TW200532057A - Composition for copper electroplating solution - Google Patents

Composition for copper electroplating solution Download PDF

Info

Publication number
TW200532057A
TW200532057A TW93108954A TW93108954A TW200532057A TW 200532057 A TW200532057 A TW 200532057A TW 93108954 A TW93108954 A TW 93108954A TW 93108954 A TW93108954 A TW 93108954A TW 200532057 A TW200532057 A TW 200532057A
Authority
TW
Taiwan
Prior art keywords
copper
item
electroplating
scope
patent application
Prior art date
Application number
TW93108954A
Other languages
Chinese (zh)
Other versions
TWI320062B (en
Inventor
Wei-Ping Dow
Her-Shu Huang
Yung-Chih Su
Ming-Yao Yen
Original Assignee
Rockwood Electrochemicals Asia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwood Electrochemicals Asia Ltd filed Critical Rockwood Electrochemicals Asia Ltd
Priority to TW93108954A priority Critical patent/TWI320062B/en
Publication of TW200532057A publication Critical patent/TW200532057A/en
Application granted granted Critical
Publication of TWI320062B publication Critical patent/TWI320062B/en

Links

Abstract

A composition for copper electroplating solution is disclosed. The composition for copper electroplating solution of the present invention utilizes additives without dyes to overcome a pin-hole effect caused by dyes in a prior copper electroplating solution, increases a effective concentration and range of a brighter, and reduces sensitivity of the copper electroplating solution to fluid direction. In addition, a method for electroplating copper is further disclosed. During a copper process of a semiconductor and a via-filling process of a printed circuit board (PCB), the method can perform an electroplating procedure to overcome the pin-hole effect due to additives without dyes, and to be easy in operation and production.

Description

200532057 狄、發明說明 【發明所屬之技術領域】 本發明是有關於一種銅電鍍液之組成,特別是有關於一 種不含染料的添加劑之銅電鍍液之組成。 【先前技術】 隨著現今電子產品不斷走向微小化與多功能性,傳統的 晶圓(Wafer)與積體電路(Integrated Circuit; 1C)構裝基材(ic200532057 D. Description of the invention [Technical field to which the invention belongs] The present invention relates to the composition of a copper electroplating solution, and in particular to the composition of a copper electroplating solution containing no dye additives. [Previous Technology] With the continuous miniaturization and multifunctionality of today's electronic products, traditional wafers and integrated circuits (ICs) constitute substrates (ic

Packaging Substrate)製程也不斷的推陳出新。尤其在球狀陣 列封裝(Ball Grid Array ; BGA)與晶片尺寸封裝(Chip Scale Packaging ; CSP)的製程成為主流後,IC基材的體積更急遽 縮小直追1C ’因此線寬線距也日漸縮小,以在更小的面積 上置入更多的電子元件。 因應目前1C鋼製程技術及印刷電路板(Printed circuit B〇ard ; PCB)之高密度内連接(High Density Inteixorniection ; HDI)所需••次微米或微米内層接連用孔洞 (Via)及導線溝渠(Trench)需要以電鍍方式填充金屬銅材 料。填充時必須以孔底上移(B〇tt〇m_Up)或所謂的超級填充 (Supei*_Filhng)方式來進行,以避免空洞(v〇id)或縫隙 的發生。 目則要以電鍍方式填充銅導線與導孔通常有兩種方 法’一種疋物理方法,利用脈衝或正反脈衝 Reverse)電机來達到“孔底上移,,的現象。另一種是化學方 法’在電鐘液中加入多重添加劑,利用直流電流電鍍達到孔 200532057 底上移的填充效果。目前不論是在學術界或是工業界,均以 後者的研究和使用居多,因此學術上大部份的電鍍銅技術都 侷限在晶圓級電鍍製程。由於1C基材與晶圓的差異,主在 要於孔徑尺寸的大小,因此基本的反應機制應大同小異。再 者,由於1C基材的孔徑較大,需考慮的因素也較多(比如說 對流、質傳),勢必要比晶圓電鍍銅製程來的複雜。 請參照第1圖,其係繪示習知技術填充金屬導線之IC 基材的剖面圖。利用電鍍填充製程,將金屬層105例如銅層 填充至1C基材101的微米級或次微米級開口例如盲孔1〇3 内’其中填充之金屬層105會以例如非共形 (Anti-Conformal)、共形(C〇nformal)與超級填充 (Super_Filling)專二種可能方式進行沈積。當以非共形方式 進行沈積時,會產生空洞U1。另一方面,當以共形方式進 行沈積時,由於是以厚度均勻的方式而生成金屬層1〇5,因 此,最終會生成縫隙113。故,僅能藉由超級填充的方式才 月色將盲孔103完全填滿至無缺陷(Defect-Free)n5,而不會 產生空洞111與縫隙113。前二者的沈積方式無法將盲孔1〇3 完全填滿,所產生的空洞u i與縫隙丨13會影響訊號傳遞速 率與降低晶片之信賴度。為了克服習知技術的缺點,在丨966 年美國專利公告號第3,267,010號與第3,288,690號中教示 在電鍍過程中添加數種添加劑,即能使孔底的銅沉積速率大 於表面而產生孔底上移的現象,改善空洞與縫隙的問題。這 兩伤專利中利用二類添加劑,例如光澤劑(Brightener)、抑 制劑(Suppressor)與平整劑(Leveler),便能產生孔底上移的 200532057 填充效果,而且上述配方一直沿用至今曰。 在填孔電鍍時,習知常用的光澤劑或是稱為加速劑 (Accelerator)硫醇(Mercapto)系列化合物有2種,一種是雙 (3-石黃酸丙基)二硫化物(Bis(3-Sulfopropyl) Disulfide ; SPS)’ 另一種是 3-硫醇基-i_ 丙烧績酸(3-Mercapto-1-Propane Sulfonate ; MPS)。SPS與MPS在電鍍過程中會互相轉換, 並且MPS所具有之-SH官能基會和銅離子形成錯合物,改 變銅離子還原之反應機構,提高電鍍反應之交換電流密度, 而加速銅的沉積。再者,SPS與MPS在電鍍反應發生時都 會強吸附在電極表面,其中SPS會快速的還原成MPS,而 MPS會幫助二價銅離子還原成一價銅離子並氧化成SPS, 如此循環下去,增加電極表面一價銅的生成速率。 藍道(Landau U.)等人在美國專利公告號第6,610,191 號、第6,3 50,3 66號、以及第6,113,771號揭露一種電鍍液 之組成’其中此電鍍液之組成中,利用經取代之鈦花青 (Phthalocyanine)化合物阿爾新藍(Aiciail Blue)作為銅電鍍 製程中之光澤劑,同時需混摻其他添加劑,才能適用於半導 體之填孔電鍍製程,且並不適用於印刷電路板之填孔電链製 程。 抑制劑或稱為運載劑(Carrier)能明顯地降低電鍍銅反 應的銅沉積速率,而常用之抑制劑可例如聚乙二醇 (Polyethylene Glycol ; PEG)與氣離子。pEG與氯離子同時 存在時,會非常強烈的抑制鋼離子的沉積,但另有文獻顯示 氯離子單獨存在時反而會加速銅離子的還原。 200532057 平整劑能有效增加加速劑的有效範圍濃度,減低空洞的 產生’還能使被鍍面平滑的功能。習知之平整劑(Leveler) 多為有機含氮雜環化合物,例如氮唑化合物(Az〇le Compound)等,由於帶有官能基,所以會受電流分佈的 於喜而優先吸附在高電流密度區,進而抑制銅沉積速率。較 韦使用之平整劑係例如賈納斯綠B(janus Green β ; jgb)與 苯並三氮唑(Benzotriazole ; BTA)。 一般而言’現今學界與業界的電鍍液配方大多採行上述 之夕重添加劑配方,然而多重添加劑配方有下列缺點。首 先,上述常用之平整劑均含有染料,在電鍍時染料容易分解 而產生不溶性的有機物質,且此不溶性的有機物質會反沾於 晶圓或PCB之表面,導致針點抗鍍的現象(pin_H〇ieThe Packaging Substrate) process is also constantly being updated. Especially after the manufacturing process of Ball Grid Array (BGA) and Chip Scale Packaging (CSP) has become mainstream, the volume of IC substrates has shrunk sharply to catch up with 1C ', so the line width and line spacing are also gradually shrinking. To place more electronic components in a smaller area. According to the current 1C steel process technology and high density internal connection (HDI) of Printed Circuit Board (PCB). • Sub-micron or micro-inner layer connection holes (Via) and wire trenches ( Trench) needs to be filled with metallic copper material by electroplating. Filling must be performed by the bottom of the hole (Bottom_Up) or the so-called super fill (Supei * _Filhng) to avoid the occurrence of voids or gaps. There are usually two methods to fill copper wires and vias by electroplating. One is a physical method, which uses pulsed or positive and negative pulse Reverse motors to achieve the phenomenon of "hole bottom moving up." The other is a chemical method. 'Add multiple additives to the electric clock liquid, and use DC current plating to achieve the filling effect of the bottom of the hole 200532057. At present, whether in academia or industry, most of the latter research and use, so most of the academic The electroplated copper technology is limited to the wafer-level electroplating process. Due to the difference between the 1C substrate and the wafer, the main size is the size of the aperture, so the basic reaction mechanism should be similar. Moreover, because the aperture of the 1C substrate is smaller than Large, there are more factors to consider (such as convection, mass transfer), which must be more complicated than the copper plating process of wafers. Please refer to Figure 1, which shows the IC substrate filled with metal wires by conventional techniques. A cross-sectional view of a metal layer 105, such as a copper layer, is filled into a micron- or sub-micron-level opening of a 1C substrate 101, such as a blind hole 103, using the electroplating filling process. Deposition is performed in two possible ways, for example, Anti-Conformal, Conformal, and Super_Filling. When deposited in a non-conformal manner, a void U1 is generated. On the other hand When the deposition is performed in a conformal manner, since the metal layer 105 is formed in a uniform thickness manner, a gap 113 will eventually be generated. Therefore, the blind hole 103 can only be blinded by moonlight. Completely filled up to Defect-Free n5, without generating holes 111 and gaps 113. The former two deposition methods cannot completely fill the blind holes 103, and the resulting holes ui and gaps 13 will Affects the signal transmission rate and reduces the reliability of the wafer. In order to overcome the shortcomings of the conventional technology, 966 US Patent Publication Nos. 3,267,010 and 3,288,690 teach that adding several additives during the plating process can make the bottom of the hole The copper deposition rate is higher than the surface, which causes the bottom of the hole to move up, which improves the problems of voids and gaps. In these two patents, two types of additives are used, such as brighteners and inhibitors. With Leveler, it can produce the filling effect of 200532057 when the bottom of the hole is moved up, and the above formula has been used till now. In the hole-filling electroplating, the commonly used gloss agent or accelerator thiol is commonly known. There are two types of (Mercapto) series compounds, one is Bis (3-Sulfopropyl) Disulfide (SPS) 'and the other is 3-thiol-i-propionic acid (3-Mercapto-1-Propane Sulfonate; MPS). SPS and MPS will convert each other during the electroplating process, and the -SH functional group of MPS will form a complex with copper ions, change the reaction mechanism of copper ion reduction, increase the exchange current density of the electroplating reaction, and accelerate the deposition of copper. In addition, SPS and MPS are strongly adsorbed on the electrode surface when the plating reaction occurs. SPS will quickly reduce to MPS, and MPS will help divalent copper ions to reduce to monovalent copper ions and oxidize to SPS. Rate of formation of monovalent copper on the electrode surface. Landau U. et al. Disclosed the composition of a plating solution in US Patent Publication Nos. 6,610,191, 6,3 50,3 66, and 6,113,771. The use of the substituted Phthalocyanine compound Aiciail Blue as a glossing agent in the copper electroplating process, and other additives need to be blended in order to be suitable for the hole filling plating process of semiconductors, and is not suitable for Process for filling holes in printed circuit boards. The inhibitor, or carrier, can significantly reduce the copper deposition rate of the electroplated copper reaction, and commonly used inhibitors can be, for example, polyethylene glycol (PEG) and gas ions. When pEG and chloride ions coexist, it will strongly inhibit the deposition of steel ions, but other literature shows that chloride ions alone will accelerate the reduction of copper ions. 200532057 The leveling agent can effectively increase the effective range concentration of the accelerator, reduce the generation of voids, and also smooth the surface to be plated. The conventional levelers are mostly organic nitrogen-containing heterocyclic compounds, such as Azole compounds, etc., because they have functional groups, they will be preferentially adsorbed in the high current density area due to the current distribution. , Thereby suppressing the copper deposition rate. Levelling agents used by Veer are, for example, Janus Green β (jgb) and Benzotriazole (BTA). Generally speaking, most of the current electroplating bath formulations in academia and industry adopt the above-mentioned heavy additive formulation, but the multi-additive formulation has the following disadvantages. First of all, the above-mentioned commonly used leveling agents contain dyes, which are easily decomposed during electroplating to generate insoluble organic substances, and this insoluble organic substances will be re-adhered to the surface of the wafer or PCB, resulting in pinpoint anti-plating phenomenon (pin_H 〇ie

Effect)。其次,加速劑sps與Mps的有效濃度相當低且範 圍十分狹窄’介於約百萬分之(parts per Milli〇I1 ; ppm)〇 3 至約2.0 ppm之間,造成生產時控制及分析的不易。再者, 習知的電鍍液配方對於流體力學較敏感,必須在特定之電鍍 液流場下才能有效進行電鍍填孔。 馨於上述’實有需要提出一種銅電鍍液之組成,以克服 習知銅電鍍液中染料所導致針點抗鍍的問題,提昇光澤劑的 有效濃度及範圍,並降低銅電鍍液對流場方向的敏感度。 【發明内容】 因此,本發明的目的之一就是在提供一種銅電鍍液之組 成,係藉由不含染料的添加劑,克服習知銅電鍍液中染料所 200532057 及範圍,並降 導致針點抗鍍的問題,提昇光澤劑的有效濃度 低銅電鍍液對流場的敏感度。 本發明之另-目的是在提供一種電鍍銅的方法,可在 導體銅製程及印刷電路板填孔電”程時,㈣本發明銅電 鍍液進行電链步驟,由於本發明銅電㈣之添加劑不含染 料,不僅克服針點抗鍍的現象,更易於操作及生產。Effect). Secondly, the effective concentrations of the accelerators sps and Mps are relatively low and the range is very narrow, 'between about parts per MilliI (IlI; ppm) 〇3 to about 2.0 ppm, making it difficult to control and analyze during production . In addition, the conventional plating solution formula is more sensitive to fluid mechanics, and it is necessary to effectively fill the holes in the plating solution under a specific plating solution flow field. Xin stated above that there is a real need to propose a composition of copper plating solution to overcome the problem of anti-plating of the pin point caused by dyes in conventional copper plating solution, improve the effective concentration and range of the gloss agent, and reduce the direction of the convection field of the copper plating solution. Sensitivity. [Summary of the Invention] Therefore, one of the objectives of the present invention is to provide a composition of a copper electroplating solution. The additive does not contain dyes. The problem of plating improves the sensitivity of the copper plating solution to the flow field when the effective concentration of the brightener is low. Another object of the present invention is to provide a method for electroplating copper, which can perform the electric chain step in the copper electroplating solution of the present invention during the process of conducting copper and filling the holes of the printed circuit board. Does not contain dyes, which not only overcomes the phenomenon of pin point resistance to plating, but also facilitates operation and production.

根據本發明之上述目的,提出一種銅電鍍液之組成,至 少包含:銅離子;光澤劑,其中光澤劑為非單純硫醇化合物; 抑制劑;以及平整劑,其中平整劑為苯並咪唑衍生物 (B e n z i in i d a ζ ο 1 e D e r i v a t i v e ) 〇 依照本發明一較佳實施例,上述之非單純硫醇化合物之 結構如下式(I ): X 一 S 一 Y 一 Z (I) 其中, X可例如下列式(Π )、式(瓜)、式(IV)、式(V )、式(VI)、 式(犯)、式(VI)、式(K)、或式(X),According to the above object of the present invention, a composition of a copper electroplating solution is proposed, including at least: copper ions; a glossing agent, wherein the glossing agent is a non-simple thiol compound; an inhibitor; and a leveling agent, wherein the leveling agent is a benzimidazole derivative (B enzi in ida ζ ο 1 e D erivative) 〇 According to a preferred embodiment of the present invention, the structure of the above non-simple thiol compound is as follows (I): X-S-Y-Z (I) where X For example, the following formula (Π), formula (melon), formula (IV), formula (V), formula (VI), formula (guilty), formula (VI), formula (K), or formula (X),

(Π) nh2+ (Π)(Π) nh2 + (Π)

II H2N—C- 12 (IV)200532057 H3C I N—C H3C’II H2N—C- 12 (IV) 200532057 H3C I N—C H3C ’

(V)(V)

(VI)(VI)

HSHS

N——NN——N

SS

(M)(M)

(IX)(IX)

N—NN—N

SS

(X) 13 200532057 而γ可例如為~ (CH2)n —之烷基,其中n為介於 之間之整數,以及Z可例如為一COOH、一 S03Na、一 OH、 或一NH2 〇 依照本發明一較佳實施例,上述之苯並咪唑衍生物之結 構可例如下式(X Π):(X) 13 200532057 and γ can be, for example, an alkyl group of ~ (CH2) n —, where n is an integer between, and Z can be, for example, a COOH, a S03Na, an OH, or an NH2. In a preferred embodiment of the invention, the structure of the above-mentioned benzimidazole derivative can be, for example, the following formula (X Π):

(X π ) 其中,可例如-S〇3 Na、一 NH2、一 SH 或一OH,R2 可例如—NH —、~ Ο ~或一s —,而R3可例如一CN、一 COOH、- S03Na、- oh、— NH2 或-CH3。 依照本發明一較佳實施例,上述之抑制劑至少包含聚二 醇以及電解質,其中聚二醇可例如聚乙二醇(PEG)、聚丙二 醇(Polypropylene Glycol; PPG)、聚氧化乙烯(Polyethylene Oxide ; PEO)、或聚乙二酵第三辛基苯基醚(p〇lyethylene(X π) where, for example, -S03 Na, -NH2, -SH or -OH, R2 can be -NH-, ~ Ο ~ or -s-, and R3 can be -CN, -COOH, -S03Na ,-Oh,-NH2 or -CH3. According to a preferred embodiment of the present invention, the above-mentioned inhibitor includes at least a polyglycol and an electrolyte. The polyglycol may be, for example, polyethylene glycol (PEG), polypropylene glycol (Polypropylene Glycol; PPG), or polyethylene oxide (Polyethylene Oxide). PEO), or polyethylene glycol third octylphenyl ether (p〇lyethylene

Glycol Tert-Octylphenyl Ether ; Triton X-405),而電解質 為鹵素離子。 依照本發明一較佳實施例,上述之銅離子係由含銅化合 物提供’且含銅化合物可例如無水硫酸銅(CuS〇4)、含水硫 酸銅、碳酸銅(CuC〇3)、或氧化銅(Cu〇)。 依照本發明一較佳實施例,上述之銅電鍍液之組成更至 少包含酸,其中酸可例如硫酸。 根據本發明之另一目的,提出一種電鍍銅的方法,至少 14 200532057 包含·首先,提供具有開口之基材,其中開口可例如微米級 或次微米級開口;接著,提供電鍍液,此電鍍液至少包含銅 離子、光澤劑、抑制劑及平整劑,其中光澤劑為非單純硫醇 化&物而平整劑為苯並咪tl坐衍生物;以及進行電鑛步驟, 係將基材次入電鍍液中,對基材施加一電流密度,使銅離子 沉積於基材之開口中。 依照本發明一較佳實施例,上述之非單純硫醇化合物、 抑制劑及平整劑已悉如前述,在此不再贅述。 依照本發明一較佳實施例,上述之銅離子係由含銅化合 物提供,且含銅化合物可例如無水硫酸鋼、含水硫酸銅、碳 酸銅、或氧化銅。 依照本發明一較佳實施例,上述之銅電鍍液之組成更至 少包含酸,其中酸可例如硫酸。 本發明銅電鍍液之添加劑不含染料,不僅克服習知銅電 鍍=中染料所導致針點抗鑛的問題,提昇光澤劑的有效濃度 及犯圍’同時本發明之銅電鑛液對流場方向不敏感,因此更 易於操作及生產。 【實施方式】 本發明係揭露一種銅電鍍液之組成,係藉由不含染料的 诏,克服習知銅電鍍液中染料所導致針點抗鍍的問題, 提昇光澤劑的有效濃度及範圍,並降低銅電鍍液對流場的敏 2度L本發明之銅電鍍液之組成至少包含:銅離子;光澤劑, /、中光/睪劑為非單純硫醇化合物;抑制劑;以及平整劑,其 15 200532057 中平整劑為苯並咪嗤衍生物。 根據本發明一較佳實施例,銅離子可由含銅化合物提 供,而含銅化合物可例如無水硫酸銅、含水硫酸銅、碳酸銅、 或氧化銅,然以五水合硫酸銅(CuS〇4 · 5H2〇)為較佳。上述 之含銅化合物之濃度可介於5〇 g/L至250 g/L之間,而以介 於100 g/L至220 g/L之間為較佳。 根據本發明一較佳實施例,上述之非單純硫醇化合物為 不含染料的添加劑,且非單純硫醇化合物之結構如下式 (I ) ·· X-S-γ-Z ( I ) 其中, X可例如下列式(π)、式(皿)、式(IV)、式(V)、式(^)、 式(通)' 式(懷)、式(IX)、或式(X ),Glycol Tert-Octylphenyl Ether; Triton X-405), and the electrolyte is a halogen ion. According to a preferred embodiment of the present invention, the above copper ion is provided by a copper-containing compound, and the copper-containing compound may be, for example, anhydrous copper sulfate (CuS04), aqueous copper sulfate, copper carbonate (CuC03), or copper oxide. (Cu0). According to a preferred embodiment of the present invention, the composition of the above-mentioned copper plating solution further includes an acid, wherein the acid may be, for example, sulfuric acid. According to another object of the present invention, a method for electroplating copper is provided. At least 14 200532057 includes: firstly, providing a substrate having openings, wherein the openings can be, for example, micron or submicron openings; then, providing a plating solution, the plating solution Contains at least copper ions, gloss agents, inhibitors, and leveling agents, where the glossing agent is a non-simple thiolation & leveling agent is a benzimidyl derivative; and a step of electro-mineralization is performed by submerging the substrate into the plating In the liquid, a current density is applied to the substrate, so that copper ions are deposited in the openings of the substrate. According to a preferred embodiment of the present invention, the aforementioned non-simple thiol compounds, inhibitors and leveling agents have been described as above, and will not be repeated here. According to a preferred embodiment of the present invention, the copper ion is provided by a copper-containing compound, and the copper-containing compound may be, for example, anhydrous sulfuric acid steel, hydrous copper sulfate, copper carbonate, or copper oxide. According to a preferred embodiment of the present invention, the composition of the above-mentioned copper plating solution further includes an acid, wherein the acid may be, for example, sulfuric acid. The additive of the copper electroplating solution of the present invention does not contain dyes, which not only overcomes the problem of pinpoint anti-mine caused by the conventional copper electroplating = medium dye, but also improves the effective concentration of the gloss agent and violates the circumstance. Not sensitive and therefore easier to handle and produce. [Embodiment] The present invention discloses the composition of a copper electroplating solution, which overcomes the problem of pinpoint anti-plating caused by dyes in conventional copper electroplating solutions by using dye-free rhenium, and improves the effective concentration and range of the gloss agent. And reduce the sensitivity of the copper electroplating solution to the flow field. The composition of the copper electroplating solution of the present invention includes at least: copper ions; a glossing agent, /, a light / tincture is a non-simple thiol compound; an inhibitor; and a leveling agent, The leveling agent in 15 200532057 is a benzimidazole derivative. According to a preferred embodiment of the present invention, the copper ion may be provided by a copper-containing compound, and the copper-containing compound may be, for example, anhydrous copper sulfate, aqueous copper sulfate, copper carbonate, or copper oxide, and copper sulfate pentahydrate (CuS04 · 5H2 〇) is better. The concentration of the above copper-containing compound may be between 50 g / L and 250 g / L, and more preferably between 100 g / L and 220 g / L. According to a preferred embodiment of the present invention, the above non-simple thiol compound is an additive without dye, and the structure of the non-simple thiol compound is as follows: (I) ·· XS-γ-Z (I) where X may be For example, the following formula (π), formula (Dish), formula (IV), formula (V), formula (^), formula (通) 'formula (Wai), formula (IX), or formula (X),

NN

(Π )(Π)

nh2+ (m) (IV)nh2 + (m) (IV)

I h2n——c—— sI h2n——c—— s

H3c I N——C—— h3c’H3c I N——C—— h3c ’

(V) 16 (VI)200532057 、S· H2C—N h2c(》c、(V) 16 (VI) 200532057, S · H2C-N h2c (》 c,

而Y可例如為一(CH2)n —之烷基,其中n為介於1至5 之間之整數,以及Z可例如為一 COOH、一 S03Na、一 OH、 或一NH2 0 舉例而言,上述式(I )中X例如為式(V )、Y例如為 17 200532057 a直鏈烷基、且z例如為—s〇3Na時,本發明之非單純硫 醇化合物之結構可例如下式(X I ):And Y may be, for example, an (CH2) n-alkyl group, where n is an integer between 1 and 5, and Z may be, for example, a COOH, a S03Na, an OH, or an NH2 0. For example, When X in the above formula (I) is, for example, formula (V), Y is, for example, 2005200557a, a linear alkyl group, and z is, for example, -s03Na, the structure of the non-simple thiol compound of the present invention may be, for example, the following formula ( XI):

-NS^~S—S—(丨 CH2^-S03Na-NS ^ ~ S—S— (丨 CH2 ^ -S03Na

本發明之苯並咪唑衍生物之結構可例如下式(X n ) ·· R3The structure of the benzimidazole derivative of the present invention may be, for example, the following formula (X n) ·· R3

-N (X Π 其中,R】可例如一S03 Na、一 NH2、一 SH 或一OH,R2 可例如~ NH ~、一 〇 —或_ s 一,而r3可例如一 CN、— COOH、一 s〇3Na、一 OH、一 NH2 或一CH3。本發明之苯並 。米ϋ坐衍生物為不含染料的添加劑,其濃度以介於〇. i ppni至 10 ppm之間為較佳。 本發明之抑制劑至少包含聚二醇以及電解質。聚二醇可 例如聚乙二醇(PEG)、聚丙二醇(PPG)、聚氧化乙烯(PEO)、 或聚乙二醇第三辛基苯基醚(Triton X-405),然以聚乙二 醇為較佳’其中聚乙二醇之分子量係介於2〇〇〇至14〇〇〇之 間 般而言’聚二醇之濃度係介於50 ppm至200 ppm之 間。 上述之電解質可例如為函素離子,而更以氯離子為較 18 200532057 佳。_素離子之濃度一般係介於10 ppm至100 ppm之間, 而濃度以介於50 ppm至70 ppm之間為較佳。 根據本發明一較佳實施例,銅電鍍液之組成更至少包含 酸,其中酸可例如硫酸,且硫酸之濃度可介於1 8 g/L至1 50 g/L之間。 承上所述’本發明更揭露一種電鍍銅的方法,可在半導 體銅製程及印刷電路板填孔電鍍製程時,利用本發明銅電鍍 液進行電鍍步驟,由於本發明銅電鍍液之添加劑不含染料,肇 不僅克服針點抗鍍的現象,更易於操作及生產。本發明之電 錢銅的方法至少包含:首先,提供具有開口之基材,且此基 材係已經過約3 %之稀硫酸酸洗及超純水沖洗,其中此開口 可例如微米級或次微米級盲孔,且此開口之孔徑介於2〇 # m 至500 # m之間,而深寬比(Aspect Rati〇)介於1至3之間。 接著’提供電錄液,其中此電鍍液至少包含銅離子、光澤劑、 抑制劑及平整劑,其中光澤劑為非單純硫醇化合物,而平整 劑為苯並咪唑衍生物。之後,進行電鍍步驟,係將基材浸入 參 電鍍液中,以基材為陰極,對基材施加一電流密度,使銅離 子沉積於基材之開口中,藉以於開口中形成銅層。 根據本發明一較佳實施例,本發明之電鍍銅的方法可於 任何習知適用於電鍍銅之電鍍系統中進行。舉例而言,請參 ”、、第2圖,其係繪示根據本發明一較佳實施例之電鍵系統之 概圖,此電鍍系統200可例如為1000公升之電鍍槽,至少 包括槽體201、電源供應系統2〇3以及陽極2〇5,其中陽= 2〇5藉由陽極掛材2〇7電性連接於電源供應系統2〇3。陽極 19 200532057 205可例如可溶性陽極或不可溶性陽極,其中可溶性陽極係 例如磷銅片,而不可溶性陽極係例如鈦片或白金片。美材 221藉由陰極掛材217電性連接於電源供應系統2〇3,1基 材221與陰極掛材217可利用例如支架215設於槽體2〇\ 之上方。進行電鍍步驟時,基材221浸入電鍍液223中,以 基材221為陰極,利用電源供應系統203及陽極205對基材 221施加一電流密度,其中電流密度係介於每平方英尺 安培(A/ft2 ; ASF)至 30 ASF,而以介於 1〇 ASF 至 2〇 asf 為較佳。此外,在電鍍過程中,槽内溫度維持於介於約2〇 C至約25 C之間,使銅離子沉積於基材221之微米級或次 微米級開口中。 在電鍍過程中,電鍍系統200更可於槽體201底部設置 空氣幫浦231,並經由通氣管233將空氣以空氣攪拌流量例 如母分鐘約 2.5 標準升(Normal Liter Per Minute ; NL/min) 打入槽體20 1底部,使槽内產生強制對流,以增加銅離子與 各添加劑的質傳速度。值得一提的是,應用本發明之銅電鍍 液進行電鍍銅之方法時,由於本發明之銅電鍍液對流場方向 不敏感,因此更易於操作及生產。 以下係以數個實施例並配合第3(a)圖至第6(f)圖之圖 式,對本發明之電鍍銅的方法作更進一步的揭露,然其並非 用以限定本發明,任何熟習技術者,在不脫離本發明之精神 範圍内,當可作為些許之更動與潤飾。 實施例一 根據本發明一較佳實施例,本發明之電鍍銅的方法可於 20 200532057 高電流密度下進行。請參照第3(a)圖至第3(i)圖,其係顯示 根據本發明一較佳實施例利用本發明之銅電鍍液在不同電 流密度時於微米級及次微米級開口中沉積銅層之金相顯微 鏡放大200倍的剖面圖。金相顯微鏡即反射式光學顯微鏡, 主要用於觀察無法透光的試片,如觀測金屬表面的結構等。 由光源出來經聚光鏡聚焦的光束,經過半塗銀鏡之反射後通 過物鏡而照射在1C基材上,1C基材表面垂直於光軸的區域 會將光線反射至物鏡中,是為明區,而傾斜如蝕刻過的晶界 或是金屬表面的粗糙部位會把光線反射偏離至物鏡之外,最 後由目鏡成像,呈現出金屬表面的微結構特徵。 凊參照第3(a)圖至第3(c)圖,其係顯示根據本發明一較 佳實施例利用本發明之銅電鍍液在電流密度為約i2 A” 時’分別於孔徑6—,“ 105"m《盲孔中沉積銅 層之金相顯微鏡放大200倍的剖面圖,結果顯示各盲孔中的 鋼填充效果良好。 ' 睛參照第3(d)圖至第3(f)圖,其係顯示根據本發明一較 佳實施例利用本發明之銅電鍍液在電流密度為約i 8八灯 時,分別於孔徑65 // m、75 /z m及1〇5 " m之畜了丨士、 子匕I "L積鋼 的 層之金相顯微鏡放大200倍的剖面圖,結果顯示各盲孔中 鋼填充效果良好。 睛參照弟3(g)圖至第3(i)圖,其係顯示根據本發明, 佳實施例利用本發明之銅電鍍液在電流密户炎μ-N (X Π where R] may be, for example, S03 Na, -NH2, -SH, or -OH, R2 may be, for example, ~ NH ~, -0, or _s, and r3 may be, for example, CN, -COOH,- s〇3Na, mono-OH, mono-NH2 or mono-CH3. The benzo. stilbene derivative of the present invention is a dye-free additive, and its concentration is preferably between 0.1 ppni and 10 ppm. The inhibitor of the invention comprises at least a polyethylene glycol and an electrolyte. The polyethylene glycol may be, for example, polyethylene glycol (PEG), polypropylene glycol (PPG), polyethylene oxide (PEO), or polyethylene glycol third octylphenyl ether. (Triton X-405), of course, polyethylene glycol is preferred. 'Where the molecular weight of polyethylene glycol is between 2000 and 14000, generally, the concentration of polyethylene glycol is between 50 ppm to 200 ppm. The above-mentioned electrolyte may be, for example, a halide ion, and a chloride ion is better than 18 200532057. The concentration of the element ion is generally between 10 ppm and 100 ppm, and the concentration is between It is preferably between 50 ppm and 70 ppm. According to a preferred embodiment of the present invention, the composition of the copper electroplating solution further includes at least an acid, wherein the acid may be, for example, sulfuric acid, The concentration of sulfuric acid can be between 18 g / L and 1 50 g / L. According to the above description, the present invention further discloses a method for electroplating copper, which can be used in the process of semiconductor copper and hole-filling electroplating of printed circuit boards. The copper plating solution of the present invention is used for the electroplating step. Since the additives of the copper plating solution of the present invention do not contain dyes, it not only overcomes the phenomenon of pin point resistance to plating, but also is easier to operate and produce. The method of electric copper of the present invention includes at least: Provide a substrate with an opening, and this substrate has been washed with about 3% dilute sulfuric acid and ultrapure water. The opening can be, for example, a micron or submicron blind hole, and the pore diameter of the opening is between 2〇 # m to 500 # m, and the aspect ratio (Aspect Rati) is between 1 and 3. Then 'provide a recording solution, wherein the plating solution contains at least copper ions, gloss agents, inhibitors and A leveling agent, in which the glossing agent is a non-simple thiol compound and the leveling agent is a benzimidazole derivative. After that, a plating step is performed, in which the substrate is immersed in a reference plating solution, and the substrate is used as a cathode. Current density, sinking copper ions In the opening of the substrate, a copper layer is formed in the opening. According to a preferred embodiment of the present invention, the method of electroplating copper of the present invention can be performed in any conventional electroplating system suitable for electroplating copper. For example, Please refer to FIG. 2 and FIG. 2, which are schematic diagrams of a key system according to a preferred embodiment of the present invention. The electroplating system 200 may be, for example, a 1000-liter electroplating tank, including at least a tank body 201 and a power supply system. 203 and anode 205, where anode = 205 is electrically connected to the power supply system 203 through the anode hanging material 207. The anode 19 200532057 205 may be, for example, a soluble anode or an insoluble anode, in which a soluble anode is, for example, a phosphor copper plate, and an insoluble anode is, for example, a titanium plate or a platinum plate. The US material 221 is electrically connected to the power supply system 203 through the cathode hanging material 217, and the 1 base material 221 and the cathode hanging material 217 can be arranged above the tank 20 using a bracket 215, for example. During the electroplating step, the substrate 221 is immersed in the plating solution 223, and the substrate 221 is used as the cathode. The power supply system 203 and the anode 205 are used to apply a current density to the substrate 221, where the current density is between amperes per square foot (A / ft2; ASF) to 30 ASF, and more preferably between 10ASF to 20asf. In addition, during the electroplating process, the temperature in the bath is maintained between about 20 ° C. and about 25 ° C., so that copper ions are deposited in the micro-scale or sub-micro-scale openings of the substrate 221. During the electroplating process, the electroplating system 200 can further include an air pump 231 at the bottom of the tank 201, and the air is stirred at a flow rate of air, such as about 2.5 standard liters (Normal Liter Per Minute; NL / min), through the vent pipe 233. Into the bottom of the tank body 20 1, forced convection occurs in the tank to increase the mass transfer speed of copper ions and various additives. It is worth mentioning that, when the copper plating method of the present invention is applied to copper electroplating, the copper plating solution of the present invention is not sensitive to the direction of the flow field, so it is easier to operate and produce. The following is a more detailed disclosure of the copper electroplating method of the present invention by using several embodiments and the diagrams of FIGS. 3 (a) to 6 (f), but it is not intended to limit the present invention. Any familiarity Those skilled in the art should be able to make some modifications and retouching without departing from the spirit of the present invention. Embodiment 1 According to a preferred embodiment of the present invention, the copper electroplating method of the present invention can be performed at a high current density of 20 200532057. Please refer to FIG. 3 (a) to FIG. 3 (i), which show that according to a preferred embodiment of the present invention, the copper plating solution of the present invention is used to deposit copper in the micron and submicron openings at different current densities. Sectional view of 200 times magnification of layer metallographic microscope. Metallographic microscopes are reflective optical microscopes, which are mainly used to observe non-transmissive test pieces, such as observing the structure of metal surfaces. The light beam focused by the condenser from the light source is reflected by the half-coated silver mirror and irradiated on the 1C substrate through the objective lens. The area of the surface of the 1C substrate perpendicular to the optical axis will reflect the light into the objective lens. Inclinations such as etched grain boundaries or rough parts of the metal surface will reflect light away from the objective lens, and finally be imaged by the eyepiece, showing the microstructure characteristics of the metal surface.凊 Referring to FIGS. 3 (a) to 3 (c), it shows that the copper plating solution of the present invention is used at a current density of about i2 A ”according to a preferred embodiment of the present invention. "105 " m" A 200x magnified cross-sectional view of a metallographic microscope with a copper layer deposited in the blind holes. The results show that the steel filling effect in each blind hole is good. 'Referring to Figures 3 (d) to 3 (f), it shows that the copper plating solution of the present invention is used according to a preferred embodiment of the present invention when the current density is about i 8 and eight lamps, respectively at an aperture of 65. // m, 75 / zm, and 10 m " m's beasts, men and women I " L metallographic layer magnified 200 times sectional view of the metallographic microscope, the results show that the blind hole filled with good steel. Referring to Figures 3 (g) to 3 (i), it shows that according to the present invention, the preferred embodiment uses the copper plating solution of the present invention

x芍約26 ASF 時,分別於孔徑65"m、75/zm& 105"^之言7丨丄 胃孔中沉積錮 層之金相顯微鏡放大200倍的剖面圖,結果顯厂 "、不各盲孔中的 21 200532057 銅填充效果良好。 實施例二 根據本發明一較佳實施例,應用本發明之電鍍鋼的方法 時,光澤劑可於較廣的有效濃度及範圍進行。請參照第4(a) 圖至第4(f)圖,其係顯示根據本發明另一較佳實施例利用本 發明之銅電鍍液在光澤劑為約1〇 ppm時,分別於孔徑65 "m、70//m、75/zm、85/zm、95/zm 及 105/ztn 之盲孔中 沉積銅層之金相顯微鏡放大200倍的剖面圖,結果顯示各盲 孔中的銅填充效果良好。 請參照第5(a)圖至第5(f)圖,其係顯示根據本發明又一 較佳實施例利用本發明之銅電鍍液在光澤劑為約5〇 ppm 時,分別於孔徑 65 /z m、70 // m、75 // m、85 // m、95 " m 及105//m之盲孔中沉積銅層之金相顯微鏡放大200倍的剖 面圖’結果顯示各盲孔中的銅填充效果良好。 實施例三 根據本發明一較佳實施例,應用本發明之電鍍銅的方法 時,銅離子可於較低的有效濃度進行。請參照第6(a)圖至第 6(f)圖,其係顯示根據本發明再一較佳實施例利用本發明之 銅電鑛液在含銅化合物之濃度為約1〇〇 g/L時,分別於孔徑 65μπχ、70"m、75/zm、85Am、95/zm 及 l〇5//m 之盲孔 中/儿積銅層之金相顯微鏡放大200倍的剖面圖,結果顯示在 低銅離子濃度時,各盲孔中的銅填充效果良好。 由上述本發明較佳實施例可知,應用本發明之銅電鍍液 之組成,其優點在於藉由不含染料的添加劑,克服習知銅電 22 200532057 鍵液中染料所導致針點抗鍵的問題,提昇光澤劑的有效濃度 及範圍,並降低鋼電鍍液對流場的敏感度。 由上述本發明較佳實施例可知,應用本發明之電錢銅的 方法,其優點在於半導體銅製程及印刷電路板填孔電鍍製程 時,利用本發明銅電鍍液進行電鍍步驟,由於本發明銅電鍍 液之添加劑不含染料,不僅克服針點抗鍍的現象,更易於操 作及生產。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 以下為圖式之簡短說明,其係顯示本發明用以說明之實 施例,其中: 第1圖係繪示習知技術填充金屬導線之Ic基材的剖面 圖; 第2圖係繪示根據本發明一較佳實施例之電鍍系統之 概圖; ' 第3(a)圖至第3(1)圖係顯示根據本發明一較佳實施例 利用本發明之銅電鍍液在不同電流密度時於微米級及次微 米級開口中沉積銅層之金相顯微鏡玫大2〇〇倍的剖面圖; 第4(a)圖至第4(f)圖係顯示根據本發明另一較佳實施 例利用本發明之銅電鍍液在光澤劑為約1 〇沖㈤時,分別於 23 200532057 孔徑 65/z m、70/z m、75/z m、85// m、95/z 如 盲孔中、/儿積銅層之金相顯微鏡放大200倍的 ^ m 第5(a)圖至第5(f)圖係顯示根據本發明又一 ▲’ 例利用本發明之銅電鍍液在光澤劑為約5 一較佳實施 * ppm時,分別於 孔徑 65//m、70/zm、75/zm、85/zm、9s 、 95以坩及105//m之 盲孔中沉積銅層之金相顯微鏡放大2〇〇倍的立丨 π刮面圖;以及 第6(a)圖至第6(f)圖係顯示根據本發明再一較佳實施 例利用本發明之銅電鍍液在含銅化合物之濃度為約i〇〇g/L 時,分別於孔徑65 // m、70 0 m、75 β m、85以m、% “坩 及105 μ m之盲孔中沉積銅層之金相顯微鏡放大2〇〇倍的剖 面圖。 【元件代表符號簡單說明】 101 : 基材 103 : 盲孔 105 : 金屬層 111 : 空洞 113 : 縫隙 115 : 無缺陷 200 ·· 電鍍系統 201 : 槽體 203 : 電源供應系統 205 : 陽極 207 ·· 陽極掛材 215 : 支架 217 : 陰極掛材 221 ·· 基材 223 ·· 電鍍液 231 : 空氣幫浦 233 : 通氣管 24When x 芍 approximately 26 ASF, the metallurgical microscope section of 200 times magnification was deposited at the apertures 65 " m, 75 / zm & 105 " ^ 言 7 丨 The microscopic view of the metallurgical layer deposited in the gastric foramen was enlarged. The 21 200532057 copper filling effect in each blind hole is good. Embodiment 2 According to a preferred embodiment of the present invention, when the method of electroplating steel of the present invention is applied, the glossing agent can be performed at a wide range of effective concentrations. Please refer to FIG. 4 (a) to FIG. 4 (f), which show that according to another preferred embodiment of the present invention, the copper plating solution of the present invention is used when the gloss agent is about 10 ppm. ; 200 × magnified cross-section of a metallographic microscope with a copper layer deposited in blind holes in m, 70 // m, 75 / zm, 85 / zm, 95 / zm, and 105 / ztn, the results show the copper filling in each blind hole Works well. Please refer to FIG. 5 (a) to FIG. 5 (f), which show that according to another preferred embodiment of the present invention, the copper plating solution of the present invention is used at a hole diameter of 65/50 when the gloss agent is about 50 ppm. zm, 70 // m, 75 // m, 85 // m, 95 " metallographic microscope magnified 200 times section view of copper layer deposited in blind holes in m and 105 // m 'results show that in each blind hole The copper filling effect is good. Embodiment 3 According to a preferred embodiment of the present invention, when the copper electroplating method of the present invention is applied, copper ions can be performed at a lower effective concentration. Please refer to FIG. 6 (a) to FIG. 6 (f), which show that the concentration of the copper-based mineral liquid using the copper electric ore liquid of the present invention is about 100 g / L according to another preferred embodiment of the present invention. At 200 times, the metallurgical microscope section of the copper deposit layer in the blind holes with apertures of 65μπχ, 70 " m, 75 / zm, 85Am, 95 / zm, and 105 // m were magnified 200 times. The results are shown in When the copper ion concentration is low, the copper filling effect in each blind hole is good. As can be seen from the above-mentioned preferred embodiments of the present invention, the composition of the copper electroplating bath to which the present invention is applied has the advantage of overcoming the problem of pinpoint anti-bonding caused by the dyes in the conventional copper electrolyte 22 200532057 key solution by using dye-free additives , Increase the effective concentration and range of the gloss agent, and reduce the sensitivity of the steel plating solution to the flow field. It can be known from the above-mentioned preferred embodiments of the present invention that the method of applying the electric copper of the present invention has the advantages that the semiconductor copper process and the printed circuit board hole filling and plating process use the copper plating solution of the present invention to perform the plating step. The additives in the plating solution do not contain dyes, which not only overcomes the phenomenon of pin point resistance to plating, but also facilitates operation and production. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make various changes and decorations without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application. [Brief description of the drawing] The following is a brief description of the drawing, which shows an embodiment of the present invention for explanation, wherein: FIG. 1 is a cross-sectional view showing a conventional IC filled metal wire substrate; The drawings are schematic diagrams of a plating system according to a preferred embodiment of the present invention; 'FIGS. 3 (a) to 3 (1) are diagrams showing the use of the copper plating solution of the present invention according to a preferred embodiment of the present invention A cross-sectional view of a metallographic microscope that deposits a copper layer in micron- and sub-micron-sized openings at different current densities is 200 times larger; Figures 4 (a) to 4 (f) show additional A preferred embodiment utilizes the copper electroplating solution of the present invention when the gloss agent is about 10 ounces, and the pores are 65 / zm, 70 / zm, 75 / zm, 85 // m, and 95 / z, respectively. A metallographic microscope with a magnification of 200 times in the hole and / or copper layer ^ m Figures 5 (a) to 5 (f) show a further example according to the present invention using the copper plating solution of the present invention in gloss When the agent is about 5, a preferred implementation * ppm, copper is deposited in blind holes with apertures of 65 // m, 70 / zm, 75 / zm, 85 / zm, 9s, 95, and 105 // m, respectively. A metallographic microscope magnification of 200 times a vertical π π scraped surface; and Figures 6 (a) to 6 (f) show the use of the copper plating solution of the present invention in accordance with yet another preferred embodiment of the present invention. When the concentration of the copper-containing compound is about 100 g / L, the copper layer is deposited in the blind holes with a diameter of 65 // m, 70 0 m, 75 β m, 85 m,% “Cr and 105 μm, respectively. A 200x magnified cross-section view of a metallographic microscope. [Simple description of element representative symbols] 101: substrate 103: blind hole 105: metal layer 111: cavity 113: gap 115: defect-free 200. Electroplating system 201: tank body 203: Power supply system 205: Anode 207 ... Anode hanging material 215: Bracket 217: Cathode hanging material 221 ... Base material 223 ... Electroplating solution 231: Air pump 233: Vent pipe 24

Claims (1)

200532057 拾、申請專利範圍 1· 一種銅電鍍液之組成,至少包含: 一銅離子; 一光澤劑(Brightener),其中該光澤劑為一非單純硫 醇化合物; 一抑制劑(Suppressor);以及 一平整劑(Leveler),其中該平整劑為一笨並咪唑衍生 物(Benzimidazole Derivative) 〇 2·如申請專利範圍第1項所述之銅電鍍液之組成, 其中該非單純硫醇化合物之結構如下式(I ): X- S- Υ- Ζ ( I ) 其中 5亥χ係選自於由式(Π)、式(瓜)、式(IV)、式(V)、 式(VI)、式式(遞)、式(IX)以及式(X)所組成之一族 群,200532057 Patent application scope 1. Composition of a copper electroplating bath, at least: a copper ion; a brightener, wherein the brightener is a non-simple thiol compound; a suppressor; and a Leveler, wherein the leveler is a benzimidazole derivative (2) The composition of the copper electroplating bath as described in item 1 of the patent application scope, wherein the structure of the non-simple thiol compound is as follows: (I): X- S- Υ- Zn (I) where 5 ×× is selected from formula (Π), formula (melon), formula (IV), formula (V), formula (VI), formula A group consisting of (pass), formula (IX), and formula (X), (Π) ΝΗ〇+ (Π) II Η2Ν-C— 25 (IV)200532057 H3C f N—C H3C’(Π) ΝΗ〇 + (Π) II Η2N-C— 25 (IV) 200532057 H3C f N—C H3C ’ (V) H2C——N h2c{^ (VI) N——N(V) H2C——N h2c (^ (VI) N——N (VH) (vm)(VH) (vm) (ix) 26 (X) 200532057 該Y為一(CH2)n—之烷基,其中該η為介於1至5 之間之一整數,以及 該 Ζ 係選自於由一COOH、一 S03Na、一 ΟΗ、及一ΝΗ2 所組成之一族群。 3 ·如申請專利範圍第1項所述之銅電鍍液之組成, 其中該光澤劑之濃度係介於百萬分之(parts Per Million ; ppm)10 至 100 ppm 之間0 4·如申請專利範圍第1項所述之銅電鍍液之組成, 其中該苯並咪唑衍生物之結構如下式(X Π ):(ix) 26 (X) 200532057 The Y is an (CH2) n-alkyl group, wherein the η is an integer between 1 and 5, and the Z is selected from the group consisting of a COOH, a S03Na, A group consisting of 10Η and 1Η2. 3. The composition of the copper electroplating solution as described in item 1 of the scope of the patent application, wherein the concentration of the gloss agent is between 10 and 100 ppm parts per million (ppm) 0 4 The composition of the copper electroplating solution described in the first item of the scope, wherein the structure of the benzimidazole derivative is as follows (X Π): (X Π ) 其中,該R!係選自於由-S〇3 Na、一 NH2、一 SH及 —OH所組成之一族群,該r2係選自於由_ nh —、_ 〇 —及一S —所組成之一族群,而該r3係選自於由一 cn、 一 COOH、- S03Na、一 oh、— NH2 及一 CH3 所組成之一 族群。 5 ·如申請專利範圍第丨項所述之銅電鍍液之組成, 其中δ亥平整劑之》辰度係介於〇· 1 ppm至1 〇 ppm之間。 27 200532057 6·如申請專利範圍第1項所述之銅電鍍液之組成, 其中該銅離子係由一含銅化合物提供,且該含銅化合物係 選自於由無水硫酸銅(CuS〇4)、含水硫酸銅、碳酸鋼 (CuC〇3)及氧化銅(CuO)所組成之一族群。 7·如申請專利範圍第6項所述之銅電鍍液之組成, 其中該含銅化合物為五水合硫酸銅(CuS04 · 5H20)。 8·如申請專利範圍第6項所述之銅電鍍液之組成, 其中該含銅化合物之濃度係介於每公升50克(g/L)至250 g/L之間。 9 ·如申請專利範圍第6項所述之鋼電鍍液之組成, 其中該含銅化合物之濃度係介於l〇〇g/L至220 g/L之間。 10 ·如申請專利範圍第1項所述之銅電鍍液之組成, 其中該抑制劑至少包含聚二醇以及一電解質。 11·如申請專利範圍第1〇項所述之銅電鍍液之組 成’其中該聚二醇係選自於由聚乙二醇(p〇lyethylene Glycol,PEG)、聚丙二醇(p〇iypr〇pyiene Glyc〇1 ; ppG)、 l氧化乙歸(Polyethylene Oxide ; PEO)、以及聚乙二醇第 三辛基苯基醚(Polyethylene Glycol Tei*t_Octylphenyl Ether ; Triton X-405)所組成之一族群。 28 200532057 項所述之銅電鍍液之組 介於2000至14000之間。 12·如申請專利範圍第u 成’其中該聚乙一知之分子量係 項所述之銅電鍍液之組 5〇 ppm 至 200 ppm 之間。 13.如申請專利範圍第1〇 成,其中該聚二醇之濃度係介於(X Π) wherein R! Is selected from the group consisting of -S〇3 Na, -NH2, -SH, and -OH, and r2 is selected from the group consisting of _nh-, _〇-and- S — a group consisting of, and the r3 is selected from a group consisting of —cn, —COOH, —S03Na, —oh, —NH2, and —CH3. 5. The composition of the copper electroplating solution as described in item 丨 of the patent application range, wherein the degree of the δ-leveling agent is between 0.1 ppm and 10 ppm. 27 200532057 6. The composition of the copper electroplating solution as described in item 1 of the scope of patent application, wherein the copper ion is provided by a copper-containing compound, and the copper-containing compound is selected from the group consisting of anhydrous copper sulfate (CuS〇4) , A group of hydrous copper sulfate, carbonated steel (CuC03) and copper oxide (CuO). 7. The composition of the copper electroplating solution according to item 6 of the scope of the patent application, wherein the copper-containing compound is copper sulfate pentahydrate (CuS04 · 5H20). 8. The composition of the copper electroplating solution as described in item 6 of the scope of the patent application, wherein the concentration of the copper-containing compound is between 50 grams (g / L) and 250 g / L. 9. The composition of the steel electroplating solution as described in item 6 of the scope of the patent application, wherein the concentration of the copper-containing compound is between 100 g / L and 220 g / L. 10. The composition of the copper plating solution as described in item 1 of the scope of the patent application, wherein the inhibitor comprises at least a polyglycol and an electrolyte. 11. The composition of the copper electroplating bath as described in item 10 of the scope of the patent application, wherein the polyethylene glycol is selected from the group consisting of polyethylene glycol (PEG) and polypropylene glycol (propylene glycol). Glyc0; ppG), 1 ethylene oxide (Polyethylene Oxide; PEO), and polyethylene glycol third octyl phenyl ether (Polyethylene Glycol Tei * t_Octylphenyl Ether; Triton X-405). 28 The group of copper electroplating baths described in 2005200557 is between 2000 and 14000. 12. The group of copper plating solution as described in the item of the patent application No. u 'wherein the molecular weight of polyethylene is between 50 ppm and 200 ppm. 13. If the patent application range is 10%, the concentration of the polyglycol is between 14.如申請專利範圍第1〇 其中該電解質為鹵素離子。 項所述之銅電鍍液之組14. As claimed in claim 10, wherein the electrolyte is a halogen ion. Group of copper plating bath 1 5.如申請專利範圍第14 *項所述之銅電鍍液之組 成,其中該齒素離子為氣離子。 16·如申請專利範圍第ι4 ^ 、 乐14項所述之銅電鍍液之組 成,其中該鹵素離子之濃度係介^ 1 紙/又你;丨於10 ppm至l〇〇 pprn之 π.如申請專利範圍第14項所述之銅電鍍液之組 成,其中該函素離子之濃度係介於50 ppm至70 ppm之間。 1 8 ·如申請專利範圍第1項所述之銅電鍍液之組成, 更至少包含一酸。 19.如申請專利範圍第18項所述之銅電鍍液之組 29 200532057 成,其中該酸為硫酸,且該酸之濃度係介於18 g/L至ι5〇 g/L之間。 20· —種電鍍銅的方法,至少包含: 提供一基材,其中該基材具有一開口; 提供一電鍍液,其中該電鍍液至少包含: 一銅離子; 一光澤劑,其中該光澤劑為一非單純硫醇化合 物; 一抑制劑;以及 一平整劑’其中該平整劑為一苯並味嗤衍生物; 進行一電鍍步驟,係將該基材浸入該電鍍液中,對該 基材施加一電流密度,使該銅離子沉積於該基材之該開口 中。 2 1 ·如申請專利範圍第2 0項所述之電鍍銅的方法, 其中該非單純硫醇化合物之結構如下式(I ) ·· X-S-Υ-z ( I ) 其中 該X係選自於由式(π)、式(m)、式(ιν)、式(V)、 式(VI)、式(w)、式(观)、式(K)以及式(X)所組成之一族 群, 30 2005320571 5. The composition of the copper electroplating solution as described in item 14 * of the scope of the patent application, wherein the tooth ion is a gas ion. 16. The composition of the copper electroplating solution as described in the scope of the patent application No. 1-4, Le 14, wherein the concentration of the halogen ions is ^ 1 paper / you; 丨 between 10 ppm to 100pprn. The composition of the copper electroplating solution described in item 14 of the scope of the patent application, wherein the concentration of the halide ion is between 50 ppm and 70 ppm. 18 • The composition of the copper plating solution as described in item 1 of the scope of patent application, further comprising at least one acid. 19. The group of copper electroplating baths described in item 18 of the scope of patent application, wherein the acid is sulfuric acid, and the concentration of the acid is between 18 g / L and 50 g / L. 20 · A method for electroplating copper, comprising at least: providing a substrate, wherein the substrate has an opening; providing a plating solution, wherein the plating solution includes at least: a copper ion; a glossing agent, wherein the glossing agent is A non-simple thiol compound; an inhibitor; and a leveling agent, wherein the leveling agent is a benzo miso derivative; performing a plating step, immersing the substrate in the plating solution, and applying the substrate A current density causes the copper ions to be deposited in the opening of the substrate. 2 1 · The method of electroplating copper as described in item 20 of the scope of patent application, wherein the structure of the non-simple thiol compound is as follows: (I) XS-Υ-z (I) where X is selected from the group consisting of A group of formula (π), formula (m), formula (ιν), formula (V), formula (VI), formula (w), formula (view), formula (K), and formula (X), 30 200532057 (Π ) NH〇+ I H2|sj-c- (Π) H3C I N—C H3C’ (IV)(Π) NH〇 + I H2 | sj-c- (Π) H3C I N—C H3C ’(IV) (V) 、人S(V), person S (VI) (VH)(VI) (VH) 31 20053205731 200532057 αχ) (X) 4 Υ為一(CH2)n—之烧基,其中該η為介於j至5 之間之一整數,以及 -0H、及一NH2 該Z係選自於由—c〇〇H、~ S03Na、 所組成之一族群。 22·如申請專利範圍第2〇項所述之電鍍銅的方法, 其中該光澤劑之濃度係介於10ppms 100ppm之間。 23·如申請專利範圍第2〇項所述之電鍍銅的方法, 其中该本並咪ϋ坐衍生物之結構如下式(X互):αχ) (X) 4 Υ is an alkyl group of (CH2) n—, where η is an integer between j and 5, and -0H, and -NH2. Z is selected from -c. 〇H, ~ S03Na, a group of groups. 22. The method of electroplating copper as described in item 20 of the scope of patent application, wherein the concentration of the gloss agent is between 10 ppms and 100 ppm. 23. The method of electroplating copper as described in item 20 of the scope of the patent application, wherein the structure of the benzoimide derivative is as follows (X Mutual): r3 其中,該R!係選自於由一S〇3 Na、一 NH2、~ SH及 —OH所組成之一族群,該r2係選自於由一 nh—Q —及一S —所組成之一族群,而該r3係選自於由—CN、 —C00H、一 S03Na、一 OH、一 NH2 及一CH3 所組成之 _ 32 200532057 族群。 24·如申請專利範圍第20項所述之電鍍銅的方法, 其中該平整劑之濃度係介於〇· 1 ppm至1〇 ppm之間。 25.如申請專利範圍第20項所述之電鍍銅的方法, 其中該銅離子係由一含銅化合物提供,且該含銅化合物係 選自於由無水硫酸銅、含水碰酸銅、碳酸銅及氧化銅所組 成之一族群。 26·如申請專利範圍第25項所述之電鍍銅的方法, 其中該含銅化合物為五水合硫酸銅。 27·如申睛專利範圍第25項所述之電鑛銅的方法, 其中該含銅化合物之濃度係介於50g/L至250 g/L之間。 28·如申請專利範圍第25項所述之電鍍銅的方法, 其中該含銅化合物之濃度係介於100g/L至220 g/L·之間。 如申明專利範圍第2 〇項所述之電鑛銅的方法, ’、t 4抑制劑至少包含聚二醇以及一電解質。 3〇·如申請專利範圍第29項所述之電鍍銅的方法, 八中忒聚二醇係選自於由聚乙二醇(PEG)、聚丙二醇 33 200532057 (PPG)、聚氧化乙烯(PEO)、以及聚乙二醇第三辛基苯基 醚(Triton X-405)所組成之一族群。 3 1.如申請專利範圍第29項所述之電鍍銅的方法, 其中該聚乙二醇之分子量係介於2000至14000之間。 32·如申請專利範圍第29項所述之電鍍銅的方法, 其中該聚二醇之濃度係介於50 ppm至200 ppm之間。 33·如申請專利範圍第29項所述之電鍍銅的方法, 其中該電解質為鹵素離子。 34·如申吻專利範圍第33項所述之電鍍銅的方法, 其中該函素離子為氣離子。 33項所述之電鍍銅的方法, 於10 ppm至100 ppm之間。 3 5 ·如申ό月專利範圍第$, 其中該i素離子之濃度係介於 3 6 ·如申請專利範圍第r3 wherein R! is selected from the group consisting of S03 Na, NH2, ~ SH, and -OH, and r2 is selected from the group consisting of nh-Q-and S A group, and the r3 is selected from the group consisting of -CN, -C00H, -S03Na, -OH, -NH2, and -CH3. 24. The method of electroplating copper according to item 20 of the scope of patent application, wherein the concentration of the leveling agent is between 0.1 ppm and 10 ppm. 25. The method for electroplating copper as described in item 20 of the scope of the patent application, wherein the copper ion is provided by a copper-containing compound, and the copper-containing compound is selected from the group consisting of anhydrous copper sulfate, copper hydroxide and copper carbonate. And a group of copper oxides. 26. The method of electroplating copper according to item 25 of the scope of application for a patent, wherein the copper-containing compound is copper sulfate pentahydrate. 27. The method of electro-mineral copper as described in item 25 of the Shenyan patent, wherein the concentration of the copper-containing compound is between 50 g / L and 250 g / L. 28. The method of electroplating copper as described in item 25 of the scope of patent application, wherein the concentration of the copper-containing compound is between 100 g / L and 220 g / L ·. As described in the method of claim 20 for patenting the scope of the patent for the electro-mineral copper, the '4 inhibitor includes at least a polyglycol and an electrolyte. 30. According to the method of electroplating copper described in item 29 of the scope of patent application, Yazhongzhong polyglycol is selected from the group consisting of polyethylene glycol (PEG), polypropylene glycol 33 200532057 (PPG), and polyethylene oxide (PEO ), And a group consisting of polyethylene glycol third octylphenyl ether (Triton X-405). 3 1. The method of electroplating copper as described in item 29 of the scope of patent application, wherein the molecular weight of the polyethylene glycol is between 2000 and 14,000. 32. The method of electroplating copper as described in item 29 of the scope of patent application, wherein the concentration of the polyglycol is between 50 ppm and 200 ppm. 33. The method of electroplating copper as described in item 29 of the scope of patent application, wherein the electrolyte is a halogen ion. 34. The method of electroplating copper as described in item 33 of the application for a kiss kiss patent, wherein the halide ion is a gas ion. The method of electroplating copper according to item 33 is between 10 ppm and 100 ppm. 3 5 · As claimed in the patent scope of $, where the concentration of i element ions is between 3 6 33項所述之電鍍銅的方法, 於50 ppm至70 ppm之間。 20項所述之電鍍銅的方法, 37·如申請專利範圍第2( 其中該電鍍液更至少包含—@ 200532057 3 8 ·如申請專利範圍第3 7項所述之電鍍銅的方法, 其中該酸為硫酸,且該酸之濃度係介於1 8 g/L至1 50 g/L 之間之間° 3 9 ·如申研專利範圍第2 0項所述之電鍍銅的方法, 其中該電流密度係介於每平方英尺1〇安培(A/ft2 ; ASF) 至 30 ASF 〇 40.如申請專利範圍第20項所述之電鑛銅的方法, 其中該電流密度係介於10 ASF至20 ASF。 41.如中請專利範圍第2G項所述之電錢銅的方法, 其中該開口係選自於由一微米級盲孔與一次微米級盲孔 所組成之一族群。 35The method of electroplating copper described in item 33 is between 50 ppm and 70 ppm. The method of electroplating copper described in item 20, 37. As described in the scope of patent application No. 2 (where the electroplating solution at least contains-@ 200532057 3 8 · The method of electroplating copper described in item 37 of the scope of patent application, where the The acid is sulfuric acid, and the concentration of the acid is between 18 g / L and 1 50 g / L ° 39. The method of electroplating copper as described in item 20 of the Shenyan patent scope, wherein the The current density ranges from 10 amperes per square foot (A / ft2; ASF) to 30 ASF 〇40. The method of electro-mineral copper described in item 20 of the patent application scope, wherein the current density ranges from 10 ASF to 20 ASF. 41. The method of electric copper according to item 2G of the patent scope, wherein the opening is selected from a group consisting of one micron-sized blind hole and one micron-level blind hole. 35
TW93108954A 2004-03-31 2004-03-31 Composition for copper electroplating solution TWI320062B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93108954A TWI320062B (en) 2004-03-31 2004-03-31 Composition for copper electroplating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93108954A TWI320062B (en) 2004-03-31 2004-03-31 Composition for copper electroplating solution

Publications (2)

Publication Number Publication Date
TW200532057A true TW200532057A (en) 2005-10-01
TWI320062B TWI320062B (en) 2010-02-01

Family

ID=45073690

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93108954A TWI320062B (en) 2004-03-31 2004-03-31 Composition for copper electroplating solution

Country Status (1)

Country Link
TW (1) TWI320062B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845558A (en) * 2008-08-18 2016-08-10 诺发系统有限公司 Process for filling through silicon vias
TWI638912B (en) 2017-08-04 2018-10-21 台灣先進系統股份有限公司 Copper electroplating solution, method for copper electroplating and method for forming copper pillars
US10472730B2 (en) 2009-10-12 2019-11-12 Novellus Systems, Inc. Electrolyte concentration control system for high rate electroplating
US10692735B2 (en) 2017-07-28 2020-06-23 Lam Research Corporation Electro-oxidative metal removal in through mask interconnect fabrication
CN111816608A (en) * 2020-07-09 2020-10-23 电子科技大学 Glass blind hole processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845558A (en) * 2008-08-18 2016-08-10 诺发系统有限公司 Process for filling through silicon vias
CN105845558B (en) * 2008-08-18 2021-01-29 诺发系统有限公司 Through silicon via filling process
US10472730B2 (en) 2009-10-12 2019-11-12 Novellus Systems, Inc. Electrolyte concentration control system for high rate electroplating
US10692735B2 (en) 2017-07-28 2020-06-23 Lam Research Corporation Electro-oxidative metal removal in through mask interconnect fabrication
US11610782B2 (en) 2017-07-28 2023-03-21 Lam Research Corporation Electro-oxidative metal removal in through mask interconnect fabrication
TWI638912B (en) 2017-08-04 2018-10-21 台灣先進系統股份有限公司 Copper electroplating solution, method for copper electroplating and method for forming copper pillars
CN111816608A (en) * 2020-07-09 2020-10-23 电子科技大学 Glass blind hole processing method
CN111816608B (en) * 2020-07-09 2023-05-09 电子科技大学 Glass blind hole processing method

Also Published As

Publication number Publication date
TWI320062B (en) 2010-02-01

Similar Documents

Publication Publication Date Title
JP6012723B2 (en) Copper plating method
JP6083921B2 (en) Silver-tin alloy electroplating bath
TWI296014B (en) Reverse pulse plating composition and method
US10988852B2 (en) Method of electroplating copper into a via on a substrate from an acid copper electroplating bath
JP4816901B2 (en) Electro copper plating bath
EP2963158B1 (en) Plating method
JP4258011B2 (en) Electro-copper plating bath and semiconductor device in which copper wiring is formed by the plating bath
TWI636162B (en) Acidic aqueous composition for electrolytic copper plating
JPWO2006018872A1 (en) Additive for copper plating and method for producing electronic circuit board using the same
JP4031328B2 (en) Additive for acidic copper plating bath, acidic copper plating bath containing the additive, and plating method using the plating bath
JP2003328179A (en) Additive for acidic copper plating bath, acidic copper plating bath containing the additive and plating method using the plating bath
JP2004250791A (en) Electroplating composition
TW200532057A (en) Composition for copper electroplating solution
JP4762423B2 (en) Void-free copper plating method
JP2000080494A (en) Plating solution for copper damascene wiring
JP2010206212A (en) Electroplating interconnection structure on integrated circuit chip
JP2017503929A (en) Copper electrodeposition
TWI298751B (en) Composition for copper electroplating solution
TWI519682B (en) Electroplating baths of silver and tin alloys