TW200528499A - Clay mixture of aluminum compound and clay and preparation method thereof - Google Patents

Clay mixture of aluminum compound and clay and preparation method thereof Download PDF

Info

Publication number
TW200528499A
TW200528499A TW093103837A TW93103837A TW200528499A TW 200528499 A TW200528499 A TW 200528499A TW 093103837 A TW093103837 A TW 093103837A TW 93103837 A TW93103837 A TW 93103837A TW 200528499 A TW200528499 A TW 200528499A
Authority
TW
Taiwan
Prior art keywords
clay
surfactant
mixture
item
patent application
Prior art date
Application number
TW093103837A
Other languages
English (en)
Other versions
TWI265948B (en
Inventor
Ching-Yao Huang
Hsi-Fu Li
Tzu-Fan Tseng
Jeng-Yue Wu
Original Assignee
Walsin Lihwa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walsin Lihwa Corp filed Critical Walsin Lihwa Corp
Priority to TW093103837A priority Critical patent/TWI265948B/zh
Priority to US10/884,611 priority patent/US20050181970A1/en
Priority to JP2004343602A priority patent/JP2005231988A/ja
Publication of TW200528499A publication Critical patent/TW200528499A/zh
Application granted granted Critical
Publication of TWI265948B publication Critical patent/TWI265948B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

200528499 五、發明說明(1) ^^^ 【發明所屬之技術領域】 本發明係關於一種黏土混合物及其製備方 於鋁化合物與黏土之混合物及其製備方法。/ ’ 、別關 【先前技術】 高分子奈米複合材料具有許多傳統複合材 4 特性’如高阻氣性、低吸濕性,且分散尺度太、的 傳統高分子性質提升甚大。 π未級,對
、相對於傳統複合材料,奈米級複合材料可提供較好的 機械強度、剛性、耐熱性。自199〇年T〇y〇ta研究中心提出 Nylon 6 / clay奈米複合材料之後,許多研究單位相繼投 入高分子/黏土奈米複材之研究。其中Nyl〇n 6 / clay奈& 米複合材料是使用聚合法將有機化或表面處理完畢之黏Γ'土 加入己内醯胺(capr〇lactam )後,進行聚縮合反應製備 而成。 1994-1995年後’高分子奈米複合材料之製備,即走 向熔融(Melt )或捏合(kneading )製程,此製程成本比 聚合製程便宜,即利用押出機(單、雙螺桿),在1〜2分 鐘滯留時間内,將高分子與表面改質後之黏土於押出機^ 進行熔融混煉,而所得到最終產物中,大部份黏土分散未 達預期效果。因此,能夠充份分散在高分子基材中的黏 土,是製造高分子/黏土奈米複合材料不可或缺的重要原 料。 ’、 為了增加南分子/黏土奈米複材中黏土的層間距離, 習知技藝將黏土藉由表面處理劑(界面活性劑、溼潤劑此
200528499 五、發明說明(2) 聚合物···)進行有機化改質’其中大部分黏土處理方式是 使高分子材料與黏土渔潤(wetting )或膨潤(Swelling )’以陽離子界面活性劑或高分子等有機物(〇rganic
Compounds )處理無機黏土’如此界面活性劑或高分子之 分子鏈能擴散(diffusion )或滲入(penetrate )黏土層 間’將黏土層間距離推開(pushing apart )至可供押出 機剪切力(shearing force )分散的效果。一般使用之有 機化黏土製備方式疋將黏土在水溶液中,以陽離子界面、、舌 性劑吸附於黏土表面’使▼正電之界面劑一端吸附於黏土 表面,界面活性劑另一端之親油基朝外,使黏土本身呈現 親油性(hydrophobic )之特性,此親油基提供與高分子 溼潤(Wetting )或膨潤(Swelling )之功能,幫助分 散。各種親油化步驟使用之界面活性劑於文獻及專利中已 有很多不同系統使用,如四級銨(CPC)或磷系陽離子界面 劑已被廣泛使用,然而,所得黏土之分散仍未读益& ^ $預期效 果。 ray圖(如傘 純黏土之層 一般黏土,例如蒙脫土(ΜΜΤ),進行X-ray婦嘴(掃^ 範圍2(9=2°〜8° ,掃瞄速率為1。/分鐘),其田 田 一圖所示)在20 = 6- 7°處有一明顯尖峰,顯示 間距離約為1 - 1 · 5奈米;請參閱第二圖,以四級胺二:二 · 過之蒙脫土( MMT ),藉由X-ray繞射結果顯示,該點土之声 間距離為2 - 3奈米,且仍可見明顯尖峰,亦即其仍具有層曰 間規則性,分散效果不佳。 ~ « 職是之故,申請人鑑於習知技術之缺失,乃^^ ~緩悉心試
第7頁 200528499 五、發明說明(3) ' --- 驗與研究,並一本鍥而不捨之精神,終於創作出本案「鋁 化合物與黏土之混合物及其製備方法」,以鋁化合物與 黏土在水相中混合’藉靜電作用力,形成奈米鋁氧化物與 奈米層狀黏土之凝集沈澱物,此凝集沈澱物經過渡、乾燥 後即可與咼分子藉嫁融混練加工形成高分子/黏土奈米^ 合材料。由於黏土層間規則性已被破壞,因此可得^高分 散性之奈米複材。以下為本案之簡要說明。 【發明内容】 本發明之主要構想係提供一種鋁化合物與黏土之混合 物’該混合物中,該黏土之層間距離已被撐開,且其層間 規則性已大部份被破壞,該混合物可用於形成高分^丄 奈米複材’該混合物包含鋁化合物,其於該混合物之重量 百分比範圍係為1 0 - 9 0 % ;黏土,其於該混合物之重量百 分比範圍係為5 - 6 0 %,以及第一與第二界面活性劑,該二 者總重量於該混合物之重量百分比範圍係為〇· 2 —3〇% ^ 一 根據上述構想,該鋁化合物較佳係為鋁氧化物或銘氣 氧化物。 根據上述構想,該鋁氧化物較佳係為Αΐ2〇3。 根據上述構想,該鋁氫氧化物較佳係為人1(〇11)3或 ΑΙΟ(ΟΗ) 。 / 根據上述構想,該黏土較佳係選自於蒙脫土(ΜΜτ)、 膨潤土 (bentonite)、Sapolite與雲母(Mica)其中之 根據上述構想,該第一界面活性劑較佳係為。 ' 3性界面
200528499 五、發明說明(4) 活性劑。 根據上述構想,該第一界备 你(· , · · j、 面,舌性劑較佳係為胺|酸(aminolauricacid)。 。艰基月 根據上述構想,該第二界 桂 面活性劑。 面居性劑較佳係為陽離子界 根據上述構想,該第二界面 四級磷。 面居性劑較佳係為四級錢或 根據上述構想,該第二界 胺(dodecylamine)。根據上述構想,該第二界 (pyridinium salt) 〇 面活性劑較佳係為 面活性劑較佳係為 烷基 啶鹽 本發明之另一構想係提供— 之製備方法,It方法包含下列步驟、:::::? 土思合物 :以第一界面活性 處理鋁化合物溶液,使其成為筻 界面活性劑,處理該第一吸附平播=附平衡’今液;以第二 附平衡溶液,以及將該第二吸附:二’使其成為第二; 中’形成該鋁化合物與黏土混合物 冷入勒土溶液 氧化;:據上述構想,該純合物較佳係為…物“氫 根據上述構想’該铭化合物較佳係為A 1 2 Q 3、 AIO(OH)其中之一。 a11、與 根據上述構想,該第一界面活性劑較佳係為 活性劑。 、性界面 根據上述構想,該第一界面活性劑較佳係為 峨i月桂 200528499 五、發明說明(5) 酸(amino 1 auric acid) 0 根據上述構想,該第二界面活性劑較佳係為陽離子界 面活性劑。 根據上述構想,該第二界面活性劑較佳係為四級銨或 四級填。 根據上述構想,該第二界面活性劑較佳係為十二燒基 胺(dodecylamine)或啶鹽(pyridinium salt)。 根據上述構想,該黏土較佳係選自於蒙脫土(MMT)、 膨潤土 (bentonite)、SaP〇lite 與雲母(Mica)其中之一。 【實施方式】 本發明利用鋁化合物吸附界面活性劑,而後再與黏土 於水溶液中混合,形成凝集沈澱物後,經過遽、乾^得到 乾式粉末之結化合物與黏土複合化之濃縮體,此濃縮體可 供炼融混煉製程中與高分子進行分散,得到奈米複合材 料0 明參閱第三圖,本發明所使用之鋁化合物溶液A,$ 佳係為鋁氧化物或鋁氫氧化物的水溶液,苴表面帶正電 =此可吸附陰離子或-端帶負電之第::界面活性劑 -界=寸平衡之後為溶液A1,再加入-端為陽離子之 二活性劑B2,待吸附平衡後成為溶液以,此時該紹 二=^及附第—介面活性劑B1與第二介面活性劑以而 =^面:有正電的複合物,而後將溶液A2與已預先分散 點土水溶液C混合,由於黏土表面帶負電,因此藉正負電 200528499 五、發明說明(6) 相吸之原理,鋁化合物與黏土進行吸附凝集而產生沈澱 物,所得到的沈澱物即為鋁化合物與黏土之混合物D,該 混合物由於鋁化合物侵入黏土層間,將黏土層與層之間隔 開導致黏土層間距離被破壞至無規則排列之構造。 本發明所提供之鋁化合物與黏土混合物,其製備方法 為將鋁化合物分散於水中,控制水溶液pH值至酸性,其較 佳之酸鹼值範圍係 pH < 4,以利增加後續第一界面活性劑 之吸附量。 請參閱第四圖之流程圖,本發明之鋁化合物與黏土凝 集形成之混合物之製備方法含下列步驟: (1 )將鋁化合物分散於水溶液中(可將鋁化合物固體粉末 加入水中攪拌或直接使用高濃度之鋁化合物溶液); (2)改變水溶液之pH值,調至pH = 4〜5; (3 )加入第一界面活性劑B1 ,例如胺基月桂酸(1 2 - aminolauric acid),使其吸附在銘化合物表面,授拌下 維持8〜1 2小時,使其達吸附平衡,得溶液A1 ; (4)加入第二界面活性劑B2,例如十二烷基胺 (dodecylamine),於溶液A1中,使其吸附於第一界面活性 劑外面,使鋁化合物之微粒帶更多正電,得到溶液A2 ;以 及 (5 )將溶液A2加入黏土水溶液C中,該黏土可為蒙脫土 (MMT)、膨潤土 (bentonite) 、 Sapolite與雲母(Mica)其 中之一,在攪拌狀態下迅速混合,產生沈澱之凝集物,此 凝集物經過濾、離心後再乾燥成含黏土 5-60%之混合物,
200528499 五、發明說明(7) 此即為本發明鋁化合物與黏土之混合物D。 下列範例一至範例三,係說明將鋁化合物以一種介面 活性劑處理,而後再加入黏土溶液,所得之鋁化合物與黏 土之混合物。
第12頁 200528499 五、發明說明(8) 〈範例一〉 選擇三氧化二鋁(Al2〇3)之鋁化合物,其吸附胺基月 桂酸(aminolauric acid)後,帶正電之胺基朝外’然後與 表面帶負電的蒙脫土水溶液共同凝集成混合物,此混合物 之凝集效率隨蒙脫土與三氧化二鋁之重量百分比而變化, 如第五圖所示,將分別六組各3克吸附胺基月桂酸之三氧 化二鋁加入0 . 1 8〜4. 6 9克蒙脫土水溶液中,進行凝集作 用,所得結果如表一所述。 表一 编珑 1-1 1-2 1-3 1-4 1-5 1-6 A1203/ALA 水 落湫史⑨ 3.0425 3.0219 3.0309 3.1900 3.0177 3.0152 Al2〇3 水溶欣外觀 均勻分散 均勻分散 均勻分散 均勻分敢 均勻分散 均勻分散 Clay水溶液量 含量為 0.975wt% 4.6976 2.1364 1.3201 0.7730 0.3401 0.1834 產輪史(卣 0.0772 0.0525 0.0443 0.0420 0.0321 0.0338 鉈谍後IS雄 顏色 微*色 微黃色 台色 白色 乳白色 乳白色 笼集政毕(%) 96.7 96.1 94.9 97.2 86.5 95.2 »集物黏土 含量0½) 57.4 38.1 27.5 17.4 S.9 5.0 除編號1 - 5之外,凝集效率均大於9 〇 %以上,而所得 混合物中黏土含量範圍係在57.4%至5.0%,第五圖為表
第13頁 200528499 五、發明說明(9) 一數據之作圖,隨著黏土 /三氧化二鋁比例增加,凝集效 率趨近定值可達到96-97%之間。 〈範例二〉 以氫氧化鋁(A1(0H)3)吸附胺基月桂酸(aminolauric acid ? ALA) ?而後與之間,而相對應的黏土含量為 12-46%,表二數據之作圖如第六圖所示。 表二 编珑 2-1 2-2 2-3 2-4 2-5 2-6 AKPH)3/A1A 水落湫 2.0648 3.9985 6.0256 8.0472 10.0081 12.0118 Α1(〇Η)3水落湫外槌 均勻分散 均句分散 均勻分散 均勾分散 均句分散 均句分散 Clay水洛液^^(自 E含量為0.975wt% 4.0102 4.0196 4.0308 4.0286 4.0141 4.0018 奴乾後產物t(卣 0.0365 0.0693 0.1204 0.1571 0.1984 0.2340 產榭顏色 浚黃 乳白 乳台 乳白 乳白 軋白 笼集產毕(%) 40.24 49.78 63.40 65.32 68.58 70.14 產物Clay含量(%) 45.45 29.47 21.94 17.37 14.33 12.27 〈範例三〉 以A 1 0 ( 0H ),即氧化氫氧化物,吸附胺基月桂酸 (aminolauric acid,ALA)後與黏土凝集,所數據如表三 所示,其凝集效率在46%至72%之間(如3-1及3-6 ),相 對應之黏土含量在45%至12%之間,表三數據之作圖如第
第14頁 200528499 五、發明說明(ίο) 七圖所示。 表三 3-1 3-2 3-3 3-4 3-5 3-6 Α10(0Η)/Α1Α 水溶液 2.0090 4.0259 6.0013 8.0232 10.0054 12.0314 AIO(OH)水溫湫外桄 均勻分散 均勻分散 均勻分散 均勻分敢 均勻分散 均勻分敢 Clay水溶液#戋抝 0含量為〇.973wt% 4.0031 4.0215 4.0312 4.0353 4.0030 4.0173 珙乾後產轮金(g) 0.0391 0.0846 0.1302 0.1704 0.194 0.2315 產物铒fe 涣# 乳白 乳白 乳白 乳台 乳白 敌诔產卓(%) 45.57 63.61 72.70 75.30 71.27 72.46 產轮Clay含专(%) 45.45 29.47 21.94 17.37 14.33 12.27
〈範例四〉 範例四為本發明之一較佳實施例’將銘化合物A 1 2 0 3先 後以胺基月桂酸(8111111〇13111:4 3(:1(1,八1^)及十二烧基胺 (dodecylamine,DA)兩種界面活性劑進行處理後再與黏土 溶液混合,所得數據如表四所示,此較佳實施例與上述例 一至例三不同之處是凝集效率以編號4 -1而言,可達 94· 1 %,所得鋁化合物與黏土之混合物中’黏土的含量為 5 8 · 7 % ;以編號4 - 7而言,凝集效率為8 0 · 8 %,所得鋁化 合物與黏土之混合物中,黏土的含量為5 · 2 %。在此較佳 實施例中可製傷得鋁化合物與黏土之混合物,其中黏土含 量在5%至60%之間,表四數據之作圖如第八圖所示。
第15頁 200528499 五、發明說明(11) 表四 蹁珑 4-\ A-2 43 A-4 4-5 A--6 A-1 Al2〇3 水洛湫 ¢(2) 2.0079 2.0040 2.0027 2.0112 2.0285 2.0147 2.0183 Al203 水滥湫 外槌 均句分骹 均句分散 均句分散 均勻分散 均句分散 均句分散 均勻分散 Clay 水 Cs) 5.995Ό 4.0646 2.6939 1.9107 1.0275 0.4836 0.2316 產*重 量⑧ 0.0841 0.0674 0.0540 0.0461 0.0385 0.0322 0.0316 產顏 色 灰白色 灰白色 灰白色 白色 白色 白色 白色 毕 94.1 93.0 89.4 S5.8 83.2 78.0 S0.8 產掛黏 i含量 (%) 5S.7 49.1 39.1 31.2 19.4 10.3 5.2 請參閱第九圖,Al2〇3、A1(0H)3及AIO(OH)三種鋁氧化 合物與黏土凝集之混合物其X光繞射在黏土層間距離所得 的繞射峰平坦且寬廣,且沒有規則之繞射峰出現,相對於 第一圖,則可得知第九圖中蒙脫土( MMT)的層間排列規則 已被破壞,因此出現寬廣,而非單一尖銳之繞射峰。故可 證實本發明所提供之鋁化合物與黏土之混合物,其中該黏 土層間距離大部份已被破壞至無規則排列之構造。
第16頁 200528499 五、發明說明(12) 請參閱第十圖,以場發射電子顯微鏡(Field-Emission Scanning Electron Microscope)分析铭氧化 物/胺基月桂酸/十二烷基胺//蒙脫土(ALO / ALA / DA // MMT)之凝集混合物樣品,由第十圖中可清楚看到很多三氧 化二鋁奈米微粒,以直徑為2 0-30 nm形成吸附於蒙脫土 (MMT)表面,部分黏土與黏土有些相重疊區域,由於吸附 行為不受裡、外之分,因此可知三氧化二鋁微粒亦插層進 入蒙脫土層間。 根據第九圖與第十圖,可證實本發明所提供之鋁化合 物與黏土之混合物,其中該黏土層間距離被破壞至無規則 ¥ 排列之構造,且黏土層間距離被大幅撐開,因此可供作為 高分散性的奈米複材。 綜上所述,本案之「鋁化合物與黏土之混合物及其製 備方法」不僅可以克服習知技藝之缺失,提供具更大之層 間距離的黏土混合物,作為應用廣泛的奈米複材,故當然 具有產業上之利用性。 本發明得由熟習此技藝之人士任施匠思而為諸般修 飾,然皆不脫如附申請專利範圍所欲保護者。 200528499 圖式簡單說明 第一圖係一 X-ray繞射圖,說明純黏土之層間規則 性。 第二圖係一 X-ray繞射圖,說明以四級胺鹽處理過之 蒙脫土的層間規則性。 第三圖係一概示圖,說明本發明方法之主要步驟。 第四圖係一流程圖,說明本發明方法之實施步驟。 第五圖係根據本發明範例一,說明鋁化合物與黏土之 凝集曲線。 第六圖係根據本發明範例二,說明鋁化合物與黏土之 凝集曲線。 第七圖係根據本發明範例三,說明鋁化合物與黏土之 凝集曲線。 第八圖係根據本發明範例四,說明鋁化合物與黏土之 凝集曲線。 第九圖係一 X-ray繞射圖,其係根據本發明範例一至 範例四,比較所得鋁化合物與黏土之混合物的層間規則 性。 第十圖係一電顯圖,說明本發明鋁氧化物與黏土之混 合物的表面型態。
第18頁

Claims (1)

  1. 200528499 六、申請專利範圍 1. 一種鋁化合物與黏土之混合物,其包含: 銘化合物,其於該混合物之重量百分比範圍係為1 0 -90% ; 黏土,其於該混合物之重量百分比範圍係為5 - 6 0 %, 以及 第一與第二界面活性劑,該二者總重量於該混合物之 重量百分比範圍係為0 . 2 - 3 0 %。 2. 如申請專利範圍第1項之混合物,其中該鋁化合物係為 鋁氧化物或鋁氫氧化物。 3. 如申請專利範圍第2項之方法,其中該鋁氧化物係為 Al2〇3 ° 4. 如申請專利範圍第2項之方法,其中該鋁氫氧化物係為 A1 (OH)3 或 AIO(OH)。 5·如申請專利範圍第1項之混合物,其中該黏土係選自於 蒙脫土(MMT)、膨潤土 (bentonite)、Sapolite 與雲母 (Mica)其中之一。 6. 如申請專利範圍第1項之混合物,其中該第一界面活性 劑係為兩性界面活性劑。 7. 如申請專利範圍第6項之混合物,其中該第一界面活性 劑係為胺基月桂酸(aminolauric acid)。 8. 如申請專利範圍第1項之混合物,其中該第二界面活性 劑係為陽離子界面活性劑。 9. 如申請專利範圍第8項之混合物,其中該第二界面活性 劑係為四級銨或四級磷。
    第19頁 200528499 六、申請專利範圍 1 0 ·如申請專利範圍第8項之混合物,其中該第二界面活 性劑係為十二烧基胺(dodecylamine)。 1 1.如申請專利範圍第8項之混合物,其中該第二界面活 性劑係為咬鹽(p y r i d i n i u m s a 11)。 1 2 . —種鋁化合物與黏土混合物之製備方法,該方法包含 下列步驟: 以第一界面活性劑,處理紹化合物溶液,使其成為第一 吸附平衡溶液; 以第二界面活性劑,處理該第一吸附平衡溶液,使其成 為第二吸附平衡溶液,以及 將該第二吸附平衡溶液加入黏土溶液中,形成該鋁化 合物與黏土混合物。 13. 如申請專利範圍第1 2項之方法,其中該鋁化合物係為 鋁氧化物或鋁氫氧化物。 14. 如申請專利範圍第1 2項之方法,其中該鋁化合物係為 Al2〇3、A1 (0H)3 與 AIO(OH)其中之一。 1 5 ·如申請專利範圍第1 2項之方法,其中該第一界面活性 劑係為兩性界面活性劑。 1 6 ·如申請專利範圍第1 5項之方法,其中該第一界面活性 劑係為胺基月桂酸(aminolauric acid)。 1 7 ·如申請專利範圍第1 2項之方法,其中該第二界面活性 劑係為陽離子界面活性劑。 1 8 ·如申請專利範圍第1 7項之方法,其中該第二界面活性 劑係為四級銨或四級麟。
    200528499 六、申請專利範圍 1 9 ·如申請專利範圍第1 7項之方法,其中該第二界面活性 劑係為十二烧基胺(dodecylamine)或σ定鹽(pyridinium salt)0 2 〇 ·如申請專利範圍第1 2項之方法,其中該黏土係選自於 蒙脫土(MMT)、膨潤土 (bentonite)、Sapolite 與雲母 (Mica)其中之一。
    第21頁
TW093103837A 2004-02-17 2004-02-17 Clay mixture of aluminum compound and clay and preparation method thereof TWI265948B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW093103837A TWI265948B (en) 2004-02-17 2004-02-17 Clay mixture of aluminum compound and clay and preparation method thereof
US10/884,611 US20050181970A1 (en) 2004-02-17 2004-07-02 Clay mixture and preparation method thereof
JP2004343602A JP2005231988A (ja) 2004-02-17 2004-11-29 アルミ化合物と粘土との混合物及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093103837A TWI265948B (en) 2004-02-17 2004-02-17 Clay mixture of aluminum compound and clay and preparation method thereof

Publications (2)

Publication Number Publication Date
TW200528499A true TW200528499A (en) 2005-09-01
TWI265948B TWI265948B (en) 2006-11-11

Family

ID=34836998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093103837A TWI265948B (en) 2004-02-17 2004-02-17 Clay mixture of aluminum compound and clay and preparation method thereof

Country Status (3)

Country Link
US (1) US20050181970A1 (zh)
JP (1) JP2005231988A (zh)
TW (1) TWI265948B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20060006A1 (it) * 2006-01-04 2007-07-05 Colorobbia Italiana Spa Nanoparticelle funzionalizzate, loro produzione ed uso
AU2014399977B2 (en) * 2014-07-01 2017-09-21 Halliburton Energy Services, Inc. Dry powder fire-fighting composition

Also Published As

Publication number Publication date
JP2005231988A (ja) 2005-09-02
US20050181970A1 (en) 2005-08-18
TWI265948B (en) 2006-11-11

Similar Documents

Publication Publication Date Title
Mao et al. Exfoliation of layered double hydroxide solids into functional nanosheets
Karimi et al. Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels: a review
Hu et al. Organic-inorganic nanocomposites synthesized via miniemulsion polymerization
Jia et al. Polyaniline–DBSA/organophilic clay nanocomposites: synthesis and characterization
Nie et al. Effects of surface functionalized graphene oxide on the behavior of sodium alginate
Valášková et al. Vermiculite: structural properties and examples of the use
Negrete-Herrera et al. Synthesis of polymer/Laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchanged Laponite clay platelets
Haroun et al. Synthesis and electrical conductivity evaluation of novel hybrid poly (methyl methacrylate)/titanium dioxide nanowires
Zhao et al. Calcium Phosphate Hybrid Nanoparticles: Self‐Assembly Formation, Characterization, and Application as an Anticancer Drug Nanocarrier
JP5621950B2 (ja) 有機無機複合シリカナノ粒子及びそれを有する分散液、並びにそれらの製造方法
CN109971037B (zh) 含磷纳米阻燃剂及其制备方法
Olad et al. Effect of polyaniline as a surface modifier of TiO 2 nanoparticles on the properties of polyvinyl chloride/TiO 2 nanocomposites
Sedláková et al. Polymer-clay nanocomposites prepared via in situ emulsion polymerization
Kumari et al. Role of nanocomposites in drug delivery
Tang et al. Precipitated calcium hydroxide morphology in nanoparticle suspensions: An experimental and molecular dynamics study
Ge et al. AM-DMC-AMPS multi-functionalized magnetic nanoparticles for efficient purification of complex multiphase water system
Mallakpour et al. Ultrasonic treatment as recent and environmentally friendly route for the synthesis and characterization of polymer nanocomposite having PVA and biosafe BSA‐modified ZnO nanoparticles
Paravastu et al. Role of nanocomposites in drug delivery
TW200924878A (en) Method of reducing metallic ion using nano silicate platelet and steadily dispersing nano metallic particle and the product
Xu et al. In situ emulsion polymerization to multifunctional polymer nanocomposites: a review
Wang et al. Synthesis and characterization of clay/polyaniline nanofiber hybrids
Effenberger et al. Synthesis and characterization of some polyacrylate/montmorillonite nanocomposites by in situ emulsion polymerization using redox initiation system
Shi et al. Micro/nanohybrid hierarchical poly (N‐isopropylacrylamide)/calcium carbonate composites for smart drug delivery
TW200528499A (en) Clay mixture of aluminum compound and clay and preparation method thereof
Liu et al. Microwave irradiation-assisted synthesis and flocculation behavior of quaternized chitosan/organo-montmorillonite nanocomposite