 by weight; cooling hot-rolled steel sheet at a cooling rate of 300 ° C / min; coiling cooling steel sheet at 700 ° C or less; Cold rolling a steel sheet; and continuously annealing a cold rolled steel sheet. The above-mentioned bake-hardenable cold rolled steel sheet of the present invention can be applied to a ductile cold rolled steel sheet having a tensile strength of 240 MPa, or a grade of 340 MPa 10 or More high-strength cold-rolled steel sheet with more tensile strength. In the case of ductile cold-rolled steel sheet at 240 PMa level, the steel sheet contains 0.003 to 0.005% C, 0.003 to 0.03% S; 0.01 to 0.1% A1; 0.004 % Or less of N; 0.015% or less of P; 0.03 ~ 0.2% of Mn and at least 0.005 ~ 0.2% of Cu; and the balance of Fe and other inevitable impurities, which are In terms of% by weight, when the steel sheet contains one of Mn and Cu, the composition of Mn, Cu, and S satisfies one of the following relations: 0.58 * Mn / S $ 10 and 1 $ 0.5 * Cu / SS10, It is based on weight, and when the steel plate contains both Mη and Cu, the composition of Mn, Cu, and S satisfies the relationship: Mn + CuS0.3 and 2 $ 0.5 * (Mn + Cu) / S $ 20, which is based on Weight 20 And wherein the precipitates of MnS, CuS and (Mn, Cu) S have an average size of 0.2 um or less. In the case of 340 MPa or more high-strength cold-rolled steel plates, they can be classified into steels containing at least one of P, Si, and Cr (as a solid solution strengthening agent) and N containing more south ( Precipitation strengthening agent). That is, P is 0.2% or less than 200533765, 0.1 to 0.8 ° /. Of Si, and 0.2 ~ 1.2. At least one of Cr is contained in the ductile cold-rolled steel sheet. If only p is added to the ductile cold-rolled steel sheet, the content of P is preferably in the range of from 0.3 to 0.2%. In addition, the 'high-strength property can be ensured by increasing the N content to 0.005 to 0.02% and adding an A1N precipitate of P of 50.03 to 0.06 ° / 0. In order to further promote the formability of the cold-rolled steel sheet, the steel sheet may further include 0.01 to 0.2% Mo. The beneficial effect is obvious from the above description. According to the present invention, the bake-hardenable 10 cold-rolled steel sheet can control the solid solution content in the crystal grains by the fine MnS, CuS, (Mn, Cu) S precipitates. Therefore, it provides improved baking hardenability, formability, yield strength, and yield strength-ductility balance. The above-mentioned and other objects, features and other advantages of the present invention will be clearly understood from the following detailed description in conjunction with the accompanying drawings, in which: Figures la to lc show the solid solution carbon content in the crystalline particles and Shen Dian A graphical representation of the relationship between physical dimensions, where Figure la shows the situation of MnS precipitated steel, Figure lb shows the situation of CuS precipitated steel, and Figure lc shows the situation of MnCu Shen Dian steel; 20 Figures 2a and 2b The graph is a graph showing the relationship between the size of MnS precipitates and the cooling rate, wherein FIG. 2a shows the case of 0.58 * Mn / S < 10, and FIG. 2b shows 0.58 * Mn / S > Case 10; 苐 3a to 3c are diagrams showing the relationship between the size and cooling rate of CuS precipitates, where Fig. 3a shows the case of 0.5 * Cu / S = 2.56, and Fig. 10 200533765 3b shows 0.5 * Cu / S = 8 · 1, and Figure 3c shows the case of 0.5 * Cu / S = 28; and

第4a及4b圖係顯示MnS、CuS及(Mn,Cu)S沈澱物之尺 寸及冷卻速率間之關係之圖示,其中,第4a圖顯示2$ 5 〇.5*(Mn+Cu)/S$20之情況,且第4b圖顯示0.5*(Mn+Cu)/S > 20之情況。 I:實施方式3 最佳模式 本發明之較佳實施例現將詳細描述。但是,需注意本 ίο發明不限於此等實施例。對於本發明鋼板之組成物,“重 量。/〇”於其後將簡單地以“%,,表示。 本發明之發明人經由研究未添加Ti&Nb促進可烘烤硬 化性發現將於下描述之新事實。即,結晶顆粒中之固溶體 碳含量以MnS、CuS或(Mn,Cu)S之細微沈澱物適當控制, 15藉此,增加屈服強度,特別是後烘烤之屈服強度。此等沈 澱物對於藉由沈澱強化造成之屈服強度增加及塑性各向 異性指數及面内各向異性指數皆具有正面功效。 參考第la至lc圖,可瞭解MnS、CuS及(Mn,Cu)S沈澱 物之分佈愈細微,結晶顆粒内之固溶體碳含量之降低愈 20大。此助於留於結晶顆粒内之固溶體碳之相對自由移動。 更有確地,固溶體碳可於結晶顆粒内自由移除,且輕易偶 合至可移動之錯位,藉此,影響室溫時之老化特性。固溶 組石反亦可移至更安定區域,諸如,顆粒邊界或沈殿物附 近,於此等區域分離,且於高溫(例如,於烤漆期間)於其 200533765 匕活化藉此,衫響可供烤硬化性。因此,結晶顆粒内之 固溶體碳含量之降低意指碳存在於更安定之區域,諸如, 顆粒邊界或細微沈殿附近,且影響可烘烤硬化性。 第la至lc圖係顯示結晶顆粒内之固溶體碳及沈澱物 5尺寸間之關係之圖示,丨中,第以圖顯示㈣沈殿之鋼之 情況,第lb圖顯示CuS沈殿之鋼之情況,且第^圖顯示 MnCu沈澱之鋼之情況。沈澱物尺寸愈細微,結晶顆粒内 之固溶體碳含量之降低愈大,且對於在總碳量間未存在於 結晶顆粒内之碳,係有效影響可烘烤硬化性。參考第^至 10化圖,可看出當MnS沈澱物具有約〇·2 um*更少之尺寸時 (第la圖),當CuS沈澱物具有約〇1 _或更少之尺寸時(第 lb圖)’及當]\4nCu沈殿物具有約〇·2 um或更少之尺寸時(第 lc圖,結晶顆粒内之固溶體碳含量降至約汕卯㈤或更少。 因此,為確保對可烘烤硬化性有效之碳含量,重要的 15 是細微地分佈MnS、CuS或MnCu沈殿物,同時使總碳量於 鋼内保持於0.003〜0.005 %之範圍。因此,已研究一種細 微地分佈此等沈殿物之方法,且結果指示此等沈殿物於結 晶顆粒内之細微分佈可藉由控制Mn、Cu及S之含量及於鋼 内之此等元素之組成,及控制熱軋後之冷卻速率而達成。 20 第2a圖係研究於鋼板熱軋後之依據冷卻速率之沈澱 物尺寸後獲得之圖示,此鋼板包含:0.004 %之C; 0.15 % 之Μη; 0.008 %之P; 0.015 %之S; 0.03 %之A1 ;及0.0012 % 之Ν(其中,0.58*Mn/S = 5.8)。參考第2a圖,藉由於Μη及S 之混合滿足關係式·· 0.58*Mn/SS10之條件下控制鋼板之 12 200533765 冷卻速率,MnS沈澱物具有〇.2um或更少之尺寸。 第3a圖係研究鋼板熱軋後依據冷卻速率之沈澱物尺 寸後而獲得之圖示,此鋼材包含:0·004 %之C; 〇.〇1 %之 P; 0.008 %之S; 0.05 %之A1; 0.0014 %之N ;及0.041 %之 5 Cu(其中,0.5*Cu/S = 2.56)。參考第3a圖,藉由於其中Cu 及S之混合滿足關係式:0.5*Cu/SS10之條件下控制鋼板 冷卻速率,CuS沈澱物具有〇·1 um或更少之尺寸。 第4a圖係研究於鋼板冷軋後依據冷卻速率之沈澱物 尺寸後獲得之圖示,鋼材包含:0.004 %之C; 0.13 %之Μη; 10 0.009 %之Ρ; 0.015 %之S; 0.04 %之Α1; 0.0029 %之Ν ;及 0.04 %之Cu(其中,Mn+Cu = 0.17 %且〇.5*(Mn+Cu)/S = 5.67)。參考第4a圖,藉由於Μη、Cu及S之混合滿足關係式: 2 S 0.5*(Mn+Cu)/S S 20之條件下控制鋼板冷卻速率, MnS、CuS、(Mn, Cu)S沈殿物具有〇·2 uni或更少之尺寸。 15 依據本發明之可烘烤硬化之冷軋鋼板具有高屈服強 度,因此,能降低鋼板厚度。因此’依據本發明之冷軋鋼 板具有對其產物降低重量之功效。再者,本發明之冷軋鋼 板之低的面内各向異性使鋼板之加卫處理期間或之後之 敵紋或耳之形成達最小。本發明之冷軋鋼板亦異有由於葬 20由細微顆粒而於顆粒邊界中留有適當碳含量而促進之茅; 粒邊界’藉此,避免於加工處理後藉由顆粒邊界弱化而造 成之脆化破壞。 ,及其製造方法將於 本發明之可烘烤硬化之冷軋鋼板 下詳細描述。 13 200533765 [本發明之冷軋鋼板] 石反(C)· 〇 〇〇3 〜〇.〇〇5 % 雖然結晶顆粒内之固溶體 降低,但因為碳於細微沈㈣之顆 μ纽物而 可烘烤硬純被增加且未損失室溫時之知tr處分離, 或細微沈;,_= 物周圍=里=增顆粒邊界或細微沈殿 10 烤更化[生即,為確保可烘烤硬化性,碳含量超過㈣謂% 及0·0031 /〇或更多。但是,若碳含量超過0·0〇5 %,成形性 會快速降低。因此,碳含量較佳係0.003〜0.005 %之範圍。 硫(S): 0.003 〜〇·〇3 % 少於0.003 %之硫含量不僅導致Mns、CuS及(Mn,Cu) 15 沈殺物量減少,亦產生過度粗之沈澱物,因此,降低鋼板 之可烘烤硬化性。多於〇·〇3°/。之硫含量會導致大量之固溶 體硫,因此,顯著地降低鋼板之延展性及成形性,並增加 熱裂可能性。依據本發明,對於MnS沈澱之鋼,硫含量較 佳係0.005〜0.03 %之範圍,且對於CuS沈澱之鋼,硫含量 20 較佳係0.003〜0.025 %之範圍。對於MnCu沈澱之鋼’硫含 量較佳係0.003〜0.025 %之範圍。 鋁(A1): 0.01 〜0.1 % 鋁係普遍作為去氧化劑之摻合元素。但是’於本發 明,鋁被添加至鋼用於沈澱鋼中之氮,且因而避免成形性 14 200533765 因固溶體氮而降低。少於0.01%之鋁含量會導致固溶體氮 含量增加,因而降低成形性,而多於0.1%之鋁含量會導致 固溶體鋁含量增加,因而降低鋼之延展性。依據本發明, 對於CuS沈澱之鋼及MnCu沈殿之鋼,含量較佳係〇 〜 5 0·〇8 %之範圍。若氮含量增至0.005〜0.02%,高強度之鋼 板可藉由Α1Ν沈殿物之強化作用而獲得。 氮(Ν): 0.02 %或更少 氮係鋼製造方法期間被引入鋼内之不可避免之元 素,且為獲得強化功效,較佳係以不超過〇 之量添加 10至鋼。為獲得延展性之鋼板,氮含量較佳係0004%或更 少。為獲得高強度之鋼板,氮含量較佳係0.005〜〇 〇2 %。 雖然氮含1需為0.005 %或更多以便獲得強化功效,但多 於0.02 %之氮含量導致鋼板成形性惡化。為使用氮提供高 強度之鋼,碟含量較佳係〇·03〜〇·〇6 %。依據本發明,為 15藉由Α1Ν沈澱物確保高強度,Α1及Ν之組合,即, 〇·52*Α1/Ν(其中,Α1及Ν係以重量%表示)較佳係卜5之範 圍。少於1之A1 之組合(0·52*Α1/Ν)會導致由於固溶體 氮而降低成形性,而超過5之Α1&Ν之結合(〇·52*Α1/Ν)導致 可忽略之強化功效。 20 磷(Ρ): 0.2 %或更少 磷係一摻合元素,其會增加固溶體強化功效同時使r-值(塑性-各向異性指數)些微降低,且可確保沈殿物被控制 之鋼之回強度。因此,為藉由控制P含量而確保高強度,P 含置較佳係0·2%或更少。多於0.2%之磷含量會導致鋼板之 15 200533765 延展性降低。當磷被單獨添加至鋼以確保鋼板之高強度 時,P含量較佳係〇·03〜〇·2 %。對於延展性之鋼板,p含 量較佳係0.015%或更少。對於其間藉由使用α1ν沈澱物確 保高強度之鋼板,Ρ含量較佳係0·03〜〇·〇6 %。此係由於雖 5然〇·〇3%或更多之磷含量使目標強度被確保,但超過〇〇6 %之磷含量會降低鋼之延展性及成形性。依據本發明,於 其間鋼板之高強度係藉由添加以及&而確保之情況,ρ含 量可適當地控制於〇.2重量%或更少,以便獲得目標強度。 於此情況,即使Ρ含量係〇·〇15 %或更少,高強度可被確保。 〇 於本發明’猛(Μη)及銅(Cu)之至少一者較佳被添加至 鋼。此等元素與硫⑻混合,且產生MnS、Cu^(Mn,Cu)s 沈殿物。 猛(Μη): 0.03 〜0.2 % 錳係一摻合元素,其係以MnS沈澱物沈澱鋼中之固溶 15體硫,因而避免固溶體硫造成之熱裂。於本發明,Μη係 於對於使S及/或Cu與Μη混合及對於冷卻速率適當之條件 下以細微MnS及/或(Mn,Cu)S沈澱物沈澱。細微沈澱物可 藉由於顆粒邊界或沈澱物周圍,而非結晶顆粒,造成碳分 離而於烤漆處理期間賦予鋼板可烘烤硬化性。為達成此等 20功效,Mn$量需為0·03%或更多。同時,超過0.2%之錳含 ΐ由於較高錳含量而造成粗的沈澱物,因此,使鋼板之可 烘烤硬化性惡化。若Μη單獨添加至鋼(排除Cu),锰含量較 佳係0.05〜0.2 %。 鋼(Cu): 0.005 〜0.2 % 16 200533765 銅係一種摻合元素,其於對於s及/或“11與(:11之混合 及於熱軋處理之捲繞處理前之冷卻速率係適當條件下產 生細微沈澱物。細微沈澱物係藉由造成鋼於顆粒邊界或沈 殿物周圍(而非結晶顆粒)處被分離而於烤漆處理期間賦予 5鋼板可烘烤硬化性。為達成此等功效,Cu含量需為0.005〇/〇 或更多。同時,大於0.2%之銅含量由於較高銅含量而造成 粗的沈澱物,因此,使鋼板之可烘烤硬化性惡化。若cu 單獨添加至鋼(排除Μη),銅含量較佳係0.01〜〇 2 %。 依據本發明,Mn、Cu及S之含量及混合被控制以產生 10細微沈澱物,且此等係依據Μη及/或Cii之添加量而改變。 對於MnS沈澱之鋼,Μη及S之混合較佳係滿止關係 式:0.58*Mn/SS10(其中,Μη及S係以重量%表示)。Μη 與S混合產生MnS沈澱物。MnS沈澱物可依據Μη及S之添加 量改變沈澱態,且因此影響鋼板之可烘烤硬化性、屈服強 15度,及面内各向異性指數。大於10之0.58*Mn/S值產生粗 的MnS沈澱物,造成可烘烤硬化性及面内各向異性指數惡 化0 對於CuS沈殺之鋼,Cu及S之混合較佳係滿足關係 式:l$0.5*Cu/SS10(其中,以及3係以重量%表示)。Cu 2〇 與S混合產生CuS沈澱物,其可依據cu及S之添加量改變沈 澱態,因此,影響可烘烤硬化性、塑性-各向異性指數, 及面内各向異性指數。1或更多之〇·5*Cu/S值能產生有效之 CuS沈澱物,且大於10之〇.5*Cu/S值產生粗的CuS沈澱物, 造成可烘烤硬化性、塑性-各向異性指數,及面内各向異 17 200533765 性指數惡化。為安定地確保具有〇·1 um或更少之CuS沈殿 物,0.5*Cu/S之值較佳係1〜3。 當Μη與Cu—起添加至鋼板時,Μη及Cii之總量較佳係 0.3 °/〇或更少。此係歸因於超過〇·3%之總Μη及Cu含量可能 5 產生粗的沈澱物,因此,減損可烘烤硬化性。 0.5*(Mn+Cu)/S之值(其中,Mn、Cu及S係以重量%表示)較 佳係2〜20。Μη及Cu與S混合產生MnS、CuS及(Mn,Cu)S 沈澱物,其可依據添加之Μη、Cu及S量改變沈澱態,且影 響可烘烤硬化性、塑性-各向異性指數,及面内各向異性 10指數。2或更多之0.5*(Mn+Cu)/S值能產生有效沈殿物,且 超過20之0.5*(Mn+Cu)/S值產生粗的沈澱物,造成可烘烤 硬化性、塑性-各向異性指數,及面内各向異性指數惡化。 依據本發明’以2〜20範圍内之〇.5*(Mn+Cu)/S值,沈殿物 之平均尺寸降至0.2 um或更少。於此情況,所欲地係每單 15位面積為2 X 1〇6或更多之沈澱物(數目/公厘2)分佈於顆粒 内。低於或高於7作為〇.5*(Mn+Cu)/S值時,沈殿物之種類 及數目係顯著改變。特別地,當〇.5*(Mn+Cu)/S值係7或更 少時,許多極細微之MnS及CuS個別沈澱物均一地分佈, 而非(Mn,Cu)S錯合沈殿物。同時,當〇.5*(]y[n+Cu)/S值多 20於7時,無論沈澱物尺寸間之低差異性,分佈於顆粒内之 沈澱物數目減少,因為(Mn,Cu)S錯合沈澱物之量增加。於 本發明,沈澱物數目增加可促進可烘烤硬化性、面内各向 異性指數、耐二級操作脆化等。為此,較佳係每單位面 積為2 X 108或更多之沈;殿物(數目/公厘2)分佈於顆粒及顆 18 200533765 粒邊界。於本發明,即使於〇.5*(Mn+Cu)/S之值相同,較 小添加量之Μη及Cu可降低分佈之沈澱物數目。若Μη及Cu 含ΐ增加’沈殿物變粗,導致分佈之沈殿物數目降低。 依據本發明,MnS、CuS及(Mn,Cu)S沈澱物較佳係具 5 有0·2 um或更少之平均尺寸。MnS、CuS&(Mn,Cu)s沈澱 物可依據Μη及Cu之添加量而具有不同之適當尺寸。最佳 地,沈澱物對於Μη沈澱物係具有〇·2 um或更少之尺寸,對 於CuS沈殿物具有〇·ι um或更少之尺寸,且對於Mns、CuS 及(Mn,Cu)S沈;殿物之混合物係具有〇·2 um或更少之尺 1〇寸。依據本發明,若MnS、CuS及(Mn,Cu)S沈澱物具有大 於其較佳尺寸之平均尺寸,可烘烤硬化性係特別惡化,且 惡化塑性-各向異性指數及面内各向異性指數。當沈物尺 寸降低’以可烘烤硬化性而言係較佳。 同時,依據本發明,對於340 MPa等級或更多之高強 15度鋼板之應用,固溶體強化元素之至少一者(g卩,p、Si及 之至:>、者)可被添加至鋼板。因藉由添加碟而獲得功 效於别已描述,其描述内容將被省略。 矽(Si): 0.1 〜〇 8 %Figures 4a and 4b are diagrams showing the relationship between the size and cooling rate of MnS, CuS, and (Mn, Cu) S precipitates. Among them, Figure 4a shows 2 $ 5 0. 5 * (Mn + Cu) / The case of S $ 20, and Fig. 4b shows the case of 0.5 * (Mn + Cu) / S > 20. I: Embodiment 3 Best Mode A preferred embodiment of the present invention will now be described in detail. However, it should be noted that the present invention is not limited to these embodiments. For the composition of the steel sheet of the present invention, "weight./〇" will be simply expressed as "%," thereafter. The inventor of the present invention has discovered that the addition of Ti & Nb to promote bake hardenability through research has been described below The new fact is that the solid solution carbon content in the crystalline particles is appropriately controlled by the fine precipitates of MnS, CuS or (Mn, Cu) S, thereby increasing the yield strength, especially the post-baking yield strength. These precipitates have positive effects on the increase in yield strength, plastic anisotropy index, and in-plane anisotropy index caused by precipitation strengthening. Refer to Figures 1a to 1c for MnS, CuS, and (Mn, Cu) The finer the distribution of the S precipitate, the greater the decrease in the solid solution carbon content in the crystalline particles by 20. This helps the relatively free movement of the solid solution carbon remaining in the crystalline particles. More specifically, the solid solution carbon It can be removed freely in the crystal grains, and easily coupled to a movable dislocation, thereby affecting the aging characteristics at room temperature. The solid solution group stone can also be moved to a more stable area, such as the grain boundary or near the Shen Dianwu , Separated in these areas, And at a high temperature (for example, during baking), it is activated in 200533765 to make the shirt ring hardenable. Therefore, the reduction of the solid solution carbon content in the crystalline particles means that carbon exists in more stable areas, such as The particle boundary or the vicinity of the fine Shendian, and affect the baking hardenability. Figures 1a to 1c are diagrams showing the relationship between the size of solid solution carbon in the crystalline particles and the size of the precipitates. In the figure, the figure shows情况 In the case of Shen Dian's steel, Figure lb shows the situation of CuS Shen Dian's steel, and Figure ^ shows the situation of MnCu precipitated steel. The finer the size of the precipitate, the greater the reduction in the solid solution carbon content in the crystalline particles. And for the carbon that does not exist in the crystalline particles between the total carbon amount, it effectively affects the bake hardenability. With reference to Figures ^ to 10, it can be seen that when the MnS precipitate has about 0.2 um * less Size (Fig. 1a), when the CuS precipitate has a size of about 0 1 _ or less (Figure 1b) 'and when] \ 4nCu Shen Dianwu has a size of about 0.2 um or less (No. In the lc chart, the carbon content of the solid solution in the crystalline particles is reduced to about Shantou or less. Therefore, in order to ensure the effective carbon content for baking hardenability, it is important to finely distribute the MnS, CuS, or MnCu sinks while keeping the total carbon content within the range of 0.003 to 0.005% in the steel. A method for finely distributing these Shen Dian objects was studied, and the results indicate that the fine distribution of these Shen Dian objects in the crystalline particles can be controlled by controlling the content of Mn, Cu and S and the composition of these elements in steel, and controlling The cooling rate after hot rolling is achieved. 20 Figure 2a is a diagram obtained after studying the size of the precipitate based on the cooling rate after hot rolling of the steel plate, this steel plate contains: 0.004% C; 0.15% Mn; 0.008% P; 0.015% S; 0.03% A1; and 0.0012% N (where 0.58 * Mn / S = 5.8). Referring to Fig. 2a, by controlling the cooling rate of the steel plate under the condition that the mixture of Mη and S satisfies the relationship of 0.58 * Mn / SS10, the MnS precipitate has a size of 0.2um or less. Figure 3a is a diagram obtained after studying the size of the precipitate based on the cooling rate after hot rolling of the steel plate. This steel contains: 0.004% C; 0.001% P; 0.008% S; 0.05% A1; 0.0014% N; and 0.041% 5 Cu (where 0.5 * Cu / S = 2.56). Referring to FIG. 3a, since the mixture of Cu and S satisfies the relationship: 0.5 * Cu / SS10, the cooling rate of the steel plate is controlled, and the CuS precipitate has a size of 0.1 μm or less. Figure 4a is a diagram obtained after studying the size of the precipitate according to the cooling rate after cold rolling of the steel sheet. The steel contains: 0.004% C; 0.13% Mn; 10 0.009% P; 0.015% S; 0.04% A1; 0.0029% N; and 0.04% Cu (where Mn + Cu = 0.17% and 0.5 * (Mn + Cu) / S = 5.67). Referring to Figure 4a, by satisfying the relationship due to the mixture of Mn, Cu, and S: 2 S 0.5 * (Mn + Cu) / SS 20 to control the cooling rate of the steel plate, MnS, CuS, (Mn, Cu) S Shen Dianwu It has a size of 0.2 uni or less. 15 The bake-hardenable cold-rolled steel sheet according to the present invention has high yield strength, and therefore, can reduce the thickness of the steel sheet. Therefore, 'the cold-rolled steel sheet according to the present invention has the effect of reducing the weight of its product. Furthermore, the low in-plane anisotropy of the cold-rolled steel sheet of the present invention minimizes the formation of enemy lines or ears during or after the guarding process of the steel sheet. The cold-rolled steel sheet of the present invention is also promoted by the presence of appropriate carbon content in the grain boundary due to the fine grains; the grain boundary is used to avoid brittleness caused by the weakening of the grain boundary after processing.化 断。 Destruction. And its manufacturing method will be described in detail under the present invention's bake-hardenable cold-rolled steel sheet. 13 200533765 [Cold-rolled steel sheet of the present invention] Stone counter (C) · 〇〇〇3 ~ 〇. 05% Although the solid solution in the crystal grains is reduced, but because the carbon sinks into the fine particles of the fine particles, Baking hard and pure is increased without loss of room temperature when the tr is separated, or slightly sinking; _ = around the object = inside = increasing grain boundaries or fine Shen Dian 10 baking is more modified [ie, to ensure that you can bake Hardenability, carbon content exceeds% and 0.00031 / 0 or more. However, if the carbon content exceeds 0.05%, the formability will rapidly decrease. Therefore, the carbon content is preferably in the range of 0.003 to 0.005%. Sulfur (S): 0.003 to 0.003% Sulfur content less than 0.003% not only reduces the amount of Mns, CuS, and (Mn, Cu) 15 sinking and killing, but also produces excessively coarse precipitates, so reducing the Baking hardening. More than 0.03 ° /. The sulfur content will cause a large amount of solid solution sulfur. Therefore, the ductility and formability of the steel sheet are significantly reduced, and the possibility of hot cracking is increased. According to the present invention, for MnS precipitated steel, the sulfur content is preferably in the range of 0.005 to 0.03%, and for CuS precipitated steel, the sulfur content 20 is preferably in the range of 0.003 to 0.025%. For MnCu precipitated steel, the sulfur content is preferably in the range of 0.003 to 0.025%. Aluminum (A1): 0.01 to 0.1% Aluminum is commonly used as a deoxidizing element. However, in the present invention, aluminum is added to the steel to precipitate nitrogen in the steel, and thus the formability is avoided 14 200533765 due to the decrease in solid solution nitrogen. An aluminum content of less than 0.01% results in an increase in the solid solution nitrogen content, which reduces the formability, and an aluminum content of more than 0.1% causes an increase in the solid solution aluminum content, thereby reducing the ductility of the steel. According to the present invention, the content of CuS precipitated steel and MnCu Shendian steel is preferably in the range of 0 to 50.08%. If the nitrogen content is increased to 0.005 ~ 0.02%, high-strength steel plates can be obtained by the strengthening effect of A1N Shen Dianwu. Nitrogen (N): 0.02% or less An unavoidable element that is introduced into the steel during the manufacturing method of the nitrogen-based steel, and in order to obtain strengthening effect, it is preferable to add 10 to the steel in an amount not exceeding 0. In order to obtain a ductile steel sheet, the nitrogen content is preferably 0004% or less. In order to obtain a high-strength steel sheet, the nitrogen content is preferably 0.005 to 0.02%. Although the nitrogen content 1 needs to be 0.005% or more in order to obtain a strengthening effect, a nitrogen content of more than 0.02% causes deterioration of the formability of the steel sheet. For steels that provide high strength using nitrogen, the dish content is preferably 0.03 to 0.06%. According to the present invention, in order to ensure high strength by the A1N precipitate, the combination of A1 and N, that is, 0.52 * A1 / N (where A1 and N are expressed by weight%) is preferably in the range of 5. Combinations of A1 less than 1 (0.552 * A1 / N) will result in reduced formability due to solid solution nitrogen, while combinations of A1 & N more than 5 (〇 · 52 * Α1 / N) cause negligible Strengthen the effect. 20 Phosphorus (P): 0.2% or less Phosphorus is a mixed element, which will increase the solid solution strengthening effect while reducing the r-value (plasticity-anisotropy index) slightly, and can ensure that Shen Dianwu is controlled. Steel strength. Therefore, in order to ensure high strength by controlling the P content, the P content is preferably 0.2% or less. A phosphorus content of more than 0.2% will cause the ductility of the steel sheet to decrease. When phosphorus is added to the steel alone to ensure high strength of the steel plate, the P content is preferably from 0.03 to 0.2%. For ductile steel sheets, the p content is preferably 0.015% or less. For steel sheets in which high strength is ensured by using α1ν precipitates, the P content is preferably 0.03 to 0.06%. This is because although the target strength is ensured by a phosphorus content of 5.03% or more, a phosphorus content of more than 0.006% will reduce the ductility and formability of the steel. According to the present invention, in the case where the high strength of the steel sheet is ensured by addition and &, the ρ content can be appropriately controlled to 0.2% by weight or less in order to obtain the target strength. In this case, even if the P content is 0.015% or less, high strength can be ensured. In the present invention, at least one of Mg and Cu is preferably added to steel. These elements are mixed with sulfur and generate MnS, Cu ^ (Mn, Cu) s Shen Dianwu. Manganese (Μη): 0.03 ~ 0.2% Manganese is an admixture element, which is used to precipitate solid solution 15 body sulfur in steel with MnS precipitate, thus avoiding thermal cracking caused by solid solution sulfur. In the present invention, Mn is precipitated as fine MnS and / or (Mn, Cu) S precipitates under conditions where S and / or Cu is mixed with Mn and the cooling rate is appropriate. Fine deposits can impart bake hardenability to the steel sheet during baking treatment by causing carbon separation due to particle boundaries or around the precipitate, rather than crystalline particles. To achieve these 20 effects, the amount of Mn $ needs to be 0.03% or more. At the same time, the manganese content of more than 0.2% of rhenium caused coarse precipitates due to the high manganese content, thus deteriorating the hardenability of the steel sheet. If Mη is added to the steel alone (excluding Cu), the manganese content is preferably 0.05 to 0.2%. Steel (Cu): 0.005 ~ 0.2% 16 200533765 Copper is an admixture element, and its cooling rate under the appropriate conditions for s and / or "11 and (: 11 mixture and coiling treatment before hot rolling treatment) Produces fine precipitates. Fine precipitates impart bake hardenability to 5 steel plates during baking treatment by causing the steel to be separated at the grain boundaries or around the sink (rather than crystalline particles). To achieve these effects, Cu The content needs to be 0.005 0/0 or more. At the same time, the copper content of more than 0.2% causes coarse precipitates due to the higher copper content, thus deteriorating the hardenability of the steel sheet. If cu is added to the steel alone ( Excluding Mη), the copper content is preferably 0.01 to 02%. According to the present invention, the content and mixing of Mn, Cu, and S are controlled to produce 10 fine precipitates, and these are based on the amount of Mη and / or Cii For steel precipitated by MnS, the mixture of Mη and S is preferably a full-stop relationship: 0.58 * Mn / SS10 (where Mη and S are expressed by weight%). Mη is mixed with S to produce a MnS precipitate. MnS Precipitate can change the precipitation state according to the amount of Mn and S added, and Therefore, it affects the bake hardenability, yield strength of 15 degrees, and the in-plane anisotropy index. A value of 0.58 * Mn / S greater than 10 produces coarse MnS precipitates, resulting in bake-hardenability and in-plane anisotropy. Anisotropy index worsens 0 For CuS sinking steel, the mixture of Cu and S preferably satisfies the relational formula: $ 0.5 * Cu / SS10 (wherein, and 3 are expressed by weight%). CuS mixed with S produces CuS precipitation It can change the precipitation state according to the amount of cu and S added. Therefore, it affects the bake hardenability, plasticity-anisotropy index, and in-plane anisotropy index. 1 or more of 0.5 * Cu / S value can produce effective CuS precipitates, and greater than 0.5 × * Cu / S values produce coarse CuS precipitates, resulting in bake hardenability, plasticity-anisotropy index, and in-plane anisotropy17 200533765 The deterioration of the property index. In order to securely ensure that CuS sinkers with 0.1 μm or less, the value of 0.5 * Cu / S is preferably 1 to 3. When Mn and Cu are added to the steel plate together, Mn and Cii The total amount is preferably 0.3 ° / 0 or less. This is due to the fact that the total Mη and Cu content of more than 0.3% may produce coarse precipitates, so Detract from baking hardenability. The value of 0.5 * (Mn + Cu) / S (where Mn, Cu and S are expressed by weight%) is preferably 2 to 20. Mn and Cu are mixed with S to produce MnS and CuS. And (Mn, Cu) S precipitates, which can change the precipitation state according to the amount of Mn, Cu, and S added, and affect the bake hardenability, plasticity-anisotropy index, and in-plane anisotropy 10 index. 2 Or more 0.5 * (Mn + Cu) / S value can produce effective Shen Dianwu, and more than 0.5 ** (Mn + Cu) / S value of 20 produces coarse precipitates, resulting in bake hardenability, plasticity-each The anisotropy index and in-plane anisotropy index deteriorated. According to the present invention ', with a value of 0.5 * (Mn + Cu) / S in the range of 2 to 20, the average size of Shen Dianwu is reduced to 0.2 um or less. In this case, the precipitate (number / mm 2) having an area of 2 × 106 or more per 15 bits is distributed in the particles desirably. When the value is lower than or higher than 7 as 0.5 * (Mn + Cu) / S, the type and number of Shen Dianwu changes significantly. In particular, when the value of 0.5 * (Mn + Cu) / S is 7 or less, many extremely fine individual precipitates of MnS and CuS are uniformly distributed, instead of (Mn, Cu) S being mixed with Shen Dianwu. At the same time, when the value of 0.5 * (] y [n + Cu) / S is more than 20, the number of precipitates distributed in the particles is reduced, regardless of the small difference in size of the precipitates, because (Mn, Cu) The amount of S-complex precipitates increased. In the present invention, an increase in the number of precipitates can promote bake hardenability, in-plane anisotropy index, resistance to embrittlement of secondary operations, and the like. For this reason, it is preferable that the area per unit area is 2 X 108 or more; the objects (number / mm2) are distributed on the grain and grain boundaries. In the present invention, even if the value of 0.5 * (Mn + Cu) / S is the same, the smaller the added amount of Mn and Cu can reduce the number of distributed precipitates. If Mη and Cu content increase, the Shen Dianwu becomes coarse, resulting in a decrease in the number of distributed Shen Dianwu. According to the present invention, the MnS, CuS, and (Mn, Cu) S precipitates preferably have an average size of 0.2 µm or less. MnS, CuS & (Mn, Cu) s precipitates can have different appropriate sizes depending on the amount of Mn and Cu added. Optimally, the precipitate has a size of 0.2 μm or less for the Mn precipitate system, a size of 0.2 μm or less for the CuS sinker, and for the Mns, CuS, and (Mn, Cu) S sinkers. ; The mixture of temple objects is 10 inches with a ruler of 0.2 um or less. According to the present invention, if the MnS, CuS, and (Mn, Cu) S precipitates have an average size larger than their preferred sizes, the bake hardenability is particularly deteriorated, and the plasticity-anisotropy index and in-plane anisotropy are deteriorated. index. When the size of the sinker is reduced ', it is preferable in terms of baking hardenability. At the same time, according to the present invention, for the application of 340 MPa grade or more high-strength 15-degree steel plates, at least one of the solid solution strengthening elements (g 、, p, Si and up to: >,) can be added to Steel plate. Because the effect obtained by adding a disc is already described, its description will be omitted. Silicon (Si): 0.1 ~ 〇 8%

Si係-種摻合元素,其可增加固溶體強化功效,雖然 20使延展性些微降低,因此確保鋼板之高強度,其間,沈殿 物係依據本發明而控制。01%或更多之石夕含量可確保鋼板 強度’但超過〇.8%之石夕含量會造成其延展性降低。 鉻(Cr): 0.2 〜12 %Si system-a kind of blending element, which can increase the solid solution strengthening effect. Although 20 lowers the ductility slightly, it ensures the high strength of the steel plate. Meanwhile, Shen Dian system is controlled according to the present invention. A content of 01% or more can ensure the strength of the steel sheet, but a content of more than 0.8% will cause a reduction in ductility. Chromium (Cr): 0.2 to 12%

Cr係-種摻合元素’其增加固溶體強化功效,同時促 19 200533765 進室溫時之耐老化,因此,確保鋼板之高強度,雖然降低 鋼板之面内各向異性指數,其間,沈殿物係依據本發明控 制。〇·2%或更多之鉻含量可麵鋼板強度 ,但多於1.2%之 鉻含量會造成其延展性降低。 5 鉬(M〇)可添加至本發明之冷軋鋼板。 鉬:0.01 〜0.2 %Cr series-a kind of blending element, which increases the solid solution strengthening effect, and at the same time promotes the aging resistance of 19 200533765 at room temperature. Therefore, to ensure the high strength of the steel plate, although the in-plane anisotropy index of the steel plate is reduced. The system is controlled according to the present invention. Chromium content of 0.2% or more can provide strength to the steel sheet, but chromium content of more than 1.2% will cause its ductility to decrease. 5 Molybdenum (Mo) can be added to the cold-rolled steel sheet of the present invention. Molybdenum: 0.01 to 0.2%

Mo係種接合凡素,其增加鋼板之塑性·各向異性指 數0.01/。或更夕之翻含量會增加塑性-各向異性指數,但 超過0.2/。之銦含s會造成熱裂且對於塑性.各向異性指數 10 無額外改良。 [製造冷軋鋼板之方法] 本毛月之特彳政在於滿足上述組成之鋼板可經由熱軋 及冷軋加工處理而具有細微之降低平均尺寸之沈殿物。沈 澱物之平均尺寸係受Mn、cl^s之含量及組成及製造方法 I5而影響,制地,係直接受熱軋後之冷卻速率影響。 [熱軋條件] 依據本發明,滿足上述組成之鋼被重新加熱,其後進 行熱軋。重新加熱之溫度較佳係1,100 °c或更多。此被歸 因於低於uoo t之重新加熱溫度造成粗的沈殿物於达續 20鱗造期間被產生,且維持不完全溶解態,因此,粗沈麟物 即使於熱軋後亦保留。 車乂佳地,熱軋係於精軋於八巧轉變溫度或更多時被實 施之缸件下貝施。若精軋於低於An轉變溫度實施,軋雜 粒產生,且顯著降低鋼板之延展性及成形性。 20 200533765 熱軋後之冷卻速率較佳係200 °C/分鐘或更多。更明確 地,(1) MnS沈殿之鋼、(2) CuS沈澱之鋼及(3) MnCu沈澱 之鋼之冷卻速率間係些微不同。 首先,於MnS沈澱之鋼,冷卻速率較佳係2〇〇 °c/分鐘 5或更多。即使當Mn&S之組成物滿足依據本發明之關係 式:0.58*Mn/S$10,低於200 °C/分鐘之冷卻速率會產生 具有大於0.2 um之尺寸之粗的MnS沈殿物。即,當冷卻迷 率增加,數個核產生,如此MnS沈澱物變得更細微。當 及S之組成物具關係式:〇.58*Mn/S > 10,重新加熱處理期 10 間呈不完全溶解態之粗沈澱物之數目增加,如此,即使冷 卻速率增加,核數目未增加,因此,MnS沈殿物不會變得 更細(第 2b圖,0.0038 %之;〇·43 %之;0.011 %之;0.009 〇/0 之;0.035 %之A1;及0.0043 %之N)。 參考第2a及2b圖,因為冷卻速率增加導致產生更細微 15 之MnS沈殿物,因此無需提供冷卻速率之上限。但是,即 使當冷卻速率係1,〇〇〇 °C/分鐘或更多時,MnS沈澱物未進 一步降低尺寸,因此,冷卻速率更佳係於200〜丨,000 °C/ 分鐘之範圍。 其次,於CuS沈澱之鋼之情況’熱軋後之冷卻速率較 20佳係300。(3/分鐘或更多。即使當Cu及S之組成物滿足依據 本發明之關係式:〇.5*Cu/S‘ 1〇,低於300 °C/分之冷卻速 率產生具有大於Oj um尺寸之粗的CuS沈澱物。即,當冷 卻速率增加時,數個核產生,因此,CuS沈澱物變更細。 當Cii及S之組成物具有關係式:〇.5*Cu/S > 10,重新加熱 21 200533765 處理期間呈不完全溶解態之粗沈澱物之數目增加,因此, 增加冷卻速率不會造成核數目增加,因此,CuS沈殿物不 會變更細微(第3c圖’ 0.0039 %之C; 〇.〇1 %之p; 〇 005 %之 S; 0.03 %之A1; 0.0015 %之N ;及0.28 %之Cu)。 5 參考第3a至3c圖,因為增加冷卻速率導致產生更細微 之CuS沈殿物’因此無需提供冷卻速率之上限。但是,即 使當冷卻速率係1,000 °c/分鐘或更多,CuS沈澱物未進〆 步降低尺寸,因此,冷卻速率更佳係300〜1,〇〇〇它/分之 範圍。第3a及3b圖(0.0043 %之C; 0.01 %之p; 〇 〇〇5 %之S; 10 〇·〇3 %之A1; 0.0024 %之N ;及0.081 %之Cu)個別顯示 0.5*Cu/S $ 3及0.5*Cu/S > 3之情況。如圖式所示,可看出 當0.5* Cu/S值係3或更少時’具有〇·ι um或更少之尺寸之 CuS沈澱物可被更安定地獲得。 敢後,於MnCu沈版之鋼之情況,冷卻速率較佳係3〇〇 15 °C/分或更多。即使當Mn、Cu及S之組成物滿足依據本發 明之關係式:2S0.5*(Mn+Cu)/S$20,低於3〇〇 °c/分之冷 卻速率會產生具有大於0.2 um平均尺寸之粗沈澱物。即, 當冷卻速率增加時,數個核產生,因此沈澱物變更細微。 當Mn、Cu及S之組成物具有關係式:〇.5*(Mn+Cu)/s > 2〇, 20重新加熱處理期間呈不完全溶解態之粗沈殿物增加,因 此,即使冷卻速率增加,核數目未增加,因此,沈澱未變 更細微(第 4b圖,0.0039 %之C; 0.4 %之Μη; 0.01 %之p; 0.01 %之S; 0.05 %之Α1; 0.0016 %之Ν;及0.15 %之Cu)。 參考第4a及4b圖,因為增加冷卻速率導致產生更細微 22 200533765 之沈殿物’因此痛需提供冷卻速率之上限。但是,即使當 冷卻速率係1,000 °c/分或更多時,沈澱物未進一步降低尺 寸,因此,冷卻速率更佳係300〜1,000 °C/分之範圍。 [捲繞條件] 5 於上述熱軋後,捲繞處理較佳地於700 °C或更少之溫 度實施。當捲繞處理於高於700 °c之溫度實施,沈澱物長 得太粗,因此,降低鋼之可烘烤硬化性。 [冷卻條件] 鋼被冷軋至所欲厚度,較佳係50〜9〇 %之降低率。因 10為低於50%之降低率導致於再結晶退火時產生小量之核, 結晶顆粒於退火時過度產生,因此經由退火會使結晶顆粒 變粗,造成降低強度及成形性。多於9〇%之冷降低率導致 促進之成形性’雖然產生過量之核,因此,經由退火而再 結晶之結晶顆粒變付過度細’因此降低鋼之延展性。 15 [連續退火] 連續退火溫度於決定產品之機械性扮演重要角色。依 據本發明’連續退火較佳係於5〇〇〜9〇〇艽之溫度實施。 於低於500 C之溫度之連續退火產生過細之再結晶產生之 結晶顆粒,因此,不能確保所欲延展性。於高於9〇(Γ(^^ 20度之連繽退火產生粗的再結晶產生之結晶顆粒,因此, 鋼之強度降低。連縯退火時之維持時間被提供以使鋼之再 結晶作用完全,且鋼之再結晶作用於連續退小時約⑺ 更多時完全。 八 本發明將參考下列實施例而詳細描述。 23 200533765 下列實施例之描述,冷軋鋼板係依據ASTM標準 (ASTM E-8標準)機械處理成標準樣品,且其機械性質被測 量。機械性質係藉由使用抗張強度測試器(可得自 INSTRON公司,型號6025)。於機械強度中,於樣品接受 5 2%應變後及其後於120°C熱處理20分鐘後,後烘烤屈服強 度被測量。塑性-各向異性指數(rm值)及面内各向異性指數 (r值)係個別依據下列方程式⑴及(2)獲得: = (r〇 + 2 r45 + r9〇)/4 ---- (1) r = (r〇 - 2 r45 + r9〇)/2 —— (2) 10 同時,沈澱物之平均尺寸及數目於測量存在於基質中 之所有沈殿物之尺寸及數目後獲得。 [實施例l-l]MnS沈澱之鋼 為提供依據本發明之MnS沈澱之鋼,於第1表所示之 鋼板於1,2〇〇 C之溫度重新加熱後,其後使鋼板精軋以提 15供熱軋鋼板,熱軋鋼板以200。(:/分鐘之冷卻速率冷卻,然 後於650 C捲繞。然後,熱軋鋼板以75 %之降低率冷軋, 其後使冷軋鋼板連續退火。精軋係於91〇 〇c實施,其係高 於A1·3轉變度,且連續退火係藉由使鋼板al〇〇c/秒之速 率加熱40秒至750。(:而實施。例外地,對於第丨表之八8樣 20品,於重新加熱至丨,050。〇及其後之精軋後,其係以50 t: /分之冷卻速率冷卻,然後於750 °c捲繞。 24 200533765 第1表The Mo-based species joins vanillin, which increases the plasticity and anisotropy index of the steel sheet by 0.01 /. On the other hand, the content will increase the plastic-anisotropy index, but it exceeds 0.2 /. The indium containing s causes thermal cracking and no additional improvement in plasticity. Anisotropy index 10. [Method for manufacturing cold-rolled steel sheet] A special feature of this month is that the steel sheet that satisfies the above-mentioned composition can be processed by hot rolling and cold rolling to have a slight reduction in average size. The average size of the precipitate is affected by the content and composition of Mn and cl ^ s and the manufacturing method I5, and the land preparation is directly affected by the cooling rate after hot rolling. [Hot rolling conditions] According to the present invention, the steel satisfying the above composition is reheated, and thereafter hot rolling is performed. The reheating temperature is preferably 1,100 ° C or more. This is attributed to the coarse Shen Dianwu being reheated at a temperature lower than uoot, which was generated during the last 20 scales and maintained in an incompletely dissolved state. Therefore, the coarse Shenlin was retained even after hot rolling. It is a good idea that hot rolling is performed on the cylinders that are implemented when finishing rolling at a temperature of Baqiao transformation or more. If finish rolling is carried out below the An transition temperature, rolling debris is generated and the ductility and formability of the steel sheet are significantly reduced. 20 200533765 The cooling rate after hot rolling is preferably 200 ° C / min or more. More specifically, the cooling rates of (1) MnS Shendian steel, (2) CuS precipitated steel, and (3) MnCu precipitated steel are slightly different. First, the cooling rate of steel precipitated in MnS is preferably 200 ° C / min 5 or more. Even when the composition of Mn & S satisfies the relationship according to the present invention: 0.58 * Mn / S $ 10, a cooling rate below 200 ° C / min will produce a coarse MnS sinker with a size greater than 0.2 um. That is, as the cooling rate increases, several nuclei are generated, and thus the MnS precipitate becomes finer. When the composition of S has a relational formula: 0.58 * Mn / S > 10, the number of coarse precipitates in an incompletely dissolved state during the reheating treatment period 10 increases, so that even if the cooling rate is increased, the number of cores is not Increased, therefore, MnS Shen Dianwu will not become thinner (Figure 2b, 0.0038%; 0.003%; 0.011%; 0.009 〇 / 0; 0.035% A1; and 0.0043% N). Referring to Figures 2a and 2b, the increase in cooling rate results in a finer 15 MnS sinker, so there is no need to provide an upper limit for the cooling rate. However, even when the cooling rate is 1,000 ° C / min or more, the MnS precipitate has not been further reduced in size, and therefore, the cooling rate is more preferably in the range of 200 to 1,000 ° C / min. Secondly, in the case of CuS-precipitated steel ', the cooling rate after hot rolling is 300 to 300. (3 / minute or more. Even when the composition of Cu and S satisfies the relational formula according to the present invention: 0.5 * Cu / S '10, a cooling rate below 300 ° C / min produces a temperature greater than Oj um Thick CuS precipitates. That is, when the cooling rate increases, several nuclei are generated, so the CuS precipitate changes fine. When the composition of Cii and S has a relationship: 0.5 * Cu / S > 10 Reheating 21 200533765 The number of coarse precipitates in an incompletely dissolved state increased during the treatment. Therefore, increasing the cooling rate will not cause an increase in the number of cores. Therefore, CuS Shen Dianwu will not change the details (Figure 3c '0.0039% 0.001% p; 0.0005% S; 0.03% A1; 0.0015% N; and 0.28% Cu). 5 Refer to Figures 3a to 3c, because increasing the cooling rate results in finer CuS Shen Dianwu's therefore does not need to provide the upper limit of the cooling rate. However, even when the cooling rate is 1,000 ° c / min or more, the CuS precipitate has not been further reduced in size, so the cooling rate is more preferably 300 ~ 1, 〇〇〇 its / min range. Figures 3a and 3b (0.0043% C; 0.01% p; 0055% S; 10 % 。3% of A1; 0.0024% of N; and 0.081% of Cu) individually show the case of 0.5 * Cu / S $ 3 and 0.5 * Cu / S > 3. As shown in the figure, it can be seen When the 0.5 * Cu / S value is 3 or less, a CuS precipitate having a size of 0 μm or less can be obtained more securely. In the case of MnCu sinking steel, the cooling rate is relatively slower. It is preferably 3015 ° C / min or more. Even when the composition of Mn, Cu, and S satisfies the relationship according to the present invention: 2S0.5 * (Mn + Cu) / S $ 20, which is less than 300. ° C / min cooling rate produces coarse precipitates with an average size greater than 0.2 um. That is, as the cooling rate increases, several nuclei are generated, so the precipitate changes finely. When the composition of Mn, Cu, and S has a relationship Formula: 0.5 * (Mn + Cu) / s > 20, 20 The coarse Shen Dianwu which is incompletely dissolved during the reheating treatment increases, so even if the cooling rate increases, the number of cores does not increase, so the precipitation is not Minor changes (Figure 4b, 0.0039% C; 0.4% Mn; 0.01% p; 0.01% S; 0.05% A1; 0.0016% N; and 0.15% Cu). Refer to Figures 4a and 4b Because increasing the cooling rate leads The result is a more subtle 22 200533765 Shen Dianwu '. Therefore, it is necessary to provide an upper limit of the cooling rate. However, even when the cooling rate is 1,000 ° c / min or more, the precipitate does not further reduce the size, so the cooling rate is more The best range is 300 ~ 1,000 ° C / min. [Winding conditions] 5 After the above-mentioned hot rolling, the winding treatment is preferably performed at a temperature of 700 ° C or less. When the coiling treatment is performed at a temperature higher than 700 ° C, the precipitate grows too coarse, and therefore, the baking hardenability of the steel is reduced. [Cooling conditions] The steel is cold rolled to a desired thickness, preferably a reduction rate of 50 to 90%. Because 10 is a reduction rate of less than 50%, a small amount of nuclei are generated during recrystallization annealing, and crystal grains are excessively generated during annealing. Therefore, the crystal grains are coarsened by annealing, resulting in reduced strength and formability. A cold reduction rate of more than 90% leads to the promoted formability, although excessive nucleus is generated, and therefore, crystal grains recrystallized by annealing become excessively fine, thereby reducing the ductility of the steel. 15 [Continuous annealing] Continuous annealing temperature plays an important role in determining the mechanical properties of the product. According to the present invention, 'continuous annealing is preferably performed at a temperature of 500 to 900 ° F. Continuous annealing at a temperature below 500 C produces crystalline particles resulting from excessively fine recrystallization, and therefore, desired ductility cannot be ensured. At temperatures greater than 90 ° (^^ 20 °, Binbin annealing produces coarse recrystallized crystalline particles, so the strength of the steel decreases. The maintenance time during continuous annealing is provided to complete the recrystallization of the steel. The recrystallization effect of steel is about 退 for more than one hour. The present invention will be described in detail with reference to the following examples. 23 200533765 In the following examples, cold-rolled steel sheets are based on ASTM standards (ASTM E-8). Standard) Mechanically processed into a standard sample, and its mechanical properties are measured. Mechanical properties are obtained by using a tensile strength tester (available from INSTRON, model 6025). In mechanical strength, after the sample receives 5 2% strain After 20 minutes of heat treatment at 120 ° C, the post-baking yield strength is measured. The plastic-anisotropy index (rm value) and in-plane anisotropy index (r value) are based on the following equations ⑴ and (2 ) Obtained: = (r0 + 2 r45 + r9〇) / 4 ---- (1) r = (r0-2 r45 + r9〇) / 2-(2) 10 At the same time, the average size of the precipitate The number and number are obtained after measuring the size and number of all Shen Dianwu existing in the matrix. Example ll] The MnS precipitated steel is to provide the MnS precipitated steel according to the present invention. After the steel plate shown in Table 1 is reheated at a temperature of 1,200 ° C, the steel plate is then fine-rolled to provide 15 liters. The hot-rolled steel sheet was cooled at a cooling rate of 200 ° C / min, and then wound at 650 C. Then, the hot-rolled steel sheet was cold-rolled at a reduction rate of 75%, and then the cold-rolled steel sheet was continuously annealed. The rolling system is performed at 9100c, which is higher than A1 · 3 transformation degree, and the continuous annealing is performed by heating the steel plate at a rate of 100c / s for 40 seconds to 750. (: and implemented. Exceptionally, for Table 8 shows 20 samples of 8 samples, which are reheated to 0,050 °. After finishing rolling, they are cooled at a cooling rate of 50 t / min, and then wound at 750 ° c. 24 200533765 Table 1

樣品編 號· -ΈΜΈΈ%) — C Μη Ρ S A1 N Mo K-l 0.003-0.005 0.05-0.2 0.015 0.005-0.03 0.01-0.1 0.004 0.01-0.2 10 A1 0.0035 0.1 0.01 0.009 0.04 0.0021 - 6.44 A2 0.0041 0.10 0.009 0.012 0.05 0.0030 - 4.83 A3 0.0038 0.08 0.011 0.012 0.035 0.0023 - 3.87 A4 0.0044 0.1 0.01 0.006 0.02 0.0032 - 9.67 A5 0.0022 0.1 0.009 0.011 0.04 0.0038 - 5.27 A6 0.0039 0.43 > 0.01 0.008 0.05 0.0038 - 31.2 A7 0.0067 0.1 r〇.〇〇8 0.01 0.04 0.0028 - 5.8 A8 0.0024 0.4 0.07 0.01 0.04 0.0016 Ti 0.02 11.6 A9 0.0042 0.11 0.012 0.01 0.032 0.0018 0.02 6.38 A10 0.0038 0.1 0.01 0.008 0.035 0.0025 0.16 7.25 All 0.0045 0.08 0.011 0.011 0.04 0.0011 0.064 4.22 A12 0.0044 0.08 0.01 0.01 0.025 0.003 0.092 4.64 A13 0.0046 0.09 0.012 0.012 0.04 0.0015 0.27 4.35 註:R-l = 0.58*Mn/S 第2表 樣品 滅號 機械性置 AS (um) 註 YS (Mpa) TS (MPa) El (%) r-值 (rm) △r-值 (Δγ) PBYS (Mpa) DBTT (°C) A1 221 310 49 1.83 0.41 288 -70 0.13 IS A2 241 315 47 1.75 0.36 292 -70 0.14 IS A3 233 312 47 1.73 0.38 282 -70 0.12 IS A4 A C 245 328 45 1.69 0.31 301 .70 0.1 IS A5 A 209 Λ Λ 299 51 1.88 0.42 232 -70 0.11 cs Ao Λ 211 〇 r 1 290 52 1.82 0.38 235 -70 0.59 cs A / Λ 0 25 1 329 42 ~Τ3Γ~· 0.29 298 -70 0.12 cs Ao A 〇 1 ο2 ^ 〇 c 292 48 0.58 215 .]〇 0.21 CVS Ay A 1 Λ 225 οηπ 3 12 Ο 1 Λ 49 Λ Ο " 0.35 273 -80 0.12 IS /\ 1 u Λ 1 1 ZZy 〇 〇 Γ j 1 υ 4δ 2.21 0.28 ~TT〇 -80 0.13 IS All Λ 1 O 235 318 ο 〇 A 47 0.31 ~28l~~ -80 0.11 IS A 1 Z A 1 ^ Ζ3ό 1 Ί ο 32U Ο Ο Ο 46 ^Τΰ1~ 0.33 ~304~~ -80 0.1 IS A 1 j 151 328 46 ~Γ73~ 0.35 ~305~~ 〇 \J -80 0.12 cs 註:YS =屈服強度’ TS =抗張強度,E1 =延柚i 伯·湖Μ:欠a s 性指數,△卜值:面内各向里性率,r-值.塑性-各向異 寸,is=本發明之鋼,cdjm气;#,AS =沈殿物之平均尺 ^ 、 -傳統之鋼如第2表所不,樣品A1〜A4具有優異之屈服強度 延 25 200533765 伸率’及屈㈣度_延展性平衡,及可輯硬化性。另外, 此等樣品具有高的塑性各向異性域及低的面内各向異 性指數,因此,提供優異成形性。 ^ 、 相反地,由於其低碳含量,樣品Α5提供低的後供烤屈 5服強度。由於其大尺寸之沈殿物,樣品从亦具有低的後^ 烤屈服強度。由於其高的碳含量,樣品Α7#有低的延伸率 及塑性各向異性指數,因此,於成形處理期間提供高破裂 可能性。由於其低的後烘烤屈服強度及二級操作脆化溫 度,樣品Α8(其係傳統之極低碳氮鋼)於衝擊時提供 10 可能性。 & 樣παΑ9至Α12具有優異成形性及可烘烤硬化性。相反 地,由於高添加量之Μ〇,樣品Α13具有差的成形性。 [貫施例1-2]具固溶體強化之高強度之MnS沈澱之鋼 為提供依據本發明之具固溶體強度之高強度之MnS 15沈澱之鋼’於第3表所示之鋼板於1,200 °C之溫度重新加熱 及其後將鋼板精軋以提供熱軋鋼板後,熱軋鋼板以2〇〇。。 /分之冷卻速率冷卻,然後於65()它捲繞。然後,熱軋鋼板 以75%降低速冷軋,其後將冷軋鋼板連續退火。精軋係於 910 C貫施’其係高於Ar3轉變溫度,且連續退火修藉由 20以10 C/秒之速率使鋼板加熱40秒至750 °C而實施。 26 200533765 第3表Sample No.-ΈΜΈΈ%) — C Μη Ρ S A1 N Mo Kl 0.003-0.005 0.05-0.2 0.015 0.005-0.03 0.01-0.1 0.004 0.01-0.2 10 A1 0.0035 0.1 0.01 0.009 0.04 0.0021-6.44 A2 0.0041 0.10 0.009 0.012 0.05 0.0030 -4.83 A3 0.0038 0.08 0.011 0.012 0.035 0.0023-3.87 A4 0.0044 0.1 0.01 0.006 0.02 0.0032-9.67 A5 0.0022 0.1 0.009 0.011 0.04 0.0038-5.27 A6 0.0039 0.43 > 0.01 0.008 0.05 0.0038-31.2 A7 0.0067 0.1 r〇.〇〇0.01 0.04 0.0028-5.8 A8 0.0024 0.4 0.07 0.01 0.04 0.0016 Ti 0.02 11.6 A9 0.0042 0.11 0.012 0.01 0.032 0.0018 0.02 6.38 A10 0.0038 0.1 0.01 0.008 0.035 0.0025 0.16 7.25 All 0.0045 0.08 0.011 0.011 0.04 0.0011 0.064 4.22 A12 0.0044 0.08 0.01 0.01 0.025 0.003 0.092 4.64 A13 0.0046 0.09 0.012 0.012 0.04 0.0015 0.27 4.35 Note: Rl = 0.58 * Mn / S Table 2 Sample No. Mechanically set AS (um) Note YS (Mpa) TS (MPa) El (%) r-value (rm) △ r-value (Δγ) PBYS (Mpa) DBTT (° C) A1 221 310 49 1.83 0.41 288 -70 0.13 IS A2 241 315 47 1.75 0.36 292 -70 0.14 IS A3 233 312 47 1.73 0.38 282 -70 0.12 IS A4 AC 245 328 45 1.69 0.31 301 .70 0.1 IS A5 A 209 Λ Λ 299 51 1.88 0.42 232 -70 0.11 cs Ao Λ 211 〇r 1 290 52 1.82 0.38 235 -70 0.59 cs A / Λ 0 25 1 329 42 ~ Τ3Γ ~ · 0.29 298 -70 0.12 cs Ao A 〇1 ο2 ^ 〇c 292 48 0.58 215.] 〇0.21 CVS Ay A 1 Λ 225 οηπ 3 12 Ο 1 Λ 49 Λ Ο " 0.35 273 -80 0.12 IS / \ 1 u Λ 1 1 ZZy 〇〇Γ j 1 υ 4δ 2.21 0.28 ~ TT〇-80 0.13 IS All Λ 1 O 235 318 ο 〇A 47 0.31 ~ 28l ~~ -80 0.11 IS A 1 ZA 1 ^ ZZ3ό 1 Ί ο 32U Ο Ο Ο 46 ^ Τΰ1 ~ 0.33 ~ 304 ~~ -80 0.1 IS A 1 j 151 328 46 ~ Γ73 ~ 0.35 ~ 305 ~~ 〇 \ J -80 0.12 cs Note: YS = Yield strength 'TS = Tensile strength, E1 = Yanyou i Bo · Hu M: Under as index, △ value: In-plane anisotropy rate, r-value. Plasticity-anisotropic inch, is = principal Invented steel, cdjm gas; #, AS = Shen Dianwu's average size ^,-Traditional steel as shown in Table 2, samples A1 ~ A4 have excellent yield strength extension 25 200533765 elongation 'and yield_ extension Sexual balance and hardenability. In addition, these samples have a high plastic anisotropy domain and a low in-plane anisotropy index, and therefore, provide excellent moldability. ^ Conversely, due to its low carbon content, sample A5 provides low back-bake yield strength. Due to its large size, the sample also has low post-bake yield strength. Due to its high carbon content, sample A7 # has a low elongation and plastic anisotropy index, thus providing a high possibility of cracking during the forming process. Due to its low post-baking yield strength and secondary operating embrittlement temperature, sample A8 (which is a traditional very low carbon nitrogen steel) offers 10 possibilities during impact. & Samples παA9 to A12 have excellent moldability and baking hardenability. In contrast, sample A13 had poor moldability due to the high addition amount of Mo. [实施 例 1-2] Steel with high strength MnS precipitation strengthened by solid solution is to provide steel with high strength MnS 15 precipitation with solid solution strength according to the present invention. After reheating at a temperature of 1,200 ° C and then finishing rolling the steel sheet to provide a hot-rolled steel sheet, the hot-rolled steel sheet was heated at 200 ° C. . It is cooled at a cooling rate per minute, and then it is wound at 65 (). Then, the hot-rolled steel sheet was cold-rolled at a reduced speed of 75%, and thereafter the cold-rolled steel sheet was continuously annealed. The finish rolling is performed at 910 C, which is higher than the Ar3 transition temperature, and the continuous annealing repair is performed by heating the steel plate at a rate of 10 C / sec for 20 seconds to 750 ° C. 26 200533765 Table 3

樣品 編號. 組份(重量%) C Μη Ρ Si Cr S A1 N Mo R-l 0.003- 0.005 0.05- 0.2 0.2 0.1-0.8 0.2-1.2 0.005· 0.03 0.01-0.1 0.004 0.01- 0.2 10 B1 0.0035 0.08 0.052 - - 0.006 0.04 0.0015 - 7.73 B2 0.0042 0.10 0.102 - - 0.010 0.05 0.0026 - 5.8 B3 0.0039 0.08 0.151 - - 0.012 0.035 0.0018 - 3.87 B4 0.0018 0.52 0.052 - - 0.011 0.03 0.0039 - 29 B5 0.0058 0.44 0.11 - - 0.011 0.05 0.0025 - 21.1 B6 0.0038 0.38 0.15 - - 0.008 0.05 0.0028 - 31.2 B7 0.0039 0.09 0.009 0.24 - 0.006 0.05 0.0022 - 8.7 B8 0.0042 0.09 0.013 0.43 - 0.012 0.03 0.0026 - 4.35 B9 0.0035 0.1 0.011 0.62 - 0.009 0.035 0.0025 - 6.4 B10 0.0022 0.4 0.009 0.25 - 0.009 0.03 0.0042 - 25.8 B11 0.0077 0.42 0.01 0.44 - 0.011 0.04 0.0042 - 21.1 B12 0.0042 0.4 0.01 0.62 - 0.009 0.05 0.0039 - 25.8 B13 0.0044 0.1 0.01 - 0.35 0.007 0.04 0.0024 - 8.29 B14 0.0032 0.09 0.01 - 0.65 0.012 0.04 0.0032 - 4.35 B15 0.0038 0.11 0.012 - 0.82 0.017 0.05 0.0018 - 3.75 B16 0.0025 0.4 0.011 - 0.32 0.009 0.03 0.0017 - 25.8 B17 0.0059 0.43 0.01 - 0.62 0.012 0.05 0.0024 - 20.8 B18 0.0042 0.4 0.01 - 0.82 0.01 0.04 0.0019 - 31.2 B19 0.0044 0.1 0.05 - - 0.008 0.034 0.0018 0.025 7.25 B20 0.0046 0.1 0.01 0.25 - 0.008 0.035 0.0032 0.028 7.25 B21 0.0034 0.11 0.011 - 0.33 0.009 0.034 0.0012 0.019 7.09 B22 0.0041 0.11 0.045 0.21 0.35 0.01 0.03 0.0022 0.08 6.38 B23 0.0038 0.1 0.048 0.18 0.35 0.012 0.042 0.0035 0.06 4.83 B24 0.0043 0.1 0.012 0.2 0.32 0.015 0.029 0.0018 0.04 3.87 註:R-l = 0.58*Mn/S 27 200533765 第4表Sample No. Composition (wt%) C Μη Ρ Si Cr S A1 N Mo Rl 0.003- 0.005 0.05- 0.2 0.2 0.1-0.8 0.2-1.2 0.005 · 0.03 0.01-0.1 0.004 0.01- 0.2 10 B1 0.0035 0.08 0.052--0.006 0.04 0.0015-7.73 B2 0.0042 0.10 0.102--0.010 0.05 0.0026-5.8 B3 0.0039 0.08 0.151--0.012 0.035 0.0018-3.87 B4 0.0018 0.52 0.052--0.011 0.03 0.0039-29 B5 0.0058 0.44 0.11--0.011 0.05 0.0025-21.1 B6 0.0038 0.38 0.15--0.008 0.05 0.0028-31.2 B7 0.0039 0.09 0.009 0.24-0.006 0.05 0.0022-8.7 B8 0.0042 0.09 0.013 0.43-0.012 0.03 0.0026-4.35 B9 0.0035 0.1 0.011 0.62-0.009 0.035 0.0025-6.4 B10 0.0022 0.4 0.009 0.25-0.009 0.03 0.0042-25.8 B11 0.0077 0.42 0.01 0.44-0.011 0.04 0.0042-21.1 B12 0.0042 0.4 0.01 0.62-0.009 0.05 0.0039-25.8 B13 0.0044 0.1 0.01-0.35 0.007 0.04 0.0024-8.29 B14 0.0032 0.09 0.01-0.65 0.012 0.04 0.0032-4.35 B15 0.0038 0.11 0.012-0.82 0.017 0.05 0.0018-3.75 B16 0.0025 0.4 0.011-0.32 0.009 0.03 0.0017-25.8 B17 0.0059 0.43 0.01-0.62 0.012 0.05 0.0024-20.8 B18 0.0042 0.4 0.01-0.82 0.01 0.04 0.0019-31.2 B19 0.0044 0.1 0.05--0.008 0.034 0.0018 0.025 7.25 B20 0.0046 0.1 0.01 0.25-0.008 0.035 0.0032 0.028 7.25 B21 0.0034 0.11 0.011-0.33 0.009 0.034 0.0012 0.019 7.09 B22 0.0041 0.11 0.045 0.21 0.35 0.01 0.03 0.0022 0.08 6.38 B23 0.0038 0.1 0.048 0.18 0.35 0.012 0.042 0.0035 0.06 4.83 B24 0.0043 0.1 0.012 0.2 0.32 0.015 0.029 0.0018 0.04 3.87 Note: Rl = 0.58 * Mn / S 27 200533765 Table 4 Table 4

樣品 編號 機械性質 AS ㈣ 註 YS (MPa) TS (MPa) El (%) r-value (rj Δτ-value (Δτ) PBYS (MPa) DBTT ro B1 252 362 43 1.65 0.25 304 •70 0.13 IS B2 305 411 36 1.52 0.29 346 -50 0.12 IS B3 377 460 32 1.46 0.27 414 -40 0.09 IS B4 235 342 44 1.71 0.44 258 -60 0.59 cs B5 302 409 33 1.39 0.22 359 -60 0.73 cs B6 352 450 32 1.40 0.46 381 -40 0.59 cs B7 250 360 45 1.64 0.25 312 -80 0.09 IS B8 315 421 40 1.52 0.22 348 -60 0.11 IS B9 366 460 35 1.46 0.29 414 -50 0.11 IS B10 238 342 47 1.73 0.62 255 -70 0.52 cs B11 324 430 31 1.40 0.28 358 -60 0.45 cs B12 340 440 35 1.42 0.42 360 -40 0.62 cs B13 239 360 44 1.62 0.20 293 -80 0.09 IS B14 306 420 38 1.44 0.22 359 -60 0.10 IS B15 350 462 33 1.40 0.21 428 -50 0.09 IS B16 230 345 46 1.68 0.42 250 -70 0.42 cs B17 319 429 32 1.32 0.22 368 -60 0.35 cs B18 342 459 28 1.25 0.13 382 -40 0.42 cs B19 259 361 44 1.95 0.31 321 -80 0.12 IS B20 255 355 46 1.98 0.32 302 -80 0.1 IS B21 235 359 46 1.95 0.29 295 -80 0.09 IS B22 351 474 36 1.59 0.17 406 -60 0.1 IS B23 335 462 35 1.55 0.15 390 -60 0.11 IS B24 328 419 39 1.67 0.19 358 -70 0.09 IS 註·· YS =屈服強度,TS =抗張強度,El =延伸率,r-值:塑性-各向異 性指數,Δι·-值:面内各向異性指數,PBYS=後烘烤屈服強度,DBTT = 5 研究二級操作脆化之延展性-脆化之轉變溫度,AS =沈澱物之平均尺 寸,IS =本發明之鋼,CS =比較用之鋼,CVS =傳統之鋼 [實施例1 -3 ]具A1N沈澱強化之MnS沈澱之鋼 為提供依據本發明之具A1N沈澱強化之MnS沈澱之 鋼,於第5表所示之鋼板被重新加熱至1,200 °C之溫度及其 10 後使鋼板精軋提供熱軋鋼板後,熱軋鋼板以200°C/分之冷 卻速率冷卻,然後於650 °C捲繞。然後,熱軋鋼板以75% 28 200533765 之降低率冷軋其後使冷軋鋼板連續退火。精軋係於910 °C實施,其係高於Ar3轉變溫度,且連續退火係藉由以10 °C/秒之速率使鋼板加至40秒至750°C而實施。 第5表 樣品 編號. 組份(重量%)__ C Μη Ρ S Α1 Ν Mo R-l R-2 0.003- 0.005 0.05- 0.2 0.03- 0.06 0.005- 0.03 0.01- 0.1 0.005- 0.02 0.01- 0.2 10 1-5 C1 0.0045 0.1 0.035 0.01 0.04 0.0135 - 5.8 1.54 C2 0.0038 0.11 0.044 0.007 0.055 0.0079 - 9.11 3.63 C3 0.0042 0.08 0.053 0.009 0.055 0.0065 - 3.87 4.4 C4 0.0018 0.10 0.042 0.01 0.04 0.0014 - 5.8 14.9 C5 0.0075 0.09 0.04 0.011 0.008 0.0067 - 6.53 0.46 C6 0.0035 0.4 0.04 0.009 0.04 0.0083 - 25.8 2.51 C7 0.0047 0.11 0.044 0.009 0.044 0.011 0.03 7.09 2.08 C8 0.0037 0.1 0.042 0.01 0.05 0.012 0.064 5.8 2.17 C9 0.0044 0.09 0.04 0.01 0.042 0.01 0.15 5.22 1.05 C10 0.004 0.11 0.04 0.009 0.04 0.01 0.27 7.09 2.08Sample No. Mechanical properties AS ㈣ Note YS (MPa) TS (MPa) El (%) r-value (rj Δτ-value (Δτ) PBYS (MPa) DBTT ro B1 252 362 43 1.65 0.25 304 • 70 0.13 IS B2 305 411 36 1.52 0.29 346 -50 0.12 IS B3 377 460 32 1.46 0.27 414 -40 0.09 IS B4 235 342 44 1.71 0.44 258 -60 0.59 cs B5 302 409 33 1.39 0.22 359 -60 0.73 cs B6 352 450 32 1.40 0.46 381 -40 0.59 cs B7 250 360 45 1.64 0.25 312 -80 0.09 IS B8 315 421 40 1.52 0.22 348 -60 0.11 IS B9 366 460 35 1.46 0.29 414 -50 0.11 IS B10 238 342 47 1.73 0.62 255 -70 0.52 cs B11 324 430 31 1.40 0.28 358 -60 0.45 cs B12 340 440 35 1.42 0.42 360 -40 0.62 cs B13 239 360 44 1.62 0.20 293 -80 0.09 IS B14 306 420 38 1.44 0.22 359 -60 0.10 IS B15 350 462 33 1.40 0.21 428 -50 0.09 IS B16 230 345 46 1.68 0.42 250 -70 0.42 cs B17 319 429 32 1.32 0.22 368 -60 0.35 cs B18 342 459 28 1.25 0.13 382 -40 0.42 cs B19 259 361 44 1.95 0.31 321 -80 0.12 IS B20 255 355 46 1.98 0.32 302 -80 0.1 IS B21 235 359 46 1.95 0.29 295 -80 0.09 IS B22 351 474 36 1.59 0.17 406 -60 0.1 IS B23 335 462 35 1.55 0.15 390 -60 0.11 IS B24 328 419 39 1.67 0.19 358 -70 0.09 IS Note · YS = yield strength, TS = tensile strength, El = elongation, r -Value: plasticity-anisotropy index, Δι · -value: in-plane anisotropy index, PBYS = post-baking yield strength, DBTT = 5 study the ductility of secondary operation embrittlement-transition temperature of embrittlement, AS = Average size of precipitates, IS = steel of the present invention, CS = steel for comparison, CVS = traditional steel [Examples 1-3] A1N precipitation strengthened MnS precipitated steel is provided to provide A1N according to the present invention. For precipitation-enhanced MnS-precipitated steel, the steel sheet shown in Table 5 is reheated to a temperature of 1,200 ° C and after 10, the steel sheet is finished rolled to provide the hot-rolled steel sheet, and the hot-rolled steel sheet is 200 ° C / min. Cool at a cooling rate and then wind at 650 ° C. Then, the hot-rolled steel sheet was cold-rolled at a reduction rate of 75% 28 200533765, and then the cold-rolled steel sheet was continuously annealed. Finish rolling is performed at 910 ° C, which is higher than the Ar3 transition temperature, and continuous annealing is performed by adding the steel sheet to a rate of 10 ° C / sec to 40 seconds to 750 ° C. Table 5 Sample No. Component (wt%) __ C Μη Ρ S Α1 Ν Mo Rl R-2 0.003- 0.005 0.05- 0.2 0.03- 0.06 0.005- 0.03 0.01- 0.1 0.005- 0.02 0.01- 0.2 10 1-5 C1 0.0045 0.1 0.035 0.01 0.04 0.0135-5.8 1.54 C2 0.0038 0.11 0.044 0.007 0.055 0.0079-9.11 3.63 C3 0.0042 0.08 0.053 0.009 0.055 0.0065-3.87 4.4 C4 0.0018 0.10 0.042 0.01 0.04 0.0014-5.8 14.9 C5 0.0075 0.09 0.04 0.011 0.008 0.0067-6.53 0.46 C6 0.0035 0.4 0.04 0.009 0.04 0.0083-25.8 2.51 C7 0.0047 0.11 0.044 0.009 0.044 0.011 0.03 7.09 2.08 C8 0.0037 0.1 0.042 0.01 0.05 0.012 0.064 5.8 2.17 C9 0.0044 0.09 0.04 0.01 0.042 0.01 0.15 5.22 1.05 C10 0.004 0.11 0.04 0.009 0.04 0.01 0.27 7.09 2.08

5 註:R-l = 0.58*Mn/S,R-2 = 0.52*A1/N 第6表 樣品 機械強度 AS 註 、泰號 YS TS El r-值 Ar-值 PBYS DBTT (um) (MPa) (MPa) (%) (rm) (Δγ) (MPa) CC) Cl 242 358 44 1.71 0.31 283 -70 0.07 IS C2 224 355 43 1.75 0.38 280 -70 0.09 IS C3 239 360 40 1.68 0.29 302 -70 0.11 IS C4 210 330 46 1.78 0.32 269 -70 0.11 cs C5 228 352 37 1.52 0.25 295 -70 0.12 cs C6 228 360 40 1.65 0.54 280 -70 0.41 cs C7 246 362 45 2.09 0.34 298 -80 0.08 IS C8 220 350 46 2.18 0.42 287 -80 0.07 IS C9 230 357 44 2.00 0.32 276 -80 0.11 IS CIO 239 362 43 1.79 0.27 300 -80 0.1 cs 29 200533765 各向異性度,E】=延伸率,Γ-值:塑性-各向異性指數△!*-伯. 轉變^殿物之平脆化 [實施例2-1] CuS沈澱之鋼 為提供依據本發明之CuS沈澱之鋼,於第7表所示之鋼 板重新加熱至1,200 °C之溫度及其後使鋼板精軋以提供熱 軋鋼板後,熱軋鋼板以400它/分之冷卻速率冷卻,然後於 650 °C捲繞。然後,熱軋鋼板以75%之降低率冷軋,其後 使冷軋鋼板連續退火。精軋係於910 °C實施,其係高於Ar3 10 轉變溫度,且連續退火係藉由以10°C/秒之速率使鋼材加熱 40秒至750 °C而實施。例外地,對於第7表之樣品D7,於 重新加熱至1,050 °C及其後精軋後,其係以400 °C/分之冷 卻速率冷卻,然後於650 °C捲繞。對於第7表之樣品D8至 D11,於重新加熱至1,200 °C之溫度及其後精軋後,其係 15 以450 °C/分之冷卻速率冷卻,然後於650 °C捲繞。 20 30 25 200533765 第7表 樣品編"5虎. 組份(重量%) C P S A1 N Cu Mo R-3 0.003-0.005 0.015 0.003-0.025 0.01-0.1 0.004 0.01-0.2 0.01-0.2 MO D1 0.0038 0.01 0.01 0.04 0.0025 0.035 - 1.75 D2 0.0045 0.009 0.008 0.04 0.0026 0.045 - 2.81 D3 0.0035 0.011 0.006 0.03 0.0012 0.06 - 5.0 D4 0.0042 0.009 0.005 0.04 0.0027 0.083 - 8.3 D5 0.0016 0.011 0.009 0.05 0.0038 0.05 - 2.78 D6 0.0037 0.009 0.008 0.04 0.0015 0.25 - 15.6 D7 0.0078 0.010 0.012 0.04 0.0024 0.064 - 2.67 D8 0.0035 0.011 0.009 0.024 0.0035 0.038 0.018 2.11 D9 0.0043 0.009 0.011 0.043 0.0026 0.04 0.083 1.82 D10 0.0039 0.01 0.01 0.038 0.0042 0.062 0.17 3.1 D11 0.004 0.012 0.011 0.028 0.0032 0.053 0.25 2.415 Note: Rl = 0.58 * Mn / S, R-2 = 0.52 * A1 / N Table 6 Sample mechanical strength AS Note, Thai number YS TS El r-value Ar-value PBYS DBTT (um) (MPa) (MPa) ) (%) (rm) (Δγ) (MPa) CC) Cl 242 358 44 1.71 0.31 283 -70 0.07 IS C2 224 355 43 1.75 0.38 280 -70 0.09 IS C3 239 360 40 1.68 0.29 302 -70 0.11 IS C4 210 330 46 1.78 0.32 269 -70 0.11 cs C5 228 352 37 1.52 0.25 295 -70 0.12 cs C6 228 360 40 1.65 0.54 280 -70 0.41 cs C7 246 362 45 2.09 0.34 298 -80 0.08 IS C8 220 350 46 2.18 0.42 287- 80 0.07 IS C9 230 357 44 2.00 0.32 276 -80 0.11 IS CIO 239 362 43 1.79 0.27 300 -80 0.1 cs 29 200533765 Anisotropy, E] = elongation, Γ-value: plasticity-anisotropy index △! * -Bo. Transformation ^ Plain embrittlement of the objects [Example 2-1] CuS-precipitated steel To provide the CuS-precipitated steel according to the present invention, the steel plate shown in Table 7 was reheated to 1,200 ° C After that, the steel sheet was finish-rolled to provide a hot-rolled steel sheet, the hot-rolled steel sheet was cooled at a cooling rate of 400 it / min, and then wound at 650 ° C. Then, the hot-rolled steel sheet was cold-rolled at a reduction rate of 75%, and thereafter the cold-rolled steel sheet was continuously annealed. Finish rolling is performed at 910 ° C, which is higher than the Ar3 10 transition temperature, and continuous annealing is performed by heating the steel at a rate of 10 ° C / sec for 40 seconds to 750 ° C. Exceptionally, for sample D7 in Table 7, after reheating to 1,050 ° C and subsequent finishing rolling, it was cooled at a cooling rate of 400 ° C / min and then wound at 650 ° C. For samples D8 to D11 in Table 7, after reheating to a temperature of 1,200 ° C and subsequent finishing rolling, it was cooled at a cooling rate of 450 ° C / min, and then wound at 650 ° C. 20 30 25 200533765 Table 7 sample compilation " 5 tiger. Composition (% by weight) CPS A1 N Cu Mo R-3 0.003-0.005 0.015 0.003-0.025 0.01-0.1 0.004 0.01-0.2 0.01-0.2 MO D1 0.0038 0.01 0.01 0.04 0.0025 0.035-1.75 D2 0.0045 0.009 0.008 0.04 0.0026 0.045-2.81 D3 0.0035 0.011 0.006 0.03 0.0012 0.06-5.0 D4 0.0042 0.009 0.005 0.04 0.0027 0.083-8.3 D5 0.0016 0.011 0.009 0.05 0.0038 0.05-2.78 D6 0.0037 0.00 0.008 0.04 0.0015 0.25-15.6 D7 0.0078 0.010 0.012 0.04 0.0024 0.064-2.67 D8 0.0035 0.011 0.009 0.024 0.0035 0.038 0.018 2.11 D9 0.0043 0.009 0.011 0.043 0.0026 0.04 0.083 1.82 D10 0.0039 0.01 0.01 0.038 0.0042 0.062 0.17 3.1 D11 0.004 0.012 0.011 0.028 0.0032 0.053 0.25 2.41

註:R-3 = 0.5*Cu/SNote: R-3 = 0.5 * Cu / S

第8表 樣口口 、綠號 機械強万 AS (um) 註 YS (Mpa) TS (MPa) El (%) r-值 (rj △r-值 (Δγ) PBYS (MPa) DBTT ro D1 219 310 49 1.88 0.41 265 -70 0.08 IS D2 224 325 47 1.83 0.36 275 -70 0.08 IS D3 225 330 45 1.79 0.38 289 -70 0.07 IS D4 240 335 45 1.75 0.30 311 -70 0.09 IS D5 205 290 50 1.88 0.46 235 -70 0.09 cs D6 216 299 49 1.80 0.38 240 -70 0.48 cs D7 256 339 40 1.53 0.29 320 -70 0.08 cs D8 214 310 48 2.10 2.9 260 -70 0.07 IS D9 228 320 47 2.01 3.1 271 -70 0.07 IS DIO 220 325 46 1.99 2.7 279 -70 0.08 IS Dll 219 319 48 1.71 2.6 285 -70 0.1 csTable 8 Sample port, Green No. Mechanical strong Wan AS (um) Note YS (Mpa) TS (MPa) El (%) r-value (rj △ r-value (Δγ) PBYS (MPa) DBTT ro D1 219 310 49 1.88 0.41 265 -70 0.08 IS D2 224 325 47 1.83 0.36 275 -70 0.08 IS D3 225 330 45 1.79 0.38 289 -70 0.07 IS D4 240 335 45 1.75 0.30 311 -70 0.09 IS D5 205 290 50 1.88 0.46 235 -70 0.09 cs D6 216 299 49 1.80 0.38 240 -70 0.48 cs D7 256 339 40 1.53 0.29 320 -70 0.08 cs D8 214 310 48 2.10 2.9 260 -70 0.07 IS D9 228 320 47 2.01 3.1 271 -70 0.07 IS DIO 220 325 46 1.99 2.7 279 -70 0.08 IS Dll 219 319 48 1.71 2.6 285 -70 0.1 cs

5 註:YS =屈服強度,TS =抗張強度,Η =延伸率,r-值:塑性-各向異性指數,△!*-值:面内 各向異性指數,PBYS =後烘烤屈服強度,DBTT=用於研究二級操作脆化之延展性-脆 轉變溫度,AS =沈澱物之平均尺寸,1S =本發明之鋼,CS =比較用之鋼 [實施例2-2]具固溶體強化之高強度之CuS沈澱之鋼 為提供依據本發明之具固溶體強化之高強度之C Vi S沈 10 澱之鋼,於第9表所示之鋼板重新加熱至1,200 °C之溫度及 其後使鋼板精軋以提供熱軋鋼板後,熱軋鋼板以400 °C/ 31 200533765 分之冷卻速率冷卻,然後於650 °C捲繞。然後,熱軋鋼板 以75%之降低率冷軋,其後使冷軋鋼板連續退火。精軋係 於910 °C實施,其係高於Ar3轉變溫度,且連續退火係藉 由以10°C/秒之速率使鋼材加熱40秒至750 °C而實施。 5 第9表 樣品 、♦▲號. 組份(重量%) C P Si Cr S A1 N Cu Mo R-3 0.003- 0.005 0.2 0.1-0.8 0.2-1.2 0.003- 0.025 0.01-0.1 0.004 0.01-0.2 0.01-0.2 MO E1 0.0038 0.050 - - 0.006 0.04 0.0025 0.095 - 7.92 E2 0.0046 0.11 - - 0.008 0.03 0.0026 0.06 - 3.75 E3 0.0033 0.148 - - 0.01 0.04 0.0018 0.038 - 1.9 E4 0.0018 0.050 - - 0.011 0.04 0.0024 0.054 - 2.45 E5 0.0065 0.115 - - 0.009 0.03 0.0025 0.082 - 4.56 E6 0.0038 0.15 - - 0.006 0.05 0.0028 0.25 - 20.8 E7 0.0039 0.01 0.25 - 0.006 0.04 0.0026 0.1 - 8.25 E8 0.0042 0.011 0.45 - 0.008 0.05 0.0016 0.086 - 5.35 E9 0.0035 0.015 0.65 - 0.012 0.05 0.0028 0.051 - 2.14 E10 0.0018 0.009 0.25 - 0.009 0.03 0.0042 0.077 - 4.28 E11 0.0077 0.011 0.42 - 0.011 0.04 0.0042 0.046 - 2.09 E12 0.0042 0.01 0.62 - 0.007 0.05 0.0039 0.252 - 18 E13 0.0035 0.009 - 0.34 0.005 0.05 0.0014 0.08 - 8.00 E14 0.0038 0.011 - 0.62 0.01 0.04 0.0022 0.09 - 4.5 E15 0.0045 0.01 - 0.83 0.018 0.04 0.0028 0.08 - 2.22 E16 0.0016 0.01 - 0.34 0.011 0.03 0.0017 0.08 - 3.64 E17 0.0072 0.009 - 0.59 0.008 0.04 0.0026 0.12 - 7.5 E18 0.0035 0.012 - 0.80 0.005 0.05 0.0013 0.26 - 26 E19 0.0045 0.054 - - 0.008 0.024 0.0022 0.06 0.02 3.75 E20 0.0036 0.011 0.27 - 0.008 0.034 0.0028 0.06 0.018 3.75 E21 0.0032 0.01 - 0.32 0.011 0.035 0.0025 0.054 0.022 1.23 32 200533765 註:R-3 = 0.5*Cu/S 第10表5 Note: YS = yield strength, TS = tensile strength, Η = elongation, r-value: plasticity-anisotropy index, △! *-Value: in-plane anisotropy index, PBYS = post-baking yield strength DBTT = ductility used to study the embrittlement of the secondary operation-brittle transition temperature, AS = average size of precipitates, 1S = steel of the present invention, CS = steel for comparison [Example 2-2] with solid solution Solidified high strength CuS precipitated steel is to provide high strength C Vi S Shen 10 precipitated steel with solid solution strengthening according to the present invention. The steel plate shown in Table 9 is reheated to 1,200 ° C. After that, the steel sheet was finish-rolled to provide a hot-rolled steel sheet, the hot-rolled steel sheet was cooled at a cooling rate of 400 ° C / 31 200533765 minutes, and then wound at 650 ° C. Then, the hot-rolled steel sheet was cold-rolled at a reduction rate of 75%, and thereafter the cold-rolled steel sheet was continuously annealed. Finish rolling is performed at 910 ° C, which is higher than the Ar3 transition temperature, and continuous annealing is performed by heating the steel at a rate of 10 ° C / second for 40 seconds to 750 ° C. 5 Table 9 samples, No. ▲▲. Components (% by weight) CP Si Cr S A1 N Cu Mo R-3 0.003- 0.005 0.2 0.1-0.8 0.2-1.2 0.003- 0.025 0.01-0.1 0.004 0.01-0.2 0.01-0.2 MO E1 0.0038 0.050--0.006 0.04 0.0025 0.095-7.92 E2 0.0046 0.11--0.008 0.03 0.0026 0.06-3.75 E3 0.0033 0.148--0.01 0.04 0.0018 0.038-1.9 E4 0.0018 0.050--0.011 0.04 0.0024 0.054-2.45 E5 0.0065 0.115-- 0.009 0.03 0.0025 0.082-4.56 E6 0.0038 0.15--0.006 0.05 0.0028 0.25-20.8 E7 0.0039 0.01 0.25-0.006 0.04 0.0026 0.1-8.25 E8 0.0042 0.011 0.45-0.008 0.05 0.0016 0.086-5.35 E9 0.0035 0.015 0.65-0.012 0.05 0.0028 0.051-2.14 E10 0.0018 0.009 0.25-0.009 0.03 0.0042 0.077-4.28 E11 0.0077 0.011 0.42-0.011 0.04 0.0042 0.046-2.09 E12 0.0042 0.01 0.62-0.007 0.05 0.0039 0.252-18 E13 0.0035 0.009-0.34 0.005 0.05 0.0014 0.08-8.00 E14 0.0038 0.011-0.62 0.01 0.04 0.0022 0.09-4.5 E15 0.0045 0.01-0.83 0.018 0.04 0.0028 0.08-2.22 E16 0.0016 0.01-0.34 0.011 0.03 0.0017 0.0 8-3.64 E17 0.0072 0.009-0.59 0.008 0.04 0.0026 0.12-7.5 E18 0.0035 0.012-0.80 0.005 0.05 0.0013 0.26-26 E19 0.0045 0.054--0.008 0.024 0.0022 0.06 0.02 3.75 E20 0.0036 0.011 0.27-0.008 0.034 0.0028 0.06 0.018 3.75 E21 0.0032 0.01 -0.32 0.011 0.035 0.0025 0.054 0.022 1.23 32 200533765 Note: R-3 = 0.5 * Cu / S Table 10

樣品編 號· Λ/C ^----------«Π 機械性質 AS (MPa) TS (MPa) El r-值 (rm) △ r-值 (Δγ) PBYS (MPa) DBTT ro ㈣ 5王 E1 248 360 43 1.70 0.28 310 -70 0.09 IS E2 308 405 ~τΓ 1.58 0.28 340 -50 0.08 IS E3 367 465 33 1.46 0.26 410 -40 0.07 IS E4 230 340 45 1.70 0.44 262 -60 0.49 cs E5 322 415 30 1.35 0.20 365 -60 0.73 cs E6 345 445 32 1.40 0.46 380 -40 0.59 cs E7 250 350 47 1.69 0.23 318 -80 0.09 IS E8 325 415 42 1.55 0.22 368 -60 0.08 IS E9 356 465 35 1.44 0.21 424 -50 0.08 IS E10 238 352 47 1.69 0.58 250 -70 0.45 cs E11 325 425 32 1.40 0.28 358 -60 0.45 cs E12 345 445 32 1.42 0.42 370 -40 0.62 cs E13 242 365 43 1.69 0.21 302 -80 0.09 IS E14 310 425^ 38 1.46 0.23 365 -60 0.08 IS E15 352 454, 36 1.45 0.21 408 -70 0.07 IS E16 "Τ' 1 〇 230 345 46 1.68 0.32 265 -70 0.07 cs Ε17 315 413 28 1.32 0.22 365 -60 0.09 cs Ε18 348 461 27 1.24 0.13 372 -60 0.42 cs Ε19 ΙΓΟ A 254 365 43 2.08 2.8 322 -70 0.09 IS bzU mi 247 348 48 1.95 0.28 295 -80 0.09 IS t21 240 35厂 45 1.93 0.27 298 -80 0.07 IS 註:YS=屈服強唐 5 各向異性指數強度,E1 =延伸率,r-值:塑性-各向異性指數,Ar-值:面内 轉變溫度,AS 夕f/f烤屈服強度,DBTT =用於研究二級操作脆化之延展性-脆 —,九教物之千岣尺寸,IS =本發明之鋼,CS =比較用之鋼 [貫施例2-3 ]具A1N沈澱強化之CuS沈澱之鋼 為提供依據本發明之具A1N沈澱強化之cus沈澱之 鋼’於第11表所示之鋼板重新加熱至UOO t之溫度及其 10後使鋼板精軋以提供熱軋鋼板後,熱軋鋼板以400它/分之 冷卻速率冷卻,然後於650 t捲繞。然後,熱軋鋼板以75% 之降低率冷軋,其後使冷軋鋼板連續退火。精軋係於910 33 200533765 °C實施,其係高於Ar3轉變溫度,且連續退火係藉由以10 °C/秒之速率使鋼材加熱40秒至750 °C而實施。例外地,對 於第11表之樣品F8至F10,於重新加熱至1,200 °C及其後 精軋後,此等樣品係以550 °C/分之冷卻速率冷卻,然後於 5 650 °C 捲繞。 第11表 樣品 編號. Component (wt%) C P S A1 N Cu Mo R-3 R-2 0.003- 0.005 0.03- 0.06 0.003- 0.025 0.01- 0.1 0.005- 0.02 0.01- 0.2 0.01- 0.2 MO 1-5 F1 0.0042 0.041 0.005 」 0.045 0.0125 0.09 - 9 1.87 F2 0.0035 0.042 0.008 0.05 0.0072 0.052 - 3.25 3.61 F3 0.0045 0.043 0.014 0.04 0.0052 0.07 - 2.5 4 F4 0.0015 0.04 0.01 0.05 0.0014 0.08 - 4 18.6 F5 0.0073 0.037 0.008 0.01 0.0077 0.1 - 6.25 0.68 F6 0.0036 0.042 0.006 0.04 0.0083 0.155 - 12.9 2.51 F7 0.0037 0.044 0.011 0.055 0.012 0.09 0.018 4.09 2.38 F8 0.0043 0.04 0.009 0.045 0.0092 0.088 0.078 4.89 2.54 F9 0.0035 0.044 0.012 0.054 0.011 0.097 0.16 4.04 2.55 F10 0.0045 0.042 0.008 0.053 0.0084 0.082 0.25 5.13 3.28Sample number Λ / C ^ ---------- «Π Mechanical properties AS (MPa) TS (MPa) El r-value (rm) △ r-value (Δγ) PBYS (MPa) DBTT ro ㈣ King 5 E1 248 360 43 1.70 0.28 310 -70 0.09 IS E2 308 405 ~ τΓ 1.58 0.28 340 -50 0.08 IS E3 367 465 33 1.46 0.26 410 -40 0.07 IS E4 230 340 45 1.70 0.44 262 -60 0.49 cs E5 322 415 30 1.35 0.20 365 -60 0.73 cs E6 345 445 32 1.40 0.46 380 -40 0.59 cs E7 250 350 47 1.69 0.23 318 -80 0.09 IS E8 325 415 42 1.55 0.22 368 -60 0.08 IS E9 356 465 35 1.44 0.21 424 -50 0.08 IS E10 238 352 47 1.69 0.58 250 -70 0.45 cs E11 325 425 32 1.40 0.28 358 -60 0.45 cs E12 345 445 32 1.42 0.42 370 -40 0.62 cs E13 242 365 43 1.69 0.21 302 -80 0.09 IS E14 310 425 ^ 38 1.46 0.23 365 -60 0.08 IS E15 352 454, 36 1.45 0.21 408 -70 0.07 IS E16 " T '1 〇230 345 46 1.68 0.32 265 -70 0.07 cs Ε17 315 413 28 1.32 0.22 365 -60 0.09 cs Ε18 348 461 27 1.24 0.13 372 -60 0.42 cs Ε19 ΙΓΟ A 254 365 43 2.08 2.8 322 -70 0.09 IS bzU mi 247 348 48 1.95 0.28 295 -80 0.09 IS t21 240 35 Factory 45 1.93 0.27 298 -80 0.07 IS Note: YS = Yield of Strong Tang 5 Anisotropy index strength, E1 = elongation, r-value: plasticity-anisotropy index, Ar-value: in-plane transition temperature, AS evening f / f yield strength, DBTT = ductility used to study the embrittlement of the secondary operation-brittleness-, the size of the nine thousand materials, IS = the steel of the present invention, CS = the steel used for comparison [贯 施Example 2-3] A1N precipitation strengthened CuS precipitated steel is provided to provide the A1N precipitation strengthened cus precipitated steel according to the present invention. 'The steel plate shown in Table 11 is reheated to a temperature of UOO t and the temperature of After finishing rolling the steel sheet to provide a hot-rolled steel sheet, the hot-rolled steel sheet is cooled at a cooling rate of 400 it / min, and then wound at 650 t. Then, the hot-rolled steel sheet was cold-rolled at a reduction rate of 75%, and thereafter the cold-rolled steel sheet was continuously annealed. Finish rolling is performed at 910 33 200533765 ° C, which is higher than the Ar3 transition temperature, and continuous annealing is performed by heating the steel at a rate of 10 ° C / sec for 40 seconds to 750 ° C. Exceptionally, for samples F8 to F10 in Table 11, after reheating to 1,200 ° C and subsequent finishing rolling, these samples were cooled at a cooling rate of 550 ° C / min and then at 5 650 ° C Coiled. Table 11 Sample No. Component (wt%) CPS A1 N Cu Mo R-3 R-2 0.003- 0.005 0.03- 0.06 0.003- 0.025 0.01- 0.1 0.005- 0.02 0.01- 0.2 0.01- 0.2 MO 1-5 F1 0.0042 0.041 0.005 '' 0.045 0.0125 0.09-9 1.87 F2 0.0035 0.042 0.008 0.05 0.0072 0.052-3.25 3.61 F3 0.0045 0.043 0.014 0.04 0.0052 0.07-2.5 4 F4 0.0015 0.04 0.01 0.05 0.0014 0.08-4 18.6 F5 0.0073 0.037 0.008 0.01 0.0077 0.1-6.25 0.68 F6 0.0036 0.042 0.006 0.04 0.0083 0.155-12.9 2.51 F7 0.0037 0.044 0.011 0.055 0.012 0.09 0.018 4.09 2.38 F8 0.0043 0.04 0.009 0.045 0.0092 0.088 0.078 4.89 2.54 F9 0.0035 0.044 0.012 0.054 0.011 0.097 0.16 4.04 2.55 F10 0.0045 0.042 0.008 0.053 0.0084 0.082 0.25 5.13 3.28

註:R-2 = 0·52*Α1/Ν,R-3 = 0.5*Cu/S 10 34 200533765 第12表Note: R-2 = 0.52 * Α1 / Ν, R-3 = 0.5 * Cu / S 10 34 200533765 Table 12

樣品編 號 機械性質 AS (um) 註 YS (MPa) TS (MPa) El (%) r-值 (rm) △r-值 (△r) PBYS (MPa) DBTT ro F1 240 353 45 1.70 0.32 296 -70 0.06 IS F2 232 350 44 1.72 0.28 291 -70 0.07 IS F3 245 362 46 1.80 0.27 323 -70 0.05 CS F4 216 340 46 1.78 0.35 260 -70 0.08 CS F5 243 360 35 1.49 0.25 308 -70 0.07 CS F6 238 355 43 1.69 0.44 253 -70 0.41 CS F7 235 348 46 1.94 0.24 296 -70 0.06 IS F8 237 355 44 1.93 0.22 302 -70 0.08 IS F9 237 360 46 1.97 0.26 312 -70 0.06 IS F10 231 346 46 1.70 0.27 300 -70 0.07 CS 註:YS =屈服強度,TS =抗張強度,El =延伸率,r-值··塑性-各向異性指數,Δτ*-值··面内 各向異性指數,PBYS =後烘烤屈服強度,DBTT=用於研究二級操作脆化之延展性-脆 5 轉變溫度,AS =沈澱物之平均尺寸,IS =本發明之鋼,CS =比較用之鋼 [實施例3-1] MnCu沈澱之鋼 為提供依據本發明之MnCu沈澱之鋼,於第13表所示 之鋼板重新加熱至1,200 °C之溫度及其後使鋼板精軋以提 供熱軋鋼板後,熱軋鋼板以600 °C/分之冷卻速率冷卻,然 10 後於650 °C捲繞。然後,熱軋鋼板以75%之降低率冷軋, 其後使冷軋鋼板連續退火。精軋係於910 °C實施,其係高 於Ar3轉變溫度,且連續退火係藉由以10°C/秒之速率使鋼 材加熱40秒至750 °C而實施。 15 35 200533765 第13表 樣品 編號 組份(重1 y%) C Μη Ρ S Α1 N Cu Mo R-4 R-5 0.003- 0.005 0.03-0.2 0.015 0.003- 0.025 0.01-0.1 0.004 0.01-0.2 0.01-0.2 0.3 2-20 G1 0.0041 0.08 0.012 0.02 0.05 0.0013 0.03 - 0.11 2.75 G2 0.0038 0.1 0.009 0.012 0.04 0.0021 0.04 - 0.14 5.83 G3 0.0044 0.15 0.01 0.015 0.04 0.0024 0.05 - 0.2 6.67 G4 0.0042 0.17 0.008 0.009 0.04 0.0012 0.12 - 0.29 16.1 G5 0.0012 0.12 0.01 0.012 0.05 0.0014 0.05 - 0.17 7.08 G6 0.0064 0.15 0.009 0.01 0.04 0.0023 0.03 - 0.18 9.0 G7 0.0042 0.45 0.01 0.011 0.05 0.0013 0.18 - 0.63 28.6 G8 0.0035 0.11 0.011 0.02 0.045 0.0032 0.03 0.019 0.14 3.5 G9 0.0033 0.12 0.01 0.014 0.034 0.0019 0.046 0.082 0.17 5.93 G10 0.0043 0.12 0.014 0.009 0.027 0.0034 0.062 0.16 0.18 10.1 G11 0.0045 0.15 0.008 0.014 0.033 0.0032 0.085 0.25 0.24 8.39Sample number Mechanical properties AS (um) Note YS (MPa) TS (MPa) El (%) r-value (rm) △ r-value (△ r) PBYS (MPa) DBTT ro F1 240 353 45 1.70 0.32 296 -70 0.06 IS F2 232 350 44 1.72 0.28 291 -70 0.07 IS F3 245 362 46 1.80 0.27 323 -70 0.05 CS F4 216 340 46 1.78 0.35 260 -70 0.08 CS F5 243 360 35 1.49 0.25 308 -70 0.07 CS F6 238 355 43 1.69 0.44 253 -70 0.41 CS F7 235 348 46 1.94 0.24 296 -70 0.06 IS F8 237 355 44 1.93 0.22 302 -70 0.08 IS F9 237 360 46 1.97 0.26 312 -70 0.06 IS F10 231 346 46 1.70 0.27 300 -70 0.07 CS Note: YS = yield strength, TS = tensile strength, El = elongation, r-value ·· plasticity-anisotropy index, Δτ * -value ·· in-plane anisotropy index, PBYS = post-bake yield Strength, DBTT = ductility used to study embrittlement in the secondary operation-brittle 5 transition temperature, AS = average size of precipitates, IS = steel of the invention, CS = steel for comparison [Example 3-1] MnCu The precipitated steel is to provide the MnCu precipitated steel according to the present invention. The steel plate shown in Table 13 is reheated to a temperature of 1,200 ° C and thereafter the steel plate is finish-rolled to improve the temperature. After the hot rolled steel sheet, hot rolled steel sheet to 600 ° C / per cooling rate, then after 10 wound 650 ° C. Then, the hot-rolled steel sheet was cold-rolled at a reduction rate of 75%, and thereafter the cold-rolled steel sheet was continuously annealed. Finish rolling is performed at 910 ° C, which is higher than the Ar3 transition temperature, and continuous annealing is performed by heating the steel at a rate of 10 ° C / second for 40 seconds to 750 ° C. 15 35 200533765 Table 13 Sample number component (weight 1 y%) C Μη Ρ S Α1 N Cu Mo R-4 R-5 0.003- 0.005 0.03-0.2 0.015 0.003- 0.025 0.01-0.1 0.004 0.01-0.2 0.01-0.2 0.3 2-20 G1 0.0041 0.08 0.012 0.02 0.05 0.0013 0.03-0.11 2.75 G2 0.0038 0.1 0.009 0.012 0.04 0.0021 0.04-0.14 5.83 G3 0.0044 0.15 0.01 0.015 0.04 0.0024 0.05-0.2 6.67 G4 0.0042 0.17 0.008 0.009 0.04 0.0012 0.12-0.29 16.1 G5 0.0012 0.12 0.01 0.012 0.05 0.0014 0.05-0.17 7.08 G6 0.0064 0.15 0.009 0.01 0.04 0.0023 0.03-0.18 9.0 G7 0.0042 0.45 0.01 0.011 0.05 0.0013 0.18-0.63 28.6 G8 0.0035 0.11 0.011 0.02 0.045 0.0032 0.03 0.019 0.14 3.5 G9 0.0033 0.12 0.01 0.014 0.034 0.0019 0.046 0.082 0.17 5.93 G10 0.0043 0.12 0.014 0.009 0.027 0.0034 0.062 0.16 0.18 10.1 G11 0.0045 0.15 0.008 0.014 0.033 0.0032 0.085 0.25 0.24 8.39

註:R-4 = Mn+Cu, R-5 = 05*(Mn+Cu)/S 第14表Note: R-4 = Mn + Cu, R-5 = 05 * (Mn + Cu) / S Table 14

[實施例3·2]具固溶體強化之高強度之MnCu沈澱之鋼 為提供依據本發明之具固溶體強化之高強度之Μ n C U 沈澱之鋼,於第15表所示之鋼板重新加熱至1,200 °C之溫 36 10 200533765 度及其後使鋼板精軋以提供熱軋鋼板後,熱軋鋼板以600 °C/分之冷卻速率冷卻,然後於650 °C捲繞。然後,熱軋鋼 板以75%之降低率冷軋,其後使冷軋鋼板連續退火。精軋 係於910 °C實施,其係高於Ar3轉變溫度,且連續退火係 5 藉由以10°C/秒之速率使鋼材加熱40秒至750 °C而實施。 10 15 20 37 200533765 第15表 樣 組份(重量%) 品 C Μη Ρ Si Cr S A] N Cu Mo R-4 R-5 編 0.003- 0.03- 0.2 0.1- 0.2- 0.003- 0.0 Ι 0.005- 0.01- 0.3 2- 號 0.005 0.2 0.8 1.2 0.025 Ο. 1 0.004 0.2 0.2 20 H1 0.0042 0.06 0.039 - - 0.015 0.05 0.0025 0.02 0.08 2.67 H2 0.0045 0.1 0.041 - - 0.018 0.04 0.0023 0.03 - 0.13 3.61 H3 0.0037 0.12 0.09 - - 0.016 0.05 0.0032 0.04 0.16 5 H4 0.0045 0.18 0.14 - - 0.011 0.04 0.0028 0.1 - 0.28 12.7 H5 0.0018 0.1 0.04 - - 0.012 0.05 0.0024 0.1 - 0.2 8.33 H6 0.0075 0.15 0.1 - - 0.012 0.03 0.0022 0.06 - 0.21 8.75 H7 0.0043 0.3 0.14 - - 0.008 0.04 0.0015 0.15 0.45 28.1 H8 0.004 0.09 0.04 - - 0.013 0.035 0.0029 0.028 0.017 0.12 4.54 H9 0.0044 0.11 0.094 - - 0.012 0.026 0.0035 0.047 0.072 0.16 6.54 H10 0.0037 0.12 0.145 - - 0.01 0.042 0.0018 0.088 0.16 0.21 10.4 H11 0.0045 0.08 0.043 - - 0.009 0.037 0.0032 0.035 0.25 0.16 6.39 H12 0.0041 0.06 0.01 0.18 - 0.018 0.04 0.0019 0.04 - 0.1 5 H13 0.0036 0.1 0.009 0.17 - 0.015 0.05 0.0026 0.03 - 0.13 7.22 H14 0.0038 0.13 0.012 0.35 - 0.015 0.04 0.0032 0.03 - 0.16 6.67 H15 0.0045 0.22 0.012 0.55 - 0.01 0.04 0.0032 0.05 - 0.27 13.5 H16 0.0021 0.12 0.009 0.2 - 0.011 0.05 0.0024 0.12 - 0.24 10.9 H17 0.0064 0.12 0.01 0.34 - 0.012 0.04 0.0028 0.07 - 0.19 7.9 H18 0.0044 0.25 0.012 0.53 - 0.009 0.05 0.0022 0.18 - 0.43 23.9 H19 0.0039 0.11 0.012 0.21 - 0.014 0.034 0.0029 0.044 0.017 0.15 5.5 H20 0.0045 0.12 0.009 0.32 - 0.011 0.042 0.0042 0.038 0.075 0.16 7.18 H21 0.0036 0.14 0.012 0.62 - 0.009 0.033 0.0022 0.063 0.16 0.20 11.3 H22 0.0042 0.09 0.013 0.2 - 0.01 0.038 0.0033 0.053 0.25 0.14 7.15 H23 0.0044 0.07 0.009 - 0.25 0.017 0.04 0.0018 0.03 - 0.1 2.94 H24 0.0039 0.Π 0.01 - 0.24 0.015 0.03 0.0022 0.03 - 0.14 4.67 H25 0.0042 0.15 0.011 - 0.55 0.015 0.04 0.0023 0.05 - 0.2 6.67 H26 0.0046 0.18 0.012 - 0.86 0.01 0.04 0.0016 0.04 - 0.22 11 38 200533765 H27 0.0022 0.15 0.01 - 0.24 0.015 0.04 0.0026 0.1 - 0.25 8.33 H28 0.0067 0.15 0.012 - 0.52 0.011 0.05 0.0025 0.11 - 0.26 11.8 H29 0.0043 0.2 0.009 - 0.88 0.008 0.03 0.0013 0.15 - 0.35 21.9 H30 0.0039 0.09 0.012 - 0.23 0.012 0.034 0.0028 0.043 0.019 0.13 5.54 H31 0.0045 0.12 0.01 - 0.58 0.013 0.042 0.0033 0.056 0.079 0.18 6.77 H32 0.0037 0.15 0.009 - 0.83 0.011 0.023 0.0021 0.063 0.17 0.21 9.68 H33 0.0042 0.1 0.011 - 0.22 0.011 0.035 0.0031 0.073 0.27 0.17 7.86[Example 3 · 2] The steel with solid solution strengthening and high strength MnCu precipitation is a steel provided with Mn Cu precipitation with solid solution strengthening and high strength according to the present invention. The steel plate shown in Table 15 After reheating to a temperature of 1,200 ° C 36 10 200533765 degrees and thereafter finishing the steel sheet to provide a hot-rolled steel sheet, the hot-rolled steel sheet was cooled at a cooling rate of 600 ° C / min, and then wound at 650 ° C. Then, the hot-rolled steel sheet was cold-rolled at a reduction rate of 75%, and thereafter the cold-rolled steel sheet was continuously annealed. The finish rolling is performed at 910 ° C, which is higher than the Ar3 transition temperature, and the continuous annealing system 5 is performed by heating the steel at a rate of 10 ° C / second for 40 seconds to 750 ° C. 10 15 20 37 200533765 Table 15 Sample composition (% by weight) Product C Μη Ρ Si Cr SA] N Cu Mo R-4 R-5 Edit 0.003- 0.03- 0.2 0.1- 0.2- 0.003- 0.0 Ι 0.005- 0.01- 0.3 2-No. 0.005 0.2 0.8 1.2 0.025 〇. 1 0.004 0.2 0.2 20 H1 0.0042 0.06 0.039--0.015 0.05 0.0025 0.02 0.08 2.67 H2 0.0045 0.1 0.041--0.018 0.04 0.0023 0.03-0.13 3.61 H3 0.0037 0.12 0.09--0.016 0.05 0.0032 0.04 0.16 5 H4 0.0045 0.18 0.14--0.011 0.04 0.0028 0.1-0.28 12.7 H5 0.0018 0.1 0.04--0.012 0.05 0.0024 0.1-0.2 8.33 H6 0.0075 0.15 0.1--0.012 0.03 0.0022 0.06-0.21 8.75 H7 0.0043 0.3 0.14--0.008 0.04 0.0015 0.15 0.45 28.1 H8 0.004 0.09 0.04--0.013 0.035 0.0029 0.028 0.017 0.12 4.54 H9 0.0044 0.11 0.094--0.012 0.026 0.0035 0.047 0.072 0.16 6.54 H10 0.0037 0.12 0.145--0.01 0.042 0.0018 0.088 0.16 0.21 10.4 H11 0.0045 0.08 0.043--0.009 0.037 0.0032 0.035 0.25 0.16 6.39 H12 0.0041 0.06 0.01 0.18-0.018 0.04 0.0019 0.04-0.1 5 H13 0.0036 0.1 0.009 0.17-0.015 0.05 0.0026 0.0 3-0.13 7.22 H14 0.0038 0.13 0.012 0.35-0.015 0.04 0.0032 0.03-0.16 6.67 H15 0.0045 0.22 0.012 0.55-0.01 0.04 0.0032 0.05-0.27 13.5 H16 0.0021 0.12 0.009 0.2-0.011 0.05 0.0024 0.12-0.24 10.9 H17 0.0064 0.12 0.01 0.34-0.012 0.04 0.0028 0.07-0.19 7.9 H18 0.0044 0.25 0.012 0.53-0.009 0.05 0.0022 0.18-0.43 23.9 H19 0.0039 0.11 0.012 0.21-0.014 0.034 0.0029 0.044 0.017 0.15 5.5 H20 0.0045 0.12 0.009 0.32-0.011 0.042 0.0042 0.038 0.075 0.16 7.18 H21 0.0036 0.14 0.012 0.62 0.62 -0.009 0.033 0.0022 0.063 0.16 0.20 11.3 H22 0.0042 0.09 0.013 0.2-0.01 0.038 0.0033 0.053 0.25 0.14 7.15 H23 0.0044 0.07 0.009-0.25 0.017 0.04 0.0018 0.03-0.1 2.94 H24 0.0039 0.Π 0.01-0.24 0.015 0.03 0.0022 0.03-0.14 4.67 H25 0.0042 0.15 0.011-0.55 0.015 0.04 0.0023 0.05-0.2 6.67 H26 0.0046 0.18 0.012-0.86 0.01 0.04 0.0016 0.04-0.22 11 38 200533765 H27 0.0022 0.15 0.01-0.24 0.015 0.04 0.0026 0.1-0.25 8.33 H28 0.0067 0.15 0.012-0.52 0.011 0.05 0.0025 0.11 -0. 26 11.8 H29 0.0043 0.2 0.009-0.88 0.008 0.03 0.0013 0.15-0.35 21.9 H30 0.0039 0.09 0.012-0.23 0.012 0.034 0.0028 0.043 0.019 0.13 5.54 H31 0.0045 0.12 0.01-0.58 0.013 0.042 0.0033 0.056 0.079 0.18 6.77 H32 0.0037 0.15 0.009-0.83 0.011 0.023 0.0021 0.0021 0.063 0.17 0.21 9.68 H33 0.0042 0.1 0.011-0.22 0.011 0.035 0.0031 0.073 0.27 0.17 7.86

註:R-4 = Mn+Cu, R-5 = 05*(Mn+Cu)/S 第16表 樣品 編 號· Mechanical properties AS _ PN(數目 /公厘2) 註 YS (Mpa) TS (MPa ) El (% ) r-值 (rm) △r-值 (△r) PBYS (MPa) DBTT (°C) H1 265 360 49 1.98 0.25 346 -70 0.05 5.5X10S" IS H2 258 358 50 1.92 0.28 345 -70 0.05 4.0X10s IS H3 308 410 43 1.71 0.21 394 -60 0.06 2.2X10C IS H4 335 442 37 1.60 0.19 428 -50 0.11 9.5X1 ϋΰ IS H5 255 350 49 1.92 0.31 295 -70 0.06 4.3Xl(f — cs H6 304 400 35 1.45 0.25 382 -60 0.06 3.5X10S cs H7 351 454 32 1.38 0.22 395 -40 0.61 2.3X104 cs H8 258 360 49 2.35 0.28 345 -70 0.06 4.6X10s IS H9 311 408 44 1.98 0.21 389 -60 0.05 3.3Xl〇s IS H10 330 445 38 1.82 0.2 422 -50 0.09 9.5X107 IS H11 264 364 47 1.91 0.22 350 -70 0.06 4.7X10C cs H12 245 350 50 1.85 0.28 338 -80 0.06 4.5X10s IS H13 253 355 49 1.83 0.29 342 -80 0.07 2.5X103 IS H14 293 405 45 1.65 0.21 390 -60 0.06 4.0X103 IS H15 355 453 38 1.51 0.22 435 -60 0.09 9.1X10° IS H16 234 342 52 1.85 0.33 275 -80 0.09 4.2X106 cs H17 308 412 36 1.48 0.21 398 -70 0.09 3.2X10C cs H18 335 448 34 1.38 0.57 380 -60 0.51 9.3X104 cs H19 240 352 50 2.28 2.9 335 -80 0.05 8.2X10g IS H20 303 410 44 1.88 2.1 387 -60 0.06 4.5X10G IS H21 359 460 37 1.7 2.0 437 -60 0.08 4.1X10° IS H22 252 359 50 1.86 2.2 339 -80 0.07 4.5X10G cs H23 250 355 48 1.89 0.28 335 -80 0.06 9.5Xl(f IS H24 245 355 47 1.85 0.27 348 -80 0.06 6.5X10s IS H25 288 395 46 1.69 0.25 375 -60 0.07 2.1Xl(f IS H26 348 443 37 1.54 0.21 420 -60 0.09 7.5X106 IS H27 244 345 46 1.88 0.36 283 -80 0.09 5.2X10g cs H28 297 402 33 1.45 0.21 365 - 70 0.09 3.2X103 cs H29 345 454 33 1.36 0.47 385 -60 0.51 9.3X104 cs H30 252 358 48 2.15 0.24 330 -80 0.07 8.3X102 IS H31 292 390 43 1.92 0.2 372 -60 0.09 3.2Χ1ϋβ' IS H32 343 448 38 1.72 0.18 421 -60 0.07 7.5X10° IS H33 251 357 47 1.79 0.2 341 -80 0.06 6.5X10° csNote: R-4 = Mn + Cu, R-5 = 05 * (Mn + Cu) / S Table 16 Sample No. Mechanical properties AS PN (number / mm 2) Note YS (Mpa) TS (MPa) El (%) r-value (rm) △ r-value (△ r) PBYS (MPa) DBTT (° C) H1 265 360 49 1.98 0.25 346 -70 0.05 5.5X10S " IS H2 258 358 50 1.92 0.28 345 -70 0.05 4.0X10s IS H3 308 410 43 1.71 0.21 394 -60 0.06 2.2X10C IS H4 335 442 37 1.60 0.19 428 -50 0.11 9.5X1 ϋΰ IS H5 255 350 49 1.92 0.31 295 -70 0.06 4.3Xl (f — cs H6 304 400 35 1.45 0.25 382 -60 0.06 3.5X10S cs H7 351 454 32 1.38 0.22 395 -40 0.61 2.3X104 cs H8 258 360 49 2.35 0.28 345 -70 0.06 4.6X10s IS H9 311 408 44 1.98 0.21 389 -60 0.05 3.3Xl〇s IS H10 330 445 38 1.82 0.2 422 -50 0.09 9.5X107 IS H11 264 364 47 1.91 0.22 350 -70 0.06 4.7X10C cs H12 245 350 50 1.85 0.28 338 -80 0.06 4.5X10s IS H13 253 355 49 1.83 0.29 342 -80 0.07 2.5X103 IS H14 293 405 45 1.65 0.21 390 -60 0.06 4.0X103 IS H15 355 453 38 1.51 0.22 435 -60 0.09 9.1X10 ° IS H16 234 342 52 1.85 0.33 275 -80 0.09 4.2X106 cs H17 308 412 36 1.48 0.21 398 -70 0.09 3.2X10C cs H18 335 448 34 1.38 0.57 380 -60 0.51 9.3X104 cs H19 240 352 50 2.28 2.9 335 -80 0.05 8.2X10g IS H20 303 410 44 1.88 2.1 387 -60 0.06 4.5X10G IS H21 359 460 37 1.7 2.0 437 -60 0.08 4.1X10 ° IS H22 252 359 50 1.86 2.2 339 -80 0.07 4.5X10G cs H23 250 355 48 1.89 0.28 335 -80 0.06 9.5Xl (f IS H24 245 355 47 1.85 0.27 348 -80 0.06 6.5X10s IS H25 288 395 46 1.69 0.25 375 -60 0.07 2.1Xl (f IS H26 348 443 37 1.54 0.21 420 -60 0.09 7.5X106 IS H27 244 345 46 1.88 0.36 283 -80 0.09 5.2X10g cs H28 297 402 33 1.45 0.21 365-70 0.09 3.2X103 cs H29 345 454 33 1.36 0.47 385 -60 0.51 9.3X104 cs H30 252 358 48 2.15 0.24 330 -80 0.07 8.3X102 IS H31 292 390 43 1.92 0.2 372 -60 0.09 3.2 × 1ϋβ 'IS H32 343 448 38 1.72 0.18 421 -60 0.07 7.5X10 ° IS H33 251 357 47 1.79 0.2 341 -80 0.06 6.5X10 ° cs

註:YS =屈服強度,TS =抗張強度,Η =延伸率,r-值:塑性-各向異性指數,Ar-值:面内 5 各向異性指數,PBYS =後烘烤屈服強度,DBTT=用於研究二級操作脆化之延展性-脆 轉變溫度,AS =沈殿物之丰均尺寸,PN=沈殿物數目,IS =本發明之鋼,CS =比較用之鋼 [實施例3-3]具A1N沈澱強化之MnCu沈澱之鋼 39 200533765 為提供依據本發明之具A1N沈澱強化之MnCu沈澱之 鋼,於第17表所示之鋼板重新加熱至1,200 °C之溫度及其 後使鋼板精軋以提供熱軋鋼板後,熱軋鋼板以400 t:/分之 冷卻速率冷卻,然後於650 °C捲繞。然後,熱軋鋼板以75% 5 之降低率冷軋,其後使冷軋鋼板連續退火。精軋係於910 °C實施,其係高於Ar3轉變温度,且連續退火係藉由以10 °C/秒之速率使鋼材加熱40秒至750 °C而實施。 第17表 樣品 ▲號 組份(重量%) C Mn P S A1 N Cu Mo R-4 R-5 R-2 0.003- 0.005 0.03- 0.2 0.03- 0.06 0.003- 0.025 0.01- 0.1 0.005- 0.02 0.01- 0.2 0.01- 0.2 0.3 2-20 1-5 11 0.0042 0.07 0.038 0.02 0.032 0.0085 0.03 - 0.1 2.5 1.96 12 0.0038 0.1 0.042 0.015 0.042 0.0072 0.03 - 0.13 4.33 3.03 13 0.0045 0.14 0.037 0.015 0.055 0.0092 0.05 - 0.19 6.33 3.11 14 0.0045 0.2 0.05 0.009 0.07 0.008 0.05 - 0.25 13.9 4.55 15 0.0015 0.17 0.04 0.012 0.042 0.0072 0.05 - 0.22 9.17 3.03 16 0.0062 0.15 0.038 0.015 0.038 0.0014 0.12 - 0.27 9 14.1 17 0.0036 0.25 0.042 0.009 0.04 0.0083 0.2 - 0.45 25 2.51 18 0.0035 0.09 0.04 0.012 0.052 0.0093 0.043 0.019 0.13 5.54 2.91 19 0.0046 0.11 0.039 0.011 0.053 0.011 0.053 0.082 0.16 7.41 2.51 110 0.0038 0.12 0.042 0.012 0.061 0.012 0.085 0.16 0.21 8.54 2.64 111 0.004 0.12 0.045 0.01 0.059 0.0095 0.065 0.26 0.19 9.25 3.23Note: YS = yield strength, TS = tensile strength, Η = elongation, r-value: plastic-anisotropic index, Ar-value: in-plane 5 anisotropy index, PBYS = post-bake yield strength, DBTT = Ductility used to study embrittlement in the secondary operation-brittle transition temperature, AS = average size of Shen Dianwu, PN = number of Shen Dianwu, IS = steel of the present invention, CS = steel for comparison [Example 3- 3] A1N precipitation strengthened MnCu precipitated steel 39 200533765 In order to provide the A1N precipitation strengthened MnCu precipitated steel according to the present invention, the steel plate shown in Table 17 is reheated to a temperature of 1,200 ° C and thereafter After finishing rolling the steel sheet to provide a hot-rolled steel sheet, the hot-rolled steel sheet is cooled at a cooling rate of 400 t / min, and then wound at 650 ° C. Then, the hot-rolled steel sheet was cold-rolled at a reduction rate of 75% 5, and thereafter the cold-rolled steel sheet was continuously annealed. Finish rolling is performed at 910 ° C, which is higher than the Ar3 transition temperature, and continuous annealing is performed by heating the steel at a rate of 10 ° C / second for 40 seconds to 750 ° C. Sample No. ▲ in Table 17 (% by weight) C Mn PS A1 N Cu Mo R-4 R-5 R-2 0.003- 0.005 0.03- 0.2 0.03- 0.06 0.003- 0.025 0.01- 0.1 0.005- 0.02 0.01- 0.2 0.01 -0.2 0.3 2-20 1-5 11 0.0042 0.07 0.038 0.02 0.032 0.0085 0.03-0.1 2.5 1.96 12 0.0038 0.1 0.042 0.015 0.042 0.0072 0.03-0.13 4.33 3.03 13 0.0045 0.14 0.037 0.015 0.055 0.0092 0.05-0.19 6.33 3.11 14 0.0045 0.2 0.05 0.009 0.07 0.008 0.05-0.25 13.9 4.55 15 0.0015 0.17 0.04 0.012 0.042 0.0072 0.05-0.22 9.17 3.03 16 0.0062 0.15 0.038 0.015 0.038 0.0014 0.12-0.27 9 14.1 17 0.0036 0.25 0.042 0.009 0.04 0.0083 0.2-0.45 25 2.51 18 0.0035 0.09 0.04 0.012 0.052 0.0093 0.043 0.019 0.13 5.54 2.91 19 0.0046 0.11 0.039 0.011 0.053 0.011 0.053 0.082 0.16 7.41 2.51 110 0.0038 0.12 0.042 0.012 0.061 0.012 0.085 0.16 0.21 8.54 2.64 111 0.004 0.12 0.045 0.01 0.059 0.0095 0.065 0.26 0.19 9.25 3.23

註:R-2 = 0.52*A1/N,R-4 = Mn+Cu,R-5 = 05*(Mn+Cu)/S 40 10 200533765 第18表 樣品 緣號 ΤΓ ΊΤ ΊΤ ir 15" 16~Note: R-2 = 0.52 * A1 / N, R-4 = Mn + Cu, R-5 = 05 * (Mn + Cu) / S 40 10 200533765 Table 18 Sample Margin ΤΓ ΊΤ ΊΤ ir 15 " 16 ~

ΊΤ IT 19~ Ho· nr YS (Mpa) ~250" 145 "248" ~254"ΊΤ IT 19 ~ Ho · nr YS (Mpa) ~ 250 " 145 " 248 " ~ 254 "

~2W "25Γ~ 2W " 25Γ

~WT ~251 ~2A5 "250~ TS (MPa) "355"~ WT ~ 251 ~ 2A5 " 250 ~ TS (MPa) " 355 "

355" ~35T "348" "342"355 " ~ 35T " 348 " " 342 "

~36T ^352 "350"~ 36T ^ 352 " 350 "

"359" ~3W" 359 " ~ 3W

15T (%) ~48~irf ^47 ~45~ ~46~15T (%) ~ 48 ~ irf ^ 47 ~ 45 ~ ~ 46 ~

40 ^4T40 ^ 4T

49 ~4T r-值 (rm) 1.85 1.89 1.84 1.88 1.55 1.66 "2ΤΓ 2.13 2.15 1.80 Δγ- 值 (Ar) 0.28 WT W349 ~ 4T r-value (rm) 1.85 1.89 1.84 1.88 1.55 1.66 " 2ΤΓ 2.13 2.15 1.80 Δγ-value (Ar) 0.28 WT W3

OJT ~03S ΈΤΓ ^025 ~024 "03Σ ΌΓ PBYS (MPa)OJT ~ 03S ΈΤΓ ^ 025 ~ 024 " 03Σ ΌΓ PBYS (MPa)

"34Γ 14F Ί30" "280" "33Γ ~29T "339"" 34Γ 14F Ί30 " " 280 " " 33Γ ~ 29T " 339 "

~340 ~33T "33Γ DBTT (°C) •80 10~ ^60~ ^80- -70 •80 ^60 AS (um) ~〇M Έ06 ΟΌΤ~ 340 ~ 33T " 33Γ DBTT (° C) • 80 10 ~ ^ 60 ~ ^ 80- -70 • 80 ^ 60 AS (um) ~ 〇M Έ06 ΟΌΤ

0^9" 'OW 0Ό90 ^ 9 " 'OW 0Ό9

03T 0Ό6 0O6~ ~〇M 0Ό9 註03T 0Ό6 0O6 ~ ~ 〇M 0Ό9 Note

"93XIF 163X10^ TTXTO8 T5X!〇^ "12X10^ "Τ2χτσ IgjXTa 8MT〇^ TSXTO^ uxio^ Τ5ΧΓ06" 93XIF 163X10 ^ TTXTO8 T5X! 〇 ^ " 12X10 ^ " T2χτσ IgjXTa 8MT〇 ^ TSXTO ^ uxio ^ Τ5ΧΓ06

ISIS

ISIS

ISIS

IS cs cs csIS cs cs cs

ISIS

ISIS

IS 雖然本發明之較佳實施例已為了例示目的而被揭x露: 但熟習此項技藝者會瞭解各種改質、增加及替代在未偏離 於所附申請專利範圍中揭露之本發明之範圍及精神下係可 月匕〇 10 【圖式簡單說明】 第la至lc圖係顯示結晶顆粒内之固溶體碳含量及沈 澱物尺寸間之關係之圖示,其中,第la圖顯示MnS沈澱之 鋼之情況,第lb圖顯示CuS沈澱之鋼之情況,且第lc圖顯 示MnCu沈殺之鋼之情況; 15 第2&及213圖係顯示MnS沈澱物尺寸及冷卻速率間之 關係之圖示’其中,第2a圖顯示〇.58*Mn/S <10之情況,且 第2b圖顯示0.58*Mn/S>10之情況; 第3a至3c圖係顯示CuS沈澱物尺寸及冷卻速率間之關 係之圖示,其中,第3a圖顯示0.5*Cu/s = 2·56之情況,第 2〇 3b圖顯不〇.5*Cu/S = 8.1之情況,且第3c圖顯示0.5*Cu/S = 28之情況;且 41 200533765 第4a及4b圖係顯示MnS、CuS及(Mn,Cu)S沈澱物之尺 寸及冷卻速率間之關係之圖示,其中,第4a圖顯示2 $ 0.5*(Mn+Cu)/S$20 之情況,且第 4b 圖顯示 0.5*(Mn+Cu)/S > 20之情況。 5 【主要元件符號說明】 (無)IS Although the preferred embodiment of the present invention has been disclosed for illustrative purposes: But those skilled in the art will understand various modifications, additions and substitutions that do not depart from the scope of the present invention disclosed in the scope of the attached patent application And the mental system can be dagger 0010 [Schematic description] Figures la to lc are diagrams showing the relationship between the solid solution carbon content in the crystalline particles and the size of the precipitates, where the figure la shows the MnS precipitation Fig. 1b shows the situation of CuS precipitated steel, and Fig. 1c shows the situation of MnCu sinking steel; 15 2 & and 213 are diagrams showing the relationship between the size of MnS precipitates and the cooling rate Figure 2a shows the case of 0.58 * Mn / S < 10, and Figure 2b shows the case of 0.58 * Mn / S >10; Figures 3a to 3c show CuS precipitate size and cooling rate A graphical representation of the relationship between them, where Figure 3a shows the case of 0.5 * Cu / s = 2.56, Figure 2b shows the case of 0.5 * Cu / S = 8.1, and Figure 3c shows 0.5 * Cu / S = 28; 41 200533765 Figures 4a and 4b show the size and coldness of MnS, CuS and (Mn, Cu) S precipitates. It illustrates the relationship between the rate, wherein the first 4a FIG display 2 $ 0.5 * (Mn + Cu) / S $ case 20 of, and on Figure 4b show 0.5 * (Mn + Cu) / S > 20 cases of. 5 [Description of main component symbols] (none)

4242

Claims (1)

200533765 十、申請專利範圍: 1· 一種具優異成形成之可烘烤硬化之冷軋鋼板,包含: 0.003 〜0.005 %之C; 0.003 〜0.03 %之S; 0.01 〜〇_1 %之A1; 0.02 %或更少之N; 0.2 %或更少之Ρ;〇·〇3〜0.2 %之Μη及 5 0.005〜0.2 %之Cu之至少一者;及餘量之Fe及其它不可避 免之雜質,其係以重量計,其中,當該鋼板包含Μη及Cu 之一時,Μη、Cu及S之組成物滿足關係式:0.58*Mn/SS 10及1^0.5*Cu/SSl〇,且當該鋼板包含Μη及Cu二者時, Mu、Cu及S之組成物滿足關係式:Mn+Cu S 0.3及2 $ 10 0.5*(Mn+Cu)/s$2〇,且其中,MnS、CuS及(Mn,Cu)S之沈 殿物具有0.2um或更少之平均尺寸。 2, 種具優異成雜之可供烤硬化之冷軋鋼板,包含: 0.003 〜0.005 %之C; 〇.〇〇5 〜〇 〇3 %之& 〇 〇1 〜〇」%之A1; 0.02 %或更少之n; 0.2 %或更少之p; 〇 〇5〜〇 2 %之施;及 15餘量之Fe及其它不可避免之雜f,其係以重量%計,其中, Μη及S之組成物滿足關係式:〇 58*Mn/sg 1〇,其係以重 量,且其中,MnS之沈澱物具有〇2um或更少之平均尺寸。 3. 如申請專利範圍第2項之鋼板,其中,該鋼板包含〇 〇15 % 或更少之P。 20 4_如申5月專利範圍第2項之鋼板,其中,該鋼板包含0.004 % 或更少之N。 5·如申請專利範圍第2項之鋼板,其中,該鋼板包含〇〇3〜 0.2 %之P 〇 6·如申請專利範圍第2項之鋼板,其中,該鋼板進一步包含 43 200533765 0.1〜0·8 %之Si及0·2〜ΐ·2 %之Cr之至少一者。 7·如申請專利範圍第2項之鋼板,其中,該鋼板包含0 005〜 0.02 %之Ν及0.03 〜0.06 %之ρ。 8·如申請專利範圍第7項之鋼板,其中,Ai及ν之組成物滿 5 足關係式·· 1^0·52*Α1/ΚΓ:^5。 9·如申請專利範圍第2至8項中任一項之鋼板,其中,該鋼 板進一步包含0.01〜0.2 %之]\4〇。 10· —種具優異成形性之可烘烤硬化之冷軋鋼板,包含: 0.003 〜0.005 %之C; 〇·〇〇3 〜0.025 %之S; 0.01 〜0.08 %之 1〇 Al; 0·02 %或更少之Ν; 0.2 %或更少之Ρ; 0.01〜0.2 %之Cu; 及餘量之Fe及其它不可避免之雜質,其係以重量%計,其 中’ Cu及S之組成物滿足關係式:bo.vcu/suo,其係以 重量計’且其中,CuS沈澱物具0.1 um或更少之平均尺寸。 11·如申請專利範圍第10項之鋼板,其中,該鋼板包含0015 15 %或更少之P。 12·如申請專利範圍第10項之鋼板,其中,該鋼板包含0.004 %或更少之N。 13.如申請專利範圍第10項之鋼板,其中,該Cii及S之組成 物滿足關係式:l$〇.5*Cu/S£3。 20 14·如申請專利範圍第1〇項之鋼板,其中,該鋼板包含〇·〇3〜 0.2 %之P 〇 15·如申請專利範圍第1〇項之鋼板,其中,該鋼板包含〇.1〜 0.8 %之Si及0.2〜L2 %之&之至少一者。 16·如申請專利範圍第1〇項之鋼板,其中,該鋼板包含0.005 44 200533765 〜0·02 %之N,及0.03 〜0.06 %之P。 17.如申請專利範圍第16項之鋼板,其中,該A1及N之組成 物滿足關係式:1$0·52*Α1/Ν^5。 18·如申請專利範圍第1〇至π項中任一項之鋼板,其中,該 5 鋼板進一步包含0.01〜0.2 %之Mo。 19·一種具優異成形性之可烘烤硬化之冷軋鋼板,包含: 0.003 〜0.005%之C; 0.003 〜0.025 %之S; 0.01 〜0·〇8 %之A1; 0.02 %或更少之Ν; 〇·2 %或更少之Ρ; 〇·〇3〜0·2 %<Μη; 0.005〜0.2 %之Cu;及餘量之Fe及不可避免之雜質,其係以 10 重量%計,其中,Mn、Cu及S之組成物滿足關係式: Mn+CuSO.3及2$0.5*(Mn+Cu)/S$20,其係以重量計,且其 中,MnS、CuS及(Mn,Cu)S之沈澱物具有〇·2 um或更少之平 均尺寸。 2〇·如申請專利範圍第19項之鋼板,其中,該鋼板包含0.015 15 %或更少之P。 21. 如申請專利範圍第19項之鋼板,其中,該鋼板包含0.004 %或更少之N。 22. 如申請專利範圍第19項之鋼板,其中,該沈澱物之數目 係每單位面積(mm2)為2xl06或更多。 20 23·如申請專利範圍第19項之鋼板,其中,該Mn、Cu及S之 組成物滿足關係式:2£〇.5*(Mn+Cu)/SS7。 24. 如申請專利範圍第23項之鋼板,其中,該沈殿物之數目 係每單位面積(mm2)為2xl08或更多。 25. 如申請專利範圍第19項之鋼板,其中,該鋼板包含0.03〜 45 200533765 0·2 %之P 〇 26·如申請專利範圍第19項之鋼板,其中,該鋼板進一步包 含0.1〜0.8 °/。之Si及0.2〜1.2 %之Cr之至少一者。 27·如申請專利範圍第19項之鋼板,其中,該鋼板包含0.005 5 〜0.02 %之N及0.03 〜〇_〇6 % 之P。 28·如申請專利範圍第27項之鋼板,其中,該A1及N之組成 物滿足關係式·· 1S0.52*A1/N$5。 29·如申請專利範圍第19至28項中任一項之鋼板,其中,該 進一步包含0.01〜0.2 %之Mo。 10 30·—種製造具優異成形性之可烘烤硬化之冷軋鋼板之方 法,包含步驟:於使鋼板重新加熱至1,100°C或更多之溫度 後’以Αι*3之轉變溫度或更多時之精軋使鋼板熱軋以提供熱 軋鋼板,該鋼板包含:0.003〜〇·〇〇5 %之C; 0.005〜〇.〇3 % 之S, 0.01〜〇·ΐ %之Α1; 〇·〇2 %或更少之Ν; 0.2 %或更少之ρ; 15 0·05〜〇·2 %2Μη ;及餘量之Fe及其它不可避免之雜質,其 係以重量%計,其中,Mn& S之組成物滿足關係式: 〇_58*Mn/S$10,其係以重量計;以2〇〇。(〕/分或更多之速率 冷部該鋼板;於7〇〇°C或更少之溫度捲繞該經冷卻之鋼板; 使該鋼板冷軋;及使該冷軋鋼板連續退火。 20 31·如申請專利範圍第3〇項之方法,其中,該鋼板包含0.015 %或更少之P。 32·如申請專利範圍第3〇項之方法,其中,該鋼板包含〇〇〇4 %或更少之N。 33·如申睛專利範圍第30項之方法,其中,該鋼板包含〇·〇3〜 46 200533765 0·2 %之P。 34·如申請專利範圍第3〇項之方法,其中,該鋼板進一步包 含0.1〜0.8 %之Si及0.2〜1.2。/。之。1*之至少一者。 35·如申請專利範圍第30項之方法,其中,該鋼板包含0.005 5 〜〇·〇2 %之N及〇·〇3 〜0.06 %之P。 36·如申請專利範圍第30項之方法,其中,該A及N之組成物 滿足關係式:1$0.52*A1/NS5。 37·如申請專利範圍第30至36項中任一項之方法,其中,該 鋼板進一步包含0.01〜0.2 °/〇之Mo。 10 38.—種製造具優異成形性之可烘烤硬化之冷軋鋼板之方 法,包含步驟:於使鋼板重新加熱至1,100 °c或更多之溫 度後,以Ar3轉變溫度或更多時之精軋使鋼板熱軋而提供熱 軋鋼板,該鋼板包含:0·003〜0.005 %之C; 0.003〜0.025 % 之S; 0.01〜0.08 %之Α1; 〇·〇2 %或更少之Ν; 0.2 %或更少之 15 Ρ; 〇·〇1〜0.2 %之Cu;及餘量之Fe及其它不可避免之雜質, 其係以重量%計,其中,Cu及S之組成物滿足關係式: 1^0.5*Cu/S$10,其係以重量計;以300°C/分或更多之速率 冷卻該鋼板;於700°C或更少之溫度捲繞該經冷卻之鋼板; 使該鋼板冷軋;及使該冷軋鋼板連續退火。 20 39·如申請專利範圍第38項之方法,其中,該鋼板包含0.015 %或更少之P。 40. 如申請專利範圍第38項之方法,其中,該鋼板包含〇.〇〇4 %或更少之N。 41. 如申請專利範圍第38項之方法,其中,該Cu及S之組成 47 200533765 物滿足關係式:l$〇.5*Cu/SS3。 42.如申請專利範圍第38項之方法,其中,該鋼板包含0.03〜 0.2 %之P 〇 43·如申請專利範圍第38項之方法,其中,該鋼板進一步包 5 含〇·!〜〇·8 °/。之Si及〇·2〜1.2 %之Cr之至少一者。 44如申請專利範圍第38項之方法,其中,該鋼板包含〇〇〇5 〜0.02 %之 N及〇.〇3 〜〇.〇6 〇/〇之p。 45·如申請專利範圍第38項之方法,其中,該A1&N之組成 物滿足關係式:1$〇.52*Α1/Ν;^5。 10 46.如申請專利範圍第38至45項中任一項之方法,其中,該 鋼板進一步包含0.01〜0·2 %之Mo。 47.—種製造具優異成形性之可烘烤硬化之冷軋鋼板之方 法,包含步驟.於使鋼板重新加熱至1,1〇〇或更多之溫 度後’以Ar3轉變溫度或更多時之精軋使鋼板熱軋而提供熱 15 軋鋼板’該鋼板包含:該鋼板包含:0.003〜0.005 %之C; 0.003 〜0.025 %之S; 0.01 〜〇·〇8 〇/。之A1; 〇·〇2 °/〇或更少之N; 0.2 %或更少之P; 0.03 〜〇·2 %之Μη; 0.005 〜0.2 %之Cu;及 餘量之Fe及其它不可避免之雜質,其係以重量%計,其中, Mn、Cu及S之組成物滿足關係式:Mn+Ci^O.3及 2〇 2s〇.5*(Mn+CuW2〇,其係以重量計;以300°C/分或更多 之速率冷卻該鋼板;於700。(:或更少之溫度捲繞該經冷卻之 鋼板;使該鋼板冷軋;及使該冷軋鋼板連續退火。 48·如申請專利範圍第47項之方法,其中,該鋼板包含0.015 %或更少之P。 48 200533765 49. 如申請專利範圍第47項之方法,其中,該鋼板包含0.004 %或更少之N。 50. 如申請專利範圍第47項之方法,其中,該沈澱物之數目 係每單位面積(mm2)為2xl06或更多。 5 51.如申請專利範圍第47項之方法,其中,該Mn、Cu及S之 組成物滿足關係式:2$0.5*(Mn+Cu)/S^7。 52. 如申請專利範圍第51項之方法,其中,該沈澱物之數目 係每單位面積(mm2)為2xl08或更多。 53. 如申請專利範圍第47項之方法,其中,該鋼板包含0.03〜 10 0.2 %之P。 54. 如申請專利範圍第47項之方法,其中,該鋼板進一步包 含0.1〜0.8 %之Si及0.2〜1.2 %之Cr之至少一者。 55. 如申請專利範圍第47項之方法,其中,該鋼板包含0.005 〜0.02 %之N及0.03 〜0.06 %之P。 15 56.如申請專利範圍第55項之方法,其中,該A1及N之組成 物滿足關係式:1S0.52*A1/N$5。 57.如申請專利範圍第47至56項中任一項之方法,其中,該 鋼板進一步包含0.01〜0.2 %之鉬。 49200533765 10. Scope of patent application: 1. A baking-hardenable cold-rolled steel sheet with excellent formation, including: 0.003 to 0.005% C; 0.003 to 0.03% S; 0.01 to 〇_1% A1; 0.02 % Or less of N; 0.2% or less of P; 0.03 to 0.2% of Mη and 5 0.005 to 0.2% of Cu; and the balance of Fe and other inevitable impurities, which Based on weight, when the steel plate contains one of Mn and Cu, the composition of Mn, Cu, and S satisfies the relationship: 0.58 * Mn / SS 10 and 1 ^ 0.5 * Cu / SSl0, and when the steel plate contains For both Mη and Cu, the composition of Mu, Cu, and S satisfies the relationship: Mn + Cu S 0.3 and 2 $ 10 0.5 * (Mn + Cu) / s $ 20, and among them, MnS, CuS, and (Mn, Cu) S Shen Dianwu has an average size of 0.2um or less. 2, A kind of cold rolled steel sheet with excellent impurities for baking hardening, including: 0.003 ~ 0.005% C; 〇〇〇〇5 〇〇〇3% & 〇〇1 ~ 〇 ″% A1; 0.02 % Or less of n; 0.2% or less of p; 005 ~ 02%; and 15 Fe and other unavoidable impurities f, which are based on weight%, wherein, Mn and The composition of S satisfies the relationship: 〇58 * Mn / sg 10, which is based on the weight, and wherein the precipitate of MnS has an average size of 0um or less. 3. The steel sheet according to item 2 of the scope of patent application, wherein the steel sheet contains 0.015% or less of P. 20 4_ The steel sheet as claimed in the May 2 patent scope, wherein the steel sheet contains 0.004% or less of N. 5. The steel sheet according to item 2 of the scope of patent application, wherein the steel plate contains P03 ~ 0.2% of P 0. The steel sheet according to item 2 of the scope of patent application, wherein the steel plate further includes 43 200533765 0.1 to 0. At least one of 8% Si and 0.2 to 2% Cr. 7. The steel sheet according to item 2 of the patent application scope, wherein the steel sheet includes 0 005 to 0.02% N and 0.03 to 0.06% ρ. 8. The steel sheet according to item 7 of the scope of the patent application, wherein the composition of Ai and ν satisfies a 5 foot relation ... 1 ^ 0 · 52 * A1 / ΚΓ: ^ 5. 9. The steel sheet according to any one of the items 2 to 8 of the scope of application for a patent, wherein the steel sheet further contains 0.01% to 0.2%] \ 40. 10 · —Bake-hardenable cold-rolled steel sheet with excellent formability, including: 0.003 to 0.005% C; 〇 · 〇〇3 to 0.025% of S; 0.01 to 0.08% of 10Al; 0 · 02 % Or less of N; 0.2% or less of P; 0.01 ~ 0.2% of Cu; and the balance of Fe and other unavoidable impurities, which are based on weight%, where the composition of 'Cu and S meets Relation formula: bo.vcu / suo, which is by weight 'and wherein the CuS precipitate has an average size of 0.1 um or less. 11. The steel sheet according to item 10 of the patent application scope, wherein the steel sheet contains 0,015% or less of P. 12. The steel sheet as claimed in claim 10, wherein the steel sheet contains 0.004% or less of N. 13. The steel plate as claimed in claim 10, wherein the composition of Cii and S satisfies the relationship: 1 $ 0.5 * Cu / S £ 3. 20 14 · The steel sheet according to item 10 of the scope of patent application, wherein the steel plate contains 0.03 ~ 0.2% of P ○ 15. The steel sheet according to item 10 of the scope of patent application, wherein the steel plate includes 0.1 At least one of 0.8% Si and 0.2 to L2% & 16. The steel sheet according to item 10 of the patent application scope, wherein the steel sheet contains 0.005 44 200533765 to 0.02% N, and 0.03 to 0.06% P. 17. The steel sheet according to item 16 of the scope of patent application, wherein the composition of A1 and N satisfies the relationship: 1 $ 0.52 * A1 / N ^ 5. 18. The steel sheet according to any one of claims 10 to π, wherein the 5 steel sheet further contains 0.01 to 0.2% Mo. 19. A bake-hardenable cold-rolled steel sheet having excellent formability, comprising: 0.003 to 0.005% C; 0.003 to 0.025% S; 0.01 to 0.08% A1; 0.02% or less N 〇 · 2% or less of P; 〇 · 〇3〜0 · 2% <Mn; 0.005 ~ 0.2% of Cu; and the balance of Fe and unavoidable impurities, which are based on 10% by weight, Among them, the composition of Mn, Cu, and S satisfies the relationship: Mn + CuSO.3 and 2 $ 0.5 * (Mn + Cu) / S $ 20, which are based on weight, and among them, MnS, CuS, and (Mn, Cu) The precipitate of S has an average size of 0.2 um or less. 20. The steel sheet according to item 19 of the scope of patent application, wherein the steel sheet contains 0.015% 15% or less of P. 21. The steel sheet as claimed in claim 19, wherein the steel sheet contains 0.004% or less of N. 22. For the steel sheet of the scope of application for item 19, wherein the number of the deposits is 2xl06 or more per unit area (mm2). 20 23. The steel sheet according to item 19 of the scope of patent application, wherein the composition of Mn, Cu, and S satisfies the relationship: 2 £ 0.5 * (Mn + Cu) / SS7. 24. For the steel plate in the scope of application for item 23, the number of the Shen Dianwu objects is 2 × 10 or more per unit area (mm2). 25. The steel sheet according to item 19 of the scope of patent application, wherein the steel plate contains 0.03 to 45 200533765 0.2% P 〇26. The steel sheet according to item 19 of the scope of patent application, wherein the steel plate further comprises 0.1 to 0.8 ° /. At least one of Si and 0.2 to 1.2% of Cr. 27. The steel plate according to item 19 of the scope of patent application, wherein the steel plate contains 0.005 5 to 0.02% of N and 0.03 to 0-6% of P. 28. The steel sheet as claimed in item 27 of the patent application, wherein the composition of A1 and N satisfies the relational formula: 1S0.52 * A1 / N $ 5. 29. The steel sheet according to any one of claims 19 to 28, wherein the steel sheet further contains 0.01 to 0.2% of Mo. 10 30 · —A method for manufacturing a bake-hardenable cold-rolled steel sheet with excellent formability, including the step of: after the steel sheet is reheated to a temperature of 1,100 ° C or more, with a transition temperature of Α * 3 Finishing rolling or more is performed by hot-rolling a steel sheet to provide a hot-rolled steel sheet, the steel sheet comprising: 0.003 to 0.005% C; 0.005 to 0.03% S, 0.01 to 0.005% A1 ; 〇2% or less of N; 0.2% or less of ρ; 15 0.05 ~ 2 · 2% 2Mη; and the balance of Fe and other inevitable impurities, which are based on weight%, Among them, the composition of Mn & S satisfies the relationship: 〇_58 * Mn / S $ 10, which is based on weight; it is 200. (] / Min or more to cool the steel sheet; coil the cooled steel sheet at a temperature of 700 ° C or less; cold-roll the steel sheet; and continuously anneal the cold-rolled steel sheet. 20 31 The method according to claim 30, wherein the steel sheet contains 0.015% or less of P. 32. The method according to claim 30, wherein the steel sheet contains 0.004% or more Less N. 33. The method of item 30 in the scope of patent application, wherein the steel sheet contains 0.03 ~ 46 200533765 0.2% P. 34. The method of item 30 in the scope of patent application, of which The steel sheet further comprises 0.1 to 0.8% of Si and 0.2 to 1.2%. At least one of 1 *. 35. The method according to item 30 of the scope of patent application, wherein the steel sheet contains 0.005 5 to 〇.〇 2% of N and 0.03 to 0.06% of P. 36. The method according to item 30 of the scope of patent application, wherein the composition of A and N satisfies the relationship: 1 $ 0.52 * A1 / NS5. 37. Such as The method according to any one of claims 30 to 36, wherein the steel sheet further comprises Mo in the range of 0.01 to 0.2 ° / 0. 10 38. Seed system Method for baking-hardenable cold-rolled steel sheet with excellent formability, comprising the steps of: after reheating the steel sheet to a temperature of 1,100 ° c or more, and finishing rolling the steel sheet at an Ar3 transition temperature or more Hot-rolled to provide a hot-rolled steel sheet, the steel sheet includes: 0.003 to 0.005% C; 0.003 to 0.025% S; 0.01 to 0.08% A1; 0.02% or less N; 0.2% or more Less than 15 Ρ; 〇.〇1 ~ 0.2% of Cu; and the balance of Fe and other unavoidable impurities, which are based on weight%, wherein the composition of Cu and S satisfies the relationship: 1 ^ 0.5 * Cu / S $ 10, by weight; cooling the steel sheet at a rate of 300 ° C / min or more; winding the cooled steel sheet at a temperature of 700 ° C or less; cold rolling the steel sheet; and The cold-rolled steel sheet is continuously annealed. 20 39. The method according to item 38 of the patent application, wherein the steel sheet contains 0.015% or less of P. 40. The method according to item 38 of the patent application, wherein the steel sheet Contains 0.004% or less of N. 41. The method of claim 38, wherein the composition of Cu and S is 47 200533765. Relation formula: $ 0.5 * Cu / SS3. 42. The method according to item 38 of the patent application, wherein the steel sheet contains 0.03 ~ 0.2% of P 〇 43. The method according to item 38 of the patent application, where The steel sheet further includes 5 ° ~~ ° 8 ° /. At least one of Si and 0.2 to 1.2% of Cr. 44. The method according to item 38 of the patent application scope, wherein the steel sheet contains 0.05 to 0.02% of N and 0.03 to 0.06 〇 / 〇 p. 45. The method of claim 38, wherein the composition of A1 & N satisfies the relationship: 1 $ 0.52 * A1 / N; ^ 5. 10 46. The method according to any one of claims 38 to 45, wherein the steel sheet further contains 0.01 to 0.2% Mo. 47. A method of manufacturing a bake-hardenable cold-rolled steel sheet with excellent formability, comprising the step of: when the steel sheet is reheated to a temperature of 1,100 or more, when the transition temperature is Ar3 or more The finishing rolling makes the steel sheet hot-rolled to provide a hot 15-rolled steel sheet. The steel sheet includes: The steel sheet includes: 0.003 to 0.005% of C; 0.003 to 0.025% of S; 0.01 to 0.08%. A1; 0.02 ° / 〇 or less N; 0.2% or less P; 0.03 to 0.2% Mn; 0.005 to 0.2% Cu; and the balance of Fe and other inevitable Impurities, which are based on weight%, wherein the composition of Mn, Cu, and S satisfies the relationship: Mn + Ci ^ 0.3 and 2O2s0.5 * (Mn + CuW2O, which is based on weight; Cool the steel plate at a rate of 300 ° C / min or more; wind the cooled steel plate at 700. (: or less; cold-roll the steel plate; and continuously anneal the cold-rolled steel plate. 48 · For example, the method of claim 47, wherein the steel sheet contains 0.015% or less of P. 48 200533765 49. The method of claim 47, wherein the steel sheet contains 0.004% or less of N. 50. The method according to item 47 of the patent application, wherein the number of deposits is 2 × 10 or more per unit area (mm2). 5 51. The method according to item 47 of the patent application, wherein the Mn, The composition of Cu and S satisfies the relational formula: 2 $ 0.5 * (Mn + Cu) / S ^ 7. 52. For the method of claim 51 in the scope of patent application, wherein the number of precipitates is per unit area (mm2) is 2xl08 or more. 53. The method according to item 47 of the patent application, wherein the steel plate contains 0.03 ~ 10 0.2% P. 54. The method according to item 47 of the patent application, wherein the steel plate It further comprises at least one of 0.1 to 0.8% of Si and 0.2 to 1.2% of Cr. 55. The method according to item 47 of the patent application scope, wherein the steel sheet contains 0.005 to 0.02% of N and 0.03 to 0.06% of P 15 56. The method of claim 55 in the scope of patent application, wherein the composition of A1 and N satisfies the relational formula: 1S0.52 * A1 / N $ 5. 57. As in any of the scope of claims 47 to 56 of the scope of patent application The method according to item 5, wherein the steel sheet further contains 0.01 to 0.2% of molybdenum. 49
TW93140008A 2003-12-23 2004-12-22 Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same TWI361223B (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
KR1020030095395A KR101104981B1 (en) 2003-12-23 2003-12-23 Bake hardening cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same
KR1020030095393A KR101105007B1 (en) 2003-12-23 2003-12-23 Cold rolled steel sheet having excellent baking hardenability and process for producing the same
KR1020030095394A KR101105132B1 (en) 2003-12-23 2003-12-23 Baking hardening cold rolled steel sheet having high strength, process for producing the same
KR20030098744 2003-12-29
KR20030098746 2003-12-29
KR20030098745 2003-12-29
KR1020030099351A KR101105025B1 (en) 2003-12-29 2003-12-29 Bake-hardening cold rolled steel sheet having less anistropy and high strength, process for producing the same
KR1020030099350A KR101105098B1 (en) 2003-12-29 2003-12-29 Bake-harding cold rolled steel sheet having excellent workability and high strength, process for producing the same
KR20030098743 2003-12-29
KR20030099437 2003-12-29
KR20030099435 2003-12-29
KR20030099464 2003-12-30
KR20030099462 2003-12-30
KR20030099463 2003-12-30
KR20030099461 2003-12-30
KR1020040071395A KR101115709B1 (en) 2004-09-07 2004-09-07 Bake hardening cold rolled steel sheet having superior workability and process for producing the same
KR1020040071705A KR101115763B1 (en) 2004-09-08 2004-09-08 Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR1020040084297A KR101115842B1 (en) 2004-10-21 2004-10-21 Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same

Publications (2)

Publication Number Publication Date
TW200533765A true TW200533765A (en) 2005-10-16
TWI361223B TWI361223B (en) 2012-04-01

Family

ID=36847674

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93140008A TWI361223B (en) 2003-12-23 2004-12-22 Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same

Country Status (4)

Country Link
EP (1) EP1704261B1 (en)
JP (1) JP4439525B2 (en)
ES (1) ES2389656T3 (en)
TW (1) TWI361223B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461542B (en) * 2010-05-11 2014-11-21 Jfe Steel Corp Cold rolled steel sheet and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106331A (en) * 2020-11-25 2021-07-13 江汉大学 220 MPa-grade hot-galvanized high-strength IF steel and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410372A (en) * 1981-06-10 1983-10-18 Nippon Steel Corporation Process for producing deep-drawing, non-ageing, cold rolled steel strips having excellent paint bake-hardenability by continuous annealing
JPH05195060A (en) * 1992-01-13 1993-08-03 Kobe Steel Ltd Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461542B (en) * 2010-05-11 2014-11-21 Jfe Steel Corp Cold rolled steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP4439525B2 (en) 2010-03-24
TWI361223B (en) 2012-04-01
EP1704261A1 (en) 2006-09-27
EP1704261A4 (en) 2008-09-24
EP1704261B1 (en) 2012-06-13
ES2389656T3 (en) 2012-10-30
JP2007517138A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP6588440B2 (en) High strength low specific gravity steel plate and method for producing the same
JP6182522B2 (en) Hot rolled steel sheet and related manufacturing method
JP6285462B2 (en) 780 MPa class cold rolled duplex steel and method for producing the same
KR100723216B1 (en) Cold rolled steel sheet having increased plastic anisotropy and process for producing the same
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
CA2680036A1 (en) High strength hot rolled steel plate for spiral line pipe superior in low temperature toughness and method of production of same
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
US8753565B2 (en) Hadfield steel
JP2010270377A (en) High-strength low-specific-gravity steel sheet superior in ductility, workability and toughness, and method for manufacturing the same
TW200533765A (en) Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
US9297057B2 (en) Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same
JP2011528751A (en) Method for producing austenitic stainless steel sheet having high mechanical properties and steel sheet thus obtained
JP2005146301A (en) High-strength hot-rolled steel plate superior in formability
JPS60428B2 (en) Manufacturing method of Al alloy plate for packaging
JP6042265B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
TW201139697A (en) Cold rolled steel sheet and method for manufacturing the same
WO2005061748A1 (en) Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
JP3508685B2 (en) Ferritic stainless steel cold rolled steel sheet with excellent punchability and formability
TWI252258B (en) Cold rolled steel sheet having aging resistance and superior formability, and method of manufacturing the same
JP2020530068A (en) Plated steel sheet with excellent surface quality, strength, and ductility
KR20140083166A (en) Stainless steel based on ferrite and method for manufacturing the same
US20070137739A1 (en) Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
JP2001032053A (en) Fe-Cr-Si ALLOY EXCELLENT IN WORKABILITY AND HIGH FREQUENCY CORE LOSS CHARACTERISTIC
KR20150067114A (en) Stainless steel based on ferrite and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees