TW200419677A - A method to grow silicon germanium (SiGe) layer on different materials and produce a bipolar junction transistor including SiGe layer - Google Patents

A method to grow silicon germanium (SiGe) layer on different materials and produce a bipolar junction transistor including SiGe layer Download PDF

Info

Publication number
TW200419677A
TW200419677A TW92105777A TW92105777A TW200419677A TW 200419677 A TW200419677 A TW 200419677A TW 92105777 A TW92105777 A TW 92105777A TW 92105777 A TW92105777 A TW 92105777A TW 200419677 A TW200419677 A TW 200419677A
Authority
TW
Taiwan
Prior art keywords
silicon
germanium layer
patent application
layer
item
Prior art date
Application number
TW92105777A
Other languages
Chinese (zh)
Other versions
TWI225276B (en
Inventor
Liang-Gi Yao
Kuen-Chyr Lee
Shih-Chang Chen
Mong-Song Liang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92105777A priority Critical patent/TWI225276B/en
Publication of TW200419677A publication Critical patent/TW200419677A/en
Application granted granted Critical
Publication of TWI225276B publication Critical patent/TWI225276B/en

Links

Abstract

This invention provides a method to grow silicon germanium (SiGe) layer on different materials, and to produce a bipolar junction transistor including SiGe layer. The method of growing SiGe layer includes some steps shown below. Provide a substrate, wherein there is a different-material region composed of a material different from that of the substrate on the surface of the substrate. Afterward, form a doped silicon seed layer on the substrate and the different-material region Finally, deposit a SiGe layer on the doped silicon seed layer. Forming the doped silicon seed layer first can help the growth of SiGe layer and shorten the growth time to form a continuous SiGe layer.

Description

200419677 五、發明說明(1) 發明所屬之技術領域 本發明有關於一種在不同材質上成長矽鍺層的方法, 特別有關於一種製造具有矽鍺層之雙載子電晶體的方法。 先前技術 雙載子互補式金氧半電晶體(BiCM〇S; bipolar complementary meta1-〇xide-semiconductor transistor)包括雙載子電晶體(bip〇lar transist〇r)和 互補式金氧半電晶體(CMOS),係將整個電路中需要高速度 與高電流趨動的部分(如電路的輸入/輸出部分)以Bip〇iar 來處理,而將電路中需要高積度和低能耗的區域(如陣 列),以CMOS來處理。如此,BiCM〇s可兼具化〇1盯和· 兩者的優點。200419677 V. Description of the invention (1) Technical field of the invention The present invention relates to a method for growing a silicon germanium layer on different materials, and more particularly to a method for manufacturing a bipolar transistor with a silicon germanium layer. Bipolar complementary meta1-semiconductor transistor (BiCM〇S) in the prior art includes a bipolar transistor (bip〇lar transistor) and a complementary metal oxide semi-transistor ( CMOS), is to process the parts of the entire circuit that require high speed and high current actuation (such as the input / output part of the circuit) with Bipoiar, and the areas in the circuit that require high integration and low energy consumption (such as arrays) ) To CMOS. In this way, BiCM0s can combine the advantages of both 盯 1 盯 and ·.

BiCMOS中的雙載子電晶體主要包括集極 (collector)、基極(base)、和射極(em^ter),而構成 nPn或pnp電晶體。由於石夕鍺材質比純石夕的能階(energy gap)較低’因此,近年來,使用矽鍺蠢晶層(si_Ge epitaxial layer)作為異質接合 (heter〇juncti〇n)Bipolar電晶體的基極,已成為主流, 矽鍺磊晶層可提供較高的射極射出效率(丨11 er injection efficiency)和較低的基極傳輸時間(Μ" transit time) ° ,成長石夕錯層時,4常石夕基底上已有氧化石夕所構成的 隔肖隹區。由於石夕錯層和々其 薄層和矽基底之材質接近,晶格常數 第5頁 0503-S259TW ; TSMC2002-0029 ; Cathy.ptd 200419677 五、發明說明(2) —BiCMOS transistors in BiCMOS mainly include collectors, bases, and emitters to form nPn or pnp transistors. Since the material of Shixi germanium is lower than the energy gap of pure Shixi, therefore, in recent years, a silicon germanium silicide layer (si_Ge epitaxial layer) has been used as the base of a heterojunction bipolar transistor. Has become the mainstream, silicon germanium epitaxial layer can provide higher emitter injection efficiency (11 er injection efficiency) and lower base transit time (M " transit time) °, when growing Shi Xi split layer, 4 There is already a Xiaoxian area composed of oxidized stone on the base of Chang Shixi. Due to the closeness of the Shi Xi staggered layer and its thin layer and the material of the silicon substrate, the lattice constant Page 5 0503-S259TW; TSMC2002-0029; Cathy.ptd 200419677 V. Description of the invention (2) —

Uattie.pa]:ameter)很接近,所以在矽基底上可長成磊晶 (epitaxial)形式的矽鍺層。然而,氧化矽和矽鍺層的晶 ^結構差異很大,在氧化矽隔離區上的矽鍺層僅能長成複 日日幵v式的且不各易成長,會有不連續(discontinuity) 情形,造成矽鍺層的阻值高。 ^ 、為了解決上述矽鍺層有不連續的情形,傳統上通常在 形成石夕錯層之前,先以化學氣相沈積法(chemical vapor d e p 〇 s i t i ο η ’ C V D )形成一未掺雜的複晶石夕晶種層(s e e砬 y 士) 士此在此未換雜的複晶石夕晶種層上再成長石夕鍺 f時,由於^鍺和複晶矽兩者的材質較為接近,因此,較 谷易長成連續的矽鍺層。當形成的未摻雜複晶矽晶種層有 j夠厚度牯確貫可長成連續的石夕鍺層,但這會使得接合 罙度(j u n c t i 〇 n d e p t h)增大,不利於電性。當未摻雜複曰 矽晶種層之厚度不足時,則矽鍺層仍有不連續的情形發曰曰 生。而且,未掺雜複晶矽晶種層的成長時間(incubatf〇n ime)長’階梯覆蓋(step coverage)能力不佳。 發明内容 有鑑於此,本發明之目 在不同材質上成長矽鍺層的 可縮短成長時間,且有良好 為達成本發明之目的, 層的方法包括以下步驟。首 面上具有與基底不同材質之 的為解決上述問題而提供一種 方法’可形成連續的矽鍺層, 的階梯覆蓋能力。 本發明在不同材質上成長矽鍺 先,提供一基底,此基底之表 一不同材質區。接著,在基底Uattie.pa]: ameter) is very close, so a silicon germanium layer in epitaxial form can be grown on the silicon substrate. However, the crystal structure of the silicon oxide and silicon germanium layers is very different. The silicon germanium layer on the silicon oxide isolation region can only grow into a V-shaped day-to-day and is not easy to grow, there will be discontinuity In some cases, the resistance value of the silicon germanium layer is high. ^ In order to solve the above-mentioned discontinuity of the silicon germanium layer, traditionally, an un-doped complex was first formed by chemical vapor dep Spar seed layer (see 砬 y) When growing here on the non-doped polyspar seed layer, because the material of ^ Ge and polycrystalline silicon is close, Therefore, the valley is easier to grow into a continuous silicon germanium layer. When the undoped polycrystalline silicon seed layer is formed to have a thickness of sufficient thickness, it can grow into a continuous lithium germanium layer, but this will increase the jointing degree (j u n c t i 〇 d e p t h), which is not conducive to electrical properties. When the thickness of the undoped silicon seed layer is insufficient, the silicon germanium layer is still discontinuous. In addition, the undoped polycrystalline silicon seed layer has an incubat fon long ′ step coverage capability. SUMMARY OF THE INVENTION In view of this, the purpose of the present invention is to shorten the growth time by growing a silicon germanium layer on different materials, and to achieve the purpose of the invention, the layer method includes the following steps. On the first side, a material different from the substrate is provided to provide a method to solve the above problems, which can form a continuous silicon germanium layer with a step coverage capability. In the present invention, silicon germanium is grown on different materials. First, a substrate is provided, and the substrate is provided with different material regions. Then, at the base

200419677 發明說明(3) _ 不同材貝區上形成一摻雜之石夕晶種層。最後, 矽晶種属卜冰# ^ 隹摻雜之 曰上沈積一砍錯層。 方本备明亦提供一種製造具有矽鍺層之雙載子電晶體的 美,其包括以下步驟。首先,提供一基底作為一集極, t 土 ^之表面上具有與基底不同材質之一不同材質區。接 在基底和不同材質區上形成一摻雜之矽晶種層。接 者’在接雜之矽晶種層上沈積一矽鍺層作為基9 在矽鍺層上形成一射極。 取後200419677 Description of the invention (3) _ A doped stone seed layer is formed on different material shells. Finally, the silicon seed species Bu Bing # ^ 隹 doped is deposited on the wrong layer. Fang Benming also provided the beauty of manufacturing a bipolar transistor with a silicon germanium layer, which includes the following steps. First, a substrate is provided as a collector, and the surface of t soil has a different material area from the substrate. A doped silicon seed layer is formed on the substrate and regions of different materials. Then, a silicon germanium layer is deposited on the hybrid silicon seed layer as a base 9 to form an emitter on the silicon germanium layer. After taking

實施方式 第1至第3圖顯示依據本發明較佳實施例形成具有矽鍺 層之又載子電晶體的製程剖面示意圖。 明苓閱第1圖,提供一基底10,其表面上具有與基底 1、*〇 =同材質之一不同材質區12和14。例如,基底1〇可為半 導體基底(如矽基底),不同材質區可包括隔離區12和複晶 矽層或氮化矽(8")層14。隔離區12可為氧化矽所構成之 淺溝槽,離區(STI; shallow trench is〇lati〇n)。Embodiments FIGS. 1 to 3 are schematic cross-sectional views showing a process of forming a carrier crystal having a silicon germanium layer according to a preferred embodiment of the present invention. Mingling read the first figure, and provided a substrate 10 with regions 12 and 14 on the surface that are different from the substrate 1, * 〇 = one of the same material. For example, the substrate 10 may be a semiconductor substrate (such as a silicon substrate), and the regions of different materials may include an isolation region 12 and a polycrystalline silicon layer or a silicon nitride (8 ") layer 14. The isolation region 12 may be a shallow trench (STI) formed by silicon oxide (STI).

接著,參閱第2圖,在矽基底10和不同材質區12和14 上形成一摻雜之矽晶種層(seed layer),形成方法可為, 使用含矽化合物和摻質化合物為氣體源,進行化學氣相沈 積法(CVD。; chemical vapor dep〇siti〇n),其厚度可在 1〇 ^至2 0 0 A之間。所形成之摻雜之矽晶種層可分為兩個部 分·.在矽基底1 〇上所形成的摻雜之矽晶種層為磊晶形式 〈epitaxial)之摻雜矽晶種層21〇,而在§1^區12和複晶矽Next, referring to FIG. 2, a doped silicon seed layer is formed on the silicon substrate 10 and the regions 12 and 14 of different materials. The formation method may be that a silicon-containing compound and a dopant compound are used as a gas source. A chemical vapor deposition (CVD) method is performed, and the thickness thereof may be between 10 ^ and 200 A. The doped silicon seed layer formed can be divided into two parts. The doped silicon seed layer formed on the silicon substrate 10 is an epitaxial doped silicon seed layer 21e. While in §1 ^ region 12 and polycrystalline silicon

200419677 五、發明說明(4) 層或S i N層1 4上所形成的則為複晶形式的摻雜矽晶種層 220 °當摻雜之矽晶種層21〇和22〇為p型時,可使用矽烷 (si lane)和p型摻雜化合物,如含硼摻質化合物為氣體 源。含删摻質化合物的具體例子包括六氫化二硼(匕仏; diiborane)和二 |^化_(8卩3; boron trifluoride)。又, 當摻雜之矽晶種層2 1 〇和2 2 0為η型時,可使用矽烷 (s i 1 ane )和η型摻雜化合物作為氣體源。η型摻雜化合物的 具體例子包括氫化攝(Pfj3 ; phosphine)和氫化砰(ash3 ; arsine) ^ 。 接著’仍參閱第2圖,在摻雜之矽晶種層2 1 〇和2 2 0上 沈積一石夕鍺層。所形成矽鍺層可分為兩個部分,在磊晶形 式之摻雜石夕晶種層2 1 〇上所形成的是磊晶的矽鍺層2 4 〇,而 在複ss形式的摻雜石夕晶種層2 2 〇上所形成的是複晶的石夕鍺 層250。石夕鍺層240和250的厚度可為20A至10 0 0 A之間, 可以各種方法形成’例如MBE (molecular beam epitaxy ’ 刀子束猫晶法)’uhv-CVD (ultra-high vacuum chemical vapor deposition ;超高真空化學氣相沈積 法)’RT-CVD (rapid thermal CVD ;快速熱CVD),以及 LRP CVD (limited reaction processing CVD ;限制反應 製程CVD)等。 本發明所形成之矽晶種層21〇和22〇為有摻雜之矽晶種 層。相較於無掺雜者,有摻雜之矽晶種層2丨〇和2 2 〇可降低 活化能(activation energy),增加成核點(nucleati〇ri site),因此,可幫助複晶矽鍺層25〇的成長200419677 V. Description of the invention (4) The doped silicon seed layer formed on the layer 4 or SiN layer 14 is in the form of a complex crystal. 220 ° When the doped silicon seed layers 21 and 22 are p-type In this case, si lanes and p-type doping compounds can be used, such as boron-containing dopant compounds as the gas source. Specific examples of the deleterious dopant compound include diiborane and diron (8 卩 3; boron trifluoride). In addition, when the doped silicon seed layers 2 1 0 and 2 2 0 are n-type, silane (s i 1 ane) and n-type doped compounds can be used as the gas source. Specific examples of the n-type doping compound include Pfj3; phosphine and ash3; arsine ^. Next, referring still to FIG. 2, a stone germanium layer is deposited on the doped silicon seed layers 21 and 20. The silicon-germanium layer formed can be divided into two parts. The epitaxial silicon-germanium layer 2 4 0 is formed on the doped stone seed layer 2 1 0 in the epitaxial form, and the doping in the complex ss form is performed. Formed on the stone evening seed layer 2 2 0 is a polycrystalline stone evening germanium layer 250. The thickness of the stone Xi germanium layers 240 and 250 may be between 20A and 100 A, and various methods such as MBE (molecular beam epitaxy) can be formed. Uhv-CVD (ultra-high vacuum chemical vapor deposition) ; Ultra-high vacuum chemical vapor deposition) 'RT-CVD (rapid thermal CVD); and LRP CVD (limited reaction processing CVD; limited reaction process CVD). The silicon seed layers 21 and 22 formed in the present invention are doped silicon seed layers. Compared with non-doped ones, doped silicon seed layers 2 丨 〇 and 2 2〇 can reduce the activation energy (activation energy) and increase the nucleation site (nucleati〇ri site), so it can help polycrystalline silicon Growth of the germanium layer 25

p^3-8259TWF ; TSMC2002-0029 ; Cathy.ptd 第8頁 200419677 五、發明說明(5) ' (incubation),成長複晶矽鍺層25〇所需的時間可得以減 少,而有較佳的階梯覆蓋能力。如此,雖然半導體基底i 〇 和不同材質區(1 2和1 4)是屬於不同材質,然而由於有摻雜 之複晶矽晶種層2 2 0之幫助,因此,所長成的複晶矽鍺層 2 5 0是連續的,對電性不會有不良影響。 最後’參閱第3圖,在矽鍺層24〇和25〇上形成絕緣層 3 0 0及射極(emitter)40〇,而完成雙載子電晶體之製作。曰 為了要構成雙載子電晶體,半導體基底1〇可作為集極 (collector),且半導體基底集極1〇和射極4〇〇可都具有第 一導電型。磊晶之矽鍺層240可作為基極(base),具有第 二導電型。摻雜之矽晶種層21〇和22〇最好是和半導體基底 集極10的導電型相同。例如,半導體基底集極1〇、摻雜之 矽晶種層210和220、和射極40 0都為订型,磊晶之矽鍺層旯 極240則為p型,而構成npn雙載子電晶體。 綜合上述,本發明在形成矽鍺層之前,先形成有摻 之矽晶種層,可降低活化能,增加成核點,因此,可 石夕錯層的成長,縮短石夕鍺層的成長時間,@有較佳 覆盍能力。如&,雖然成長在不同材質上,仍可形成連择 的矽鍺層,不致對電性有不良影響。 、只 雖然本發明已以較佳實施例揭露如上,然其並 限制本發明M壬何熟習此項技藝者,在不脫離本發 :和範圍” ’當可做更動與潤飾,因此本發明之保古蔓: 當以後附之申請專利範圍所界定者為準。 邊乾圍p ^ 3-8259TWF; TSMC2002-0029; Cathy.ptd page 8 200419677 V. Description of the invention (5) '(incubation), the time required to grow the polycrystalline silicon germanium layer 25 can be reduced, and there are better Step coverage. In this way, although the semiconductor substrate i 0 and the regions of different materials (12 and 14) belong to different materials, due to the help of the doped polycrystalline silicon seed layer 2 2 0, the grown polycrystalline silicon germanium Layer 2 50 is continuous and has no adverse effect on electrical properties. Finally, referring to FIG. 3, an insulating layer 300 and an emitter 40 are formed on the silicon germanium layers 24 and 25 to complete the fabrication of the bipolar transistor. In order to form a bipolar transistor, the semiconductor substrate 10 can be used as a collector, and both the semiconductor substrate collector 10 and the emitter 400 can have a first conductivity type. The epitaxial silicon germanium layer 240 can be used as a base and has a second conductivity type. The doped silicon seed layers 21 and 22 are preferably of the same conductivity type as the semiconductor substrate collector 10. For example, the semiconductor substrate collector 10, the doped silicon seed layers 210 and 220, and the emitter 400 are all shaped, and the epitaxial silicon germanium layer dysprosium 240 is p-type, forming an npn bicarrier. Transistor. To sum up, before the silicon germanium layer is formed in the present invention, a doped silicon seed layer is formed, which can reduce the activation energy and increase the nucleation point. Therefore, the growth of the stone layer can be shortened and the growth time of the stone layer can be shortened , @Has better coverage ability. Such as &, although grown on different materials, a continuous SiGe layer can still be formed without adversely affecting electrical properties. Although the present invention has been disclosed in the preferred embodiment as above, it does not limit the present invention to those skilled in the art, without departing from the scope of the present invention: "It can be modified and retouched. Therefore, the present invention Baoguman: As defined in the scope of the patent application attached later, prevail.

200419677 圖式簡單說明 第1至第3圖顯示依據本發明較佳實施例形成具有矽鍺 層之雙載子電晶體的製程剖面示意圖。 標號之說明 10〜半導體基底; 12〜淺溝槽隔離區; 1 4〜複晶矽層或氮化矽層; 2 10〜磊晶之摻雜矽晶種層; 2 2 0〜複晶之摻雜矽晶種層; 240〜磊晶的矽鍺層; 2 5 0〜複晶的石夕鍺層; 3 0 0〜絕緣層; 4 0 0〜射極。200419677 Brief Description of Drawings Figs. 1 to 3 are schematic cross-sectional views showing a process of forming a bi-electric transistor with a silicon germanium layer according to a preferred embodiment of the present invention. Explanation of reference numerals 10 to semiconductor substrate; 12 to shallow trench isolation region; 1 to 4 polycrystalline silicon layer or silicon nitride layer; 2 10 to epitaxial doped silicon seed layer; 2 2 to polycrystalline doped Hetero-silicon seed layer; 240 to epitaxial silicon germanium layer; 250 to polycrystalline stone Xi germanium layer; 300 to insulating layer; 400 to emitter.

Q303-S259TWF ; TSMC2002-0029 ; Cathy.ptd 第 10 頁Q303-S259TWF; TSMC2002-0029; Cathy.ptd page 10

Claims (1)

200419677 六、申請專利範圍 1· 一種在不同材質上成長矽鍺層的方法,直包括: 提供一基底,該基底之表面上具有與該基底不同材質 之一不同材質區; 在該基底和該不同材質區上形成一摻雜之矽晶種層; 以及 在该摻雜之矽晶種層上沈積一矽鍺層。 2 ·如申請專利範圍第1項所述之在不同材質上成長矽 鍺層的方去,其中开> 成摻雜之石夕晶種層的方法為,使用含 石夕化合物和摻質化合物為氣體源,進行化學氣相沈積法。 3 ·如申請專利範圍第2項所述之在不同材質上成長矽 鍺層的方法,其中該含矽化合物為矽烷(sUane)。 4·如申請專利範圍第2項所述之在不同材質上成長矽 鍺層的方法,其中該摻質化合物為?型摻質化合物。 5 ·如申請專利範圍第4項所述之在不同材質上成長矽 鍺層的方法,其中該摻質化合物為含硼摻質化合物。 6.如申請專利範圍第5項所述之在不同材質上成長矽 鍺層的方法,其中該摻質化合物為六氫化二硼(4%)或三 氟化硼( BF3)等含硼化合物。 7·如申請專利範圍第2項所述之在不同材質上成長矽 鍺層的方法,其中該摻質化合物為η型摻質化合物。 8·如申請專利範圍第7項所述之在不同材質上成長矽 錯層的方法’其中該摻質化合物為氫化磷(Ρ& )或氫化砷 (AsH3)。 9 ·如申請專利範圍第1項所述之在不同材質上成長矽200419677 VI. Scope of Patent Application 1. A method for growing a silicon germanium layer on different materials, including: providing a substrate, the surface of the substrate having a region of a material of a different material from that of the substrate; Forming a doped silicon seed layer on the material region; and depositing a silicon germanium layer on the doped silicon seed layer. 2 · The method of growing a silicon germanium layer on different materials as described in item 1 of the scope of the patent application, wherein the method of forming a doped stone seed layer is to use a stone-containing compound and a dopant compound As a gas source, a chemical vapor deposition method was performed. 3. The method for growing a silicon germanium layer on different materials as described in item 2 of the scope of the patent application, wherein the silicon-containing compound is sUane. 4. The method of growing a silicon germanium layer on different materials as described in item 2 of the scope of the patent application, where is the dopant compound? Type dopant compound. 5. The method for growing a silicon germanium layer on different materials as described in item 4 of the scope of the patent application, wherein the dopant compound is a boron-containing dopant compound. 6. The method for growing a silicon germanium layer on different materials according to item 5 of the scope of the patent application, wherein the dopant compound is a boron-containing compound such as diboron hexahydrogen (4%) or boron trifluoride (BF3). 7. The method for growing a silicon germanium layer on different materials as described in item 2 of the scope of the patent application, wherein the dopant compound is an n-type dopant compound. 8. The method for growing silicon interlayers on different materials as described in item 7 of the scope of the patent application, wherein the dopant compound is phosphorus hydride (P &) or arsenic hydride (AsH3). 9Grow silicon on different materials as described in the first patent application 0503-8259TWF ; TSMC2002-0029 ; Cathy.ptd 第11頁 2004196770503-8259TWF; TSMC2002-0029; Cathy.ptd p. 11 200419677 it如甲請專利範圍第l項所述之在不同材皙卜占且 矽鍺層ή6 士、、+ , %卜Ν柯貝上成長 、 法’,、中该不同材質區包括隔離區。 包括12· 一種製造具有矽鍺層之雙載子電晶體的方法,其 提供一基底作為一集極 底不同材質之一不同材質區 在該基底和該不同材質 在該摻雜之石夕晶種層上 在該矽鍺層上形成一射 1 3 ·如申請專利範圍第 雙載子電晶體的方法,其中 導電型,該矽鍺層基極具有 ’該基底之表面上具有與該基 9 區上形成一掺雜之石夕晶種層; 沈積一石夕鍺層作為基極;以及 極° 12項所述之製造具有矽鍺層之 該基底集極和該射極具有第一 第二導電型。 1 4.如申請專利範圍第1 3項所述之製造具有矽錯層之 雙載子電晶體的方法,其中該摻雜之石夕晶種層具有第一導 電型。 ’、 1 5 ·如申請專利範圍第1 2項所述之製造具有石夕鍺層之 雙載子電晶體的方法,其中形成摻雜之矽晶種層=方法 為,使用含矽化合物和摻質化合物為氣體源,進打化學氣 相沈積法。 之 1 6 ·如申請專利範圍第1 5項 所述之製造具有石夕鍺層It is grown on different materials as described in item 1 of the patent, and the price of silicon germanium is 6, +,%, Ν, and is used for growth. The different material areas include isolation areas. Including 12. · A method for manufacturing a bipolar transistor with a silicon-germanium layer, which provides a substrate as a set of different materials with different material regions on the substrate and the doped stone seed crystals on the substrate A layer 13 is formed on the silicon germanium layer on the layer. As in the method of the patent application for the second carrier transistor method, wherein the conductivity type, the base of the silicon germanium layer has a region on the surface of the substrate with the base 9 region. A doped stone seed layer is formed on it; a stone germanium layer is deposited as a base electrode; and the base collector and the emitter having a silicon germanium layer described in item 12 described above have first and second conductivity types . 1 4. The method for manufacturing a bipolar transistor having a silicon interlayer as described in item 13 of the scope of the patent application, wherein the doped stone seed layer has a first conductivity type. ', 1 5 · The method for manufacturing a double carrier transistor with a stone germanium layer as described in item 12 of the scope of the patent application, wherein a doped silicon seed layer is formed = method is to use a silicon-containing compound and a dopant Chemical compounds are used as the gas source, and chemical vapor deposition is performed. 1 of 6 ・ Manufactured as described in item 15 of the scope of patent application 200419677 六 申請專利範圍200419677 VI Scope of Patent Application 雙載子電晶體的方法,其中該含矽化合物為矽烷 (silane) 〇 、1 7 ·如申請專利範圍第1 5項所述之製造具有矽鍺層之 雙載子電晶體的方法,其中該摻質化合物為p型換質化合 物。 18·如申請專利範圍第1 7項所述之製造具有石夕鍺層之 雙載子電晶體的方法,其中該摻質化合物為含硼摻質化合 物。 19·如申請專利範圍第丨8項所述之製造具有矽鍺層之 雙載子電晶體的方法,其中該摻質化合物為六氫化二石朋 (I )或三氟化硼(BFs)等含硼化合物。 2 0 ·如申請專利範圍第1 5項所述之製造具有矽鍺層之 雙載子電晶體的方法,其中該摻質化合物為η型摻質化合 物。 21·如申請專利範圍第2 0項所述之製造具有石夕鍺層之 雙載子電晶體的方法,其中該摻質化合物為氫化磷(ΡΗ3) 或氳化砷(AsH3) 〇 2 2·如申請專利範圍第1 2項所述之製造具有矽鍺層之 雙載子電晶體的方法,其中該矽鍺層包括磊晶矽鍺層。 2 3·如申請專利範圍第1 2項所述之製造具有矽鍺層之 雙載子電晶體的方法,其中該不同材質區包括氧化矽、複 晶石夕、氮化矽、或上述之組合。 2 4 ·如申請專利範圍第2 3項所述之製造具有矽鍺層之 雙載子電晶體的方法,其中該不同材質區包括隔離區。A method for a double-carrier transistor, wherein the silicon-containing compound is silane 〇, 17 · The method for manufacturing a double-carrier transistor having a silicon-germanium layer as described in item 15 of the patent application scope, wherein The dopant compound is a p-type replacement compound. 18. The method for manufacturing a bipolar transistor with a stone germanium layer as described in item 17 of the scope of the patent application, wherein the dopant compound is a boron-containing dopant compound. 19. The method for manufacturing a double carrier transistor having a silicon germanium layer as described in item 8 of the scope of the patent application, wherein the dopant compound is hexahydrodifluorene (I) or boron trifluoride (BFs), etc. Boron-containing compounds. 20 · The method for manufacturing a double-carrier transistor having a silicon-germanium layer as described in item 15 of the scope of patent application, wherein the dopant compound is an n-type dopant compound. 21 · The method for manufacturing a double carrier transistor with a stone germanium layer as described in item 20 of the scope of the patent application, wherein the dopant compound is phosphorus hydride (P3) or arsenic (AsH3) 〇2 2 · The method for manufacturing a bipolar transistor having a silicon germanium layer as described in item 12 of the scope of the patent application, wherein the silicon germanium layer includes an epitaxial silicon germanium layer. 2 3. The method for manufacturing a double-carrier transistor with a silicon-germanium layer as described in item 12 of the scope of the patent application, wherein the different material regions include silicon oxide, polycrystallite, silicon nitride, or a combination thereof . 24. The method for manufacturing a bipolar transistor with a silicon germanium layer as described in item 23 of the scope of the patent application, wherein the regions of different materials include isolation regions. ^0_503-8259TWF ; TSMC2002-0029 ; Cathy.ptd -L 'J-^ 0_503-8259TWF; TSMC2002-0029; Cathy.ptd -L 'J-
TW92105777A 2003-03-17 2003-03-17 A method to grow silicon germanium (SiGe) layer on different materials and produce a bipolar junction transistor including SiGe layer TWI225276B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92105777A TWI225276B (en) 2003-03-17 2003-03-17 A method to grow silicon germanium (SiGe) layer on different materials and produce a bipolar junction transistor including SiGe layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92105777A TWI225276B (en) 2003-03-17 2003-03-17 A method to grow silicon germanium (SiGe) layer on different materials and produce a bipolar junction transistor including SiGe layer

Publications (2)

Publication Number Publication Date
TW200419677A true TW200419677A (en) 2004-10-01
TWI225276B TWI225276B (en) 2004-12-11

Family

ID=34568319

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92105777A TWI225276B (en) 2003-03-17 2003-03-17 A method to grow silicon germanium (SiGe) layer on different materials and produce a bipolar junction transistor including SiGe layer

Country Status (1)

Country Link
TW (1) TWI225276B (en)

Also Published As

Publication number Publication date
TWI225276B (en) 2004-12-11

Similar Documents

Publication Publication Date Title
CN1215569C (en) Semi-conductor device and its producing method
JP4060580B2 (en) Heterojunction bipolar transistor
US6815802B2 (en) Incorporation of carbon in silicon/silicon germanium epitaxial layer to enhance yield for Si-Ge bipolar technology
US9502504B2 (en) SOI lateral bipolar transistors having surrounding extrinsic base portions
US9059016B1 (en) Lateral heterojunction bipolar transistors
US7462923B1 (en) Bipolar transistor formed using selective and non-selective epitaxy for base integration in a BiCMOS process
JP2001068479A (en) Hetero-bipolar transistor and its manufacture
TW200419677A (en) A method to grow silicon germanium (SiGe) layer on different materials and produce a bipolar junction transistor including SiGe layer
CN102412149B (en) Production method of low-noise germanium-silicon heterojunction bipolar transistor
JP2002110690A (en) Semiconductor device and manufacturing method thereof
JP2002158232A (en) Hetero bipolar transistor
JP2625879B2 (en) Semiconductor device
JP2728433B2 (en) Method for manufacturing semiconductor device
JPH0344937A (en) Bipolar transistor and manufacture thereof
JP4823154B2 (en) Heterojunction bipolar transistor
US6830625B1 (en) System for fabricating a bipolar transistor
JPH01296664A (en) Heterojunction type device
JPH0249432A (en) Heterojunction bipolar transistor
JP3990989B2 (en) Hetero bipolar transistor
JPH04312926A (en) Semiconductor device and its manufacture
JPH0451973B2 (en)
JPS63155664A (en) Semiconductor device and its manufacture
JPH0576175B2 (en)
JP2004266029A (en) Semiconductor device and method of manufacturing the same
JP2004134548A (en) Method for manufacturing heterojunction bipolar transistor

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent