TW200521249A - Cold rolled steel sheet having aging resistance and superior formability, and method of manufacturing the same - Google Patents
Cold rolled steel sheet having aging resistance and superior formability, and method of manufacturing the same Download PDFInfo
- Publication number
- TW200521249A TW200521249A TW93138892A TW93138892A TW200521249A TW 200521249 A TW200521249 A TW 200521249A TW 93138892 A TW93138892 A TW 93138892A TW 93138892 A TW93138892 A TW 93138892A TW 200521249 A TW200521249 A TW 200521249A
- Authority
- TW
- Taiwan
- Prior art keywords
- steel sheet
- patent application
- sulfur
- less
- scope
- Prior art date
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
200521249 九、發明說明: 【考务日月所屬之技術領域】 發明領域 本發明係相關於主要適用於機動車車體、電子機械及 5其相似物之冷軋鋼片材。更特定定地,本發明係相關於一 幸鋼片材’係、藉由使用細微之沉;殿物在晶粒之固態溶液 狀l中控制碳含量之關鍵值而改善其抗老化性及塑形 性’以及該冷札鋼片材之製造方法。 10 15 【先前枝術】 發明背景 抗老化性係為一用於機動車車體、電子機械及 物之冷乾鋼片好 /、目似 气片材所需,連同其高強度及塑形性。 化」係指一诰成α Θ司「老 。成缺卩曰之張力老化現象,即所謂「j 力」係稭由當固態溶液元素,如:碳及氮:張 錯位時所料之硬化㈣成。 、⑶固定於 可透過鋁鎮靜鋼之封盒退火賦予該冷 老化性。缺而u人 減低了生產力 退火需要一延長之退火時間,因此, 之嚴重4 據在該鋼片材上之位置造成物理性質 地被使Γ=,極低碳氮(inters她1 free,^ 一 八係藉由添加增強性之碳化物或氮化4 y 元素,如· # 4、> 勿、形成 、·鈦或鈮,之後接著連續退火。 為了生成该極低碳氮鋼,必須添加該增強 氮化物,成Μ 4 1 …一化物或 成〜,如·鈦或鈮。關於此,因這些元素係可 20 200521249 能提高該再結晶溫度,該連續退火必須在一高溫下進行。 結果,此一用以製造該極低碳氮鋼之方法造成生產力之下 降且因大量能源消耗而增加了製造成本,以及嚴重的環境 問題。此外,該高温退火獨特地造成多樣之缺陷,例如: 5 碎裂、變形及類似者。而且,因鈦或鈮具有一增強之氧化 性質,這些元素產生大量之非金屬包含體,造成該鋼片材 上之表面缺陷。此外,極低碳氮鋼具有造成該鋼片材在形 成後脆化之易碎的晶粒間界,而因此被認為是所謂的一「二 級工作產品脆化」。為了預防該二級工作產品脆化,添加包 10 含硼之元素。同時,在使用該極低碳氮鋼於經過表面處理, 例如:電鍍、塗覆或類似方法,之產品之實例中,許多缺 陷典型地發生在該等產品之表面上。 為了解決該等問題,已提出不含鈦或鈮之鋼。舉例來 說,日本專利公開案第6-093376、6-093377及6-212354號揭 15 露一利用精確控制碳含量於0.0001-0.0015 wt%内之改良鋼 片材老化性的方法,其中添加在0.0001-0.003 wt%之範圍内 的硼以取代鈦或鈮。依據該等揭露,因不能充份地確保該 抗老化性,在退火該鋼之後則需淬火以確保該抗老化性。 然而,在此實例中,有一個問題是,淬火通常是在一水浴 20 中執行一水淬火,則在該鋼片材上產生一氧化覆層,且因 此伴隨著酸洗以去除該氧化覆層,因此,在該鋼片材上造 成了表面缺陷,也需要額外之製造成本。此外,因該鋼片 材具有差的平面内異向性,在該鋼片材上產生皺折及花紋 (ears) 7該方法遭遇大置材料的 >肖耗。 200521249 同時,本發明之該等發明人已提出一不含鈦或鈮之具 優異拉伸塑形性附加經改良之延展性的冷軋鋼片材的製造 方法’揭露在韓國專利公開案第2000-0039137號中。該方 法包含下列步驟:以一Ar3轉形溫度或更高溫精軋輥熱軋一 5 鋼板以提供一熱軋鋼片材,以重量百分比衡量,該鋼板包 含:0.0005 〜0.002 %的碳,0.05 〜0.03 %的錳,0.015 % 以下的磷,〇.〇1〜〇·〇8 %的鋁,o.ooi〜0.005 %的氮以及 制衡的鐵及其它不可避免的雜質,其中碳、氮、硫及磷之 組成滿足該關係式:碳+氮+硫+磷^0.025% ;在750。(:或750 10 °C以下之溫度卷曲該鋼片材;以一50〜90%之斷面收縮率 (reduction rate)冷軋該捲繞之鋼片材;且以一650〜850。(: 之溫度連續退火該冷軋鋼片材1〇秒或更久。以該方法所製 之冷軋鋼片材具有優異之延展性,同時確保該抗老化性。 然而,依據該揭露之方法,因該碳含量、氮含量、硫含量 15 及磷含量必須被控制以滿足在該冷軋鋼片材中之碳+氮+ 硫+磷$0.025%的關係式,則其必須在製造過程中加強去硫 化能力及去鱗化能力,因此,則引起了在產能及製造成本 方面的問題。考量到物理性質,因最終製造出之鋼片材的 當量強度係極度地低,其必須使用一相對為厚的材料。此 20 外,當加工時,有一問題存在於:因一極度高之平面内異 向性指數(△〇,係產生過多的皺折於該鋼片材上,造成該 鋼片材的破裂。 本發明之該等發明人也提出一製造一冷軋鋼片材之方 法,其可改良該具有一 340 MPa級-抗拉強度之高強度鋼的 200521249 等里強度’ S亥方法揭露於韓國專利公開案第2002-0049667 號。該方法包含下列步驟:以—Μ轉形溫度或更高溫齡 -鋼板以提供-熱乾鋼片材,以重量百分比衡量,該鋼板 包含.0.0005〜〇.003 %的碳,〇1 %或更少的猛,〇 〇〇3 5 〜0.02 %的硫,〇.03 〜〇 〇7 %的麟,〇 〇1 〜〇」%_,〇 〇〇5 0/。或更少的氮以及0·05〜〇 3 %的銅,其中銅/硫之原子比為 1〇 '又50 90〇/〇之斷面收縮率(reduction rate)冷乳該 捲繞之鋼片材,·且以一 7〇〇〜88代之溫度連續退火該冷乳 鋼片材_、至5分鐘。以該方法所製之冷軋鋼片材在一34〇 !〇 MPa級-高抗拉強度鋼類中具有—24〇 Mpa之經改良的等量 強度。然而,因該鋼片材之老化指數係大於3〇嫩,不能 確保此鋼片材之該抗老化性,且因該鋼片材在Μ級之可塑 性-異向性指數(rm)方面具有_〇·5或更多之高平面内異向 性指數(△0,係產生過多的敵折於該鋼片材上,造成該鋼 15 片材的破裂。 同時,一冷軋鋼片材在習知中係為已知’其為一且有 該抗老化性之高強度冷軋鋼片材,且其係藉由添加0.3〜 0.7。/。之财鈦至―祕仙”造,#找碳射增加鱗 的含量。該純㈣材具有-於G〜咐之延展性_脆性轉 換溫度’也就是’該冷軋編材具有差的二級讀產品脆 化以致在室溫碰撞時造成破裂。 【發明内容】 發明概要 20 200521249 因此,本發明係有鑒於上述問題而製造,且本發明之 一目的係為提供一具有經改良塑形性及抗老化性且不添加 鈦或鈮之冷軋鋼片材,以及製造該冷軋鋼片材之方法。 本發明之另一目的為提供一具有優異當量強度、強度-5 延展性平衡特性、抗二級工作產品脆化性、及低平面内異 向性卻具有一在預定層級或以上層級之可塑性-異向性指 數的冷軋鋼片材,及製造該冷軋鋼片材之方法。 依據本發明,可藉由提供一冷軋鋼片材而完成以上及 其它之目的,該冷軋鋼片材包含:以重量百分比衡量,0.003 10 °/。或更少的碳,0.003〜0.03 %的硫,0.01〜0.1 %的鋁,0.02 %或更少的氮,0.02 %或更少的磷,0.03〜0.2 %的錳及 0.005〜0.2 %的銅之至少一者,以及制衡的鐵及其它不可 避免的雜質,其中,當該鋼片材包含錳及銅之一時,錳、 銅及硫之組成滿足以下關係式之一 :0.58*錳/硫S10以及 15 1^0.5*銅/硫<10,而當該鋼片材包含錳及銅兩者時,錳、 銅及硫之組成滿足該關係式:錳+銅S0.3且2<0.5*(錳+銅)/ 硫S20,且其中沉澱物MnS、CuS和(Mn,Cu)S具有0.2 μηι或更 小之平均尺寸。 本發明之冷軋鋼片材可依據至少一選擇自由錳及銅所 20 組成之群組的添加劑而分類,即是,(1)單獨錳添加之鋼(排 除銅,也被指稱為「MnS-沉殿鋼」),(2)單獨銅添加之鋼 (排除錳,也被指稱為「CuS-沉澱鋼」),以及(3)錳及銅添 加之鋼(也被指稱為「MnCu-沉澱鋼」),其詳細敘述如下。 (])該MnS-沉澱鋼包含:以重量百分比衡量,0.003 % 200521249 或更少的碳,0.005〜0.03 °/〇的硫,0·01〜0.1 %的鋁,0 02 %或更少的氮,0.2 %或更少的磷,0.05〜0.2 %的錳,以 及制衡的鐵及其它不可避免的雜質,其中錳及硫之組成滿 足以下關係式:0.58*錳/硫<10以及沉澱物MnS具有0.2 μηι 5 或更小之平均尺寸。一製造MnS-沉激鋼之方法包含以下步 驟··以一 Αι·3轉形溫度或更高溫精軋輥熱軋一鋼板以提供_ 熱軋鋼片材,在再加熱該鋼板至一 ll〇〇°C或更高溫之溫度 後,以重量百分比衡量,該鋼板包含:0·003 %或更少的碳, 10 15 20 0.005〜〇·〇3 %的硫,0.01〜0.1 %的鋁,〇 〇2 %或更少的 氮,〇·2 %或更少的磷,0.05〜〇·2 0/。的錳,以及制衡的鐵 及其它不可避免的雜質,其中錳及硫之組成滿足以下關係 式:〇·58*锰/硫U0 ;以一200 t:/分鐘或更高的速度冷卻 。亥鋼片材,在一 700 C或更低溫下捲繞該冷卻之鋼片材, 冷札該捲繞之鋼片材且連續退火該冷軋鋼片材。 (2)該CuS-沉澱鋼包含:以重量百分比衡量,〇 〇〇〇5〜 0.003 %的碳,0·003〜0·025 %的硫,〇 〇卜〇 〇8 %的在呂, 〇·〇2 %或更少的氮,0·2 %或更少白勺石舞,〇·〇卜〇·2 %的銅, 以及制衡的鐵及其它不可避免的雜質,其中銅及硫之組成 滿足以下關係式.BG.5*鋼/硫训以及沉激物⑽具有〇】 μ或更j、之平均尺寸。冑造CuS-沉题鋼之方法包含以下步 驟:以— Ar3轉形溫度或更高溫精軋链熱^鋼板以提供-熱軋鋼片#,在再加熱該鋼板至—晰或更高溫之溫度 後4鋼板包含.以重董百分比衡量,〇⑼〜〇 _ 〇/。的 0.003 ^0.025 〇/〇^,, 〇.〇^〇〇8%^g5〇〇2%^£ 10 200521249 少的氮’ 0·2 %或更少的填,〇·〇ι〜〇.2。的銅,以及制衡 的鐵及其它不可避免的雜質,其中銅及碳之組成滿足以下 關係式· 1^0.5*鋼/硫^10 ;以—3〇〇 〇c/分鐘的速度冷卻該 鋼片材,在一700°C或更低溫下捲繞該冷卻之鋼片材,冷 5軋該捲繞之鋼片材且連續退火該冷軋鋼片材。 (3)該MnCu-沉澱鋼包含:以重量百分比衡量,〇 〇〇〇5 〜0.003 %的碳,0.003 〜0.025。/。的硫,〇.〇1 〜〇·〇8 %的鋁, 0.02 %或更少的氮,〇·2 °/〇或更少的填,〇 〇3〜〇·2。/。的猛, 0.005〜0·2 %的銅,以及制衡的鐵及其它不可避免的雜 10質,其中猛、銅及硫之組成滿足以下關係式··猛+銅<〇 3 及2<0·5*(錳+銅)/硫S20,以及其中沉澱物MnS、CuS及(Mu, Cu)S具有0·2 μηι或更小之平均尺寸。一製造MnCu-沉澱鋼之 方法包含以下步驟:以一 Ar3轉形溫度或更高溫精軋|昆熱軋 一鋼板以提供一熱軋鋼片材,在再加熱該鋼板至_丨丨⑼。€ 15 或更南溫之溫度後,該鋼板包含:以重量百分比衡量, 0.0005 〜0·003 %的碳,0.003 〜0.025 %的硫,〇.〇1 〜〇 〇8 % 的鋁,0.02 °/。或更少的氮,0.2 %或更少的鱗,〇.〇3〜ο』0/。 的錳,0.005〜0.2 %的銅,以及制衡的鐵及其它不可避免 的雜質,其中錳、銅及硫之組成滿足以下關係式:I孟+銅 20 S0.3及2<0·5*(錳+銅)/硫<20 ;以一300 °C/分鐘的速度冷卻 該鋼片材’在一 7 0 〇 C或更低溫下捲繞該冷卻之鋼片材, 冷軋該捲繞之鋼片材且連續退火該冷軋鋼片材。 該上述之冷軋鋼片材係較佳地應用於具延伸性且在 340 MPa級或更高抗拉強度之高強度冷軋鋼片材一類中具 200521249 有一240 MPa級之抗拉強度的冷軋鋼片材。 在一240 MPa-級之可延伸冷軋鋼片材之實例中,該鋼 片材包含0.003 %或更少的碳,〇·〇〇3〜〇 〇3 0/〇的硫,〇 〇1〜 0.1 %的紹’ 0.004 %或更少的氮,〇 〇15 %或更少的鱗,〇·〇3 5〜〇·2 %的錳及0.005〜0.2 %的銅之至少一者,,以及制衡 的鐵及其它不可避免的雜質,以重量百分比衡量,其中, 當该鋼片材包含猛及銅之一時,龜、銅及硫之組成滿足以 下關係式之一 · 0.58*锰/硫S10以及H5*銅/硫<1〇,而當 該鋼片材包含猛及銅兩者時,龜、銅及硫之組成滿足該關 10 係式··锰+銅^0.3且2<0·5*(猛+銅)/硫<20,且其中沉殿物 MnS、CuS和(Mn, Cu)S具有0.2 μιτι或更小之平均尺寸。 在一 340 MPa-級或更高級之高強度冷軋鋼片材之實 例中,其可被分類為其中磷、矽及鉻之一或二者(作為固態 -溶液加強元素)添加於該可延伸冷軋鋼片材之鋼材,以及其 15中增加氮(作為沉殿加強元素)含量於該可延伸冷軋鋼片材 之鋼材。也就是,所欲的是,0.2 %或更少之璘,〇 1 〇 $ 之石夕,以及0.2〜L2 %之鉻的一或二者被包含於該可延伸^ 軋鋼片材中。若單獨添加磷於該可延伸冷札鋼片材中 佳的是添加〇·〇3〜0.2 %之磷至該可延伸冷乾鋼片材 。 20 地,可利用藉由增加氮含量至0·005〜〇·〇2 〇/〇及添力〇 °晕 0.06 %之構而致之Α】Ν沉殿物而確保高強度特十生 為了更加強該冷軋鋼片材之塑形性,兮4 片材更可包 性,該鋼片材 含0.01〜0·2 %之鉬,以及為了確保其抗老化小 更可包含0.01〜0.2 %的釩。 12 200521249 圖式簡單說明 本發明之該等上述及其它目的、特徵及其它之優點將 k下列伴隨所附圖式之詳細的敘述而被更清楚地了解,其 5中: 第la至lc圖為圖形表示,其說明在一晶粒中之固態溶 液狀態内碳含量相對於一沉殿物之尺寸的變化; 第2a及2b圖為說明MnS沉殿物之尺寸相對於冷卻速率 之圖形表示; 1〇 第3&至允圖為說明CuS沉澱物之尺寸相對於冷卻速率 之圖形表示;以及 第4a及扑圖為說明MnS、CuS及(Mn5Cu)S沉澱物之尺寸 相對於冷卻速率之圖形表示。 15 〔實施方式】 較佳實施例之詳細說明 現在將詳細敘述本發明之較佳實施例。然而,可了解 的是,本發明並不侷限於這些較佳實施例。 本發明之發明人在不添加鈦及鈮且加強鋼片材之抗老 2〇化性之研究中已發現了一些如下所述之新的事實。該事實 為:MnS、CuS及(Mn,Cu)S之細微沉澱物玎適當地控制在一 晶粒之固態溶液狀態中的碳含量(也就是,固態溶液碳),且 造成經加強之抗老化性。由於沉殿補強作用,這些沉殿物 在增加當里強度’加強強度-延展性之平衡特性以及該鋼片 13 200521249 材之平面内異向性指數方面具有正面之影響。 士第1圖所示’可見的^1,當該MnS、CuS&(Mn,Cu)s 之沉殿物係愈細微地分佈時,係、減少在—晶粒中之固態溶 液碳的含量。因存在於一晶粒中之固態溶液碳係相對地自 5由移動,碳係經移動且結合至可移動之錯位,影響該鋼片 材之老化特性。因此,當在於該晶粒中之固態溶液碳的含 里係降低至一預定之層級時,可加強該抗老化性。基於確 保該抗老化性,在於一晶粒中之固態溶液碳的含量係最多 為20 ppm或更少,且較佳為15 ppm或更少。第“至。圖係 10為包含0.003 %碳之鋼材的圖形表示,及可見的是,當該 MnS、CuS及(Mn,Cu)S之沉澱物係以〇 2 μΐΉ或更小之尺寸分 散時,在於該晶粒中之固態溶液碳的含量係較佳地控制為 20 ppm或更少。關於用以控制在於該晶粒中之固態溶液碳 的含量至15 ppm或更少(螂為最合適之狀況)之該沉澱物的 15尺寸,如從第1圖可見,MnS之沉澱物具有約〇.2 μπι或更小 之尺寸’ CuS之沉澱物具有約〇·ι #爪或更小之尺寸及MnS、 CuS和(Mn,Cu)S之沉澱物係具有約〇」μηι或更小之尺寸。 如此’為了控制在於該晶粒中之固態溶液碳的含量為 20 ppm或更少,重要的是,在該鋼材包含0 003 wt%或更少 20 之碳的狀況下,將MnS、CuS和(Mn,Cu)S之沉澱物微細地分 佈。依據本發明,帶有MnS、CuS和(Mn,Cu)S之微細沉澱物, 該碳含量係較佳地增加至0.003 wt%,其在一鋼材製造方法 中導致一低負載。 注意到如此之新事實,則有一對於微細地分佈該 14 200521249200521249 IX. Description of the invention: [Technical field to which the sun and moon belong] Field of the invention The present invention relates to cold-rolled steel sheets mainly applicable to automobile bodies, electronic machinery, and the like. More specifically, the present invention is related to the Yixing Steel Sheets' system, which improves its aging resistance and shaping by using a fine sinker; a key value for controlling the carbon content in the solid solution state of the crystal grains. Properties' and a method for manufacturing the cold rolled steel sheet. 10 15 [Prior art] Background of the invention The anti-aging property is a cold-dry steel sheet for automobile body, electronic machinery and materials. It is required for the appearance of air sheet, as well as its high strength and plasticity. . "Transformation" refers to the phenomenon of tension aging that has become α Θ "old. Success", that is, the so-called "j force" is the hardening of the straw when solid solution elements such as carbon and nitrogen: to make. (3) It is fixed to the cold-aging property by sealing the box through aluminum-killed steel. In the absence of a reduction in productivity, annealing requires an extended annealing time. Therefore, the physical properties of the steel sheet caused by Γ =, extremely low carbon and nitrogen (inters 1 free, ^ 1) The eight series is made by adding enhanced carbides or nitriding 4 y elements, such as · # 4, > Do, Form, Titanium or Niobium, followed by continuous annealing. In order to produce this extremely low carbon nitrogen steel, it must be added Reinforced nitride, M 4 1… one compound or ~, such as titanium or niobium. In this regard, since these elements can increase the recrystallization temperature, the continuous annealing must be performed at a high temperature. As a result, This method for manufacturing the extremely low carbon nitrogen steel caused a decrease in productivity and increased manufacturing costs due to a large amount of energy consumption, as well as serious environmental problems. In addition, the high temperature annealing uniquely caused various defects, such as: 5 broken Cracking, deformation and the like. Moreover, because titanium or niobium has an enhanced oxidizing property, these elements generate a large number of non-metallic inclusions, causing surface defects on the steel sheet. In addition, extremely low carbon nitrogen steel tools The brittle grain boundary that caused the steel sheet to become brittle after it was formed, and is therefore considered to be a so-called "secondary work product embrittlement." To prevent the secondary work product from embrittlement, the inclusion package 10 contains Element of boron. At the same time, in the case of using the ultra-low carbon nitrogen steel in the surface treatment of products such as plating, coating or the like, many defects typically occur on the surface of these products. In order to solve For these problems, steels containing no titanium or niobium have been proposed. For example, Japanese Patent Laid-Open Nos. 6-093376, 6-093377, and 6-212354 disclose 15 Luyi uses precise control of carbon content to 0.0001-0.0015 wt% Method for improving the aging resistance of steel sheet, in which boron is added in the range of 0.0001 to 0.003 wt% to replace titanium or niobium. According to these disclosures, because the aging resistance cannot be sufficiently ensured, the steel is annealed. Thereafter, quenching is required to ensure the aging resistance. However, in this example, there is a problem that quenching is usually performed in a water bath 20 in a water bath, and an oxide coating is generated on the steel sheet, and So with pickling The oxide coating is removed, so surface defects are caused on the steel sheet, and additional manufacturing costs are also required. In addition, the steel sheet has poor in-plane anisotropy, and wrinkles are generated on the steel sheet. 7) This method encounters > Xiao consumption of Dazhi material. 200521249 At the same time, the inventors of the present invention have proposed an excellent stretch moldability without titanium or niobium and an improved extension. A method for manufacturing a cold-rolled steel sheet that is flexible is disclosed in Korean Patent Publication No. 2000-0039137. The method includes the following steps: hot-rolling a 5 steel plate at an Ar3 transformation temperature or higher, to provide a hot-rolled steel Sheet material, as measured by weight percentage, the steel sheet contains: 0.0005 to 0.002% carbon, 0.05 to 0.03% manganese, 0.015% or less phosphorus, 0.001 to 0.08% aluminum, o.ooi to 0.005 % Of nitrogen, iron and other unavoidable impurities, among which the composition of carbon, nitrogen, sulfur and phosphorus satisfies the relationship: carbon + nitrogen + sulfur + phosphorus ^ 0.025%; at 750. (: Or crimp the steel sheet at a temperature below 750 10 ° C; cold-roll the rolled steel sheet at a reduction rate of 50 to 90%; and at a temperature of 650 to 850. (: The cold-rolled steel sheet is continuously annealed at a temperature of 10 seconds or more. The cold-rolled steel sheet produced by this method has excellent ductility while ensuring the aging resistance. However, according to the disclosed method, the carbon Content, nitrogen content, sulfur content 15 and phosphorus content must be controlled to satisfy the relationship of carbon + nitrogen + sulfur + phosphorus $ 0.025% in the cold rolled steel sheet, then it must strengthen the desulfurization ability and Scaling ability, therefore, causes problems in terms of production capacity and manufacturing cost. Considering physical properties, because the equivalent strength of the final manufactured steel sheet is extremely low, it must use a relatively thick material. This In addition, when processing, there is a problem in that: due to an extremely high in-plane anisotropy index (Δ〇, excessive wrinkles are generated on the steel sheet, causing the steel sheet to crack. The present invention The inventors also proposed a manufacturing of a cold rolled steel sheet A method that can improve the 200521249 equal strength of the high strength steel with a 340 MPa grade-tensile strength is disclosed in Korean Patent Publication No. 2002-0049667. The method includes the following steps: Deformation temperature or higher-steel sheet to provide-hot-dried steel sheet, the steel sheet contains .0.0005 to 0.003% carbon, 0.001% or less, and 5%. ~ 0.02% sulfur, 0.03 ~ 〇07% lin, 0.001 ~ 〇 ″% _, 〇0055 0 /. Or less nitrogen and 0.05 ~ 03% copper, of which The copper / sulfur atomic ratio is 10 'and the reduction rate of 50 90/0 is cold. The rolled steel sheet is continuously annealed at a temperature of 700-88 generations. Cold milk steel sheet _, to 5 minutes. The cold-rolled steel sheet produced by this method has an improved equivalent strength of -24 MPa in a 340,000 MPa-high tensile strength steel. However, because the aging index of the steel sheet is greater than 30, it is not possible to ensure the aging resistance of the steel sheet, and because of the plasticity-anisotropy of the steel sheet at the M level In terms of the index (rm), it has a high in-plane anisotropy index of _0.5 or more (△ 0, which generates too many enemy folds on the steel sheet, causing the fracture of the steel 15 sheet. At the same time, a The cold-rolled steel sheet is known in the art 'It is a high-strength cold-rolled steel sheet with the same anti-aging property, and it is added by adding 0.3 ~ 0.7造 , # Find carbon injection to increase the content of scales. The pure slab has-ductility ~ brittleness_brittleness transition temperature ', that is, the cold-rolled knitting material has poor secondary readability and embrittlement at room temperature. Causes rupture during collision. [Summary of the Invention] Summary of the Invention 20 200521249 Therefore, the present invention is made in view of the above problems, and an object of the present invention is to provide a cold-rolled steel sheet having improved moldability and aging resistance without adding titanium or niobium. And a method for manufacturing the cold-rolled steel sheet. Another object of the present invention is to provide a plasticity with excellent equivalent strength, strength -5 ductility balance characteristics, resistance to embrittlement of secondary work products, and low-plane anisotropy at a predetermined level or higher- Anisotropic index cold rolled steel sheet, and method for manufacturing the cold rolled steel sheet. According to the present invention, the above and other objects can be accomplished by providing a cold-rolled steel sheet. The cold-rolled steel sheet includes: 0.003 10 ° / in terms of weight percentage. Or less carbon, 0.003 ~ 0.03% sulfur, 0.01 ~ 0.1% aluminum, 0.02% or less nitrogen, 0.02% or less phosphorus, 0.03 ~ 0.2% manganese and 0.005 ~ 0.2% copper At least one, and iron and other unavoidable impurities that are balanced, wherein when the steel sheet contains one of manganese and copper, the composition of manganese, copper and sulfur satisfies one of the following relations: 0.58 * manganese / sulfur S10 and 15 1 ^ 0.5 * copper / sulfur < 10, and when the steel sheet contains both manganese and copper, the composition of manganese, copper and sulfur satisfies the relationship: manganese + copper S0.3 and 2 < 0.5 * ( Manganese + copper) / sulfur S20, and the precipitates MnS, CuS, and (Mn, Cu) S have an average size of 0.2 μm or less. The cold-rolled steel sheet of the present invention can be classified according to at least one additive selected from the group consisting of 20 free manganese and copper, that is, (1) steel added with manganese alone (excluding copper, also referred to as "MnS-sink Dian Steel "), (2) steel added with copper alone (excluding manganese, also referred to as" CuS-precipitated steel "), and (3) steel added with manganese and copper (also referred to as" MnCu-precipitated steel " ), Which is described in detail below. (]) The MnS-precipitated steel contains: 0.003% 200521249 or less carbon, 0.005 to 0.03 ° / 0 sulfur, 0.01 to 0.1% aluminum, and 022 or less nitrogen in weight percent , 0.2% or less of phosphorus, 0.05 ~ 0.2% of manganese, and balanced iron and other unavoidable impurities, among which the composition of manganese and sulfur satisfies the following relationship: 0.58 * manganese / sulfur < 10 and precipitate MnS Has an average size of 0.2 μηι 5 or less. A method for manufacturing MnS-sinking steel includes the following steps: hot rolling a steel plate with an Al 3 transformation temperature or higher finishing roll to provide a _ hot rolled steel sheet, and reheating the steel plate to 110 ° After a temperature of C or higher, the steel sheet contains, in terms of weight percent, carbon: 0.003% or less, 10 15 20 0.005 to 0.003% sulfur, 0.01 to 0.1% aluminum, 0.002 % Or less nitrogen, 0.2% or less phosphorus, 0.05 to 0.20 /. Manganese, as well as iron and other unavoidable impurities, among which the composition of manganese and sulfur satisfies the following relationship: 0.58 * manganese / sulfur U0; cooling at a rate of 200 t: / min or higher. For Hai steel sheet, the cooled steel sheet is wound at a temperature of 700 C or lower, the rolled steel sheet is chilled and the cold-rolled steel sheet is continuously annealed. (2) The CuS-precipitated steel contains: 0.005 to 0.003% of carbon, 0.003 to 0.025% of sulfur, and 0.0000% to 80% of Cr, measured in weight percent. 〇2% or less of nitrogen, 0.2% or less of stone dance, 〇〇〇2. 2% of copper, and the balance of iron and other unavoidable impurities, in which the composition of copper and sulfur meet The following relationship. BG.5 * steel / sulfur training and stimulus 激 have an average size of 0] μ or more. The method of fabricating CuS-sinking steel includes the following steps: finishing rolling the hot-chain steel plate with-Ar3 transformation temperature or higher to provide -hot-rolled steel sheet #, and then reheating the steel plate to a clear or higher temperature 4 steel plates are included. Measured as a percentage of heavy directors, 〇⑼〜〇_ 〇 /. 0.003 ^ 0.025 〇 / 〇 ^ ,, 〇〇〇〇〇〇8% ^ g50〇2% ^ £ 10 200521249 less nitrogen '0.2% or less fill, 〇〇〇〜0.2 . Copper, as well as iron and other unavoidable impurities, wherein the composition of copper and carbon satisfies the following relationship: 1 ^ 0.5 * steel / sulfur ^ 10; cooling the steel sheet at a rate of -3000c / min The rolled steel sheet is rolled at a temperature of 700 ° C or lower, the rolled steel sheet is cold rolled 5 times and the cold rolled steel sheet is continuously annealed. (3) The MnCu-precipitated steel contains: 0.005 to 0.003% carbon, and 0.003 to 0.025 in terms of weight percentage. /. Sulfur, 0.001 to 0.08% aluminum, 0.02% or less nitrogen, 0.2 ° / 〇 or less filling, 〇03 ~ 〇2. /. Meng, 0.005 ~ 0.2% copper, and iron and other unavoidable impurities 10, among which the composition of Meng, copper and sulfur satisfies the following relationship: Meng + copper < 〇3 and 2 < 0 5 * (manganese + copper) / sulfur S20, and the precipitates MnS, CuS, and (Mu, Cu) S therein have an average size of 0.2 μm or less. A method for manufacturing a MnCu-precipitated steel includes the following steps: finishing rolling at an Ar3 transformation temperature or higher | hot rolling a steel sheet to provide a hot-rolled steel sheet, and reheating the steel sheet to _ 丨 丨 ⑼. After a temperature of € 15 or more, the steel sheet contains: 0.0005 to 0.003% carbon, 0.003 to 0.025% sulfur, 0.001 to 0.08% aluminum, 0.02 ° / . Or less nitrogen, 0.2% or less scale, 0.03 ~ ο "0 /. Manganese, 0.005 ~ 0.2% copper, and iron and other unavoidable impurities in balance, among which the composition of manganese, copper and sulfur satisfies the following relationship: I Men + Copper 20 S0.3 and 2 < 0 · 5 * ( Manganese + copper) / sulfur <20; cooling the steel sheet at a rate of 300 ° C / min 'to wind the cooled steel sheet at 700 ° C or lower, cold rolling the wound The steel sheet is continuously annealed. The above-mentioned cold-rolled steel sheet is preferably applied to cold-rolled steel sheets having a tensile strength of 200521249 to 240 MPa in a class of high-strength cold-rolled steel sheets having elongation and tensile strength of 340 MPa or higher. material. In an example of a 240 MPa-grade extensible cold-rolled steel sheet, the steel sheet contains 0.003% or less carbon, 0.003 to 0.003 0/0 sulfur, 0.001 to 0.1 % Of Shao '0.004% or less of nitrogen, 0.015% or less of scale, 0.03 to 5 to 0.2% of manganese and 0.005 to 0.2% of copper, and checks and balances Iron and other unavoidable impurities, measured by weight percentage, where when the steel sheet contains one of copper and copper, the composition of turtle, copper and sulfur satisfies one of the following relations: 0.58 * manganese / sulfur S10 and H5 * Copper / sulfur < 10, and when the steel sheet contains both copper and copper, the composition of tortoise, copper and sulfur satisfies the relationship of the 10-series formula ·· manganese + copper ^ 0.3 and 2 < 0 · 5 * ( Titanium + copper) / sulfur < 20, and the sinks MnS, CuS and (Mn, Cu) S have an average size of 0.2 μm or less. In an example of a 340 MPa-grade or higher high-strength cold-rolled steel sheet, it can be classified as one or both of phosphorus, silicon, and chromium (as a solid-solution strengthening element) added to the extensible cold-rolled steel sheet. The steel material of the rolled steel sheet, and the steel material of which 15 has an increased nitrogen (as a strengthening element of the sinking hall) in the extensible cold rolled steel sheet. That is, it is desirable that one or both of 0.2% or less of ytterbium, 〇1〇 $ Shi Xi, and 0.2 ~ L2% of chromium are included in the extensible steel sheet. If phosphorus is added to the extensible cold-rolled steel sheet alone, it is preferable to add 0.03 to 0.2% of phosphorus to the extensible cold-dried steel sheet. 20 places, can be used to increase the nitrogen content to 0. 005 ~ 〇 〇 2 〇 / 〇 and add power 0 ° halo 0.06% due to the structure A] N Shendian objects to ensure high strength in order to more Strengthen the plasticity of the cold-rolled steel sheet, 4 sheets are more packageable, the steel sheet contains 0.01 ~ 0.2% molybdenum, and in order to ensure its resistance to aging, it can also contain 0.01 ~ 0.2% vanadium . 12 200521249 The drawings briefly explain the above and other objects, features, and other advantages of the present invention. The following will be understood more clearly with the detailed description of the attached drawings, in which 5: Figures 1a to 1c are Graphical representation, which illustrates the change of carbon content relative to the size of a sinker in the state of a solid solution in a grain; Figures 2a and 2b are graphical representations illustrating the size of a MnS sinker relative to the cooling rate; 1 The 3rd & perfect chart is a graphical representation illustrating the size of the CuS precipitates relative to the cooling rate; and the 4a and patters are graphical representations illustrating the size of the MnS, CuS, and (Mn5Cu) S precipitates relative to the cooling rate. [Embodiment] Detailed description of the preferred embodiment The preferred embodiment of the present invention will now be described in detail. However, it is understood that the present invention is not limited to these preferred embodiments. The inventors of the present invention have discovered some new facts as described below in the study of strengthening the ageing resistance of steel sheets without adding titanium and niobium. This fact is that the fine precipitates of MnS, CuS, and (Mn, Cu) S 玎 properly control the carbon content in a solid solution state of a grain (ie, solid solution carbon), and cause enhanced anti-aging Sex. Due to the reinforcing effect of the Shen Dian, these Shen Dian objects have a positive impact on increasing the current strength ’and strengthening the strength-ductility balance characteristics as well as the in-plane anisotropy index of the steel sheet 13 200521249. As can be seen in Figure 1 as shown in Fig. 1, as the MnS, CuS & (Mn, Cu) s sinker system is distributed more finely, the content of solid solution carbon in the grains is reduced. Because the solid solution carbon existing in a grain moves relatively freely, the carbon system moves and combines with the movable dislocation, which affects the aging characteristics of the steel sheet. Therefore, when the content of the solid solution carbon in the crystal grains is reduced to a predetermined level, the aging resistance can be enhanced. Based on ensuring the aging resistance, the solid solution carbon content in a grain is at most 20 ppm or less, and preferably 15 ppm or less. No. "to. Figure 10 is a graphical representation of a steel containing 0.003% carbon, and it can be seen that when the precipitates of MnS, CuS and (Mn, Cu) S are dispersed in a size of 0 2 μΐΉ or less The content of solid solution carbon in the crystal grains is preferably controlled to 20 ppm or less. Regarding to control the content of solid solution carbon in the crystal grains to 15 ppm or less (the most suitable is beetle 15) size of the precipitate, as can be seen from Fig. 1, the precipitate of MnS has a size of about 0.2 μm or less, and the precipitate of CuS has a size of about 0 · m #claw or less And the precipitates of MnS, CuS and (Mn, Cu) S have a size of about 0 "μm or less. In this way, in order to control the solid solution carbon content in the crystal grains to be 20 ppm or less, it is important that the MnS, CuS and ( The precipitates of Mn, Cu) S are finely distributed. According to the present invention, the carbon content of fine precipitates with MnS, CuS and (Mn, Cu) S is preferably increased to 0.003 wt%, which results in a low load in a steel manufacturing method. Noting such a new fact, there is a pair of finely distributed 14 200521249
MnS、CuS和(Mn,Cu)S沉澱物之方法的新研究。該等結果顯 現出:所需的是,控制錳、銅及硫之含量以及這些元素在 該鋼材中之組成,以及可藉由控制熱軋後之冷卻率而得^ 微細粒子。 5 第2圖係為在熱軋一鋼片材後,對照冷卻速率調查沉凝 物尺寸後所得之圖形表示,該鋼片材包含··以重量百分比 衡量,0.0018 °/〇的碳、0.15 °/〇的錳、0.008 %的磷、〇.〇15 % 的硫、0.03 °/〇的ί呂以及0.0012 %的氮(其中0·58*|孟/碳 =5.8)。參照第2a圖,可發現的是,當在錳及硫之組成滿足 10 該關係式:0.58*錳/硫<10之狀況下,適當地控制該鋼片材 的冷卻速率時,該MnS沉殿物之尺寸可為〇·2 μΐΉ或更小。 第3a圖係為在熱軋一鋼片材後,對照冷卻速率調查;冗 澱物尺寸後所得之圖形表示,該鋼片材包含:以重量百分 比衡量,0.0018 %的碳、〇.〇1 %的磷、0.008 °/〇的硫、〇.〇5 % 15 的鋁、0.0014 %的氮以及0.041 %的銅(其中0.5*銅/硫 =2.56)。參照第3a圖,可發現的是,當在銅及硫之組成滿 足該關係式:0.5*銅/硫<1〇之狀況下,適當地控制該鋼片 材的冷卻速率時,該CuS沉澱物之尺寸可為0.1 μηι或更小。 第4a圖係為在冷軋一鋼片材後,對照冷卻速率調查沉 20 澱物尺寸後所得之圖形表示,該鋼片材包含:以重量百分 比衡量,0.0025 °/〇的碳、〇·13 %的錳、0.009 %的磷、0.015 %的硫、0.〇4 %的鋁、〇.〇〇29 %的氮以及〇.〇4 %的銅(其中 錳+銅=0.17且0.5*(錳+銅)/硫=5.67)。參照第4a圖,玎發現 的是,當在錳、銅及硫之組成滿足該關係式:錳+銅 ]5 200521249 且2^0·5*(結+銅)/硫<20之狀況下,適當地控制該鋼片材的 冷卻速率時,該MnS、CuS及(Mn,Cu)S沉澱物之尺寸可為 〇·2 μηι或更小。 本發明之冷軋鋼片材具有一高當量強度’而因此允許 5 減少該鋼片材之厚度,因此,提供對其產物一重量減輕之 效果。此外,因其低平面内異向性,分別當加工該鋼片材 時以及在加工該鋼片材之後,係很少產生皺折及花紋。本 發明之冷軋鋼片材及其製造方法將於下詳細敘述。 10 【本發明之冷軋鋼片材】 碳(C):碳含量係較佳為0.003 wt%或更少。 若該碳含量係多於0.003 wt%,在一晶粒中之固態溶液 碳的量則增加,其為難於確保該鋼材之抗老化性,且在一 經退火之板材中的晶粒在尺寸上變為縮小的,因此,顯著 15 地減少該鋼材之延展性。更佳地,碳含量係為0.0005〜0.003 之間。該碳含量少於0.0005 wt%會在一熱軋板材中導致 粗键晶粒之產生,因此,減少該鋼材之強度,卻增加其平 面内異向性。依據本發明,因在一鋼材中之液態溶液碳可 大量地減少,該碳含量可被增加至0.003 wt%。因此,可以 20 避免掉一用以極度減低碳含量之脫碳處理。為了這個目 的’碳含量係較佳地於0.002 wt%〈碳S 0.003 wt%之間的 範圍。 硫(S) ··硫含量係較佳為0.003〜0.03 wt%。 硫含量少於0.003 wt%不僅會導致MnS、CuS及 16 200521249 (Mn,Cu)S量的減少,也導致過度粗糙沉澱物的產生,因此 降低該鋼片材的抗老化性。多於0.03 wt%之硫含量會導致 大量的固態溶液硫,因此,顯著地減少該鋼片材的延展性 及塑形性,且增加熱縮減的可能性。依據本發明,在該MnS-5 沉澱鋼材之實例中,硫含量係較佳地於0.005 wt%〜0.03 wt%之間的範圍,而在該CuS-沉澱鋼材之實例中,硫含量 係較佳地於0.003 wt%〜0.025 wt%之間的範圍。在該MnCu-沉澱鋼材之實例中,硫含量係較佳地於0.003 wt%〜0.025 wt%之間的範圍。 10 鋁(A1):鋁含量係較佳為0.01〜0.1 wt%。 鋁係為通常被使用為去氧化劑之一合金元素。然而, 在本發明中,添加其以避免由於該鋼材中之沉澱氮之固態 溶液氮所引起之老化。少於〇.〇1 wt%之紹含量會導致大量 的固態溶液氮,因此使得避免老化成為困難,反之,多於 15 0.1 wt%之紹含量會導致大量的固態溶液銘,因此減少該鋼 片材的延展性。依據本發明’在該CuS-沉;殿鋼材及該MnCu-沉澱鋼材之實例中,鋁含量係較佳地於0.01 wt%〜0.08 wt%之間的範圍。若該氮含量增加至0.005〜0.02 %,可藉 由A1N沉澱物的增強效果得到一高強度鋼片材。 20 氮(N):氮含量係較佳為0.02 wt%或更少。 氮係為一在該鋼材製造過程中被添加至該鋼材之不可 避免的元素,且為了得到該增強效果,係較佳地添加其於 該鋼材中至0.02 wt%。為了得到該可延伸鋼片材,該氮含 量係較佳地為0.004 wt%或更少。為了得到一高強度鋼片 17 200521249 材,該氮含量係較佳地於0.005〜0.2 %之間。雖然該氮含量 必須為0.005 %或更多以得到該增強效果,一氮含量多於 0.02 wt%卻導致該鋼片材於塑形性之衰退。為了使用氮而 提供一高強度鋼材,該磷含量係較佳於〇.〇3〜0.06 %之間。New research on methods of MnS, CuS and (Mn, Cu) S precipitates. These results show that what is needed is to control the content of manganese, copper and sulfur and the composition of these elements in the steel, and to obtain ^ fine particles by controlling the cooling rate after hot rolling. 5 Figure 2 is a graphical representation obtained after investigating the size of the condensate against the cooling rate after hot-rolling a steel sheet. The steel sheet contains 0.0018 ° / 〇 carbon, 0.15 ° Manganese / O, 0.008% Phosphorus, 0.015% Sulfur, 0.03 ° / O, and 0.0012% Nitrogen (where 0.58 * | Meng / Carbon = 5.8). Referring to FIG. 2a, it can be found that when the composition of manganese and sulfur satisfies the relationship of 10: 0.58 * manganese / sulfur < 10, the MnS sinks when the cooling rate of the steel sheet is appropriately controlled. The size of the temple can be 0.2 μΐΉ or less. Figure 3a is a survey of the cooling rate after hot-rolling a steel sheet; the graphical representation obtained after the size of the precipitate shows that the steel sheet contains: 0.0018% carbon and 0.01% by weight Phosphorus, 0.008 ° / 〇 sulfur, 0.055% 15 aluminum, 0.0014% nitrogen, and 0.041% copper (where 0.5 * copper / sulfur = 2.56). Referring to Fig. 3a, it can be found that when the composition of copper and sulfur satisfies the relationship: 0.5 * copper / sulfur < 10, the CuS precipitates when the cooling rate of the steel sheet is properly controlled. The size of the object may be 0.1 μm or less. Figure 4a is a graphical representation obtained after cold-rolling a steel sheet and examining the size of the sediment at a cooling rate of 20%. The steel sheet contains: 0.0025 ° / 〇 % Manganese, 0.009% phosphorus, 0.015% sulfur, 0.04% aluminum, 0.0029% nitrogen, and 0.04% copper (where manganese + copper = 0.17 and 0.5 * (manganese + Copper) / sulfur = 5.67). Referring to Figure 4a, I found that when the composition of manganese, copper and sulfur satisfies the relationship: manganese + copper] 5 200521249 and 2 ^ 0 · 5 * (junction + copper) / sulfur <20 When the cooling rate of the steel sheet is appropriately controlled, the size of the MnS, CuS, and (Mn, Cu) S precipitates may be 0.2 μm or less. The cold-rolled steel sheet of the present invention has a high equivalent strength 'and therefore allows the thickness of the steel sheet to be reduced, thereby providing the effect of reducing the weight of its product. In addition, due to its low in-plane anisotropy, wrinkles and patterns rarely occur when processing the steel sheet and after processing the steel sheet, respectively. The cold-rolled steel sheet of the present invention and the manufacturing method thereof will be described in detail below. 10 [Cold-rolled steel sheet of the present invention] Carbon (C): The carbon content is preferably 0.003 wt% or less. If the carbon content is more than 0.003 wt%, the amount of solid solution carbon in a grain increases, which makes it difficult to ensure the aging resistance of the steel, and the grains in an annealed sheet change in size. For shrinkage, therefore, the ductility of the steel is significantly reduced. More preferably, the carbon content is between 0.0005 and 0.003. The carbon content of less than 0.0005 wt% will cause the generation of coarse bond grains in a hot-rolled sheet. Therefore, the strength of the steel is reduced, but the in-plane anisotropy is increased. According to the present invention, since the liquid solution carbon in a steel material can be greatly reduced, the carbon content can be increased to 0.003 wt%. Therefore, it is possible to avoid a decarburization treatment for extremely low carbon content. The carbon content for this purpose is preferably in the range of 0.002 wt% <carbon S 0.003 wt%. Sulfur (S) The sulfur content is preferably 0.003 to 0.03 wt%. Sulfur content of less than 0.003 wt% will not only reduce the amount of MnS, CuS and 16 200521249 (Mn, Cu) S, but also cause the generation of excessively rough precipitates, thus reducing the aging resistance of the steel sheet. A sulfur content of more than 0.03 wt% results in a large amount of solid solution sulfur, and therefore significantly reduces the ductility and moldability of the steel sheet, and increases the possibility of thermal shrinkage. According to the present invention, in the example of the MnS-5 precipitated steel, the sulfur content is preferably in a range between 0.005 wt% and 0.03 wt%, and in the example of the CuS-precipitated steel, the sulfur content is preferably In the range of 0.003 wt% to 0.025 wt%. In the example of the MnCu-precipitated steel, the sulfur content is preferably in a range between 0.003 wt% and 0.025 wt%. 10 Aluminum (A1): The aluminum content is preferably 0.01 to 0.1 wt%. Aluminum is an alloying element that is commonly used as a deoxidizing agent. However, in the present invention, it is added to avoid aging caused by the solid solution nitrogen of the precipitated nitrogen in the steel. A content of less than 0.01% by weight will cause a large amount of solid solution nitrogen, thus making it difficult to avoid aging. Conversely, a content of more than 15 0.1% by weight will result in a large amount of solid solution, thus reducing the steel sheet. Ductility of wood. According to the present invention, in the examples of the CuS-sintered steel and the MnCu-precipitated steel, the aluminum content is preferably in a range between 0.01 wt% and 0.08 wt%. If the nitrogen content is increased to 0.005 to 0.02%, a high-strength steel sheet can be obtained by the reinforcing effect of the A1N precipitate. 20 Nitrogen (N): The nitrogen content is preferably 0.02 wt% or less. Nitrogen is an unavoidable element added to the steel during the manufacturing process of the steel, and in order to obtain the reinforcing effect, it is preferably added to the steel to 0.02 wt%. In order to obtain the extensible steel sheet, the nitrogen content is preferably 0.004 wt% or less. In order to obtain a high-strength steel sheet 17 200521249, the nitrogen content is preferably between 0.005 and 0.2%. Although the nitrogen content must be 0.005% or more to obtain the reinforcing effect, a nitrogen content of more than 0.02 wt% results in a deterioration in the formability of the steel sheet. In order to use nitrogen to provide a high-strength steel, the phosphorus content is preferably between 0.03 and 0.06%.
5 依據本發明,為了藉由A1N沉澱物而確保高強度,鋁及氮的 組合,也就是,0.52*鋁/氮(其鋁及氮係以wt%指明)係較佳 地於1〜5的範圍中。鋁及氮的組合(0.52*鋁/氮)少於1會導 致由固態溶液氮所造成之老化,且鋁及氮的組合(0.52*鋁/ 氮)多於5則導致可以忽略的增強效果。 10 磷(P):磷含量係較佳為0.2 wt%或更少。5 According to the present invention, in order to ensure high strength by the A1N precipitate, the combination of aluminum and nitrogen, that is, 0.52 * aluminum / nitrogen (whose aluminum and nitrogen are specified in wt%) is preferably 1 to In range. A combination of aluminum and nitrogen (0.52 * aluminum / nitrogen) less than 1 causes aging caused by solid solution nitrogen, and a combination of aluminum and nitrogen (0.52 * aluminum / nitrogen) more than 5 results in negligible enhancement effects. 10 Phosphorus (P): The phosphorus content is preferably 0.2 wt% or less.
磷係為一合金元素,其可增加固態溶液增強效果,然 而卻允許r-值(可塑性-異向性指數)的輕微減少,且可確保該 其中該等沉澱物係經控制之鋼材的高強度。因此,為了使 用磷而確保該高強度,該磷含量係較佳為0.2 wt%或更少。 15 一磷含量多於0.2 wt%可導致該鋼片材延展性的降低。為了 使用氮而提供一高強度鋼材,該磷含量係較佳於0.03〜0.06 %之間。當單獨添加磷至該鋼材中以確保該鋼片材之高強 度時,該磷含量係較佳於0.03〜0.2 wt%之間。對於可延伸 鋼片材,該磷含量係較佳為0.015 wt%或更少。對於藉由使 20 用A1N沉澱物而確保高強度之鋼片材,該磷含量係較佳於 0.03〜0.06 wt%之間。此歸因於該事實:雖然一0.03 wt%或 更多之磷含量能確保一目標強度,一多於〇·〇6 wt%的磷含 量可降低該鋼材之延展性及塑形性。根據本發明,當藉由 添加矽及鉻而確保該鋼片材之高強度時,可適當地控制該 18 200521249 磷含量至0.2 wt%或更少以得到該目標強度。 依據本發明’係較佳地添加錳及銅之至少一者至該鋼 材。這些元素係與硫結合,生成]^“、CuS及(Mn,Cu)s沉 澱物。 5 猛(Mn) ·猛含量係較佳為〇.〇3〜〇·2 wt%之間。 錳係為一合金元素,其將該鋼材中之固態溶液硫沉澱 為該MnS沉澱物,藉此預防由該固態溶液硫引起之熱縮 減。在本發明中,在由於硫及/或銅和錳之組合及由於該冷 部速率的適當條件下,錳經沉澱為微細“心及/或(Mn,Cu)s 10沉澱物,並且當基本上確保該鋼片材之抗老化性時,在加 強該鋼片材之當量強度及平面内異向性方面扮演一重要角 色。為了實現這些效用,該錳含量必須為〇 〇3 wt%或更多。 同時,多於0.2 wt%之錳含量造成粗糙之沉澱物,因此使該 鋼片材之抗老化性衰退。若單獨添加錳至該鋼材中(也就 15是,不添加銅),錳含量係較佳在0.05〜0.2 wt%之間。 銅(Cu) ··銅含量係較佳為〇·0〇5〜〇 2 wt%之間。 銅係為一合金兀素,其在該硫及/或錳之組合以及熱軋 過程期間在捲繞程序前之該冷卻速率的適當條件下生成微 細沉澱物,因此減少在該晶粒中之固態溶液碳的量,並且 2〇在加強該鋼片材之抗老化性、平面内異向性及可塑性異向 性方面扮演一重要角色。為了生成微細沉澱物,該銅含量 必須為0.005 wt%或更多。若鋼含量多於〇.2 wt%,則造成粗 糙沉澱物,因此使該鋼片材之抗老化性衰退。若單獨添加 銅至該鋼材中(也就是’不添加猛),銅含量係較佳在〇·〇 j〜 19 200521249 0.2vvt0/〇之間。 依據本發明,猛、銅及硫之含量及組合係經控制以生 成微細沉澱物,且其係依據所添加之錳及銅的量而變化。 在該MnS、沉澱鋼材之實例中,錳及硫之組合係較佳地 5 滿足該關係式:0.58*锰/硫^10(其猛及硫係以wt%指明)。 I孟和硫結合以生成該MnS沉激物,其可依據添加之|孟及硫 的量而在沉澱狀態中改變,以及因此影響該鋼片材之抗老 化性、當量強度以及平面内異向性指數。〇·58*錳/硫的值 多於10則生成粗糙之MnS沉澱物,造成該老化指數的增 10力口’因此提供了差勁的當量強度及平面内異向性指數。 在該CuS-沉澱鋼材之實例中,銅及硫之組合係較佳地 滿足該關係式:Κ〇·5*銅/硫d〇(其銅及硫係以wt%指明)。 銅矛石爪、、、。a以生成5亥CuS沉;殿物,其可依據添加之銅及硫 的量而在沉澱狀態中改變,以及因此影響該抗老化性、該 15可塑性-異向性指數以及平面内異向性指數。〇·5*鋼/疏之值 為1或更多則使得有效的⑽沉殿物產生,且〇·5*鋼/硫之值 大於1〇則生成粗错之CuS沉殿物,造成該老化指數的增 加,且提供了差㈣可祕·異向性餘及平面内異向性指 數。為了穩定地確保該Μ沉殿物為(u μιΏ或更小,該〇 20 銅/硫之值係較佳為1〜3。 ΒΘ /'J、、加在皿及銅至5玄鋼片材中,猛及銅之總含量係較佳 為〇.3Wt%或更少。此歸因於該事實:猛及銅之含量多於0土3 %係可能生絲㈣㈣,且目此麟綠相該抗老化 性此外0.5 (猛+銅)/硫的值(其猛、銅及硫係以糾%指 20 200521249 明)係較佳為2〜20之間。錳及銅和硫結合以生成該MnS、 CuS及(Mn,Cu)S沉澱物,其可依據添加之錳、銅及硫的量 而在沉澱狀態中改變,以及因此影響該抗老化性、該可塑 性-異向性指數以及該平面内異向性指數。〇·5*(錳+銅)/硫 5 之值為2或更多則使得有效的沉澱物產生,而〇·5*(錳+銅)/ 硫之值大於20則生成粗糙之沉澱物,造成該老化指數的增 力口,因此提供了差勁的可塑性-異向性指數及平面内異向性 指數。依據本發明,具有0·5*(錳+銅)/硫之值於2〜20之範 圍内,該沉澱物之平均尺寸係減少至〇·2 μηι或更小。在此 10 實例中,該沉澱物係以2 X 106或更多之數量分佈係為所欲 的。當0.5*(|孟+銅)/硫之值自7開始,沉澱物的種類及沉澱 物的數目係明顯地改變。特別是,當〇·5*(錳+銅)/硫之值 為7或更少時,很多非常微細之MnS及CuS個別沉殿物係均 質地分佈,而非該(Mn,Cu)S複合沉澱物。同時,當〇.5*(猛 ]5 +銅V硫之值係多於7時’不管該等沉;殿物之尺寸間輕微的 差異,分佈於該晶粒及晶界之沉澱物的數目係因(Mn5 Cu)S 複合沉澱物之數量增加而減少。在本發明中,增加該沉殿 物之數目可加強該抗老化性、該平面内異向性指數及該二 級工作產品脆化抗性。為此目的,該沉殿物係較佳地以2X 2〇 1〇8或更多的數目分佈。在本發明中,即使在0.5*(猛+銅)/ 硫的值是相同的實例中,添加較少量的猛及鋼可減少分佈 於晶粒或晶界之沉澱物數目。若增加錳及銅的含量,該沉 澱物變得粗縫,導致分佈於晶粒或晶界之沉澱物數目降 低0 21 200521249 依據本發明,該MnS、CuS和(Mn,Cu)S沉澱物係較佳 具有0·2 μπι或更小之平均尺寸。若該Mns、CuS和(Mn,Cu)S 沉殿物大於0·2 μηι之平均尺寸,特定地,該老化指數則迅 速地增加’且該可塑性-異向性指數以及該平面内異向性 5指數變彳·^拙劣。依據本發明.,MnS之較佳尺寸為0.2 μΐΉ或 更小’且CuS之較佳尺寸為〇」μΐΉ或更小。在MnS、CuS 和(Mn,Cu)S沉丨殿物係混合於該晶粒之實例中,沉殿物之尺 寸係較佳為〇·2 μπι或更小,且更佳地為〇.1 μπι或更小。當 減少該沉澱物之尺寸時,其係為優於抗老化性的。 10 依據本發明,當應用於該340 MPa-級或更高級之高強 度鋼片材日守,可添加該固態溶液增強元素,例如:填,於 該鋼片材,也就是,添加至少磷、矽及鉻其中之一至該鋼 片材。藉由添加破所得到的效果係於先前敘述過,而將省 略此敛述。 15 矽(Si):矽含量係較佳為0.1〜〇.8 %之間。 石夕係為一合金元素,其可增加該固態溶液增強效果, 然而允許延展性之輕微降低,且因此確保該鋼材之高強 度,在該鋼材中係依據本發明控制該沉澱物。一為〇1 %或 更问之石夕含星可確保該鋼片材之強度,但一高於〇 8 %的矽 20 含量能造成其延展性降低。 鉻(Cr):鉻含量係較佳為0·2〜;[·2 %之間。 鉻係為一合金元素,其可增加該固態溶液增強效果, 然而藉著鉻碳化物降低二級工作產品脆性溫度及該老化指 數,因而確保高強度卻降低該鋼材之平面内異向性指數, 22 200521249 在該鋼材中係依據本發明控制該沉殿物。一為〇·2 %或更尚 之鉻含量可確保該鋼片材之強度,但一高於1.2 %的絡含f 能造成其延展性降低。 依據本發明,鉬(Mo)及/或釩(V)係較佳地添加於該冷 5 軋鋼片材。 鉬(Mo):鉬含量係較佳為0·01 〜〇·2 %之間。Phosphorus is an alloying element, which can increase the solid solution strengthening effect, but allows a slight reduction in r-value (plasticity-anisotropy index), and can ensure the high strength of the steel in which the precipitates are controlled . Therefore, in order to ensure the high strength by using phosphorus, the phosphorus content is preferably 0.2 wt% or less. 15 Monophosphorus content greater than 0.2 wt% can lead to a reduction in ductility of the steel sheet. In order to use nitrogen to provide a high-strength steel, the phosphorus content is preferably between 0.03 and 0.06%. When phosphorus is added to the steel alone to ensure the high strength of the steel sheet, the phosphorus content is preferably between 0.03 and 0.2 wt%. For the extensible steel sheet, the phosphorus content is preferably 0.015 wt% or less. For steel sheets that ensure high strength by using A1N precipitates, the phosphorus content is preferably between 0.03 and 0.06 wt%. This is due to the fact that although a phosphorus content of 0.03 wt% or more can ensure a target strength, a phosphorus content of more than 0.06 wt% can reduce the ductility and shapeability of the steel. According to the present invention, when the high strength of the steel sheet is ensured by adding silicon and chromium, the 18 200521249 phosphorus content can be appropriately controlled to 0.2 wt% or less to obtain the target strength. According to the present invention, at least one of manganese and copper is preferably added to the steel. These elements are combined with sulfur to form [], CuS and (Mn, Cu) s precipitates. 5 (Mn) · The content of Mn is preferably between 0.03 and 0.2 wt%. Manganese Is an alloying element that precipitates the solid solution sulfur in the steel into the MnS precipitate, thereby preventing heat shrinkage caused by the solid solution sulfur. In the present invention, due to sulfur and / or a combination of copper and manganese And due to the proper conditions of the cold section rate, manganese is precipitated as fine "core and / or (Mn, Cu) s 10 precipitates", and when the aging resistance of the steel sheet is basically ensured, the steel is strengthened. Sheets play an important role in terms of equivalent strength and in-plane anisotropy. In order to achieve these effects, the manganese content must be 0.003 wt% or more. At the same time, a manganese content of more than 0.2 wt% causes rough precipitates, thereby reducing the aging resistance of the steel sheet. If manganese is added to the steel alone (that is, no copper is added), the manganese content is preferably between 0.05 and 0.2 wt%. Copper (Cu) The copper content is preferably between 0.05 and 0.02 wt%. The copper system is an alloy element that generates fine precipitates under the proper conditions of the cooling rate before the winding process during the combination of sulfur and / or manganese and during the hot rolling process, thus reducing the solids in the grains The amount of solution carbon, and 20 plays an important role in strengthening the aging resistance, in-plane anisotropy, and plastic anisotropy of the steel sheet. In order to form a fine precipitate, the copper content must be 0.005 wt% or more. If the steel content is more than 0.2 wt%, coarse precipitates are caused, and thus the aging resistance of the steel sheet is deteriorated. If copper is added to the steel alone (that is, ‘without adding fifteen’), the copper content is preferably between 0 · 〇 j ~ 19 200521249 0.2vvt0 / 〇. According to the present invention, the content and combination of ferrite, copper, and sulfur are controlled to produce fine precipitates, and they vary depending on the amount of manganese and copper added. In the example of the MnS and precipitation steel, the combination of manganese and sulfur preferably satisfies the relationship: 0.58 * manganese / sulfur ^ 10 (the fibrous and sulfur systems are specified in wt%). I and M are combined to form the MnS precipitate, which can be changed in the precipitation state according to the amount of M and M added, and thus affect the aging resistance, equivalent strength and in-plane anisotropy of the steel sheet. Sex index. The value of 0.58 * manganese / sulfur is more than 10, which results in the formation of rough MnS precipitates, which increases the aging index. Therefore, it provides poor equivalent strength and in-plane anisotropy index. In the example of the CuS-precipitated steel, the combination of copper and sulfur preferably satisfies the relationship: KO · 5 * copper / sulfur do (the copper and sulfur systems are specified in wt%). Copper Spear Stone Claw ,,,. a in order to generate 5 Hai CuS sink; the object, which can be changed in the precipitation state according to the amount of added copper and sulfur, and therefore affect the anti-aging property, the 15 plasticity-anisotropy index and the in-plane anisotropy index. A value of 0.5 * steel / sparseness causes 1 or more effective sinkers to be produced, and a value of 0.5 * steel / sulfur greater than 10 results in rough CuS sinkers, causing the aging The increase of the index provides the secret rate anisotropy margin and the anisotropy index in the plane. In order to stably ensure that the MEMS sinker is (u μmΏ or less), the value of the 〇20 copper / sulfur is preferably 1 to 3. ΒΘ / 'J,, added to the dish and copper to 5 black steel sheet The total content of Meng and copper is preferably 0.3 Wt% or less. This is attributed to the fact that the content of Meng and copper more than 0% and 3% may produce silkworms. In addition, the value of aging resistance is 0.5 (mighty + copper) / sulfur (its strength, copper and sulfur are referred to as 20%, 200521249), and it is preferably between 2 and 20. Manganese, copper and sulfur are combined to generate the MnS. , CuS and (Mn, Cu) S precipitates, which can be changed in the precipitated state depending on the amount of manganese, copper and sulfur added, and thus affect the aging resistance, the plasticity-anisotropy index and the in-plane Anisotropy index. A value of 0.5 * (manganese + copper) / sulfur of 2 or more results in effective precipitation, while a value of 0.5 * (manganese + copper) / sulfur is greater than 20 Rough deposits cause the aging index to increase, so it provides poor plasticity-anisotropy index and in-plane anisotropy index. According to the present invention, it has 0 · 5 * (manganese + copper) / sulfur Value between 2 and 20 Within this range, the average size of the precipitate is reduced to 0.2 μm or less. In this 10 example, it is desirable that the precipitate is distributed in a quantity of 2 X 106 or more. When 0.5 * ( | Meng + copper) / sulfur value starts from 7, and the type and number of precipitates change significantly. In particular, when the value of 0.5 * (Mn + copper) / sulfur is 7 or less Many very fine MnS and CuS individual sinking systems are homogeneously distributed, rather than the (Mn, Cu) S composite precipitate. At the same time, when the value of 0.5 * (violent) 5 + copper V sulfur is more than At 7 o'clock, regardless of the slight differences in the size of the temples, the number of precipitates distributed on the grains and grain boundaries is reduced due to the increase in the number of (Mn5 Cu) S composite precipitates. In the present invention , Increasing the number of the sunken objects can enhance the anti-aging resistance, the in-plane anisotropy index, and the embrittlement resistance of the secondary work product. For this purpose, the sunken objects are preferably 2X 2 0 1 〇8 or more number distribution. In the present invention, even in the case where the value of 0.5 * (fierce + copper) / sulfur is the same, adding a smaller amount of fibrous and steel can reduce the distribution The number of precipitates at the grains or grain boundaries. If the content of manganese and copper is increased, the precipitates become coarse seams, resulting in a reduction in the number of precipitates distributed at the grains or grain boundaries. 0 21 200521249 According to the present invention, the MnS, CuS And (Mn, Cu) S precipitates preferably have an average size of 0.2 μm or less. If the average size of the Mns, CuS and (Mn, Cu) S sinkers is greater than 0.2 μm, specifically , The aging index increases rapidly, and the plasticity-anisotropy index and the in-plane anisotropy 5 index become 彳 · ^ poor. According to the present invention, the preferred size of MnS is 0.2 μΐΉ or less' and The preferred size of CuS is 0 ″ μΐΉ or less. In the example where MnS, CuS, and (Mn, Cu) S sinks are mixed in the crystal grains, the size of the sinks is preferably 0.2 μm or less, and more preferably 0.1. μm or smaller. When the size of the precipitate is reduced, it is superior to anti-aging properties. 10 According to the present invention, when applied to the 340 MPa-grade or higher high-strength steel sheet, the solid solution reinforcing element may be added, for example: filling the steel sheet, that is, adding at least phosphorus, One of silicon and chromium to the steel sheet. The effect obtained by adding breaks is previously described, and will be omitted here. 15 Silicon (Si): The silicon content is preferably between 0.1 and 0.8%. Shixi is an alloy element that can increase the solid solution strengthening effect, but allows a slight reduction in ductility, and therefore ensures the high strength of the steel, in which the precipitate is controlled according to the present invention. One is 0.01% or more, and the star-containing star can ensure the strength of the steel sheet, but a silicon 20 content higher than 08% can cause its ductility to decrease. Chromium (Cr): The chromium content is preferably from 0.2 to 2; [2 to 2%. Chromium is an alloying element that can increase the strengthening effect of the solid solution. However, chromium carbide reduces the brittleness temperature of the secondary work product and the aging index, thereby ensuring high strength but reducing the anisotropy index of the steel. 22 200521249 The sanctuary is controlled in the steel according to the present invention. A chromium content of 0.2% or more can ensure the strength of the steel sheet, but a f content higher than 1.2% can cause its ductility to decrease. According to the present invention, molybdenum (Mo) and / or vanadium (V) are preferably added to the cold rolled steel sheet. Molybdenum (Mo): The molybdenum content is preferably between 0.01% and 0.2%.
鉬係為一合金元素,其可增加該鋼片材之可塑性-異向 性指數。一為〇·〇1 %或更高之鉬含量可增加該可塑性-異向 性指數,但一高於0.2 %的鉬含量能造成其熱縮減而不再增 10 加其可塑性-異向性指數。 釩(V):釩含量係較佳為〇.〇丨〜〇·2 %之間。 釩係為一合金元素,其可藉由沉澱固態溶液碳而確保 抗老化性。一為〇.〇1 %或更高之釩含量可增加該抗老化 性,但一高於0.2 %的釩含量能降低該可塑性-異向性指數。 15 釩及碳之組成(0.25*釩/碳)係較佳地滿足該關係式Κ〇·25*Molybdenum is an alloying element which can increase the plasticity-anisotropy index of the steel sheet. A molybdenum content of 0.001% or more can increase the plasticity-anisotropy index, but a molybdenum content of more than 0.2% can cause its heat shrinkage without increasing by 10 plus its plasticity-anisotropy index. . Vanadium (V): The vanadium content is preferably between 0.00% and 0.2%. Vanadium is an alloying element that ensures aging resistance by precipitating solid solution carbon. A vanadium content of 0.01% or more can increase the aging resistance, but a vanadium content of more than 0.2% can reduce the plasticity-anisotropy index. 15 The composition of vanadium and carbon (0.25 * vanadium / carbon) satisfies the relation KO · 25 *
釩/碳^2〇(其中釩及碳係以wt%指明)。少於1之釩及碳的組 成(0·25*釩/碳)可降低該固態溶液碳的沉澱效果,且多於20 之釩及碳之組成(0.25*釩/碳)可降低該可塑性-異向性指數。 2〇【製造冷軋鋼片材之方法】 本發明之特徵在於··滿足上述組成之鋼片材係透過熱 軋及冷軋加工,因此,允許於減少一冷軋鋼片材之沉澱物 平均尺寸。該沉澱物之平均尺寸係被錳、銅及硫的含量及 組成以及製造過程所影響,且特定地,係被一熱軋後之冷 23 200521249 卻速率所直接影響。 熱軋條件 依據本發明’再加熱該滿足上述組成之鋼材,且接著 進行一熱乳程序。該再加熱溫度係較佳為110(rc或更高 5 溫。當再加熱該鋼材至低於1100°C之溫度時,因在連續鎊 造期間所產生之粗糙沉澱物因該低再加熱溫度而維持於一 未完全融熔狀態,該粗糙沉澱物在熱軋之後繼續存在。 較佳地,係在以一 A r 3轉形溫度或更高溫執行精軋輥的 狀態下執行該熱軋。此歸因於在低於Ar3轉形溫度下執行精 10軋輥會造成軋製顆粒之事實,因此顯著地降低該鋼片材之 延展性以及塑形性。 在熱軋之後,該冷卻率係較佳為200°C/分鐘或更高。 更特定地,(l)MnS-沉澱鋼材、(2)CuS-沉澱鋼材及(3)MnCi^ 沉殿鋼材之冷卻率之間係有些微的差異。 15 首先,⑴在MnS-沉澱鋼材的實例中,該冷卻率係較 佳為2〇(TC/分鐘或更高。即使當錳及硫的組成依據本發明 滿足該關係式:0.58*錳/硫<1〇,一低於200。(:/分鐘的冷卻 率可造成具有大於0.2 μπι尺寸之粗糙MnS沉殿物。此歸因 於一個事實:當增加冷卻率時,即產生許多晶核,因此該 2〇 M】lSrL趨物變得微細。當錳及硫的組成具有該關係式: 〇·58链/碳>10,係在再加熱過程中增加未完全溶解狀態中 之粗键沉澱物的數目,因此,即使增加該冷卻率,也不會 增加晶核數目,且因此該Mns沉澱物也不會變得再微細了 (第2b圖中,〇 〇24 %的碳;〇·43 %的錳;〇 〇1】%的磷;〇 〇〇9 % 24 200521249 的硫;0.035 %的紹以及〇·〇〇43%的氮,以加%表示)。 參照第2aA2b® ’因增加冷卻速率導致造成較細之 MnS沉殺物,並不需要提供該冷卻率的上限。,然而,即使 當該冷卻率係looot/分鐘或更高,因並不會再減少該Mns 5沉殿物之尺寸’該冷卻率係較佳為2〇〇〜⑽❿分鐘之 間。 …接著,⑺在C4沉殿鋼材的實例中,在熱礼之後,該 率係較佳為300 C/分鐘或更高。即使當銅及硫的組成 依據本^明滿足该關係式:〇 5*銅/硫<1〇,一低於3〇〇。以 刀名里的/?令p率可造成具有大於〇1㈣尺寸之粗链㈤沉殿 物此歸因於一個事貫.當增加冷卻率時,即產生許多晶 核1因此該CuS沉澱物變得微細。當銅及硫的組成具有該 f 丁式〇·5銅/;5;u>10,係在再加熱過程中增加未完全溶 解狀態中之録沉則㈣數目,因此,即使增加該冷卻 15率,也不會增加晶核數目,且因此該CuS沉澱物也不會變 得再微細了(第3C圖中,〇糊9 %的碳;0·01 %的碟;0·005 % 的石爪,0.03 %的紹;0.0015 %的氮以及〇 〇28 %的銅,以对% 7]Τ ) 〇 蒼知第3a至3c圖,因增加冷卻速率導致造成較細之 2〇二S沉殿物,並不需要提供該冷卻率的上限。然而,即使 當該冷卻率係調。(:/分鐘或更高,因並不會再減少該CuS 物之尺寸,該冷卻率係較佳為3〇〇〜㈨。分鐘之 間。第3a及3b圖(0.00]8 %的碳;〇 〇1 %的磷;〇 〇〇5 %的 石爪,〇·〇3 %的鋁;0.0024 %的氮以及〇 〇81 %的銅,以、心表 25 200521249 不)分別表不0.5*銅/硫幻及〇.5*鋼/硫>3的實例。參照這些 圖式,可見的是,當0.5*銅/硫的值為3或更少時,可更穩 疋地得到具有〇·ΐ μ1Ί1或更小尺寸之匸沾沉澱物。 接著’(2)在]y[nCu-沉殿鋼材的實例中,在熱軋之後, 5該冷卻率係較佳為300°C/分鐘或更高。即使當錳、銅及硫 的組成依據本發明滿足該關係式·· 2^〇·5*(|孟+鋼)/硫^2〇, 一低於300°C/分鐘的冷卻率可造成具有大於〇 2 μΐΏ尺寸之 粗糙沉澱物。此歸因於一個事實:當增加冷卻率時,即產 生許多晶核,因此該沉澱物變得微細。當錳、銅及硫的組 10 成具有該關係式·· 0·5*(錳+銅)/硫>20,係在再加熱過程中 增加未完全溶解狀態中之粗糙沉澱物的數目,因此,即使 增加該冷卻率,也不會增加晶核數目,且因此該沉澱物也 不會變得再微細了(第4b圖中,0.0025 %的碳;0.4 %的 猛;0.01 %的磷;〇·〇1 %的硫;〇.〇5 %的鋁;0.0016 °/〇的氮以及 15 〇·15 %的銅,以赠%表示)。 參照第4a及4b圖,因增加冷卻速率導致造成較細之沉 澱物,並不需要提供該冷卻率的上限。然而,即使當該冷 卻率係1000°C/分鐘或更高,因並不會再減少該沉澱物之尺 寸,該冷卻率係較佳為300〜1000°C/分鐘或更高。 20 捲繞锋1 在上述之熱軋程序後,係較佳地於7〇〇°C或更少的溫度 下執行該捲繞程序。當在高於700°C的溫度下執行該捲繞程 序時,該沉殿物係太粗链地生成,因此減少該鋼材之抗老 化性。 26 200521249 冷軋條件 該鋼材經冷軋至一所欲之厚度,較佳地,以一 5〇〜9〇% 之斷面收縮率。因一少於50 %之斷面收縮率導致於再結晶 退火日守產生V里之a日核,έ亥專晶粒於退火時係過度生長’ 5因此,產生透過退火而再結晶之粗链晶粒,因此降低該鋼 片材之強度及塑形性。一多於90 %之冷軋斷面收縮率導致 增強之塑形性,於產生一過量之晶核時’因此,透過退火 而再結晶之顆粒變得過度微細,因此降低該鋼材之延展 性。 10 連續退γ 連#退火溫度在決定該產物之物理性質方面扮演了重 要勺角色依據本發明,較佳地係於500〜900。〇的溫度下 執行連續退火。在一低於5〇〇t:溫度之連續退火造成過度Vanadium / carbon ^ 20 (where vanadium and carbon are specified in wt%). A composition of vanadium and carbon less than 1 (0 · 25 * vanadium / carbon) can reduce the carbon precipitation effect of the solid solution, and a composition of vanadium and carbon more than 20 (0.25 * vanadium / carbon) can reduce the plasticity- Anisotropy index. 20 [Method of manufacturing cold-rolled steel sheet] The present invention is characterized in that the steel sheet that satisfies the above-mentioned composition is processed through hot rolling and cold rolling, and therefore, it is allowed to reduce the average size of a precipitate of a cold-rolled steel sheet. The average size of the precipitate is affected by the content and composition of manganese, copper, and sulfur, as well as the manufacturing process, and is specifically directly affected by the cooling rate after a hot rolling. Hot rolling conditions According to the present invention ', the steel material satisfying the above composition is reheated, and then a hot milking procedure is performed. The reheating temperature is preferably 110 (rc or higher). When the steel is reheated to a temperature lower than 1100 ° C, the rough deposits generated during continuous processing are caused by the low reheating temperature. While maintained in an incompletely melted state, the rough deposits continue to exist after hot rolling. Preferably, the hot rolling is performed in a state where the finishing roll is performed at an A 3 transformation temperature or higher. This Due to the fact that performing fine 10 rolls below the Ar3 turning temperature will cause rolling particles, the ductility and shapeability of the steel sheet are significantly reduced. After hot rolling, the cooling rate is better 200 ° C / min or more. More specifically, there are slight differences in cooling rates between (l) MnS-precipitated steel, (2) CuS-precipitated steel, and (3) MnCi ^ Shendian steel. 15 First, in the case of MnS-precipitated steel, the cooling rate is preferably 20 ° C./minute or higher. Even when the composition of manganese and sulfur satisfies the relationship according to the present invention: 0.58 * manganese / sulfur & lt 10, one lower than 200. (: / min cooling rate can cause rough MnS sinking with a size greater than 0.2 μm This is due to the fact that when the cooling rate is increased, many crystal nuclei are generated, so the 20M] lSrL chemotactic substance becomes fine. When the composition of manganese and sulfur has this relationship: 〇58 chain / Carbon> 10, which increases the number of coarse bond precipitates in the incompletely dissolved state during the reheating process. Therefore, even if the cooling rate is increased, the number of crystal nuclei will not be increased, and therefore the Mns precipitate will not be increased. It becomes finer (Figure 2b, 002% carbon; 0.03% manganese; 0.001%) phosphorus; 009% 24 200521249 sulfur; 0.035% Shao and 〇 · 〇〇43% nitrogen, expressed in plus%). Refer to Section 2aA2b® 'Thin MnS sinker caused by increased cooling rate, does not need to provide the upper limit of the cooling rate. However, even when the cooling rate It is looot / minute or higher, because the size of the Mns 5 sinker will not be reduced any more. The cooling rate is preferably between 2000 and ⑽❿ minutes.… Next, the example of C4 sinker steel After heating, the rate is preferably 300 C / min or higher. Even when the composition of copper and sulfur is based on It is clear that the relationship is satisfied: 〇5 * copper / sulfur < 10, one less than 300. The / rate in the knife name can cause a thick chain with a size larger than 〇1㈣. As a matter of fact, when the cooling rate is increased, many crystal nuclei 1 are generated, so the CuS precipitate becomes fine. When the composition of copper and sulfur has the f-type 0.5 Cu /; 5; u > 10, During the reheating process, the number of precipitates in the incompletely dissolved state is increased. Therefore, even if the cooling rate is increased, the number of crystal nuclei will not be increased, and therefore the CuS precipitate will not become finer. (Figure 3C, 0% 9% carbon; 0.01% dish; 0.005% stone claw, 0.03% Shao; 0.0015% nitrogen and 0.0028% copper to% 7] Τ) Cangzhi Figures 3a to 3c, due to the increase of the cooling rate, resulting in a thinner 222 S sink, and it is not necessary to provide an upper limit for the cooling rate. However, even when the cooling rate is adjusted. (: / Minute or higher, because the size of the CuS material will not be reduced, the cooling rate is preferably between 300 and 〇. Minutes. Figures 3a and 3b (0.00) 8% carbon; 0.001% phosphorous; 0.005% stone claws; 0.003% aluminum; 0.0024% nitrogen and 0.0081% copper, respectively, heart watch 25 200521249 No) respectively 0.5 * copper Examples of / sulfur and 0.5 * steel / sulfur> 3. With reference to these figures, it can be seen that when the value of 0.5 * copper / sulfur is 3 or less, it is more stable to have ΐ μ1Ί1 or smaller size 匸 deposits. Then '(2) In the example of] y [nCu-Shendian steel, after hot rolling, the cooling rate is preferably 300 ° C / min or more High. Even when the composition of manganese, copper, and sulfur satisfies the relationship according to the present invention ... 2 ^ 0 · 5 * (| Meng + steel) / sulfur ^ 20, a cooling rate below 300 ° C / min may be Causes a coarse precipitate with a size greater than 0 2 μΐΏ. This is due to the fact that when the cooling rate is increased, many crystal nuclei are generated, so the precipitate becomes fine. When the group of manganese, copper and sulfur has 10% The relationship ... 0.5 * (manganese + copper) / > 20, the number of rough precipitates in an incompletely dissolved state is increased during the reheating process, so even if the cooling rate is increased, the number of crystal nuclei will not be increased, and therefore the precipitates will not become Fine (Figure 4b, 0.0025% carbon; 0.4% fibrous; 0.01% phosphorus; 0.001% sulfur; 0.05% aluminum; 0.0016 ° / 〇 nitrogen and 15 〇15 % Copper, expressed as a free%). Referring to Figures 4a and 4b, it is not necessary to provide the upper limit of the cooling rate due to the finer precipitation caused by increasing the cooling rate. However, even when the cooling rate is 1000 ° C / Min or higher, because the size of the precipitate will not be reduced any more, the cooling rate is preferably 300 ~ 1000 ° C / min or higher. 20 Winding front 1 After the above hot rolling process, The winding procedure is preferably performed at a temperature of 700 ° C or less. When the winding procedure is performed at a temperature higher than 700 ° C, the Shenyang system is generated with too thick chains, so Reduce the aging resistance of the steel. 26 200521249 Cold-rolled conditions The steel is cold-rolled to a desired thickness. A cross-section shrinkage of ~ 90%. A cross-section shrinkage of less than 50% results in a V-day nucleus at the recrystallization annealing date, and the crystal grains are excessively grown during annealing. 5 Therefore It produces coarse chain grains that recrystallize through annealing, thus reducing the strength and plasticity of the steel sheet. A cold rolling reduction of more than 90% leads to enhanced plasticity, which results in an excess of At the time of crystal nucleus, therefore, the particles recrystallized by annealing become excessively fine, thereby reducing the ductility of the steel. 10 Continuous de-gamma continuous annealing temperature plays an important role in determining the physical properties of the product. According to the present invention, it is preferably between 500 and 900. Continuous annealing is performed at a temperature of 〇. Continuous annealing at a temperature below 500t: excessive temperature
Uw之再結晶晶粒,因此無法取得一所欲之延展性。在一 〇c恤度之連續退火造成粗糙之再結晶晶粒,因此 牛仑^鋼才才之強度。持續在連續退火之保留時間以完成該 鋼材之再么士日 〜曰曰,且該鋼材之再結晶可於連續退火時在1〇秒 或更多秒内完成。 將以下述範例詳細敘述本發明。 在下列該等範例之敘述中,該鋼片材係依ASTM標準 <ASTM 標準)經機械製造為標準樣品,且測量其物理性 貝藉由使用一抗拉強度測試儀(自INSTR〇N&司取得,型 唬6025);則量該當量強度、該抗拉強度、該延伸、該可塑 /、向11心數(】、值)、該平面内異向性指數(△]·值)及該老化 27 200521249 指數(AI)。在該等範例中’藉由下列方程式:續(rni = (r〇, 2 145 r9G)/4以及& = (1,Q 2 k + ^90)/2)取得該可塑性_里向 性指數(Mm該平㈣異向性餘(域)。 '、 卜為了得f“縛分佈於該樣品中之沉丨殿物的平均 尺寸及數目,係測量存在於該材料中之所有㈣物的尺寸 及數目。 【範例M】MnS-沉澱鋼材 為了依據本發明完成祕沉厥鋼材,在以精乾輕該鋼 1〇板以提倾軋鋼片材之後,接續再加熱顯示於表】中之鋼板 至1200°C的溫度後,以20(rc/分鐘之速率冷卻該熱乳鋼片 材,且在650 C捲繞。接著,在連續退火之後,以一乃〇/。 之斷面收縮率冷軋該熱軋鋼片材。在91〇。〇執行精軋輥, 其係在Ar3轉形溫度之上,且藉由以1〇。〇/秒之速度加熱該 15鋼片材40秒至乃以執行連續退火。例外的是,表丨中之 樣品8,在再加熱至ι050^之溫度且接續以精軋輥後,以 5〇°C/分鐘之速度冷卻該樣品,且接著在75〇。(:經捲繞。 表1 20 樣 品 編 號 碳C 0.003 ~~ϊΐ Μη~ 0.05-0.2 [—磷Ρ 0.015 硫S 0.005-0.03 成份(wt1 鋁A1 0.01-0.1 %) 氮N 0.004 翻 IVIo 0.01-0.2 釩V 0.01-0.2 R·] 10 321 1-20 A1 0.0023 0.08 0.01 0.005 0.04 0.0015 - - 9.28 A2 0.0018 0·]0 0.011 0.012 0.05 0.0026 * - 4.83 A3 0.0018 0.15 0.008 0.015 0.03 0.0012 - - 5.8 ------- 28 200521249The recrystallized grains of Uw cannot obtain the desired ductility. Continuous annealing at a temperature of 10 ° C results in rough recrystallized grains, so the strength of Newton ^ steel is only strong. Continue the retention time of continuous annealing to complete the remodeling of the steel. The recrystallization of the steel can be completed in 10 seconds or more during continuous annealing. The present invention will be described in detail with the following examples. In the description of the following examples, the steel sheet is mechanically manufactured as a standard sample according to the ASTM standard < ASTM standard, and its physical properties are measured by using a tensile strength tester (from INSTRON & Obtained by the company, type 6025); then measure the equivalent strength, the tensile strength, the extension, the plasticity, the number of 11 cores (), the value, the anisotropy index (△) · value in the plane), and The Aging 27 200521249 Index (AI). In these examples, 'the plasticity_inwardness index is obtained by the following equation: continued (rni = (r〇, 2 145 r9G) / 4 and & = (1, Q 2 k + ^ 90) / 2) (Mm the flat anisotropy remainder (domain). ”In order to obtain the average size and number of sinks distributed in the sample, the size of all the sinks present in the material is measured. [Example M] MnS-precipitated steel In order to complete the secret sinking steel according to the present invention, after the steel plate is lightened and lightened to lift and roll the steel sheet, the steel plate shown in the table is reheated to After a temperature of 1200 ° C, the hot-rolled steel sheet was cooled at a rate of 20 (rc / min) and wound at 650 C. Then, after continuous annealing, cold rolling was performed at a reduction rate of 1 to 0 / °. The hot-rolled steel sheet. A finishing roll is performed at 91.0 °, which is above the Ar3 transformation temperature, and by continuously heating the 15 steel sheet at a speed of 10.0 / sec for 40 seconds to perform continuous Annealing. The exception is that sample 8 in Table 丨 is reheated to a temperature of ι050 ^ and followed by finishing rolls, and the sample is cooled at a rate of 50 ° C / min. And then at 75. (: rolled. Table 1 20 Sample No. Carbon C 0.003 ~~ ϊΐ Μη ~ 0.05-0.2 [—phosphorus P 0.015 sulfur S 0.005-0.03 composition (wt1 aluminum A1 0.01-0.1%) nitrogen N 0.004 IVIo 0.01-0.2 Vanadium V 0.01-0.2 R ·] 10 321 1-20 A1 0.0023 0.08 0.01 0.005 0.04 0.0015--9.28 A2 0.0018 0 ·] 0 0.011 0.012 0.05 0.0026 *-4.83 A3 0.0018 0.15 0.008 0.015 0.03 0.0012 --5.8 ------- 28 200521249
A4 0.0027 0.09 0.012 0.025 0.035 0.0018 - - 2.09 A5 0.0026 0.4 0.009 0.01 0.02 0.0039 - - 23.2 A6 0.0038 0.10 0.011 0.008 0.05 0.0038 - - 7.25 A7 0.0015 0.35 0.01 0.032 0.03 0.0015 - - 6.34 A8 0.0023 0.08 0.01 0.008 0.04 0.0015 - - 5.8 A9 0.0013 0.09 0.0] 0.008 0.033 0.025 0.03 - 6.53 A10 0.0022 0.15 0.012 0.011 0.025 0.0022 0.053 - 7.9] All 0.0015 0.10 0.008 0.015 0,043 0.0023 0.074 - 3.87 A]2 0.0025 0.] 0.009 0.02] 0.034 0.0028 0.] 1 - 2.76 A13 0.0022 0.12 0.009 0.014 0.03 0.0021 0.15 - 4.97 A14 0.0022 0.4 0.009 0.009 0.032 0.0033 0.25 - 25.8 A]5 0.0015 0.1 0.011 0.009 0.033 0.0025 - 0.023 6.44 3.83 A]6 0.0024 0.08 0.01 0.0] 0.035 0.0012 - 0.05] 4.64 5.13 A17 0.0025 0.12 0.008 0.012 0.023 0.0015 - 0.08 5.8 8 A18 0.0015 0.11 0.01 0.02 0.032 0.002 > 0.11 3.19 18.3 A19 0.0027 0.08 0.008 0.01 0.033 0.00]] - 0.154 4.64 14.3 A20 0.002 0.4 0.01 0.013 0.022 0.0013 - 0.325 17.8 30 A21 0.0023 0.11 0.011 0.011 0.023 0.0017 0.017 0.025 5.8 2.72 A22 0.0027 0.09 0.01 0.009 0.037 0.0027 0.074 0.082 5.8 7.59 A23 0.0025 0.08 0.009 0.012 0.032 0.003】 0.15 0.16 3.87 16 註釋:R-l = 0.58*錳/硫,R-2 = 0.25*釩/碳 表2 樣品 編號 物理性質 AS (μ]η) 附註 YP (Mpa) TS (MPa) Ε] (%) r-value (rm) Ar-value (Δγ) A] (MPa) A1 211 309 49 1.83 0.28 23 0.05 】S A2 209 311 52 1.93 0.34 22 0.12 IS A3 201 295 54 1.94 0.31 21 0.15 ISA4 0.0027 0.09 0.012 0.025 0.035 0.0018--2.09 A5 0.0026 0.4 0.009 0.01 0.02 0.0039--23.2 A6 0.0038 0.10 0.011 0.008 0.05 0.0038--7.25 A7 0.0015 0.35 0.01 0.032 0.03 0.0015--6.34 A8 0.0023 0.08 0.01 0.008 0.04 0.0015--5.8 A9 0.0013 0.09 0.0] 0.008 0.033 0.025 0.03-6.53 A10 0.0022 0.15 0.012 0.011 0.025 0.0022 0.053-7.9] All 0.0015 0.10 0.008 0.015 0,043 0.0023 0.074-3.87 A] 2 0.0025 0.] 0.009 0.02] 0.034 0.0028 0.] 1-2.76 A13 0.0022 0.12 0.009 0.014 0.03 0.0021 0.15-4.97 A14 0.0022 0.4 0.009 0.009 0.032 0.0033 0.25-25.8 A] 5 0.0015 0.1 0.011 0.009 0.033 0.0025-0.023 6.44 3.83 A] 6 0.0024 0.08 0.01 0.0] 0.035 0.0012-0.05] 4.64 5.13 A17 0.0025 0.12 0.008 0.012 0.023 0.0015-0.08 5.8 8 A18 0.0015 0.11 0.01 0.02 0.032 0.002 > 0.11 3.19 18.3 A19 0.0027 0.08 0.008 0.01 0.033 0.00]]-0.154 4.64 14.3 A20 0.002 0.4 0.01 0.013 0.022 0.0013-0.325 17.8 30 A21 0.0023 0.11 0.011 0.011 0.023 0.0017 0.017 0.025 5.8 2.72 A22 0.0027 0.09 0.0 1 0.009 0.037 0.0027 0.074 0.082 5.8 7.59 A23 0.0025 0.08 0.009 0.012 0.032 0.003] 0.15 0.16 3.87 16 Note: Rl = 0.58 * manganese / sulfur, R-2 = 0.25 * vanadium / carbon ) Note YP (Mpa) TS (MPa) Ε] (%) r-value (rm) Ar-value (Δγ) A] (MPa) A1 211 309 49 1.83 0.28 23 0.05】 S A2 209 311 52 1.93 0.34 22 0.12 IS A3 201 295 54 1.94 0.31 21 0.15 IS
29 200521249 A4 223 319 48 1.88 0.23 27 0.14 1S A5 2Π 312 48 1.93 0.52 34 0.62 CS A6 254 329 45 】.57 0.41 49 0.09 CS A7 222 316 48 1.82 0.58 38 0.46 CS A8 200 291 53 1.69 0.48 37 0.34 CS A9 213 311 50 2.24 0.31 15 0.06 IS A10 209 307 53 2.15 0.25 25 〇.]1 IS All 219 318 49 2.34 0.28 16 0.12 IS A12 220 321 49 2.25 0.24 26 0.13 IS A13 234 328 49 2.20 0.31 24 0.14 IS A14 241 333 47 2.01 0.43 42 0.54 CS A15 175 295 50 1.82 0.26 0 0.06 IS A16 163 301 53 1.86 0.21 0 0.11 IS A17 158 284 49 1.9 0.19 0 0.12 IS A18 148 278 49 1.77 0.17 0 0.13 IS A19 ]75 302 49 1.74 0.18 0 0.14 IS A20 182 308 47 1.52 0.21 0 0.54 CS A21 158 290 50 2.19 0.35 0 0.07 IS A22 162 288 49 2.22 0.39 0 0.08 ]s A23 _ ]72 292 49 2.08 0.29 0 〇.】】 IS 注釋:γρ=當量強度,TS=抗拉強度,El=延展,r-value :可塑性-異向性指數, △ r-value :平面内異向性指數,AI =老化指數,AS=沉澱物之平均尺寸,】S =本發 明之鋼材,CS=比較之鋼材29 200521249 A4 223 319 48 1.88 0.23 27 0.14 1S A5 2Π 312 48 1.93 0.52 34 0.62 CS A6 254 329 45]. 57 0.41 49 0.09 CS A7 222 316 48 1.82 0.58 38 0.46 CS A8 200 291 53 1.69 0.48 37 0.34 CS A9 213 311 50 2.24 0.31 15 0.06 IS A10 209 307 53 2.15 0.25 25 〇.] 1 IS All 219 318 49 2.34 0.28 16 0.12 IS A12 220 321 49 2.25 0.24 26 0.13 IS A13 234 328 49 2.20 0.31 24 0.14 IS A14 241 333 47 2.01 0.43 42 0.54 CS A15 175 295 50 1.82 0.26 0 0.06 IS A16 163 301 53 1.86 0.21 0 0.11 IS A17 158 284 49 1.9 0.19 0 0.12 IS A18 148 278 49 1.77 0.17 0 0.13 IS A19] 75 302 49 1.74 0.18 0 0.14 IS A20 182 308 47 1.52 0.21 0 0.54 CS A21 158 290 50 2.19 0.35 0 0.07 IS A22 162 288 49 2.22 0.39 0 0.08] s A23 _] 72 292 49 2.08 0.29 0 〇]] IS Note: γρ = equivalent strength , TS = tensile strength, El = elongation, r-value: plasticity-anisotropy index, △ r-value: in-plane anisotropy index, AI = aging index, AS = average size of sediment,] S = Steel of the invention, CS = Comparative steel
如表2所示,本發明之鋼材不僅具有高抗老化性,也 具有高當量強度以及優異之塑形性。 同時,樣品A5具有為23.2之0.58*錳/硫值,平均尺 寸為〇·62μηΊ的粗糙沉澱物,34MPa之老化指數,其造成 30 200521249 了差劣的抗老化性。該樣品A6具有高含量的碳,而因此 具有一 48 MPa的老化指數,其為過度地高而也造成了差 劣的抗老化性。該樣品A7具有為6.34之〇·58*錳/硫值, 其位本發明的範圍之内。然而,其具有超出本發明範圍之 5 锰及硫含量,而造成粗糖之MnS沉激物,因此提供一 38 MPa之老化指數。因此,在樣品A7中,不能確保該抗老 化性,且該鋼片材之塑形性則為差的。例外地,在樣品 A8之範例中,因該再結晶溫度為1〇5〇t,其係十分低的, 在再加熱過程中該等沉澱物未能完全峙地被溶解,而造成 10 過多之未完全溶解之沉澱物,且由於一極度高的捲繞溫 度,該等沉澱物係平均尺寸為 〇.34μπι的粗链沉殿物,因 此其為難於確保該抗老化性。 【範例1 - 2】具有固態溶液增強作用之高強度C u S -沉澱鋼 15 材 為了依據本發明而達成該高強度CuS-沉澱鋼材,在表 3中所示之鋼板再加熱至12〇〇°C之溫度而延續精軋輥該鋼 板以彳疋供熱軋鋼片材後,以一 200°C/分鐘之速度冷卻該鋼 片材,且在65〇χ:進行捲繞。接著,以一 75%之斷面收縮 20率接續冷軋該熱軋鋼片材且延續著連續退火。在9l〇°C執 灯精札輕,其在該Ar3轉形溫度之上,且藉由以1〇。〇/秒 之速率加熱該鋼片材40秒至750°C而執行連續退火。As shown in Table 2, the steel of the present invention has not only high aging resistance, but also high equivalent strength and excellent moldability. At the same time, sample A5 had a coarse precipitate of 0.58 * manganese / sulfur value of 23.2, an average size of 0.62 μηΊ, and an aging index of 34 MPa, which caused 30 200521249 to have inferior aging resistance. The sample A6 has a high content of carbon, and therefore has an aging index of 48 MPa, which is excessively high and also causes poor aging resistance. The sample A7 had a manganese / sulfur value of 6.34 * 58 *, which is within the scope of the present invention. However, it has a manganese and sulfur content beyond the scope of the present invention, which causes a MnS sinker of crude sugar, thus providing an aging index of 38 MPa. Therefore, in Sample A7, the aging resistance cannot be ensured, and the plasticity of the steel sheet is poor. Exceptionally, in the example of sample A8, because the recrystallization temperature is 1050t, which is very low, the precipitates were not completely dissolved in the reheating process, resulting in an excessive amount of 10 The precipitates are not completely dissolved, and because of an extremely high winding temperature, the precipitates are thick chain sinks with an average size of 0.34 μm, so it is difficult to ensure the aging resistance. [Example 1-2] High strength Cu S-precipitated steel 15 with solid solution strengthening effect In order to achieve the high-strength CuS-precipitated steel according to the present invention, the steel plate shown in Table 3 was reheated to 120 °. After the steel sheet is hot-rolled with the steel sheet continuously heated at a temperature of ° C, the steel sheet is cooled at a rate of 200 ° C / min, and wound at 65 ° :. Next, the hot-rolled steel sheet is continuously cold-rolled at a 75% cross-sectional shrinkage ratio of 20% and continuous annealing is continued. The lamp was lightened at 91 ° C, which was above the Ar3 transformation temperature, and by 10 °. The steel sheet is heated at a rate of 0 / second for 40 seconds to 750 ° C to perform continuous annealing.
成份(wt%) 3] 200521249 編 號 碳C 锰Μη 磷Ρ 矽Si 鉻Ci. 硫S ί呂A] Ν 鉬Mo 釩V R-1 R-2 0.003 0.05-0.2 0.2 0.1-0.8 0.2-1.2 0.005-0.03 0.01-0.1 0.004 0.01-0.2 0.01-0.2 10 1-20 B1 0.0023 0.08 0.052 - - 0.006 0.04 0.0015 - - 7.73 B2 0.0018 0.10 0.102 - - 0.010 0.05 0.0026 - - 5.8 B3 0.0025 0.08 0.151 - - 0.012 0.035 0.0018 - - 3.87 B4 0.0022 0.4 0.109 - - 0.011 0.05 0.0038 - - 21.1 B5 0.0024 0.4 0.07 - - 0.01 0.04 0.0016 鈦:0.05 - B6 0.0019 0.11 0.01 0.22 - 0.008 0.04 0.0012 > - 7.78 B7 0.0018 0.1 0.011 0.62 - 0.009 0.035 0.0025 - - 6.4 B8 0.0026 0.42 0.01 0.25 - 0.01 0.03 0.0028 - - 24.4 B9 0.0024 0.09 0.01 - 0.32 0.007 0.05 0.0012 - - 7.46 B10 0.0022 0.11 0.015 - 0.63 0.012 0.04 0.0028 - - 5.3] ΒΠ 0.0018 0.11 0.011 - 0.95 0.015 0.03 0.0022 - - 4.25 B12 0.0017 0.1 0.048 - - 0.01 0.034 0.0025 0.025 - 5.8 B13 0.002 0.09 0.011 0.21 - 0.01 0.024 0.0018 0.02 - 5.22 B14 0.0014 0.1 0·0] 1 - 0.3 0.008 0.03 0.0032 0.025 - 7.25 B15 0.002 0.09 0.048 0.21 0.3 0.012 0.033 0.0022 0.] - 4.35 B16 0.0018 0.11 0.05 > - 0.011 0.03 0.002 - 0.02 5.8 2.7 jj B17 0.0022 0.11 0.01 0.25 - 0.009 0.034 0.0022 - 0.021 7.08 2.39. B18 0.0015 0.11 0.0] - 0.33 0.01 0.023 0.0022 - 0.02 6.38 3.33 B19 0.0023 0.09 0.054 - - 0.01 0.043 0.0029 0.021 0.017 5.22 1.85 B20 0.0026 0.09 0.012 0.26 - 0.011 0.024 0.0019 0.019 0.016 4.75 1.54 B21 0.0025 0.11 0.01 - 0.33 0.01 0.023 0.0022 0.017 0.021 6.38 2.1 注釋:R-] = 0.58*錳/硫,R-2 = 0.25*釩/碳 表4 樣品 編號 物理性質 AS (μιη) W註 32 200521249Ingredients (wt%) 3] 200521249 Numbered carbon C Manganese Mn Phosphorus P Silicon Si Chromium Ci. Sulfur A] Ν Molybdenum Mo Vanadium V R-1 R-2 0.003 0.05-0.2 0.2 0.1-0.8 0.2-1.2 0.005- 0.03 0.01-0.1 0.004 0.01-0.2 0.01-0.2 10 1-20 B1 0.0023 0.08 0.052--0.006 0.04 0.0015--7.73 B2 0.0018 0.10 0.102--0.010 0.05 0.0026--5.8 B3 0.0025 0.08 0.151--0.012 0.035 0.0018-- 3.87 B4 0.0022 0.4 0.109--0.011 0.05 0.0038--21.1 B5 0.0024 0.4 0.07--0.01 0.04 0.0016 Titanium: 0.05-B6 0.0019 0.11 0.01 0.22-0.008 0.04 0.0012 >-7.78 B7 0.0018 0.1 0.011 0.62-0.009 0.035 0.0025--- 6.4 B8 0.0026 0.42 0.01 0.25-0.01 0.03 0.0028--24.4 B9 0.0024 0.09 0.01-0.32 0.007 0.05 0.0012--7.46 B10 0.0022 0.11 0.015-0.63 0.012 0.04 0.0028--5.3] ΒΠ 0.0018 0.11 0.011-0.95 0.015 0.03 0.0022--4.25 B12 0.0017 0.1 0.048--0.01 0.034 0.0025 0.025-5.8 B13 0.002 0.09 0.011 0.21-0.01 0.024 0.0018 0.02-5.22 B14 0.0014 0.1 0 · 0] 1-0.3 0.008 0.03 0.0032 0.025-7.25 B15 0.002 0.09 0 .048 0.21 0.3 0.012 0.033 0.0022 0.]-4.35 B16 0.0018 0.11 0.05 >-0.011 0.03 0.002-0.02 5.8 2.7 jj B17 0.0022 0.11 0.01 0.25-0.009 0.034 0.0022-0.021 7.08 2.39. B18 0.0015 0.11 0.0]-0.33 0.01 0.023 0.0022-0.02 6.38 3.33 B19 0.0023 0.09 0.054--0.01 0.043 0.0029 0.021 0.017 5.22 1.85 B20 0.0026 0.09 0.012 0.26-0.011 0.024 0.0019 0.019 0.016 4.75 1.54 B21 0.0025 0.11 0.01-0.33 0.01 0.023 0.0022 0.017 0.021 6.38 2.1 Note: R-] = 0.58 * manganese / sulfur, R-2 = 0.25 * vanadium / carbon Table 4 Sample number Physical properties AS (μιη) W Note 32 200521249
YP (MPa) 丁 S (MPa) El (%) r-value (i*m) △r-value (Ar) A1 (MPa) DB 丁 T (Cc) B1 241 356 47 1.83 0.31 28 -70 0.11 IS B2 299 402 42 1.65 0.32 23 -50 0.09 IS B3 352 456 35 1.53 0.31 27 -40 0.14 IS B4 289 394 39 1.63 0.58 45 -60 0.73 CS B5 210 353 40 1.73 0.58 0 + 0 - CVS B6 241 356 50 1.75 0.28 24 -80 0.1] IS B7 352 456 38 1.47 0.31 22 -50 0.14 IS B8 23】 346 45 1.72 0.58 42 -70 0.49 CS B9 235 352 47 1.70 0.20 21 -80 0.08 IS B10 299 418 44 1.51 0.19 18 -60 0.07 IS B11 349 459 36 1.42 0.23 16 -50 0.11 IS B12 238 359 46 2.09 0.3 18 -80 0.13 】s B13 238 362 48 2.09 0.32 22 -80 0.11 IS B14 228 358 48 2.17 0.25 15 -80 0.1 IS B15 350 470 35 ].61 0.15 19 -60 0.1 】s B16 203 355 44 1.76 0.23 0 -70 0.12 IS B]7 198 360 47 1.77 0.32 0 -70 0.13 IS B18 197 352 47 1.65 0.28 0 -80 0.]】 IS B19 205 356 44 2.01 0.31 0 -60 0.11 IS B20 198 360 47 \.ΊΊ 0.27 0 -70 0.13 】s B21 201 350 48 1.98 0.28 0 -70 0.07 IS 注釋:ΥΡ=當量強度,TS =抗拉強度,E卜延展,r-value :可塑性-異向性指數, △ r-value :平面内異向性指數,Al =老化指數,DBTT=用於研究二級工作產品月龟 化性之延展性-脆性轉換溫度.A S =沉激物之平均尺寸,丨S =本發明之鋼材,CS = 比較之鋼材,cVs=習知鋼材 33 200521249 5 10 15 20 戈二?,樣品—以及咖具有一a 或更冋之吾1強度,一 之當量強度-延展性平衡/強更;:之延展,以及_〇 材具有優異之塑形性(田置強度延展性)。本發明之鋼 數,因此,可確佯外Γ及—3〇咖或較少之老化指 一書C或更低之延额=性。此外,本發日狀鋼材具有 品脆化方面係優異的。&性轉換溫度,且在二級工作產 該樣品B5(習知鋼材 一優異之老化指數。妙而為南強度冷耗鋼片材,且具有 度,其有破碎之高可基於一高延展性脆性轉換溫 b性’即使在室溫下衝擊。 J”有A1N况截增強作用之腐_沉殿鋼材 在表5中所示之鋼. 精札輥該鋼板以提供敎^加熱至12贼之溫度而延續 度冷卻該卿,μ::。峨,以—靴/分鐘之速 之斷面收縮率接續冷軋今^進行捲繞。接著,以一75% 火。在9抓執行糾Γ、、^Μ材且延續著連續退 藉由以節秒之速率加I在該ΑΓ3轉形溫度之上’且 連續退火。 以鋼片材40秒至750t而執行YP (MPa) D S (MPa) El (%) r-value (i * m) △ r-value (Ar) A1 (MPa) DB D T (Cc) B1 241 356 47 1.83 0.31 28 -70 0.11 IS B2 299 402 42 1.65 0.32 23 -50 0.09 IS B3 352 456 35 1.53 0.31 27 -40 0.14 IS B4 289 394 39 1.63 0.58 45 -60 0.73 CS B5 210 353 40 1.73 0.58 0 + 0-CVS B6 241 356 50 1.75 0.28 24 -80 0.1] IS B7 352 456 38 1.47 0.31 22 -50 0.14 IS B8 23] 346 45 1.72 0.58 42 -70 0.49 CS B9 235 352 47 1.70 0.20 21 -80 0.08 IS B10 299 418 44 1.51 0.19 18 -60 0.07 IS B11 349 459 36 1.42 0.23 16 -50 0.11 IS B12 238 359 46 2.09 0.3 18 -80 0.13】 s B13 238 362 48 2.09 0.32 22 -80 0.11 IS B14 228 358 48 2.17 0.25 15 -80 0.1 IS B15 350 470 35] .61 0.15 19 -60 0.1】 s B16 203 355 44 1.76 0.23 0 -70 0.12 IS B] 7 198 360 47 1.77 0.32 0 -70 0.13 IS B18 197 352 47 1.65 0.28 0 -80 0.]] IS B19 205 356 44 2.01 0.31 0 -60 0.11 IS B20 198 360 47 \ .ΊΊ 0.27 0 -70 0.13】 s B21 201 350 48 1.98 0.28 0 -70 0.07 IS Note: ΥP = equivalent strength, TS = tensile strength, Eb extension, r-va lue: plasticity-anisotropy index, △ r-value: in-plane anisotropy index, Al = aging index, DBTT = ductility-brittleness transition temperature used to study the moon tortoiseability of secondary work products. AS = Shen Average size of exciter, S = steel of the present invention, CS = steel of comparison, cVs = conventional steel 33 200521249 5 10 15 20 Ge Er? The sample—and coffee—has an a or more strength, an equivalent strength-ductility balance / strength; the extension, and _〇 materials have excellent plasticity (field strength ductility). The number of steels of the present invention, therefore, can be ascertained that the aging and -30 coffee or less aging refers to the book C or lower elongation = property. In addition, the present Japanese steel is excellent in terms of embrittlement. & The temperature is changed, and the sample B5 is produced in the second-level work (a good aging index of conventional steels. It is a cold-strength steel sheet with high strength, and has a degree. Its high degree of fragmentation can be based on a high extension. The brittleness converts the temperature to the temperature of 'b' even when impacted at room temperature. J "has A1N condition cutting enhancement rot_Shen Dian Steel as shown in Table 5. The steel is refined to provide 敎 ^ heated to 12 thieves The temperature and the degree of continuity to cool the qing, μ ::. E, followed by cold rolling at a speed of -boots / minute to continue rolling. Then, fire at 75%. Perform correction at 9 , And ^ M materials and continued continuous withdrawal by adding I at the rate of nodal seconds above the AΓ3 transformation temperature 'and continuous annealing. Performed with steel sheet 40 seconds to 750t
表5table 5
34 200521249 C2 0.0028 0.09 0.042 0.007 0.04 0.0068 7.73 3.06 C3 0.0023 0.11 0.04 〇.〇]〇 0.05 0.0082 5.8 3.17 C4 0.0018 0.08 0.043 0.009 0.055 0.0065 3.87 4.4 C5 0.0022 0.09 0.04 〇.〇]] 0.008 0.0067 6.53 0.46 C6 0.0019 0.4 0.04 0.009 0.04 0.0083 25.8 2.51 C7 0.0015 0·]] 0.042 〇.0】 0.055 0.012 0.028 6.38 2.25 C8 0.0012 0.1 0.04 0.008 0.033 0.011 0.018 7.25 1.56 3.75 C9 0.0023 0.11 0.043 0.008 0.053 0·0]】 0.022 0.017 7.98 2.51 1.85 注釋:R-l = 0.58*猛/硫,R-2 = 0.25*鈒/碳,R-3 = 0.52*鋁/氮 表634 200521249 C2 0.0028 0.09 0.042 0.007 0.04 0.0068 7.73 3.06 C3 0.0023 0.11 0.04 〇.〇] 〇0.05 0.0082 5.8 3.17 C4 0.0018 0.08 0.043 0.00.05 0.005 0.0065 3.87 4.4 C5 0.0022 0.09 0.04 〇.〇]] 0.008 0.0067 6.53 0.46 C6 0.0019 0.4 0.04 0.009 0.04 0.0083 25.8 2.51 C7 0.0015 0 ·]] 0.042 〇.0] 0.055 0.012 0.028 6.38 2.25 C8 0.0012 0.1 0.04 0.008 0.033 0.011 0.018 7.25 1.56 3.75 C9 0.0023 0.11 0.043 0.008 0.053 0 · 0]] 0.022 0.017 7.98 2.51 1.85 Notes: Rl = 0.58 * violent / sulfur, R-2 = 0.25 * 鈒 / carbon, R-3 = 0.52 * aluminum / nitrogen Table 6
樣品 ‘號 物理性質 AS (μηι) 附註 YP (MPa) TS (MPa) El (%) r-value (rm) △r-va]ue (Ar) A】 (MPa) DB 丁丁 (°C) C1 231 352 46 1.78 0.31 22 -70 0.07 IS C2 229 344 48 1.82 0.38 25 -70 0.09 IS C3 235 348 48 1.83 0.31 22 -70 0.09 IS C4 23] 346 48 1.82 0.32 25 -70 0·07 ]s C5 218 332 42 1.62 0.34 49 -70 0.12 cs C6 221 328 46 1.72 0.54 38 -70 0.38 cs C7 225 355 47 2.15 0.31 12 -80 0.08 IS C8 195 354 47 1.76 0.29 0 -70 0.09 IS C9 198 350 48 1.99 0.29 0 -70 0.1 IS △卜⑹^平面内異向性指數,A1=老化指數,贿了=用於研究二級工作產品脆 化性之延展性普11轉換溫度,AS=沉激物之平均尺寸,】s=本發明之 cs= 比較之鋼材 ’ 10 【範例2-】】CuS-沉澱鋼材 35 200521249 在表7中所示之鋼板經再加熱至12〇〇。〇之溫度而延 續精軋輥該鋼板以提供熱軋鋼片材後,以一 4〇〇〇c/分鐘之 速度冷部該鋼片材至650°C。接著,以一 75%之斷面收縮 率接續冷軋該熱軋鋼片材且延續著連續退火。在91〇。(:執 5行知軋輕,其在該Ar3轉形溫度之上,且藉由以10°c/秒 之速率加熱該鋼片材40秒至750〇c而執行連續退火。例外 地’在表7之樣品D8之範例中,在經再加熱至1050°c的 溫度且接著進行精軋輥後,係以400°C/分鐘之速度冷卻該 樣且接著在650。(:捲繞。此外,在樣品D14-D17之範例 10中,在經再加熱至1250°C且接著進行精軋輥後,係以550 C/分鐘之速度冷卻該等樣品且接著在65〇〇c捲繞。 表7 樣 口 成份(wt%) 口 P 編 碳C 磷P 硫S 鋁A1 氮N 銅Cu 鉬Mo 釩V R-4 R-2 0.003 0.015 0.003-0.025 0.01-0.】 0.004 0.01-0.2 0.01-0.2 0.01-0.2 1-10 1-20 D1 0.0017 0.007 0.008 0.04 0.0028 0.035 2.19 D2 0.0018 0.010 0.008 0.05 0.0014 0.041 2.56 D3 0.0016 0.012 0.015 0.03 0.0012 0.083 2.77 D4 0.0025 0.009 0.005 0.02 0.0039 0.021 2.1 D5 0.0018 0.0] .0.005 0.03 0.0024 0.081 8.1 D6 0.0022 0·0]] 0.012 0.05 0.0038 0.005 0.21 D7 0.0019 0.01 0.005 0.03 0.0015 0.28 28 D8 0.0018 0.010 0.008 0.05 0.0014 0.041 2.56 D9 0.0015 0·0] 0.01 0.035 0.0022 0.038 0.015 1.9 D10 0.0028 0.011 0.008 0.025 0.0021 0.045 0.05 2.81 36 200521249 D11 0.0018 0.009 0.012 0.033 0.0032 0.084 0.1 ] 3.5 D12 0.0024 0.01 0.009 0.042 0.0029 0.031 0.]7 1.72 D13 0.0028 0.011 0.012 0.035 0.0024 0.035 0.28 1.46 D14 0.0018 0.009 0.01] 0.025 0.0026 0.03 0.025 1.36 3.47 D15 0.002 0.012 0.009 0.022 0.0011 0.052 0.075 2.89 9.38 D16 0.0026 0.0]] 0.008 0.028 0.0038 0.084 0J7 3.82 16.3 D17 0.002 0.012 0.01 0.039 0.0044 0.065 0.28 3.25 35 D18 0.0016 0.011 0.009 0.035 0.0037 0.043 0.021 0.017 2.39 2.66 D19 0.0022 0.01 0.01 0.042 0.0024 0.058 0.075 0.082 2.9 9.32 D20 0.0027 0.01 0.0]] 0.022 0.0022 0.064 0.17 0.15 5.82 13.9 注釋:R-2 = 0.25*釩/碳,R-4 = 0.5*銅/硫 表8 樣品 編號 物理性質 AS (μιη) 附註 YP (Mpa) TS (MPa) E] (%) r-value (rm) Ar-value (△】·) A] (MPa) D1 206 298 53 2.15 0.29 21 0.08 IS D2 189 312 52 2.33 0.38 18 0.05 IS D3 223 321 50 2.29 0.29 21 0.05 IS D4 197 319 53 2.23 0.35 28 0.07 IS D5 218 316 52 2.18 0.25 29 0,09 IS D6 189 296 54 2.58 0.79 46 - cs D7 209 309 46 1.87 0.53 51 0.34 cs D8 173 275 58 2.62 1.09 49 0.49 cs D9 193 300 53 2.58 0.32 19 0.09 IS D10 211 310 52 2.63 0.35 25 0.07 IS D11 202 301 50 2.49 0.28 20 0.07 IS D12 207 312 52 2.53 0.33 23 0.07 IS D13 215 326 48 2.28 0.51 29 0.19 cs 37 200521249Sample's physical properties AS (μηι) Note YP (MPa) TS (MPa) El (%) r-value (rm) △ r-va) ue (Ar) A] (MPa) DB Tintin (° C) C1 231 352 46 1.78 0.31 22 -70 0.07 IS C2 229 344 48 1.82 0.38 25 -70 0.09 IS C3 235 348 48 1.83 0.31 22 -70 0.09 IS C4 23] 346 48 1.82 0.32 25 -70 0.07] s C5 218 332 42 1.62 0.34 49 -70 0.12 cs C6 221 328 46 1.72 0.54 38 -70 0.38 cs C7 225 355 47 2.15 0.31 12 -80 0.08 IS C8 195 354 47 1.76 0.29 0 -70 0.09 IS C9 198 350 48 1.99 0.29 0 -70 0.1 IS △ Bu⑹ ^ In-plane anisotropy index, A1 = aging index, bribe = ductility used to study the embrittlement of secondary work products. Pu 11 transition temperature, AS = average size of sinker,] s = Cs = Comparative steel material of the present invention '10 [Example 2-] CuS-precipitated steel material 35 200521249 The steel plate shown in Table 7 was reheated to 1200. After finishing rolling the steel sheet to provide a hot-rolled steel sheet, the steel sheet was cold-rolled to 650 ° C at a speed of 4,000 c / minute. Next, the hot-rolled steel sheet was continuously cold-rolled at a 75% reduction in area and continuous annealing was continued. At 91. (: Perform 5 lines of light rolling, which are above the Ar3 transformation temperature, and perform continuous annealing by heating the steel sheet at a rate of 10 ° c / sec for 40 seconds to 7500c. The exception is' In the example of sample D8 in Table 7, after reheating to a temperature of 1050 ° C and then finishing rolls, the sample was cooled at a rate of 400 ° C / minute and then at 650. (: winding. In addition, In Example 10 of samples D14-D17, after reheating to 1250 ° C and then finishing rolls, the samples were cooled at a rate of 550 C / min and then wound at 6500c. Table 7 Samples Oral composition (wt%) Oral P Weave carbon C Phosphorus P Sulfur S Aluminum A1 Nitrogen N Copper Cu Molybdenum Mo Vanadium V R-4 R-2 0.003 0.015 0.003-0.025 0.01-0.] 0.004 0.01-0.2 0.01-0.2 0.01- 0.2 1-10 1-20 D1 0.0017 0.007 0.008 0.04 0.0028 0.035 2.19 D2 0.0018 0.010 0.008 0.05 0.0014 0.041 2.56 D3 0.0016 0.012 0.015 0.03 0.0012 0.083 2.77 D4 0.0025 0.00 0.005 0.02 0.0039 0.021 2.1 D5 0.0018 0.0] .0.005 0.03 0.0024 0.081 8.1 D6 0.0022 0 · 0]] 0.012 0.05 0.0038 0.005 0.21 D7 0.0019 0.01 0.005 0.03 0.0015 0.28 28 D8 0.0018 0.010 0.008 0.05 0.0014 0.041 2.56 D9 0.0015 0 · 0] 0.01 0.035 0.0022 0.038 0.015 1.9 D10 0.0028 0.011 0.008 0.025 0.0021 0.045 0.05 2.81 36 200521249 D11 0.0018 0.01 0.012 0.033 0.0032 0.084 0.1] 3.5 D12 0.0024 0.01 0.009 0.042 0.0029 0.031 0.] 7 1.72 D13 0.0028 0.011 0.012 0.035 0.0024 0.035 0.28 1.46 D14 0.0018 0.009 0.01] 0.025 0.0026 0.03 0.025 1.36 3.47 D15 0.002 0.012 0.009 0.022 0.0011 0.052 0.075 2.89 9.38 D16 0.0026 0.0]] 0.008 0.028 0.0038 0.084 0J7 3.82 16.3 D17 0.002 0.012 0.01 0.039 0.0044 0.065 0.28 3.25 35 D18 0.0016 0.011 0.009 0.035 0.0037 0.043 0.021 0.017 2.39 2.66 D19 0.0022 0.01 0.01 0.042 0.0024 0.058 0.075 0.082 2.9 9.32 D20 0.0027 0.01 0.0]] 0.022 0.0022 0.064 0.17 0.15 5.82 13.9 Note: R-2 = 0.25 * Vanadium / carbon, R-4 = 0.5 * copper / sulfur Table 8 Sample number Physical properties AS (μιη) Note YP (Mpa) TS (MPa) E] (%) r-value (rm) Ar-value (△) · ) A] (MPa) D1 206 298 53 2.15 0.29 21 0.08 IS D2 189 312 52 2.33 0.38 18 0.05 IS D3 223 321 50 2.29 0.29 21 0.05 IS D4 197 319 319 53 2.23 0.35 28 0.07 IS D5 218 316 52 2.18 0.25 29 0,09 IS D6 189 296 54 2.58 0.79 46-cs D7 209 309 46 1.87 0.53 51 0.34 cs D8 173 275 58 2.62 1.09 49 0.49 cs D9 193 300 53 2.58 0.32 19 0.09 IS D10 211 310 52 2.63 0.35 25 0.07 IS D11 202 301 50 2.49 0.28 20 0.07 IS D12 207 312 52 2.53 0.33 23 0.07 IS D13 215 326 48 2.28 0.51 29 0.19 cs 37 200521249
【範例2 2】具有固態溶液增強作用之高強度CuS-沉澱鋼 材 在表9中所不之鋼板經再加熱至1200°c之溫度而延 續精軋輥該鋼板以提供熱軋鋼片材後’以一 4〇〇(t/分鐘之 速度冷卻該熱軋鋼片材,且在65〇。(:進行捲繞。接著,以 1〇 一 75%之斷面收縮率接續冷軋該經捲繞之鋼片材且延續 著連續退火。在91(rc執行精軋輥,其在該Ar3轉形溫度 之上,且藉由以10°C/秒之速率加熱該鋼片材4〇秒至7刈 °C而執行連續退火。 15 表9 樣 σ ] 成份(wt%) ΌΟ 編 號 碳C 磷Ρ 矽Si 路Cr 硫S 鋁A1 氮Ν 銅Cu 鉬Mo 釩V R-4 R-2 0.003 0.2 0.1-0.8 0.2-1.2 0.003-0.025 〇.〇]>0.] 0.004 0.01-0.2 0.01-0.2 0.01-0.2 1-10 1-20 Ε] 0.0021 0.045 j 0.015 0.04 0.0018 0.045 1.5 Ε2 0.0015 0.048 0.013 0.03 0.0023 0.06 2.25 Ε3 0.0021 0.1 1 0.011 0.04 ---__ 0.0015 0.056 2.55 _1_ 38 200521249 E4 0.0025 0.11 0.011 0.04 0.0038 0.106 4.82 E5 0.0018 0.16 0.008 0.05 0.0012 0.141 8.81 E6 0.0018 0.05 0.01 0.02 0.0039 0.005 0.25 E7 0.0022 0.109 0.011 0.05 0.0038 0.32 14.5 E8 0.0022 0.01 0.23 0.015 0.04 0.0014 0.045 1.5 • E9 0.0024 0.009 0.21 0.012 0.05 0.0024 0.052 2.15 • E10 0.0025 0.01 0.4 0.008 0.04 0.0018 0.045 2.81 Ell 0.0015 0.012 0.43 0.01 0.04 0.0032 0.087 4.34 E12 0.0021 0.010 0.63 0.008 0.035 0.0012 0.14] 8.81 钃 E13 0.0026 0.01 0.25 0.0] 0.03 0.0028 0.004 0.2 E14 0.0017 0.012 0.41 0.005 0.04 0.0032 0.221 22.1 E15 0.0024 0.01 0.30 0.012 0.04 0.0022 0.043 1.8 E16 0.0021 0.012 0.33 0.01 0.04 0.0018 0.05 2.5 E17 0.0024 0.009 0.60 0.009 0.05 0.0032 0.05 2.78 E18 0.0024 0.013 0.63 0.009 0.04 0.0028 0.078 4.33 E19 0.0016 0.009 0.95 0.005 0.04 0.0032 0.083 8.3 E20 0.0026 0.011 0.35 0.012 0.04 0.0028 0.008 0.33 E21 0.0025 0.009 0.61 0.011 0.05 0.0023 0.252 14 i E22 0.0025 0.052 0.012 0.023 0.0033 0.054 0.035 2.25 E23 0.0014 0.0] 0.23 0.009 0.035 0.0034 0.05 0.022 2.78 E24 0.0014 o.on 0.33 0.0] 0.034 0.0024 0.04 0.018 2 E25 0.0015 0.055 0·0] 0.043 0.0023 0.052 0.023 2.6 3.83 E26 0.0012 0.009 0.25 0.011 0.023 0.0014 0.055 0.024 2.5 5 E27 0.0012 0.01 0.35 0.009 0.034 0.0025 0.042 o.on 2.33 3.54 E28 0.0024 0.054 0.012 0.034 0.0023 0.05 0.018 0.02 2.08 2.08 E29 0.0017 0.01 0.26 0.01 0.032 0.0024 0.05 0.022 0.018 2.5 2.65 E30 1 0.0023 0.011 0.34 0.01 0.024 0.0024 0.046 0.021 0.01S 2.3 1.96 39 200521249 注釋:R-2 = 0.25*釩/碳,R-4 = 0.5*銅/硫 表10 樣品 編號 物理性質 AS (μηι) 附註 YP (MPa) TS (MPa) El (%) r-value (rm) Ar-value (△0 AI (MPa) DB 丁丁 (°C) E1 265 360 49 1.85 0.24 25 -70 0.05 IS E2 27] 365 49 1.83 0.25 22 -70 0.05 IS E3 301 410 41 1.73 0.24 21 -50 0.06 IS E4 299 402 42 1.69 0.22 27 -50 0.06 IS E5 352 456 35 1.53 0.18 21 -40 0.09 IS E6 208 326 50 1.85 0.61 35 -60 0.38 cs E7 278 382 39 1.59 0.58 45 ^ 50 0.55 cs E8 270 355 52 1.85 0.28 21 -80 0.06 IS E9 27] 359 48 1.75 0.28 28 -80 0.06 IS E10 300 406 45 1.68 0.26 25 -60 0.07 IS E11 306 409 43 1.63 0.25 22 -60 0.07 IS E12 363 459 35 1.45 0.21 26 -50 0.05 】s E13 231 346 45 1.79 0.61 49 -70 0.49 cs E14 279 392 38 1.66 0.47 37 -60 0.51 cs E15 262 356 48 1.75 0.25 19 -80 0.07 IS E16 265 350 48 1.75 0.23 17 -80 0.07 IS E]7 310 405 42 ].63 0.22 18 -60 0.05 IS E18 302 408 40 1.58 0.22 20 -60 0.05 IS E19 354 451 35 1.51 0.22 16 -50 0.06 IS E20 212 339 47 1.74 0.49 37 -70 0.38 cs 40 200521249 E21 279 393 43 1.64 0.42 39 -60 0.35 CS E22 265 355 48 2.18 0.27 25 -80 0.06 1S E23 262 355 49 2.03 0.26 18 -80 0.06 IS E24 252 356 47 2.03 0.31 15 -80 0.06 IS E25 224 357 47 1.82 0.32 0 -70 0.07 IS E26 216 357 48 1.77 0.27 0 -80 0.07 IS E27 222 350 47 1.72 0.25 0 -80 0.08 IS E28 210 361 48 2.12 0.38 0 -70 0.06 IS E29 210 355 50 2.11 0.34 0 -70 0.08 IS E30 213 355 48 2.14 0.35 0 -70 0.08 ]s 注釋:ΥΡ=當量強度,TS=抗拉強度,E卜延展,r-va]ue :可塑性-異向性指數, △r-value :平面内異向性指數,A]=老化指數,DBTT=用於研究二級工作產品脆 化性之延展性-脆性轉換溫度,AS=沉澱物之平均尺寸,]S=本發明之鋼材,CS= 比較之鋼材 【範例2-3】具有A1N沉澱增強作用之高強度CuS-沉澱鋼材 在表11中所示之鋼板經再加熱至1200°C之溫度而延 續精軋輥該鋼板以提供熱軋鋼片材後,以一 40(TC/分鐘之 速度冷卻該熱軋鋼片材,且在650°C進行捲繞。接著,以 10 — 75%之斷面收縮率接續冷軋該經捲繞之鋼片材且延續 著連續退火。在910°C執行精軋輥,其在該Ar3轉形溫度 之上,且藉由以10°C/秒之速率加熱該鋼片材40秒至750 °C而執行連續退火。例外地,在樣品F8-F10之範例中, 在經再加熱至1250°C的溫度且接著進行精軋輥後,係以 15 550°C/分鐘之速度冷卻該等樣品且接著在650°C捲繞。 表]】 41 200521249 樣 品 編 號 成份(、vt%) 碳C 磷P 硫S 鋁AI 氮N 銅Cu 鉬Mo 釩V R-4 R>3 R-2 比 例 0.003 0.03-0.06 0.003-0.025 0.01-0.1 0.005-0.02 0.01-0.2 0.01-0.2 0.01-0.2 1-10 1-5 1-20 F1 0.0018 0.042 0.015 0.032 0.013 0.051 1.7 1.72 F2 0.0023 0.04 0.012 0.032 0.0097 0.05 2.08 1.72 F3 0.0018 0.042 0.009 0.042 0.0072 0.086 4.78 3.03 F4 0.0015 0.05 0.007 0.057 0.0080 0.123 8.79 3.71 F5 0.0025 0.043 0.01 0.042 0.0072 0.007 0.35 3.03 F6 0.0022 0.042 0.009 0.038 0.0014 0.075 4.17 14.1 F7 0.0016 0.04 0.011 0.008 0.0028 0.0】 0.45 1.49 F8 0.0015 0.044 0.011 0.065 0.0077 0.037 0.022 1.68 4.39 F9 0.0022 0.044 0.011 0.043 0.011 0.056 0.019 2.55 2.03 2.16 F10 0.0017 0.042 0.01 0.033 0.0092 0.035 0.022 0.017 1.75 1.87 2.5 注釋:R-2 = 0.25*釩/碳,R-3 = 0.52*鋁/氮,R-4 = 0.5*銅/硫 表12[Example 2 2] High strength CuS-precipitated steel with solid solution strengthening effect. The steel plate not shown in Table 9 was reheated to a temperature of 1200 ° C to continue finishing the roll to provide the hot rolled steel sheet. The hot-rolled steel sheet was cooled at a speed of 400 (t / min, and was rolled at 65. (: winding. Then, the rolled steel sheet was continuously cold-rolled at a reduction of 10 to 75%). The material is continuously annealed. A finishing roll is performed at 91 ° C, which is above the Ar3 transformation temperature, and by heating the steel sheet at a rate of 10 ° C / sec. For 40 seconds to 7 ° C. Continuous annealing is performed. 15 Table 9 Sample σ] Composition (wt%) ΌΟ Number carbon C phosphorus P silicon Si road Cr sulfur S aluminum A1 nitrogen N copper Cu molybdenum Mo vanadium V R-4 R-2 0.003 0.2 0.1-0.8 0.2- 1.2 0.003-0.025 〇.〇] > 0.] 0.004 0.01-0.2 0.01-0.2 0.01-0.2 1-10 1-20 Ε] 0.0021 0.045 j 0.015 0.04 0.0018 0.045 1.5 Ε2 0.0015 0.048 0.013 0.03 0.0023 0.06 2.25 Ε3 0.0021 0.1 1 0.011 0.04 ---__ 0.0015 0.056 2.55 _1_ 38 200521249 E4 0.0025 0.11 0.011 0.04 0.0038 0.106 4.82 E5 0.0018 0.16 0 .008 0.05 0.0012 0.141 8.81 E6 0.0018 0.05 0.01 0.02 0.0039 0.005 0.25 E7 0.0022 0.109 0.011 0.05 0.0038 0.32 14.5 E8 0.0022 0.01 0.23 0.015 0.04 0.0014 0.045 1.5 • E9 0.0024 0.009 0.21 0.012 0.05 0.0024 0.052 2.15 • E10 0.0025 0.01 0.4 0.008 0.04 0.0018 0.045 2.81 Ell 0.0015 0.012 0.43 0.01 0.04 0.0032 0.087 4.34 E12 0.0021 0.010 0.63 0.008 0.035 0.0012 0.14] 8.81 钃 E13 0.0026 0.01 0.25 0.0] 0.03 0.0028 0.004 0.2 E14 0.0017 0.012 0.41 0.005 0.04 0.0032 0.221 22.1 E15 0.0024 0.01 0.30 0.012 0.04 0.0022 0.043 1.8 E16 0.0021 0.012 0.33 0.01 0.04 0.0018 0.05 2.5 E17 0.0024 0.009 0.60 0.009 0.05 0.0032 0.05 2.78 E18 0.0024 0.013 0.63 0.009 0.04 0.0028 0.078 4.33 E19 0.0016 0.009 0.95 0.005 0.04 0.0032 0.083 8.3 E20 0.0026 0.011 0.35 0.012 0.04 0.0028 0.008 0.33 E21 0.0025 0.009 0.61 0.011 0.05 0.0023 0.252 14 i E22 0.0025 0.052 0.012 0.023 0.0033 0.054 0.035 2.25 E23 0.0014 0.0] 0.23 0.009 0.035 0 .0034 0.05 0.022 2.78 E24 0.0014 o.on 0.33 0.0] 0.034 0.0024 0.04 0.018 2 E25 0.0015 0.055 0 · 0] 0.043 0.0023 0.052 0.023 2.6 3.83 E26 0.0012 0.009 0.25 0.011 0.023 0.0014 0.055 0.024 2.5 5 E27 0.0012 0.01 0.35 0.009 0.034 0.0025 0.042 o.on 2.33 3.54 E28 0.0024 0.054 0.012 0.034 0.0023 0.05 0.018 0.02 2.08 2.08 E29 0.0017 0.01 0.26 0.01 0.032 0.0024 0.05 0.022 0.018 2.5 2.65 E30 1 0.0023 0.011 0.34 0.01 0.024 0.0024 0.046 0.021 0.01S 2.3 1.96 39 200521249 Note: R-2 = 0.25 * vanadium / carbon, R-4 = 0.5 * copper / sulfur Table 10 Sample number Physical properties AS (μηι) Note YP (MPa) TS (MPa) El (%) r-value (rm) Ar-value (△ 0 AI (MPa) DB Tintin (° C) E1 265 360 49 1.85 0.24 25 -70 0.05 IS E2 27] 365 49 1.83 0.25 22 -70 0.05 IS E3 301 410 41 1.73 0.24 21 -50 0.06 IS E4 299 402 42 1.69 0.22 27 -50 0.06 IS E5 352 456 35 1.53 0.18 21 -40 0.09 IS E6 208 326 50 1.85 0.61 35 -60 0.38 cs E7 278 382 39 1.59 0.58 45 ^ 50 0.55 cs E8 270 355 52 1.85 0.28 21 -80 0.06 IS E9 27] 359 48 1. 75 0.28 28 -80 0.06 IS E10 300 406 45 1.68 0.26 25 -60 0.07 IS E11 306 409 43 1.63 0.25 22 -60 0.07 IS E12 363 459 35 1.45 0.21 26 -50 0.05】 s E13 231 346 45 1.79 0.61 49 -70 0.49 cs E14 279 392 38 1.66 0.47 37 -60 0.51 cs E15 262 356 48 1.75 0.25 19 -80 0.07 IS E16 265 350 48 1.75 0.23 17 -80 0.07 IS E] 7 310 405 42] .63 0.22 18 -60 0.05 IS E18 302 408 40 1.58 0.22 20 -60 0.05 IS E19 354 451 35 1.51 0.22 16 -50 0.06 IS E20 212 339 47 1.74 0.49 37 -70 0.38 cs 40 200521249 E21 279 393 43 1.64 0.42 39 -60 0.35 CS E22 265 355 48 2.18 0.27 25 -80 0.06 1S E23 262 355 49 2.03 0.26 18 -80 0.06 IS E24 252 356 47 2.03 0.31 15 -80 0.06 IS E25 224 357 47 1.82 0.32 0 -70 0.07 IS E26 216 357 48 1.77 0.27 0 -80 0.07 IS E27 222 350 47 1.72 0.25 0 -80 0.08 IS E28 210 361 48 2.12 0.38 0 -70 0.06 IS E29 210 355 50 2.11 0.34 0 -70 0.08 IS E30 213 355 48 2.14 0.35 0 -70 0.08] s Note: ΥΡ = Equivalent strength, TS = tensile strength, Eb extension, r-va] ue: plasticity-anisotropy index, △ r-value : In-plane anisotropy index, A] = aging index, DBTT = ductility-brittleness transition temperature used to study the brittleness of secondary work products, AS = average size of precipitates,] S = steel of the present invention, CS = Comparative steel [Example 2-3] High-strength CuS-precipitated steel with A1N precipitation enhancement. The steel plate shown in Table 11 was reheated to a temperature of 1200 ° C to continue the finishing roll to provide the hot-rolled steel. After the sheet, the hot-rolled steel sheet was cooled at a rate of 40 ° C./minute, and wound at 650 ° C. Next, the rolled steel sheet is continuously cold-rolled at a reduction of 10 to 75%, and continuous annealing is continued. A finishing roll is performed at 910 ° C, which is above the Ar3 transformation temperature, and continuous annealing is performed by heating the steel sheet at a rate of 10 ° C / second for 40 seconds to 750 ° C. Exceptionally, in the examples of samples F8-F10, after reheating to a temperature of 1250 ° C and then finishing rolls, the samples were cooled at a rate of 15 550 ° C / minute and then rolled at 650 ° C Around. Table]] 41 200521249 Sample No. Composition (vt%) Carbon C Phosphorus P Sulfur Aluminum Al Nitrogen N Copper Cu Molybdenum Mo Vanadium V R-4 R > 3 R-2 Ratio 0.003 0.03-0.06 0.003-0.025 0.01-0.1 0.005 -0.02 0.01-0.2 0.01-0.2 0.01-0.2 1-10 1-5 1-20 F1 0.0018 0.042 0.015 0.032 0.013 0.051 1.7 1.72 F2 0.0023 0.04 0.012 0.032 0.0097 0.05 2.08 1.72 F3 0.0018 0.042 0.009 0.042 0.0072 0.086 4.78 3.03 F4 0.0015 0.05 0.007 0.057 0.0080 0.123 8.79 3.71 F5 0.0025 0.043 0.01 0.042 0.0072 0.007 0.35 3.03 F6 0.0022 0.042 0.009 0.038 0.0014 0.075 4.17 14.1 F7 0.0016 0.04 0.011 0.008 0.0028 0.0】 0.45 1.49 F8 0.0015 0.044 0.011 0.065 0.0077 0.037 0.022 1.68 4.39 F9 0.0022 0.044 0.011 0.043 0.011 0.043 0.011 0.056 0.019 2.55 2.03 2.16 F10 0.0017 0.042 0.01 0.033 0.0092 0.035 0.022 0.017 1.75 1.87 2.5 Note: R-2 = 0.25 * vanadium / carbon, R-3 = 0.52 * aluminum / nitrogen, R-4 = 0.5 * copper / sulfur Table 12
樣品 編號 物理性質 AS (μηι) 附註 YP (MPa) 丁 S (MPa) E] (%) r-value (l'm) △r-value (Δ〇 A] (MPa) DBTT (°C) F1 250 355 48 1.86 0.34 22 • 70 0.04 IS F2 259 362 48 1.82 0.34 25 -70 0.04 IS F3 262 352 46 1.85 0.38 23 -70 0.06 IS F4 255 348 48 1.88 0.35 22 -70 0.07 IS F5 233 331 50 ].88 0.39 25 -70 0.21 cs F6 22] 320 48 1.83 0.42 26 -70 0.18 cs F7 218 322 49 1.82 0.34 49 -70 0.12 cs F8 202 357 48 2.03 0.33 18 -70 0.08 IS 42 200521249Sample number Physical properties AS (μηι) Note YP (MPa) D S (MPa) E] (%) r-value (l'm) △ r-value (Δ〇A) (MPa) DBTT (° C) F1 250 355 48 1.86 0.34 22 • 70 0.04 IS F2 259 362 48 1.82 0.34 25 -70 0.04 IS F3 262 352 46 1.85 0.38 23 -70 0.06 IS F4 255 348 48 1.88 0.35 22 -70 0.07 IS F5 233 331 50] .88 0.39 25 -70 0.21 cs F6 22] 320 48 1.83 0.42 26 -70 0.18 cs F7 218 322 49 1.82 0.34 49 -70 0.12 cs F8 202 357 48 2.03 0.33 18 -70 0.08 IS 42 200521249
【範例3-1】 MnCu-沉殿鋼材 在表13中所示之鋼板經再加熱至12〇〇t:之溫度而延 續精軋輥該鋼板以提供熱軋鋼片材後,以一 6〇(rc/分鐘之 速度冷卻該熱軋鋼片材,且在65〇。(:進行捲繞。接著,以 10 一 75%之斷面收縮率冷軋該經捲繞之鋼片材且延續著連 銥退火。在910 c執行精軋輥,其在該Ar3轉形溫度之上, 且藉由以io°c/秒之速率加熱該鋼片材4〇秒至75(rc而執 行連續退火。例外地,在表13之樣品G1〇之範例中,在 經再加熱至1050°C的溫度且接著進行精軋輥後,係以5〇 15 C/分鐘之速度冷卻該樣品且接著在750°C捲繞。 表13 樣 品 編 號 成 份(wt0/〇) 碳C 猛Μη 磷Ρ 硫S 鋁Α] 氮N 銅Cu 鉬]VIo 釩V R-5 R-6 R-2 0.003 0.03-0.2 0.015 0.003-0.025 0.01-0.1 0,004 0.01- 0.2 0.0!>0.2 0.01-0.2 0.3 2-20 1-20 G] 0.002] 0.08 0.012 0.005 0.04 0.0023 0.082 0.16 16.2 G2 0.0018 0.11 0.009 0.009 0.04 0.0019 0.04 0.15 8.33 G3 0.0022 0.09 0.012 0.011 0.05 0.0024 0.05 0.14 6.36 G4 0.0024 0.15 0.008 0.02] 0.05 0.0018 0.04 0.19 4.52 G5 0.0022 0.05 0.008 0.018 0.04 0.0024 0.035 0.09 2.36 43 200521249[Example 3-1] The steel plate shown in Table 13 of MnCu-Shendian Steel was reheated to a temperature of 12,000 t: to finish rolling the steel plate to provide a hot-rolled steel sheet. The hot-rolled steel sheet is cooled at a rate of 1 / min, and is rolled at 65 °. (: The coil is rolled. Then, the rolled steel sheet is cold-rolled at a reduction of 10 to 75% and continued to be annealed with iridium A finishing roll is performed at 910c, which is above the Ar3 transformation temperature, and continuous annealing is performed by heating the steel sheet at a rate of 10 ° C / sec for 40 seconds to 75 ° C. Exceptionally, at In the example of sample G10 in Table 13, after reheating to a temperature of 1050 ° C and then finishing rolls, the sample was cooled at a rate of 5015 C / min and then wound at 750 ° C. 13 Sample No. Composition (wt0 / 〇) Carbon C Mg Phosphorus P Sulfur Aluminum A] Nitrogen N Copper Cu Molybdenum] VIo Vanadium V R-5 R-6 R-2 0.003 0.03-0.2 0.015 0.003-0.025 0.01-0.1 0,004 0.01- 0.2 0.0! ≫ 0.2 0.01-0.2 0.3 2-20 1-20 G] 0.002] 0.08 0.012 0.005 0.04 0.0023 0.082 0.16 16.2 G2 0.0018 0.11 0.009 0.009 0.04 0.0019 0.04 0. 15 8.33 G3 0.0022 0.09 0.012 0.011 0.05 0.0024 0.05 0.14 6.36 G4 0.0024 0.15 0.008 0.02] 0.05 0.0018 0.04 0.19 4.52 G5 0.0022 0.05 0.008 0.018 0.04 0.0024 0.035 0.09 2.36 43 200521249
G6 0.0024 0.4 0.011 0.012 0.05 0.0038 0.023 0.4 17.6 G7 0.0028 0.05 0.012 0.018 0.04 0.0023 0.012 0.06 1.72 G8 0.0025 0.25 0.01 0.008 0.03 0.0015 0.18 0.4 26.9 G9 0.0022 0.15 0.013 0.005 0.03 0.0026 0.12 0.27 27 G10 0.0025 0.] 0.010 0.010 0.03 0.0014 0.042 0.14 7.1 G11 0.0023 0.11 0.01 0.011 0.024 0.0033 0.08 0.018 0.19 8.64 G12 0.0023 0.12 0.011 0.009 0.033 0.0023 0.082 0.021 0.20 11.2 2.28 G13 0.0017 0.1 0.01 0.009 0.036 0.0032 0.042 0.019 0.023 0.14 7.89 3.38 注釋:R-2 = 0.25*釩/碳,R-5 =錳 +銅,R-6 = 0.5*(錳 +銅)/硫 表14G6 0.0024 0.4 0.011 0.012 0.05 0.0038 0.023 0.4 17.6 G7 0.0028 0.05 0.012 0.018 0.04 0.0023 0.012 0.06 1.72 G8 0.0025 0.25 0.01 0.008 0.03 0.0015 0.18 0.4 26.9 G9 0.0022 0.15 0.013 0.005 0.03 0.0026 0.12 0.27 27 G10 0.0025 0.] 0.010 0.010 0.03 0.0014 0.042 0.14 7.1 G11 0.0023 0.11 0.01 0.011 0.024 0.0033 0.08 0.018 0.19 8.64 G12 0.0023 0.12 0.011 0.009 0.033 0.0023 0.082 0.021 0.20 11.2 2.28 G13 0.0017 0.1 0.01 0.009 0.036 0.0032 0.042 0.019 0.023 0.14 7.89 3.38 Note: R-2 = 0.25 * vanadium / carbon, R-5 = manganese + copper, R-6 = 0.5 * (manganese + copper) / sulfur Table 14
才象品 編號 物理性質 AS (μιη) PN (number/ mm2) 附註 YP (Mpa) TS (MPa) E] (%) r-value (rm) Ar-value (Δγ) Αϊ (MPa) G1 198 292 51 2.32 0.38 17 0.09 4.5X106 IS G2 208 309 52 2.35 0.35 16 0.08 9.4X106 IS G3 221 314 55 2.51 0.26 21 0.06 2.2X108 IS G4 218 3]0 56 2.55 0.28 18 0.05 3.5X108 IS G5 205 300 58 2.68 0.31 23 0.05 4.1X108 】s G6 175 282 58 2.83 0.93 35 0.38 8.5X104 cs G7 163 270 60 2.78 1.12 36 0.48 4.3X104 cs G8 169 278 52 2.23 0.93 44 0.53 4.5X104 cs G9 189 286 51 ].93 0.79 42 0.33 6.3X104 cs G10 181 291 55 2.45 0.88 35 0.38 7.]X]04 cs G]] 209 302 50 2.83 0.45 25 0.09 3.5 X106 IS G12 162 291 51 2.21 0.29 0 0.08 4.2X106 IS G13 159 298 53 2.52 0.39 0 0.09 3.2X106 JS 44 200521249 注釋:γρ=當量強度,TS=抗拉強度,E1=延展,卜vaiue :可_性 平面内異向性指數,A1=老化指數, 二;、二生才曰數, 物數目,:rs=本發明之鋼材,.比較之鋼材 ’又物之+均尺寸, 5 【範例3-2】 材 具有固態溶液增強作用之高強度M n c H殿鋼Physical properties AS (μιη) PN (number / mm2) Note YP (Mpa) TS (MPa) E) (%) r-value (rm) Ar-value (Δγ) Αϊ (MPa) G1 198 292 51 2.32 0.38 17 0.09 4.5X106 IS G2 208 309 52 2.35 0.35 16 0.08 9.4X106 IS G3 221 314 55 2.51 0.26 21 0.06 2.2X108 IS G4 218 3] 0 56 2.55 0.28 18 0.05 3.5X108 IS G5 205 300 58 2.68 0.31 23 0.05 4.1X108】 s G6 175 282 58 2.83 0.93 35 0.38 8.5X104 cs G7 163 270 60 2.78 1.12 36 0.48 4.3X104 cs G8 169 278 52 2.23 0.93 44 0.53 4.5X104 cs G9 189 286 51] .93 0.79 42 0.33 6.3X104 cs G10 181 291 55 2.45 0.88 35 0.38 7.] X] 04 cs G]] 209 302 50 2.83 0.45 25 0.09 3.5 X106 IS G12 162 291 51 2.21 0.29 0 0.08 4.2X106 IS G13 159 298 53 2.52 0.39 0 0.09 3.2X106 JS 44 200521249 Notes: γρ = equivalent strength, TS = tensile strength, E1 = extended, bu vaiue: anisotropy index in the plane of flexibility, A1 = aging index, two; the number of secondaries, the number of objects ,: rs = steel material of the present invention, comparative steel material and average size, 5 [Example 3-2] The material has solid solution reinforcement High strength M n c H temple steel
在表15中所示之鋼板經再加熱至12〇〇。〇之溫度而延 續精軋輥該鋼板以提供熱軋鋼片材後,以一 6〇〇ct/2鐘之 速度冷卻該熱軋鋼片材,且在65(rc進行捲繞。接^里以 1〇 一乃%之斷面收縮率接續冷軋該經捲繞之鋼片材且延續 著連續退火。在9HTC執行精軋輥,其在該Ar3轉形溫'度 之上,且藉由以10°c/秒之速率加熱該鋼片材4〇秒至乃〇 °c而執行連續退火。 15 表 15 樣 品 編 號 成份 (wt%) 碳 C 0.003 锰 Μη 0.03- 0.2 磷 Ρ 0.2 矽 Si 0.8 鉻 Cr 0.2- 1.2 硫 S 0.003- 0.025 鋁 A1 0.1 氮 N 0.004 銅 Cu 0.01- 0.2 鉬 Mo 0.01- 0.2 轨 V 〇.〇]> 0.2 R-5 R-6 R-2 0.3 2-20 1-20 H1 0.0022 0.05 0.05 0.015 0.04 0.0018 0.03 0.08 2.67 H2 0.00]5 0.08 0.048 0.015 0.03 0.0023 0.04 0.12 4 H3 0.0027 0.07 0.105 0.02 0.05 0.0019 0.05 0.12 3 H4 0.0025 0.]2 〇·]] 0.0Π 0.04 0.0038 0.08 0.2 9.09 H5 0.0018 0.1 0.16 0.008 0.05 0.0012 0.14 0.24 15 H6 0.0018 0.05 0.05 0.015 0.02 0.0039 0.005 0.055 1.83 H7 0.0022 0.1 0.109 0.011 0.05 0.0038 0.25 0.35 15.9 Η 8 0.0025 0.2 0.155 0.006 0.05 0.0038 0.08 0.28 23.3 Η 9 0.0017 0.0S 0.052 0.01 0.034 0.0018 0.043 0.022 0.12 6.15 45 200521249 H10 0.0027 0.1 0.05 0.014 0.034 0.0018 0.043 0.018 0.14 5.Π 1.67 H11 0.0017 0.11 0.052 0.012 0.024 0.0021 0.05 0.019 0.028 0.163 6.8 4.1 H12 0.002] 0.05 0.009 0.23 0.018 0.05 0.0023 0.03 0.08 2.22 H13 0.0026 0.12 0.01 0.22 0.013 0.05 0.0026 0.03 0.15 5.77 H14 0.0016 0.1 0.012 0.40 0.018 0.04 0.0032 0.05 0.15 4.17 H15 0.0021 0.12 0.012 0.40 0.015 0.04 0.0032 0.08 0.2 6.67 H16 0.0021 0.15 0.010 0.63 0.008 0.035 0.0012 0.141 0.291 18.2 H17 0.0016 0.05 0.009 0.25 0.02 0.04 0.0028 0.005 0.055 1.38 H18 0.0021 0.18 0.011 0.43 0.006 0.04 0.0032 0.] 0.28 23.3 H19 0.0022 0.3 0.009 0.60 0.015 0.05 0.0039 0.23 0.53 17.7 H20 0.0025 0.09 0.011 0.25 0.012 0.035 0.0013 0.032 0.02 0.122 5.08 H21 0.002 0.1 0.01 0.23 0.009 0.03 0.0026 0.043 0.017 0.14 7.94 2.13 H22 0.0017 0.11 0.012 0.25 0.01 0.033 0.0036 0.045 0.018 0.019 0.16 7.75 2.79 H23 0.0024 0.05 0.01 0.30 0.016 0.04 0.0022 0.04 0.09 2.81 H24 0.0018 0.12 0.009 0.32 0.012 0.05 0.0019 0.03 0.15 6.25 H25 0.0024 0.12 0.01 0.6 0.015 0.04 0.0025 0.05 0.17 5.67 H26 0.0027 0.1 0.01 0.63 0.018 0.04 0.0025 0.04 0.14 3.89 H27 0.0026 0.18 0.009 0.95 0.008 0.05 0.0022 0.08 0.26 16.3 H28 0.0017 0.05 0.0] 0.32 0.02 0.04 0.0022 0.01 0.06 1.5 H29 0.0023 0.15 0.01 0.62 0.005 0.05 0.0023 0.12 0.27 27 H30 0.0025 0.25 0.012 0.93 0.015 0.04 0.0024 0.29 0.54 18 H31 0.0017 0.]] 0·0]] 0.34 0.013 0.034 0.0029 0.043 0.018 0.15 5.88 H32 0.0016 0.09 0.01 0.32 0.036 0.0022 0.038 0.016 0.13 5.33 2.5 H33 0.0018 0.] 0.012 0.34 0.01 0.026 0.0025 0.043 0.022 0.016 0.14 7.15 2.22 注釋:R-2 = 0.25*釩/碳,R-5 =錳 +銅,R-6 = 0.5*(錳 +銅)/硫 表16 46 200521249The steel plates shown in Table 15 were reheated to 1200. After the continuous rolling of the steel sheet to provide a hot-rolled steel sheet, the hot-rolled steel sheet is cooled at a rate of 600 ct / 2 minutes and wound at 65 ° rc. A reduction of 10% is followed by cold rolling of the rolled steel sheet and continuous annealing. The finishing roll is performed at 9HTC, which is above the Ar3 transformation temperature, and by 10 ° c The steel sheet is heated at a rate of 40 seconds to 0 ° C and continuous annealing is performed. 15 Table 15 Sample number composition (wt%) Carbon C 0.003 Manganese Mn 0.03- 0.2 Phosphorus P 0.2 Silicon Si 0.8 Cr Cr 0.2- 1.2 Sulfur 0.003-0.025 Aluminum A1 0.1 Nitrogen N 0.004 Copper Cu 0.01- 0.2 Molybdenum Mo 0.01- 0.2 Rail V 〇.〇] > 0.2 R-5 R-6 R-2 0.3 2-20 1-20 H1 0.0022 0.05 0.05 0.015 0.04 0.0018 0.03 0.08 2.67 H2 0.00] 5 0.08 0.048 0.015 0.03 0.0023 0.04 0.12 4 H3 0.0027 0.07 0.105 0.02 0.05 0.0019 0.05 0.12 3 H4 0.0025 0.] 2 〇]] 0.0Π 0.04 0.0038 0.08 0.2 9.09 H5 0.0018 0.1 0.16 0.008 0.05 0.0012 0.14 0.24 15 H6 0.0018 0.05 0.05 0.015 0.02 0.0039 0.005 0.055 1 .83 H7 0.0022 0.1 0.109 0.011 0.05 0.0038 0.25 0.35 15.9 Η 8 0.0025 0.2 0.155 0.006 0.05 0.0038 0.08 0.28 23.3 Η 9 0.0017 0.0S 0.052 0.01 0.034 0.0018 0.043 0.022 0.12 6.15 45 200521249 H10 0.0027 0.1 0.05 0.014 0.034 0.0018 0.043 0.018 0.14 5. Π 1.67 H11 0.0017 0.11 0.052 0.012 0.024 0.0021 0.05 0.019 0.028 0.163 6.8 4.1 H12 0.002] 0.05 0.009 0.23 0.018 0.05 0.0023 0.03 0.08 2.22 H13 0.0026 0.12 0.01 0.22 0.013 0.05 0.0026 0.03 0.15 5.77 H14 0.0016 0.1 0.012 0.40 0.018 0.04 0.0032 0.05 0.15 4.17 H15 0.0021 0.12 0.012 0.40 0.015 0.04 0.0032 0.08 0.2 6.67 H16 0.0021 0.15 0.010 0.63 0.008 0.035 0.0012 0.141 0.291 18.2 H17 0.0016 0.05 0.009 0.25 0.02 0.04 0.0028 0.005 0.055 1.38 H18 0.0021 0.18 0.011 0.43 0.006 0.04 0.0032 0.] 0.28 23.3 H19 0.0022 0.3 0.009 0.60 0.015 0.05 0.0039 0.23 0.53 17.7 H20 0.0025 0.09 0.011 0.25 0.012 0.035 0.0013 0.032 0.02 0.122 5.08 H21 0.002 0.1 0.01 0.23 0.009 0.03 0.0026 0.043 0.017 0.1 4 7.94 2.13 H22 0.0017 0.11 0.012 0.25 0.01 0.033 0.0036 0.045 0.018 0.019 0.16 7.75 2.79 H23 0.0024 0.05 0.01 0.30 0.016 0.04 0.0022 0.04 0.09 2.81 H24 0.0018 0.12 0.009 0.32 0.012 0.05 0.0019 0.03 0.15 6.25 H25 0.0024 0.12 0.01 0.6 0.015 0.04 0.0025 0.05 0.17 5.67 H26 0.0027 0.1 0.01 0.63 0.018 0.04 0.0025 0.04 0.14 3.89 H27 0.0026 0.18 0.009 0.95 0.008 0.05 0.0022 0.08 0.26 16.3 H28 0.0017 0.05 0.0] 0.32 0.02 0.04 0.0022 0.01 0.06 1.5 H29 0.0023 0.15 0.01 0.62 0.005 0.05 0.0023 0.12 0.27 27 H30 0.0025 0.25 0.012 0.93 0.93 0.015 0.04 0.0024 0.29 0.54 18 H31 0.0017 0.]] 0 · 0]] 0.34 0.013 0.034 0.0029 0.043 0.018 0.15 5.88 H32 0.0016 0.09 0.01 0.32 0.036 0.0022 0.038 0.016 0.13 5.33 2.5 H33 0.0018 0.] 0.012 0.34 0.01 0.026 0.0025 0.043 0.022 0.016 0.14 7.15 2.22 Note: R-2 = 0.25 * vanadium / carbon, R-5 = manganese + copper, R-6 = 0.5 * (manganese + copper) / sulfur Table 16 46 200521249
樣品 編號 物理性質 AS PN (number /mm2) 附註 YP (Mpa) TS (MPa) El (%) r-value (Im) △r-va]ue (△0 AI (MPa) DBTT (°C) (μηι) Η] 265 360 52 1.93 0.28 19 -70 0.05 4.5X108 IS Η2 255 358 53 2.09 0.28 14 -70 0.07 2.0X108 IS Η3 302 405 45 1.79 0.22 17 -60 0.06 4.2X108 IS Η4 289 392 46 1.70 0.29 19 -50 0.06 7.5X106 IS Η 5 350 452 37 1.63 0.21 13 -40 0.09 2.3X106 IS Η6 228 327 47 1.75 0.65 38 -50 0.38 8.3X103 cs Η7 282 385 39 1.59 0.55 45 -50 0.55 3.5X104 cs Η8 341 444 33 1.41 0.43 35 -40 0.61 2.3X104 cs Η9 256 358 51 2.32 0.29 19 -70 0.06 6.5X108 IS Η10 204 362 50 1.89 0.21 0 -60 0.06 5.5X108 IS HI 1 213 366 49 2.31 2.8 0 -60 0.07 5.ΟΧΙΟ8 IS H12 251 355 54 1.95 0.28 13 -80 0.07 4.9X108 IS H13 245 350 54 ].97 0.28 20 -80 0.]4 8.5X106 IS H14 296 405 45 1.73 0.25 13 -60 0.09 3.2X108 IS H15 305 405 44 1.79 0.22 18 -60 0.07 4.1X108 IS H16 365 465 37 1.55 0.2] 18 -50 0.]7 2.2X106 IS H17 231 336 45 1.79 0.6] 42 -70 0.49 3.2X104 cs H18 279 382 40 1.63 0.57 40 -60 0.51 9.3X104 cs HI 9 331 445 32 1.37 0.22 42 -40 0.43 6.7X104 cs H20 260 362 52 2.35 0.28 26 -80 0.07 3.8X108 IS H21 208 360 50 1.89 0.23 0 -70 0.08 3.5X108 IS H22 203 352 51 2.21 0.27 0 -70 0.07 2.5X10x IS 47 200521249Physical properties of sample number AS PN (number / mm2) Note YP (Mpa) TS (MPa) El (%) r-value (Im) △ r-va) ue (△ 0 AI (MPa) DBTT (° C) (μηι ) 265) 265 360 52 1.93 0.28 19 -70 0.05 4.5X108 IS Η2 255 358 53 2.09 0.28 14 -70 0.07 2.0X108 IS Η3 302 405 45 1.79 0.22 17 -60 0.06 4.2X108 IS Η4 289 392 46 1.70 0.29 19 -50 0.06 7.5X106 IS Η 5 350 452 37 1.63 0.21 13 -40 0.09 2.3X106 IS Η6 228 327 47 1.75 0.65 38 -50 0.38 8.3X103 cs Η7 282 385 39 1.59 0.55 45 -50 0.55 3.5X104 cs Η8 341 444 33 1.41 0.43 35 -40 0.61 2.3X104 cs Η9 256 358 51 2.32 0.29 19 -70 0.06 6.5X108 IS Η10 204 362 50 1.89 0.21 0 -60 0.06 5.5X108 IS HI 1 213 366 49 2.31 2.8 0 -60 0.07 5.〇ΧΙΟ8 IS H12 251 355 54 1.95 0.28 13 -80 0.07 4.9X108 IS H13 245 350 54] .97 0.28 20 -80 0.] 4 8.5X106 IS H14 296 405 45 1.73 0.25 13 -60 0.09 3.2X108 IS H15 305 405 44 1.79 0.22 18- 60 0.07 4.1X108 IS H16 365 465 37 1.55 0.2] 18 -50 0.] 7 2.2X106 IS H17 231 336 45 1.79 0.6] 42 -70 0.49 3.2X104 cs H18 279 382 40 1.63 0.5 7 40 -60 0.51 9.3X104 cs HI 9 331 445 32 1.37 0.22 42 -40 0.43 6.7X104 cs H20 260 362 52 2.35 0.28 26 -80 0.07 3.8X108 IS H21 208 360 50 1.89 0.23 0 -70 0.08 3.5X108 IS H22 203 352 51 2.21 0.27 0 -70 0.07 2.5X10x IS 47 200521249
—— H23 265 356 52 1.93 0.22 23 -80 0.06 5.9X108 ]S H24 258 352 54 1.95 0.29 27 -70 0.07 4.4X108 IS H25 298 395 45 1.62 0.22 22 -60 0.05 6.2X108 IS H26 302 405 46 1.58 0.20 23 -60 0.05 6.1X108 ]S H27 348 455 38 1.55 0.22 21 -50 0.06 2.2X106 IS H28 237 342 45 1.65 0.52 43 -70 0.35 4.2X104 cs H29 275 390 41 1.54 0.42 42 -60 0.55 7.3X104 cs H30 335 440 32 1.38 0.25 38 -40 0.42 5.7X104 cs | H31 258 359 5] 2.38 0.37 ]9 -80 0.07 6.9X108 IS H32 210 352 52 — 1.9 0.22 0 -70 0.07 5.6X108 IS H33 204 349 52 2.21 0.36 0 -70 0.08 4.2X108 IS A . , 仇狃強度,延展,卜value :可塑性-異向性指數, 彳面内異向性指數,AI=老化指數,DBTT=用於研究二級工作產品脆 二之,f性顧轉換溫度,AS =沉殿物之平均尺寸,胸冗殿物數目,料 發明之鋼材,cs=比較之鋼材 ^ 【I巳例3-3】具有A1N沉殿增強作用之高強度恤〜沉;殿鋼 材 10 在表17中所示之鋼板經再加熱至12〇(rc之温度而延 續精乳輥該鋼板以提供熱軋鋼片材後,以—4贼/分鐘之 j度冷卻該熱乳鋼片材,且在65〇t進行捲繞。接著,以 :75%之斷面㈣率制冷⑽經捲繞之㈣材且延續 著連續退火。在執行精軋輕,其在該An轉形溫度 之上’且藉由以和秒之速率加熱該鋼片 °C而執行連續退火。 表]7 48 15 200521249 樣 〇 碳 C 锰 Μη 磷 Ρ 硫 S ί呂 Α] 氮 Ν 銅 Cu 鉬 Mo 鈒 V R-5 R-6 R-3 R-2 編 號 0.003 0.03- 0.2 0.03- 0.06 0.003- 0.025 0.01- 0.1 0.005- 0.02 0.01- 0.2 0.01- 0.2 0.01- 0.2 0.3 2-20 ------- 1-5 1-20 1] 0.0023 0.05 0.04 0.015 0.032 0.0097 0.03 - - 0.08 2.67 1.72 - 12 0.0018 0.1 0.042 0.012 0.042 0.0072 0.03 - - 0.13 5.42 3.03 - 13 0.0021 0.1 0.05 0.01 0.057 0.0080 0.08 - - 0.18 9 —--- 3.71 - 14 0.0025 0.15 0.05 0.008 0.065 0.0075 0.1 - - 0.25 15.63 4.51 - 15 0.0025 0.05 0.045 0.0Π 0.042 0.0072 0.01 - - 0.06 1.76 3.03 - 16 0.0022 0.15 0.04 0.009 0.038 0.0014 0.05 - - 0.2 11.1 14.1 - 17 0.0016 0.15 0.05 0.005 0.05 0.0070 0.2 - - 0.35 35 ——·—--- 3.71 - 】8 0.0015 0.12 0.044 0.012 0.051 0.011 0.038 0.019 - 0.16 6.58 2.41 - 19 0.0018 0.1 0.04】 0.009 0.045 0.0095 0.039 - 0.02 0.14 7.72 2.46 2.78 110 0.0016 0.]] 0.042 0.01 0.042 0.01 0.049 0.018 0.016 0.16 7.95 2.18 2.5 注釋:R-2 = 0.25*釩/碳,R-3 = 0.52*鋁/氮,R-5 =錳 +銅,R-6 = 〇.5*(錳 +銅)/ 硫 5 Table 18 樣品 編號 物理性質 AS (μπΊ) PN (number /mm2) 附註 YP (Mpa) TS (MPa) E] (%) r-value (l*m) △r-value (△】.) A] (MPa) DBTT (°C) 11 246 352 54 1.96 0.29 22 -70 0.04 4.9X108 IS 12 252 356 53 1.94 0.28 25 -70 0.05 3.5X108 IS 13 250 348 50 1.89 0.32 27 >60 0.07 3.2X106 IS 14 255 350 48 1.86 0.35 22 -60 0.09 4.1X106 IS 15 243 340 43 1.68 0.39 36 -70 0.21 9.2X104 cs 16 223 328 48 1.89 0.32 27 -70 0.09 9.3X106 cs 17 238 342 43 1.72 0.34 38 -70 0.32 9.3X104 cs 49 200521249---- H23 265 356 52 1.93 0.22 23 -80 0.06 5.9X108] S H24 258 352 54 1.95 0.29 27 -70 0.07 4.4X108 IS H25 298 395 45 1.62 0.22 22 -60 0.05 6.2X108 IS H26 302 405 46 1.58 0.20 23- 60 0.05 6.1X108] S H27 348 455 38 1.55 0.22 21 -50 0.06 2.2X106 IS H28 237 342 45 1.65 0.52 43 -70 0.35 4.2X104 cs H29 275 390 41 1.54 0.42 42 -60 0.55 7.3X104 cs H30 335 440 32 1.38 0.25 38 -40 0.42 5.7X104 cs | H31 258 359 5] 2.38 0.37] 9 -80 0.07 6.9X108 IS H32 210 352 52 — 1.9 0.22 0 -70 0.07 5.6X108 IS H33 204 349 52 2.21 0.36 0 -70 0.08 4.2X108 IS A., Chou intensity, extension, value: plasticity-anisotropy index, in-plane anisotropy index, AI = aging index, DBTT = used to study the brittleness of secondary work products, f sex conversion Temperature, AS = the average size of the Shen Dian objects, the number of chest redundant objects, the steel materials expected to be invented, cs = the comparative steel ^ [I 巳 例 3-3] A1N high strength shirt with the strengthening effect of Shen Dian ~ Shen; Dian Steel 10 The steel sheet shown in Table 17 was reheated to a temperature of 120 ° C and the condensed milk roll was continued. After the hot-rolled steel sheet is provided, the hot-milk steel sheet is cooled at a j-degree of -4 thief / minute, and is wound at 65 ° t. Then, it is cooled at a cross-section rate of 75%, and the rolled The base material is continuously annealed. After finishing rolling is performed, it is above the An transformation temperature and is continuously annealed by heating the steel sheet ° C at a rate of 1 second. Table] 7 48 15 200521249 sample 〇Carbon C Manganese Mη Phosphorus P Sulfur A] Nitrogen N Copper Cu Molybdenum Mo R V R-5 R-6 R-3 R-2 Number 0.003 0.03- 0.2 0.03- 0.06 0.003- 0.025 0.01- 0.1 0.005- 0.02 0.01- 0.2 0.01- 0.2 0.01- 0.2 0.3 2-20 ------- 1-5 1-20 1] 0.0023 0.05 0.04 0.015 0.032 0.0097 0.03--0.08 2.67 1.72-12 0.0018 0.1 0.042 0.012 0.042 0.0072 0.03- -0.13 5.42 3.03-13 0.0021 0.1 0.05 0.01 0.057 0.0080 0.08--0.18 9 ----- 3.71-14 0.0025 0.15 0.05 0.008 0.065 0.0075 0.1--0.25 15.63 4.51-15 0.0025 0.05 0.045 0.0Π 0.042 0.0072 0.01--0.06 1.76 3.03-16 0.0022 0.15 0.04 0.009 0.038 0.0014 0.05--0.2 11.1 14.1-17 0.0016 0.15 0.05 0.005 0.05 0.0070 0.2-- 0.35 35 —— · --- 3.71-] 8 0.0015 0.12 0.044 0.012 0.051 0.011 0.038 0.019-0.16 6.58 2.41-19 0.0018 0.1 0.04] 0.009 0.045 0.0095 0.039-0.02 0.14 7.72 2.46 2.78 110 0.0016 0.]] 0.042 0.01 0.042 0.01 0.049 0.018 0.016 0.16 7.95 2.18 2.5 Note: R-2 = 0.25 * vanadium / carbon, R-3 = 0.52 * aluminum / nitrogen, R-5 = manganese + copper, R-6 = 0.5 * (manganese + copper ) / Sulfur 5 Table 18 Sample number Physical properties AS (μπΊ) PN (number / mm2) Note YP (Mpa) TS (MPa) E] (%) r-value (l * m) △ r-value (△). ) A] (MPa) DBTT (° C) 11 246 352 54 1.96 0.29 22 -70 0.04 4.9X108 IS 12 252 356 53 1.94 0.28 25 -70 0.05 3.5X108 IS 13 250 348 50 1.89 0.32 27 > 60 0.07 3.2X106 IS 14 255 350 48 1.86 0.35 22 -60 0.09 4.1X106 IS 15 243 340 43 1.68 0.39 36 -70 0.21 9.2X104 cs 16 223 328 48 1.89 0.32 27 -70 0.09 9.3X106 cs 17 238 342 43 1.72 0.34 38 -70 0.32 9.3X104 cs 49 200521249
5 雖然為了說明之目的而揭露本發明之較佳實施例,該 領域中習於此技藝者將了解,在不偏離如所附申請專利範 圍所揭露之本發明的範圍及概念之情形下,不同之修改、 增加及取代係為可能的。 【圖式簡單明】 弟1 a至1 c圖為圖形表示,其說明在/晶粒中之固態溶 液狀態内碳含量相對於一沉殿物之尺寸的變化; 第2a及2b圖為說明MnS沉澱物之尺寸相對於冷卻速率 15 之圖形表示; 第3a至3c圖為說明CuS沉澱物之尺寸相對於冷卻速率 之圖形表示;以及 第4a及4b圖為說明MnS、CuS及(Mn,Cu)S沉澱物之尺寸 相對於冷卻速率之圖形表示。 【主要元件符號說明】 50 205 Although the preferred embodiments of the present invention have been disclosed for the purpose of illustration, those skilled in the art will appreciate that the present invention is different without departing from the scope and concept of the present invention as disclosed in the scope of the appended patent application. Modifications, additions and substitutions are possible. [The diagram is simple and clear] Figures 1a to 1c are graphical representations, which illustrate the change of the carbon content relative to the size of a sink in a solid solution state in / grain; Figures 2a and 2b are illustrations of MnS Graphical representation of the size of the precipitate relative to the cooling rate 15; Figures 3a to 3c are graphical representations of the size of the CuS precipitate relative to the cooling rate; and Figures 4a and 4b are illustrations of MnS, CuS, and (Mn, Cu) Graphical representation of the size of the S deposits relative to the cooling rate. [Description of main component symbols] 50 20
Claims (1)
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20030094485 | 2003-12-22 | ||
KR20030099352 | 2003-12-29 | ||
KR20030099436 | 2003-12-29 | ||
KR20040041509 | 2004-06-07 | ||
KR20040041511 | 2004-06-07 | ||
KR20040041510 | 2004-06-07 | ||
KR1020040066620A KR101104993B1 (en) | 2004-08-24 | 2004-08-24 | Non-aging cold rolled steel sheet and process for producing the same |
KR20040070960 | 2004-09-06 | ||
KR20040070959 | 2004-09-06 | ||
KR1020040079664A KR101115764B1 (en) | 2004-10-06 | 2004-10-06 | Non aging cold rolled steel sheet having high strength and process for producing the same |
KR1020040084298A KR101115703B1 (en) | 2004-10-21 | 2004-10-21 | Non aging cold rolled steel sheet having high strength, and process for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200521249A true TW200521249A (en) | 2005-07-01 |
TWI252258B TWI252258B (en) | 2006-04-01 |
Family
ID=37565357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93138892A TWI252258B (en) | 2003-12-22 | 2004-12-15 | Cold rolled steel sheet having aging resistance and superior formability, and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI252258B (en) |
-
2004
- 2004-12-15 TW TW93138892A patent/TWI252258B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI252258B (en) | 2006-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100473497B1 (en) | Thin steel sheet and method for production thereof | |
TW565621B (en) | Cold-rolled steel sheet and galvanized steel sheet having strain age hardenability property and method for producing the same | |
TWI406966B (en) | High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same | |
JP4954981B2 (en) | A high yield ratio cold-rolled steel sheet excellent in formability and its manufacturing method. | |
TW201209180A (en) | High strength hot-rolled steel sheet having excellent stretch-flange formability and method for manufacturing the same | |
TW201247890A (en) | Cold rolled steel sheet and manufacturing method thereof | |
TW201315819A (en) | High-strength cold-rolled steel sheet with excellent deep-drawability and in-coil uniformity in material properties and method for manufacturing the same | |
JP2009084687A (en) | High-strength steel sheet for can manufacturing and method for manufacturing the same | |
WO2016035235A1 (en) | Material for cold-rolled stainless steel sheets | |
JP2010270377A (en) | High-strength low-specific-gravity steel sheet superior in ductility, workability and toughness, and method for manufacturing the same | |
JP2012082523A (en) | High-strength cold rolled steel plate with excellent baking hardenability, hot dipped steel plate, and method of manufacturing the cold rolled steel plate | |
JPH03257124A (en) | Production of cold rolled steel sheet for deep drawing having baking hardenability | |
KR101463667B1 (en) | Cold-rolled steel plate and method for producing same | |
TW200521249A (en) | Cold rolled steel sheet having aging resistance and superior formability, and method of manufacturing the same | |
JP7192112B2 (en) | HIGH STRENGTH FERRITIC STAINLESS STEEL FOR CLAMP AND METHOD FOR MANUFACTURING SAME | |
JP2023507801A (en) | Cold-rolled steel sheet with excellent heat resistance and formability and its manufacturing method | |
JP2014012886A (en) | High-strength cold rolled steel sheet excellent in yield strength and formability, and production method thereof | |
KR20110075408A (en) | Ferritic stainless steel and method for manufacturing the same | |
KR20110046653A (en) | Cold-rolled steel sheet having excellent surface quality, and method for producing the same | |
TWI361223B (en) | Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same | |
JP5846343B1 (en) | Ferritic stainless steel cold rolled steel sheet | |
TW201200603A (en) | Cold rolled steel sheet and method for manufacturing the same | |
JP2004218023A (en) | Production methods of cold-rolled steel sheet and plated steel sheet which are excellent in deep drawability | |
JP2002012945A (en) | High strength thin steel sheet and production method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |