TW200531304A - Single chip white light component - Google Patents

Single chip white light component Download PDF

Info

Publication number
TW200531304A
TW200531304A TW093105430A TW93105430A TW200531304A TW 200531304 A TW200531304 A TW 200531304A TW 093105430 A TW093105430 A TW 093105430A TW 93105430 A TW93105430 A TW 93105430A TW 200531304 A TW200531304 A TW 200531304A
Authority
TW
Taiwan
Prior art keywords
light
emitting layer
white light
blue
light emitting
Prior art date
Application number
TW093105430A
Other languages
Chinese (zh)
Other versions
TWI229465B (en
Inventor
zheng-quan Chen
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to TW093105430A priority Critical patent/TWI229465B/en
Priority to US11/064,675 priority patent/US7217959B2/en
Application granted granted Critical
Publication of TWI229465B publication Critical patent/TWI229465B/en
Publication of TW200531304A publication Critical patent/TW200531304A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

This invention is related to a single chip white light component that includes a substrate, a buffer layer, a first electric conduction cladding layer, a second electric conduction cladding layer, at least a quantum point light-emitting layer with wide spectrum of blue light complementary color, and at least a blue light-emitting layer. The cladding layer is formed on the substrate, the quantum point light-emitting layer with wide spectrum of blue light complementary color is formed between first electric conduction cladding layer and second electric conduction cladding layer, and the quantum point light-emitting layer with blue light complementary color has a plural number of quantum points whose characteristic distribution is not homogeneous to increase the half-width height of light-emitting wavelength spectrum of quantum point light-emitting layer. The blue light-emitting layer is formed between first electric conduction cladding layer and second electric conduction cladding layer to produce white light by mixture of blue light and its complementary color. The single chip white light components of this invention contain both wide-spectrum blue light complementary color light-emitting layer and blue light-emitting layer for the same light-emitting diode structure to mix lights for production of AlInGaN single-chip white light component with characteristics of high color rendering, high emitting density, and high color temperature modulation.

Description

200531304 玖、發明說明: 【技術領域】 本發明係關於一種白光元件,詳言之,係關於一種單晶 片白光元件。 【先前技術】 近年來隨著氮化銘銦鎵發光二極體發光效率之大幅度提 升,因此對利用高亮度發光二極體以產生白色光源之發展 產生極大之興趣和期望。目前利用高亮度發光二極體產生 白色光源主要有以下三種結構。 第一種為日亞化學所發明利用藍光發光二極體加上黃色 螢光粉(YAG-Ce; Y3Al5〇l2:Ce3 + )而產生混色白光(參考美 國專利第6,069,440號),此種結構可製作目前市面上成本最 低<白光元件。但由於其具有藍色光暈現象(Hal〇 , 且瑩光粉有可靠度衰減與光轉化效率低,封裝成本提高, 加上螢光粉特性限制使得此方法無法提供具高色彩飽和 度,各種色溫調變之高強度,高可靠度白光發光元件。 第二種係近年來為改善前者白光光源之演色性(c〇lw rendering index_CRI)不佳而提出,此為利用紫外光激發可 產生紅監綠(RGB)三色之螢光粉而產生高演色性之白光光 源(參考美國專利第6592780、6580097及6596 195號)。此钟 構之缺點為混合之RGB螢光粉可靠度不佳,加上紫外光為 激發光源,不為混色光源,因此光強度更低。此外,其在 封裝上會有導致封裝樹脂劣化與紫外光外露之安全疑慮需 要克服。 u200531304 (1) Description of the invention: [Technical Field] The present invention relates to a white light element, and more specifically, to a single crystal white light element. [Previous technology] In recent years, as the luminous efficiency of indium gallium nitride indium gallium light emitting diodes has been greatly improved, there has been great interest and expectation in the development of the use of high brightness light emitting diodes to generate white light sources. At present, white light sources produced by high-brightness light-emitting diodes mainly have the following three structures. The first is the invention of the Nichia Chemical Institute, which uses blue light emitting diodes and yellow phosphors (YAG-Ce; Y3Al5012: Ce3 +) to produce mixed-color white light (refer to US Patent No. 6,069,440). This structure can Production of the lowest cost white light element currently on the market. However, due to its blue halo phenomenon (Hal0), and the phosphor has a reliability attenuation, low light conversion efficiency, and increased packaging costs, coupled with the limitation of phosphor characteristics, this method cannot provide high color saturation and various color temperatures. Modulated high-intensity, high-reliability white light-emitting element. The second type is proposed in recent years to improve the poor color rendering (c0lw rendering index_CRI) of the former white light source. This is to use red light to generate red monitor green. (RGB) three-color phosphors to produce white light sources with high color rendering (refer to US Patent Nos. 6592780, 6580097, and 6596 195). The disadvantage of this clock structure is that the reliability of the mixed RGB phosphors is not good, plus Ultraviolet light is an excitation light source, not a mixed-color light source, so the light intensity is lower. In addition, there will be safety concerns on the packaging that will cause deterioration of the packaging resin and exposure of ultraviolet light. U

O:\90\903I2.DOC 200531304 第二種則為製作成本較高之利用複數個發光元件結合之 構造,以產生高亮度,且極佳演色性之白光光源(參考美國 專利第6563 139號)。但由於多晶片封裝成本高,加上目前 市場僅能提供波長大於58〇nm之高亮度紅橘黃光磷化鋁銦 鎵發光二極體與氮化物藍光發光二極體封裝,但此二種材 料特性不同,如高溫穩定性,驅動電壓,材料可靠度,因 此面臨材料特性不同之高度使用困難。 此外,尚有其他人提出利用在單一晶片裡成長具不同波 #又之夕重里子井(quantum weU)而直接產生白光(參考日本 專利第2GG3-078169號),因為-般利用量子井當作氮化銘 銦鎵發光層結構會無法製得發光效率佳之長波長波段,如 波長大於55〇nm·且利用量子井結構所製得之發光頻譜和發 光效率有一定關係,隨著頻譜之加大,量子井發光層之發 光效率會急劇下降,因此利用量子井結構僅能於窄頻譜波 長上彳于到較佳之光效率。因此該項發明利用量子井所製得 之發光層製程與發光效率皆無法符合目前市場所需之高強 度,高演色性,色溫調變之白光功能。 此外也有利用氮化鋁銦鎵藍光晶片激發磷化鋁銦鎵產生 κ光而混光成白光光源,但此黃光強度過低與頻譜太窄而 效果不佳。另外亦有人使用硒化鋅(ZnSe)為發光材料(參考 美國專利第6,337,536號),但其可靠度,色彩飽和度,發光 強度遠遠不如相關氮化鋁銦鎵之白光元件。 因此,有必要提供一種創新且具進步性的白光元件,以 解決上述問題。O: \ 90 \ 903I2.DOC 200531304 The second type is a structure that uses a plurality of light-emitting elements combined to produce a high cost white light source with high brightness and excellent color rendering (refer to US Patent No. 6563 139). . However, due to the high cost of multi-chip packaging, and the current market can only provide high-brightness red-orange-yellow-light aluminum-indium-gallium-phosphorus-indium-gallium light-emitting diodes and nitride blue-light-emitting diodes with wavelengths greater than 580 nm, these two materials Different characteristics, such as high temperature stability, driving voltage, and material reliability, therefore face a high degree of difficulty in using different material characteristics. In addition, others have proposed the use of growing different waves in a single chip. # Also the evening weir (quantum weU) to directly generate white light (refer to Japanese Patent No. 2GG3-078169), because the quantum well is generally used as The structure of the indium gallium nitride indium gallium light-emitting layer will not be able to produce long-wavelength bands with good luminous efficiency, such as a wavelength greater than 55nm, and the luminescence spectrum produced using the quantum well structure has a certain relationship with the luminous efficiency. As the spectrum increases, The light emitting efficiency of the quantum well light-emitting layer will drop sharply, so the quantum well structure can only be used to achieve better light efficiency at a narrow spectrum wavelength. Therefore, the process and luminous efficiency of the light-emitting layer produced by the invention using the quantum well cannot meet the white light function of high intensity, high color rendering, and color temperature modulation required by the current market. In addition, there are also aluminum indium gallium nitride blue light chips that excite aluminum indium gallium phosphide to generate κ light and mix light into a white light source. However, the yellow light intensity is too low and the frequency spectrum is too narrow, so the effect is not good. In addition, some people use zinc selenide (ZnSe) as the light-emitting material (refer to US Patent No. 6,337,536), but its reliability, color saturation, and luminous intensity are far inferior to those of related aluminum indium gallium nitride white light elements. Therefore, it is necessary to provide an innovative and progressive white light element to solve the above problems.

O:\90\903I2.DOC 200531304 【發明内容】 本發明之目的在於提供一種單晶片白光元件,其包括: 一基板、一緩衝層、一第一導電性披覆層、一第二導電性 披覆層、至少一具寬頻譜之藍光互補色量子點發光層及至 少一監光發光層。該緩衝層係形成於該基板上,該第一導 私性披覆層係形成於該緩衝層上,用以提供電子,該具寬 頻譜之藍光互補色量子點發光層形成於該第一導電性披覆 層及该第一導電性披覆層之間,該藍光互補色量子點發光 層具有衩數個量子點’該等量子點之特性分怖不均勾,俾 增加孩量子點發光層之發光波長頻譜半高寬。該藍光發光 層形成於該第一導電性披覆層及該第二導電性披覆層之 間’使藍光與藍光互補色混光以產生白光。 本發明之單晶片白光元件,係於同一發光二極體結構中 同時具有寬頻譜藍光互補色量子點發光層及藍光發光層, 使之混光而可製得具高演色性,高發光強度,高色溫調變 特性之氮化鋁銦鎵單晶片白光元件。 泫i頻瑨監光互補色之量子點發光層之最大光強度發光 波長可落在510nm-670nm範圍内,半高寬為2〇nm〜2〇〇nm。 其再與同一晶片結構中之氮化鋁銦鎵藍光發光層混光成一 單晶片白光元件,可產生高發光強度兼具調變各種色溫之 鬲演色性之白光。由於該寬頻譜發光波段涵蓋人眼最敏感 之可見光波段,因而可大大改善白光光強度,再加上寬頻 謂分佈則可進一步提升演色性與各種色溫調控。 由於本發明係直接於單一晶粒上成長具寬頻譜之藍光互O: \ 90 \ 903I2.DOC 200531304 [Summary of the invention] The object of the present invention is to provide a single-chip white light element, which includes: a substrate, a buffer layer, a first conductive coating layer, and a second conductive coating layer. A cladding layer, at least one blue light complementary color quantum dot light emitting layer with a wide spectrum and at least one monitor light emitting layer. The buffer layer is formed on the substrate, and the first conductive coating layer is formed on the buffer layer to provide electrons. The blue-ray complementary color quantum dot light-emitting layer with a wide spectrum is formed on the first conductive layer. Between the cladding layer and the first conductive cladding layer, the blue-color complementary color quantum dot light-emitting layer has several quantum dots. The characteristics of these quantum dots are unevenly distributed, and the quantum dot light-emitting layer is increased. The light emission wavelength spectrum has a full width at half maximum. The blue light emitting layer is formed between the first conductive coating layer and the second conductive coating layer 'to mix blue light and blue light complementary colors to generate white light. The single-chip white light element of the present invention has a wide-spectrum blue-light complementary color quantum dot light-emitting layer and a blue light-emitting layer in the same light-emitting diode structure, which can be mixed with light to obtain high color rendering and high light-emitting intensity. Aluminium indium gallium nitride single-chip white light element with high color temperature modulation characteristics. The maximum light intensity emission wavelength of the quantum dot light-emitting layer of the 泫 i frequency monitor light complementary color can fall in the range of 510nm-670nm, and the full width at half maximum is 20nm ~ 200nm. It is then mixed with the aluminum indium gallium nitride blue light emitting layer in the same wafer structure to form a single-chip white light element, which can generate white light with high luminous intensity and modulation of various color temperatures. Since this wide-spectrum luminous band covers the most visible visible light band of the human eye, the intensity of white light can be greatly improved, and the wide-band so-called distribution can further improve color rendering and various color temperature adjustments. Since the present invention is to grow a broad-spectrum blue light directly on a single die,

O:\90\903I2.DOC 200531304 補色波段發光層,本發明不同於習知技術利用藍光晶粒激 發藍光互補色螢光粉來形成所需要之藍光互補色光讀,再 使〈與藍光混光成白光。因Λ ’本發明之單晶片白光元件 之發光效率遠比習知塗侔答氺古π 土抑金先叔為佳,且光強度衰減遠較 利用藍光互補色螢光粉為佳。 在封裝製程上,由於本發明之單晶片白光元件僅需單一 晶片即可封裝成白光元件’不需要利用多晶片封裝之方 法’故本發明單晶片白光元件之可靠度、發光效率、演色 色溫調變、驅動電壓、熱穩定性、ESD阻抗特性等皆 逆比目W習知技術更佳。因此可大幅降低封裝成本與提高 封裝元件之可靠度。 、心h本發明之關白光元件將可用來提供或取代目前 :场上〈白光元件,例如··可利用於攜帶性電子產品白光 二光源4燈、造景燈、裝潰飾燈、手持燈具等相關白光 元件之應用。 扣此外’為了增加紅光演色@,與生產調變性。本發明之 =片白光元件可酌I添加紅光螢光粉一同封裝以產生具 三波長光譜之白光元件,紅経光粉之添加主要是為了增 :白光對紅色物體之演色性,或低色溫之調變。其添加量 可二於傳統監光互補色螢光粉,因此,本發明之該高演色 單阳片白光7G件依然具有高可靠度,高發光強度,低封 裝成本等優點。 【實施方式】 X下,參知、圖式,說明作為本發明實施例的固態白光元O: \ 90 \ 903I2.DOC 200531304 The complementary color band light-emitting layer, the present invention is different from the conventional technology that uses blue light grains to excite the blue complementary light fluorescent powder to form the required blue light complementary color light to read, and then White light. Because the light emitting efficiency of the single-chip white light element of the present invention is far better than that of the conventional uncle Tu 侔 抑 Tu Yi Jin, and the attenuation of the light intensity is much better than the use of blue-color complementary phosphors. In the packaging process, since the single-chip white light element of the present invention only needs a single wafer to be packaged into a white light element 'the method of using multi-chip packaging is not required', the reliability, luminous efficiency, and color rendering temperature adjustment of the single-chip white light element of the present invention Changes, driving voltage, thermal stability, ESD impedance characteristics, etc. are all better than the conventional technology. Therefore, packaging costs can be greatly reduced and the reliability of packaged components can be improved. The white light element of the present invention can be used to provide or replace the current: white light elements on the field, for example, can be used in portable electronic products, white light two light sources, 4 lights, landscape lights, decoration lights, handheld lamps Application of related white light components. In addition, ‘in order to increase the red light rendering @, and production modulation. The white light element of the present invention can be packaged with red fluorescent powder to produce a white light element with a three-wavelength spectrum. The addition of red light powder is mainly to increase the color rendering of white light to red objects, or low color temperature. Its modulation. The added amount can be two times that of the traditional monitor light complementary color phosphor. Therefore, the high color rendering single-sheet white 7G piece of the present invention still has the advantages of high reliability, high luminous intensity, and low packaging cost. [Embodiment] Under X, refer to the drawings and drawings to explain the solid-state white light element as an example of the present invention

O:\90\90312.DOC 200531304 件。在圖式中,相同或類似部分附記相同或類似的元件符 號、名稱。另外,圖式僅為示意圖,圖中之結構尺寸比例 可能與實際結構之尺寸比例有所差異。 凊參閱圖1 ’其顯示本發明第一實施例之單晶片白光元件 1 〇之構造。该單晶片白光元件1 〇包括:一基板1 1、一緩衝 層12、一第一導電性披覆層(ciadding lay er) 13、七層藍光 量子點發光層14、15等、三層具寬頻譜藍光互補色量子點 發光層1 6、17、1 8及一第二導電性披覆層19。該單晶片白 光元件1 0另包括二電極2 1、22,以供與外界電源連接。該 緩衝層1 2係形成於該基板11上。該第一導電性披覆層丨3係 形成於該緩衝層12上,該第一導電性披覆層13可為N型披 覆層用以提供電子。該第二導電性披覆層19形成於該量子 點發光層18之上,該第一導電性披覆層19可為P型披覆層用 以提供電洞。該緩衝層12、該第一導電性披覆層13及該第 二導電性披覆層19均為氮化鋁銦鎵結構,可表示為 Al(1_x-y)InyGaxN 〇 .七層藍光量子點發光層14、15等依序形成於該第一導電 性披覆層13上。以該藍光量子點發光層14為例說明,該藍 光量子點發光層14具有複數個量子點(quantum dots) 1 4 1及 142等,該等量子點之大小尺寸相近,因此不具有寬頻譜之 特性。參考圖2所示,七層氮化鋁銦鎵藍光量子點發光層 14、15,其最大光強度為115。 以該藍光量子點發光層14為例說明,該量子點發光層14 另包括一第一阻障層143及一第二阻障層144。該第一阻障 O:\90\90312.doc -9- 200531304 層143係於該等量子點141、142之下,該第二阻障層144係 於該等量子點141、142之上。第一阻障層143及第二阻障層 144均為氮化鋁銦鎵結構,可表示為A1(lx_y)InyGaxN,並且 第一阻障層143及第二阻障層144之能障均須大於該等量子 點141、142之能障。 在該監光量子點發光層15之上依序為三層具寬頻譜之藍 光互補色量子點發光層1 6、1 7及1 8。每一個具寬頻譜之藍 光互補色畺子點發光層具有複數個量子點。以該具寬頻譜 <監光互補色量子點發光層16為例說明,其具有複數個量 子點161、162並且設計每一層之量子點大小不均勻分佈, 使得該等量子點之特性分佈不均句,俾使該等量子點發光 層1 6、1 7、1 8之發光波長頻譜半高寬增加。 參考圖2所示,該具有寬頻諸之藍光互補色量子點發光層 係應用於產生黃光,且可控制其最大光強度為i6G,發光波 長為575nm,且其半高寬(最大光強度之一半,亦即強度為 Μ之波長範圍)為120nm(5 ! 〇nm_63〇nm),故具有寬頻譜之 特性。本發明之單晶片白光元件,係利—發光二極體結 構中同時具有見頻賴光互補色量子點發光層及藍光發光 層’使之混光而可製得具高演色性,高發光強度,高色溫 凋變特性之氮化鋁銦鎵單晶片白光元件。 碰:::寬頻譜之藍光互補色量子點發光層之發光波長頻 阳—同見可由I子點大小或銦含量來控制,因Λ,可以調 =量子點之尺寸大小或銦含量之多寡,控制量子點特性分 、:勻以仔到具有寬頻之特性。利用控制量子點特O: \ 90 \ 90312.DOC 200531304 pieces. In the drawings, the same or similar parts are marked with the same or similar component symbols and names. In addition, the drawing is only a schematic diagram, and the size ratio of the structure in the figure may be different from the size ratio of the actual structure.凊 Refer to FIG. 1 ', which shows the structure of a single-chip white light element 10 according to a first embodiment of the present invention. The single-chip white light element 10 includes: a substrate 11, a buffer layer 12, a first conductive cladding layer 13, seven blue quantum dot light emitting layers 14 and 15, and three layers with broadband Spectral blue light complementary color quantum dot light emitting layers 16, 17, 18 and a second conductive coating layer 19. The single-chip white light element 10 further includes two electrodes 21 and 22 for connection to an external power source. The buffer layer 12 is formed on the substrate 11. The first conductive coating layer 3 is formed on the buffer layer 12, and the first conductive coating layer 13 may be an N-type coating layer to provide electrons. The second conductive coating layer 19 is formed on the quantum dot light emitting layer 18. The first conductive coating layer 19 may be a P-type coating layer to provide holes. The buffer layer 12, the first conductive coating layer 13 and the second conductive coating layer 19 are all aluminum indium gallium nitride structures, which can be expressed as Al (1_x-y) InyGaxN. Seven-layer blue light quantum dots. The light emitting layers 14 and 15 are sequentially formed on the first conductive coating layer 13. Taking the blue light quantum dot light emitting layer 14 as an example, the blue light quantum dot light emitting layer 14 has a plurality of quantum dots (quantum dots) 1 4 1 and 142, etc. The quantum dots are similar in size and size, and therefore do not have a wide spectrum. characteristic. Referring to FIG. 2, the seven aluminum indium gallium nitride blue light quantum dot light emitting layers 14 and 15 have a maximum light intensity of 115. Taking the blue quantum dot light emitting layer 14 as an example, the quantum dot light emitting layer 14 further includes a first barrier layer 143 and a second barrier layer 144. The first barrier O: \ 90 \ 90312.doc -9- 200531304 layer 143 is under the quantum dots 141, 142, and the second barrier layer 144 is over the quantum dots 141, 142. The first barrier layer 143 and the second barrier layer 144 are both aluminum indium gallium nitride structures, which can be expressed as A1 (lx_y) InyGaxN, and the energy barriers of the first barrier layer 143 and the second barrier layer 144 must be Energy barriers greater than these quantum dots 141, 142. Above the supervised light quantum dot light emitting layer 15 are sequentially three layers of blue light complementary color quantum dot light emitting layers 16, 17 and 18 having a wide spectrum. Each blue-colored complementary-colored raccoon dot emitting layer with a wide spectrum has a plurality of quantum dots. Taking the wide-spectrum & monitor light complementary color quantum dot light emitting layer 16 as an example, it has a plurality of quantum dots 161, 162, and the quantum dot size of each layer is designed to be unevenly distributed, so that the characteristic distribution of the quantum dots is not uniform. In the same sentence, the full width at half maximum of the emission wavelength spectrum of the quantum dot light emitting layers 16, 17 and 18 is increased. As shown in FIG. 2, the blue-color complementary quantum dot light emitting layer with wide frequency bands is used to generate yellow light, and its maximum light intensity can be controlled to be i6G, the light emission wavelength is 575nm, and its full width at half maximum (the maximum light intensity of Half, that is, the wavelength range where the intensity is M) is 120 nm (50 nm to 63 nm), so it has a wide spectrum of characteristics. The single-chip white light element of the present invention is a light-emitting diode structure that has both a light-dependent complementary color quantum dot light-emitting layer and a blue light-emitting layer, so that it can be mixed with light to obtain high color rendering and high luminous intensity. , Aluminium indium gallium nitride single-chip white light element with high color temperature decay characteristics. Touch ::: The wide-spectrum blue-color complementary color quantum dot light-emitting layer emits light with a wavelength of frequency-the same can be controlled by the size of the sub-dot or the content of indium, because Λ can be adjusted = the size of the quantum dot or the amount of indium, Control the characteristics of quantum dots: evenly distributed to have wideband characteristics. Utilizing control quantum dot features

O:\90\903I2.DOC 200531304 性分佈不均勾,以得到具有寬頻譜特性之技術特徵已詳細 指示於專利申請案第092 123734號,在此不加贅述。 如上所述’本發明之早晶片白光元件,係於同一發光二 極體結構中同時具有寬頻譜藍光互補色量子點發光層及藍 光發光層,使之混光而可得白光。在第一實施例中係採七 層監光量子點發光層及三層寬頻譜藍光互補色量子點發光 層結構。但本發明並不限於僅可採用上述之量子點發光層 結構。在該第一實施例之結構中,該藍光量子點發光層小 於或等於七層均可。 參考圖3,其顯示本發明第二實施例之單晶片白光元件 3 〇 °在圖3中,有關與第一實施例之結構相同的部分將註記 相同的元件符號,並且若沒有特別提及則其具有相同的構 造及功能者。 如圖3所示,本發明第二實施例之單晶片白光元件3〇,係 在第一導電性披覆層1 3及第二導電性披覆層1 9之間,包括 厂層具寬頻譜藍光互補色量子點發光層31、33等以及四層 監光f子點發光層34、35、36及37。.六層具寬頻譜藍光互 補色I子點發光層3 1、3 3等係依序形成於該第一導電性披 覆層13之上。每一個具寬頻譜之藍光互補色量子點發光層 具有衩數個量子點。以該具寬頻語之藍光互補色量子點發 光層31為例說明,其具有複數個量子點3U、312及二阻障 層3 13、3 14,並且設計每一層之量子點大小不均勻分佈, 使得孩等量子點之特性分佈不均勻,俾使該等量子點發光 層31、33等之發光波長頻譜半高寬增加。O: \ 90 \ 903I2.DOC 200531304 The uneven distribution of properties to obtain the technical characteristics with broad spectrum characteristics has been indicated in detail in Patent Application No. 092 123734, and will not be repeated here. As described above, the early wafer white light element of the present invention has a wide-spectrum blue-light complementary color quantum dot light-emitting layer and a blue light-emitting layer in the same light-emitting diode structure, and the light is mixed to obtain white light. In the first embodiment, the structure of seven light-emitting quantum dot light-emitting layers and three wide-band blue light complementary color quantum dot light-emitting layers are adopted. However, the present invention is not limited to the structure of the quantum dot light emitting layer described above. In the structure of the first embodiment, the blue quantum dot emitting layer may be smaller than or equal to seven layers. Referring to FIG. 3, a single-chip white light element 30 according to a second embodiment of the present invention is shown. In FIG. 3, the same component symbols are denoted with the same components as those of the first embodiment, and if not specifically mentioned, then It has the same structure and function. As shown in FIG. 3, the single-chip white light element 30 of the second embodiment of the present invention is located between the first conductive coating layer 13 and the second conductive coating layer 19, including a factory layer with a wide spectrum. The blue light complementary color quantum dot light emitting layers 31, 33, etc., and the four monitor light f sub-dot light emitting layers 34, 35, 36, and 37. Six layers of wide-spectrum blue light complementary color I sub-dot light emitting layers 3 1 and 3 3 are sequentially formed on the first conductive coating layer 13. Each blue-color complementary color quantum dot light-emitting layer with a wide spectrum has a plurality of quantum dots. Take the blue-color complementary color quantum dot light emitting layer 31 with a wide band as an example, it has a plurality of quantum dots 3U, 312 and two barrier layers 3 13, 3 14, and the quantum dots of each layer are designed to be unevenly distributed. As a result, the distribution of the characteristics of the quantum dots is not uniform, and the full-width at half maximum of the emission wavelength spectrum of the quantum dot light-emitting layers 31, 33, etc. is increased.

O:\90\903I2.DOC 200531304 在具寬頻譜藍光互補色量子點發光層33之上依序為四層 藍光量子點發光層34、35、36及37。以該藍光量子點發光 層34為例說明,該藍光量子點發光層34具有複數個量子點 341、342等及二阻障層343及344,該等量子點之大小尺寸 相近,因此不具有寬頻譜之特性。在該第二實施例之結構 中’該藍光量子點發光層小於或等於七層均可。 參考圖4所示,該六層具有寬頻譜之藍光互補色量子點發 光層係應用於產生黃光,且可控制其最大光強度為146,發 光波長為585nm,且其半高寬(最大光強度之一半,亦即強 度為0·5之波長範圍)為1 l〇nm(5 i〇nm_62〇nm),故具有寬頻 譜之特性。該四層藍光量子點發光層之最大光強度為2丨〇, 舍光波長為465nm ’其半南寬為24nm(453nm-487nm),不具 有寬頻譜特性。 利用本發明第二實施例之上述結構,係於同一單晶片白 光元件結構中同時具有寬頻譜藍光互補色量子點發光層及 藍光發光層,同樣可以使之混光而可製得具高演色性,高 發光強度’南色溫調變特性之氮化鋁銦鎵單晶片白光元件。 參考圖5,本發明第三實施例單晶片白光元件50之第一導 電性披覆層13及第二導電性披覆層19之間,係包括九層具 見頻if監光互補色量子點發光層5丨、53等以及一具寬頻譜 藍光量子點發光層54。九層具寬頻譜藍光互補色量子點發 光層51、53等係依序形成於該第一導電性披覆層13之上。 每個具I頻凊之監光互補色量子點發光層具有複數個量 子點。以該具寬頻譜之藍光互補色量子點發光層51為例說O: \ 90 \ 903I2.DOC 200531304 Four blue light quantum dot light emitting layers 34, 35, 36, and 37 are sequentially formed on the blue light quantum dot light emitting layer 33 with a wide spectrum of complementary colors. Taking the blue quantum dot light emitting layer 34 as an example, the blue quantum dot light emitting layer 34 has a plurality of quantum dots 341, 342, etc., and two barrier layers 343 and 344. The quantum dots have similar sizes, and therefore do not have a wide frequency band. The characteristics of the spectrum. In the structure of the second embodiment, 'the blue light quantum dot light emitting layer may be less than or equal to seven layers. As shown in FIG. 4, the six-layer blue-color complementary color quantum dot light-emitting layer with a wide spectrum is used to generate yellow light, and its maximum light intensity can be controlled to be 146, the light emission wavelength is 585 nm, and its half-width (maximum light) The half of the intensity, that is, the wavelength range with an intensity of 0.5, is 1 l0nm (5 l0nm_62m), so it has a wide spectrum of characteristics. The four-layer blue light quantum dot light-emitting layer has a maximum light intensity of 2o0, a cut-off wavelength of 465 nm ', and a half-width south of 24 nm (453 nm-487 nm), which does not have wide-spectrum characteristics. With the above structure of the second embodiment of the present invention, the same single-chip white light element structure has both a wide-spectrum blue light complementary color quantum dot light-emitting layer and a blue light-emitting layer, which can also be mixed with light to obtain high color rendering. Aluminium indium gallium nitride single-chip white light element with high luminous intensity and southern color temperature modulation characteristics. Referring to FIG. 5, a third embodiment of the single-chip white light element 50 of the present invention includes a first conductive coating layer 13 and a second conductive coating layer 19, which include nine layers of frequency-monitoring complementary color quantum dots. The light emitting layers 5 and 53 and a light emitting layer 54 with a wide spectrum blue light quantum dot. Nine layers of wide-spectrum blue light complementary color quantum dot light emitting layers 51 and 53 are sequentially formed on the first conductive coating layer 13. Each of the monitor-light complementary color quantum dot light emitting layers with I frequency chirps has a plurality of quantum dots. Take this wide-spectrum blue-color complementary color quantum dot light-emitting layer 51 as an example

O:\90\903I2.DOC 200531304 明,其具有衩數個量子點5丨丨、5丨2及二阻障層5丨3、5丨4, 並且设计每一層之量子點大小不均勻分佈,使得該等量子 點(特性分佈不均勻,俾使該等量子點發光層3丨、33等之 發光波長頻譜半高寬增加。 在具見頻瑨監光互補色量子點發光層53之上為該具寬頻 瑨監光!子點發光層54。該具寬頻譜藍光量子點發光層54 ,、有枚數個里子點541、542等及二阻障層543及544,並且 該等量子點541、542等大小不均勾分佈,使得該等量子點 之特性分佈不均勾,俾使該量子點發光層54之發光波長頻 譜半高寬增加。 本發月第一貝訑例單晶片白光元件5 〇之結構與第一實施 例及第一貝她例之結構不同。該單晶片元件之基板41為 第一導電性導電基板,可為N型導電基板,例如:碳化矽 (SiC)、氮化鎵(GaN)、矽(Si)等。因此,該基板“可連接一 兒極45。涿電極45可不需如第一實施例及第二實施例之結 構在第4電性披覆層43上。該基板41上仍依序為緩衝層 42及第|電性披覆層43。在第二導電性披覆層上連接 另一電極4 6。 本發明單晶片元件之基板可為第_導電性導電基板(n型 導電基板)、第二導電性導電基板或絕緣基板。第二導電性 導電基板可為P型導電基板,可為碳切㈣)、氮化鎵 (㈣)、石夕⑻等。絕緣基板可為藍寶石(Mo;)、氮化銘 (A1N)、氧化鋅(Zn〇)等。 參考®16’該九層具有寬頻譜之藍光互補色量子點發光層O: \ 90 \ 903I2.DOC 200531304 indicates that it has several quantum dots 5 丨 丨, 5 丨 2, and two barrier layers 5 丨 3, 5 丨 4, and the quantum dot size of each layer is designed to be unevenly distributed. The uneven distribution of the quantum dots (characteristics of the characteristics, which increases the full width at half maximum of the emission wavelength spectrum of the quantum dot light-emitting layers 3, 33, etc.) The broadband monitor light! Sub-dot light-emitting layer 54. The broad-spectrum blue-light quantum dot light-emitting layer 54 has a plurality of li-dot points 541, 542, etc., and two barrier layers 543 and 544, and these quantum dots 541 The uneven distribution of sizes such as, 542, etc. makes the distribution of the characteristics of these quantum dots uneven, which increases the full-width at half maximum of the light emission wavelength spectrum of the quantum dot light-emitting layer 54. The first example of a single-chip white light device The structure of 50 is different from that of the first embodiment and the first beta. The substrate 41 of the single-chip element is a first conductive substrate, and may be an N-type conductive substrate, such as silicon carbide (SiC), nitrogen Gallium (GaN), silicon (Si), etc. Therefore, the substrate "can be connected to a pole 45. Power 45 may not need the structure of the first embodiment and the second embodiment on the fourth electrical coating layer 43. The substrate 41 still has the buffer layer 42 and the | electrical coating layer 43 in order. In the second The conductive coating layer is connected to another electrode 46. The substrate of the single-chip device of the present invention may be a _ conductive substrate (n-type conductive substrate), a second conductive substrate or an insulating substrate. The second conductive substrate The substrate can be a P-type conductive substrate, which can be carbon-cut ㈣), gallium nitride (㈣), Shi Xi 石, etc. The insulating substrate can be sapphire (Mo;), nitride (A1N), zinc oxide (Zn〇) Etc. Reference® 16 'This nine-layer blue-ray complementary color quantum dot light-emitting layer with wide spectrum

O\90\903l2.DOC 200531304 係應用於產生黃光,且可控制其最大光強度為丨60,發光波 長為585nm ’且其半高寬為145nin(505nm-650nm),故具有 寬頻譜之特性。該具寬頻譜藍光量子點發光層54之發光波 長為455nm,且其半高寬為48nm(43 lnm-479nm),其具有寬 頻譜特性。 本發明第三實施例之單晶片白光元件5〇,係使該藍光量 子點發光層54具有寬頻譜之特性。因此,在該單晶片白光 元件50結構中同時具有寬頻譜藍光互補色量子點發光層及 具丸頻增監光量子點發光層,俾使之混光而製得具高演色 性’问發光強度’鬲色溫調變特性之氮化鋁銦鎵單晶片白 光元件。 參考圖7,在第一導電性披覆層13及第二導電性披覆層19 之間’本發明第四實施例之單晶片白光元件7〇包括七層藍 光量子井(quantum well)發光層71、73,以及二層具寬頻譜 藍光互補色量子點發光層74及75。該等七層藍光量子井發 光層71、73等係依序形成於該第一導電性披覆層13之上。 以该監光量子井發光層7 1為例說明,該藍光量子井發光層 71具有一量子井結構711及二阻障層712及713,該等量子井 結構不具有寬頻譜之特性。在該第四實施例之結構中,該 藍光量子點發光層小於或等於四層均可。 在該等藍光量子井發光層73之上依序為二層具寬頻譜藍 光互補色量子點發光層74及75。同樣地,每一個具寬頻譜 之藍光互補色量子點發光層具有複數個量子點。以該具寬 頻譜之藍光互補色量子點發光層74為例說明,其具有複數O \ 90 \ 903l2.DOC 200531304 is used to generate yellow light, and its maximum light intensity can be controlled to 60, the light emission wavelength is 585nm ', and its full width at half maximum is 145nin (505nm-650nm), so it has a wide spectrum of characteristics . The wide-spectrum blue-light quantum dot light-emitting layer 54 has a light emission wavelength of 455 nm, and a full width at half maximum of 48 nm (43 lnm-479 nm), which has wide spectrum characteristics. The single-chip white light element 50 of the third embodiment of the present invention makes the blue light quantum dot light emitting layer 54 have a wide frequency spectrum characteristic. Therefore, the single-chip white light element 50 structure has both a wide-spectrum blue light complementary color quantum dot light-emitting layer and a pill-frequency-increasing quantum dot light-emitting layer, and is mixed with light to obtain a high color rendering 'ask light intensity'. Aluminium indium gallium nitride single-chip white light element with 鬲 color temperature modulation characteristics. Referring to FIG. 7, between the first conductive coating layer 13 and the second conductive coating layer 19, the single-chip white light element 70 of the fourth embodiment of the present invention includes seven blue quantum well light emitting layers. 71, 73, and two light-emitting layers 74 and 75 with wide-spectrum blue light complementary color quantum dots. The seven blue light quantum well light emitting layers 71 and 73 are sequentially formed on the first conductive coating layer 13. Taking the monitoring light quantum well light-emitting layer 71 as an example, the blue light quantum well light-emitting layer 71 has a quantum well structure 711 and two barrier layers 712 and 713. These quantum well structures do not have the characteristics of wide spectrum. In the structure of the fourth embodiment, the blue quantum dot light emitting layer may be less than or equal to four layers. On top of the blue quantum well light emitting layers 73 are two quantum light emitting layers 74 and 75 with wide-spectrum blue complementary colors. Similarly, each blue-color complementary color quantum dot light emitting layer with a wide spectrum has a plurality of quantum dots. Take the blue-color complementary color quantum dot light-emitting layer 74 with a wide spectrum as an example, and it has a complex number

O:\90\903I2.DOC -14- 200531304 個量子點741、742及二阻障層743、744,並且設計每一層 之里子點大小不均勾分佈,使得該等量子點之特性分佈不 均勻,俾使該等量子點發光層74、75等之發光波長頻譜半 南寬增加。 參考圖8所示,該二層具有寬頻譜之藍光互補色量子點發 光層係應用於產生黃光,且可控制其最大光強度為88,發 光波長為565nm,且其半高寬為9〇nm(52〇nm_61〇nm),故具 有寬頻譜之特性。該七層藍光量子井發光層之最大光強度 為100 ,發光波長為470nm ,且其半高寬為 19nm(461nm-480nm)不具有寬頻譜特性。 本發明第四實施例之單晶片白光元件7〇,不同於上述第 一至第二貫施例,該第四實施例之單晶片白光元件7〇係利 用T子井結構為藍光發光層,而非利用量子點結構。在該 單晶片白光元件70結構中同時具有寬頻譜藍光互補色量子 點發光層及藍光量子井發光層,同樣可以使之混光而可製 得具鬲演色性,高發光強度,高色溫調變特性之氮化鋁銦 鎵單晶片白光元件。因此,本發明之藍光發光層可利用量 子點結構或量子井結構達成。 參考圖9所示,其中曲線91為國際彩光協定(CIE, Commission International de 1 chairage = International commission on Illuminati on)曲線,曲線 92為黑體軌跡(BlackO: \ 90 \ 903I2.DOC -14- 200531304 quantum dots 741, 742 and two barrier layers 743, 744, and the neutron dot size of each layer is designed to be unevenly distributed, so that the characteristics of these quantum dots are unevenly distributed Therefore, the half-south width of the emission wavelength spectrum of the quantum dot light emitting layers 74, 75 and the like is increased. As shown in FIG. 8, the two-layer blue-color complementary color quantum dot light-emitting layer with wide spectrum is used to generate yellow light, and the maximum light intensity can be controlled to 88, the light-emitting wavelength is 565 nm, and the full width at half maximum is 9 °. nm (52nm-61nm), so it has a wide spectrum of characteristics. The maximum light intensity of the seven-layer blue-quantum quantum well light-emitting layer is 100, the light-emitting wavelength is 470 nm, and its full width at half maximum is 19 nm (461nm-480nm), which does not have wide spectral characteristics. The single-chip white light element 70 of the fourth embodiment of the present invention is different from the first to second embodiments described above. The single-chip white light element 70 of the fourth embodiment uses a T-well structure as a blue light emitting layer, and Non-utilization of quantum dot structure. The single-chip white light element 70 structure has both a wide-spectrum blue light complementary color quantum dot light-emitting layer and a blue light quantum well light-emitting layer, which can also be mixed with light to produce color rendering, high luminous intensity, and high color temperature modulation. Characteristics of aluminum indium gallium single-chip white light element. Therefore, the blue light emitting layer of the present invention can be achieved by using a quantum dot structure or a quantum well structure. Refer to FIG. 9, where curve 91 is the CIE (Commission International de 1 chairage = International commission on Illuminati on) curve, and curve 92 is the black body locus (Black

Body Locus)。第一點93為第一實施例之單晶片白光元件結 構所發出白光於座標上之點,其中χ座標為〇 4,γ座標為 〇·43。第二點94為第二實施例之單晶片白光元件結構所發 O:\90\903I2.DOC -15 - 200531304 出白光於座標上之點,X座標為G24, γ座標為Q28。第三 •t95為第三實施例之單晶片白光元件結構所發出白光於座 m厘標為〇·51,γ座標為Q 42。第四點96為第四 貫施例之單晶片白光元件結構所發出白光於座標上之點, X座標為0_32,Y座標為0.34。 0 & ^ 片白光元件可涵蓋相當廣闊之白光 區域’以具有極佳之演色性。並且可依所需調變得到暖色 溫或冷色溫等各種色溫之白光。 本發明之單晶片白光元件不限於上述實施例中發光層之 層數及排列次序,可為一第一藍光發光層形成於該第一導 電性披覆層I上,一第二藍光發光層形成於該第二導電性 披覆層之下,該具寬頻譜之藍光互補色量子點發光層形成 於該第一藍光發光層與該第二藍光發光層之間。亦可為一 第一具寬頻譜之藍光互補色量子點發光層形成於該第一導 電性披覆層之上,一第二具寬頻譜之藍光互補色量子點發 光層形成於該第二導電性披覆層之下,該藍光發光層形成 於該第一具寬頻譜之藍光互補色量子點發光層與該第二具 寬頻譜之藍光互補色量子點發光層之間。亦可使該具寬頻 譜藍光互補色量子點發光層及藍光發光層交錯形成於該第 一導電性披覆層及第二導電性披覆層之間,其交錯之層數 及次序可為規則或不規則均可。 综上,本發明單晶片白光元件之該寬頻譜藍光互補色之 量子點發光層之最大光強度發光波長可落在5 10nm-67 Onm 範圍内,半高寬為20nm〜200nm。其再與同一晶片結構中之 O:\90\903 I2.DOC -16- 200531304 氮化鋁銦鎵藍光發光層混光成一單晶片白光元件,可產生 向發光強度兼具調變各種色溫之高演色性之白光。由於該 寬頻譜發光波段涵蓋人眼最敏感之可見光波段,因而可大 大改善白光光強度,再加上寬頻譜分佈則可進一步提升演 色性與各種色溫調控。 參考圖ίο所示,為本發明單晶片白光元件之一封裝實施 例。孩封裝實施例為發光二極體型之單晶片白光元件,本 發明發光二極體型之單晶片白光元件1〇〇包括:一單晶片白 光兀件102、一第一導電性接腳1〇3、一第二導電性接腳 1〇4、一接線1〇5及一封裝材料1〇6。該單晶片白光元件1〇2 可為上述實施例所述之單晶片白光元件,且該單晶片白光 7L件1 02以一電極與該第一導電性接腳丨〇3電氣連接,並以 另電極經由孩接線1 〇5與該第二導電性接腳丨04電氣連 接。再以透明絕緣之封裝材料1〇6(例如··樹脂epoxy)封裝 上述結構,以完成本發明之單晶片白光元件。 參考圖11所不,為本發明單晶片白光元件之另一封裝實 她例。琢封裝實施例為積體電路型式之單晶片白光元件, 本發明該積體電路形式之單晶片白光元件11〇包括:一單晶 片白光7L件112、一第—導電性接腳丨丨3、一第二導電性接 腳114接線115、一基座116、一封裝材料117及紅光螢 =勃118。琢早晶片白光元件112可為上述實施例所述之單 口片白光7L件,且孩單晶片白光元件丨丨2以一電極與該第一 導電性接腳113電氣遠技 # , p ^ , 、、斤 孔運接,並以另一電極經由該接線11 5與 z第—導包性接腳114電氣連接。基座116為不透明之絕緣Body Locus). The first point 93 is the point on the coordinates of the white light emitted by the single-chip white light element structure of the first embodiment, where the x-coordinate is 0.4 and the gamma-coordinate is 0.43. The second point 94 is the point where white light is emitted from the single-chip white light element structure of the second embodiment. O: \ 90 \ 903I2.DOC -15-200531304 The point where white light is emitted on the coordinate, the X coordinate is G24, and the γ coordinate is Q28. Third • t95 is the white light emitted by the single-chip white light element structure of the third embodiment at m.51 and γ at Q42. The fourth point 96 is the point on the coordinates of the white light emitted by the single-chip white light element structure of the fourth embodiment, the X coordinate is 0_32, and the Y coordinate is 0.34. 0 & ^ A white light element can cover a fairly wide white light area 'to have excellent color rendering. And it can be adjusted to white light with various color temperatures, such as warm color temperature or cold color temperature. The single-chip white light element of the present invention is not limited to the number and arrangement order of the light emitting layers in the above embodiments, and a first blue light emitting layer may be formed on the first conductive coating layer I, and a second blue light emitting layer may be formed. Under the second conductive coating layer, the blue-color complementary-color quantum dot light-emitting layer with a wide spectrum is formed between the first blue-light emitting layer and the second blue-light emitting layer. It is also possible that a first blue-color complementary color quantum dot light-emitting layer with a wide spectrum is formed on the first conductive coating layer, and a second blue-color complementary color quantum dot light-emitting layer with a wide spectrum is formed on the second conductive layer. Under the cladding layer, the blue light-emitting layer is formed between the first wide-band blue light complementary color quantum dot light-emitting layer and the second wide-band blue light complementary color quantum dot light-emitting layer. The wide-spectrum blue-light complementary color quantum dot light-emitting layer and the blue light-emitting layer can also be staggered between the first conductive coating layer and the second conductive coating layer, and the number and order of the staggered layers can be regular. Or irregular. In summary, the maximum light intensity emission wavelength of the quantum dot light emitting layer of the wide-spectrum blue light complementary color of the single-chip white light element of the present invention can fall in the range of 5 10nm-67 Onm, and the full width at half maximum is 20nm ~ 200nm. It is then mixed with O: \ 90 \ 903 I2.DOC -16- 200531304 in the same chip structure to form a single-chip white light element with a blue light emitting layer of aluminum indium gallium nitride. Color rendering of white light. Since this wide-spectrum luminous band covers the most sensitive visible light band of the human eye, the intensity of white light can be greatly improved, and the wide-spectrum distribution can further improve the color rendering and various color temperature adjustments. Referring to FIG. Ο, a package embodiment of a single-chip white light element according to the present invention is shown. The example of the package is a single-chip white light-emitting element of the light-emitting diode type. The single-chip white-light element 100 of the light-emitting diode type of the present invention includes a single-chip white light element 102, a first conductive pin 103, A second conductive pin 104, a wiring 105, and a packaging material 106. The single-chip white light element 102 can be the single-chip white light element described in the above embodiment, and the single-chip white light 7L piece 102 is electrically connected to the first conductive pin with an electrode, and is electrically connected with another electrode. The electrode is electrically connected to the second conductive pin 丨 04 through the child wiring 105. The above structure is then packaged with a transparent insulating packaging material 106 (for example, resin epoxy) to complete the single-chip white light element of the present invention. Referring to FIG. 11, another example of a package of a single-chip white light element according to the present invention is shown. The embodiment of the package is a single-chip white light element of the integrated circuit type. The single-chip white light element 11 of the integrated circuit form of the present invention includes: a single-chip white light 7L piece 112, a first-conductive pin 丨 3, A second conductive pin 114 is connected to the wiring 115, a base 116, a packaging material 117, and a red light emitting diode 118. The early wafer white light element 112 may be the single-portion white light 7L piece described in the above embodiment, and the single-chip white light element 丨 丨 2 uses an electrode and the first conductive pin 113 electric distance technology #, p ^,, The jack hole is connected, and is electrically connected to the z-conducting pin 114 through the wiring 115 through the other electrode. Base 116 is opaque insulation

O:\90\903I2DOC -17- 200531304 材質。封裝材料11 7則為透明絕緣之材質(例如:樹脂epoxy)。 為了增加紅光演色性,與生產調變性。本發明之單晶片 白光元件酌量添加紅光螢光粉11 8 —同封裝以產生具三波 長光譜之白光元件。由於紅光波段在CIE色彩調變上所佔波 長範圍較窄,對整體混光光強度影響較小,因此紅光螢光 粉之添加主要是為了增加白光對紅色物體之演色性,或低 色溫之調變。其添加量可少於傳統藍光互補色螢光粉,因 此,本發明之該高演色性單晶片白光元件11 0依然具有高可 靠度、高發光強度、低封裝成本之優點。 本發明所採用之紅色螢光粉其所產生之紅光可為藍色發 光層之藍光(最大光強度波長落於41 Onm〜49 Onm)所吸收而 產生,或為寬頻譜藍光互補色量子點發光層(最大光強度波 長落於510nm〜670nm)所吸收而產生,或同時可被藍光與 寬頻譜藍光互補色吸收而產生。此紅色螢光粉可為4里銪鎢 氧(LiEuW2〇8)、硫化鈣:銪(CaS: Eu2+)、硫化鐵:銪(SrS:Eu2+)、 氮石夕鋇(Ba2Si5N8)、硫氧妃:銪,4必(丫2〇2S:Eu3+,Bi3+)、氧紀銀:銪, 鉍(YV〇4: Eu3+,Bi3+)、氧化釔:銪,鉍(丫2〇3:Eu3+,β/·3+)等之混合物。 由於人眼對於紅光之亮度敏感度在波長高於於62 Onm時 會急遽下降,因此紅光光譜並不適合採用寬頻譜特性,此 不同於550nm波段為人眼最敏感之光波段,寬頻譜具有較 佳之光特性。因此本發明採用可產生620nm附近之高強 度,窄頻譜紅光之螢光粉有較佳之效果,如圖12所示。此 類紅光螢光粉為如硫氧釔:銪,鉍(丫2〇2S:Eu3+,Bi3+)、氧釔釩: 銪,紐(YV〇4: Eu3+,Bi3+)、氧化釔:銪,鉍(丫2〇3:Eu3+,β/·3+)等之混合物。 O:\90\903I2.DOC -18 - 200531304 此夕曰卜,由於—般氮化鋁銦縣晶成長生產技術,其在同 晶片_L,會有波長分佈之良率問題,因此所磊晶製得 m日片白光會有少數波長偏移所造成其白光些許偏離 cie白光光譜位置。為了提高此生產良率,本發明進一步利 用添加少許藍光互補色螢光粉或同時添加少許藍光互補色 螢光粉與紅光勞光粉於其封裝晶粒巾,以改善該單晶片白 光^粒之生產良率’卻又不影響該單晶片白光封裝晶粒之 可靠度。該藍光互補色螢光粉可為:釔鋁石榴石藍光互補 色勞光粉(YAG:Ce,Gd,Sm,Pr,Ga),摻雜有:鈽、乳、彭、 錯、鎵。 在封裝製程上,本發明制用單晶片封裝技術或少量添 :紅光螢光粉或少量藍光互補色螢光粉或同時添加少量之 監光互補色勞光粉與紅色勞光粉,因此其封裝技術較藍光 :粒塗佈多量藍光互補色螢光粉’或利用紅藍綠多晶片封 农之方丨4紅監綠多f螢光粉塗佈混合技術簡單許多。 故本發明單晶片白光元件之可靠度、發光效率、演色性、 色=調變、驅動電壓、熱穩定性、咖阻抗特性等皆遠比 目前習知技術更佳。因此可大幅降低封裝成本與提高封裝 元件之可靠度。 ^此’本發明之固態白光元件將可用來提供或取代目前 :場上之白光元件,例^ :可利用於攜帶性電子產品白光 月光源| 、造景燈、裝潰飾燈、手持燈具等相關白光 元件之應用。 准上述貫施例僅為說明本發明之原理及其功效,而非限O: \ 90 \ 903I2DOC -17- 200531304 material. The packaging material 11 7 is a transparent insulating material (for example, epoxy resin). In order to increase the color rendering of red light, it should be adjusted with production. The single-chip white light element of the present invention is optionally added with a red fluorescent powder 11 8 —in the same package to produce a white light element with a three-wavelength spectrum. Because the red light band occupies a narrower wavelength range in CIE color modulation and has less effect on the overall mixed light intensity, the addition of red phosphors is mainly to increase the color rendering of white light to red objects, or low color temperature. Its modulation. The added amount can be less than the traditional blue-color complementary color phosphor. Therefore, the high color rendering single-chip white light element 110 of the present invention still has the advantages of high reliability, high luminous intensity, and low packaging cost. The red light produced by the red phosphor used in the present invention can be generated by absorption of blue light (the maximum light intensity wavelength falls from 41 Onm to 49 Onm) of the blue light-emitting layer, or a wide-spectrum blue light complementary color quantum dot. The light emitting layer (the maximum light intensity wavelength falls between 510nm ~ 670nm) is generated, or it can be generated by the absorption of the complementary color of blue light and broad-spectrum blue light at the same time. This red phosphor can be 4 miles of rhenium tungsten oxide (LiEuW208), calcium sulfide: rhenium (CaS: Eu2 +), iron sulfide: rhenium (SrS: Eu2 +), barium azasite (Ba2Si5N8), and sulfur oxide: Europium, 4 must (Ya 02S: Eu3 +, Bi3 +), Oxygen silver: Hafnium, Bismuth (YV04: Eu3 +, Bi3 +), Yttrium oxide: Hafnium, Bi (Ya 02: Eu3 +, β / · 3 +) And so on. Because the human eye ’s sensitivity to red light decreases sharply at wavelengths above 62 Onm, the red light spectrum is not suitable for wide-spectrum characteristics. This is different from the 550 nm band, which is the most sensitive light band for the human eye. Better light characteristics. Therefore, the present invention adopts a fluorescent powder that can generate high intensity and narrow-spectrum red light near 620 nm, which has a better effect, as shown in FIG. 12. Such red fluorescent powders are, for example, yttrium oxysulfate: osmium, bismuth (γ2S: Eu3 +, Bi3 +), yttrium vanadium: ytterbium, neutron (YV〇4: Eu3 +, Bi3 +), yttrium oxide: europium, bismuth (Y2 03: Eu3 +, β / · 3 +) and the like. O: \ 90 \ 903I2.DOC -18-200531304 Now, because of the indium aluminum nitride crystal growth production technology, which is in the same wafer _L, there will be a problem with the yield of the wavelength distribution, so the epitaxial The white light of the m-day film will have a few wavelength shifts, causing its white light to slightly deviate from the position of the white light spectrum. In order to improve the production yield, the present invention further utilizes adding a small amount of blue light complementary color fluorescent powder or a small amount of blue light complementary color fluorescent powder and red light working light powder to the packaged grain towel to improve the single chip white light. The production yield 'does not affect the reliability of the single-chip white light package die. The blue light complementary color fluorescent powder may be: yttrium aluminum garnet blue light complementary color light powder (YAG: Ce, Gd, Sm, Pr, Ga), doped with: gadolinium, milk, Peng, Fe, Ga. In the packaging process, the present invention uses a single-chip packaging technology or a small amount of: red light fluorescent powder or a small amount of blue light complementary color fluorescent powder or a small amount of light with a complementary light color and red light powder, so its The packaging technology is bluer: coating a large amount of blue-fluorescent complementary phosphors with particles, or using red, blue, and green multi-chip encapsulation methods. 4 Red-monitor green multi-f phosphor coating and mixing technology is much simpler. Therefore, the reliability, luminous efficiency, color rendering, color = modulation, driving voltage, thermal stability, and impedance characteristics of the single-chip white light element of the present invention are far better than those currently known. Therefore, the packaging cost can be greatly reduced and the reliability of the packaged components can be improved. ^ This' the solid-state white light element of the present invention can be used to provide or replace the current: white light elements on the field, for example ^: white light moon light source for portable electronic products |, landscape lighting, decoration lights, handheld lamps, etc. Application of related white light components. The above-mentioned embodiments are only for explaining the principle of the present invention and its effects, but not for limitation.

O:\90\903I2.DOC 19 200531304 制本%月。因此’習於此技術之人士可在不達背本發明之 精神對上述貫施例進行修改及變化。本發明之權利範圍應 如後述之申請專利範圍所列。 【圖式簡單說明】 圖1為本發明第一實施例單晶片白光元件之結構示意圖; 圖2為本發明第一實施例之單晶片白光元件之光強度與 頻譜分佈圖; 又〃 固3為本务明第一貫施例單晶片白光元件之結構示意圖; 圖4為本發明第二實施例之單晶片白光元件之光強度與 頻譜分佈圖; ' 回5為本發明第二實施例單晶片白光元件之結構示意圖; 圖6為本發明第三實施例之單晶片白光元件 頻譜分佈圖; 度〃 ^為本發明第四實施例單晶片白光元件之結構示意圖; 圖8^發明第四實施例之^片^元件之 頻瑨分佈圖; 又/、 之白光範圍示意 圖9為本發明之單 圖, 晶片白光元件所產生 圖10為本發明發光二極體型 音 把土义早日日片白光元件 思_ , 圖11為本發明具紅光螢光粉之積體電路型 件之結構示意圖;及 3 圖12為本發明具紅光勞光粉之積體電 件之光強度與頻譜分佈圖。 早日日片 之結構示 光元 白光元O: \ 90 \ 903I2.DOC 19 200531304 Cost %%. Therefore, those skilled in the art can modify and change the above embodiments without departing from the spirit of the present invention. The scope of the rights of the present invention should be listed in the scope of patent application mentioned later. [Brief description of the drawings] FIG. 1 is a schematic structural diagram of a single-chip white light element according to the first embodiment of the present invention; FIG. 2 is a light intensity and spectrum distribution diagram of the single-chip white light element according to the first embodiment of the present invention; The schematic diagram of the structure of the single-chip white light element in the first embodiment of the present invention; FIG. 4 is a light intensity and spectrum distribution diagram of the single-chip white light element in the second embodiment of the present invention; Schematic diagram of the structure of a white light element; Figure 6 is a spectrum distribution diagram of a single-chip white light element according to a third embodiment of the present invention; Degree ^ is a schematic diagram of the structure of a single-chip white light element according to the fourth embodiment of the present invention; The frequency distribution of the ^ sheet ^ element; and /, the schematic diagram of the white light range 9 is a single image of the present invention, the wafer produced by the white light element of FIG. 10 is the light emitting diode type tone of the invention Fig. 11 is a schematic structural diagram of the integrated circuit component with red light-emitting phosphor according to the present invention; and Fig. 12 is a light intensity and spectrum distribution diagram of the integrated electrical device with red-light phosphor according to the present invention. The structure of the early film

O\90\903l2.DOC -20- 200531304 【圖式元件符號說明】 10 第一實施例之單晶片白光元件 11 基板 12 緩衝層 13 第一導電性披覆層 14、15 藍光量子點發光層 141 、 142 量子點 143 第一阻障層 144 第二阻障層 16 、 17 、 18 具寬頻譜之藍光互補色量子點發光層 161 、 162 量子點 163 、 164 阻障層 19 弟一導電性披覆層 21、22 電極 30 第二實施例之單晶片白光元件 31 > 33 具寬頻譜之藍光互補色量子點發光層 311 、 312 量子點 313 、 314 阻障層 34 、 35 、 36 ' 37藍光量子點發光層 341 、 342 量子點 343 、 344 阻障層 50 第三實施例之單晶片白光元件 O:\90\903I2 DOC -21 - 200531304 41 基板 42 緩衝層 43 第一導電性披覆層 44 第二導電性披覆層 45、46 電極 51 ^ 53 具寬頻譜之藍光互補色量子點發光層 511 、 512 量子點 513 、 514 阻障層 54 具寬頻譜之藍光量子點發光層 541 、 542 量子點 543 、 544 阻障層 70 第四實施例之單晶片白光元件 71 ^ 73 藍光量子井發光層 711 量子井 712 、 713 阻障層 74、75 具寬頻譜之藍光互補色量子點發光層 741 > 742 量子點 743 ^ 744 阻障層 100 發光二極體型之單晶片白光元件 102 單晶片白光元件 103 第一導電性接腳 104 第二導電性接腳 O:\90\903I2.DOC -22· 200531304 105 106 110 112 113 114 115 116 117 118 接線 封裝材料 積體電路型之單晶片白光元件 單晶片白光元件 第一導電性接腳 第二導電性接腳 接線 基座 封裝材料 紅光螢光粉 O:\90\903I2.DOC -23 -O \ 90 \ 903l2.DOC -20- 200531304 [Description of Symbols of Schematic Elements] 10 Single-chip white light element of the first embodiment 11 Substrate 12 Buffer layer 13 First conductive coating layer 14 and 15 Blue quantum dot light emitting layer 141 142 Quantum dots 143 First barrier layer 144 Second barrier layer 16, 17 and 18 Blue light complementary color quantum dot light emitting layer with wide spectrum 161, 162 Quantum dot 163, 164 Barrier layer 19 Brother conductive coating Layers 21, 22, electrode 30, single-chip white light element 31 of the second embodiment, > 33 blue light complementary color quantum dot light emitting layers 311, 312, quantum dots 313, 314 barrier layers 34, 35, 36 '37 with wide spectrum Point emitting layer 341, 342 Quantum dot 343, 344 Barrier layer 50 Single-chip white light element O of the third embodiment O: \ 90 \ 903I2 DOC -21-200531304 41 Substrate 42 Buffer layer 43 First conductive coating layer 44 Two conductive coatings 45, 46 electrodes 51 ^ 53 blue light complementary color quantum dot light emitting layers with broad spectrum 511, 512 quantum dots 513, 514 barrier layer 54 blue light quantum dot light emitting layers with wide spectrum 541, 542 quantum Dot 543, 544 Barrier layer 70 Single-chip white light element 71 of the fourth embodiment 71 ^ 73 Blue quantum well light emitting layer 711 Quantum well 712, 713 Barrier layer 74, 75 Blue light complementary color quantum dot light emitting layer 741 with a wide spectrum > 742 quantum dots 743 ^ 744 barrier layer 100 light emitting diode type single-chip white light element 102 single-chip white light element 103 first conductive pin 104 second conductive pin O: \ 90 \ 903I2.DOC -22 · 200531304 105 106 110 112 113 114 115 116 117 118 Wiring packaging material Integrated circuit single-chip white light element Single-chip white light element First conductive pin Second conductive pin Wiring base packaging material Red fluorescent powder O : \ 90 \ 903I2.DOC -23-

Claims (1)

200531304 拾、申請專利範園: 1 · 一種單晶片白光元件,包括·· 一基板; 一緩衝層,形成於該基板上; 一第一導電性披覆層’形成於該緩衝層上; 一第二導電性披覆層; 至少一具寬頻If之監光互補色量子點發光層,形成 於遺第一導電性披覆層及該第二導電性披覆層之間, 該具寬頻譜之藍光互補色量子點發光層具有複數個量 子點,該等量子點之特性分体不均勻,俾增加該量子 點發光層之發光波長頻譜半高寬;以及 至少一藍光發光層,形成於該第一導電性披覆層及 該第二導電性披覆層之間,使藍光與藍光互補色混光 以產生白光。 2. 如申請專利範圍第i項之單晶片白光元件,其中該藍光 發光層係為藍光量子點發光層。 3. 如申請專利範圍第1項之單晶片白光元件,其中該藍光 發光層係為藍光量子井發光層。 4. 如申請專利範圍第1項之單晶片白光元件,其中該藍光 發光層係為藍光量子點發光層,具有複數個量子點’ 該量子點發光層之特性分佈不均勾,俾增加該量子點 發光層之發光波長頻譜半高寬。 5. 如中請專利範圍第1項之單晶片白光元件,其中該藍光 發光層形成於該第一導電性披覆層之上,該具寬頻譜 O:\90\903I2.DOC 200531304 之益光互補色量子點發光層形成於該第二導電性披覆 層之下。 6 ·如申凊專利範圍第1項之單晶片白光元件,其中該具寬 頻譜 < 藍光互補色量子點發光層形成於該第—導電性 披復層之上’該藍光發光層形成於該第二導電性披覆 層之下。 7·如申請專利範圍第丨項之單晶片白光元件,其中該基板 為第一導電性導電基板。 8·如申請專利範圍第1項之單晶片白光元件,其中該基板 為第二導電性導電基板。 9 ·如申巧專利範圍第1項之單晶片白光元件,其中該基板 為絕緣基板。 10·如申請專利範圍第1項之單晶片白光元件,另包括二電 11·如申請專利範圍第1〇項之單晶片白光元件,另包括二 導電性接腳及一封裝材料;二導電性接腳分別與二電 極電氣連接,該封裝材料為透明絕緣材質,用以封裝 該單晶片白光元件。 12·如申請專利範圍第11項之單晶片白光元件,另包括一基 座’該基座為不透明之絕緣材質。 13 ·如申睛專利範圍第11或12項之單晶片白光元件,另包括 紅光螢光粉,添加於該封裝材料中。 14_如申請專利範圍第13項之單晶片白光元件,其中該紅 光螢光粉之紅光係為該藍色發光層之藍光所吸收而產 O:\90\903I2 DOC 200531304 生。 15. 16. 17. 18. 19. 20. 21. 如申請專利範圍第13項之單晶片白光元件,其中該紅 光螢光粉之紅光係為該寬頻譜藍光互補色量子點發光 層之藍光互補色所吸收而產生。 如申請專利範圍第13項之單晶片白光元件,其中該紅 光查光粉之紅光係為該監色發光層之藍光及該寬頻譜 藍光互補色量子點發光層之藍光互補色所吸收而產 生。 如申請專利範圍第13項之單晶片白光元件,其中該紅 光螢光粉為硫氧釔:銪,麵(丫2〇2S:Eu'说勹、氧釔釩:銪,麵 (丫V〇4: Eu3+,Bi3+)、氧化紀:錄,级(丫2〇3:Eu3' β/3+)之混合物。 如申請專利範圍第13項之單晶片白光元件,其中該紅 光螢光粉為鋰銪鎢氧(LiEuW2〇8)、硫化鈣:銪(CaS: Eu2+)、 硫化鳃:銪(SrS:Eu2+)、氮矽鋇(如2&5吣)、硫氧釔:銪,鉍 (丫2〇2S:Eu3+,Bi3+)、氧釔釩:銪,叙(丫V〇4: Eu3+,Bj3+)、氧化釔: 銪,级(丫2〇3:Eu3+,8/3+)之混合物。 如申請專利範圍第1 1或1 2項之單晶片白光元件,另包括 監光互補色螢光粉,添加於該封裝材料中。 如申請專利範圍第19項之單晶片白光元件,其中該藍 光互補色螢光粉為釔鋁石榴石藍光互補色螢光粉(YAG : Ce’Gd,Sm,Pr,Ga),摻雜有:鈽、釓、釤、镨、鎵。 如申請專利範圍第1項之單晶片白光元件,其中一第一 監光發光層形成於該第一導電性披覆層之上,一第二 監光發光層形成於該第二導電性披覆層之下,該具寬 O:\90\9O3l2.DOC 200531304 頻譜之藍光互補色量子點發光層形成於該第一藍光發 光層與該第二藍光發光層之間。 2 2 ·如申請專利範圍弟1項之早晶片白光元件’其中一第一 具寬頻譜之藍光互補色量子點發光層形成於該第一導 電性披覆層之上,一第二具寬頻譜之藍光互補色量子 點發光層形成於該第二導電性披覆層之下,該藍光發 光層形成於該第一具寬頻譜之藍光互補色量子點發光 層與該第二鼻寬頻譜之藍光互補色量子點發光層之 間。 O:\90\903I2.DOC200531304 Patent application park: 1. A single-chip white light element, including a substrate; a buffer layer formed on the substrate; a first conductive coating layer 'formed on the buffer layer; a first Two conductive coating layers; at least one monitor-complementary complementary color quantum dot light emitting layer with a wideband If formed between the first conductive coating layer and the second conductive coating layer, the blue light with a wide spectrum The complementary color quantum dot light emitting layer has a plurality of quantum dots, and the characteristics of the quantum dots are not uniform, so that the full-width half-width of the light emission wavelength spectrum of the quantum dot light emitting layer is increased; and at least one blue light emitting layer is formed on the first Between the conductive coating layer and the second conductive coating layer, blue light and blue light complementary colors are mixed to generate white light. 2. For a single-chip white light device according to item i of the patent application, wherein the blue light emitting layer is a blue light quantum dot light emitting layer. 3. The single-chip white light element according to item 1 of the application, wherein the blue light emitting layer is a blue quantum well light emitting layer. 4. For example, the single-chip white light element in the scope of the patent application, wherein the blue light emitting layer is a blue light quantum dot light emitting layer and has a plurality of quantum dots. The characteristics of the quantum dot light emitting layer are unevenly distributed, and the quantum is increased. The light emission wavelength spectrum of the point light emitting layer has a full width at half maximum. 5. For example, the single-chip white light element of the first patent scope, wherein the blue light emitting layer is formed on the first conductive coating layer, and the beneficial light with a wide spectrum O: \ 90 \ 903I2.DOC 200531304 A complementary color quantum dot light emitting layer is formed under the second conductive coating layer. 6. The single-chip white light element as claimed in item 1 of the patent scope, wherein the wide-spectrum < blue complementary color quantum dot light emitting layer is formed on the first conductive coating layer; the blue light emitting layer is formed on the Under the second conductive coating. 7. The single-chip white light element according to item 丨 of the application, wherein the substrate is a first conductive substrate. 8. The single-chip white light element according to item 1 of the application, wherein the substrate is a second conductive substrate. 9 · The single-chip white light element according to item 1 of Shenqiao, wherein the substrate is an insulating substrate. 10 · If the single-chip white light element in the scope of the patent application item 1 includes the second electric power 11 · If the single-chip white light element in the scope of the patent application item 10 includes the second conductive pin and a packaging material; The pins are electrically connected to the two electrodes respectively, and the packaging material is a transparent insulating material for packaging the single-chip white light element. 12. If the single-chip white light element according to item 11 of the patent application scope further includes a base, the base is an opaque insulating material. 13 · Single-chip white light element as claimed in item 11 or 12 of the patent, including red fluorescent powder, added to the packaging material. 14_ The single-chip white light element according to item 13 of the patent application scope, wherein the red light of the red phosphor is absorbed by the blue light of the blue light-emitting layer to produce O: \ 90 \ 903I2 DOC 200531304. 15. 16. 17. 18. 19. 20. 21. The single-chip white light element according to item 13 of the application, wherein the red light of the red phosphor is the light emitting layer of the wide-spectrum blue light complementary color quantum dot light emitting layer. Generated by the absorption of blue complementary colors. For example, the single-chip white light element of item 13 of the patent application scope, wherein the red light of the red light-checking powder is absorbed by the blue light of the monitor color light emitting layer and the blue light complementary color of the wide-spectrum blue light complementary color quantum dot light emitting layer. produce. For example, the single-chip white light element of the 13th scope of the patent application, wherein the red phosphor is yttrium thioxide: rhenium, noodle (Ya2S: Eu 'said yttrium, yttrium vanadium: ytterbium, noodles (YaV. 4: Eu3 +, Bi3 +), Oxidation Period: Record, Grade (γ2〇3: Eu3 'β / 3 +). For example, the single-chip white light element of the 13th scope of the patent application, wherein the red phosphor is Lithium thorium tungsten oxide (LiEuW208), calcium sulfide: thorium (CaS: Eu2 +), gill sulfide: thorium (SrS: Eu2 +), barium nitrogen silicon (such as 2 & 5th), yttrium thiooxide: thorium, bismuth (Ya 2〇2S: Eu3 +, Bi3 +), yttrium vanadium: thorium, yttrium (γVO4: Eu3 +, Bj3 +), yttrium oxide: thorium, grade (γ2 03: Eu3 +, 8/3 +). The single-chip white light element in the scope of patent application No. 11 or 12 also includes a complementary color fluorescent powder, which is added to the packaging material. For example, the single-chip white light element in scope of the patent application No. 19, wherein the blue light is complementary The color phosphor is yttrium aluminum garnet blue light complementary color phosphor (YAG: Ce'Gd, Sm, Pr, Ga), and is doped with: europium, europium, europium, europium, gallium. For example, the scope of patent application for item 1 Single-chip white light element, in which A first monitor light emitting layer is formed on the first conductive coating layer, a second monitor light emitting layer is formed under the second conductive coating layer, and the width is O: \ 90 \ 9O3l2.DOC 200531304 The blue light complementary color quantum dot light emitting layer of the frequency spectrum is formed between the first blue light emitting layer and the second blue light emitting layer. 2 2 · As for the early white light element of the first item of the patent scope, one of the first broadband A blue light complementary color quantum dot light emitting layer of the spectrum is formed on the first conductive coating layer, and a second blue light complementary color quantum dot light emitting layer with a wide spectrum is formed under the second conductive coating layer. The blue light-emitting layer is formed between the first blue-band complementary color quantum dot light-emitting layer with a wide frequency spectrum and the second nose-broadband complementary color quantum dot light-emitting layer with a second wide spectrum. O: \ 90 \ 903I2.DOC
TW093105430A 2004-03-02 2004-03-02 Single chip white light component TWI229465B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW093105430A TWI229465B (en) 2004-03-02 2004-03-02 Single chip white light component
US11/064,675 US7217959B2 (en) 2004-03-02 2005-02-23 Single-chip white light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093105430A TWI229465B (en) 2004-03-02 2004-03-02 Single chip white light component

Publications (2)

Publication Number Publication Date
TWI229465B TWI229465B (en) 2005-03-11
TW200531304A true TW200531304A (en) 2005-09-16

Family

ID=34910199

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093105430A TWI229465B (en) 2004-03-02 2004-03-02 Single chip white light component

Country Status (2)

Country Link
US (1) US7217959B2 (en)
TW (1) TWI229465B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488344B (en) * 2012-06-20 2015-06-11 Chi Lin Optoelectronics Co Ltd Quantum dot layered structure and method for making the same and light-emitting device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI233697B (en) * 2003-08-28 2005-06-01 Genesis Photonics Inc AlInGaN light-emitting diode with wide spectrum and solid-state white light device
DE102004047763A1 (en) * 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Multiple LED array
TWI253191B (en) * 2005-01-06 2006-04-11 Genesis Photonics Inc White light-emitting equipment with LED, and its application
WO2006097976A1 (en) * 2005-03-11 2006-09-21 Fujitsu Limited Quantum device, method for controlling such quantum device and method for manufacturing such quantum device
TWI248220B (en) * 2005-04-14 2006-01-21 Genesis Photonics Inc White light device having light-emitting diode
FR2898434B1 (en) * 2006-03-13 2008-05-23 Centre Nat Rech Scient MONOLITHIC WHITE ELECTROLUMINESCENT DIODE
US20070262294A1 (en) * 2006-05-15 2007-11-15 X-Rite, Incorporated Light source including quantum dot material and apparatus including same
US20070262714A1 (en) * 2006-05-15 2007-11-15 X-Rite, Incorporated Illumination source including photoluminescent material and a filter, and an apparatus including same
US7851987B2 (en) * 2007-03-30 2010-12-14 Eastman Kodak Company Color electro-luminescent display with improved efficiency
US7915605B2 (en) * 2007-05-16 2011-03-29 Huga Optotech Inc. LED packaged structure and applications of LED as light source
US7772757B2 (en) * 2007-05-30 2010-08-10 Eastman Kodak Company White-light electro-luminescent device with improved efficiency
US7759854B2 (en) * 2007-05-30 2010-07-20 Global Oled Technology Llc Lamp with adjustable color
US8785906B2 (en) * 2007-05-30 2014-07-22 Eastman Kodak Company Lamp with controllable spectrum
KR101376755B1 (en) * 2007-10-09 2014-03-24 삼성디스플레이 주식회사 Display Device
TWI374556B (en) 2007-12-12 2012-10-11 Au Optronics Corp White light emitting device and producing method thereof
JP4445556B2 (en) * 2008-02-18 2010-04-07 国立大学法人広島大学 LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
US8044382B2 (en) * 2008-03-26 2011-10-25 Hiroshima University Light-emitting device and method for manufacturing the same
KR100982991B1 (en) * 2008-09-03 2010-09-17 삼성엘이디 주식회사 Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same
JP5288967B2 (en) * 2008-09-22 2013-09-11 ユー・ディー・シー アイルランド リミテッド LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY HAVING THE LIGHT EMITTING ELEMENT
TWI416757B (en) * 2008-10-13 2013-11-21 Advanced Optoelectronic Tech Polychromatic wavelengths led and manufacturing method thereof
US8421058B2 (en) 2008-11-21 2013-04-16 Agency For Science, Technology And Research Light emitting diode structure having superlattice with reduced electron kinetic energy therein
JP2012526394A (en) 2009-05-05 2012-10-25 スリーエム イノベイティブ プロパティズ カンパニー Re-emitting semiconductor carrier element for use with LED and method of manufacture
WO2010129409A1 (en) 2009-05-05 2010-11-11 3M Innovative Properties Company Semiconductor devices grown on indium-containing substrates utilizing indium depletion mechanisms
US8304976B2 (en) 2009-06-30 2012-11-06 3M Innovative Properties Company Electroluminescent devices with color adjustment based on current crowding
CN102473817A (en) 2009-06-30 2012-05-23 3M创新有限公司 Cadmium-free re-emitting semiconductor construction
JP2012532453A (en) 2009-06-30 2012-12-13 スリーエム イノベイティブ プロパティズ カンパニー White light electroluminescent device with adjustable color temperature
US9156962B2 (en) * 2011-08-16 2015-10-13 S.A.W. Green Technology Corp. Material composition with specific segment wavelength matching refractive index
WO2013109908A1 (en) 2012-01-18 2013-07-25 The Penn State Research Foundation Application of semiconductor quantum dot phosphors in nanopillar light emitting diodes
CN103292225A (en) * 2013-06-28 2013-09-11 深圳市华星光电技术有限公司 LED (Light Emitting Diode) backlight light source
JP2016051845A (en) * 2014-09-01 2016-04-11 株式会社ジャパンディスプレイ Display device
CN104617210B (en) * 2014-12-18 2017-12-08 上海大学 QLED packagings
US10371325B1 (en) * 2018-06-25 2019-08-06 Intematix Corporation Full spectrum white light emitting devices
CN113497192B (en) * 2020-04-08 2024-08-23 陈学仕 White light quantum dot diode element, backlight module and lighting device
JP2023012188A (en) * 2021-07-13 2023-01-25 株式会社デンソー Optical semiconductor element
CN113958925A (en) * 2021-09-27 2022-01-21 合肥福纳科技有限公司 Method for regulating and controlling illumination spectrum of LED lamp and LED lamp

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638667C2 (en) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mixed-color light-emitting semiconductor component with luminescence conversion element
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US6580097B1 (en) 1998-02-06 2003-06-17 General Electric Company Light emitting device with phosphor composition
TW406442B (en) 1998-07-09 2000-09-21 Sumitomo Electric Industries White colored LED and intermediate colored LED
JP2001000284A (en) 1999-06-22 2001-01-09 Araco Corp Vehicle seat
US6596195B2 (en) 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
TW522534B (en) 2001-09-11 2003-03-01 Hsiu-Hen Chang Light source of full color LED using die bonding and packaging technology
TWI233697B (en) * 2003-08-28 2005-06-01 Genesis Photonics Inc AlInGaN light-emitting diode with wide spectrum and solid-state white light device
TWI243489B (en) * 2004-04-14 2005-11-11 Genesis Photonics Inc Single chip light emitting diode with red, blue and green three wavelength light emitting spectra

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488344B (en) * 2012-06-20 2015-06-11 Chi Lin Optoelectronics Co Ltd Quantum dot layered structure and method for making the same and light-emitting device

Also Published As

Publication number Publication date
TWI229465B (en) 2005-03-11
US20050194608A1 (en) 2005-09-08
US7217959B2 (en) 2007-05-15

Similar Documents

Publication Publication Date Title
TW200531304A (en) Single chip white light component
TWI250664B (en) White light LED
US7005667B2 (en) Broad-spectrum A1(1-x-y)InyGaxN light emitting diodes and solid state white light emitting devices
US7267785B2 (en) White light emitting phosphor blend for LED devices
KR100609830B1 (en) White Semiconductor Light Emitted Device using Green-emitting and Red emitting Phosphor
AU2004322660B2 (en) Novel phosphor systems for a white light emitting diode (LED)
CN105814699B (en) White light emitting device with high color rendering
EP1733441B1 (en) Light emitting device and phosphor for the same
KR101395432B1 (en) White led device
US7753553B2 (en) Illumination system comprising color deficiency compensating luminescent material
US6933535B2 (en) Light emitting devices with enhanced luminous efficiency
JP2007510040A (en) Garnet phosphor material with improved spectral characteristics
EP1735816A2 (en) Phosphor and blends thereof for use in leds
JP2009507935A (en) Thiogallate green phosphor, alkaline earth metal sulfide red phosphor, and white light emitting device employing them
JP3707446B2 (en) White light emitting device
TWM275540U (en) Light emitting device
TW569475B (en) Light emitting diode and method of making the same
KR100672972B1 (en) White diode
TW572994B (en) Method for manufacturing white light source
KR101047775B1 (en) Phosphor and Light Emitting Device
TW200412682A (en) Pink LED
TWI234294B (en) White light-emitting device
JP2006199755A (en) Phosphor and light-emitting device
TWI247440B (en) LED device emitting neutral color light and manufacture method thereof
KR101227403B1 (en) Phosphors thin film for white light emitting diode and white light emitting diode fabricated using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees