200521559 玖、發明說明: 【發明所屬之技術領域】 本發明一般係關於一種視覺顯示器,且更詳細言之,係 關於用於自單一顯示幕生成多影像之頭戴式系統的光學配 置。 【先前技術】 頭戴式顯示器(HMD)爲一類影像顯示器裝置,其可用以 自電視機、數位化通用光碟、電腦應用、遊戲控制臺、或 其他類似應用來顯示影像。HMD可爲單目(m〇n〇cular)(由一 隻眼睛檢視到一單一影像)、雙目並視(bi〇cular)(由兩隻眼 目月核視到單一影像)、或雙目(binocular)(每只眼睛檢視到 不同的影像)顯示器。此外,亨影至(兩隻)眼睛之影像可由 使用者完整地檢視到,或重疊於使用者對於外界的視域之 上。對於多數HMD之設計必須考慮到諸如影像解析度、虛 像離眼睛的距離、虛像的尺寸(或虛像的角度)、虛像失真、 使用者左瞳孔與右瞳孔間的距離(曈孔間距離(ipD))、屈光 度校正、影像分裂及傳送中的光損失、功率消耗、重量及 價格的參數。理想地,_單_ HMDT爲多個使用者顧及到 /寻$數且不笞影像疋否爲立體鏡(stereoscopic)雙目影 像或簡單的單像管(m_sc〇pic)雙目影像均能顯示。 若HMD内部顯示器上之圖片解析度爲8〇〇乂6〇〇像素,則 由該HMD之光學器件所産生的可接受之虛像尺寸爲:於2 m 的距離形成大約1.5 m(52、56”)的虛像直徑,其對應於大約 36。的視角。爲較好地適應人的頭部及眼睛,ipD應在45爪以200521559 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates generally to a visual display, and more specifically, to an optical configuration of a head-mounted system for generating multiple images from a single display screen. [Prior Art] A head-mounted display (HMD) is a type of image display device that can be used to display images from televisions, digital versatile discs, computer applications, game consoles, or other similar applications. HMD can be monocular (view from a single eye to a single image), binocular (biocular) (from two eyes to a single image), or binocular ( binocular) (each eye sees a different image) monitor. In addition, the image of Hang Ying to (two) eyes can be viewed completely by the user, or superimposed on the user's field of vision to the outside world. For most HMD designs, considerations such as image resolution, distance of the virtual image from the eye, size of the virtual image (or angle of the virtual image), distortion of the virtual image, distance between the user's left and right pupils (distance between diaphragms (ipD)) ), Diopter correction, light loss in image splitting and transmission, power consumption, weight and price parameters. Ideally, _Single_ HMDT allows multiple users to take into account / find the number of images without displaying images, whether stereoscopic binocular images or simple monocular (m_sc〇pic) binocular images can be displayed . If the resolution of the picture on the internal display of the HMD is 800,600 pixels, the acceptable virtual image size produced by the HMD's optics is: approximately 1.5 m (52, 56 "formed at a distance of 2 m ) The diameter of the virtual image, which corresponds to a viewing angle of about 36. In order to better fit a person's head and eyes, ipD should be between 45 claws and less.
0 \9〇\9〇299 DOC -6 · 200521559 與75 mm間變化 正係必要的。 爲補仏近視或遠視,至少土3的屈光度校 在HMD中僅使用_個微顯 ”、,員不為(而非爲每只眼睛使用一 個)極大地降低了裝置之價格。 ^ m $,此一早兀之配置將微 顯示器安置於使用者兩眼 之間。所産生之影像接著經分 4、擴大、並分別被傳送至 母/、眼睛。在此項技術中已知 有諸多设计,用來在具有一安 一 负 女裝於中心的顯示器之單一顯 示器HMD中進行光束分裂 · — 疋/、中無一能長:供出既價格 便且ί里輕、尺寸小又能顯示各種影像的解決方案。 頭戴式系統之諸多應料求傳輸至使用者㈣之資訊不 同於傳輸至使用者左眼之資訊。舉例而言,爲了將三維影 像傳遞至使㈣,要求使用者的兩隻眼睛能檢視到同一影 像的不同遂景(prQspeetive)。在其他應用中,例如—用於將 貝料投影至使用者視域上的系統(有時稱爲”仰視顯示器 (heads,d1Splay),,),可能需要將完全不相關的資料傳送到 每只眼睛。 【發明内容】0 \ 9〇 \ 9〇299 DOC -6 · 200521559 Change between 75 mm is necessary. To compensate for nearsightedness or farsightedness, at least the diopter correction of at least 3 in the HMD uses only a few micro-displays ", and the inaction (rather than one for each eye) greatly reduces the price of the device. ^ M $, This early configuration places the microdisplay between the eyes of the user. The resulting image is then divided into four, enlarged, and transmitted to the mother / eye, respectively. Many designs are known in the art for Let's split the beam in a single display HMD with a display that is one center, one center, one center, one center, and one center. The 疋 /, none of them can be long: It is a solution that is not only cheap, but also light, small, and can display various images. Many of the information required by the headset system to be transmitted to the user is different from the information transmitted to the user's left eye. For example, in order to transfer the three-dimensional image to the user, both eyes of the user are required View different prQspeetive of the same image. In other applications, for example-a system for projecting shell material onto the user's field of view (sometimes referred to as "heads, d1Splay,"), may Completely irrelevant data needs to be transmitted to each eye. [Summary of the Invention]
本發明之具體實施例可生成單一顯示幕之獨立的多個影 像,該等影像經透鏡聚焦,並接著被位於所生成之影像的 、、、附近之刀W益沿分離的子光徑而定向。在一且體實施 例中,自不同方向照明一單一顯示幕,産生了顯示幕的多 個衫像’遠專影像接著經透鏡聚焦。接著,該等影像以由 透鏡所造成之減小了的分裂體積分裂成傳送至使用者的各 個眼睛之複數個子影像。該等具體實施例可利用一對稱VA specific embodiment of the present invention can generate independent multiple images of a single display screen. These images are focused by a lens, and then are oriented along the separated sub-optical paths by a knife located in the vicinity of the generated image. . In one embodiment, a single display screen is illuminated from different directions, and multiple shirt images of the display screen are generated, which are then focused by a lens. Then, these images are split into a plurality of sub-images transmitted to the eyes of the user with a reduced splitting volume caused by the lens. The specific embodiments may utilize a symmetrical V
O:\90\90299 DOC 200521559 鏡分裂s ’其係由兩個圍繞該透鏡之焦點配置的部分或全 部反射表面組成。該等影像接著經該等部分或全部反射表 面反射,沿分離的子光徑通向使用者的個別眼睛。 其他具體實施例可藉由以相異偏振光源照明一顯示幕, 來生成顯不幕之多個獨立的影像。可藉由一不對稱v鏡來分 裂所生成之影像,該不對稱v鏡由配置於該透鏡之焦點附近 的一偏振光束分裂面及一全部反射表面組成。將來自各個 源的光反射向不同的子光徑。 具體實施例亦可藉由以下方式來生成一單一顯示幕的多 個衫像·藉由一光源來照明一顯示幕,使自顯示器所反射 的光發生偏振,並接著在數個方向之一個中改變偏振狀 恕。藉由改變偏振的方向,可藉由不對稱V鏡將子影像重定 向至不同的子光徑。 一些具體實施例亦可利用漫射器,其中將該顯示幕之影 像投影於該漫射器上。可使用具有小數值孔徑之過渡光學 器件(transition optics)以將實像(real lmage)投影於漫射器 上,且可將具有大數值孔徑之目鏡光學器件用於將影像傳 送到使用者的眼中。 爲了使用一個顯示幕爲使用者的每只眼睛生成不同的影 像,本發明之具體實施例可使用於在該單一顯示幕上進行 顯示的複數個資料流相交錯,並可使每個資料流與多個照 明源中的一個相聯繫。可接著將該等交錯之資料流顯示: 該顯示幕上,而同時藉由該等相聯繫之照明源照明該顯示 幕。爲生成分離之影像,僅當顯示幕正顯示與一特定照明 〇:\9〇\9〇299 D〇c -8- 200521559 源相聯繫之貝料流時,藉由該特定照明源來照明該顯示 幕藉由光偏振而生成多個影像之I# f m 個貧料流與一偏振方向相聯繫。當顯示幕顯示一資料流 時,使用與一特定資料流相聯繫的偏振方向來沿合適的子 位發送5亥資料流之顯示幕影像。 、本t月之各種具體貫施例所使用之該等複數個照明源可 爲寬帶光源,該等寬帶光源被置放於顯示透鏡之焦點附 近,並藉由使光透過V鏡分裂器來照明顯示幕。其他具體實 施例可此使用I數個f帶光源,㈣窄帶光源經配置以模 擬寬f光源。此外,具體實施例可能將照明源配置於與系 統之光軸相鄰處,並藉由插入於分裂器與顯示透鏡之間的 部分反射表面來反射來自該等照明源的光。 前文已經較廣泛地概述了本發明之特點及技術優勢,以 使下文對於本發明之詳細描述可得到更好的理解。下文將 描述本發明之額外特點及優勢,其形成了本發明之申請專 利範圍之主題。應理解,可容易地將所揭示之概念及特定 只轭例用作修改或設計用於執行與本發明目的相同之其他 結構的基礎。亦應明白,該等對等構造並未脫離如在隨附 之申請專利範圍中所陳述的本發明。當結合隨附圖式考慮 時,吾人可自下文的描述更好的理解據信爲本發明之特徵 的關於其組織及操作方法的新穎特點,以及其他目的及優 勢。然而,應清楚的瞭解,僅出於例示與描述之目的而提 供每一圖式’且不欲將其作爲對本發明範圍之界定。 【實施方式】 O:\90\90299 DOC -9 · 200521559 圖1例不根據本發明之一具體實施例所配置的頭戴式裝 置100之頂視圖。子影像創建區101 (在裝置1〇〇中)自一單一 影像源創建複數個子影像。顯示幕110可爲可操作以藉由使 用外部照明源來顯示資料之視覺影像的任何合適的設備, 例如一液晶顯示(LCD)幕。顯示幕11 〇沿一顯示軸1丨1置放, 在所不之具體實施例中,顯示軸111與顯示幕11 〇的表面正 父且垂直於使用者之面部平面17〇。顯示透鏡1 15被定位成 f 沿著且垂直於光徑112,且具有顯示透鏡焦點124。顯示透 ; 鏡焦點124位於光徑112上,且將區1 〇丨配置成使得顯示透鏡 _ 焦點124位於分裂器120内。在使用區1 〇丨配置之具體實施例 中,分裂器12 0係一由右側的部分反射表面12 1及左側的部 分反射表面122所組成的對稱V鏡。將區1 〇 1配置成使得反射 表面121與反射表面122共用一共同邊且關於顯示軸111成 對稱配置。區101可因此生成顯示器110的兩個完全完整且 獨立的影像(本文稱作子影像),每個影像沿獨立的光徑(本 文稱作子徑)行進。 φ 在區101中包括一右光源125及一左光源126,其與顯示透 鏡焦點1 24位於一條線中,且關於顯示軸1丨丨成對稱配置。 來自光源125及126的光穿過表面121及122,經顯示透鏡115 準直,並照明顯示幕110。在圖1之具體實施例中,所生成 的經準直之光束將相對於光軸111略微傾斜。顯示幕11 〇經 右光源125照明會創建一顯示左眼子影像(display left-eye sub-image),其經透鏡115聚焦以照射反射表面122,反射表 面122將該左眼顯示子影像向下重定向至子光徑14〇。類似 0 \90\90299 DOC -10- 200521559 地,顯示幕Π0經左光源丨26照明會創建一右眼顯示子影 像,其經透鏡115聚焦以照射反射表面121,反射表面丨21將 該右眼顯示子影像向下重定向至子光徑1 3 〇。 該左眼子影像將沿子光徑14〇行進,且被引導至使用者的 左眼146。左眼反射器142沿子光徑14〇置放,該反射器爲一 經配置以將左眼子光徑140改變90。方向並將其重定向至左 目鏡光學器件14 5中的全部反射表面。該右眼子影像將沿子 光徑130行進,且被引導至使用者的右眼136。右眼反射器 1 32沿子光徑1 30置放,該反射器爲一經配置以將右眼子光 徑130改變90。方向並將其重定向至右目鏡光學器件η;中 的全部反射表面。右目鏡光學器件135及左目鏡光學器件 145可由單一或多個透鏡組成,該(等)透鏡經設計以適當放 大右眼子影像及左眼子影像以分別供使用者右眼丨3(5檢視 及使用者左眼146檢視。一些具體實施例可能會利用於其上 創建實像的漫射器。可接著將右及左目鏡光學器件丨35、145 用來放大該等影像以供使用者檢視。爲得到更大的視角(例 如36。),應將該等實像創建於反射器132、142之後,且十 分靠近右及左目鏡光學器件135、145。 目鏡光學器件135及145爲可調整的單一透鏡,但其他具 體實施例可能使用能適當放大右眼子影像及左眼子影像以 刀別供右眼1 3 6及左眼14 6檢視的任何配置。此外,儘管將 裝置100的反射器132、142描繪爲鏡,且將表面121、122描 繪成部分反射表面,但是具體實施例並不受限於使用鏡或 部分反射表面來重定向一光徑或子光徑。相反,可將稜鏡、 O:\90\90299 DOC -11 - 200521559 偏振光束分裂器或其他任何合適的配置用於重定向一光徑 或子光徑。 裝置100亦能藉由光學元件之同步運動來調整不同使用 者之不同的IPD。右眼目鏡光學器件135及左眼目鏡光學器 件145可分別藉由運動152及ι51而移位,以創建1?〇 15〇&及 IPD 15 0b。區1〇1可藉由運動155而移位。當IPD距離i5〇a變 成IPD 150b時’區同時發生運動155 (自圖1檢視爲向下) 而移向平面170。當ipd 150b變成IPD 150a時,區101同時自 平面170移離開來(自圖1檢視爲向上)。該等同步運動允許裝 置100進行調整以適應IPD 150a與IPD 150b之間的整個範 圍’而同時分別保持反射表面12卜122與目鏡透鏡135、145 間沿子徑130及140的恒定長度。裝置100亦能藉由左目鏡光 學器件145之運動153及右目鏡光學器件135之運動154的額 外調整來進行屈光度校正。 可將兩個離軸孔徑光闌189、199置放於顯示透鏡115與分 裂器120之間。該孔徑光闌成像於檢視者的瞳孔附近,其尺 寸被適當地調整成當使用者檢視虛擬螢幕(virtual scree… 的角落時瞳孔運動所需要覆蓋的寬度。爲適應較大範圍的 檢視者瞳孔運動,該孔徑之尺寸應比用於傳遞(transfer)爲 顯示幕110之解析度所要求的空間頻率範圍而必需的尺寸 大2-3倍。爲均勻地照明孔徑光闌189、丨99,左及右光源 U5、126應具有延長之(非點源(non point s〇urce))尺寸。 圖1之顯示幕110可將顯示幕11 〇之相同影像同時傳送至 使用者的左眼及右眼。當兩個光源125及126用於同時照明 0 \90\90299 DOC -12- 200521559 則藉由相同的顯示幕可將—影像集送至使用者的左眼 將一不同影像集送至使用者的右眼。 顯示幕no時,顯示幕丨10的相同子影像將沿子光徑⑽及 mo行進。,然而,若光源125及126交替地照明顯示幕⑽, 而 圖2係根據本發明之一具體實施例所佈置的流程圖。按昭 圖表勝當使用-單一顯示幕時,頭戴式裝置(諸如裝置 100)可用以將不同於傳送至使用者右眼的影像傳送至使用 者的左眼。通常,頭戴式裝置之顯示幕(諸如圖丨之顯示幕 11 〇) ’顯不了作爲貧料流而輸送之資料。在圖2中,圖塊训 準備了多個資料流以供顯示於顯示幕上。例如,可準備一 個資料流以供使用者左眼檢視,且可準備一第二資料流以 :使用者右眼檢視。在圖塊2G2中,使每個資料流與用於適 當配置之頭戴式顯示器的複數個照明源中的一個相聯繫。 例如,藉由使用圖i之裝置100,可使爲供使用者右眼檢視 所準備的資料流與左光源126相聯繫,並使爲供使用者左眼 檢視所準備的資料流與右光源125相聯繫。返回至圖2,圖 塊203使多個資料流相交錯,使得該等資料流可被顯示於一 早一顯示幕上。在圖塊204中,將該等交錯的流顯示於一顯 不幕上,而同時藉由與正被顯示之資料流相聯繫之光源交 替照明該顯示幕。例如,藉由使用裝置1〇〇,當顯示幕丨1() 正顯不右眼13 6待檢視之資料流時,顯示幕i丨〇便會受到左 光源126照明。當顯示幕11〇正顯示使用者的左眼待檢視之 二貝料机日守’顯示幕Π 〇便會受到右光源1 25照明。 圖3以圖形方式例示了根據本發明之一具體實施例的資O: \ 90 \ 90299 DOC 200521559 Mirror split s ′ It consists of two partially or totally reflecting surfaces arranged around the focal point of the lens. The images are then reflected by these partially or fully reflective surfaces, leading to the user's individual eyes along a separate sub-light path. In other specific embodiments, multiple independent images can be generated by illuminating a display screen with differently polarized light sources. The generated image can be split by an asymmetric v-mirror, which is composed of a polarized beam splitting surface and a total reflecting surface arranged near the focal point of the lens. Reflects light from various sources to different sub-optical paths. Specific embodiments can also generate multiple shirt images of a single display screen by: Illuminating a display screen with a light source to polarize the light reflected from the display and then in one of several directions Change the polarization. By changing the direction of polarization, the asymmetric V mirror can be used to reorient the sub-images to different sub-optical paths. Some embodiments may also use a diffuser, in which an image of the display screen is projected on the diffuser. Transition optics with small numerical apertures can be used to project real lmage onto the diffuser, and eyepiece optics with large numerical apertures can be used to deliver images to the user's eyes. In order to use a display screen to generate different images for each eye of the user, a specific embodiment of the present invention can interlace a plurality of data streams for displaying on the single display screen, and each data stream can interact with One of multiple illumination sources is linked. The interlaced data streams can then be displayed on the display screen, while the display screen is illuminated by the associated lighting sources at the same time. In order to generate a separate image, only when the display screen is displaying a shell stream associated with a specific lighting source: 0: \ 9〇 \ 9〇299 D0c -8- 200521559, the specific lighting source is used to illuminate the The display screen generates I # fm lean streams of multiple images by polarization of light and is associated with a polarization direction. When the display screen displays a data stream, the polarization direction associated with a particular data stream is used to send the screen image of the 5 data stream along the appropriate sub-position. The multiple illumination sources used in various specific embodiments of this month may be broadband light sources, which are placed near the focus of the display lens and illuminated by passing light through a V-mirror splitter. Display. Other embodiments may use several f-band light sources, and the narrow-band light source is configured to simulate a wide f-light source. In addition, specific embodiments may arrange illumination sources adjacent to the optical axis of the system and reflect the light from these illumination sources through a partially reflective surface interposed between the splitter and the display lens. The foregoing has broadly summarized the features and technical advantages of the present invention so that the detailed description of the present invention can be better understood below. Additional features and advantages of the present invention will be described below, which form the subject of the patentable scope of the present invention. It should be understood that the disclosed concepts and specific yoke examples can be easily used as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be understood that such equivalent constructions do not depart from the invention as set forth in the scope of the accompanying patent application. When considered in conjunction with the accompanying drawings, I can better understand the novel features of its organization and operation method believed to be the characteristics of the present invention, as well as other purposes and advantages, from the description below. It should be clearly understood, however, that each of the drawings' is provided for the purpose of illustration and description only and is not intended as a definition of the scope of the invention. [Embodiment] O: \ 90 \ 90299 DOC-9-9200521559 Figure 1 illustrates a top view of a head-mounted device 100 that is not configured according to a specific embodiment of the present invention. The sub-image creation area 101 (in the device 100) creates a plurality of sub-images from a single image source. The display screen 110 may be any suitable device operable to display a visual image of the data by using an external illumination source, such as a liquid crystal display (LCD) screen. The display screen 11o is placed along a display axis 1 丨 1. In a specific embodiment, the surfaces of the display shaft 111 and the display screen 11o are exactly perpendicular to the user's face plane 17o. The display lens 115 is positioned such that f is along and perpendicular to the optical path 112 and has a display lens focal point 124. The display focal point 124 is located on the light path 112, and the area 10 is configured such that the display lens _ focus 124 is located inside the splitter 120. In a specific embodiment of the use area 10, the splitter 120 is a symmetrical V-mirror composed of the partially reflecting surface 12 1 on the right and the partially reflecting surface 122 on the left. The area 101 is configured such that the reflective surface 121 and the reflective surface 122 share a common side and are symmetrically disposed with respect to the display axis 111. Zone 101 can thus generate two completely complete and independent images of display 110 (referred to herein as sub-images), each image traveling along an independent optical path (referred to herein as a sub-path). φ includes a right light source 125 and a left light source 126 in the area 101, which are located in a line with the focus 12 of the display lens and are symmetrically arranged with respect to the display axis 1 丨. Light from the light sources 125 and 126 passes through the surfaces 121 and 122, is collimated by the display lens 115, and illuminates the display screen 110. In the specific embodiment of FIG. 1, the generated collimated light beam will be slightly inclined with respect to the optical axis 111. Display screen 11 〇 Illumination by the right light source 125 creates a display left-eye sub-image, which is focused by the lens 115 to illuminate the reflective surface 122, which reflects the left-eye display sub-image downward Redirect to sub-light path 14o. Similar to 0 \ 90 \ 90299 DOC -10- 200521559 ground, the display screen Π0 is illuminated by the left light source 丨 26, which creates a right-eye display sub-image, which is focused by the lens 115 to illuminate the reflective surface 121, and the reflective surface 丨 21 the right eye The display sub-image is redirected down to the sub-light path 1 3 0. The left-eye sub-image will travel along the sub-light path 14 and be guided to the user's left eye 146. The left-eye reflector 142 is placed along the sub-optical path 140, and the reflector is configured to change the left-eye sub-optical path 140 by 90. Direction and redirect it to the entire reflective surface in the left eyepiece optics 145. The right-eye sub-image will travel along the sub-light path 130 and be guided to the user's right eye 136. The right eye reflector 1 32 is placed along the sub-optical path 1 30, and the reflector is configured to change the right-eye sub-optical path 130 by 90. Direction and redirect it to the entire reflective surface in the right eyepiece optic η ;. The right eyepiece optical device 135 and the left eyepiece optical device 145 may be composed of a single lens or multiple lenses, and the lens is designed to appropriately enlarge the right eye sub-image and the left eye sub-image for the user's right eye. 3 (5 views And the user ’s left eye 146 to view. Some specific embodiments may use a diffuser on which a real image is created. The right and left eyepiece optics 35, 145 may then be used to magnify these images for the user to view. In order to obtain a larger viewing angle (such as 36.), these real images should be created behind the reflectors 132 and 142 and very close to the right and left eyepiece optics 135 and 145. The eyepiece optics 135 and 145 are adjustable single Lens, but other embodiments may use any configuration capable of appropriately magnifying the right-eye and left-eye sub-images for viewing by the right-eye 136 and the left-eye 146. In addition, although the reflector 132 of the device 100 is , 142 are depicted as mirrors, and surfaces 121, 122 are depicted as partially reflective surfaces, but specific embodiments are not limited to using mirrors or partially reflective surfaces to redirect a light path or sub-light path. Instead, Mirror, O: \ 90 \ 90299 DOC -11-200521559 polarized beam splitter or any other suitable configuration for redirecting an optical path or sub-optical path. The device 100 can also adjust different uses by the synchronous movement of optical components The right IPD. The right eyepiece optics 135 and the left eyepiece optics 145 can be shifted by moving 152 and ι51, respectively, to create 1150 and IPD 15 0b. Zone 1〇1 can Displacement by movement 155. When the IPD distance i50a becomes IPD 150b, the zone simultaneously moves 155 (viewed downward from FIG. 1) and moves to the plane 170. When ipd 150b becomes IPD 150a, zone 101 is simultaneously Move away from plane 170 (viewed upwards from FIG. 1). These synchronized movements allow the device 100 to adjust to fit the entire range between IPD 150a and IPD 150b 'while maintaining the reflective surface 12b 122 and eyepiece lens 135, respectively And 145 constant lengths along the sub-diameters 130 and 140. The device 100 can also perform diopter correction by additional adjustment of the movement 153 of the left eyepiece optic 145 and the movement 154 of the right eyepiece optic 135. Two off-axis can be adjusted Aperture stop 189, 199 It is placed between the display lens 115 and the splitter 120. The aperture stop is imaged near the pupil of the viewer, and its size is appropriately adjusted to cover the movement of the pupil when the user views the corner of the virtual screen (virtual scree ...). Width. In order to accommodate a large range of viewer pupil motion, the size of the aperture should be 2-3 times larger than the size necessary to transfer the spatial frequency range required for the resolution of the display 110. In order to uniformly illuminate the aperture diaphragms 189, 99, the left and right light sources U5, 126 should have an extended (non point source) size. The display screen 110 in FIG. 1 can simultaneously transmit the same image of the display screen 110 to the left and right eyes of the user. When two light sources 125 and 126 are used for simultaneous lighting 0 \ 90 \ 90299 DOC -12- 200521559, the same display screen can be used to send the image set to the user's left eye and send a different image set to the user's Right eye. When the display screen no is displayed, the same sub-images of the display screen 10 will travel along the sub-light paths mo and mo. However, if the light sources 125 and 126 alternately illuminate the display screen, FIG. 2 is a flowchart arranged according to a specific embodiment of the present invention. According to the chart, when using a single display screen, a head mounted device (such as device 100) can be used to transmit an image different from the image transmitted to the user's right eye to the user's left eye. In general, the display of a head-mounted device (such as the display of Figure 丨 11) ′ cannot display the data transmitted as a lean stream. In Figure 2, tile training prepares multiple data streams for display on the display. For example, a data stream can be prepared for the user's left eye to view, and a second data stream can be prepared for the user's right eye to view. In block 2G2, each data stream is associated with one of a plurality of illumination sources for a suitably configured head mounted display. For example, by using the device 100 of FIG. I, the data stream prepared for the right-eye view of the user can be associated with the left light source 126, and the data stream prepared for the left-eye view of the user can be associated with the right light source 125. related. Returning to Fig. 2, block 203 interleaves multiple data streams so that the data streams can be displayed on a morning display. In block 204, the interlaced streams are displayed on a display screen, while the display screen is alternately illuminated by a light source associated with the data stream being displayed. For example, by using the device 100, when the display screen 1 () is displaying the data stream to be viewed by the right eye 13 6, the display screen i 丨 〇 will be illuminated by the left light source 126. When the display screen 11 is displaying the user's left eye to be viewed, the second shell feeder day guard 'display screen Π 〇 will be illuminated by the right light source 125. FIG. 3 graphically illustrates information according to a specific embodiment of the present invention.
O:\90\90299.DOC -13- 200521559 料流之交錯及與光源之聯繫。圖形集3 1〇包含資料流3丨1及 資料流3 1 2之圖形表示。當以諸如上述方式中的一種方式使 用時’-具體實施例可藉由將每個資料流之非連續時間區 段(discrete time segment)交替地發送至一顯示器,使資料 流3 11與資料流3 1 2相交錯。例如,在時間區段34丨期間,將 資料流3 11的一部分發送至顯示幕以供顯示。在時間區段 342期間,將資料流3 12的一部分發送至顯示幕以供顯示。 圖形320顯示與資料流311相聯繫的光源之計時。當一具體 實施例將資料流311之區段(如時間區段341)發送至一顯示 器時,可藉由與此資料流相聯繫之光源(在圖形32〇中顯示 爲光源321)來照明頭戴式顯示器之顯示幕。圖形33〇顯示了 與資料流312相聯繫的光源之計時。當一具體實施例將資料 流312之區段(如時間區段342)發送至一顯示器時,可藉由與 此資料流相聯繫之光源(在圖形33〇中顯示爲光源33〇來照 明頭戴式顯示器之顯示幕。 本發明之該等具體實施例並不侷限於圖2及3所描繪之立 體鏡技術。可使用讓複數個訊號交錯的任何型式(pauern)。 實務上’該特定型式、資料流之數目及光源之數目將依應 用而定。例如,許多LCD使用色彩循序照明(c〇1〇r sequentiai illumination),意即將紅、綠及藍光脈衝發送於循序乙€1)影 像中。爲適用此,具體實施例可採用光源丨25及丨26,該等 光源利用獨立可控的紅、綠及藍光源。用於産生顯示幕丨1〇 的多個影像之其他具體實施例的另外配置--例如用具有 父替的偏振方向的光來照明顯示幕u 〇,可能需要對上述程 O:\90\90299 DOC -14- 200521559 序進行調整。 本發明之具體實施例並不侷限於諸如圖1中所描述的該 等頭戴式裝置配置。圖4係根據本發明之一具體實施例所配 置的頭戴式裝置之透視圖。頭戴式裝置4〇〇包括如關於圖1 所描述的區101,其係運行以將顯示器11〇之顯示影像分裂 成沿左眼子光徑140行進之左眼子影像、及沿右眼子光徑 1 30行進之右眼子影像。關於裝置4〇〇,左眼過渡光學器件 443沿左眼子光徑140置放,以在左眼子影像到達左眼反射 器142之前調整左眼子影像。左眼反射器142將左眼子影像 反射向左目鏡460。左目鏡460係由複合光學器件(compound optics)組成。左眼子影像到達左眼漫射器444並在該表面上 創建一實像。該左目鏡複合光學器件將自此實像爲左眼146 創建一適當放大之虛像。 類似地,一右眼子影像沿右眼子光徑13 0行進,進入右眼 過渡光學器件中433中。右眼過渡光學器件433適當地調整 該右眼顯示子影像以經右眼反射器132反射至右目鏡461 中。右目鏡461由複合光學器件組成。一右眼子影像到達右 眼漫射器434並創建一實像。藉由複合光學器件自該實像爲 右眼136創建一放大之虛像。裝置400能藉由複合光學器件 460之運動253及複合光學器件461之運動254進行屈光度校 正。 可將兩個離軸孔徑光闌470、472置放於顯示透鏡115與分 裂器420之間,以判定過渡光學器件433、443之空間頻率容 量(spatial frequency content)。因此,在圖4之具體實施例中 O:\90\90299 DOC -15- 200521559 的孔徑光闌之尺寸取決於顯示器解析度,且因此可在圖4之 具體實施例中使用較圖1中的孔徑更小之孔徑。 裝置400亦能藉由單獨的光學組塊之同步運動而進行ipD s周整。可藉由利用運動251將左目鏡460向右移位且利用運 動252將目鏡461向左移位來縮短ipd 150。關於圖4之具體 實施例,應讓過渡光學器件443與漫射器444間之子光徑140 的長度及漫射器444與目鏡460間的長度保持恒定。由此, 當中心組塊401 (包括透鏡443)垂直移離面部平面時,儘管目 鏡460在運動251中向右移動,但是漫射器444及左眼反射器 142將留在一固定位置。同樣,應讓過渡光學器件433與漫 射器434間之子光徑130的長度、及漫射器434與目鏡461間 的長度保持恒定。由此,當中心組塊401 (包括透鏡443)在運 動451中垂直移離面部平面時,儘管目鏡461在運動252中向 左移動,但是漫射器434及右眼反射器132將留在一固定位 置。 本發明之具體實施例可包括孔徑光闌470。孔徑光闌470 允許光穿過開口 471及472。可將開口 471、472交替地配置 成擋閘(shutter),其可用於阻擋自顯示幕11〇所反射的光之 傳播。藉由使用該等擋閘,裝置4〇〇可控制是否以一可容易 適應於圖2及3之立體鏡技術之方式將影像傳送至使用者的 任一眼睛。藉由交替關閉開口 471、472,並藉由將此關閉 行爲與特定資料流之顯示聯繫起來,一具體實施例可僅將 所選定資料流傳送至各只眼睛。 在圖4之具體實施例中,使用過渡光學器件433、443以大 O:\90\90299 DOC -16- 200521559 約爲1的放大率將顯示影像傳遞至漫射器434、444。該入射 實像的數值孔徑接著藉由漫射器434、444而增大。目鏡 460、461接著將在漫射器434、444上所創建的實像投影到 眼睛1 36、146中,形成放大的虛像。 本發明之具體實施例並不受限於利用分裂器區1 〇 1之配 置。圖5及5 A係根據本發明之具體實施例所配置的頭戴式裝 置之自頂向下視圖。裝置500包括子影像創建區5〇1。與區 101類似,區501生成一沿子光徑14〇行進的左眼顯示子影像 及一沿子光徑130行進的右眼顯示子影像。區5〇1之顯示幕 110有利地受到來自光源5 7 0及光源5 8 0的準直光照明,其中 該等光源經配置以分別在源光徑(source light path)576及源 光徑586附近來投影光。光源570由藍光源571組成,藍光源 5 7 1沿源光徑5 7 6配置,較佳位於顯示光學器件11 5的反射焦 點524處或其附近。藍光源571可爲任何能產生藍光的光 源,如Nichia NSCxlOO系列的發光二極體(LED)。來自藍光 源571的光穿過一第一濾色器574,該第一濾色器經配置與 源光徑576成一合適的角度,且經選擇以讓藍光通過並反射 綠光。綠光源572置放於與源光路576相鄰處,且經配置以 用某一方式來反射自遽色器574出來的光,該方式模擬了將 綠光源572置放於與藍光源571相同的位置的情形。藍光及 所反射之綠光沿源光徑576行進,穿過配置成與源光路576 成適當角度的第二濾色器575。選擇第二濾色器575使其讓 藍光及綠光通過,但反射紅光。紅光源573置放於與源光徑 5 76相鄰處,且經配置以用某一方式來反射自第二濾色器O: \ 90 \ 90299.DOC -13- 200521559 The staggering of the flow and the connection with the light source. The graphics set 3 10 includes a graphical representation of the data stream 3 1 and the data stream 3 1 2. When used in a manner such as the one described above-a specific embodiment can make the data stream 3 11 and the data stream alternately by sending discrete time segments of each data stream to a display 3 1 2 interlaced. For example, during time period 34 丨, a part of the data stream 3 11 is sent to the display screen for display. During time period 342, a portion of the data stream 312 is sent to the display for display. Graph 320 shows the timing of the light sources associated with the data stream 311. When a specific embodiment sends a section of the data stream 311 (such as the time section 341) to a display, the head may be illuminated by a light source associated with the data stream (shown as the light source 321 in the figure 32). The display of a wearable display. Figure 33 shows the timing of the light sources associated with the data stream 312. When a specific embodiment sends a section of the data stream 312 (such as the time section 342) to a display, the head may be illuminated by a light source associated with the data stream (shown as light source 33 in the figure 33). The display screen of the wearable display. The specific embodiments of the present invention are not limited to the stereo mirror technology depicted in Figs. 2 and 3. Any type (pauern) that interleaves a plurality of signals may be used. In practice, the specific type The number of data streams and the number of light sources will depend on the application. For example, many LCDs use color sequential illumination (c0100r sequentiai illumination), which means that red, green, and blue light pulses are sent in a sequential image. . To apply this, specific embodiments may use light sources 25 and 26, which use independently controllable red, green, and blue light sources. Another configuration of other specific embodiments for generating multiple images of the display screen 10-for example, to illuminate the display screen u 〇 with light having a polarization direction of the parent, may require the above process O: \ 90 \ 90299 DOC -14- 200521559. The specific embodiment of the present invention is not limited to such a head-mounted device configuration such as that described in FIG. Fig. 4 is a perspective view of a head-mounted device configured according to one embodiment of the present invention. The head-mounted device 400 includes a region 101 as described with respect to FIG. 1, which operates to split the display image of the display 11 into a left-eye image traveling along the left-eye optical path 140 and a right-eye image Right eye sub image with light path 1 30 traveling. Regarding the device 400, the left-eye transition optics 443 is placed along the left-eye sub-optical path 140 to adjust the left-eye sub-image before the left-eye sub-image reaches the left-eye reflector 142. The left-eye reflector 142 reflects the left-eye sub-image to the left eyepiece 460. The left eyepiece 460 is composed of compound optics. The left-eye sub-image reaches the left-eye diffuser 444 and creates a real image on the surface. The left eyepiece composite optic will create a properly enlarged virtual image for the left eye 146 from this real image. Similarly, a right-eye child image travels along the right-eye child's optical path 130 and enters 433 in the right-eye transition optics. The right-eye transition optics 433 appropriately adjusts the right-eye display sub-image to be reflected into the right eyepiece 461 via the right-eye reflector 132. The right eyepiece 461 is composed of a composite optical device. The right-eye sub-image reaches the right-eye diffuser 434 and creates a real image. A magnified virtual image is created from the real image for the right eye 136 by the composite optics. The device 400 can perform diopter correction by the movement 253 of the composite optical device 460 and the movement 254 of the composite optical device 461. The two off-axis aperture diaphragms 470, 472 can be placed between the display lens 115 and the splitter 420 to determine the spatial frequency content of the transition optics 433, 443. Therefore, in the specific embodiment of FIG. 4, the size of the aperture stop of O: \ 90 \ 90299 DOC -15- 200521559 depends on the resolution of the display, and therefore it can be used in the embodiment of FIG. 4 than in FIG. 1. A smaller pore size. The device 400 can also perform ipD s rounding by synchronous movement of separate optical blocks. The ipd 150 can be shortened by shifting the left eyepiece 460 to the right using movement 251 and shifting the eyepiece 461 to the left using movement 252. With regard to the specific embodiment of FIG. 4, the length of the child optical path 140 between the transition optics 443 and the diffuser 444 and the length between the diffuser 444 and the eyepiece 460 should be kept constant. Therefore, when the central block 401 (including the lens 443) is vertically moved away from the face plane, although the eyepiece 460 is moved to the right in the movement 251, the diffuser 444 and the left-eye reflector 142 will remain in a fixed position. Similarly, the length of the sub-optical path 130 between the transition optics 433 and the diffuser 434 and the length between the diffuser 434 and the eyepiece 461 should be kept constant. Thus, when the central block 401 (including the lens 443) moves vertically away from the face plane in motion 451, although the eyepiece 461 moves to the left in motion 252, the diffuser 434 and the right-eye reflector 132 will remain at one Fixed position. A specific embodiment of the present invention may include an aperture stop 470. The aperture stop 470 allows light to pass through the openings 471 and 472. The openings 471, 472 may be alternately arranged as shutters, which can be used to block the propagation of light reflected from the display screen 110. By using these shutters, the device 400 can control whether the image is transmitted to any eye of the user in a manner that can be easily adapted to the stereoscopic mirror technology of Figs. 2 and 3. By alternately closing the openings 471, 472, and by associating this closing behavior with the display of a particular data stream, a specific embodiment may transmit only the selected data stream to each eye. In the specific embodiment of FIG. 4, the transition images 433 and 443 are used to pass the display image to the diffusers 434 and 444 at a large magnification of about O: \ 90 \ 90299 DOC -16- 200521559. The numerical aperture of the incident real image is then increased by the diffusers 434, 444. The eyepieces 460, 461 then project the real images created on the diffusers 434, 444 into the eyes 1 36, 146 to form enlarged virtual images. The specific embodiment of the present invention is not limited to the configuration using the splitter area 101. 5 and 5A are top-down views of a head-mounted device configured according to a specific embodiment of the present invention. The device 500 includes a sub-image creation area 501. Similar to the area 101, the area 501 generates a left-eye display sub-image traveling along the sub-light path 140 and a right-eye display sub-image traveling along the sub-light path 130. The display screen 110 in zone 50 is advantageously illuminated by collimated light from light sources 570 and 580, where the light sources are configured to be at source light path 576 and source light path 586, respectively Come and project light nearby. The light source 570 is composed of a blue light source 571, and the blue light source 5 71 is arranged along the source light path 5 7 6 and is preferably located at or near the reflection focal point 524 of the display optical device 115. The blue light source 571 may be any light source capable of generating blue light, such as a light emitting diode (LED) of the Nichia NSCx100 series. The light from the blue light source 571 passes through a first color filter 574, which is configured to make an appropriate angle with the source light path 576, and is selected to allow blue light to pass and reflect green light. The green light source 572 is placed adjacent to the source light path 576 and is configured to reflect the light from the cyan filter 574 in a manner that simulates placing the green light source 572 on the same side as the blue light source 571 Position. The blue light and the reflected green light travel along the source light path 576 and pass through a second color filter 575 configured to make an appropriate angle with the source light path 576. The second color filter 575 is selected so that it passes blue and green light, but reflects red light. The red light source 573 is placed adjacent to the source light path 5 76 and is configured to reflect in a certain way from the second color filter
O:\90\90299 DOC -17- 200521559 575出來的光,該方式模擬了將紅光源573置放於與藍光源 571相同的位置的情形。接著,藍光、所反射之綠光及所反 射之紅光沿源光徑576行進,並經源光反射器59〇反射。在 所描繪之具體實施例中,源光反射器59〇可爲一在顯示軸 1 Π附近且沿光徑丨1 2配置的偏振反射器。所組合的藍、綠 及紅光發生偏振且被反射出源光反射器59〇,透過顯示光學 器件11 5。在所描繪之具體實施例中,顯示光學器件丨丨$係 r · 一經選擇以具有焦點丨24(及反射焦點524)的透鏡。當穿過顯 二 示光學器件11 5時,所組合的藍、綠及紅光以一與軸i丨丨略 _ 微斜交的準直光束來照明顯示器丨丨〇。 光源580由藍光源581組成,藍光源581沿源光徑586配 置’較佳位於顯示光學器件115之反射焦點524或其附近。 藍光源581可爲任何能産生藍光的光源,如Nochia NSCxlOO 系列的發光二極體(LED)。來自藍光源581的光穿過一第一 濾色器584,該第一濾色器經配置以與源光徑586成一合適 的角度’且被選擇以通過藍光並反射綠光。綠光源582置放 春 於與源光路586相鄰處,且經配置以用某一方式來反射自濾 色器584出來的光,該方式模擬了將綠光源582置放於與藍 光源58 1相同的位置的情形。藍光及所反射之綠光沿源光徑 586行進,穿過配置成與源光徑586成適當角度的第二濾色 器585。選擇第二濾色器585以使其可讓藍光及綠光通過, 但反射紅光。紅光源583置放於與源光徑586相鄰處,並經 配置以用某一方式來反射自第二濾色器585出來的光,該方 式模擬了將紅光源5 8 3置放於與藍光源5 8 1相同的位置的情 0 \90\90299 DOC -18- 200521559 形。接著,藍光、所反射之綠光及所反射之紅光沿源光徑 5 8 6行進’並經源光反射器5 9 0反射。在所描纟會之呈體實施 例中’源光反射^§ 5 9 0可爲一在顯不轴111附近且沿光徑112 配置的偏振反射器。所組合的藍、綠及紅光發生偏振且被 反射出源光反射器590,穿過顯示光學器件丨丨5。在所描繪 之具體實施例中,顯示光學器件11 5係一經選擇以具有焦點 124(及反射焦點524)的透鏡。當穿過顯示光學器件us時, 所組合的藍、綠及紅光以一與軸111略微斜交的準直光束來 照明顯示器110。 裝置500之區501進一步包含一稜鏡分裂器52〇,其被定向 於顯示透鏡焦點124附近。區501描繪了配置成以焦點124爲 中心的稜鏡分裂器520,但是該等具體實施例並不侷限於此 配置。若將光源580及光源570配置成比反射焦點524更接近 於光控112 ’則應將分裂器520配置成比焦點124離顯示器 110更遠。相反地,若將光源580及570配置成比反射焦點524 離光徑112更遠,則應將分裂器520配置成比焦點124更接近 於顯示器110。因此,本發明之具體實施例並不侷限於其中 將圖5之分裂器520 (或圖1之分裂器120、或圖4之分裂器420) 置放於顯示透鏡11 5之焦點附近的配置,而可將其配置在與 由諸如透鏡11 5的光學器件所聚焦的顯示影像所造成的減 小了的分裂體積相合的任何點處。來自光源57〇的光,自顯 示幕Π0反射出,形成了顯示幕11()之一影像,該影像經顯 示透鏡11 5聚焦,且被反射出稜鏡分裂面5 2 1並沿子光徑13 〇 行進’成爲一右眼子影像。來自光源5 8 〇的光,自顯示幕U 〇 0 \90\90299 DOC -19- 200521559 反射出’形成了顯示幕n 0之一影像,該影像經顯示透鏡n 5 聚焦’且被反射出稜鏡分裂面522並沿子光徑130行進,成 爲一左眼子影像。 該左眼子影像將沿子光徑14〇行進,且被引導至使用者的 左眼146 °左眼反射器142沿子光徑140置放,該反射器爲一 經配置以將左眼子光徑丨4〇改變9〇。方向並將其重定向至左 目鏡光學器件145中的全部反射表面。右眼子影像將沿子光 径130行進’且被引導至使用者的右暇丨36。右眼反射器132 沿子光徑1 3 0置放,該反射器爲一經配置以將右眼子光徑 130改變90。方向並將其重定向至右目鏡光學器件135中的 全部反射表面。右目鏡光學器件135及左目鏡光學器件145 可由單一或多個透鏡組成,該等透鏡經設計以分別適當放 大右眼子影像以供使用者右眼136檢視,及放大左眼子影像 以供使用者左眼146檢視。 目鏡光學器件135及145係可調整的透鏡,但其他具體實 施例可使用能適當放大右眼子影像及左眼子影像以分別供 右眼13 6及左眼14 6檢視的任何配置。此外,儘管將裝置$ 〇 〇 的反射器142、1 32描緣爲鏡,但是具體實施例並不受限於 使用鏡來重定向一子光徑。相反,可將稜鏡、部分反射表 面、偏振光束分裂器、或其他任何合適的配置用來重定向 一子光徑。 裝置500亦能爲不同使用者之不同的lpi)進行校正。藉由 左目鏡光學器件145之運動且藉由右目鏡135之運動,並同 時使光學器件之中心部分垂直於面部平面而移動,裝置5〇〇 O:\90\90299 DOC * 20 - 200521559 150。裝置500亦能藉 鏡光學器件145之運動 可進行調整以適應特定使用者之IPD 由左目鏡光學器件135之運動及右目 來進行屈光度校正。 本發明之具體實施例並不侷限於藉由自多個方向照明一 顯示幕而創建一顯示幕的多個獨立影像的情形,而可使用 任何能自—單—顯示器生成多影像的方法。圖6例示根據本 發明之具體實施例所酉己置的頭戴式顯示器之一部分的自頂 向下視圖。裝置_包括光源608,其配置於反射焦點⑽ 處,該光源的光被偏振光束分裂器69()反射並發生偏振。來 自光源608的光經透鏡115準直,經顯示器ιι〇反射,並沿著 光徑112傳播。沿光徑11()配置㈣_諸如偏振旋轉器6〇9之 偏振調整單元,其能使來自光源⑽的光之偏振發生旋轉。 偏振旋轉器能在兩個或多個方向間切換出射光(exit Hght) 之線性光偏振之方向。本發明之具體實施例並不受限於偏 振旋轉器,亦不受限於使用線性偏振光。相反,本發明之 具體實施例可使用線性、圓形、橢圓形或任何形式的偏振 光,且可使用任何允許具體實施例區分多個子影像之合適 的偏振調整單元。分裂器620爲一不對稱v鏡分裂器,其配 置在透鏡115之焦點丨24附近。分裂器62〇的表面621爲偏振 光束分裂器,且表面622爲全部反射表面。 爲將影像傳送至使用者的左眼,裝置6〇〇選擇偏振旋轉器 609的狀態,此狀態會導致光源6〇8的光經表面621沿子光徑 130反射出。爲將影像傳送至使用者的右眼,裝置6〇〇選擇 偏振旋轉器609的狀態,此狀態會導致光源6〇8的光通過表 O:\90\90299.DOC -21 - 200521559 面621並因此經表面622沿子光徑140反射出。圖6之具體實 施例亦可容易適應於圖2及3之立體鏡技術。由顯示幕丨1〇所 顯示的資料流可以一類似於上文所述之方式相交錯,且與 偏振旋轉器609之狀態相聯繫。 利用偏振來創建一顯示幕之多影像之具體實施例並不侷 限於圖6之配置。圖7例示根據本發明之另一具體實施例所 配置的頭戴式顯示器之一部分的自頂向下視圖。裝置7 〇 〇包 f 括光源708及709,該等光源經配置以用兩個共同入射之正 , 交偏振光束來照明顯示幕110。光源708傳播通過一偏振光 鲁 束分裂器。光源709經一偏振光束分裂器反射。由此,顯示 幕110受到來自光源708的按一個方向發生偏振的準直光照 明’且受到來自光源709的按另一個方向發生偏振的準直光 照明。表面7 9 0爲一部分反射表面,其對來自光源7 〇 8、7 〇 9 之光的偏振不起作用。 來自光源708、709的光一旦自顯示幕11〇反射出,即被透 鏡115聚焦於點124處。分裂器620爲一不對稱v鏡分裂器, # 其中621爲偏振光束分裂器且622爲全鏡(full mirror),且表 面621將沿子光徑13〇反射來自光源709的光,同時使來自光 · 源708的光通過以自表面622反射出。圖7之具體實施例可容 易適應於圖2及3之立體鏡技術。由顯示幕11〇所顯示的資料 流可以一類似於上文所述之方式相交錯,並接著與光源7〇8 或光源709相聯繫。藉由與相交錯之資料流的顯示節奏一致 地交替照明光源708、709,可將不同的資料傳送至使用者 的各只眼睛。 O:\90\90299.DOC -22- 200521559 ia笞上文所描述之具體實施例使用非斜交式照明,但是 一些顯示器類型(如數位光處理(DLp)或其他微鏡顯示器) 要求斜交之光束照明。爲適應該等顯示幕,可容易地將本 發明之具體實施例調節至離軸位置。例如’可將、7〇9 配置在離軸位置以照明兩個共同入射的斜交之正交偏振光 束。 儘管已經詳細描述本發明及其優勢,但是應理解,在不 脫離藉由隨附之申請專利範圍所界定的本發明的情況下, 此處可進行各種改變、替代及修改。此外,本申請案之範 圍不欲受限於本說明書中所描述之過程、機械、製造品、 物質組成、構件、方法及步驟的特定實施例。吾人自本揭 示將不難瞭解,可使用與本文所述之對應具體實施例執行 大體上相同的作用或達成大體上相同的結果、當前已㈣ 在的或以後待研發的之過程、機械、製造品、物質组成、 構件、方法或步驟。因& ’隨附之申請專利範圍欲將該等 過程、機械、製造品 '物質組成、構件、方法或步驟包括 在其範圍之内。 【圖式簡單說明】 爲更完整的理解本發明,現可結合該等隨附圖式來參考 上文的描述,其中·· 圖例不根據本發明之一具體實施例所配置的頭戴式裝 置100之頂視圖; 圖2係根據本發明之一 圖3以圖形方式例示 具體實施例所佈置的流程圖; 根據本發明之一具體實施例的 資O: \ 90 \ 90299 DOC -17- 200521559 575. This method simulates the situation where the red light source 573 is placed at the same position as the blue light source 571. Then, the blue light, the reflected green light, and the reflected red light travel along the source light path 576 and are reflected by the source light reflector 59. In the depicted specific embodiment, the source light reflector 590 may be a polarized reflector arranged near the display axis 1 Π and along the optical path 12. The combined blue, green and red light is polarized and reflected out of the source light reflector 59, and passes through the display optics 115. In the depicted specific embodiment, the display optics is a lens that is selected to have a focal point of 24 (and a reflective focal point of 524). When passing through the display optics 115, the combined blue, green and red lights illuminate the display with a collimated light beam slightly inclined to the axis i 丨 丨. The light source 580 is composed of a blue light source 581, and the blue light source 581 is arranged along the source optical path 586 'and is preferably located at or near the reflection focus 524 of the display optical device 115. The blue light source 581 may be any light source capable of generating blue light, such as a light emitting diode (LED) of the Nochia NSCx100 series. The light from the blue light source 581 passes through a first color filter 584, which is configured to make an appropriate angle with the source light path 586 'and is selected to pass blue light and reflect green light. The green light source 582 is placed adjacent to the source light path 586 and is configured to reflect the light from the color filter 584 in a manner that simulates placing the green light source 582 on the blue light source 58 1 The same location. The blue light and the reflected green light travel along the source light path 586 and pass through a second color filter 585 configured to have an appropriate angle with the source light path 586. The second color filter 585 is selected so that it can pass blue light and green light, but reflects red light. The red light source 583 is placed adjacent to the source light path 586 and is configured to reflect the light from the second color filter 585 in a manner that simulates placing the red light source 5 8 3 on the Blue light source 5 8 1 in the same position. 0 \ 90 \ 90299 DOC -18- 200521559 shape. Then, the blue light, the reflected green light, and the reflected red light travel along the source light path 586 and are reflected by the source light reflector 590. In the embodiment of the described assembly, the source light reflection ^ §590 is a polarizing reflector arranged near the display axis 111 and along the optical path 112. The combined blue, green, and red light is polarized and reflected out of the source light reflector 590 and passes through the display optics. In the depicted embodiment, the display optics 115 are lenses that have been selected to have a focal point 124 (and a reflective focal point 524). When passing through the display optics us, the combined blue, green, and red light illuminates the display 110 with a collimated light beam that is slightly oblique to the axis 111. The area 501 of the device 500 further comprises a cleaver 52, which is oriented near the focal point 124 of the display lens. Region 501 depicts a cleaver 520 configured with the focal point 124 as the center, but the specific embodiments are not limited to this configuration. If the light source 580 and the light source 570 are arranged closer to the light control 112 'than the reflection focus 524, the splitter 520 should be arranged farther from the display 110 than the focus 124. On the contrary, if the light sources 580 and 570 are arranged farther from the light path 112 than the reflection focus 524, the splitter 520 should be arranged closer to the display 110 than the focus 124. Therefore, the specific embodiment of the present invention is not limited to the configuration in which the splitter 520 of FIG. 5 (or the splitter 120 of FIG. 1 or the splitter 420 of FIG. 4) is placed near the focus of the display lens 115. Instead, it can be arranged at any point that coincides with a reduced splitting volume caused by a display image focused by an optical device such as a lens 115. The light from the light source 57 is reflected from the display screen Π0 and forms an image of the display screen 11 (). This image is focused by the display lens 115, and is reflected out of the splitting plane 5 2 1 and along the sub-light path. 13 〇 Marching 'becomes a right eye sub-image. The light from the light source 5 8 〇 is reflected from the display screen U 〇 0 \ 90 \ 90299 DOC -19- 200521559 'forms an image of the display screen n 0 which is focused by the display lens n 5' and is reflected off the edge The mirror split surface 522 travels along the sub-light path 130 and becomes a left-eye sub-image. The left-eye sub-image will travel along the sub-light path 14 and will be guided to the user's left eye 146 °. The left-eye reflector 142 is placed along the sub-light path 140. The reflector is configured to illuminate the left-eye sub-light. The path 4o changes 90. Direction and redirect it to all reflective surfaces in the left eyepiece optics 145. The right-eye sub-image will travel along the sub-light path 130 'and will be guided to the user's right side 36. The right-eye reflector 132 is placed along the sub-light path 130, and the reflector is configured to change the right-eye sub-light path 130 by 90. Direction and redirect it to all reflective surfaces in the right eyepiece optics 135. The right eyepiece optics 135 and the left eyepiece optics 145 may be composed of single or multiple lenses that are designed to appropriately magnify the right eye sub-images for viewing by the user's right eye 136 and the left eye sub-images for use, respectively. Left eye 146 view. The eyepiece optics 135 and 145 are adjustable lenses, but other embodiments may use any configuration that can appropriately enlarge the right-eye and left-eye sub-images for viewing by the right-eye 13 6 and the left-eye 14 6 respectively. In addition, although the reflectors 142, 132 of the device $ 00 are described as mirrors, the specific embodiment is not limited to using mirrors to redirect a sub-optical path. Instead, chirped, partially reflective surfaces, a polarizing beam splitter, or any other suitable configuration can be used to redirect a sub-optical path. The device 500 can also perform calibrations for different users. With the movement of the left eyepiece optics 145 and the right eyepiece 135, and the central part of the optics is moved perpendicularly to the face plane, the device 50000: \ 90 \ 90299 DOC * 20-200521559 150. The device 500 can also use the movement of the mirror optics 145 to adjust the IPD of a particular user to the diopter correction of the left eyepiece optics 135 and the right eye. The specific embodiment of the present invention is not limited to the case of creating multiple independent images of a display screen by illuminating a display screen from multiple directions, and any method capable of generating multiple images from a single-display can be used. FIG. 6 illustrates a top-down view of a portion of a head mounted display according to a specific embodiment of the present invention. The device_ includes a light source 608, which is arranged at the reflection focal point ⑽, and the light of the light source is reflected and polarized by the polarization beam splitter 69 (). The light from the light source 608 is collimated by the lens 115, reflected by the display, and propagates along the light path 112. A polarization adjusting unit such as a polarization rotator 609 is arranged along the optical path 11 (), which can rotate the polarization of the light from the light source ⑽. The polarization rotator can switch the direction of linear light polarization of the exit light (exit Hght) between two or more directions. The specific embodiment of the present invention is not limited to the polarization rotator, nor is it limited to the use of linearly polarized light. Instead, specific embodiments of the invention may use linear, circular, elliptical, or any form of polarized light, and any suitable polarization adjustment unit that allows the specific embodiment to distinguish multiple sub-images may be used. The splitter 620 is an asymmetric v-mirror splitter, which is arranged near the focal point 24 of the lens 115. The surface 621 of the splitter 62 is a polarized beam splitter, and the surface 622 is a totally reflective surface. In order to transmit the image to the left eye of the user, the device 600 selects the state of the polarization rotator 609. This state will cause the light of the light source 608 to be reflected off the sub-light path 130 through the surface 621. In order to transmit the image to the right eye of the user, the device 600 selects the state of the polarization rotator 609. This state will cause the light of the light source 60 to pass through the table O: \ 90 \ 90299.DOC -21-200521559 surface 621 and Therefore, it is reflected along the sub-optical path 140 through the surface 622. The specific embodiment of FIG. 6 can also be easily adapted to the stereo mirror technology of FIGS. 2 and 3. The data stream displayed by the display screen 10 can be interleaved in a manner similar to that described above and related to the state of the polarization rotator 609. The specific embodiment of using polarization to create multiple images of a display screen is not limited to the configuration of FIG. Fig. 7 illustrates a top-down view of a portion of a head-mounted display configured in accordance with another embodiment of the present invention. Device 70 includes light sources 708 and 709, which are configured to illuminate display screen 110 with two positive, cross-polarized light beams that are incident in common. Light source 708 propagates through a polarized beam splitter. The light source 709 is reflected by a polarized beam splitter. As a result, the display screen 110 is illuminated by the collimated light polarized in one direction from the light source 708 and illuminated by the collimated light polarized in the other direction from the light source 709. The surface 790 is a part of a reflective surface, which has no effect on the polarization of light from the light sources 708, 709. Once the light from the light sources 708, 709 is reflected from the display screen 110, it is focused by the lens 115 at the point 124. The splitter 620 is an asymmetric v-mirror splitter, where 621 is a polarized beam splitter and 622 is a full mirror, and the surface 621 will reflect the light from the light source 709 along the sub-optical path 13 and at the same time make the Light from the source 708 is reflected from the surface 622. The embodiment of FIG. 7 can be easily adapted to the stereo mirror technology of FIGS. 2 and 3. The data stream displayed by the display 110 may be interleaved in a manner similar to that described above, and then connected to the light source 708 or the light source 709. By alternately lighting the light sources 708, 709 in accordance with the display rhythm of the interlaced data stream, different data can be transmitted to each eye of the user. O: \ 90 \ 90299.DOC -22- 200521559 ia 笞 The specific embodiments described above use non-skew lighting, but some display types (such as Digital Light Processing (DLp) or other micromirror displays) require skew Beam lighting. To accommodate such displays, specific embodiments of the invention can be easily adjusted to off-axis positions. For example, ′, 709 can be arranged off-axis to illuminate two obliquely orthogonally polarized beams that are incident together. Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the invention as defined by the scope of the appended patent applications. In addition, the scope of this application is not intended to be limited to the specific embodiments of processes, machines, manufactures, material compositions, components, methods, and steps described in this specification. I will understand from the present disclosure that the processes, machinery, and manufacturing processes that are currently in progress or to be developed in the future can be performed using the same specific functions and corresponding results as the corresponding specific embodiments. Product, material composition, component, method or step. Because of the scope of the patent application accompanying & ′, it is intended to include within its scope the material composition, components, methods or steps of such processes, machines, and manufactured products. [Brief description of the drawings] For a more complete understanding of the present invention, reference may be made to the above description in conjunction with the accompanying drawings, where the illustration is not a head-mounted device configured according to a specific embodiment of the present invention Top view of 100; FIG. 2 is a flowchart illustrating the arrangement of a specific embodiment according to one of the inventions in FIG. 3; FIG.
O:\90\90299.DOC -23- 200521559 料流之父錯及與光源之聯繫。 圖4係根據本發明之_ 《具體實知例戶斤配 之透視圖; 只取式裝置 圖5及5 A係根據本發明一 往…〜 x月之具體貫施例所配置的頭戴式 裝置之自頂向下視圖; _示根據本發明之一具體 千哭之一邱八& ό s 1所配置的頭戴式顯 不。口之邛刀的自頂向下視圖;及 圖7例示根據本發明之一具體實施 干之一邱八从ώ s 斤配置的頭戴式顯 不裔之 4刀的自頂向下視圖。 【圖式代表符號說明】 100 頭戴式裝置 101 ,501 110 顯示幕 111 顯示轴 112 光徑 115 顯不透鏡 120 分裂器 121, 122 反射表面 124 焦點 125, 126, 321, 331, 570, 580, 608, 708, 709 光源 130, 140 子光徑 132 右眼反射器 0 \90\90299 DOC -24- 200521559 135 136 142 145 146 150b , 150a 151 , 152 , 153 , 154 , 155 , 251 , 252 , 253 , 254 , 451 170 189 , 199 , 470 200 310 311 , 312 320 , 330 341 , 342 400 , 500 , 600 , 700 401 433 , 443 434 , 444 460 , 461 471 , 472 右目鏡光學器件 右眼 左眼反射器 左目鏡光學器件 左眼 瞳孔間距離(IPD) 運動 面部平面 孔徑光闌 圖式 圖形集 貧料流 圖形 時間區段 裝置 中心塊 過渡光學器件 漫射器 目鏡 開口 O:\90\90299.DOC -25- 200521559 520, 521, 522 稜鏡分裂 面 524, 124R 反射焦點 571, 581 藍光源 572, 582 綠光源 573, 583 紅光源 574, 584 第一濾色 器 575, 585 第二濾色 器 576, 586 源光徑 590 源光反射 器 609 偏振旋轉 器 620 分裂器 621, 622, 790 表面 690 偏振光束分裂器 O:\90\90299.DOC -26-O: \ 90 \ 90299.DOC -23- 200521559 The father of the material flow is wrong and the connection with the light source. Fig. 4 is a perspective view of a specific practical example of household weight distribution according to the present invention; a take-only device Figs. 5 and 5 A are head-mounted configurations configured according to specific embodiments of the present invention ... to x months Top-down view of the device; _ shows a head-mounted display configured by Qiu Ba & s 1 according to one specific embodiment of the present invention. A top-down view of a mouth-to-mouth knife; and FIG. 7 illustrates a top-down view of a 4-blade head-mounted display configured according to one embodiment of the present invention. [Illustration of representative symbols of the drawings] 100 head-mounted device 101, 501 110 display screen 111 display axis 112 light path 115 display lens 120 splitter 121, 122 reflective surface 124 focus 125, 126, 321, 331, 570, 580, 608, 708, 709 Light source 130, 140 Sub-light path 132 Right eye reflector 0 \ 90 \ 90299 DOC -24- 200521559 135 136 142 145 146 150b, 150a 151, 152, 153, 154, 155, 251, 252, 253 , 254, 451 170 189, 199, 470 200 310 311, 312 320, 330 341, 342 400, 500, 600, 700 401 433, 443 434, 444 460, 461 471, 472 Right eyepiece left eye reflection Left eyepiece optics left interpupillary distance (IPD) moving face flat aperture diaphragm pattern graphic set lean stream graphic time section device center block transition optics diffuser eyepiece opening O: \ 90 \ 90299.DOC- 25- 200521559 520, 521, 522 稜鏡 Split plane 524, 124R Reflective focus 571, 581 Blue light source 572, 582 Green light source 573, 583 Red light source 574, 584 first color filter 575, 585 second color filter 576, 586 source light path 590 source light reflector 609 polarization rotator 620 splitter 621, 622, 790 surface 690 polarization beam splitter O: \ 90 \ 90299.DOC -26-