TW200531215A - Vertical gate cmos with lithography-independent gate length - Google Patents

Vertical gate cmos with lithography-independent gate length Download PDF

Info

Publication number
TW200531215A
TW200531215A TW94101806A TW94101806A TW200531215A TW 200531215 A TW200531215 A TW 200531215A TW 94101806 A TW94101806 A TW 94101806A TW 94101806 A TW94101806 A TW 94101806A TW 200531215 A TW200531215 A TW 200531215A
Authority
TW
Taiwan
Prior art keywords
layer
dielectric
polycrystalline silicon
region
spacer
Prior art date
Application number
TW94101806A
Other languages
Chinese (zh)
Inventor
Bohumil Lojek
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/761,876 external-priority patent/US6846709B1/en
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of TW200531215A publication Critical patent/TW200531215A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • H01L29/66287Silicon vertical transistors with a single crystalline emitter, collector or base including extrinsic, link or graft base formed on the silicon substrate, e.g. by epitaxy, recrystallisation, after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

Formation of elements of a vertical transistor is described, particularly, a gate-source-drain arrangement of a CMOS transistor. Vertical transistors are used frequently in the integrated circuit art. Accordingly, improved methods for their formation, which are not limited by constraints of photolithography, have great utility and importance. Those of skill in the art will appreciate that the techniques described may be used to fabricate other types of devices as well. For example, junctions of a bipolar transistor (as well as other device junction types) may be fabricated using the methods described herein.

Description

200531215 九、發明說明: 【發明所屬之技術領域】 在此所描述之本發明大體上是有關於一種製造一積體 電路結構之方法,以及更特別地是有關於具有半導體界面 之電子裝置及其製造方法。 【先前技術】200531215 IX. Description of the invention: [Technical field to which the invention belongs] The invention described herein generally relates to a method for manufacturing an integrated circuit structure, and more particularly, to an electronic device having a semiconductor interface and its electronic device Production method. [Prior art]

在積體電路技藝中需要能逐漸獲得較小裝置而不會犧 牲裝置之效能。該小裝置尺寸需要小裝置區域、區域間之 精確對準及寄生電阻及電容之最小化。裝置尺寸可藉由更 加依靠細線微影技術來減少,然而如以下所示,繼續減少 特徵尺寸(feature size)及達成對準精確度之大幅提升已 變得不實用或不可能。因為微影技術已到達其實體限制, 因而良率及生產量會減少。 微影技術之四個控制效能參數為解析度之限制、層對 層對準精確度、焦聚之深度及生產量。基於討論目的,解 析度之限制、層對層對準精確度及焦聚之深度係實際受限 制參數。 典型微影技術係受限於微影系統之實體限制(包括:光 化輻射波長λ及投影系統光學之幾何結構。依據瑞立鑑別 判據(Rayleigh’ s criterion):In integrated circuit technology, smaller devices can be gradually obtained without sacrificing the performance of the devices. This small device size requires small device areas, precise alignment between areas, and minimization of parasitic resistance and capacitance. Device size can be reduced by relying more on fine-line lithography. However, as shown below, it has become impractical or impossible to continue to reduce feature size and achieve significant improvements in alignment accuracy. Because lithography has reached its physical limit, yields and throughput will decrease. The four control performance parameters of the lithography technology are the limitation of resolution, the accuracy of layer-to-layer alignment, the depth of focus and the throughput. For discussion purposes, the limitations of resolution, layer-to-layer alignment accuracy, and depth of focus are practically limited parameters. Typical lithography technology is limited by the physical limitations of the lithography system (including: the wavelength of actinic radiation λ and the geometry of the optics of the projection system. According to the Rayleigh ’s criterion:

r 0.6U L· = ;ΝΑ 其中yiM係該光學系統之數值孔徑及定義成為yiM = 77 s i η α , 其中77係輻射線所通過之介質的折射率(對本申請案而言 312ΧΡ/發明說明書(補件)/94-05/94101806 200531215 通常是指空氣,因而/7三1 ),以及〇:係光化輻射線之發散半 角。例如:使用具有;I = 1 9 3 n m及水/ = 0 . 7之深紫外線照明 (D U V ),解析度之下限為1 6 8奈米(1 6 8 0 A )。雖然如相位移 光罩(p h a s e - s h i f t e d m a s k )之技術可向下擴展此限制,但 是在此技術中所需之光罩相當的昂貴。此花費因先進半導 體製程可能使用2 5個以上之光罩的事實而大大地增加。 當光罩之特徵尺寸減少及光罩之總數增加時,第二參數 (層對層對準精確度)加上解析度之限制就變得更重要。例 # 如:如果光罩對準本身造成裝置良率減少至每層 9 5 %,則 25層之光罩變成會有0.9525之總裝置良率(0.28或28 %之 良率)(假設無關於誤差)。因此,此相位移光罩之較複雜光 罩不僅較貴,而且會明顯造成不好的良率。r 0.6UL · =; ΝΑ where yiM is the numerical aperture of the optical system and is defined as yiM = 77 si η α, where the refractive index of the medium through which 77 is a radiation (312XP / Invention Specification (Supplementary Pieces) / 94-05 / 94101806 200531215 usually refers to air, so / 7: 3 1), and 0: the divergent half-angle of actinic radiation. For example: use deep ultraviolet lighting (D U V) with; I = 193 nm and water / = 0.7, the lower limit of the resolution is 168 nanometers (168 A). Although techniques such as phase shift masks (p h a s e-s h i f t e d m a s k) can extend this limitation downwards, the masks required in this technique are quite expensive. This cost is greatly increased by the fact that advanced semiconductor systems may use more than 25 masks. As the feature size of the photomask decreases and the total number of photomasks increases, the second parameter (layer-to-layer alignment accuracy) plus the limitation of resolution becomes more important. Example # For example, if the mask alignment itself causes the device yield to be reduced to 95% per layer, the 25-layer mask becomes a total device yield of 0.9525 (0.28 or 28% yield) (assuming nothing about error). Therefore, this phase-shift mask is not only more expensive than the more complex mask, but it also obviously causes bad yield.

再者,雖然可增加該微影系統之數值孔徑以降低解析度 之限制,但是結果會不利於第三參數(焦聚之深度)。焦聚 之深度與成反比。因此,當少/增加時,解析度之限制 會減少,然而焦聚之深度會更快速地減少。焦聚之深度的 減少會使得特別是在非平面結構(例如:在先進半導體裝置 中逐漸受歡迎之「曼哈頓結構(Manhattan Geometries)」) 上的精確聚焦變得更困難。 最近,已發展出製造較小尺寸電晶體及相關裝置之技 術。其中一製造電晶體之方法係描述於I E E E所主辦之1 9 9 9 年國際電子裝置會議中J. M. Hergenrother等人所提出之 名稱為「垂直式置換閘極(VRG) M0SFET :具有與微影技術 無關之閘極長度的50nm垂直M0SFET」的論文中。在此, 6 312XP/發明說明書(補件)/94-05/94101806 200531215 J. M. Hergenrother等人描述一使用垂直電晶體技術之方 法,其中需要在製程的最後步驟中應用到閘極及閘極氧化 物〇 H u 等人之美國專利第 6,4 1 3,8 0 2號描述在位於一絕緣 層(例如:S I Μ 0 X )上之一矽層中所製造之裝置,該裝置從該 絕緣層延伸而成為翼部。 再者,Inaba等人之美國專利第6, 5 2 5, 4 0 3號描述在一 經修改水平結構中對閘極、源極及汲極之製程方法。Furthermore, although the numerical aperture of the lithography system can be increased to reduce the limitation of resolution, the result is not conducive to the third parameter (the depth of focus). The depth of focus is inversely proportional. Therefore, when less / increased, the resolution limit will decrease, but the depth of focus will decrease more quickly. The reduction in focal depth makes precise focusing more difficult, especially on non-planar structures, such as the Manhattan Geometries, which are becoming increasingly popular in advanced semiconductor devices. Recently, technology has been developed to make smaller size transistors and related devices. One of the methods for manufacturing the transistor is described in the 1999 International Electronic Device Conference sponsored by IEEE named "Vertical Replacement Gate (VRG) M0SFET: It has nothing to do with lithography technology. "The 50nm vertical MOSFET with a gate length" is in the paper. Here, 6 312XP / Invention Specification (Supplement) / 94-05 / 94101806 200531215 JM Hergenrother et al. Describe a method using vertical transistor technology in which gates and gate oxides need to be applied in the final steps of the process O.H. et al. U.S. Patent No. 6,4 1,3,802 describes a device fabricated in a silicon layer on an insulating layer (eg, SI M 0 X) from which the device is made. Extend into wings. Furthermore, U.S. Patent No. 6,5 2,5,403, to Inaba et al. Describes a method for manufacturing gates, sources, and drains in a modified horizontal structure.

Zhibo Zhang之美國專利_請案公開第 2 0 0 2 / 0 0 6 0 3 3 8 號描述一垂直FET裝置,藉以在一垂直通道之個別末端形 成源極及汲極區域,以及在該垂直通道附近形成一絕緣閘 極。 其它技藝已著重於在覆矽絕緣層(silicon-on-insulator, SOI)上所形成之像上述之垂直裝置。SOI及 S I Μ 0 X具有幾個缺點。這些缺點包括記憶體裝置之不良效 能(因為該裝置之本體係浮接的)、對一個或更多製程步驟 之極限微影技術之需求以及該SO I材料所造成之價格的急 劇增加。 因此,在用以製造雙極裝置之傳統方法中,直接形成一 源極窗口,而不需提供餘刻中止層之一些手段。一潛在過 蝕刻會在矽中產生一損壞區域,導致在一接點上之矽的過 多耗損。再者,當時間及其它條件容許度變成過度嚴格時, 一氧化間隔物之形成而不需有蝕刻中止層會呈現出製造上 的困難。 7 312XP/發明說明書(補件)/94-05/94101806Zhibo Zhang's U.S. Patent_Applicant Publication No. 2 0 2/0 0 6 0 3 3 8 describes a vertical FET device by which source and drain regions are formed at individual ends of a vertical channel, and at the vertical channel An insulated gate is formed nearby. Other techniques have focused on vertical devices like the ones described above formed on a silicon-on-insulator (SOI). SOI and SI M 0 X have several disadvantages. These disadvantages include the poor performance of the memory device (because of the floating system of the device), the need for extreme lithography technology for one or more process steps, and the dramatic increase in price caused by the SO I material. Therefore, in the conventional method for manufacturing a bipolar device, a source window is directly formed without providing some means for stopping the layer for a while. A potential over-etch will create a damaged area in the silicon, causing excessive loss of silicon at a contact. Furthermore, when the tolerance of time and other conditions becomes excessively strict, the formation of an oxide spacer without the need for an etching stop layer may present manufacturing difficulties. 7 312XP / Invention Manual (Supplement) / 94-05 / 94101806

200531215 基於至少上述所提之理由,積體電路製造商在仍 高效能的同時已無法充分地減少電子裝置之尺寸。 藝在裝置效能或製造能力上會因結構使用(例如: S I Μ0Χ )而具有限制,及因所需之微影步驟或者在稍 中形成閘極氧化物之要求而具有限制,因而限制設 性。有鑑於對積體電路能具有較高裝置數目、較小 寸及較大電路效能的期望,仍然持續需要一製造所 而無需求助於不實用且昂貴之微影技術的改善方法 因此,所需要的是提供用以製造積體電路裝置之 法及結構。此用以製造積體電路裝置之結構具有合 容許度之縮小尺寸的裝置。 【發明内容】 描述一垂直電晶體之元件的形成,特別是描述-電晶體之閘極-源極-汲極配置。垂直電晶體形成之 法因間隔物及自行對準技術之新使用方式而不受制 技術,該改善方法具有大的利用性及重要性。熟知 藝者將了解到亦可使用在此所述之技術來製造其它 裝置。例如:可使用在此所述之方法來製造一雙極 之界面(以及其它裝置界面型態)。 在一具體例中,一電子裝置之製造方法包括:將 植入一半導體基板之一區域中,該區域係位於一介 層所隔離之區域中。然後,在該佈植區域及該介電 區域中沉積一膜堆疊。該膜堆疊尤其包括一第一介 一第一多晶石夕層。然後,餘刻該第一介電層以形成 312XP/發明說明書(補件)/94-05/94101806 然維持 上述技 SOI或 後步驟 計之彈 裝置尺 需裝置 〇 改善方 理微影 -CMOS 改善方 於微影 該項技 型態之 電晶體 一摻質 電隔離 隔離層 電層及 一介電 8 200531215200531215 For at least the reasons mentioned above, integrated circuit manufacturers have not been able to reduce the size of electronic devices sufficiently while still maintaining high performance. In terms of device performance or manufacturing capabilities, there are restrictions on the use of structures due to structural use (for example, SI MOX), and restrictions on the required lithography steps or the requirement to form gate oxides in a short time, thus limiting the design. In view of the expectation that integrated circuits can have a higher number of devices, a smaller size, and a larger circuit performance, there is still a continuing need for a manufacturing facility without the need to help with impractical and expensive lithography techniques. Therefore, what is needed The invention provides a method and a structure for manufacturing an integrated circuit device. This structure for manufacturing an integrated circuit device has a device with a reduced size that is acceptable. [Summary of the Invention] The formation of a vertical transistor element is described, especially the gate-source-drain configuration of the transistor. The method of forming a vertical transistor is not controlled by the new use of spacers and self-alignment technology. This improvement method has great applicability and importance. Those skilled in the art will recognize that other devices can also be manufactured using the techniques described herein. For example, the methods described herein can be used to fabricate a bipolar interface (and other device interface types). In a specific example, a method for manufacturing an electronic device includes: implanting an area in a semiconductor substrate, the area being located in an area isolated by a dielectric layer. A film stack is then deposited in the implanted area and the dielectric area. The film stack particularly includes a first intermediary first polycrystalline layer. Then, the first dielectric layer is etched to form 312XP / Invention Specification (Supplement) / 94-05 / 94101806, while maintaining the above-mentioned technical SOI or post-step meter device required for the device. Improve the lithography-CMOS improvement The lithography technology of this type of transistor-a doped electrical isolation isolation layer and a dielectric layer 8 200531215

窗口 ,以及將一第二介電層沉積於該介電窗口中及該膜堆 疊上方。非等向性蝕刻該第二介電層以形成一第一間隔 物。該間隔物係用以妥善地將電晶體特徵之尺寸減少至小 於微影技術之限制。然後,非等向性蝕刻在該佈值區域與 該第一介電層間之膜堆疊的部分,以形成一磊晶介層孔 (e p i 1: a X i a 1 v i a )。該介層孔係使用磊晶石夕來填充,藉以形 成一磊晶通道。在該磊晶通道上方形成一第二多晶矽層, 以及在該第二多晶矽層及周圍區域上方沉積一第三介電 層。隨後,非等向性蝕刻該第三介電層以形成一第二間隔 物,以及非等向性蝕刻該第一多晶矽層。在該第二多晶矽 層及該第一多晶矽層上方沉積一第四介電層,以及蝕刻該 第四介電層以形成一第三間隔物。最後,蝕刻該第三間隔 物所包圍之任何剩餘層至一大致上與該佈植區域成共平面 之高度。 本發明亦界定一電子裝置。在一具體例中,揭露一半導 體基板,其上具有至少一由一介電隔離區域所橫向包圍之 摻質佈植區域。該介電隔離區域及該佈植區域之最上表面 大致上與該基板之主表面成共平面。將一磊晶通道配置在 該佈植區域之最上表面及電性搞接至該佈植區域。藉由一 第一介電間隔物來界定該磊晶通道之周邊。將一多晶矽區 域配置在外圍以包圍該磊晶通道。該多晶矽區域至少部分 覆蓋該佈植區域及藉由一介電層與該佈植區域隔離而不會 有直接的電性耦接。 【實施方式】 9 312XP/發明說明書(補件)/94-05/94101806 200531215 參考圖1至1 9,依據下面製程步驟來詳細描述本發明之 一示範性具體例。圖1顯示一用以產生本發明之一電子裝 置結構的隔離佈植區域1 0 5之示範性具體例。圖1包括一 底部基板 1 0 1、一隔離介電區域 1 0 3及該佈植基板區域 1 0 5。該佈植區域1 0 5之範圍1 0 7係以平面圖顯示於圖1 之上方。所有區域係以該項技藝者所熟知之方法來形成。 該底部基板1 0 1經常是一矽晶圓。在此具體例中,在該 隔離介電區域之邊界範圍内摻雜特定矽晶圓,以形成該佈 Φ 植區域105。在另一情況中,可以選擇其它第IV族元素半 導體或化合物半導體(例如第I I I - V族或I I _ V I族)來作為 該底部基板 1 0 1。例如:該隔離介電區域 1 0 3係經沉積或 熱成長之氧化物或經沉積之氮化物。A window, and a second dielectric layer is deposited in the dielectric window and over the film stack. The second dielectric layer is anisotropically etched to form a first spacer. The spacer is used to properly reduce the size of the transistor features to less than the limit of lithography technology. Then, an anisotropic etching is performed on a portion of the film stack between the layout region and the first dielectric layer to form an epitaxial via hole (e p i 1: a X i a 1 v i a). The interstitial pores are filled with epitaxial stones to form an epitaxial channel. A second polycrystalline silicon layer is formed over the epitaxial channel, and a third dielectric layer is deposited over the second polycrystalline silicon layer and the surrounding area. Subsequently, the third dielectric layer is anisotropically etched to form a second spacer, and the first polycrystalline silicon layer is anisotropically etched. A fourth dielectric layer is deposited over the second polycrystalline silicon layer and the first polycrystalline silicon layer, and the fourth dielectric layer is etched to form a third spacer. Finally, any remaining layer surrounded by the third spacer is etched to a height substantially coplanar with the implanted area. The invention also defines an electronic device. In a specific example, a half of the conductive substrate is disclosed, which has at least one doped implanted region surrounded by a dielectric isolation region. The uppermost surfaces of the dielectric isolation region and the implanted region are substantially coplanar with the main surface of the substrate. An epitaxial channel is arranged on the uppermost surface of the implanted area and electrically connected to the implanted area. The periphery of the epitaxial channel is defined by a first dielectric spacer. A polycrystalline silicon region is arranged on the periphery to surround the epitaxial channel. The polycrystalline silicon region at least partially covers the implanted region and is isolated from the implanted region by a dielectric layer without direct electrical coupling. [Embodiment] 9 312XP / Invention Specification (Supplement) / 94-05 / 94101806 200531215 With reference to FIGS. 1 to 19, an exemplary embodiment of the present invention will be described in detail according to the following process steps. FIG. 1 shows an exemplary specific example of an isolation implantation area 105 for generating an electronic device structure of the present invention. FIG. 1 includes a base substrate 101, an isolation dielectric region 103, and the implant substrate region 105. The range 1 0 7 of the planting area 1 0 5 is shown in a plan view above FIG. 1. All zones are formed in a way well known to the artist. The base substrate 101 is often a silicon wafer. In this specific example, a specific silicon wafer is doped within the boundary of the isolation dielectric region to form the layout region 105. In another case, other Group IV element semiconductors or compound semiconductors (for example, Groups I I-V or I I_V I) may be selected as the base substrate 1 0 1. For example, the isolated dielectric region 103 is a deposited or thermally grown oxide or a deposited nitride.

圖2係具有一上面膜堆疊之圖1的隔離佈植區域1 0 5之 示意剖面圖。在此範例中,該膜堆疊包括一墊氧化物2 0 1、 一第一多晶矽層203、一氮化層205、一介電硬式罩幕(hard ma s k ) 2 0 7及一光阻層2 0 9。例如:該介電硬式罩幕2 0 7可 以是一 CVD沉積氧化物。 在一特定示範性具體例中,提供極微小膜厚度及沉積方 法如下:該墊氧化物2 0 1係一沉積有5 0 0 A - 1 0 0 0 A厚度之氧 化物,該第一多晶矽層2 0 3係1 0 0 0 A厚,該氮化層2 0 5係 3 0 0 A厚、該介電(例如:氧化)層2 0 7係2 0 0 0 A - 3 0 0 0 A厚, 以及該光阻層209係0.5//m - 1.5#m厚。 圖3顯示在曝光該光阻層2 0 9、顯影及餘刻該光阻層2 0 9 及下面硬式罩幕207以及產生一罩幕窗口 301後之圖1的 10 312XP/發明說明書(補件)/94-05/94101806 200531215 沉積膜。可藉由不同濕蝕刻(例如:如包含於一標準緩衝氧 化物钱刻中之氫氟酸(h y d r 〇 f 1 u 〇 r i c a c i d ),或者正石粦酸 (orthophosphoric a c i d ))或乾I虫刻(例如:反應式離子I虫 刻(r e a c t i v e - i ο n e t c h, R I E )技術來對該硬式罩幕2 0 7 I虫 刻。在該硬式罩幕2 0 7蝕刻之後,剝離該光阻層2 0 9。圖3 之上方的平面圖顯示對傳統微影技術之限制 3 0 3。例如: 當時微影技術之限制3 0 3為0. 1 8 // m。 參考圖4,一氧化物間隔層4 0 1之保形毯覆式沉積填充 # 該罩幕窗口 3 0 1及覆蓋該周圍硬式罩幕2 0 7。然後,藉由 例如R I E非等向性蝕刻該氧化物間隔層 4 0 1。選擇在氧化 物與氮化物間具有高選擇比之蝕刻劑,以允許該氮化層 2 0 5作為一蝕刻中止層。如一尺寸縮減罩幕開口 5 0 3所示, 該殘留氧化間隔物 5 0 1 (圖 5 )擴張了傳統微影技術之限制 3 0 3。例如:在該氧化間隔物5 0 1之底部具有0 . 0 5 // m厚的 情況下,一典型0 . 1 8 μ m設計規則產生一 0 . 0 8 # m罩幕開 口 5 0 3。Fig. 2 is a schematic cross-sectional view of the isolation implanted area 105 of Fig. 1 having a top film stack. In this example, the film stack includes a pad oxide 201, a first polycrystalline silicon layer 203, a nitride layer 205, a dielectric hard mask 207 and a photoresist. Layer 2 0 9. For example, the dielectric hard mask 207 can be a CVD deposited oxide. In a specific exemplary embodiment, the micro film thickness and deposition method are provided as follows: the pad oxide 2 1 is an oxide deposited with a thickness of 5 0 A-1 0 0 0 A, and the first polycrystalline The silicon layer is 2 0 3 series 1 0 0 0 A thick, the nitride layer 2 5 5 series 3 0 0 A thick, the dielectric (eg, oxide) layer 2 0 7 series 2 0 0 0 A-3 0 0 0 A is thick, and the photoresist layer 209 is 0.5 // m-1.5 # m thick. Figure 3 shows the hard mask 207 and the photoresist layer 209 under development, and after the photoresist layer 209 is exposed and developed, and after a mask window 301 is generated, Figure 10 312XP / Invention Specification (Supplement) ) / 94-05 / 94101806 200531215 Deposited film. Different wet etching (for example: hydrofluoric acid (hydr 0f 1 u ricacid) or orthophosphoric acid) contained in a standard buffer oxide etch or dry worm etch ( For example, reactive ionization (reactive-ion netch, RIE) technology is used to etch the hard mask 2 0 I. After the hard mask 2 7 is etched, the photoresist layer 2 0 9 is peeled off. The plan view above Fig. 3 shows the limitations of traditional lithography technology 3 0 3. For example: At that time, the limitation of lithography technology 3 3 was 0. 1 8 // m. Referring to Fig. 4, an oxide spacer layer 4 0 Conformal blanket overlying deposition filling of 1 # The mask window 3 0 1 and the surrounding hard mask 2 0 7. Then, the oxide spacer layer 4 0 1 is anisotropically etched by, for example, RIE. An etchant having a high selectivity between oxide and nitride to allow the nitride layer 205 to serve as an etch stop layer. As shown in a size reduction mask opening 5 0 3, the residual oxide spacer 5 0 1 ( Figure 5) The limitation of the traditional lithography technique is extended 3 0 3. For example: at this oxidation interval In the case where the bottom of the object 501 has a thickness of 0. 05 // m, a typical design rule of 0. 18 μm produces a 0. 8 # m curtain opening 5 0 3.

參考圖6,該氧化間隔物5 01及該硬式罩幕2 0 7提供一 用以非等向性蝕刻該等下面層(亦即,該氮化層2 0 5、該第 一多晶矽層2 0 3及該墊氧化物2 0 1 )至該佈植區域1 0 5藉以 產生一磊晶(「epi」)介層孔601之罩幕。 在圖7中,藉由例如一緩衝氧化物濕蝕刻技術來剝離該 上面硬式罩幕2 0 7及氧化間隔物5 0 1。一熱氧化步驟在該 第一多晶矽層 2 0 3之垂直壁上產生一閘極氧化物7 0 1。可 藉由像R I E技術來去除在該磊晶介層孔6 0 1之底部上所再 11 312XP/發明說明書(補件)/94-05/94101806 200531215 次成長的任何氧化物(亦即,在該佈植區域 1 0 5上之氧化 物)。在蝕刻以後,採取預防措施以最小化或去除在該磊晶 介層孔 6 0 1 之底部上所成長之任何原生氧化物(n a t i v e oxide)。用以最小化從矽所成長之原生氧化物的技術在該 項技藝中係大眾所熟知的且將不在此作討論。熱氧化物成 長技術將氧與下面矽(亦即,該第一多晶矽層 2 0 3 )結合。 可明確了解熱氧化物成長之機制使該下面多晶矽2 0 3之約 4 4 %部分耗損,以形成該閘極氧化物7 0 1。Referring to FIG. 6, the oxidized spacer 5 01 and the hard mask 2 0 7 provide an anisotropic etching of the underlying layers (ie, the nitrided layer 2 05, the first polycrystalline silicon layer). 2 0 3 and the pad oxide 2 0 1) to the implanted area 1 0 5 to generate a mask of an epitaxial (“epi”) via hole 601. In FIG. 7, the upper hard mask 207 and the oxidized spacers 501 are peeled off by, for example, a buffer oxide wet etching technique. A thermal oxidation step generates a gate oxide 7 01 on the vertical wall of the first polycrystalline silicon layer 2 0 3. Any oxide that grows on the bottom of the epitaxial interstitial hole 6 0 1 can be removed by RIE technology like 312XP / Invention Specification (Supplement) / 94-05 / 94101806 200531215 times (ie, in the Oxide on the planting area 105). After etching, precautions are taken to minimize or remove any native oxide (n a t i v e oxide) grown on the bottom of the epitaxial via hole 601. Techniques for minimizing native oxides grown from silicon are well known in the art and will not be discussed here. Thermal oxide growth technology combines oxygen with the underlying silicon (ie, the first polycrystalline silicon layer 2 0 3). It can be clearly understood that the thermal oxide growth mechanism consumes about 4 4% of the underlying polycrystalline silicon 2 0 3 to form the gate oxide 7 0 1.

然後,以一磊晶矽 8 0 1通道沉積來填充該磊晶介層孔 6 0 1 (圖8 )。該磊晶矽8 0 1形成該電晶體之通道9 0 1 (圖9 )。 之後,沉積一第二多晶矽層9 0 3及一第二光阻層9 0 5。在 一特定示範性具體例中,該第二多晶矽層9 0 3及該第二光 阻層9 0 5分別具有1 0 0 0 A及5 0 0 0 A之極小厚度。曝光、顯 影及蝕刻該第二光阻層 9 0 5,以留下一第二光阻蝕刻罩幕 1 0 0 5 (圖1 0 )。然後,藉由例如R I E蝕刻不在該第二光阻蝕 刻罩幕1 0 0 5下方之第一多晶矽2 0 3的區域,以留下一閘極 多晶矽1 1 0 3 (圖1 1 )。隨後,藉由該氮化層2 0 5之額外蝕刻 以留下一氮化墊1 2 0 5 (圖1 2 )來完成該閘極區域。 參考圖1 3,(例如:藉由一 L P C V D製程)在該閘極多晶矽 及周圍區域上方沉積一保形氧化層1 3 0 1,以及然後非等向 性蝕刻該保形氧化層 1 3 0 1以留下一氧化間隔物 1 4 0 1 (圖 1 4 )。該氧化間隔物提供一自行對準區域,其允許超越典型 微影技術及對準技術平常所准許之特徵的覆蓋。因此,當 自行對準該等層時,可刪除具有多個光罩之層對層對準問 12 312XP/發明說明書(補件)/94-05/94101806Then, an epitaxial silicon 801 channel is deposited to fill the epitaxial via hole 601 (FIG. 8). The epitaxial silicon 8 0 1 forms a channel 9 0 1 of the transistor (FIG. 9). After that, a second polycrystalline silicon layer 903 and a second photoresist layer 905 are deposited. In a specific exemplary embodiment, the second polycrystalline silicon layer 903 and the second photoresist layer 905 have extremely small thicknesses of 100 A and 5000 A, respectively. The second photoresist layer 905 is exposed, developed, and etched to leave a second photoresist etch mask 1005 (FIG. 10). Then, the area of the first polycrystalline silicon 203 which is not under the second photoresist mask 105 is etched by, for example, R I E to leave a gate polycrystalline silicon 1 1 0 3 (FIG. 1 1). Subsequently, the gate region is completed by additional etching of the nitride layer 205 to leave a nitride pad 1250 (FIG. 12). Referring to FIG. 13 (eg, by an LPCVD process) a conformal oxide layer 1 3 0 1 is deposited over the gate polycrystalline silicon and the surrounding area, and then the conformal oxide layer is anisotropically etched 1 3 0 1 In order to leave the oxidative spacer 14 0 1 (Figure 1 4). The oxidized spacer provides a self-aligned area that allows coverage beyond the features typically permitted by typical lithography and alignment techniques. Therefore, when aligning these layers by yourself, the layer-to-layer alignment problem with multiple photomasks can be deleted. 12 312XP / Invention Specification (Supplement) / 94-05 / 94101806

200531215 題。此外,特徵尺寸係由沉積及蝕刻技術所決定以及 於只由微影及對準技術所界定之特徵。 在圖1 5中,沉積及蝕刻光阻以留下一光阻罩幕1 E 該光阻罩幕1 5 0 1作為一用以產生一多晶矽閘極區域 之多晶矽蝕刻的蝕刻罩幕(圖1 6 )。以實際形狀沉積一 CVD氧化物1701(圖17)及非等向性蝕刻該CVD氧化物 以留下一閘極區域氧化間隔物1 8 0 1 (圖1 8 )。該閘極區 化間隔物具有相同於先前該氧化間隔物 1 4 0 1之自行 # 品質。在圖1 9中,一最後非等向性蝕刻揭露該佈植基 域1 0 5及形成一源極區域1 9 0 1、一汲極區域1 9 0 3及 極區域1 9 0 5。 在該最後非等向性蝕刻之後,使用該項技藝人士所 之技術來實施例如擴散至該汲極多晶矽之額外佈植、 化、電子測試及封裝步驟,藉以完成該半導體裝置。 有助於對本發明之了解,在此討論一用以形成一垂直 C Μ 0 S裝置之製程及配置。然而,在此所描述之層及區 發明製程及配置亦可用以形成具有實用性之各種其它 型態及結構,以成為個別裝置或組合。例如:雖然一 例描述一 CMOS裝置之形成,但是熟知該項技藝人士將 解本發明容易適用於一雙極電晶體或其它型態之半導 置。再者,在此所述之技術亦可容易地藉由介電沉積 長來建構例如雙閘極之特徵。 此外,與半導體業界相關之許多產業可使用此技術 如:在資料儲存產業中之薄膜磁頭(t h i η _ f i 1 m h e a d , 312XP/發明說明書(補件)/94-05/94101806 遠小 »01 ° 160 1 最後 1701 域氧 對準 板區 一閘 熟知 金屬 為了 閘極 域的 裝置 具體 可了 體裝 或成 〇例 TFH) 13200531215 questions. In addition, feature sizes are determined by deposition and etching techniques and by features defined only by lithography and alignment techniques. In FIG. 15, a photoresist is deposited and etched to leave a photoresist mask 1 E. The photoresist mask 1 50 is used as an etching mask for polysilicon etching for generating a polysilicon gate region (FIG. 1). 6). A CVD oxide 1701 (FIG. 17) is deposited in the actual shape and the CVD oxide is anisotropically etched to leave a gate region oxidation spacer 1 801 (FIG. 18). The gated spacer has the same self # quality as the previous oxidized spacer 1 4 0 1. In FIG. 19, a final anisotropic etching exposes the implanted base region 105 and forms a source region 1910, a drain region 1903 and a pole region 1905. After the last anisotropic etch, the technology of the artist is used to perform additional implantation, chemical, electronic test, and packaging steps such as diffusion to the drain polycrystalline silicon to complete the semiconductor device. To help understand the present invention, a process and configuration for forming a vertical CMOS device are discussed here. However, the layers and areas of the invention process and configuration described herein can also be used to form a variety of other types and structures with practicality to form individual devices or combinations. For example, although one example describes the formation of a CMOS device, those skilled in the art will understand that the present invention can be easily applied to a bipolar transistor or other types of semiconductor devices. Furthermore, the techniques described herein can also easily construct features such as double gates by dielectric deposition. In addition, many industries related to the semiconductor industry can use this technology such as: thin film magnetic heads in the data storage industry (thi η _ fi 1 mhead, 312XP / Invention Specification (Supplement) / 94-05 / 94101806 Far Small »01 ° 160 1 The last 1701 domain oxygen alignment plate is a gate known metal for the device in the gate domain can be physically installed or TFH) 13

200531215 或在面板顯示器產業中之主動式矩陣液晶顯示; 可容易地使用在此所述之製程及技術。術語「半 _ 該被認為是包括上述及相關產業。此外,雖然已 及描述製造步驟及技術,但是熟知該項技藝人士 到可使用包含於所附申請專利範圍之範圍内的其 方法。例如:有幾個技術(例如:化學氣相沉積、 式氣相沉積、磊晶技術、原子層沉積等)經常用以 層。雖然並非所有技術適用於在此所述之所有膜 ® 但是熟知該項技藝者可認知到亦可使用用以沉積 層及/或膜型態的多個方法。因此,本發明之範圍 所附申請專利範圍來侷限。 【圖式簡單說明】 圖1顯示一用以產生本發明之一電子裝置結構 植區域之示範性具體例。 圖2係具有一膜堆疊之圖1的隔離佈植區域之 圖。 圖3顯示具有一蝕刻介電罩幕窗口之圖1的沉 圖4顯示一用以填充圖3之罩幕窗口的介電層 覆式沉積。 圖5顯示經非等向性蝕刻以形成一介電間隔物 保形毯覆式沉積。 圖6顯示經由圖5之介電間隔物所形成之窗口 蝕刻膜堆疊至該佈植區域。 圖7顯示以一垂直側壁閘極氧化來去除圖6之 312XP/發明說明書(補件)/94-05/94101806 I (AMLCD) 導體」應 詳細表不 將可認知 它技術及 電漿增強 沉積一膜 的型態, 一給定之 應該只由 的隔離佈 示意剖面 積膜。 之保形毯 之圖4的 非等向性 上面介電 14 200531215 層 。 圖8顯示一圖6及7中所形成之閘極區域的磊晶通道填 充物。 圖9顯示在該磊晶矽之化學機械平坦化以及多晶矽與光 阻之沉積後之圖8的蟲晶填充區域。 圖1 0顯示在顯影及蝕刻後之圖9的光阻層。 圖1 1顯示圖1 0之已蝕刻多晶層,該已蝕刻多晶層將成 為該電子裝置之閘極區域。200531215 or active matrix liquid crystal display in the panel display industry; the processes and technologies described herein can be easily used. The term "half_" is considered to include the above and related industries. In addition, although the manufacturing steps and techniques have been described and described, those skilled in the art will be able to use their methods that fall within the scope of the attached patent application. For example: Several techniques (such as chemical vapor deposition, vapor deposition, epitaxy, atomic layer deposition, etc.) are often used for layering. Although not all techniques are applicable to all membranes described here®, the technique is well known One can recognize that multiple methods for depositing layers and / or film types can also be used. Therefore, the scope of the present invention is limited to the scope of patents attached. [Simplified Description of the Drawings] Figure 1 shows a method for generating One of the inventions is an exemplary embodiment of the planting area of the electronic device structure. Fig. 2 is a diagram of the isolation planting area of Fig. 1 with a film stack. A dielectric layer overlying deposition to fill the mask window of FIG. 3 is shown. FIG. 5 shows a conformal blanket overlying deposition by anisotropic etching to form a dielectric spacer. Electricity The window etching film formed by the spacers is stacked to the implanted area. Fig. 7 shows the removal of the 312XP / Invention Specification (Supplement) / 94-05 / 94101806 I (AMLCD) conductor by a vertical sidewall gate oxidation. " The type of a film that can be recognized by its technology and plasma enhanced deposition should be specified in detail, and a given area should only be used to indicate the cross-sectional area of the film. The conformal blanket of Figure 4 is anisotropic, with the upper dielectric layer 14 200531215. FIG. 8 shows an epitaxial channel filling in the gate region formed in FIGS. 6 and 7. FIG. 9 shows the worm-crystal filled area of FIG. 8 after chemical mechanical planarization of the epitaxial silicon and deposition of polycrystalline silicon and photoresist. FIG. 10 shows the photoresist layer of FIG. 9 after development and etching. FIG. 11 shows the etched polycrystalline layer of FIG. 10, which will become a gate region of the electronic device.

圖1 2顯示具有一已蝕刻下面氮化層之圖1 1的已蝕刻多 晶矽層,以進一步界定該閘極區。 圖1 3顯示一在圖1 2之閘極區域上方所沉積之保形毯覆 式介電層。 圖1 4顯示在非等向性蝕刻後之圖1 3的毯覆式介電層, 以留下一氧化間隔物。 圖1 5顯示一在圖1 4之閘極區域上方的經顯影及蝕刻光 阻。 圖1 6顯示一在多晶石夕#刻及圖1 5之光阻層的去除後所 殘留之經蝕刻汲極區域的形成。 圖1 7顯示一在圖1 6之閘極及汲極區域上方的保形毯覆 式介電層。 圖1 8顯示在非等向性蝕刻及殘留一包圍該汲極區域之 氧化間隔物後的圖1 7之毯覆式介電層。 圖1 9顯示在完成有關於本發明之重要後段製程步驟後 的圖1 8之電子裝置結構。 15 312XP/發明說明書(補件)/94-05/94101806 200531215 【主要 元件 符 1 01 底 部 1 03 隔 離 1 05 隔 離 1 07 範 圍 201 墊 氧 203 第 一 205 氮 化 207 介 電 209 光 阻 301 罩 幕 303 限 制 401 氧 化 501 殘 留 503 尺 寸 601 晶 70 1 閘 極 801 晶 901 通 道 903 第 二 905 第 二 1005 第 二 1103 閘 極 1205 氮 化Figure 12 shows the etched polysilicon layer of Figure 11 with an etched underlying nitride layer to further define the gate region. Figure 13 shows a conformal blanket overlying dielectric layer deposited over the gate region of Figure 12. FIG. 14 shows the blanket dielectric layer of FIG. 13 after anisotropic etching to leave an oxide spacer. Figure 15 shows a developed and etched photoresist over the gate region of Figure 14. FIG. 16 shows the formation of an etched drain region remaining after the polycrystalline stone lithography and the removal of the photoresist layer of FIG. 15. Figure 17 shows a conformal blanket overlying dielectric layer over the gate and drain regions of Figure 16. FIG. 18 shows the blanket dielectric layer of FIG. 17 after anisotropic etching and an oxide spacer surrounding the drain region is left. FIG. 19 shows the structure of the electronic device of FIG. 18 after completing the important subsequent process steps related to the present invention. 15 312XP / Invention Manual (Supplement) / 94-05 / 94101806 200531215 [Main components 1 01 Bottom 1 03 Isolation 1 05 Isolation 1 07 Range 201 Oxygen 203 First 205 Nitriding 207 Dielectric 209 Photoresistor 301 Cover 303 Limit 401 Oxidation 501 Residual 503 Size 601 Crystal 70 1 Gate 801 Crystal 901 Channel 903 Second 905 Second 1005 Second 1103 Gate 1205 Nitriding

號說明】 基板 介電區域 佈植區域 化物 多晶矽層 層 硬式罩幕 層 窗口 物間隔層 氧化間隔物 縮減罩幕開口 介層孔 氧化物 矽 多晶矽層 光阻層 光阻蝕刻罩幕 多晶砍 墊 312XP/發明說明書(補件)/94-05/94101806 16 200531215 130 1 保形氧化層 140 1 氧化間隔物 150 1 光阻罩幕 160 1 多晶矽閘極區域 170 1 CVD氧化物 180 1 閘極區域氧化間隔物 190 1 源極區域 1903 汲極區域 • 1905 閘極區域 • 17 312XP/發明說明書(補件)/94-05/94101806No. Description] Substrate dielectric region, implantation of regionalized polycrystalline silicon layer, hard mask layer, window spacer, oxide spacer, reduction of mask opening, interlayer hole oxide, silicon polycrystalline silicon layer, photoresist layer, photoresist etching mask, polycrystalline cutting pad 312XP / Invention Specification (Supplement) / 94-05 / 94101806 16 200531215 130 1 Conformal oxide layer 140 1 Oxidation spacer 150 1 Photoresist mask 160 1 Polycrystalline silicon gate region 170 1 CVD oxide 180 1 Gate region oxidation interval Object 190 1 Source region 1903 Drain region • 1905 Gate region • 17 312XP / Invention Specification (Supplement) / 94-05 / 94101806

Claims (1)

200531215 十、申請專利範圍: 1. 一種電子裝置之製造方法,包含: 植入一摻質至一半導體基板之一區域中,該佈植區域位 於一由一介電隔離層所隔離之區域中; 沉積一膜堆疊於該佈植及介電隔離層區域上方,該膜堆 疊包括一第一介電層及一第一多晶石夕層; 蝕刻出一穿過該第一介電層之介電窗口; 沉積一第二介電層至該介電窗口中及該膜堆疊上方;200531215 10. Scope of patent application: 1. A method for manufacturing an electronic device, comprising: implanting a dopant into a region of a semiconductor substrate, the implanted region is located in a region isolated by a dielectric isolation layer; Depositing a film stack over the implanted and dielectric isolation layer region, the film stack including a first dielectric layer and a first polycrystalline silicon layer; etching a dielectric passing through the first dielectric layer A window; depositing a second dielectric layer into the dielectric window and above the film stack; 非等向性蝕刻該第二介電層以形成一第一間隔物; 非等向性蝕刻在該佈植區域與該第一介電層間之膜堆 疊的部分,藉以形成一磊晶介層孔; 以磊晶矽來填充該磊晶介層孔,藉以形成一磊晶通道; 形成一第二多晶矽層於該磊晶通道上方; 沉積一第三介電層於該第二多晶矽層及周圍區域上方; 非等向性蝕刻該第三介電層以形成一第二間隔物; 蝕刻該第一多晶矽層; 沉積一第四介電層於該第二多晶矽層及該第一多晶矽 層上方; 蝕刻該第四介電層以形成一第三間隔物;以及 蝕刻包圍該第三間隔物之任何殘留層至大致該佈植區 域之高度。 2.如申請專利範圍第1項之製造方法,其中,該膜堆疊 包括一塾氧化物、一第一多晶石夕層、一氮化層及一氧化物 罩幕。 18 312XP/發明說明書(補件)/94-05/94101806 .200531215 - 3.如申請專利範圍第1項之製造方法,其中,該間隔物 包括氧化物。 4. 如申請專利範圍第1項之製造方法,其中,該第一、 第二、第三及第四介電層包括氧化物。 5. —種電子裝置,包含: 一半導體基板,其上具有至少一由一介電隔離區域所橫 向包圍之區域,該區域植入有一摻質,該介電隔離區域及 該佈植區域之最上表面大致上與該基板之主表面成為共平 一磊晶通道,配置在該佈植區域之最上表面及電性耦接 至該佈植區域,該磊晶通道之周邊由一第一介電間隔物所 界定;以及 一多晶矽區域,配置在外圍以包圍該磊晶通道,該多晶 矽區域至少部分覆蓋該佈植區域及藉由一介電層與該佈植 區域隔離而不會有直接電性耦接。 6. 如申請專利範圍第5項之電子裝置,其中,當將一超Anisotropically etch the second dielectric layer to form a first spacer; anisotropically etch a portion of the film stack between the implanted region and the first dielectric layer to form an epitaxial dielectric hole; Filling the epitaxial via hole with epitaxial silicon to form an epitaxial channel; forming a second polycrystalline silicon layer over the epitaxial channel; depositing a third dielectric layer on the second polycrystalline silicon layer and Above the surrounding area; anisotropically etch the third dielectric layer to form a second spacer; etch the first polycrystalline silicon layer; deposit a fourth dielectric layer on the second polycrystalline silicon layer and the first Over a polycrystalline silicon layer; etching the fourth dielectric layer to form a third spacer; and etching any remaining layer surrounding the third spacer to approximately the height of the implanted region. 2. The manufacturing method according to item 1 of the patent application range, wherein the film stack includes a hafnium oxide, a first polycrystalline layer, a nitride layer, and an oxide mask. 18 312XP / Invention Specification (Supplement) /94-05/94101806.200531215-3. The manufacturing method according to item 1 of the patent application scope, wherein the spacer includes an oxide. 4. The manufacturing method of claim 1, wherein the first, second, third, and fourth dielectric layers include an oxide. 5. An electronic device comprising: a semiconductor substrate having at least one region surrounded by a dielectric isolation region laterally, the region is implanted with a dopant, the dielectric isolation region and the top of the implanted region are topmost The surface is substantially coplanar with an epitaxial channel of the main surface of the substrate, is disposed on the uppermost surface of the implanted region, and is electrically coupled to the implanted region. The periphery of the epitaxial channel is surrounded by a first dielectric spacer. Defined; and a polycrystalline silicon region disposed at the periphery to surround the epitaxial channel, the polycrystalline silicon region at least partially covers the implanted region and is isolated from the implanted region by a dielectric layer without direct electrical coupling . 6. For the electronic device under the scope of patent application No. 5, in which, when 過臨界電壓之電壓施加至該蠢晶通道時,該蠢晶通道電性 耦接至該周圍的多晶矽區域。 7.如申請專利範圍第5項之電子裝置,其中,當將一小 於臨界電壓之電壓施加至該磊晶通道時,該磊晶通道與該 周圍的多晶矽區域電性隔離。 8 .如申請專利範圍第5項之電子裝置,其中,該多晶矽 區域由一第二介電間隔物所包圍。 9 .如申請專利範圍第5項之電子裝置,其中,進一步包 19 312XP/發明說明書(補件)/94-05/94101806 200531215 含一在磊晶通道之最上表面上之多晶矽蓋層,該多晶矽蓋 層由一第三介電間隔物所包圍。 1 0 .如申請專利範圍第9項之電子裝置,其中,該多晶 矽蓋層係一電晶體之閘極接點。 1 1 .如申請專利範圍第5項之電子裝置,其中,該多晶 矽區域係一電晶體之汲極接點。 1 2.如申請專利範圍第5項之電子裝置,其中,該佈植 區域係一電晶體之源極接點。When a voltage exceeding a critical voltage is applied to the stupid channel, the stupid channel is electrically coupled to the surrounding polycrystalline silicon region. 7. The electronic device of claim 5 in which the epitaxial channel is electrically isolated from the surrounding polycrystalline silicon region when a voltage lower than a critical voltage is applied to the epitaxial channel. 8. The electronic device according to item 5 of the patent application, wherein the polycrystalline silicon region is surrounded by a second dielectric spacer. 9. The electronic device according to item 5 of the scope of patent application, further comprising 19 312XP / Invention Specification (Supplement) / 94-05 / 94101806 200531215 containing a polycrystalline silicon capping layer on the uppermost surface of the epitaxial channel. The capping layer is surrounded by a third dielectric spacer. 10. The electronic device according to item 9 of the scope of patent application, wherein the polycrystalline silicon capping layer is a gate contact of a transistor. 1 1. The electronic device according to item 5 of the patent application, wherein the polycrystalline silicon region is a drain contact of a transistor. 1 2. The electronic device according to item 5 of the scope of patent application, wherein the implanted area is a source contact of a transistor. 13. —種電子裝置之製造方法,包含: 植入一摻質至一半導體基板之一區域中; 沉積一膜堆疊於該佈植區域上方,該膜堆疊包括一第一 介電層及一第一多晶石夕層; 蝕刻出一穿過該第一介電層之介電窗口; 形成一第一間隔物於該介電窗口中; 非等向性蝕刻在該佈植區域與該第一介電層間之膜堆 疊的部分,藉以形成一蠢晶介層孔; 以蠢晶石夕填充該蠢晶介層孔’藉以形成一蟲晶通道, 形成一第二多晶矽層於該磊晶通道上方; 形成一包圍該第二多晶矽層之第二間隔物; I虫刻該第一多晶石夕層;以及 形成一包圍該第一多晶矽層之第三間隔物。 1 4 .如申請專利範圍第1 3項之製造方法,其中,進一步 包含藉由一介電隔離層來隔離該佈植區域。 1 5 .如申請專利範圍第1 3項之製造方法,其中,該第一 20 312XP/發明說明書(補件)/9105/94101806 200531215 間隔物係藉由沉積一第二介電層於該介電窗口中及該膜堆 疊上方,以及然後非等向性蝕刻該第二介電層所形成。 1 6.如申請專利範圍第1 3項之製造方法,其中,該第二 間隔物係藉由沉積一第三介電層於該第二多晶矽層及周圍 區域上方,以及非等向性蝕刻該第三介電層所形成。 1 7.如申請專利範圍第1 3項之製造方法,其中,該第三 間隔物係藉由沉積一第四介電層於該第二多晶矽層及該第 一多晶矽層上方,以及非等向性蝕刻該第四介電層所形成。13. A method of manufacturing an electronic device, comprising: implanting a dopant into an area of a semiconductor substrate; depositing a film stack over the implanted area, the film stack including a first dielectric layer and a first A polycrystalline stone layer; etching a dielectric window through the first dielectric layer; forming a first spacer in the dielectric window; anisotropic etching in the implanted area and the first Part of the film stack between the dielectric layers to form a stupid interstitial hole; fill the stupid interstitial hole with stupid stone to form a wormhole channel and form a second polycrystalline silicon layer above the epitaxial channel Forming a second spacer surrounding the second polycrystalline silicon layer; engraving the first polycrystalline silicon layer; and forming a third spacer surrounding the first polycrystalline silicon layer. 14. The manufacturing method according to item 13 of the patent application scope, further comprising isolating the implanted area by a dielectric isolation layer. 15. The manufacturing method according to item 13 of the scope of patent application, wherein the first 20 312XP / Invention Specification (Supplement) / 9105/94101806 200531215 spacer is deposited on the dielectric by depositing a second dielectric layer Formed in the window and above the film stack, and then anisotropically etching the second dielectric layer. 16. The manufacturing method according to item 13 of the scope of patent application, wherein the second spacer is formed by depositing a third dielectric layer over the second polycrystalline silicon layer and the surrounding area, and anisotropic The third dielectric layer is formed by etching. 1 7. The manufacturing method according to item 13 of the scope of patent application, wherein the third spacer is formed by depositing a fourth dielectric layer on the second polycrystalline silicon layer and the first polycrystalline silicon layer, And anisotropically etching the fourth dielectric layer. 1 8.如申請專利範圍第1 7項之製造方法,其中,進一步 包含蝕刻包圍該第三間隔物之任何殘留層至大致該佈植區 域之高度。18. The manufacturing method according to item 17 of the scope of patent application, further comprising etching any remaining layer surrounding the third spacer to a height substantially equal to the implanted area. 21 312X?/發明說明書(補件)/94-05/9410180621 312X? / Invention Specification (Supplement) / 94-05 / 94101806
TW94101806A 2004-01-21 2005-01-21 Vertical gate cmos with lithography-independent gate length TW200531215A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/761,876 US6846709B1 (en) 2003-10-06 2004-01-21 Vertical gate CMOS with lithography-independent gate length

Publications (1)

Publication Number Publication Date
TW200531215A true TW200531215A (en) 2005-09-16

Family

ID=34826456

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94101806A TW200531215A (en) 2004-01-21 2005-01-21 Vertical gate cmos with lithography-independent gate length

Country Status (4)

Country Link
EP (1) EP1709680A4 (en)
CN (1) CN100442477C (en)
TW (1) TW200531215A (en)
WO (1) WO2005072154A2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58909837D1 (en) * 1989-09-22 1998-09-17 Siemens Ag Method of manufacturing a bipolar transistor with reduced base / collector capacitance
JP3229012B2 (en) * 1992-05-21 2001-11-12 株式会社東芝 Method for manufacturing semiconductor device
US5689127A (en) * 1996-03-05 1997-11-18 International Business Machines Corporation Vertical double-gate field effect transistor
US5786256A (en) * 1996-07-19 1998-07-28 Advanced Micro Devices, Inc. Method of reducing MOS transistor gate beyond photolithographically patterned dimension
US20010017392A1 (en) * 1997-05-19 2001-08-30 International Business Machines Corporation. Vertical transport MOSFETs and method for making the same
US6040214A (en) * 1998-02-19 2000-03-21 International Business Machines Corporation Method for making field effect transistors having sub-lithographic gates with vertical side walls
US6392271B1 (en) * 1999-06-28 2002-05-21 Intel Corporation Structure and process flow for fabrication of dual gate floating body integrated MOS transistors
US6518616B2 (en) * 2001-04-18 2003-02-11 International Business Machines Corporation Vertical gate top engineering for improved GC and CB process windows
US20030008515A1 (en) * 2001-07-03 2003-01-09 Tai-Ju Chen Method of fabricating a vertical MOS transistor

Also Published As

Publication number Publication date
WO2005072154A2 (en) 2005-08-11
EP1709680A2 (en) 2006-10-11
EP1709680A4 (en) 2008-07-02
WO2005072154A3 (en) 2005-12-08
CN1910748A (en) 2007-02-07
CN100442477C (en) 2008-12-10

Similar Documents

Publication Publication Date Title
CN101952958B (en) Systems and devices including fin transistors and methods of using, making, and operating the same
US7232732B2 (en) Semiconductor device with a toroidal-like junction
TWI302029B (en) Self-aligned conductive spacer process for sidewall control gate of high-speed random access memory
TWI248650B (en) Silicon-on-nothing fabrication process
US6835662B1 (en) Partially de-coupled core and periphery gate module process
TWI396252B (en) Methods of providing electrical isolation and semiconductor structures including same
TWI304247B (en) Method for fabricating semiconductor device
KR20110071084A (en) Self-aligned trench formation
US8399315B2 (en) Semiconductor structure and method for manufacturing the same
JPH0677487A (en) Thin-film transistor and its manufacture
US20150325692A1 (en) Fin field effect transistor (finfet) device including a set of merged fins formed adjacent a set of unmerged fins
US10720509B1 (en) Method for preparing a semiconductor device structure with an annular semiconductor fin
TW200828515A (en) Transistor surround gate structure with silicon-on-insulator isolation for memory cells, memory arrays, memory devices and systems and methods of forming same
US7229928B2 (en) Method for processing a layered stack in the production of a semiconductor device
WO2006049707A1 (en) Lithography-independent fabrication of small openings
US11961740B2 (en) Manufacturing method for integrating gate dielectric layers of different thicknesses
US20070128823A1 (en) Method of fabricating semiconductor integrated circuit device
US7632736B2 (en) Self-aligned contact formation utilizing sacrificial polysilicon
TWI291741B (en) Method fabricating a memory device having a self-aligned contact
TW200531215A (en) Vertical gate cmos with lithography-independent gate length
US20050009250A1 (en) Ultra short channel field effect transistor and method of fabricating the same
TW211081B (en)
TW449876B (en) Method for simultaneously manufacturing landing pad and bit line
KR100641495B1 (en) Method for manufacturing semiconductor device
KR100342290B1 (en) Field effect transistors with improved implants and method for making such transistors