TW200522313A - Cooling of electronics by electrically conducting fluids - Google Patents

Cooling of electronics by electrically conducting fluids Download PDF

Info

Publication number
TW200522313A
TW200522313A TW092137101A TW92137101A TW200522313A TW 200522313 A TW200522313 A TW 200522313A TW 092137101 A TW092137101 A TW 092137101A TW 92137101 A TW92137101 A TW 92137101A TW 200522313 A TW200522313 A TW 200522313A
Authority
TW
Taiwan
Prior art keywords
heat
disperser
liquid metal
scope
patent application
Prior art date
Application number
TW092137101A
Other languages
Chinese (zh)
Inventor
Andrew Carl Miner
Uttam Ghoshal
Original Assignee
Nanocoolers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanocoolers Inc filed Critical Nanocoolers Inc
Publication of TW200522313A publication Critical patent/TW200522313A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A system to provide effective removal of heat from a high power density device. The system has a heat spreader and a heat sink structure. The heat spreader is divided into one or more chambers. Electromagnetic pumps are placed inside each chamber in a configuration that facilitates easy circulation of liquid metal inside the chambers. The liquid metal preferable is an alloy of gallium and indium that has high electrical conductivity and high thermal conductivity. The liquid metal carries heat from a localized area (over the high power density device) and distributes it over the entire spreader. This results in a uniform distribution of heat on the base of the heat sink structure and hence effective removal of heat by the heat sink structure.

Description

200522313200522313

五、發明說明(1) 【發明所屬之技術領域】 本發明係有關於— ㈣〃、種散埶 指一種有效地對高功率密度裝 熱分散器。 【先前技術】 裝置及其熱分散器,尤其θ 置進行散熱之散熱裝置Ν < 習知之電子裴置’如中央處理器(CentralV. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to-㈣〃, seed scattered 埶 refers to a type of heat disperser effectively installed in high power density. [Prior art] The device and its heat disperser, especially the heat dissipation device θ for heat dissipation N < known electronic electronic device 'such as a central processing unit (Central

Processing Uni t,CPU )、繪圖處理器(Graphic processing Unit, GPU)、及雷射二極體(Laser Di〇de) 專’於其操作過程中會產生大量的熱量。假使在操作過^ 中’熱無法完全從類似上述之南功率禮、度設備(HighProcessing Unit (CPU), Graphic Processing Unit (GPU), and Laser Diode are specifically designed to generate a large amount of heat during their operation. If during the operation, the heat cannot be completely changed from

Power Density 其工作效率。例 障。因此,能夠 發揮其正常之功 一般高功率 將其產生 低傳熱之 方式, 必須降 增加高 請 備1 0 0 3係 3所產 該散熱 片結構 功率密度 參閱第一 3上之散 設備在一 生之熱係 鱗片結構 1 0 1之Power Density is efficient. Examples of obstacles. Therefore, to be able to exert its normal work, generally high power means to generate low heat transfer, it must be reduced to increase the height. Please prepare for the power density of the heat sink structure produced by 1 0 3 3 series. Thermal scale structure 1 of 1

Device, 如過局之 移除過高 能。 密度設備 之熱傳導 熱阻,其 設備與外 圖所泰, 熱鰭片姑 卡扣板1 可傳導裏 1 0 1將 HPDD )中完全散熱的話,將影響 溫度會導致設備之機能失常或故 之熱量將有助於設備在使用上能 係藉 |外 中之 界之 其係 構1 0 5 該散 熱傳 積係 由熱傳 界。而 種方 有效散 為習知ο 1 ’ 上。該 熱魚耆片 至大氣 導(conduction 為了移除更多的 法係利用散熱鰭 熱面積。 設置於高功率密 該高功率密度設 高功率密度設備 結構1 0 1 ,再 中。其中,該散 高功率密度設備 )之 軌, 片來 度設 備1 1 〇 藉由 熱鰭 10Device, if the game is over, remove too high energy. Thermal conductivity and thermal resistance of the density equipment. The equipment and the exterior are shown. If the thermal fins are able to conduct heat completely in the HPDD, it will affect the temperature and cause the equipment to malfunction or cause heat. It will help the equipment in use. It can be borrowed from the outer boundary of the system 1 0 5 The heat transfer is from the heat transfer boundary. And the seed formula is effectively scattered as known ο 1 ′. The hot fish lobes are introduced to the atmosphere (conduction in order to remove more of the legal system using the thermal area of the fins. Set at high power density, high power density, high power density device structure 1 0 1, and then. Among them, the fan High Power Density Equipment) track, chip-to-degree equipment 1 1 〇 with thermal fins 10

200522313200522313

五、發明說明(2) 3 ,因此藉由增加該散熱鰭片結構1 0 1傳熱之有致面i 以降低介於該高功率密度設備1 0 3與大氣間之熱卩且,積 進而增加熱之擴散效率。最後,熱係利用自然對流 (n a t u r a 1 c ο n v e c t i ο η )或是配合風扇以強制對流 (forced convect ion )的方式從該散熱鰭片結構1 傳至大氣中。 ° 1 惟 有先天 之溫度 請 係具有 魚耆片結 之鰭片 。亦即 佳之散 生不均 構2 0 的箭頭 均勻之 不同。 散熱效 ,用於 的阻抗 分部, 參閱第 不均勻 構2 ◦ 比位於 該散熱 熱效能 勻之溫 5於其 長度係 熱流狀 該散熱 果。 製作散 性。因 因而降 二A圖 之溫度 1熱的 内側之 鰭片結 ,因此 度分部 底部係 顯示該 況,其 鰭片結 熱鰭片 此散熱 低散熱 所示, 分部, 流動狀 鰭片( 構2 0 於該散 。請參 具有均 散熱鰭 係與第 構2 〇 鰭片結構 鰭片結構 散熱鰭片 不同的箭 態,其中 較長的箭 1之内側 熱鰭片結 閱第二B 勻之溫度 片結構2 一 A圖之 5之内外 之底部將產 之散熱效率 結構2 〇 1 頭長度係顯 較短的箭頭 頭)有較少 鰭片比外側 構2 〇 1之 圖所示,散 分部。其中 〇 5之内外 散熱鰭片結 側1鳍片係具 生不岣句 0 於其底部 不該散熱 位於外側 熱的流動 鰭片有較 底部係產 熱鳍片έ士 1 v、rr 相同長度 鰭片具有 構2 0 1 有相同> 因此,為了增加散熱 必須有均勻之溫度分部, 为散A (heat spreader) 其7-種重要的方法係 使件散熱鰭片底部具有均V. Description of the invention (2) 3, so by increasing the heat transfer surface i of the heat dissipation fin structure 1 0 1 to reduce the heat between the high power density device 103 and the atmosphere, the product further increases Thermal diffusion efficiency. Finally, the thermal system uses natural convection (n a t u r a 1 c ο n v e c t i ο η) or cooperates with a fan to force the convection (forced convect ion) from the fin structure 1 to the atmosphere. ° 1 Only the innate temperature should be a fin with a knot of fish head. That is, the arrows of Jiazhi's scattered uneven structure 20 are evenly different. The heat dissipation effect is used in the impedance section, see Section 2 of the uneven structure. ◦ It is located at a temperature equal to 5 degrees of heat dissipation. Making scattered. Because of this, the temperature inside the second A picture is lower than the temperature of 1. The inner fin junction is shown, so the bottom of the subdivision shows this condition. The fin junction of the heat fin is shown as low heat dissipation. The division, the flow fin (structure 2 0 in this fan. Please refer to the different arrow states of the uniform heat dissipation fin system and the structure 2 fin structure fin structure heat dissipation fins, in which the thermal fins inside the longer arrow 1 complete the second B uniform Temperature fin structure 2 A Figure 5 The heat dissipation efficiency structure inside and outside the bottom 2 001 The head length is a significantly shorter arrow head) There are fewer fins than the outer structure 2 001 shows, scattered points unit. Among them, the inner and outer heat dissipation fins on the junction side 1 fins have no haiku 0. The bottom of the flow fins that should not dissipate heat on the outside are fins of the same length than the bottom heat-generating fins 1v, rr The fins have the same structure 2 0 1. Therefore, in order to increase heat dissipation, there must be a uniform temperature segment. In order to dissipate A (heat spreader), 7 important methods are to make the bottom of the fins have a uniform temperature.

200522313 五、發明說明(3) 分部的溫度,其中熱分散器係安置於高功率密度設備與散 熱鰭片裝置之間,以將散熱鰭片結構底部所吸收的熱均勻 化。 請參閱第三A圖所示,高功率密度設備3 0 1係裝設 在嵌固板3 0 3上,散熱鰭片結構3 0 5係安置接觸該高 功率密度設備3 0 1 。其中熱係藉由高功率密度設備3 0 1傳導至散熱鰭片結構3 0 5 ,最後熱再藉由散熱鰭片結 構3 0 5傳至外界大氣中。 請參閱第三B圖所示,熱分散器3 0 7係設置於該高 功率密度設備3 0 1與該散熱鰭片結構3 0 5之間。其係 用於增加該散熱鰭片結構3 0 5底部之熱的均勻性,進而 增加該散熱鰭片結構3 0 5之散熱效能。 熱分散器係由低熱阻材料所製成,例如銅或鋁等。輕 量的材料具有較高的熱傳導性,如石墨墊片或化學氣相沈 積(Chemical Vapor Deposition, CVD)的薄膜,也常被 使用來製作熱分散器。惟,上述高熱傳導性的材料昂貴, 且在實質上與鋁或銅的熱分散器相較下,無法提昇熱分散 器之性能。 請參閱第四圖所示,熱分散器4 0 1係為一蒸汽腔體 (v a ρ 〇 r c h a m b e r )。該熱分散器4 0 1係設置於高功率 密度設備4 0 3與散熱鰭片結構4 0 5之間。該熱分散器 4 0 1係具有二個表面,其中一表面4 0 7係與該散熱鰭 片結構4 0 5接觸,而另一表面4 0 9係與該高功率密度 設備4 0 3接觸。該熱分散器4 0 1於其内部係具有内襯200522313 V. Description of the invention (3) The temperature of the sub-section, wherein the heat disperser is placed between the high power density equipment and the heat dissipation fin device to uniformize the heat absorbed by the bottom of the heat dissipation fin structure. Please refer to the third figure A. The high power density device 3 0 1 is installed on the embedded board 3 0 3, and the heat dissipation fin structure 3 0 5 is placed in contact with the high power density device 3 0 1. The heat is transmitted to the heat dissipation fin structure 3 0 5 through the high power density device 3 0 1, and finally the heat is transmitted to the outside atmosphere through the heat dissipation fin structure 3 0 5. Please refer to FIG. 3B, the heat spreader 3 07 is disposed between the high power density device 3 01 and the heat dissipation fin structure 3 05. It is used to increase the uniformity of the heat at the bottom of the heat sink fin structure 305, and then to increase the heat dissipation efficiency of the heat sink fin structure 305. Thermal diffusers are made of low thermal resistance materials, such as copper or aluminum. Lightweight materials with high thermal conductivity, such as graphite gaskets or Chemical Vapor Deposition (CVD) films, are also often used to make heat dispersers. However, the above-mentioned materials with high thermal conductivity are expensive, and cannot substantially improve the performance of the heat disperser compared with the heat disperser of aluminum or copper. Please refer to the fourth figure, the heat spreader 401 is a steam cavity (v a ρ 〇 r c h a m b e r). The heat spreader 401 is disposed between the high power density device 403 and the heat dissipation fin structure 405. The heat spreader 401 has two surfaces, one surface 407 is in contact with the heat sink fin structure 405, and the other surface 409 is in contact with the high power density device 403. The heat spreader 4 01 is lined inside.

200522313 五、發明說明(4) 411。液體在另一表面409上用以吸收從該高功率密 度設備4 0 3所產生的熱,待液體蒸發後,其所產生之蒸 汽再填充該熱分散器之真空部分。而當蒸汽接觸該表面4 0 7時,將熱傳遞至該散熱鰭片結構4 0 5,且待蒸汽凝 結後,利用重力或毛細現象回流至另一表面4 0 9 。200522313 V. Description of Invention (4) 411. The liquid is used on the other surface 409 to absorb the heat generated from the high power density device 403. After the liquid evaporates, the steam generated by the liquid fills the vacuum portion of the heat disperser. When the steam contacts the surface 407, heat is transferred to the heat dissipation fin structure 405, and after the steam condenses, it is returned to the other surface 409 by gravity or capillary phenomenon.

惟,習知熱分散器於蒸汽腔體内之熱傳性能,係受限 於蒸汽/液體的集結(n u c 1 e a t i ο η )特性,及介於金屬表 面與液體層,和介於金屬表面與蒸汽間之界面阻力 (interface resistance)白勺影響。因此,習知所使用之 熱分散器係無法達到有效之散熱效果。 是以,由上可知,上述習知的散熱裝置及其熱分散器 ,在實際使用上,顯然具有不便與缺失存在,而可待加以 改善者。 緣是,本發明人有感上述缺之可改善,乃特潛心研究 並配合學理之運用,終於提出一種設計合理且有效改善上 述缺失之本發明。 【發明内容】However, the heat transfer performance of the conventional thermal diffuser in the steam cavity is limited by the characteristics of vapor / liquid assembly (nuc 1 eati ο η), and between the metal surface and the liquid layer, and between the metal surface and the liquid layer. Interface resistance between vapors. Therefore, the heat spreader used in the prior art cannot achieve an effective heat dissipation effect. Therefore, it can be seen from the above that the conventional heat dissipation device and the heat disperser described above obviously have inconveniences and defects in practical use, and need to be improved. The reason is that the inventors felt that the above-mentioned defects could be improved, and they intensively studied and cooperated with the application of theories to finally propose a present invention with reasonable design and effective improvement of the above-mentioned defects. [Summary of the Invention]

本發明之其一目的在於提供一種散熱裝置,其係能夠 有效地移除從高功率密度裝置所產生的熱。 本發明之其二目的在於提供一種熱分散器,其係利用 電磁泵使熱分散器内之液態金屬產生循環,使得熱能均勻 地通過該熱分散器。 本發明之其三目的在於提供一種熱分散器,其係於其 内部填充液態金屬,如鎵銦合金、鉍、銦、鎵、水銀及鈉Another object of the present invention is to provide a heat dissipation device capable of effectively removing heat generated from a high power density device. Another object of the present invention is to provide a heat disperser, which uses an electromagnetic pump to circulate liquid metal in the heat disperser so that thermal energy passes through the heat disperser uniformly. A third object of the present invention is to provide a heat disperser, which is filled with liquid metal such as gallium-indium alloy, bismuth, indium, gallium, mercury, and sodium.

第8頁 200522313 五、發明說明(5) 鉀共熔合金等,使得熱能均勻地通過該熱分散器。 本發明之其四目的在於提供一種熱分散器,其係具有 不同之外形與尺寸。 本發明之其五目的在於提供一種熱分散器,係利用熱 電的產生器給予電磁泵動力,以省去外界動力供應的需求 〇 本發明之其六目的在於提供一種熱分散器,電磁泵係 利用聚合物或耐火的金屬當作管材,且以鎵銦合金為其液 態金屬。 為了達成上述之目的,本發明係提供一種散熱裝置, 其係用於將高功率密度設備所產生的熱散開,該散熱裝置 包括有熱分散器及散熱鰭片結構。該熱分散器係鄰近設置 於該高功率密度設備上,該熱分散器包括有至少一内含液 態金屬之冷卻腔體、至少一電磁泵,其係設置於該冷卻腔 體内,用以使得該液態金屬在冷卻腔體内產生循環、以及 熱電產生器,其係用以趨動該電磁泵運轉。且該散熱鰭片 結構係與該熱分散器結合,用以將熱傳遞至大氣中。 為了達成上述之目的,本發明係提供一種熱分散器, 其係用於將高功率密度設備所產生的熱散開,該熱分散器 包括有:至少一内含液態金屬之冷卻腔體,該液態金屬係 循環於該冷卻腔體内,並且藉著該循環使得從高功率密度 設備所產生的熱得以散開而遍及該熱分散器。 是以,本發明人有感上述缺失之可改善,且依據多年 來從事此方面之相關經驗,悉心觀察且研究之,乃特潛心Page 8 200522313 V. Description of the invention (5) Potassium eutectic alloy, etc., so that the thermal energy passes through the heat disperser uniformly. It is another object of the present invention to provide a heat disperser which has different shapes and sizes. A fifth object of the present invention is to provide a heat disperser, which uses a thermoelectric generator to power an electromagnetic pump to eliminate the need for external power supply. A sixth object of the present invention is to provide a heat disperser, which uses an electromagnetic pump. Polymer or refractory metal is used as the pipe, and gallium-indium alloy is used as the liquid metal. In order to achieve the above object, the present invention provides a heat dissipation device for dissipating heat generated by a high power density device. The heat dissipation device includes a heat spreader and a heat dissipation fin structure. The heat disperser is disposed adjacent to the high power density device. The heat disperser includes at least one cooling cavity containing liquid metal and at least one electromagnetic pump, which is disposed in the cooling cavity to make The liquid metal generates a circulation in the cooling cavity and a thermoelectric generator, which is used to drive the electromagnetic pump to run. And the heat dissipation fin structure is combined with the heat spreader to transfer heat to the atmosphere. In order to achieve the above object, the present invention provides a heat disperser, which is used for dissipating the heat generated by high power density equipment. The heat disperser includes: at least one cooling cavity containing liquid metal, and the liquid The metal system is circulated in the cooling cavity, and the heat generated from the high power density device is dissipated throughout the heat disperser by the circulation. Therefore, the inventor feels that the above-mentioned deficiency can be improved, and based on years of relevant experience in this area, he has carefully observed and researched it.

200522313 五、發明說明(6) 研究並配合學理之運用,而提出一種設計合理且有效改善 上述缺失之本發明。 【實施方式】200522313 V. Description of the invention (6) Research and cooperate with the application of theories, and propose a present invention with reasonable design and effective improvement of the above-mentioned shortcomings. [Embodiment]

請參閱第五圖所示,散熱裝置5 0 0係用於將高功率 密度設備5 0 3所產生之熱移除。該散熱裝置5 0 0係包 括有熱分散器5 0 1及散熱鰭片結構5 0 5。該散熱裝置 5 0 0係定位於該高功率密度設備5 0 3上。該熱分散器 5 0 1係由銅或鋁等低熱阻材料所製成。該散熱鰭片結構 5 0 5係連結於該熱分散器5 0 1 ,使得熱可經由該熱分 散器5 0 1傳遞至該散熱鰭片結構5 0 5 。該散熱鰭片結 構5 0 5亦由銅或鋁等低熱阻材料所製成。且,該散熱鰭 片結構5 0 5係可藉由自然對流或使用風扇之強制對流將 熱傳遞至外界大氣中。Please refer to the fifth figure. The heat dissipation device 500 is used to remove the heat generated by the high power density device 503. The heat dissipation device 500 includes a heat spreader 501 and a heat dissipation fin structure 505. The heat sink device 503 is positioned on the high power density device 503. The heat spreader 501 is made of a low thermal resistance material such as copper or aluminum. The heat dissipating fin structure 5 0 5 is connected to the heat dissipating device 50 1, so that heat can be transferred to the heat dissipating fin structure 5 0 5 through the heat dissipator 5 0 1. The heat dissipation fin structure 5 0 5 is also made of a low thermal resistance material such as copper or aluminum. In addition, the heat dissipation fin structure 505 can transfer heat to the outside atmosphere through natural convection or forced convection using a fan.

該熱分散器5 0 5係具有一含有液態金屬之腔室5 0 7。一或多個電磁泵5 1 1被設置於該腔室5 0 7内部, 且使得液態金屬在腔室5 0 7内產生循環。因此該液態金 屬係可吸收從高功率密度設備5 0 3所產生之熱,且使得 熱量均勻地通過該熱分散器5 0 1 。當液態金屬具有熱的 良導體時,上述傳熱過程係以傳導及對流之方式進行。 請參閱第六圖所示,其係為本發明熱分散器6 0 1之 最佳實施例。由圖中可知,該熱分散器6 0 1之斷面係為 矩形。該散分散器6 0 1係設置於高功率密度設備(圖未 示)上,且具有四個腔室(60 5 、607 、6 09及6 11)。每個腔室之斷面亦為矩形,且於其内部係填充有The heat spreader 505 has a chamber 507 containing a liquid metal. One or more electromagnetic pumps 5 1 1 are disposed inside the chamber 5 07, and the liquid metal is circulated in the chamber 5 07. Therefore, the liquid metal system can absorb the heat generated from the high power density device 503, and make the heat uniformly pass through the heat disperser 5 0 1. When the liquid metal has a good heat conductor, the above-mentioned heat transfer process is conducted by means of conduction and convection. Please refer to the sixth figure, which is the preferred embodiment of the heat spreader 601 of the present invention. As can be seen from the figure, the cross section of the heat spreader 601 is rectangular. The diffuser 601 is installed on a high power density device (not shown) and has four chambers (60 5, 607, 6 09 and 6 11). The cross section of each chamber is also rectangular, and its interior is filled with

第10頁 200522313 五、發明說明(7) 液態金屬。該液態金屬於熱範圍内直接接觸於該高功率密 度設備(該熱範圍包括有605 a 、607 a 、609 a 及6 1 1 a )以吸收該高功率密度設備所產生的熱。Page 10 200522313 V. Description of the invention (7) Liquid metal. The liquid metal directly contacts the high power density device (the thermal range includes 605a, 607a, 609a, and 6 1 1a) in a thermal range to absorb the heat generated by the high power density device.

而該熱分散器6 0 1之工作原理,我們以腔室6 0 5 做說明。由圖中可知,該腔室6 0 5具有二個電磁泵6 1 5及6 1 7 ,而使得液態金屬在腔室6 0 5内產生循環的 流動。借助該電磁泵6 1 5内之電場及磁場的方向,使得 該電磁泵6 1 5將該熱範圍6 0 5 a所產生的熱液態金屬 推出該熱範圍6 0 5 a 。而該熱液態金屬係被該電磁泵6 1 5推入該腔室6 0 5之冷範圍6 0 5 b ,以使得該熱液 態金屬所夾帶的熱得以散開。最後,藉由該電磁泵6 1 7 將液態金屬送回該熱範圍6 0 5 a 。而該等腔室6 0 7 、 6 0 9及6 1 1係依上述液態金屬之循環方式,使得熱能 均勻的通過該等腔室(605 、607 、609及61 1 )。因此,該熱分散器6 0 1係能均勻地分散所產生的熱 ,亦即使得從該高功率密度設備所產生的熱能有效地藉由 該熱分散器6 0 1被均勻化。The working principle of the heat spreader 601 is described in the chamber 605. It can be seen from the figure that the chamber 6 05 has two electromagnetic pumps 6 1 5 and 6 1 7, so that the liquid metal generates a cyclic flow in the chamber 6 0 5. With the direction of the electric and magnetic fields in the electromagnetic pump 6 1 5, the electromagnetic pump 6 1 5 pushes the hot liquid metal generated from the thermal range 6 0 5 a out of the thermal range 6 0 5 a. The hot liquid metal is pushed into the cold range 6 0 5 b of the chamber 6 05 by the electromagnetic pump 6 1 5 so that the heat entrained by the hot liquid metal can be dissipated. Finally, the electromagnetic pump 6 1 7 sends the liquid metal back to the heat range 6 0 5 a. The chambers 6 0 7, 6 9 and 6 1 1 are based on the circulation method of the liquid metal described above, so that the thermal energy passes through the chambers (605, 607, 609, and 61 1) uniformly. Therefore, the heat disperser 601 can uniformly disperse the heat generated, that is, the heat energy generated from the high power density device is effectively homogenized by the heat disperser 601.

請參閱第七圖所示,其係為電磁泵6 1 5應用在循環 液態金屬而進行熱擴散之原理。該電磁栗6 1 5包括一對 彼此相對設置之電極板7 0 5 ,且藉由一直流電產生電場 而通過該對電極板7 0 5。數個永久性磁鐵7 0 7係分別 彼此相對設置於該等電極板7 0 5之上下端。一管路7 0 9係用於夾帶液態金屬通過。該等永久性磁鐵7 0 7所產 生之磁場方向係垂直於該對電極板7 0 5所產生之電場方Please refer to the seventh figure, which is the principle of the electromagnetic pump 6 1 5 applied to circulating liquid metal for thermal diffusion. The electromagnetic pump 6 1 5 includes a pair of electrode plates 7 0 5 disposed opposite to each other, and an electric field is generated by direct current to pass through the pair of electrode plates 7 0 5. A plurality of permanent magnets 7 0 7 are respectively disposed above and below the electrode plates 7 05. A tube 7 0 9 is used to carry liquid metal through. The direction of the magnetic field generated by the permanent magnets 7 0 7 is perpendicular to the electric field generated by the pair of electrode plates 7 0 5

第11頁 200522313Page 11 200522313

向。一電磁力 向(如 在 於保護 的影響 此須要 電磁阻 。如第 在該電 1臬、磁 在 聚合物 材料如 。而超 9的材 圖中箭 某些應 高功率 ,而使 選擇熱 擋罩以 七圖所 磁泵6 性合金 最佳實 材料所 鹤或錮 薄的鍍 料。 在液態金屬 頭所示)係 用上,熱分 密度設備不 得高功率密 分散器或高 進行阻擋電 示,電磁阻 1 5内部。 、或其它特 施例中,管 製成。鐵氟 也可以被使 紹或將鎳艘 上運作導致 垂直於電極 散器具有一 受到由電磁 度設備能發 功率密度設 磁輪射對局 擋罩7 1 0 該電磁阻擋 殊製程的高 路7 0 9係 龍係具有容 用來當作製 上鋁或銅亦 該液態金屬 板的磁場方 電磁阻擋罩 泵所產生之 揮其正常之 備其中之一 功率密度設 用於局限電 7 1 0係由 導磁性材料 由鐵氟龍或 易加工的優 作管路7 0 可作為製作 的流動方 向。 ’其係用 電磁輻射 功能。因 ,來使用 備之影響 磁輻射只 例如鋼、 所製成。 聚氨酯等 點。对火 9的材料 管路7 0to. An electromagnetic force (if it is due to protection, this requires electromagnetic resistance. For example, the electricity is 1 臬, and the magnetism is in the polymer material. For example, some of the arrows in the material map of Super 9 should be high power, so the heat shield is selected. Use the best solid material of magnetic pump 6 alloy as shown in the figure 7 or thin coating. For liquid metal head), the thermal density device must not be a high-power dense diffuser or a high-blocking electric indicator. Electromagnetic resistance 1 5 inside. In other embodiments, the tube is made. Teflon can also be used or operated on a nickel boat to cause perpendicular to the electrode diffuser with a magnetic shield shot by the magnetic power equipment power density 7 1 0 The high path of the electromagnetic blocking process 7 0 The 9 series dragon series has a normal magnetic preparation which can be used as the magnetic field side of the liquid metal plate to make aluminum or copper. One of its power density is designed to limit the power. 7 1 0 series is guided by The magnetic material is made of Teflon or easy-to-machine excellent working pipe 70, which can be used as the production flow direction. ’It uses the function of electromagnetic radiation. Because of the influence of the use of equipment, magnetic radiation is only made of steel, for example. Polyurethane, etc. Material on fire 9 Pipe 7 0

_ 在最佳實施例中,通過管路7 0 9之液態金屬係為鎵 ϋ 1因的合金。其最佳的組合係為6 5〜7 5 %的鎵及2 0 b %的鋼,而如錫、銅、辞及絲係以小百比的方式加 7合金中。其中之一最佳合金組合係為6 6 %的鎵、2 0 ^的銦、1 1 %的錫、1 %的的銅、1 %的鋅、及1 %的 該液態金屬係具有高熱傳導性、高電傳導性及高體積 熱各量。例如該液態金屬係可為水銀、鎵、鈉鉀共熔合金 (7 8 %的鈉及2 2 %的鉀)、鉍錫合金(5 8 %的鉍及_ In the preferred embodiment, the liquid metal passing through the pipe 7 0 9 is an alloy of gallium and gadolinium. The best combination is 65 ~ 75% gallium and 20b% steel, and such as tin, copper, silicon and wire are added to alloy 7 in a small percentage. One of the best alloy combinations is 66% gallium, 20% indium, 11% tin, 1% copper, 1% zinc, and 1% of the liquid metal system with high thermal conductivity. , High electrical conductivity and high volume heat. For example, the liquid metal system may be mercury, gallium, sodium-potassium eutectic alloy (78% sodium and 22% potassium), bismuth tin alloy (58% bismuth, and

第12頁 200522313 五、發明說明(9) 4 2 %的錫)或鉍鉛合金(5 5 %的鉍及4 5 %的鉛)等 。以鉍為根基的合金可使在4 0〜1 4 0 ° C的高溫中, 而純鉍可使用在超過1 5 6 ° C的高溫中。 熱分散器之斷面形狀係可依據所需而改變。請參閱第 八圖所示,散分散器8 0 1係為圓形之斷面形狀,且區分 成四個腔室(803、805、807及809),且每Page 12 200522313 V. Description of the invention (9) 42% tin) or bismuth-lead alloy (55% bismuth and 45% lead), etc. Bismuth-based alloys can be used at high temperatures from 40 to 140 ° C, while pure bismuth can be used at temperatures above 156 ° C. The shape of the cross section of the heat disperser can be changed as required. Please refer to Fig. 8. The diffuser 801 is a circular cross-sectional shape and is divided into four chambers (803, 805, 807, and 809).

個腔室的斷面形狀係為四分之一圓。其熱範圍包括有8 0 3a 、805 a資807 a及8 09 a ,而電磁栗之作動 方式係與第六圖相似。熱液態金屬從範圍8 0 3 a被推出 ,且經過循環而將熱均勻地穿過腔室8 0 3 。請參閱第九 圖所示,其係為另一種具有六角形斷面積之熱分散器9 0 1 ,而所形成之六個腔室係具有正三角形之斷面積。其具 有一熱範圍9 0 3 a及,腔室9 0 3其係具有兩個分別與 腔室903兩端面909及911平行設置之電磁泵90 5及9 0 7。該等電磁泵9 0 5及9 0 7係用於使得液態 金屬能於腔室9 0 3内形成循環運作。依照上述之說明, 液態金屬在其它腔室内係以循環方式運作,以使得均勻的 熱能通過該熱分散器9 0 1 。且,在每個腔室内使用一個The cross-sectional shape of each cavity is a quarter circle. Its thermal range includes 803a, 805a, 807a, and 809a. The operation of the electromagnetic pump is similar to that of the sixth figure. The hot liquid metal is pushed out of the range 803a, and the heat is evenly passed through the chamber 803 through a cycle. Please refer to the ninth figure, which is another heat spreader 90 1 with a hexagonal cross-sectional area, and the six chambers formed have a regular triangular cross-sectional area. It has a thermal range of 9 0 3 a and a chamber 9 0. It has two electromagnetic pumps 90 5 and 9 7 which are arranged parallel to the two end surfaces 909 and 911 of the chamber 903, respectively. The electromagnetic pumps 905 and 907 are used to enable the liquid metal to form a circulating operation in the chamber 903. According to the above description, the liquid metal operates in a circulating manner in the other chambers, so that uniform thermal energy passes through the heat spreader 90 1. And use one in each chamber

電磁泵也能夠使得液態金屬形成循環運作,並使得均勻的 熱能通過該熱分散器9 0 1 。 請參閱第十圖所示,其係為本發明之另一實施例。熱 分散器6 0 1係具有四個熱電產生器(1 0 0 1 、1 0 0 3、1005及1007)。該熱電產生器1001之一 端係在熱範圍6 0 5 a與熱液態金屬接觸,而另一端係在The electromagnetic pump also enables the liquid metal to operate in a cyclic manner, and allows uniform thermal energy to pass through the heat spreader 9 0 1. Please refer to the tenth figure, which is another embodiment of the present invention. The thermal diffuser 6 01 has four thermoelectric generators (1001, 1003, 1005, and 1007). One end of the thermoelectric generator 1001 is in contact with a hot liquid metal in a thermal range of 6 0 5 a, and the other end is connected to

第13頁 200522313 五、發明說明(ίο) 冷範圍6 0 5 b與冷液態金屬接觸。因此在該熱電產生器 1001兩端係具有一溫度差,而該熱電產生器1〇〇1 係利用此溫度差來產生電力,而該電力係作為電磁泵6 1 5及6 1 7之動力來源。Page 13 200522313 V. Description of the Invention (ίο) Cold range 6 0 5 b is in contact with cold liquid metal. Therefore, there is a temperature difference between the two ends of the thermoelectric generator 1001, and the thermoelectric generator 1001 uses this temperature difference to generate electricity, and the electricity is used as the power source of the electromagnetic pumps 6 1 5 and 6 1 7 .

該熱電產生器1 0 0 1係利用『席貝克效應』 (seebeck effect)來轉換位於熱分散器之熱範圍6 0 5 a及冷範圍605b間之溫度差,而成為電能。藉由熱電 產生器1 0 0 1所產生的電壓係依據熱範圍6 0 5 a及6 0 5 b間之溫度差。鉍(Bi )、石帝(Te )、銻(Sb )及硒 (Se )合金係為製造熱電產生器1 〇 〇 1之半導體構件的 材料。 在熱分散器中使用熱電產生器係用於趨動電磁泵運轉 。熱電產生器之性能係數為·· η = ε( ΔΤ/Τη) 其中熱流進熱端之電能比忽略不計,而ε係為熱力轉 換係數,ΛΤ係為冷熱端之溫度差,以及Th係為熱端之溫 度。慣用性的“/313/丁6/36及?13/丁6/36合金材料之£值係 為0. 1,而典型的冷熱端之溫度差大約為1 5 - 4 0 K。假設△The thermoelectric generator 1 0 1 uses the "seebeck effect" to convert the temperature difference between the heat range 60 5 a and the cold range 605 b of the heat disperser, and becomes electric energy. The voltage generated by the thermoelectric generator 1 0 1 is based on the temperature difference between the thermal range 6 0 5 a and 6 0 5 b. Bismuth (Bi), stone emperor (Te), antimony (Sb), and selenium (Se) alloys are materials for manufacturing semiconductor components of the thermoelectric generator 1000. The use of thermoelectric generators in thermal dispersers is used to actuate electromagnetic pumps. The coefficient of performance of a thermoelectric generator is: η = ε (ΔΤ / Τη) where the ratio of electric energy from heat flow to the hot end is negligible, and ε is the thermal conversion coefficient, ΛT is the temperature difference between the cold and hot ends, and Th is the heat Temperature. The conventional value of "/ 313 / 丁 6/36 and? 13 / 丁 6/36 alloy material is 0.1, and the temperature difference between the typical hot and cold ends is about 15-4 0 K. Assume △

T二3 0 K,Th = 3 5 8 K,則熱電產生器之性能係數為0· 0 0 84 。如果高功率密度設備能供給1 0 0W,則熱電產生器所產生 之電能係為0 . 84 W,其係用於供給電磁泵而使之運轉。 本發明係應用液態金屬於熱分散器内產生循環,其係 有下列之優點: 第一,當液態金屬為熱的良導體時,液態金屬於熱分T 2 3 0 K, Th = 3 5 8 K, then the performance coefficient of the thermoelectric generator is 0 · 0 0 84. If the high power density equipment can supply 100 W, the electric power generated by the thermoelectric generator is 0.84 W, which is used to supply the electromagnetic pump to run. The invention uses liquid metal to generate circulation in the heat disperser, which has the following advantages: First, when the liquid metal is a good conductor of heat, the liquid metal

第14頁 200522313 五、發明說明(11) 散器内循環係具有熱傳導及熱對流之優越性,這與習知由 銅或鋁所製之熱分散器只運用熱傳導不同。而使用本發明 之液態金屬亦優於習知使用水來進行之熱對流。 第二,本發明使用液態金屬,因此最大之傳熱性不會 像習知熱分散器一樣受限於蒸汽/液體之集結特性的影響 ,亦不會受像習知介於金屬表面與液體層,和介於金屬表 面與蒸汽間之界面阻力的影響。Page 14 200522313 V. Description of the invention (11) The internal circulation system of the diffuser has the advantages of heat conduction and heat convection, which is different from the conventional heat diffuser made of copper or aluminum, which only uses heat conduction. The liquid metal of the present invention is also superior to the conventional thermal convection using water. Secondly, the present invention uses liquid metal, so the maximum heat transfer is not affected by the aggregation characteristics of steam / liquid like the conventional heat disperser, and it is not affected by the metal surface and liquid layer as is conventional And the influence of the interface resistance between the metal surface and the steam.

第三,液態金屬係利用電磁泵來進行趨動,而不須依 靠外界之設備,因此具有無噪音、無振動及佔用體積小之 優點。 第四,熱電產生器係可用於趨動電磁泵來運轉,因此 不須借助外界的能源來趨動電磁泵。 綜上所述,本發明實已符合發明專利之要件,依法提 出申請。惟以上所揭露者,僅為本發明較佳實施例而已, 自不能以此限定本發明之權利範圍,因此依本發明申請範 圍所做之均等變化或修飾,仍屬本發明所涵蓋之範圍。尚 請審查委員撥冗細審,並盼早曰准予專利以勵發明,實感 德便。Third, liquid metal is driven by an electromagnetic pump without relying on external equipment, so it has the advantages of no noise, no vibration, and small footprint. Fourth, the thermoelectric generator can be used to operate the electromagnetic pump, so it is not necessary to rely on external energy to activate the electromagnetic pump. In summary, the present invention has actually met the requirements of the invention patent, and an application has been filed in accordance with the law. However, those disclosed above are only preferred embodiments of the present invention. Since the scope of rights of the present invention cannot be limited by this, equivalent changes or modifications made in accordance with the scope of the present application still fall within the scope of the present invention. The reviewers are requested to take time to review and look forward to granting patents early to encourage inventions.

第15頁 200522313 圖式簡單說明 [ 圖 式 簡 單 說 明 第 圖 係 習 知 -j-n. 置 於 功 率 密 度 設 備 上 之散熱 鰭 片 結 構 之 組 合 圖 〇 第 二 A 圖 係 〇 習 知 散 熱 鰭 片 結 構 之 溫 度 分 部不均 勻 之 示 意 圖 第 B 圖 係 習 知 散 熱 鰭 片 結 構 之 溫 度 分 部均勻 之 示 意 圖 〇 第 二 A 圖 係 習 知 功 率 密 度 ^rfL 5又 備 ^-rt δ又 置 於 嵌固板 上 且 散 敎 鰭 片 結 構 係 接 觸 於 功 率 密 度 設備之 組 合 圖 〇 第 二 B 圖 係 習 知 数 分 散 器 δ又 置 於 功 率 密度設 備 及 散 熱 鰭 片 結 構 之 間 之 組 合 圖 〇 第 四 圖 係 習 知 以 蒸 汽 腔 體 為 底 座 之 孰 分 散器之 示 意 圖 〇 第 五 圖 係 本發 明 散 埶 裝 置 及 其 熱 分 散 器 應用在 南 功 率 密 度 設 備 之 組 合 圖 〇 第 六 圖 係 本 發 明 軌 i 分 散 器 之 最 佳 實 施 例 之府視 圖 〇 第 七 圖 係 本 發 明 電 磁 泵 運 作 原 理 之 示 意 圖。 第 八 圖 係 本發 明 之 另 一 實 施 例 之 府 視 圖 〇 第 九 圖 係 本 發 明 之 另 二 實 施 例 之 府 視 圖 〇 第 十 圖 係 本 發 明 之 另 三 實 施 例 之 府 視 圖 〇 [ 圖 式 中 之 參 昭 號 數 ] 散 执 鰭 片 結 構 1 0 1 功 率 密 度設備 1 0 3 散 埶 Φ 鰭 片 結 構 2 0 1 散 執 鰭 片 結構 2 〇 5 高 功 率 密 度 設 備 3 0 1 傲 固 板 3 0 3 散 孰 鰭 片 結 構 3 0 5 数 分 散 器 3 0 7 献 ο、、 分 散 器 4 0 1 1¾ 功 率 密 度設備 4 0 3Page 15 200522313 Brief description of the drawings [Brief description of the drawings The figure is a conventional figure-jn. The combination of heat dissipation fin structure placed on a power density device. The second A figure is the temperature of the conventional heat dissipation fin structure. Schematic diagram of non-uniform segments. Figure B is a schematic diagram of the uniform temperature division of the conventional fin structure. The second A diagram is the conventional power density ^ rfL 5 and ^ -rt δ is placed on the embedded board and The structure of the scattered fin structure is in contact with the power density equipment. The second diagram B is a combination diagram of the conventional number disperser δ and the power density equipment and the heat dissipation fin structure. The fourth diagram is a conventional diagram. Schematic diagram of a radon diffuser with a steam cavity as a base. The fifth diagram is a combination diagram of the diffuser device and the heat disperser of the present invention applied to a southern power density device. The sixth diagram is House inventions rail i dispersers embodiment of the best view of the solid line in FIG square seventh present invention is shown as a solenoid pump intended operation principle of FIG. The eighth figure is a house view of another embodiment of the present invention. The ninth picture is a house view of another embodiment of the present invention. The tenth picture is a house view of another three embodiment of the present invention. Reference number] Discrete fin structure 1 0 1 Power density equipment 1 0 3 Discrete Φ fin structure 2 0 1 Discrete fin structure 2 〇5 High power density equipment 3 0 1 Aogu board 3 0 3孰 Fin structure 3 0 5 Number disperser 3 0 7 Decentralized disperser 4 0 1 1¾ Power density equipment 4 0 3

第16頁Page 16

200522313 圖式簡單說明 散 鰭 片 結 構 4 表 面 4 内 襯 4 散 献 裝 置 5 南 功 率 密 度 設 備 5 腔 室 5 熱 分 散 器 6 腔 室 6 埶 範 圍 6 0 5 a 冷 車巳 圍 6 0 5 b 電 磁 泵 6 電 極 板 7 管 路 7 散 分 散 器 8 腔 室 8 孰 範 圍 8 0 3 a 孰 分 散 器 9 献 i 靶 圍 9 端 面 9 電 磁 泵 9 敎 電 產 生 器 1 0 0 1 0 5 0 7 、4 0 9 1 1 0 0 熱分散器 0 3 散熱鰭片結構 0 7 電磁栗 0 1 05、607、609 、607a、609a 、607 b、609b 1 5、6 1 7 0 5 永久性磁鐵 0 9 電磁阻擋罩 0 1 03、805、807 、805a、807a 0 1 腔室 0 3a 0 9、9 1 1 0 5、9 0 7 、1 0 0 3 、1 0 0 5 5 0 1 5 0 5200522313 Schematic illustration of loose fin structure 4 surface 4 lining 4 dispersing device 5 south power density equipment 5 chamber 5 heat disperser 6 chamber 6 埶 range 6 0 5 a cold car perimeter 6 0 5 b electromagnetic pump 6 Electrode plate 7 Pipe 7 Diffuser 8 Cavity 8 孰 Range 8 0 3 a 孰 Diffuser 9 Dedicated target range 9 End face 9 Electromagnetic pump 9 Electron generator 1 0 0 1 0 5 0 7 、 4 0 9 1 1 0 0 Heat disperser 0 3 Radiating fin structure 0 7 Electromagnetic pump 0 1 05, 607, 609, 607a, 609a, 607 b, 609b 1 5, 6 1 7 0 5 Permanent magnet 0 9 Electromagnetic barrier cover 0 1 03, 805, 807, 805a, 807a 0 1 Chamber 0 3a 0 9, 9 1 1 0 5, 9 0 7, 1 0 0 3, 1 0 0 5 5 0 1 5 0 5

6 11a 6 11b 7 0 7 7 10 8 0 9 8 0 9 a 9 0 3 10 0 76 11a 6 11b 7 0 7 7 10 8 0 9 8 0 9 a 9 0 3 10 0 7

第17頁Page 17

Claims (1)

200522313 六、申請專利範圍 1 、一種熱分散器,其係用於將高功率密度設備所產生的 熱均勻地散開,該熱分散器包括有·· 至少一内含液態金屬之冷卻腔體,該液態金屬係循環 於該冷卻腔體内,並藉著該循環使得從高功率密度設備所 產生的熱得以散開而均勻地遍及該熱分散器。 2、 如申請專利範圍第1項所述之熱分散器,其中該 位於冷卻腔體内之液態金屬係為鎵和銦的合金。 3、 如申請專利範圍第1項所述之熱分散器,其中該 位於冷卻腔體内之液態金屬係為鎵、銦、水銀、鉍錫合金200522313 VI. Application Patent Scope 1. A heat disperser, which is used to evenly dissipate the heat generated by high power density equipment. The heat disperser includes at least one cooling cavity containing liquid metal. Liquid metal is circulated in the cooling cavity, and the heat generated from the high power density equipment is dissipated and uniformly spreads through the heat disperser through the circulation. 2. The heat disperser according to item 1 of the scope of the patent application, wherein the liquid metal in the cooling cavity is an alloy of gallium and indium. 3. The heat disperser as described in item 1 of the scope of patent application, wherein the liquid metal in the cooling cavity is gallium, indium, mercury, bismuth tin alloy 、铁錯合金、以及鈉斜共炼合金之任一選擇性組合。 4、 如申請專利範圍第1項所述之熱分散器,其中該 熱分散器進一步包括有安置於該冷卻腔體内之電磁泵,其 係用於使該液態金屬在該冷卻腔體内產生循環流動。 5、 如申請專利範圍第1項所述之熱分散器,其中該 其中該熱分散器進一步包括有數個安置於該冷卻腔體内之 電磁泵,其係用於使該液態金屬在該冷卻腔體内產生循環 流動。 6、 一種散熱裝置,其係用於將高功率密度設備所產 生的熱均勻地散開,該散熱裝置包括有:Any combination of iron, iron alloy, and sodium oblique co-smelting alloy. 4. The heat disperser according to item 1 of the scope of the patent application, wherein the heat disperser further includes an electromagnetic pump disposed in the cooling cavity, which is used for generating the liquid metal in the cooling cavity. Circulating flow. 5. The heat disperser according to item 1 of the scope of the patent application, wherein the heat disperser further comprises a plurality of electromagnetic pumps arranged in the cooling cavity, which are used to make the liquid metal in the cooling cavity Cyclic flow occurs in the body. 6. A heat dissipation device, which is used to evenly dissipate heat generated by high power density equipment. The heat dissipation device includes: 熱分散器,其係鄰近設置於該高功率密度設備上,該 熱分散器包括有: 數個内含液態金屬之冷卻腔體;以及 數個電磁泵,其係分別設置於該冷卻腔體内,用 以使得該液態金屬在冷卻腔體内產生循環;以及A heat disperser is disposed adjacent to the high power density device. The heat disperser includes: a plurality of cooling chambers containing liquid metal; and a plurality of electromagnetic pumps respectively disposed in the cooling chamber. For circulating the liquid metal in the cooling chamber; and 第18頁 200522313 六、申請專利範圍 散熱鰭片結構,其係與該熱分散器結合,用以將熱傳 遞至大氣中。 7、 如申請專利範圍第6項所述之散熱裝置,其中該 散熱裝置進一步包括有電磁阻擋罩,其係用以防止該高功 率密度設備受到電磁輕射之影響。 8、 如申請專利範圍第6項所述之散熱裝置,其中該 散熱裝置進一步包括有熱電產生器,其係用以趨動該電磁 泵運轉。Page 18 200522313 VI. Scope of Patent Application The heat sink fin structure is combined with the heat spreader to transfer heat to the atmosphere. 7. The heat dissipation device according to item 6 of the scope of the patent application, wherein the heat dissipation device further includes an electromagnetic shielding cover, which is used to prevent the high power density device from being affected by light electromagnetic radiation. 8. The heat dissipating device as described in item 6 of the scope of patent application, wherein the heat dissipating device further includes a thermoelectric generator, which is used to actuate the electromagnetic pump to run. 9、 如申請專利範圍第6項所述之散熱裝置,其中該 熱分散器之斷面形狀係為圓形、矩形或六角形。 1 0、如申請專利範圍第6項所述之散熱裝置,其中 該熱分散器係具有四個冷卻腔體。 1 1 、如申請專利範圍第1 0項所述之散熱裝置,其 中該熱分散器係具有八個環繞該熱分散器中央且倆倆對稱 之電磁粟。 1 2、一種散熱裝置,其係用於將高功率密度設備所 產生的熱均勻地散開,該散熱裝置包括有: 熱分散器,其係鄰近設置於該高功率密度設備上,該 熱分散器包括有:9. The heat dissipating device according to item 6 of the scope of patent application, wherein the cross-sectional shape of the heat disperser is circular, rectangular or hexagonal. 10. The heat dissipating device according to item 6 of the scope of patent application, wherein the heat disperser has four cooling chambers. 11. The heat dissipating device as described in item 10 of the scope of patent application, wherein the heat disperser has eight symmetrical magnetic milletes that surround the center of the heat disperser and are symmetrical to each other. 1 2. A heat dissipating device for uniformly dissipating heat generated by a high power density device. The heat dissipating device includes: a heat spreader, which is disposed adjacent to the high power density device, and the heat disperser This includes: 至少一内含液態金屬之冷卻腔體; 至少一電磁泵,其係設置於該冷卻腔體内,用以 使得該液態金屬在冷卻腔體内產生循環;以及 熱電產生器,其係用以趨動該電磁泵運轉;以及 散熱鰭片結構,其係與該熱分散器結合,用以將熱傳At least one cooling cavity containing liquid metal; at least one electromagnetic pump disposed in the cooling cavity to cause the liquid metal to circulate in the cooling cavity; and a thermoelectric generator for Moving the electromagnetic pump to run; and a radiating fin structure, which is combined with the heat spreader to transfer heat 第19頁 200522313 六、申請專利範圍 遞至大氣中。 1 3 、如申請專利範圍第1 2項所述之散熱裝置,其 中該熱分散器之斷面形狀係為圓形、矩形或六角形。 1 4、如申請專利範圍第1 2項所述之散熱裝置,其 中該熱分散器係具有四個冷卻腔體。 1 5 、如申請專利範圍第1 2項所述之散熱裝置,其 中該熱分散器係具有八個環繞該熱分散器中央且倆倆對稱 之電磁豕。Page 19, 200522313 VI. The scope of patent application is transferred to the atmosphere. 13. The heat dissipating device as described in item 12 of the scope of patent application, wherein the cross-sectional shape of the heat spreader is circular, rectangular or hexagonal. 14. The heat dissipating device according to item 12 of the scope of patent application, wherein the heat spreader has four cooling chambers. 15. The heat dissipating device as described in item 12 of the scope of patent application, wherein the heat disperser has eight electromagnetic coils which are symmetrical around the center of the heat disperser. 第20頁Page 20
TW092137101A 2002-12-06 2003-12-26 Cooling of electronics by electrically conducting fluids TW200522313A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/313,696 US6708501B1 (en) 2002-12-06 2002-12-06 Cooling of electronics by electrically conducting fluids

Publications (1)

Publication Number Publication Date
TW200522313A true TW200522313A (en) 2005-07-01

Family

ID=31978060

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092137101A TW200522313A (en) 2002-12-06 2003-12-26 Cooling of electronics by electrically conducting fluids

Country Status (2)

Country Link
US (1) US6708501B1 (en)
TW (1) TW200522313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685931B (en) * 2015-06-04 2020-02-21 美商瑞西恩公司 Micro-hoses for integrated circuit and device level cooling

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653297B (en) * 2002-05-08 2010-09-29 佛森技术公司 High efficiency solid-state light source and methods of use and manufacture
WO2005061972A1 (en) * 2002-12-06 2005-07-07 Nanocoolers, Inc. Cooling of electronics by electrically conducting fluids
US20040234392A1 (en) * 2003-05-22 2004-11-25 Nanocoolers Inc. Magnetohydrodynamic pumps for non-conductive fluids
US20040234379A1 (en) * 2003-05-22 2004-11-25 Nanocoolers, Inc. Direct current magnetohydrodynamic pump configurations
TWI229583B (en) * 2003-08-03 2005-03-11 Hon Hai Prec Ind Co Ltd Liquid-cooled heat sink device
US7082031B2 (en) * 2003-09-30 2006-07-25 Intel Corporation Heatsink device and method
US7524085B2 (en) * 2003-10-31 2009-04-28 Phoseon Technology, Inc. Series wiring of highly reliable light sources
US7819550B2 (en) * 2003-10-31 2010-10-26 Phoseon Technology, Inc. Collection optics for led array with offset hemispherical or faceted surfaces
US7116555B2 (en) * 2003-12-29 2006-10-03 International Business Machines Corporation Acoustic and thermal energy management system
US20050150539A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050150536A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050150537A1 (en) * 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
US20050160752A1 (en) * 2004-01-23 2005-07-28 Nanocoolers, Inc. Apparatus and methodology for cooling of high power density devices by electrically conducting fluids
US20050189089A1 (en) * 2004-02-27 2005-09-01 Nanocoolers Inc. Fluidic apparatus and method for cooling a non-uniformly heated power device
US7235878B2 (en) * 2004-03-18 2007-06-26 Phoseon Technology, Inc. Direct cooling of LEDs
WO2005091392A1 (en) * 2004-03-18 2005-09-29 Phoseon Technology, Inc. Micro-reflectors on a substrate for high-density led array
EP1743384B1 (en) * 2004-03-30 2015-08-05 Phoseon Technology, Inc. Led array having array-based led detectors
DK1756876T3 (en) * 2004-04-12 2011-07-18 Phoseon Technology Inc High-density LED array
EP1738156A4 (en) * 2004-04-19 2017-09-27 Phoseon Technology, Inc. Imaging semiconductor strucutures using solid state illumination
WO2005109613A1 (en) * 2004-05-11 2005-11-17 Negenco Aps An electromagnetic pump and use thereof
US7348665B2 (en) 2004-08-13 2008-03-25 Intel Corporation Liquid metal thermal interface for an integrated circuit device
US20060045755A1 (en) * 2004-08-24 2006-03-02 Dell Products L.P. Information handling system including AC electromagnetic pump cooling apparatus
US7342787B1 (en) 2004-09-15 2008-03-11 Sun Microsystems, Inc. Integrated circuit cooling apparatus and method
US20060073024A1 (en) * 2004-09-17 2006-04-06 Nanocoolers, Inc. Series gated secondary loop power supply configuration for electromagnetic pump and integral combination thereof
US20060073023A1 (en) * 2004-09-17 2006-04-06 Nanocoolers, Inc. Integrated electromagnetic pump and power supply module
US20060076046A1 (en) * 2004-10-08 2006-04-13 Nanocoolers, Inc. Thermoelectric device structure and apparatus incorporating same
US7475551B2 (en) 2004-12-23 2009-01-13 Nanocoolers, Inc. System employing temporal integration of thermoelectric action
US7293416B2 (en) * 2004-12-23 2007-11-13 Nanocoolers, Inc. Counterflow thermoelectric configuration employing thermal transfer fluid in closed cycle
US7296417B2 (en) * 2004-12-23 2007-11-20 Nanocoolers, Inc. Thermoelectric configuration employing thermal transfer fluid flow(s) with recuperator
KR101288758B1 (en) * 2004-12-30 2013-07-23 포세온 테크날러지 인코퍼레이티드 Methods and systems relating to light sources for use in industrial processes
US7614445B2 (en) * 2005-12-21 2009-11-10 Sun Microsystems, Inc. Enhanced heat pipe cooling with MHD fluid flow
US7245495B2 (en) * 2005-12-21 2007-07-17 Sun Microsystems, Inc. Feedback controlled magneto-hydrodynamic heat sink
US7642527B2 (en) * 2005-12-30 2010-01-05 Phoseon Technology, Inc. Multi-attribute light effects for use in curing and other applications involving photoreactions and processing
US7870893B2 (en) * 2006-04-06 2011-01-18 Oracle America, Inc. Multichannel cooling system with magnetohydrodynamic pump
US8232091B2 (en) * 2006-05-17 2012-07-31 California Institute Of Technology Thermal cycling system
US20080029244A1 (en) * 2006-08-02 2008-02-07 Gilliland Don A Heat sinks for dissipating a thermal load
US8581108B1 (en) 2006-08-23 2013-11-12 Rockwell Collins, Inc. Method for providing near-hermetically coated integrated circuit assemblies
US8637980B1 (en) 2007-12-18 2014-01-28 Rockwell Collins, Inc. Adhesive applications using alkali silicate glass for electronics
US8174830B2 (en) * 2008-05-06 2012-05-08 Rockwell Collins, Inc. System and method for a substrate with internal pumped liquid metal for thermal spreading and cooling
US8084855B2 (en) * 2006-08-23 2011-12-27 Rockwell Collins, Inc. Integrated circuit tampering protection and reverse engineering prevention coatings and methods
US8166645B2 (en) * 2006-08-23 2012-05-01 Rockwell Collins, Inc. Method for providing near-hermetically coated, thermally protected integrated circuit assemblies
US7915527B1 (en) 2006-08-23 2011-03-29 Rockwell Collins, Inc. Hermetic seal and hermetic connector reinforcement and repair with low temperature glass coatings
US8076185B1 (en) 2006-08-23 2011-12-13 Rockwell Collins, Inc. Integrated circuit protection and ruggedization coatings and methods
US8617913B2 (en) 2006-08-23 2013-12-31 Rockwell Collins, Inc. Alkali silicate glass based coating and method for applying
US7408778B2 (en) * 2006-09-11 2008-08-05 International Business Machines Corporation Heat sinks for dissipating a thermal load
US7672129B1 (en) 2006-09-19 2010-03-02 Sun Microsystems, Inc. Intelligent microchannel cooling
US7436059B1 (en) 2006-11-17 2008-10-14 Sun Microsystems, Inc. Thermoelectric cooling device arrays
US20090126922A1 (en) * 2007-10-29 2009-05-21 Jan Vetrovec Heat transfer device
US8363189B2 (en) * 2007-12-18 2013-01-29 Rockwell Collins, Inc. Alkali silicate glass for displays
US8650886B2 (en) 2008-09-12 2014-02-18 Rockwell Collins, Inc. Thermal spreader assembly with flexible liquid cooling loop having rigid tubing sections and flexible tubing sections
US8017872B2 (en) * 2008-05-06 2011-09-13 Rockwell Collins, Inc. System and method for proportional cooling with liquid metal
US8616266B2 (en) * 2008-09-12 2013-12-31 Rockwell Collins, Inc. Mechanically compliant thermal spreader with an embedded cooling loop for containing and circulating electrically-conductive liquid
US8221089B2 (en) * 2008-09-12 2012-07-17 Rockwell Collins, Inc. Thin, solid-state mechanism for pumping electrically conductive liquids in a flexible thermal spreader
US8205337B2 (en) * 2008-09-12 2012-06-26 Rockwell Collins, Inc. Fabrication process for a flexible, thin thermal spreader
US8230690B1 (en) * 2008-05-20 2012-07-31 Nader Salessi Modular LED lamp
US10012375B1 (en) 2008-05-20 2018-07-03 Nader Salessi Modular LED lamp
US8522570B2 (en) * 2008-06-13 2013-09-03 Oracle America, Inc. Integrated circuit chip cooling using magnetohydrodynamics and recycled power
DE102008040281A1 (en) * 2008-07-09 2010-01-14 Robert Bosch Gmbh Device and method for cooling components
US20100071883A1 (en) * 2008-09-08 2010-03-25 Jan Vetrovec Heat transfer device
US8119040B2 (en) * 2008-09-29 2012-02-21 Rockwell Collins, Inc. Glass thick film embedded passive material
US8910706B2 (en) * 2009-02-05 2014-12-16 International Business Machines Corporation Heat sink apparatus with extendable pin fins
CN202830041U (en) * 2009-04-03 2013-03-27 Illumina公司 Device for heating biological sample
WO2011031377A1 (en) * 2009-09-09 2011-03-17 Helixis, Inc. Optical system for multiple reactions
FR2984074B1 (en) * 2011-12-13 2014-11-28 Hispano Suiza Sa ELECTRONIC DEVICE WITH LIQUID METAL SPREADER COOLING
KR101367021B1 (en) * 2012-05-23 2014-02-24 삼성전기주식회사 Heat dissipation system for power module
US9435915B1 (en) 2012-09-28 2016-09-06 Rockwell Collins, Inc. Antiglare treatment for glass
CN104427090A (en) * 2013-08-21 2015-03-18 中兴通讯股份有限公司 Mobile terminal device and liquid-state metal heat dissipation method thereof
US9894802B2 (en) * 2014-05-29 2018-02-13 Ge-Hitachi Nuclear Energy Americas Llc Passive system of powering and cooling with liquid metal and method thereof
EP3800421A1 (en) * 2014-12-03 2021-04-07 Intelligent Platforms, Llc. Combined energy dissipation apparatus
US10231364B2 (en) 2016-10-24 2019-03-12 Toyota Motor Engineering & Manufacturing North America, Inc. Fluidly cooled power electronics assemblies having a thermo-electric generator
US10431524B1 (en) * 2018-04-23 2019-10-01 Asia Vital Components Co., Ltd. Water cooling module
US10890387B2 (en) * 2018-10-25 2021-01-12 United Arab Emirates University Heat sinks with vibration enhanced heat transfer
CN109742060A (en) * 2019-01-18 2019-05-10 天津城建大学 A kind of phase change radiator structure combining low-melting alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184211A (en) * 1988-03-01 1993-02-02 Digital Equipment Corporation Apparatus for packaging and cooling integrated circuit chips
US5943211A (en) * 1997-04-18 1999-08-24 Raytheon Company Heat spreader system for cooling heat generating components
US6021844A (en) * 1998-06-03 2000-02-08 Batchelder; John Samuel Heat exchange apparatus
US6175495B1 (en) * 1998-09-15 2001-01-16 John Samuel Batchelder Heat transfer apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685931B (en) * 2015-06-04 2020-02-21 美商瑞西恩公司 Micro-hoses for integrated circuit and device level cooling

Also Published As

Publication number Publication date
US6708501B1 (en) 2004-03-23

Similar Documents

Publication Publication Date Title
TW200522313A (en) Cooling of electronics by electrically conducting fluids
EP3474647B1 (en) Cooling system of working medium contact type for high-power device, and working method thereof
WO2005061972A1 (en) Cooling of electronics by electrically conducting fluids
CN103999214B (en) Electronic device with cooling by a liquid metal spreader
US7505272B2 (en) Heat sinks for dissipating a thermal load
US8143510B2 (en) Thermoelectric composite semiconductor
CN104810466A (en) Thermoelectric module and heat conversion device including the same
TW201326724A (en) Composite heat sink and composite heat sink assembly for power module
BR102012015581A2 (en) COOLING DEVICE, ENERGY MODULE AND METHOD
US7491421B2 (en) Graphite base for heat sink, method of making graphite base and heat sink
TW201834276A (en) Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
CN1649136A (en) Heat radiator and its heat dispenser
Bar-Cohen Thermal management of on-chip hot spots and 3D chip stacks
CN106505051B (en) A kind of power device with graphene
CN108428682A (en) A kind of power modules and preparation method thereof
CN207380658U (en) A kind of computer high efficiency and heat radiation piece
CN113923950A (en) Device and method for cooling high-heat-flux-density device by using magnetic field and micro-channel
KR200491117Y1 (en) staggered heat dissipation structure of interface card
Chen et al. Thermal characterization analysis of IGBT power module integrated with a vapour chamber and pin-fin heat sink
TWI251461B (en) Manufacturing method of thermal-electric heat sink and its manufactured products
CN209332781U (en) A kind of LED sterilizing lamp set
CN102592866B (en) Evaporative cooling system with circuit breaker
TW200530547A (en) Cooling of high power density devices by electrically conducting fluids
CN219068715U (en) Device for cooling large heat flux device by using magnetic field
CN217239577U (en) Water-cooled cooling structure for energy storage