TW200428533A - Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same - Google Patents

Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same Download PDF

Info

Publication number
TW200428533A
TW200428533A TW92115017A TW92115017A TW200428533A TW 200428533 A TW200428533 A TW 200428533A TW 92115017 A TW92115017 A TW 92115017A TW 92115017 A TW92115017 A TW 92115017A TW 200428533 A TW200428533 A TW 200428533A
Authority
TW
Taiwan
Prior art keywords
layer
double
metal
metal silicide
nickel
Prior art date
Application number
TW92115017A
Other languages
Chinese (zh)
Other versions
TWI222141B (en
Inventor
Chih-Wei Chang
Mei-Yun Wang
Shau-Lin Shue
Mong-Song Liang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92115017A priority Critical patent/TWI222141B/en
Application granted granted Critical
Publication of TWI222141B publication Critical patent/TWI222141B/en
Publication of TW200428533A publication Critical patent/TW200428533A/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

A method for fabricating a semiconductor device having a metal silicide bi-layer. First, a silicon substrate having a gate and a source/drain region thereon is provided. Next, a conformable nickel layer and a conformable cobalt layer are deposited overlying the silicon substrate in sequence. Next, heat treatment is preformed on the substrate to form a cobalt/nickel silicide bi-layer. Finally, the cobalt layer and the nickel layer without siliciding are removed. A semiconductor device having a metal silicide bi-layer is also disclosed.

Description

200428533 五、發明說明(l) 發明所屬之領域 本發明係有關於一種金屬矽化物之 有關於-種自料金屬 ^方☆,特别是 有上述雙層結構之半導體裝置成方法以及具 先前技術·· 隨著積體電路的發展' 的積集度。當元件尺寸縮小時,;提高元件 近來廣泛探討之古義顳,nU電阻值的間極成為業界 我靖其中以金屬矽化物松钮认成m :。低電阻值的金屬矽化物目前係廣用π J為 :件的閉極與源極/沒極上,用以降低接;=積=路 吊見的製作方法為自對準石夕化技術(self_ali_d最 ΐ==,由=CI?),其方法係先將金屬形成於發 處理使金屬與石夕反應而在閘極與源極/ 汲極上形成金屬矽化物。 / 目前所有的金屬矽化物材料中,以二矽化鈦 )、二矽化鈷(CoSi2 )、及矽化鎳(NiSi )的電阻率』 低,約為15〜20 #〇hm-cm。就矽化鈦材料而言,其具有較 佳的熱穩定性且鈦能有效地減少矽基底表面上的原生氧化 層(nat i ve oxi de )。然而,其製程上通常需要實施兩階 段的回火程序以形成具低電阻率的面心(f aced —centered )結構之二矽化鈦(C54-Ti Siz )。再者,隨著線寬的縮 小,如0 · 2 5 // m以下,二矽化鈦的厚度變薄而易發生團塊 化(agglomerat ion )現象而使片電阻增加,即所謂的窄200428533 V. Description of the Invention (l) Field of the Invention The present invention relates to a kind of metal silicide-a kind of self-made metal ^, in particular, a method for forming a semiconductor device having the above-mentioned double-layer structure and the prior art. · With the development of integrated circuits' accumulation degree. When the component size shrinks, it improves the ancient meaning of the element, which has been widely discussed recently. The nU resistance value has become the industry. I regard it as a metal silicide button. Low-resistance metal silicide is currently widely used. Π J is: the closed and source / non-poles of the component are used to reduce the connection; = product = road hanging method is made by self-aligned petrification technology (self_ali_d The most important thing is that the metal is first formed in a hair treatment so that the metal reacts with Shi Xi to form a metal silicide on the gate and source / drain. / Among all current metal silicide materials, the resistivity of titanium disilicide), cobalt disilicide (CoSi2), and nickel silicide (NiSi) is low, about 15 ~ 20 # 〇hm-cm. As far as titanium silicide is concerned, it has better thermal stability and titanium can effectively reduce nat i ve oxi de on the surface of the silicon substrate. However, in the manufacturing process, a two-stage tempering process is usually required to form a facet-centered (C54-Ti Siz) structure with a low resistivity. Furthermore, as the line width shrinks, such as below 0 · 2 5 // m, the thickness of titanium disilicide becomes thinner and agglomeration easily occurs, which increases the sheet resistance, so-called narrow

0503-9975TWF(Nl);TSMC2003-0015;Spin.ptd 第6頁 200428533 五、發明說明(2) 線寬效應(narrow - line-width effect)。因此,當線寬 所小至0· 25 a m以下時,此種材料已不再適用。 田 見 就矽化鈷材料而言,其熱穩定性相似於矽化鈦材料相 似^但其片電阻值並不像矽化鈦材料那樣與線寬有很大的 關係,因此成為〇. 1 8 e m以下製程中常用之材料。然而, 其無法像鈦一樣會減少矽表面之原生氧化層而需留意矽表 面之清潔。再者,其製程亦需兩階段回火程序以形&具低 電阻率的二矽化鈷,且當線寬縮小至65nm以下時,高回火 溫度將導致團塊化現象的產生而增加其片電阻值。 就矽化鎳材料而言,其製程上僅需一階段之回火程序 且溫度無需太高’太高反而會形成電阻率較高的二矽化鎳 jNlSi2)相位。再者,其電阻率同樣不回隨著線寬窄化而 有很大的變化。另夕卜’其消耗的矽比矽化鈦及石夕化銘來的 >、,可避免淺接面上尖突(spiking)現象。不幸地,在 製造積體電路時,常應用到含氟之電漿製程,纟中的氟原 子易與此材料的錄原子發生鍵結而在其表面產生非晶質 相,造成片電阻值上升。 美國^利第5, 047, 3 67號揭示一種形成自對準氮化鈦 /矽化鈷雙層結構之方法,其先為 思麻η力丄人s. 八无在石夕基底上依序沉積鈦金 屬層及鈷金屬I,再藉由含氮氛圍之熱處理以完成自對準 虱化鈦/矽化鈷雙層結構之製作。再者, 6’5〇9’265_卜__阻障層之製造方^,^在 矽基底上沉積一鈦鈮合金層,再藉由 完成氮氧化鈦/矽化鈦鈮雙層处播十制见沉国 < k 巧、、、°構之製作。上述方法所形0503-9975TWF (Nl); TSMC2003-0015; Spin.ptd Page 6 200428533 V. Description of the invention (2) The narrow-line-width effect. Therefore, when the line width is as small as 0 · 25 a m or less, this material is no longer applicable. As far as cobalt silicide material is concerned, its thermal stability is similar to that of titanium silicide material ^, but its sheet resistance value is not as much related to line width as titanium silicide material, so it becomes 0.1 8 em or less. Commonly used materials. However, it cannot reduce the native oxide layer on the silicon surface like titanium, and it is necessary to pay attention to the cleaning of the silicon surface. In addition, its process also requires a two-stage tempering process to shape & low-resistivity cobalt disilicide, and when the line width is reduced below 65nm, high tempering temperature will cause the formation of agglomeration and increase Chip resistance value. As far as nickel silicide materials are concerned, only one stage of the tempering process is required in the process and the temperature does not need to be too high 'and too high, and it will form a nickel disilicon jNlSi2) phase with higher resistivity. Furthermore, the resistivity does not change much with the narrowing of the line width. In addition, it consumes more silicon than titanium silicide and Shi Xihua Ming, and can avoid the phenomenon of spiking on the superficial junction. Unfortunately, when manufacturing integrated circuits, it is often applied to the plasma process containing fluorine. The fluorine atoms in rhenium are liable to bond with the recording atoms of this material to generate an amorphous phase on the surface, causing the sheet resistance value to increase. . U.S. Patent No. 5, 047, 3 67 discloses a method for forming a self-aligned titanium nitride / cobalt silicide double-layer structure, which is firstly considered as a sintered sintered slab, and sequentially deposited on a Shixi substrate. The titanium metal layer and the cobalt metal I are heat-treated in a nitrogen-containing atmosphere to complete the fabrication of the self-aligned titanium / cobalt silicide double-layer structure. In addition, the manufacturing method of the barrier layer 6'5〇9'265 ___ ^, a titanium-niobium alloy layer is deposited on a silicon substrate, and then the titanium-nitride / titanium-silicide-niobium double-layer is seeded For the system, see Shen Guo &k; Shaped by the above method

200428533 五、發明說明(3) '— 成的雙層結構中,係著重在金屬矽化層上形成一 障層,避免後續製作插塞時發生尖突現象,降1阻 靠度。然=,其所使用之金屬石夕化材料為目前之:金:: 鈷金屬,这些材料料並無法適用於非常微小制或 如之前所述。 、見又I程、 發明内容: 有鑑:此甘本發明之目的在於提供一 化雙層結構及其形成方法與具有金屬矽化雙層姓1金屬矽 體裝置及其形成方法,其藉由形成錄金屬石夕二= 矽化層之雙層結構以取代傳統金屬矽化單層姓二=金屬 微小線寬之製程。再者’藉由下層之厚鎳金屬 窄線寬效應所引起之片電阻上揚的現象、同時藉曰,免 薄鈷金屬矽化層,保護下層之鎳金屬矽化層在▲人f ^ 漿製程中受到損害。 π 3 I 1: 根據上述之目的,本發明提供一種金屬矽化士 構,其包括-石夕基底以及-録/鎳雙層金屬石夕化:: 鎳雙層金屬石夕化物設置於石夕基底上。纟中, ^200428533 V. Description of the invention (3) In the double-layer structure, the focus is on forming a barrier layer on the metal silicide layer to avoid the occurrence of spikes in the subsequent production of plugs and reduce the resistance. However, the metal petrochemical materials used are currently: Gold: Cobalt. These materials cannot be applied to very small scales or as described earlier. Summary of the invention: The objective of the present invention is to provide a double-layer structure and a method for forming the same, and a metal silicide device having a double-layer metal silicide layer and a method for forming the same. Recorded metal stone Xi Er = double-layer structure of silicidation layer to replace the traditional metal silicide single-layer surname = metal micro line width process. Furthermore, the phenomenon of rising sheet resistance caused by the narrow line width effect of the thick nickel metal in the lower layer, and meanwhile, by avoiding a thin cobalt metal silicide layer and protecting the lower nickel metal silicide layer in the process of ▲ 人 f ^ damage. π 3 I 1: According to the above-mentioned object, the present invention provides a metal silicic acid structure comprising a -Shixi substrate and a -Ni / Ni double-layer metal petrified :: a nickel double-layer metal petrified compound is provided on the Shixi substrate on. Langzhong, ^

位於矽基底上方,且鈷金屬矽化層位於鎳金屬矽化層上曰 方0 曰 鍅/鎳雙層金屬石夕化物 係藉由同時對矽基底上 形成。其中,鎳金屬層 再者,始金屬石夕化層之厚度為 之厚度之5%〜30%,而較佳為15%。 再者,結/鎳雙層金屬石夕化物 之姑/鎳雙層金屬實施一熱處理所It is located above the silicon substrate, and the cobalt metal silicide layer is located on the nickel metal silicide layer. Among them, the nickel metal layer has a thickness of 5% to 30%, and preferably 15%. In addition, the junction / nickel double-layer metal lithotripsy / nickel double-layer metal is subjected to a heat treatment plant.

200428533 五、發明說明(4) 之厚度在100〜200埃的範圍,且鈷金屬層之厚度在5〇〜2〇〇 埃的範圍。再者,熱處理之溫度在35〇〜55〇〇c的範圍,且 熱處理之時間在1 〇〜6 0秒的範圍。 又根據上述之目的,本發明提供一種形成金屬矽化雙 層結構之方法。首先,提供一矽基底,並在矽基底上依序 順應性地沉積一鎳金屬層及一鈷金屬層。然後,對矽基底 實施一熱處理,以在矽基底上形成一鈷/鎳雙層金屬矽化 物。 再者,鎳金屬層之厚度在1〇〇〜2〇〇埃的範圍, 屬層之厚度在50〜2 00埃的範圍。 乾W且姑金 再者,上述熱處理係一快速熱回火處理。其中,快速 熱回火處理之溫度在350〜550 °C的範圍,且快速熱回火處 理之時間在1 〇〜6 0秒的範圍。 再者,鈷金屬矽化層之厚度為鈷/鎳雙層金屬矽化物 之厚度之5%〜30%,而較佳為15%。 又,根據上述之目的,本發明提供一種具有金屬矽化 雙層結構之半導體裝置’其包括一石夕基底以及一钻/錄雙 層金屬石夕化物。石夕基底具有一閘極及一源極/没極區。姑 /鎳雙層金屬矽化物設置於閘極及源極/汲極區上。直 中,鎳金屬矽化層位於閘極及源極/汲極區上方,且ς金 屬矽化層位於鎳金屬矽化層上方。 再者,始金屬石夕化層之展声炎— ^ ^ 〇Λ 增之与度為鈷/鎳雙層金屬矽化物 之厚度之5%〜30%,而較佳為15%。 再者’姑/錄雙層金屬碎化物係藉由同時料基底上200428533 V. Description of the invention (4) The thickness is in the range of 100 to 200 Angstroms, and the thickness of the cobalt metal layer is in the range of 50 to 200 Angstroms. In addition, the temperature of the heat treatment is in the range of 350,000 to 5500c, and the time of the heat treatment is in the range of 10 to 60 seconds. According to the above object, the present invention provides a method for forming a metal silicide double layer structure. First, a silicon substrate is provided, and a nickel metal layer and a cobalt metal layer are sequentially and compliantly deposited on the silicon substrate. Then, a heat treatment is performed on the silicon substrate to form a cobalt / nickel double metal silicide on the silicon substrate. Furthermore, the thickness of the nickel metal layer is in the range of 100 to 200 Angstroms, and the thickness of the metallic layer is in the range of 50 to 200 Angstroms. Furthermore, the above heat treatment is a rapid thermal tempering treatment. Among them, the temperature of rapid thermal tempering is in the range of 350 to 550 ° C, and the time of rapid thermal tempering is in the range of 10 to 60 seconds. Furthermore, the thickness of the cobalt metal silicide layer is 5% to 30%, and preferably 15%, of the thickness of the cobalt / nickel double metal silicide. In addition, according to the above object, the present invention provides a semiconductor device 'having a metal silicide double-layer structure, which includes a stone substrate and a diamond / recorded double-layer metal stone compound. The Shi Xi substrate has a gate and a source / dead region. The nickel / nickel double-layer metal silicide is disposed on the gate and source / drain regions. In the middle, the nickel metal silicide layer is located above the gate and source / drain regions, and the metal silicide layer is located above the nickel metal silicide layer. Furthermore, the spreading sound of the first metallization layer— ^ ^ 〇Λ The sum of the increase is 5% to 30% of the thickness of the cobalt / nickel double-layer metal silicide, and preferably 15%. Moreover, the double-layer metal fragment is formed by simultaneously

200428533 五、發明說明(5) 之始/錄雙層金屬實施一熱處理所形成。其中,鎳金屬層 之厚度在100〜200埃的範圍,且鈷金屬層之厚度在5〇〜2〇〇 埃的範圍。再者,熱處理之溫度在35〇〜55〇t的範圍,且 熱處理之時間在1 0〜6 〇秒的範圍。 又,根據上述之目的’本發明提供一種形成具有金屬 石夕化雙層結構之半導體裝置之方法。首先,提供一矽基 底,其具有一閘極及一源極/汲極區,並在矽基底上依序 順應性地沉積一鎳金屬層及一鈷金屬層。然後,對矽基底 實施一熱處理,以在閘極及源極//汲極區上形成一鈷/鎳 雙層金屬矽化物。其更包括藉由硫酸與雙氧水混合液 (SPM )去除未矽化之鈷金屬層及鎳金屬層。 再者’鎳金屬層之厚度在1〇〇〜2〇〇埃的範圍, 金 屬層之厚度在50〜2 00埃的範圍。 国 鈷金 再者,上述熱處理係一快速熱回火處理。豆中,快速 熱回火處理之溫度在350〜55 0 t的範圍,且快速熱回火處 理之時間在1 〇〜6 〇秒的範圍。 =者’始金屬石夕化層之厚度為始/鎳雙層金屬石夕化物 之厚度之5%〜30%,而較佳為15%。 為讓本發明之上述目的、特徵和優 下文特舉較佳實施例,並配合所 ^ .、、、易懂, 下: 儿加口尸坏附圖式,作詳細說明如 實施方式: 第一實施例200428533 V. Introduction to the Invention (5) The double-layer metal is formed by performing a heat treatment. The thickness of the nickel metal layer is in a range of 100 to 200 angstroms, and the thickness of the cobalt metal layer is in a range of 50 to 200 angstroms. In addition, the temperature of the heat treatment is in the range of 35 to 55 t, and the time of the heat treatment is in the range of 10 to 60 seconds. Furthermore, according to the above-mentioned object, the present invention provides a method for forming a semiconductor device having a metallized double-layered structure. First, a silicon substrate is provided, which has a gate and a source / drain region, and a nickel metal layer and a cobalt metal layer are sequentially and compliantly deposited on the silicon substrate. Then, a heat treatment is performed on the silicon substrate to form a cobalt / nickel double metal silicide on the gate and source // drain regions. It further includes removing the non-silicided cobalt metal layer and nickel metal layer by a sulfuric acid and hydrogen peroxide mixed solution (SPM). Furthermore, the thickness of the nickel metal layer is in the range of 100 to 200 angstroms, and the thickness of the metal layer is in the range of 50 to 200 angstroms. In addition, the above heat treatment is a rapid thermal tempering treatment. In beans, the temperature of rapid thermal tempering is in the range of 350 to 55 0 t, and the time of rapid thermal tempering is in the range of 10 to 60 seconds. The thickness of the metallization layer is 5% to 30%, and preferably 15%, of the metallization layer. In order to make the above-mentioned objects, features, and advantages of the present invention specific preferred embodiments, and in accordance with all the following, easy to understand, the following: The drawings of children and corpses are described in detail as an embodiment: First Examples

200428533 五、發明說明(6) 以下配合第1 a到1 b圖說明本發明第一實施例之在矽基 底上形成金屬矽化雙層結構之方法。 首先’晴參照第1圖’提供一砍基底1 〇,例如一碎晶 圓。接著,藉由習知沉積技術,例如物理氣相沉積 (physical vapor deposition,PVD)或化學氣相沉積 (chemical vapor deposition, CVD),在矽基底 1〇 上依 序順應性地沉積一鎳金屬層1 2及一鈷金屬層1 4。在本實施 例中,鎳金屬層1 2係利用化學氣相沉積而形成之,且其厚 度在100〜200埃的範圍。再者,鈷金屬層14同樣利用化學 氣相沉積而形成之,且其厚度在5〇〜200埃的範圍。 接下來,請參照第1 b圖,對矽基底1 〇實施一熱處理, 例如使用傳統回火爐管(a η n e a 1 i n g f u r n a c e )法或快速 熱回火處理(rapid thermal annealing,RTA),使得鎳 金屬層12及一始金屬層14中的鎳原子及鈷原子擴散至矽基 底1 0中,以在矽基底1 〇上形成一鈷/鎳雙層金屬矽化物 1 9。此處,始/鎳雙層金屬矽化物丨9包括一鎳金屬矽化層 1 6,位於矽基底1 0上方,以及一鈷金屬矽化層丨8,位於鎳 金屬石夕化層16上方。再者,於鎳金屬矽化層16與鈷金屬矽 化層1 8之界面形成有一鈷鎳矽化物層(未繪示)。 在本實施例中,係對矽基底丨〇實施快速熱回火處理, 以形成始/鎳雙層金屬矽化物丨9,其中,快速熱回火處理 之溫度在350〜55 0 °C的範圍,且快速熱回火處理之時間在 1 0〜6 0秒的範圍。在此回火條件下,鈷金屬矽化層丨8中係 石夕化姑(CoSi )與矽化二鈷(c〇2Si )兩相共存。因此,其200428533 V. Description of the invention (6) The method of forming a metal silicide double-layered structure on a silicon substrate according to the first embodiment of the present invention will be described below with reference to Figures 1a to 1b. First, referring to FIG. 1, a clear substrate 10 is provided, such as a broken crystal circle. Next, a nickel metal layer is sequentially and compliantly deposited on the silicon substrate 10 by conventional deposition techniques, such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). 12 and a cobalt metal layer 14. In this embodiment, the nickel metal layer 12 is formed by chemical vapor deposition, and its thickness is in the range of 100 to 200 angstroms. Furthermore, the cobalt metal layer 14 is also formed by chemical vapor deposition, and its thickness is in the range of 50 to 200 angstroms. Next, referring to FIG. 1b, a heat treatment is performed on the silicon substrate 10, for example, using a conventional tempering furnace tube (a η nea 1 ingfurnace) method or rapid thermal annealing (RTA) to make the nickel metal The nickel and cobalt atoms in the layer 12 and the first metal layer 14 diffuse into the silicon substrate 10 to form a cobalt / nickel double-layer metal silicide 19 on the silicon substrate 10. Here, the initial / nickel double-layer metal silicide 9 includes a nickel metal silicide layer 16 located above the silicon substrate 10 and a cobalt metal silicide layer 8 located above the nickel metal silicide layer 16. Furthermore, a cobalt nickel silicide layer (not shown) is formed at the interface between the nickel metal silicide layer 16 and the cobalt metal silicide layer 18. In this embodiment, a rapid thermal tempering process is performed on the silicon substrate to form an initiation / nickel double-layer metal silicide. The temperature of the rapid thermal tempering process is in the range of 350 to 55 ° C. , And the time of rapid thermal tempering is in the range of 10 ~ 60 seconds. Under this tempering condition, the Co-Si silicide layer (CoSi) and dicobalt silicide (Co2Si) coexist in two phases. Therefore, its

0503 -9975TW( Nl); TSMC2003 - 0015; Sp i n. p t d 第11頁 2004285330503 -9975TW (Nl); TSMC2003-0015; Sp i n. P t d p. 11 200428533

片電阻值較高 象發生。 但不會有團塊化(agglomeration)之現 屮,辟f ί錄原子’始原子較不易與氟原子產生鍵結。因 _ , ^ 石夕化層1 6上方所形成之始金屬石夕化層1 8可作為 禮1 ^ 1,避免在後續含氟之電漿製程中,氟原子直接與 皙,、生化層1 6中的鎳原子發生鍵結而在其表面產生非晶 目仏成錄金屬矽化層1 6之片電阻值上升而使接觸電阻The higher the chip resistance, the phenomenon occurs. However, there will be no agglomeration. It is difficult for the starting atom to be bonded to the fluorine atom. Because _, ^ The first metallization layer 18 formed above the stonelization layer 16 can be used as a gift 1 ^ 1 to avoid the fluorine atoms directly interacting with the white and biochemical layer 1 in the subsequent plasma process containing fluorine. The nickel atoms in 6 are bonded and an amorphous mesh is formed on the surface of the silicon silicide layer. The resistance of the sheet increases and the contact resistance increases.

同時’為了使整體的鈷^/鎳雙層金屬矽化物丨9之片電 阻值降低,在本實施例中,鈷金屬矽化層1 8之厚度為鈷/ 鎳雙層金屬矽化物19之厚度之5%〜3〇%。較佳地,鈷金屬矽 化層18之厚度為鈷/鎳雙層金屬矽化物19之厚度之丨5%。At the same time, in order to reduce the overall sheet resistance of the cobalt ^ / nickel double-layer metal silicide 丨 9, in this embodiment, the thickness of the cobalt metal silicide layer 18 is equal to the thickness of the cobalt / nickel double-layer metal silicide 19 5% ~ 30%. Preferably, the thickness of the cobalt metal silicide layer 18 is 5% of the thickness of the cobalt / nickel double-layer metal silicide 19.

同樣地’請參照第1 b圖,其繪示出根據本發明第一實 施例之金屬矽化雙層結構剖面示意圖。其包括一矽基底i 〇 以及一鈷/鎳雙層金屬矽化物丨9。鈷/鎳雙層金屬矽化物 19没置於矽基底1〇上。其包括一鎳金屬矽化層16位於矽基 底10上方以及一鈷金屬矽化層18位於鎳金屬矽化層16上 方。在本實施例中,鈷金屬矽化層丨8之厚度為鈷/鎳雙層 金屬矽化物1 9之厚度之5%〜30%,而較佳為丨5%。 相較於習知技術之單層鈦、鈷、鎳金屬矽化物,本發 明之始/鎳雙層金屬石夕化物,由於回火處理之溫度低於 7 0 0 °C,位於上層之鈷金屬矽化薄層不會有團塊化之現 象。同時,可保護鎳金屬矽化層受到含氟電漿的損害,且 始/鎳雙層金屬石夕化物整體之片電阻值不會增加過多。亦Similarly, please refer to FIG. 1b, which illustrates a schematic cross-sectional view of a metal silicided double-layer structure according to the first embodiment of the present invention. It includes a silicon substrate i 0 and a cobalt / nickel double metal silicide 9. The cobalt / nickel double-layer metal silicide 19 is not placed on a silicon substrate 10. It includes a nickel metal silicide layer 16 above the silicon substrate 10 and a cobalt metal silicide layer 18 above the nickel metal silicide layer 16. In this embodiment, the thickness of the cobalt metal silicide layer 8 is 5% to 30% of the thickness of the cobalt / nickel double-layer metal silicide 19, and preferably 5%. Compared with the single-layer titanium, cobalt, and nickel metal silicides of the conventional technology, the starting / nickel double-layer metal petrochemicals of the present invention, due to the tempering temperature of less than 700 ° C, are located in the upper layer of cobalt metal. The silicified thin layer will not be agglomerated. At the same time, it can protect the nickel metal silicide layer from being damaged by the fluorine-containing plasma, and the overall sheet resistance value of the initial / nickel double-layer metal lithoxide will not increase too much. also

200428533 五、發明說明(8) 即’保有低的接觸電阻。再者,位於下層之鎳金屬石夕化摩 層,如習知技術所述,可避免窄線寬效應所引起之片電限 上揚的現象。 第二實施例 以下配合第2 a到2 d圖說明本發明第二實施例之在形成 具有自對準(self-aligned)金屬矽化雙層結構之半導體 裝置之方法。200428533 V. Description of the invention (8) That is, ‘keep a low contact resistance. In addition, the nickel-metal oxide matte layer in the lower layer, as described in the conventional technology, can avoid the phenomenon of the chip limit rising caused by the narrow line width effect. Second Embodiment A method for forming a semiconductor device having a self-aligned metal silicide double-layered structure according to a second embodiment of the present invention is described below with reference to FIGS. 2a to 2d.

首先,請參照第2a圖,提供一矽基底2 0,例如一石夕晶 圓。其具有一主動區及圍繞主動區之隔離結構2 8,例如淺 溝槽隔離結構。主動區中具有一半導體元件,例如一M0S 電晶體,其包含一源極區21、一汲極區2 3及一閘極結構。 此處,閘極結構包含一閘極介電層2 2、一閘極2 4及一閘極 間隙壁26。其中,閘極24之線寬可在65nm以下。First, please refer to FIG. 2a to provide a silicon substrate 20, such as a stone evening sphere. It has an active area and an isolation structure 28, such as a shallow trench isolation structure, surrounding the active area. The active region has a semiconductor element, such as a MOS transistor, which includes a source region 21, a drain region 23, and a gate structure. Here, the gate structure includes a gate dielectric layer 2 2, a gate 24, and a gate spacer 26. Among them, the line width of the gate electrode 24 may be less than 65 nm.

接下來,請參照第2 b圖,藉由習知沉積技術,例如物 理氣相、/儿積(p V D )或化學氣相沉積(C V D ),在隔離結構 28及主動區之源極區2 1、汲極區23與閘極結構上依序順應 性地沉積一鎳金屬層30及一鈷金屬層32。在本實施例中了 鎳金屬層30係利用化學氣相沉積而形成之,且其厚度在 100〜20 0埃的範圍。再者,鈷金屬層32同樣利用化學氣相 沉積而形成之,且其厚度在50〜2 00埃的範圍。 〃 接下來’請參照第2c圖,對第2b圖中之矽基底2〇實 一熱處理,例如使用傳統回火爐管法或快速熱回火處理 (RTA ),使得鎳金屬層3〇及一鈷金屬層32令的錄原&子及Next, please refer to Fig. 2b. Using conventional deposition techniques, such as physical vapor deposition, pD, or chemical vapor deposition (CVD), the isolation region 28 and the source region 2 of the active region 2 1. A nickel metal layer 30 and a cobalt metal layer 32 are sequentially and compliantly deposited on the drain region 23 and the gate structure. In this embodiment, the nickel metal layer 30 is formed by chemical vapor deposition, and its thickness is in the range of 100 to 200 angstroms. Furthermore, the cobalt metal layer 32 is also formed by chemical vapor deposition, and its thickness is in the range of 50 to 200 angstroms. 〃 Next, please refer to FIG. 2c, perform a heat treatment on the silicon substrate 20 in FIG. 2b, for example, using a conventional tempering furnace tube method or rapid thermal tempering (RTA), so that the nickel metal layer 30 and a cobalt Recording & sub 32 of metal layer

200428533200428533

鈷原子擴散至主動區之源極區21、汲極區23與閘極結構之 閘極24,以在源極區21、汲極區23形成鈷/鎳雙層金屬矽 化物33及在閘極24上形成鈷//鎳雙層金屬矽化物35。此 處,鈷/鎳雙層金屬矽化物33包括一鎳金屬矽化層3〇b, 位於源極區2 1及沒極區2 3上方,以及一鈷金屬石夕化層 32b,位於鎳金屬砍化層30b上方。同樣地,鈷/鎳&層金 屬石夕化物35包括一鎳金屬矽化層3〇a,位於源閘極24上 方,以及一鈷金屬矽化層32a,位於鎳金屬矽化層3〇a上 方。再者’於鎳金屬矽化層30a及30b與鈷金屬矽化層32a 及3 2 b之界面形成有一鈷鎳矽化物層(未繪示)。如此一 來,便完成本發明之具有自對準金屬矽化雙層結構之半導 體裝置。 在本實施例中,係對矽基底20實施快速熱回火處理, 以形成鈷/鎳雙層金屬矽化物33及35,其中,快速熱回火 處理之溫度在350〜550 C的範圍,且快速熱回火處理之時 間在1 0〜6 0秒的範圍。如第一實施例所述,在此回火條件 下,鈷金屬矽化層1 8之片電阻值較高,但不會有團塊化之 現象發生。 接著,藉由電漿蝕刻或適當溶液選擇性去除隔離結構 2 8及閘極間隙壁2 6上方未石夕化之始金屬層3 2及鎳金屬層 3 0。在本實施例中,係利用硫酸與雙氧水混合液(spM ) 去除鉛金屬層32及該鎳金屬層30。 最後,請參照第2d圖,在第2 c圖中之矽基底2 0上方形 成一介電層3 6,其材質可為:電漿氡化矽、低介電常數旋Cobalt atoms diffuse into the source region 21, the drain region 23 of the active region, and the gate 24 of the gate structure to form a cobalt / nickel double-layer metal silicide 33 in the source region 21 and the drain region 23 and a gate A cobalt / nickel double-layer metal silicide 35 is formed on 24. Here, the cobalt / nickel double metal silicide 33 includes a nickel metal silicide layer 30b, which is located above the source region 21 and the non-electrode region 23, and a cobalt metal petrochemical layer 32b, which is located at the nickel metal chip. Above the chemical layer 30b. Similarly, the cobalt / nickel layer metal petrified material 35 includes a nickel metal silicide layer 30a above the source gate 24, and a cobalt metal silicide layer 32a above the nickel metal silicide layer 30a. Furthermore, a cobalt nickel silicide layer (not shown) is formed at the interface between the nickel metal silicide layers 30a and 30b and the cobalt metal silicide layers 32a and 3 2 b. In this way, the semiconductor device with a self-aligned metal silicide double-layer structure of the present invention is completed. In this embodiment, a rapid thermal tempering process is performed on the silicon substrate 20 to form cobalt / nickel double-layer metal silicides 33 and 35. The temperature of the rapid thermal tempering process is in the range of 350 ~ 550 C, and The time for rapid thermal tempering is in the range of 10 to 60 seconds. As described in the first embodiment, under this tempering condition, the sheet resistance of the cobalt metal silicide layer 18 is high, but no lumping phenomenon will occur. Then, the isolation structure 28 and the gate barrier wall 26 are selectively removed by plasma etching or a suitable solution to remove the non-lithified starting metal layer 32 and the nickel metal layer 30. In this embodiment, the lead metal layer 32 and the nickel metal layer 30 are removed using a mixed solution (spM) of sulfuric acid and hydrogen peroxide. Finally, please refer to Fig. 2d. On the silicon substrate 20 in Fig. 2c, a dielectric layer 3 6 is formed in a square shape. The material can be: siliconized plasma, low dielectric constant spin.

0503-9975TWF(Nl);TSMC2003-0015;Spin.ptd0503-9975TWF (Nl); TSMC2003-0015; Spin.ptd

200428533 五、發明說明(ίο) 塗式玻璃(S0G)、四乙氧基石夕玻璃(T EOS oxide)、填 摻雜氧化矽、氟矽玻璃(FSG )、磷矽玻璃(PSG )、高密 度電漿所沈積的未摻雜矽玻璃(HDP —USG )、高密度電漿 所沈積的氧化矽(HDP-Si02 )、次壓化學氣相沈積法 (SACVD )所沈積的氧化矽、以及以臭氧—四乙氧基矽烷 (〇3-TE0S )所沈積的氧化矽等。接著,藉由習知電漿蝕刻 製程’在源極區2 1及汲極區2 3上方之介電層3 6中形成接觸 窗37及在閘極24上方之介電層36中形成接觸窗39以露出鈷 /鎳雙層金屬矽化物33及35。200428533 V. Description of invention (ίο) Coated glass (S0G), tetraethoxy stone eve glass (T EOS oxide), doped silicon oxide, fluorine silicon glass (FSG), phosphorous silicon glass (PSG), high-density electricity Undoped silica glass (HDP-USG) deposited by the slurry, silicon oxide (HDP-Si02) deposited by high-density plasma, silicon oxide deposited by sub-pressure chemical vapor deposition (SACVD), and ozone— Silica oxide deposited by tetraethoxysilane (〇3-TE0S). Next, by a conventional plasma etching process, a contact window 37 is formed in the dielectric layer 36 above the source region 21 and the drain region 23, and a contact window is formed in the dielectric layer 36 above the gate 24. 39 to expose cobalt / nickel double metal silicides 33 and 35.

由於電漿蝕刻製程中若含有I,其易與鎳金屬矽化層 30a及30b中的鎳原子發生鍵結而使其片電阻值上升,增加 Ϊ觸電阻,如先前所述。因此,鎳金屬石夕化30a及3〇b上 钻金屬石夕化層32“32b可作為-保護層,避免 增加接觸電阻。 同樣地,如第一實施你|^ 層金屬梦化物33及35之片=降:了:吏整體的銘,鎳雙 及32b之,;降低,鈷金屬矽化層32a 及32b之厗度為鈷/鎳雙層金屬矽化物i9 5%〜30%,而較佳為15%。 予又 請參照第2 c圖,其繪示出根攄 有金屬矽化雙層結構之半導體裝 x明第二實施例之具 裝置包括-矽基底20以及鈷/鎳雙二::意圖。此半導體 矽基底,例如一矽晶圓,其具有一:屬矽化物3 3及3 5。 隔離結構28,例如淺溝槽^ ^結,區及圍繞主動區之 體元件,例如一M0S電晶體,史々人 動區中具有一半導 〜匕3 一源極區21、一汲極If I is included in the plasma etching process, it is likely to be bonded to the nickel atoms in the nickel metal silicide layers 30a and 30b to increase the sheet resistance value and increase the contact resistance, as described earlier. Therefore, nickel metal petrochemical 30a and 30b drilled metal petrochemical layers 32 "32b can be used as a protective layer to avoid increasing the contact resistance. Similarly, the first implementation of your metal layer 33 and 35 The piece = drop: the overall inscription, nickel double and 32b; lower, the cobalt metal silicide layers 32a and 32b have a cobalt / nickel double metal silicide i9 5% ~ 30%, which is better 15%. Please refer to FIG. 2c, which shows a semiconductor device with a metal silicide double-layered structure. The device of the second embodiment includes a silicon substrate 20 and a cobalt / nickel double two: Intent. This semiconductor silicon substrate, such as a silicon wafer, has one of the following: silicides 3 3 and 35. Isolation structure 28, such as a shallow trench, a junction, a region, and a body element surrounding the active region, such as a MOS Transistor, half-conductance in the moving region of the human being ~~ 3 source area 21, a drain

200428533 五、發明說明(π) 區23及一閘極結構。此處,閘極結構包含一閘極介電層 22、一閘極24及一閘極間隙壁26。鈷/鎳雙層金屬矽化物 35及33分別設置於閘極24及源極區21 /汲極區23上。其 中,鎳金屬矽化層30b及30a分別位於閘極24及源極區21 / 汲極區23上方,且鈷金屬矽化層32b及32a則分別位於鎳金 屬矽化層30b及30a上方。此處,鈷金屬矽化層3_2b及32a之 厚度分別為鈷/鎳雙層金屬矽化物3 3及35之厚度之 5°/〇〜30%,而較佳為15%。 如第一實施例所述,本發明之鈷/鎳雙層金屬矽化物 中’位於上層之鈷金屬矽化薄層不會有團塊化之現象。同& 時’可保護鎳金屬矽化層受到含氟電漿的損害,且保有低 的接觸電阻。再者,位於下層之鎳金屬矽化厚層,可避免 窄線寬效應所引起之片電阻上揚的現象。因此,可應用於 非常微小線寬之製程。 ' 雖然本發明已以較佳實施例揭露如上,然其並非用以 限疋本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可作更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。200428533 V. Description of the Invention (π) Region 23 and a gate structure. Here, the gate structure includes a gate dielectric layer 22, a gate 24, and a gate spacer 26. Cobalt / nickel double-layer metal silicides 35 and 33 are disposed on the gate 24 and the source region 21 / drain region 23, respectively. Among them, nickel metal silicide layers 30b and 30a are located above gate 24 and source region 21 / drain region 23, respectively, and cobalt metal silicide layers 32b and 32a are located above nickel metal silicide layers 30b and 30a, respectively. Here, the thickness of the cobalt metal silicide layers 3_2b and 32a are 5 ° / 0 to 30%, and preferably 15%, of the thickness of the cobalt / nickel double metal silicides 33 and 35, respectively. As described in the first embodiment, in the cobalt / nickel double-layer metal silicide of the present invention, the thin layer of the cobalt metal silicide layer located on the upper layer will not be agglomerated. At the same time, it can protect the nickel metal silicide layer from being damaged by the fluorine-containing plasma and keep a low contact resistance. Furthermore, the thick layer of nickel metal silicide in the lower layer can avoid the rise of the sheet resistance caused by the narrow line width effect. Therefore, it can be applied to the process of very small line width. 'Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make changes and retouching without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application.

200428533200428533

第1 a到1 b圖係繪示出根據本發 底上形成金屬矽化雙層結構之流程^施例之在矽基 第2a到2d圖係繪示出根據本發‘不=圖。 具有自對準金屬石夕化雙層結構之半導施:之在形成 意圖。 矛餵裝置之流程剖面示 符號說明: 1 〇、2 0〜矽基底; 12、30〜鎳金屬層; 14、32〜始金屬層; 16、30a、30b〜鎳金屬矽化層; 18、 32a、32b〜鈷金屬矽化層; 19、 33、3 5〜鈷/鎳雙層金屬矽化物; 21〜源極區; 2 2〜閘極介電層; 2 3〜没極區; 24〜閘極; 2 6〜閘極間隙壁; 2 8〜隔離結構; 36〜介電層; 37、39〜接觸窗。Figures 1a to 1b show the process for forming a metal silicided double-layered structure on the basis of the present invention ^ Examples are based on silicon. Figures 2a to 2d show the 'not = figure' according to the present invention. Semiconducting device with self-aligned metal fossilized double-layered structure: its intention is being formed. Symbol description of the flow cross section of the spear feeding device: 10, 20 to silicon substrate; 12, 30 to nickel metal layer; 14, 32 to initial metal layer; 16, 30a, 30b to nickel metal silicide layer; 18, 32a, 32b ~ cobalt metal silicide layer; 19, 33, 3 5 ~ cobalt / nickel double metal silicide; 21 ~ source region; 2 ~ gate dielectric layer; 2 ~ non-electrode region; 24 ~ gate; 2 6 to the gate gap; 2 8 to the isolation structure; 36 to the dielectric layer; 37 and 39 to the contact window.

0503-9975TW(Nl);TSMC2003-0015;Spin.ptd 第17頁0503-9975TW (Nl); TSMC2003-0015; Spin.ptd p. 17

Claims (1)

200428533 六、申請專利範圍 一 1 · 一種金屬碎化雙層結構,包括·· 一矽基底;以及 一始/鎳雙層金屬矽化物,設置於該矽基底上,其中 該始/鎳雙層金屬矽化物包括一鎳金屬矽化層,位於^石夕 基底上方,以及一鈷金屬矽化層,位於該鎳金屬矽化層上 方0 2 ·如申請專利範圍第1項所述之金屬矽化雙層結構, 其中該鈷金屬矽化層之厚度為該鈷/鎳雙層金屬矽化物之 厚度之5%〜30%。 3 ·如申請專利範圍第1項所述之金屬矽化雙層结構, 其中該鈷金屬矽化層之厚度為該鈷/鎳雙層金屬矽化物之 厚度之15%。 4·如申請專利範圍第丨項所述之金屬矽化雙層結構, 其中該姑/鎳雙層金屬石夕化物係藉由同時對該石夕基底上之 鎳/鈷雙層金屬實施一熱處理所形成。 5 ·如申咕專利範圍第4項所述之金屬石夕化雙層結構, 其中該鎳金屬層之厚度在1〇〇〜2〇〇埃的範圍。 曰 i Λ 利範圍第4項所述之金屬石夕化雙層結構, 其中遠始金屬層之厚度在50〜200埃的範圍。 7·如申請專利範圍第4項所述之金屬矽化雙層結構,1瞻 其中該熱處理之溫度在350〜550 °C的範圍。 8·如申請專利範圍第4項所述之金屬矽化雙層结構, 其中該熱處理之時間在1 〇〜6 〇秒的範圍。 曰 9· 一種形成金屬矽化雙層結構之方法,包括下列步200428533 VI. Scope of patent application 1 · A metal shredded double-layer structure, including a silicon substrate; and a start / nickel double metal silicide, which is disposed on the silicon substrate, wherein the start / nickel double metal The silicide comprises a nickel metal silicide layer, which is located above the Shixi substrate, and a cobalt metal silicide layer, which is located above the nickel metal silicide layer. The metal silicide double-layer structure according to item 1 of the patent application scope, wherein The thickness of the cobalt metal silicide layer is 5% to 30% of the thickness of the cobalt / nickel double metal silicide. 3. The metal silicide double-layer structure as described in item 1 of the scope of the patent application, wherein the thickness of the cobalt metal silicide layer is 15% of the thickness of the cobalt / nickel double metal silicide. 4. The metal silicided double-layered structure as described in item 丨 of the patent application scope, wherein the nickel / nickel double-layer metal lithoxide is subjected to a heat treatment at the same time as the nickel / cobalt double-layered metal on the stone-based substrate. form. 5. The metal petrified double layer structure as described in item 4 of the Shengu patent scope, wherein the thickness of the nickel metal layer is in the range of 100 to 200 Angstroms. The metallized double-layered structure described in item 4 of the I Λ Lee range, wherein the thickness of the Yuanshi metal layer is in the range of 50 to 200 Angstroms. 7. The metal silicided double-layer structure as described in item 4 of the scope of patent application, where the heat treatment temperature is in the range of 350 ~ 550 ° C. 8. The metal silicided double-layer structure as described in item 4 of the scope of the patent application, wherein the heat treatment time is in the range of 10 to 60 seconds. 9 · A method for forming a metal silicided double-layer structure, including the following steps 0503-9975TWF(Nl);TSMC2003-0015;Spin.ptd 200428533 六、申請專利範圍 驟: 提供一矽基底; 在該石夕基底上依序順應性地沉積一鎳金屬層及一始金 屬層;以及 對該矽基底實施一熱處理,以在該矽基底上形成一鈷 /鎳雙層金屬矽化物。 I 0 ·如申請專利範圍第9項所述之形成金屬矽化雙層結 構之方法,其中該鎳金屬層之厚度在100〜200埃的範圍。 II ·如申請專利範圍第9項所述之形成金屬矽化雙層結 構之方法,其中該鈷金屬層之厚度在50〜200埃的範圍。 1 2 ·如申請專利範圍第9項所述之形成金屬矽化雙層結 構之方法,其中該熱處理係一快速熱回火處理。 1 3 ·如申請專利範圍第1 2項所述之形成金屬矽化雙層 結構之方法,其中該快速熱回火處理之溫度在35〇〜55〇〇c 的範圍。 1 4 ·如申請專利範圍第1 2項所述之形成金屬矽化雙層 結構之方法,其中該快速熱回火處理之時間在1 〇〜6 〇秒的 範圍。 1 5 ·如申請專利範圍第9項所述之形成金屬矽化雙層結 構之方法,其中該鈷金屬矽化層之厚度為該鈷/鎳雙層金 屬矽化物之厚度之5%〜30 %。 1 6 ·如申请專利範圍第9項所述之形成金屬矽化雙層結 構之方法,其中該鈷金屬矽化層之厚度為該鈷/鎳雙層金 屬矽化物之厚度之15°/〇。0503-9975TWF (Nl); TSMC2003-0015; Spin.ptd 200428533 6. Scope of patent application: Provide a silicon substrate; sequentially and compliantly deposit a nickel metal layer and a starting metal layer on the stone substrate; and A heat treatment is performed on the silicon substrate to form a cobalt / nickel double metal silicide on the silicon substrate. I 0 · The method for forming a metal silicided double-layer structure as described in item 9 of the scope of the patent application, wherein the thickness of the nickel metal layer is in the range of 100 to 200 angstroms. II. The method for forming a metal silicide double-layer structure as described in item 9 of the scope of the patent application, wherein the thickness of the cobalt metal layer is in a range of 50 to 200 angstroms. 1 2 The method for forming a metal silicided double-layer structure as described in item 9 of the scope of the patent application, wherein the heat treatment is a rapid thermal tempering treatment. 1 3 · The method for forming a metal silicided double-layered structure as described in item 12 of the scope of the patent application, wherein the temperature of the rapid thermal tempering process is in the range of 35 to 5500 c. 14. The method for forming a metal silicided double-layered structure as described in item 12 of the scope of the patent application, wherein the time of the rapid thermal tempering treatment is in the range of 10 to 60 seconds. 15 · The method for forming a metal silicide double-layer structure as described in item 9 of the scope of the patent application, wherein the thickness of the cobalt metal silicide layer is 5% to 30% of the thickness of the cobalt / nickel double metal silicide. 16. The method for forming a metal silicide double-layer structure as described in item 9 of the scope of the patent application, wherein the thickness of the cobalt metal silicide layer is 15 ° / 0 of the thickness of the cobalt / nickel double metal silicide. 0503-9975TWF(Nl);TSMC2003-0015;Spin.ptd 第19頁 2004285330503-9975TWF (Nl); TSMC2003-0015; Spin.ptd Page 19 200428533 六、申請專利範圍 i?· 一種具有金屬矽化雙層結構之半導體裝置,包 括· 一石夕基底,其具有一閘極及一源極/汲極區;以及 一始/鎳雙層金屬矽化物,設置於該閘極及該源極/ 沒極區上,其中該鈷/鎳雙層金屬矽化物包括一鎳金屬石夕 化層’位於該閘極及該源極/汲極區上方,以及—錄金屬 矽化層,位於該鎳金屬矽化層上方。 1 8 ·如申請專利範圍第1 7項所述之具有金屬矽化雙層 結構之半導體裝置,其中該鈷金屬矽化層之厚度為該鈷/ 鎳雙層金屬石夕化物之厚度之。 1 9 ·如申請專利範圍第1 7項所述之具有金屬矽化雙層 結構之半導體裝置,其中該鈷金屬矽化層之厚度為該鈷/ 鎳雙層金屬石夕化物之厚度之1 5 %。 2 〇 ·如申請專利範圍第1 γ項所述之具有金屬矽化雙層 結構之半導體裝置,其中該鈷/鎳雙層金屬矽化物係藉由 同時對該矽基底上之鎳/鈷雙層金屬實施一熱處理所形 成0 21 ·如申請專利範圍第2 0項所述之具有金屬矽化雙層 結構之半導體裝置,其中該鎳金屬層之厚度在1〇〇〜200埃 的範圍。 2 2 ·如申請專利範圍第2 〇項所述之具有金屬矽化雙層 結構之半導體裝置,其中該鈷金屬層之厚度在50〜2 〇〇埃的 範圍。 2 3 ·如申請專利範圍第2 〇項戶斤述之具有金屬石夕化雙層6. Scope of patent application i. A semiconductor device with a metal silicide double-layer structure, including a stone substrate with a gate and a source / drain region; and a start / nickel double-layer metal silicide, Disposed on the gate and the source / inverted region, wherein the cobalt / nickel double-layer metal silicide includes a nickel metal petrified layer 'located over the gate and the source / drain region, and- A metal silicide layer is located above the nickel metal silicide layer. 18 · The semiconductor device having a metal silicide double-layer structure as described in item 17 of the scope of the patent application, wherein the thickness of the cobalt metal silicide layer is equal to the thickness of the cobalt / nickel double-layer metal fossil compound. 19 · The semiconductor device having a metal silicide double-layer structure as described in item 17 of the scope of the patent application, wherein the thickness of the cobalt metal silicide layer is 15% of the thickness of the cobalt / nickel double metal lithoxide. 2 〇 The semiconductor device having a metal silicide double-layer structure as described in item 1 γ of the scope of the patent application, wherein the cobalt / nickel double-layer metal silicide is obtained by simultaneously applying the nickel / cobalt double-layer metal on the silicon substrate. 0 21 formed by performing a heat treatment. The semiconductor device having a metal silicide double-layer structure as described in item 20 of the patent application scope, wherein the thickness of the nickel metal layer is in the range of 100 to 200 angstroms. 2 2 · The semiconductor device having a metal silicide double-layered structure as described in item 20 of the scope of patent application, wherein the thickness of the cobalt metal layer is in a range of 50 to 2000 angstroms. 2 3 · As described in item 20 of the scope of patent application, the company has a double layer of metallization. 0503-9975TW(Nl);TSMC2003.0015;Spin.ptd 2004285330503-9975TW (Nl); TSMC2003.0015; Spin.ptd 200428533 結構之半導體裝置,其中該埶處理之溫度在350〜55(TC的 範圍。 ” 2 4 ·如申凊專利範圍第2 〇項戶斤述之具有金屬石夕化雙層 結構之半導體裝置,其中該埶處理之時間在1〇〜6〇秒的範 圍。 ”、、 .25· 一種形成具有金屬矽化雙層結構之半導.體裝置之 方法,包括下列步驟: 提供一矽基底,其具有一閘極及一源極/汲極區;Structured semiconductor device, in which the temperature of the plutonium treatment is in the range of 350 to 55 ° C. "2 4 · As described in item 20 of the patent application scope, a semiconductor device having a metallized double-layer structure, wherein The time for the treatment is in the range of 10 to 60 seconds. ",, .25 · A method for forming a semiconductor device having a metal silicide double-layer structure includes the following steps: A silicon substrate is provided, which has a Gate and a source / drain region; 在該矽基底上依序順應性地沉積一鎳金屬層及一鈷金 屬層;以及 對該石夕基底實施一熱處理,以在該閘極及該源極/没 極區上形成一鈷/鎳雙層金屬矽化物。 2 6 ·如申請專利範圍第2 5項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,更包括去除未矽化之該始 金屬層及該鎳金屬層。 27 ·如申請專利範圍第2 6項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,其中藉由硫酸與雙氧水混 合液(SPM )去除該鈷金屬層及該鎳金屬層。A nickel metal layer and a cobalt metal layer are sequentially and compliantly deposited on the silicon substrate; and a heat treatment is performed on the stone substrate to form a cobalt / nickel on the gate and the source / non-electrode regions. Double metal silicide. 26. The method for forming a semiconductor device having a metal silicided double-layer structure as described in item 25 of the scope of the patent application, further comprising removing the non-silicided starting metal layer and the nickel metal layer. 27. The method for forming a semiconductor device having a metal silicide double-layer structure as described in item 26 of the scope of the patent application, wherein the cobalt metal layer and the nickel metal layer are removed by a sulfuric acid and hydrogen peroxide mixed liquid (SPM). 28 ·如申請專利範圍第2 5項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,其中遠鎳金屬層之厚度在 100〜200埃的範圍。 29 ·如申請專利範圍第2 5項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,其中該始金屬層之厚度在 50〜200埃的範圍。28. The method for forming a semiconductor device having a metal silicide double-layer structure as described in item 25 of the scope of the patent application, wherein the thickness of the far nickel metal layer is in the range of 100 to 200 angstroms. 29. The method for forming a semiconductor device having a metal silicide double-layer structure as described in item 25 of the scope of the patent application, wherein the thickness of the starting metal layer is in a range of 50 to 200 angstroms. 200428533 六、申請專利範圍 30 ·如申請專利範圍第2 5項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,其中該熱處理係一快速熱 回火處理。 ’、 ^ 3 1 ·如申請專利範圍第3 〇項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,其中該快速熱回火處理之 溫度在350〜550 °C的範圍。 32 ·如申請專利範圍第3 0項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,其中該快速熱回火處理之 時間在1 0〜6 0秒的範圍。 ’200428533 VI. Scope of patent application 30. The method for forming a semiconductor device with a metal silicide double-layer structure as described in item 25 of the patent application scope, wherein the heat treatment is a rapid thermal tempering process. ′, ^ 3 1 · The method for forming a semiconductor device having a metal silicided double-layer structure as described in item 30 of the scope of the patent application, wherein the temperature of the rapid thermal tempering process is in the range of 350 to 550 ° C. 32. The method for forming a semiconductor device having a metal silicide double-layer structure as described in item 30 of the scope of the patent application, wherein the time of the rapid thermal tempering treatment is in the range of 10 to 60 seconds. ’ 33 ·如申請專利範圍第2 5項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,其中該始金屬石夕化層之厚 度為該鈷/鎳雙層金屬矽化物之厚度之5%〜30%。 3 4 ·如申請專利範圍第2 5項所述之形成具有金屬矽化 雙層結構之半導體裝置之方法,其中該鈷金屬矽化層之厚 度為該鈷/鎳雙層金屬矽化物之厚度之1 5%。33. The method for forming a semiconductor device having a metal silicide double-layer structure as described in item 25 of the scope of the patent application, wherein the thickness of the starting metallization layer is 5 times the thickness of the cobalt / nickel double-layer metal silicide. % ~ 30%. 3 4 · The method for forming a semiconductor device with a metal silicide double-layer structure as described in item 25 of the scope of the patent application, wherein the thickness of the cobalt metal silicide layer is 1 5 of the thickness of the cobalt / nickel double metal silicide %. 〇503-9975TWF(Nl);TSMC2003-0015;Spin.ptd 第22頁〇503-9975TWF (Nl); TSMC2003-0015; Spin.ptd Page 22
TW92115017A 2003-06-03 2003-06-03 Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same TWI222141B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92115017A TWI222141B (en) 2003-06-03 2003-06-03 Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92115017A TWI222141B (en) 2003-06-03 2003-06-03 Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same

Publications (2)

Publication Number Publication Date
TWI222141B TWI222141B (en) 2004-10-11
TW200428533A true TW200428533A (en) 2004-12-16

Family

ID=34432971

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92115017A TWI222141B (en) 2003-06-03 2003-06-03 Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI222141B (en)

Also Published As

Publication number Publication date
TWI222141B (en) 2004-10-11

Similar Documents

Publication Publication Date Title
JP4722448B2 (en) Method for reducing contact resistance in a semiconductor connection region
US8441039B2 (en) Nanopillar E-fuse structure and process
JP2008513977A (en) Unidirectional diffusion of metal silicide in semiconductor devices.
US20050158996A1 (en) Nickel salicide processes and methods of fabricating semiconductor devices using the same
JP2005019943A (en) Nickel alloy salicide process, method for manufacturing semiconductor device using the same, nickel alloy silicide film formed therefrom and semiconductor device manufactured by using the same
US20060255404A1 (en) Semiconductor resistance element and fabrication method thereof
TW200414371A (en) Circuit element having a metal silicide region thermally stabilized by a barrier diffusion material
JP2004172571A (en) Method of manufacturing semiconductor device utilizing nickel salicide process
TW200532892A (en) Electrical fuse for semiconductor-on-insulator devices
JP2009135435A (en) Selective formation of compound containing semiconductor material and metal material in substrate through germanium oxide layer
TW480604B (en) Raised silicide source/drain MOS transistors having enlarged source/drain contact regions and method
US6339021B1 (en) Methods for effective nickel silicide formation
JP2009076605A (en) Method of manufacturing semiconductor device
US20060057845A1 (en) Method of forming nickel-silicon compound, semiconductor device, and semiconductor device manufacturing method
TW200303587A (en) Method of forming different silicide portions on different silicon-containing regions in a semiconductor device
TW586152B (en) Semiconductor device and manufacturing method thereof
TW200428533A (en) Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same
KR100563095B1 (en) Method for fabricating silicide of semiconductor device
US6383922B1 (en) Thermal stability improvement of CoSi2 film by stuffing in titanium
JP2006352127A (en) Method of forming self-aligned silicide film by using multiple heat treatment processes
TW200524141A (en) Semiconductor device and manufacturing method thereof
TW200406830A (en) Semiconductor device and method for manufacturing the same
WO2006003579A1 (en) Field effect transistor method and device
TW442858B (en) Process to form gate
TWI232507B (en) Method for fabricating silicide

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees