TW200418599A - Method of improving the removal of investment casting shells - Google Patents

Method of improving the removal of investment casting shells Download PDF

Info

Publication number
TW200418599A
TW200418599A TW092136213A TW92136213A TW200418599A TW 200418599 A TW200418599 A TW 200418599A TW 092136213 A TW092136213 A TW 092136213A TW 92136213 A TW92136213 A TW 92136213A TW 200418599 A TW200418599 A TW 200418599A
Authority
TW
Taiwan
Prior art keywords
shell
salt
test
metal
layer
Prior art date
Application number
TW092136213A
Other languages
Chinese (zh)
Inventor
Francois Batllo
Original Assignee
Ondeo Nalco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ondeo Nalco Co filed Critical Ondeo Nalco Co
Publication of TW200418599A publication Critical patent/TW200418599A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The removal of an investment casting shell surrounding a metallic part is improved by adding a salt of alkali or alkaline earth metal to at least one of the layers of the shell.

Description

200418599 玖、發明說明: I:發明所屬之技術領域3 發明領域 本發明係大體上關於熔模鑄造,且尤係關於一種改善 5 炼模鑄造殼體之移除的方法。 【先前技術】 發明背景200418599 (1) Description of the invention: I: Technical field to which the invention belongs 3 Field of the invention The present invention relates generally to investment casting, and more particularly to a method for improving the removal of a mold casting shell. [Prior art] Background of the invention

熔模鑄造,亦稱為脫臘鑄造、脫模鑄造及精密鑄造, 其係使用以製造高品質金屬產品,該產品係符合相當狹窄 10 的尺寸公差。基本上,一熔模鑄造係藉首先構形一薄壁陶 瓷鑄模所製成,該模型係通稱為一熔模鑄造殼體,其係可 為一溶融金屬所導入之處。Investment casting, also known as dewaxing casting, demolding casting, and precision casting, is used to make high-quality metal products that meet fairly narrow dimensional tolerances. Basically, an investment casting is made by first forming a thin-walled ceramic mold. This model is commonly known as an investment casting shell, which can be introduced by a molten metal.

殼體係一般首先藉由製造一複製品或模型所構成,該 複製品或模型係自一金屬物所適於熔融之基材,藉由熔模 15 鑄造所製成。適當的適於熔融基材係可包括:如,蠟、聚 苯乙烯或塑膠。 接著,一陶瓷殼體係環繞該模型而成形。此係可藉由 浸泡該模型於一泥漿中,該泥漿係含一液態高熔點黏結劑 之混合物,如膠狀二氧化矽或矽酸乙酯,加上一高熔點粉 20 末,如石英、熔凝矽石、錘石、氧化鋁或鋁矽酸鹽,且之 後篩分乾燥的高熔點顆粒於新浸模型之上。最常使用的乾 燥的高熔點顆粒係包括石英、熔凝矽石、錘石、氧化鋁與 I呂石夕酸鹽。 浸入該模型於一高熔點泥漿,而後篩分乾燥的高熔點 5 200418599 顆粒於新浸模型之上的步驟係可重覆,直至該殼體之所欲 的厚度達成為止。然而,於後續塗覆被施用之前,若以空 氣乾燥每次泥漿與高熔點顆粒的塗覆係為較佳。 該殼體係增至一介於約1/8至約1/2英吋(約0.31cm至約 5 1.27cm)之厚度範圍。於最後的浸泡及篩分之後,該殼體係 徹底空氣乾燥之。藉此程序所製造之殼體被稱為“泥灰粉 飾”殼體,此乃因為該殼體表面之結構。The shell system is generally first constructed by making a replica or a model, which is made from a substrate to which a metal object is suitable to be melted and cast by an investment mold 15. Suitable suitable substrates for melting may include, for example, wax, polystyrene or plastic. A ceramic shell is then formed around the model. This can be done by soaking the model in a slurry containing a mixture of a liquid high melting point binder, such as colloidal silicon dioxide or ethyl silicate, plus 20 high melting point powders, such as quartz, Fused silica, hammerstone, alumina, or aluminosilicate, and then sieved the dried high melting point particles on top of the new immersion model. The most commonly used dry, high-melting-point particles include quartz, fused silica, hammer stone, alumina, and sulfite. The steps of immersing the model in a high melting point slurry and then sieving the dried high melting point 5 200418599 particles on the new immersion model can be repeated until the desired thickness of the shell is achieved. However, before the subsequent coating is applied, it is better if the coating system of the mud and the high melting point particles is dried by air each time. The shell is increased to a thickness ranging from about 1/8 to about 1/2 inch (about 0.31 cm to about 5.27 cm). After final soaking and sieving, the shell is thoroughly air-dried. The shell manufactured by this procedure is called a "marble plaster" shell because of the structure of the surface of the shell.

該殼體而後至少加熱至該適於熔融基材之熔點。於此 步驟,該模型係被熔融離開,僅存的只有該殼體及少許殘 10 存的適於熔融基材。該殼體而後加熱至一高溫,該溫度係 足以從該殼體蒸發任何殘存的適於熔融基材。通常於該殼 體自此高溫加熱下冷卻之前,該殼體係被裝滿熔融金屬。 各式方法係已用於引導熔融金屬進入該殼體,包括重力 法、壓力法、真空法及離心法。當該鑄造鑄模内之該熔融 15 金屬已充份固化及冷卻時,該鑄造物係可自該殼體移除。The shell is then heated at least to a melting point suitable for melting the substrate. At this step, the model is melted away, and the only thing left is the shell and a few remaining suitable substrates for melting. The shell is then heated to a high temperature, which is sufficient to evaporate any remaining suitable molten substrate from the shell. The shell is usually filled with molten metal before the shell is cooled from this high temperature heating. Various methods have been used to guide molten metal into the shell, including gravity, pressure, vacuum, and centrifugation. When the molten metal in the casting mold has been fully solidified and cooled, the casting is removable from the shell.

於其製造期間,熔模鑄造鑄模係需抵擋大量的機械應 力及乾燥所帶來的應力。陶瓷殼體係設計為具有高濕強度 (高空氣乾燥強度),以防止於該殼體塑造過程期間之毀損。 一旦該所欲的鑄模厚度完成之時,該鑄模係除水且預熱至 20 約1800° F。於此溫度點上,該鑄模係可自該高溫爐移開並 立刻填滿液態(熔融)金屬。當該金屬於固化(或於一可塑狀 態)之時,若該鑄模變形,則該鑄造物尺寸將可能超出規 格。為防止鑄模高溫變形,鑄模係設計為具有堅固的熱強 度。一旦該鑄造物係固化且冷卻之時,低耐火強度係為所 6 玫的以使彳于自心>1鑄造物容易被敲出或移除該陶竟鑄 模。 大多數的炫模鱗造禱模係包含大量的二氧化石夕。該二 氧化石夕通㈣始為-不定形的(玻璃態)材質。溶凝碎石盘結 石夕酸鹽係最普遍叫模材料。當不定形二氧切暴露於高 於約18GG。高溫時,料㈣三氧切將反玻化(結晶 化)而瓜成U矽石。白矽石係具低溫形式(“態)及高溫 形式(心)。_態形式係具—接近不定形之二氧化石夕的比 重,以使鑄板尺寸維持固定,且將關於該相轉換所產生的 應力降到最小。於冷卻的同時1態_石將轉換細態 的形式。此相轉換將伴隨約4%體積變化,其將造成該殼體 中之數個裂縫,從而使得鑄模易於移除。白石夕石係減少包 含於炫模鑄造鑄模之二氧化矽的耐火強度。 雖然熔模鑄造係為已知且使用數千年之久,但是該熔 模鑄造市場仍持續發展,如用於結構更加複雜精細的部分 要求的增加。因為對高品質,也就是精密鑄造之重大需求, 發展一新方式係仍為必要,以製造更有效率、更具成本效 贫及無缺點的溶模鑄造殼體。例如,若殼體強度僅維持至 金屬固化點,而接著當殼體冷卻時,則強度隨之下降·,因 此,透過改良式的敲出金屬(殼體移除),對於產率上的改善 係可被了解到的。本發明係對於不含鐵合金方面的熔模鑄 造係尤其令人滿意,例如鋁、銅及鎂的合金,此乃因為其 熔融溫度及鑄造溫度係不足以促進白矽石之形成,以及促 進易於敲出金屬。 200418599 於該金屬部份之冷卻期間,壓縮即產生;相較於陶瓷 殼體,該金屬部份係通常具較高的熱膨脹係數。當該金屬 部份造成壓縮下之陶瓷的一盲孔或小凹處之時,敲出金屬 部份係尤其困難的。於不含鐵鑄造,此現象係尤其加重, 5 此乃因為此類金屬之高熱膨脹係數(>1.8 X l(T6m/m)。During its manufacture, investment casting molds need to withstand a large amount of mechanical stress and stress caused by drying. The ceramic case is designed to have high wet strength (high air dry strength) to prevent damage during the forming process of the case. Once the desired mold thickness is complete, the mold is dewatered and preheated to 20 to about 1800 ° F. At this temperature, the mold can be removed from the high temperature furnace and immediately filled with liquid (fused) metal. When the metal is solidified (or in a plastic state), if the mold is deformed, the size of the casting may exceed specifications. To prevent high temperature deformation of the mold, the mold system is designed to have a strong thermal strength. Once the casting is solidified and cooled, the low fire resistance is 6 to make it easy to knock out or remove the ceramic mold. Most of the dazzling model scales contain a large amount of stone dioxide. The silica is made of -amorphous (glassy) material. Liquefied lithotripsy is the most commonly called modeling material. When amorphous dioxygen is exposed to more than about 18GG. At high temperatures, trioxin will devitrify (crystallize) and form U silica. The wollastonite system has a low temperature form ("state") and a high temperature form (heart). The _state form system is close to the specific gravity of the amorphous dioxide, so that the size of the cast plate is maintained fixed, and the phase conversion The generated stress is reduced to a minimum. While cooling, the 1-state stone will change to a fine state. This phase transition will be accompanied by a volume change of about 4%, which will cause several cracks in the shell, making the mold easy to move. In addition, the Shiroishi Yuki system reduces the fire resistance of silicon dioxide contained in the casting mold of dazzle casting. Although the investment casting system is known and used for thousands of years, the investment casting market continues to grow, such as Increasing requirements for more complex and delicate structures. Because of the great demand for high quality, that is, precision casting, it is still necessary to develop a new method to produce more efficient, cost-effective, and defect-free solution casting. For example, if the strength of the shell is only maintained to the solidification point of the metal, and then when the shell cools, the strength will decrease. Therefore, through the improved knockout metal (removal of the shell), on The improvement system can be understood. The present invention is particularly satisfactory for investment casting systems that do not contain iron alloys, such as aluminum, copper, and magnesium alloys, because the melting temperature and casting temperature are not sufficient to promote white The formation of silica and the promotion of easy knockout of metal. 200418599 During the cooling of the metal part, compression occurs; compared to the ceramic shell, the metal part usually has a higher thermal expansion coefficient. When the metal part It is particularly difficult to knock out the metal part when it causes a blind hole or a small depression in the ceramic under compression. This phenomenon is especially aggravated in iron-free casting, 5 because of the high thermal expansion coefficient of such metals (> 1.8 X l (T6m / m).

藉由熔模鑄造法所製之不含鐵鑄造物係更為易碎,因 此,相較於用於鋼鐵及高溫合金鑄造之侵略性喷丸清洗及 振動清潔法,該不含鐵鑄造物係藉由水或喷砂清潔表面。 於鋼鐵鑄造物上之殘存陶瓷係使用濃縮酸及鹼或熔融鹽來 10 溶解移除。化學上的不相容性係排除了該鑄造物對於鋁及 鎂的使用。若一黏結劑係發展為:暴露於1800° F或低於 1800° F時,具有低耐火強度及易於敲出之特質,則鋁鑄造 物之清潔係可被大幅改善。 因此,提供環繞一金屬部份之一熔模鑄造殼體的一移 15 除方法係令人響往的。The iron-free casting system made by investment casting is more fragile. Therefore, the iron-free casting system is more fragile than the aggressive shot peening and vibration cleaning methods used for steel and high-temperature alloy casting. Clean the surface with water or sandblasting. Residual ceramics on iron and steel castings are dissolved and removed using concentrated acid and alkali or molten salts. Chemical incompatibility precludes the use of aluminum and magnesium by this casting. If an adhesive system develops: when exposed to or below 1800 ° F, it has low fire resistance and is easy to knock out, the cleaning system of aluminum castings can be greatly improved. Therefore, it is desirable to provide a removal method of an investment casting housing that surrounds a metal portion.

【發明内容】 發明概要 本發明之方法稱為:加入鹼金屬鹽或鹼土族金屬鹽至 熔模鑄造殼體之至少一層的方法。一鹼金屬鹽或鹼土族金 20 屬鹽之添加係有效改善環繞一金屬部份之熔模鑄造殼體的 移除。 圖式簡單說明 Μ I:實施方式3 8 200418599 較佳實施例之詳細說明 本發明係應用於一改善環繞一金屬部份之熔模鑄造殼 體的移除之方法。根據本發明,一鹼金屬鹽或鹼土族金屬 鹽係加入至該熔模鑄造殼體之至少一層。 5 可使用於本發明之實施之該鹼金屬鹽或鹼土族金屬鹽[Summary of the Invention] Summary of the Invention The method of the present invention is called: a method of adding an alkali metal salt or an alkaline earth metal salt to at least one layer of an investment casting shell. The addition of an alkali metal salt or an alkaline earth metal 20 salt effectively improves the removal of the investment casting shell surrounding a metal part. Brief Description of the Drawings MI: Detailed description of the preferred embodiment of Embodiment 3 8 200418599 The present invention is applied to a method for improving the removal of an investment casting casing surrounding a metal part. According to the present invention, an alkali metal salt or an alkaline earth metal salt is added to at least one layer of the investment casting shell. 5 The alkali metal salt or alkaline earth metal salt that can be used in the practice of the present invention

係包括碳酸#5、硫酸#5、碳酸飼鎮、碳酸鎮、硫酸饈、碳 酸勰及其混合物。使用於改善自一金屬部份移除一熔模鑄 造殼體之鹼金屬鹽或鹼土族金屬鹽之較佳鹽係為碳酸鈣。 該鹼金屬鹽或鹼土族金屬鹽係可藉由為一般熟習此技 ίο 藝者所知之任何習知之方法,而添加至該熔模鑄造殼體之 至少一層。於一較佳實施例中,該驗金屬鹽或驗土族金屬 鹽係添加至高熔點泥灰之至少一層。然而,於本發明之實 施中,該鹼金屬鹽或鹼土族金屬鹽係可選擇性添加至該高 熔點泥漿之至少一層,或該高熔點泥漿及該高熔點泥灰兩 15 者的至少一層。The system includes carbonic acid # 5, sulfuric acid # 5, carbonic acid feed town, carbonic acid town, thorium sulfate, thorium carbonate and mixtures thereof. A preferred salt system for improving the alkali metal salt or alkaline earth metal salt of an investment-cast casing from a metal portion is calcium carbonate. The alkali metal salt or alkaline earth metal salt can be added to at least one layer of the investment casting shell by any conventional method known to those skilled in the art. In a preferred embodiment, the metal test salt or earth test metal salt is added to at least one layer of high melting point marl. However, in the practice of the present invention, the alkali metal salt or alkaline earth metal salt can be selectively added to at least one layer of the high melting point mud, or at least one of the high melting point mud and the high melting point mud.

該驗金屬鹽或驗土族金屬鹽係使用於一濃度,該濃度 係將有效改善環繞一金屬部份之熔模鑄造殼體的移除。添 加至該殼體之至少一層的該鹼金屬鹽或鹼土族金屬鹽之量 係以占該殼體之重量百分比約1%至約30%之範圍為較佳。 20 該鹼金屬鹽或鹼土族金屬鹽之量係以約5%至約25%為更 佳,且以約8%至約20%為最佳。 本發明之發明者係發現:加入該鹼金屬鹽或鹼土族金 屬鹽於一熔模鑄造殼體之至少一層,將有效改善環繞一金 屬部份之熔模鑄造殼體的移除。 9 ^418599 例示 下列例示係意欲說明本發明,且教示熟習此技藝者如 何製造及使用本發明。但是這些例示係非意欲限制本發明 或於限制以任何方法保護本發明。 例示1 : CaC03混合於高熔點泥漿 泥漿係使用下例配方所備置: 第1表 — 泥漿成份 ' 濃度(比例) ^ 膠狀二氧化矽1 1920 克 ~^ 去離子水 386¾ ^ Latrix㊣6305聚合物2 3 4 138 克 —'^ Nalcoat⑧Pl(-200篩孔)熔凝矽石3 1200克 ~〜 Nalcoat®pi(-i2〇篩孔)熔凝矽石4 3600克 —〜 Nalcoat®8815陰離子潤溼劑5 1.0 克 一 Dow Corning⑧ Y-30 抗泡劑6 " 4.0 克 一 無雜質CaC〇3 Marblemite®7 0^克 _,288克(6%)7〜 576克(12%),864克(18%), 1200克(25%) 未加工CaC03 40-2008 480克(10%),960克(20%)7 1680克(30%) 於72小時混合之後,該泥漿之黏度係使用4號黏度杯所The metal test salt or earth test metal salt is used at a concentration which will effectively improve the removal of the investment casting shell surrounding a metal part. The amount of the alkali metal salt or alkaline earth metal salt added to at least one layer of the shell is preferably in a range of about 1% to about 30% by weight of the shell. The amount of the alkali metal salt or alkaline earth metal salt is more preferably about 5% to about 25%, and most preferably about 8% to about 20%. The inventor of the present invention has discovered that adding the alkali metal salt or alkaline earth metal salt to at least one layer of an investment casting casing will effectively improve the removal of the investment casting casing surrounding a metal portion. 9 ^ 418599 Examples The following examples are intended to illustrate the invention and teach those skilled in the art how to make and use the invention. These illustrations are not intended to limit the invention or to limit the invention in any way. Example 1: CaC03 is mixed with high melting point mud. Use the following formula to prepare: Table 1-Mud ingredients' Concentration (ratio) ^ Colloidal silica 2 1920 g ~ ^ Deionized water 386 ¾ ^ Latrix㊣6305 polymer 2 3 4 138 g — '^ Nalcoat⑧Pl (-200 mesh) fused silica 3 1200 g ~~ Nalcoat®pi (-i2〇 mesh) fused silica 4 3600 g— ~ Nalcoat® 8815 anionic wetting agent 5 1.0 g Dow Corning⑧ Y-30 Antifoaming agent 6 " 4.0 g no impurities CaC 03 Marblemite® 7 0 g_, 288 g (6%) 7 ~ 576 g (12%), 864 g (18 %), 1200 grams (25%) of raw CaC03 40-2008 480 grams (10%), 960 grams (20%) 7 1680 grams (30%) After 72 hours of mixing, the viscosity of the slurry is No. 4 viscosity Cup

10量測及調整。該黏度範圍自14至18秒。少量黏結劑添加物 (膠狀二氧化矽+水+聚合物)係用以得到所欲的流變性質。 10 110 measurement and adjustment. The viscosity ranges from 14 to 18 seconds. A small amount of binder additives (colloidal silica + water + polymer) is used to obtain the desired rheological properties. 10 1

NalCoag⑧1130(8奈米,穩態鈉)(可得自OndeoNalco公司) 2 苯乙烯丁二烯乳狀液於10%基於稀釋膠狀二氧化矽(可得自〇nde〇Nak〇公司) 3 可得自Ondeo Nalco公司 4 可得自Ondeo Nalco公司 5 70%二辛基磺基琥珀酸酯鈉鹽(可得自〇nde〇 Nak〇公司) 6 石夕氧樹脂乳膠(可得自美國密西根州中部之D〇wC〇mingC〇rp〇rati〇n) 7 人工合成大理石較_ (可得自美國喬治亞州拉茲威市之imerysC〇rp〇rati〇n) 8 8筛選等級碳酉㈣(可得自美國喬治亞州拉兹威市之ImerysC〇rp〇rati〇n) 200418599 一旦調整完成’该泥漿係準備完成,而可浸泡了。NalCoag (R) 1130 (8 nm, steady state sodium) (available from Ondeo Nalco) 2 Styrene butadiene emulsion at 10% based on dilute colloidal silica (available from Ondeo Nak〇) 3 Available Available from Ondeo Nalco 4 Available from Ondeo Nalco 5 70% dioctyl sulfosuccinate sodium salt (available from Ondeo Nak〇) 6 Shixiu resin latex (available from Central Michigan, USA) (D〇wC〇mingC〇rp〇rati〇n) 7 artificial marble compared to (available from imerysC〇rp〇rati〇n, Razwei, Georgia, USA) 8 8 screening grade carbon 酉 ㈣ (available From Imerys Corporat, Razville, Georgia, USA) 200418599 Once the adjustment is complete, the mud system is ready to be soaked.

蠟模型係使用Nalco® 6270模型清潔劑(可得自〇nde〇 Nalco公司)所清潔且姓刻,而後以水清洗之。蝶條係浸入 各個泥漿之中,而隨後(藉由降雨法施用)Nalcast® S1與S2 5 熔凝矽石泥灰(可得自〇ndeo Nalco公司)於該各個泥漿中。 乾燥時間初始為丨·5小時,且當塗層附加時,乾燥時間則提 高至3.5小時。最終的殼體具有二層Nalcast® S1泥灰塗層、 三層Nalcast® S2泥灰塗層,加上一密封塗層(無泥灰)。所 有塗層係於73- 75。F、35_45%之相對溼度以及每分鐘 10 200-300英尺之氣流所乾燥。於一24小時最終乾燥之後,該 殼體係置入一乾燥器,於測試之前,作為一額外的24小時 乾燥。 數種殼體性質係使用斷裂係數(MoR)條而測得的,而該 斷裂係數條係自該實驗泥漿所備置的。該斷裂係數條係藉 15 由在一 ATS萬能材料試驗機(可得自美國賓州巴特勒 Applied Test Systems,Inc·)上之三點彎曲夾具所斷裂。該類 比輸出(電壓)係輸入至一個人電腦,該電腦係包括一類比-數位轉換面板及數據取得軟體。該數據係以/負載-時間關 係圖而儲存,或以負載-位移關係圖而儲存。計算及分析係 20 藉由使用數據取得軟體或試算表程式所執行。下列物理性 質係以MoR樣品所界定之。 斷裂負載(Fracture Load ) 該斷裂負載係為測試樣品所能支撐之最大負載量。愈 高的負載量,則該測試樣品強度愈強。該負載量係可被該 11 200418599 殼體厚度、泥漿及殼體組成所影響。此性質對於預測殼體 斷裂及相關鑄造缺點係為重要的。該斷裂負載係對測試樣 品於:溼狀態(空氣乾燥狀態)、耐熱狀態(1800° F恆溫一小 時,而冷卻至室溫)及加熱狀態(1800。F恆溫一小時而破裂) 5 進行量測及記錄。其結果係標準化且表示為校正斷裂負載 (AFL)。對於一 2英吋測試長度而言,該AFL係僅為斷裂負 載除以該樣品寬度之值。 i·殼體厚度(Shell Thickness) 殼體厚度係被泥漿及殼體組成,以及結合該殼體塑造 10過程所影響。厚度變動係表示出製程不穩定性。於乾燥、 脫壤、預熱及鑄造期間,不一致的殼體厚度將造成該殼體 内之應力。嚴重情況將導致鑄模失敗。該鑄模係環繞且隔 離該冷卻金屬。厚度的改變係可影響鑄造物之微結構、收 縮率、填充率及固化率。 U·斷裂係數(Modulus of Rupture,MoR) —平底陶瓷盤係使用一矩形蠟條作為一模型所置備。 /、型的尺寸係為1 X 8 X 1/4英吋。該蠟條係使用該所欲的殼 體系統所炫鑄。於乾燥之後,其邊緣係藉一帶狀磨砂機所 私除。該二剩餘的平底盤係自該蠟條分離,而得二個測試 2〇樣品。該樣品係藉使用一 ATS萬能材料試驗機上之三點負載 蚁置所斷裂。斷裂係數(MoR)係用於預測於溼、耐熱及加熱 狀態下之蠟條。 、…The wax model was cleaned and named using Nalco® 6270 model cleaner (available from Ondeo Nalco) and then washed with water. The ribbon was immersed in each mud, and then (applied by rainfall) Nalcast® S1 and S2 5 fused silica marl (available from Ondeo Nalco) in each mud. The drying time is initially 5 hours, and when the coating is added, the drying time is increased to 3.5 hours. The final housing has two layers of Nalcast® S1 marl coating, three layers of Nalcast® S2 marl coating, plus a sealing coating (no marl). All coatings are from 73-75. F, 35% to 45% relative humidity and 10 200-300 feet per minute of air drying. After a 24-hour final drying, the shell was placed in a dryer and dried for an additional 24 hours before testing. Several kinds of shell properties were measured using a fracture coefficient (MoR) strip, which was prepared from the experimental mud. The fracture coefficient bar was fractured by a three-point bending jig on an ATS universal material testing machine (available from Butler Applied Test Systems, Inc., USA). The analog output (voltage) is input to a personal computer. The computer includes an analog-digital conversion panel and data acquisition software. The data is stored as a / load-time diagram or as a load-displacement diagram. The calculation and analysis system 20 is performed by using data acquisition software or a spreadsheet program. The following physical properties are defined by MoR samples. Fracture Load This is the maximum load that the test sample can support. The higher the load, the stronger the test sample. The load can be affected by the thickness of the shell, mud and shell composition. This property is important for predicting shell fracture and related casting disadvantages. The rupture load is measured on the test sample in a wet state (air-dried state), a heat-resistant state (constant temperature at 1800 ° F for one hour and cooled to room temperature), and a heated state (fracture at 1800 F constant temperature for one hour and breaks). 5 And records. The results are normalized and expressed as corrected fracture load (AFL). For a 2 inch test length, the AFL is simply the value of the breaking load divided by the sample width. i · Shell Thickness The thickness of the shell is affected by the mud and shell, and the process of shaping the shell. Thickness variation indicates process instability. During drying, de-soiling, preheating and casting, inconsistent shell thickness will cause stress in the shell. Severe conditions will cause the mold to fail. The mold surrounds and isolates the cooling metal. The change of thickness can affect the microstructure, shrinkage, filling rate and solidification rate of the casting. U. Modulus of Rupture (MoR) —Flat-bottom ceramic plates are prepared using a rectangular wax strip as a model. / The size of the model is 1 X 8 X 1/4 inches. The wax strip is cast using the desired shell system. After drying, the edges were removed by a belt sander. The two remaining flat pans were separated from the wax strip to obtain two test 20 samples. The sample was broken by a three-point load on an ATS universal material testing machine. The coefficient of rupture (MoR) is used to predict wax bars in wet, heat-resistant and heated states. , ...

MoR = 3PL /2bh2 其中斷裂負載(磅) 12 200418599 L =(介於支撐物間之)樣品長度(英吋) b二於斷裂點之樣品寬度(英吋) 於斷裂點之樣品厚度(英吋)MoR = 3PL / 2bh2 where the breaking load (lbs) 12 200418599 L = (between the supports) sample length (inches) b 2 sample width at the break point (inches) sample thickness at the break point (inches) )

該MoR值係為斷裂應力。該應力係由斷裂負載及樣品 5 尺寸所影響。既然該應力係對殼體厚度平方呈反比,則殼 體厚度尤係重要。殼體表面之不平坦本質係造成其尺寸難 以精確測量,而造成大範圍的標準偏差。此缺點係可藉由 破壞及測量一足夠量的測試樣品而可克服之。 iii·弯曲量或偏斜量(Bending or Deflection) 10 當負載施用於測試樣品時,該測試樣品則彎曲。當該 樣品斷裂時,最大偏斜量係被記錄。彎曲量係隨著彈性及 聚合物濃度之增加而增加。一彈性殼體係具抵抗一蠟模型 於殼體塑造過程中之膨脹及收縮之能力。彎曲量係對於溼 狀態下之堪條所量測的。 15 iv·斷裂指數(Fracture Index)This MoR value is the fracture stress. This stress is affected by the fracture load and the size of the sample 5. Since the stress is inversely proportional to the square of the shell thickness, the shell thickness is particularly important. The uneven nature of the shell surface makes its dimensions difficult to accurately measure, which results in a wide range of standard deviations. This disadvantage can be overcome by destroying and measuring a sufficient amount of test sample. iii. Bending or Deflection 10 When a load is applied to a test sample, the test sample is bent. When the sample was broken, the maximum amount of deflection was recorded. The amount of bending increases with increasing elasticity and polymer concentration. An elastic shell has the ability to resist the expansion and contraction of a wax model during the shell molding process. The amount of bending is measured for the wet condition. 15 iv · Fracture Index

該斷裂指數係為一於溼狀態下,斷裂一殼體所需之功 或能量之份量。該斷裂指數係表示為殼體之“強韌性”,換 言之,該高的指數,則材料愈強動。例如,一聚丙烯瓶較 一玻璃瓶為“較強韌”,而因此具有一較高的斷裂指數。該 20 指數係表示為破裂阻力。相較於低指數系統,高指數殼體 係需更多的能量而破壞之。 該斷裂指數係被泥漿及殼體組成所影響。聚合物添加 物係增加該指數。相較於硬質聚合物,軟質聚合物係產生 較高斷裂指數。該指數係與殼體彈性成正比。一具有易變 13 200418599 形能力之殼體係較一堅固、易碎之殼體能吸收更多能量。 該斷裂指數係對於一MoR測試樣品之該負載/位移曲 線圖之下的面積,藉由積分所界定。當監控位移時,該指 數係計量為(力)x(距離),或當監控負載時間時,該指數係 5計量為(力)X (時間)。該負載比率係使用以將(力)X (時間) 轉換為(力)X (距離)。對於一 2英吋測試長度而言,測試結 果係僅藉由指數值除以該樣品寬度而標準化。 ν·彈性係數(Modulus of Elasticity,MoE)The fracture index is the amount of work or energy required to fracture a shell in a wet state. The fracture index is expressed as the "toughness" of the shell, in other words, the higher the index, the stronger the material is. For example, a polypropylene bottle is "tougher" than a glass bottle and therefore has a higher fracture index. The 20 index is expressed as rupture resistance. Compared with low-index systems, high-index shell systems require more energy to destroy them. The fracture index is affected by the composition of mud and shell. The polymer additive system increases this index. Compared to hard polymers, soft polymers have a higher fracture index. This index is directly proportional to the elasticity of the shell. A shell with a variability of 13 200418599 can absorb more energy than a firm, fragile shell. The fracture index is the area under the load / displacement curve for a MoR test sample, defined by integrals. When monitoring displacement, the index is measured as (force) x (distance), or when monitoring the load time, the index is measured as (force) X (time). This load ratio is used to convert (force) X (time) to (force) X (distance). For a 2 inch test length, the test results are normalized only by the index value divided by the sample width. ν · Modulus of Elasticity (MoE)

該彈性係數,又稱為楊氏係數、MoE或彈性係數(elastie 10 m〇dulus) ’其係為一比例常數得自該應力_應變曲線圖。該 係數係可自MoR (彎曲)分析而測得。該彈性係數係為一材 料挺性之計量值。一挺性、硬質的材料係將呈現一具有一 陡斜率之應變/應力曲線圖及高MoE。一軟質、彈性的材料 係將呈現一具有一緩斜率之應變/應力曲線圖及低MoE。該 15彈性係數係與樣品尺寸無關。用於比較不同殼體系統,該 彈性係數係提供一精確方法。The coefficient of elasticity, also known as Young's coefficient, MoE or elastic coefficient (elastie 10 m0dulus) ', is a proportional constant derived from the stress-strain curve. This coefficient can be measured from MoR (bending) analysis. The coefficient of elasticity is a measure of the stiffness of a material. A stiff, rigid material will exhibit a strain / stress curve with a steep slope and high MoE. A soft, elastic material will present a strain / stress curve with a gentle slope and low MoE. The 15 coefficient of elasticity is independent of the sample size. Used to compare different housing systems, this coefficient of elasticity provides an accurate method.

如下列第2表所示,該耐火強度係隨著無雜質cac〇3或 未加工CaC〇3於殼體之量增加而減少。最佳系統係藉由加 入10_20%未加工之CaCCb而達成,其係於耐火狀態MoR顯 20 示約30%之下降量,而對於殼體之溼性質具最小影響。 第2表 溼性質之數據一覽表 CaC03 % MoR (磅/英吋2) [ ~ AFL (磅) MoE (碎/英吋2) 無雜質 BSSBis 1 0% 1 556.73 1 9^02 381 斷裂指數 26.43 彎曲量 (密爾) 4.77 14 6% 448.06 8.20 231 28.72 5.46 12% 406.47 7.96 228 28.11 5.03 18% 353.20 7.51 185 26.25 5.29 30% 261.82 6.26 115 23.59 5.75 未力口工 10% 588.83 8.29 346 31.26 5.44 20% 482.67 9.00 253 31.57 5.37 30% 385.94 9.46 186 34.70 5.33 200418599 耐熱性質之數據一覽表 無雜質 CaC03 % MoR (磅/英吋2) AFL (磅) 0% 1016.82 15.33 6% 804.23 14.82 12% 651.27 12.59 18% 504.93 11.54 25% 397.56 9.05 未加工CaC〇3 % 10% 752.87 13.91 20% 738.12 15.11 30% 530.53 11.87 例示2 :以分離的乾燥高熔點(泥灰)塗層所添加之 CaC03 泥漿係使用下例配方所備置·· 5 第3表 泥漿成份 濃度(比例) 膠狀二氧化矽 1920克 去離子水 401克 TX-11280聚合物 138克 Nalcoat⑧Pl(-200篩孔)熔凝矽石 1200 克 Nalcoat⑧Pl(-120篩孔)熔凝矽石 3600 克 Nalcoat® 8815陰離子潤座劑 2.2克 Dow Corning® Y-30 抗泡劑 4.0克 於該殼體置備程序期間,使用另一如下列之CaC03及 Si02泥灰層: 配方 泥灰層 泥灰層 泥灰層 泥灰層 泥灰層 # #1 #2 #3 #4. #5 15 200418599 1 S1 S1 S2 S2' S2 2 S1 S1 CaCO厂 S2~~ ^ S2 3 S1 S1 CaC03 50/50 S2+ C^COT S2 4 S1 S1 CaC〇3 CaC03 ^ S2 CaC03 5 S1 S1 CaC03 CaC03 ~ 該殼體測試方法亦相同。 如下列第4表所示,於泥灰層中CaC〇3的添加係降低而才 火殼體強度,但不包含溼強度。該最佳結果係得到:一具 CaC〇3泥灰層係呈現耐火強度下降35%,且對熱強度影響最 5 小。對於該殼體是否具有CaC〇3泥灰塗層之該溼性質M〇R 結果、加熱性質MoR結果及耐熱性質MoR結果係如下所示: 第4表 溼性質之數據一覽表 配方# MoR (碎/英吋2) AFL (磅) MoE (碍/英吋2) 斷裂指數 彎曲量 (密爾) 1 434.51 9.38 175 39.17 6.42 2 470.52 7.11 238 1 28.64 6.30 3 504.09 5.95 294 23.10 6.53 4 473.57 284 22.07 6.34 5 455.91 1 4.40 292 18.92 6.18 加熱及耐熱性質之數據一覽表 配方# 加熱性質 MoR (磅/英!12^ 耐熱性質 MoR (磅/英吋2) 加熱性質 AFL (磅) 耐熱性質 AFL (磅) 1 1204Ji_^ 707.82 19.80 14.36 2 1023,11^ —1^12 13.14 7.40 3 619.8l__- 377.00 9.05 4.96 4 700.56^^- __25434 7.57 3.09 5 518.13^^ __13JL40 4.65 1.38 10 例示3 : CaC〇3與乾無高炫點泥灰混合 泥漿係使用下例配方所備置: 弟5表 I 濃度(比μ! 9篩選等級碳酸鈣(町得自美國喬治亞州拉茲威市之ImerysC〇rP〇ration) 16 200418599 膠狀二氧化矽 1920 克 去離子水 401克 TX-11280聚合物 138克 Nalcoat⑧Pl(-200篩孔)熔凝矽石 1200 克 Nalcoat⑧P1 (-120篩孔)熔凝矽石 3600 克 Nalcoat® 8815陰離子潤溼劑 2.2克 Dow Corning® Y-30 抗泡劑 4.0克 於該殼體置備程序期間,使用如下列之CaC03及Si02 混合物作為泥灰塗層: 配方 # 泥灰層 #1 泥灰層 #2 泥灰層 #3 泥灰層 #4 泥灰層 #5 1 S1 S1 S2 S2 S2 2 S1 S1 S2 + 5%CaC0310 S2 + 5%CaC03 S2 + 5%CaC03 3 S1 S1 S2 + 10%CaCO3 S2 + 10%CaCO3 S2 + 10%CaCO3 4 S1 S1 S2 + 20%CaCO3 S2 + 20%CaCO3 S2+ 20%CaCO3 5 S1 S1 S2 + 30%CaCO3 S2 + 30%CaCO3 S2 + 30%CaCO3 —侵蝕測試係為了完全表述添加CaC03的優點而加 入’該優點係表現於該殼體之敲出性質上。該項新技術係 5 僅為一模仿工業上使用的喷砂製程所構成。殼體測試片尺As shown in Table 2 below, the fire resistance decreases as the amount of non-impurity cac03 or unprocessed CaC03 in the shell increases. The best system is achieved by adding 10-20% of unprocessed CaCCb, which shows a decrease of about 30% in the refractory MoR 20 with minimal impact on the wet properties of the shell. Table 2 List of wet properties data CaC03% MoR (lbs / in2) [~ AFL (lbs) MoE (crushed / in2) No impurities BSBSis 1 0% 1 556.73 1 9 ^ 02 381 Breaking index 26.43 Bending amount (Mill) 4.77 14 6% 448.06 8.20 231 28.72 5.46 12% 406.47 7.96 228 28.11 5.03 18% 353.20 7.51 185 26.25 5.29 30% 261.82 6.26 115 23.59 5.75 Unemployed 10% 588.83 8.29 346 31.26 5.44 20% 482.67 9.00 253 31.57 5.37 30% 385.94 9.46 186 34.70 5.33 200418599 Thermal resistance data list No impurities CaC03% MoR (lbs / inch2) AFL (lbs) 0% 1016.82 15.33 6% 804.23 14.82 12% 651.27 12.59 18% 504.93 11.54 25% 397.56 9.05 Raw CaC 03% 10% 752.87 13.91 20% 738.12 15.11 30% 530.53 11.87 Example 2: CaC03 slurry added with a separate dry high-melting point (marble) coating is prepared using the following formula ... 3 Table Mud Ingredient Concentration (Proportion) 1920 g of colloidal silica, deionized water, 401 g of TX-11280 polymer, 138 g of Nalcoat⑧Pl (-200 mesh) fused silica, 1200 g of Nalcoat⑧Pl (-120 mesh), fused Silica 3600 g Nalcoat® 8815 Anionic Cushioning Agent 2.2 g Dow Corning® Y-30 Antifoaming Agent 4.0 g During the shell preparation process, another CaC03 and SiO2 plaster layers were used as follows: Gray layer, gray layer, gray layer, gray layer # # 1 # 2 # 3 # 4. # 5 15 200418599 1 S1 S1 S2 S2 'S2 2 S1 S1 CaCO Plant S2 ~~ ^ S2 3 S1 S1 CaC03 50/50 S2 + C ^ COT S2 4 S1 S1 CaC〇3 CaC03 ^ S2 CaC03 5 S1 S1 CaC03 CaC03 ~ This case test method is the same. As shown in Table 4 below, the addition of CaC03 in the marl layer reduces the shell strength, but does not include the wet strength. The best result was obtained: a CaC03 marl layer system showed a 35% decrease in fire resistance and had the least effect on thermal strength. The results of the wet property MOR, heating property MoR, and heat resistance MoR of whether the shell has a CaC03 marl coating are as follows: Table 4 List of wet properties data Formula # MoR (碎 / Inches 2) AFL (pounds) MoE (inhibits / inches 2) Bending index break (mils) 1 434.51 9.38 175 39.17 6.42 2 470.52 7.11 238 1 28.64 6.30 3 504.09 5.95 294 23.10 6.53 4 473.57 284 22.07 6.34 5 455.91 1 4.40 292 18.92 6.18 List of heating and heat resistance data Formula # Heating property MoR (lb / inch! 12 ^ Heat resistance MoR (lb / inch2) Heating property AFL (lb) Heat resistance AFL (lb) 1 1204Ji_ ^ 707.82 19.80 14.36 2 1023,11 ^ —1 ^ 12 13.14 7.40 3 619.8l __- 377.00 9.05 4.96 4 700.56 ^^-__25434 7.57 3.09 5 518.13 ^^ __13JL40 4.65 1.38 10 Example 3: CaC〇3 and dry high-dazzling point mud The mixed mud system was prepared using the following formula: Di 5 Table I Concentration (than μ! 9 Screening Grade Calcium Carbonate (ImerysCorporation from Razway, Georgia, USA) 16 200418599 Colloidal Silicon Dioxide 1920 Gram deionized water 401 g T X-11280 polymer 138 g Nalcoat⑧Pl (-200 mesh) fused silica 1200 g Nalcoat⑧P1 (-120 mesh) fused silica 3600 g Nalcoat® 8815 anionic wetting agent 2.2 g Dow Corning® Y-30 Antifoam During the shell preparation process, 4.0 g of agent was used as the plaster coating as the following mixture of CaC03 and Si02: Formula # 泥灰 层 # 1 泥灰 层 # 2 泥灰 层 # 3 泥灰 层 # 4 # 5 1 S1 S1 S2 S2 S2 2 S1 S1 S2 + 5% CaC0310 S2 + 5% CaC03 S2 + 5% CaC03 3 S1 S1 S2 + 10% CaCO3 S2 + 10% CaCO3 S2 + 10% CaCO3 4 S1 S1 S2 + 20 % CaCO3 S2 + 20% CaCO3 S2 + 20% CaCO3 5 S1 S1 S2 + 30% CaCO3 S2 + 30% CaCO3 S2 + 30% CaCO3 —The erosion test was added in order to fully express the advantages of adding CaC03. 'This advantage is reflected in the shell The physical knockout is qualitative. This new technology system 5 is just a sandblasting process that imitates the industrial use. Shell test scale

寸之長、寬為0.75”至1.5”,厚度最大為0.4”,且該試片係置 於一位於喷砂測試箱之一壁上的夾具上。一彈簧刀片係靠 著一具〇·5 X 0.5”視窗的不銹鋼罩而固定該試片。該罩係確 保自樣品至下一樣品之試片係暴露於相同表面積,且一 10均質之噴砂介質流經該表面。該試片之厚度係於測試之前 量測。該試片係暴露於該喷砂介質,直至該試片被穿透。 量測穿透時間,且對每個樣品計算其侵蝕速率。該測試係 重覆一具代表性數目之試片,以允許精確界定侵蝕速率。 如下列第6表所示,於該泥灰層中CaC03與SiOAl合之 17 200418599 添加係降低耐火殼體強度,但不包含溼強度。該最佳結果 得到:10%至20%的CaC03添加至該泥灰層係呈現下降20% 至40%耐火強度,且對熱強度影響最小。該侵蝕速率數據 係顯示:一含8%與10%之CaC03殼體於24及48小時冷卻之 5 後,侵蝕速率將增加5倍。對於該殼體是否含CaC03泥灰塗 層之溼性質MoR、加熱性質MoR、耐熱性質MoR及侵蝕測 試係如下所示: 第6表 溼性質之數據一覽表The length, width is 0.75 "to 1.5", and the thickness is 0.4 ". The test piece is placed on a fixture located on one wall of the sand blasting test box. A spring blade is attached to a 0.5 Stainless steel cover with X 0.5 "window to hold the test piece. The hood ensures that the test strips from the sample to the next sample are exposed to the same surface area and that a homogeneous blasting medium flows through the surface. The thickness of the test piece was measured before the test. The test piece is exposed to the blasting medium until the test piece is penetrated. The penetration time is measured and the erosion rate is calculated for each sample. The test is repeated on a representative number of test strips to allow precise definition of the erosion rate. As shown in Table 6 below, the addition of CaC03 and SiOAl in this marl layer reduces the strength of the refractory shell, but does not include wet strength. The best result is that 10% to 20% of CaC03 added to the marl layer system shows a 20% to 40% reduction in fire resistance and has minimal effect on thermal strength. The erosion rate data shows that a CaC03 shell containing 8% and 10% will increase the erosion rate 5 times after cooling for 24 and 48 hours. The test system for the wet properties MoR, heating properties MoR, heat resistance properties MoR and erosion of the CaC03 marl coating is as follows: Table 6 List of wet properties data

CaC03 % MoR (磅/英吋2) AFL (磅) MoE (磅/英吋2) 斷裂指數 彎曲量 (密爾) 0 564.40 9.44 268 38.38 6.32 5 566.48 9.11 306 33.16 5.78 10 580.84 8.64 305 32.67 6.02 20 577.19 8.64 305 32.67 6.02 30 559.01 6.71 355 24.90 5.62 10 加熱及耐熱性質之數據一覽表 % CaC03 加熱性質 MoR (磅/英吋2) 财熱性質 MoR (磅/英吋2) 加熱性質 AFL (磅) 耐熱性質 AFL (磅) 0 1326.26 932.15 19.28 16.22 5 1127.35 809.54 15.44 11.94 10 923.31 729.07 15.44 11.14 20 723.13 558.85 9.75 6.54 30 793.39 496.62 7.81 5.59 侵蝕性質之數據一覽表 % CaC03 冷卻2小時 (密爾/秒) 冷卻24小時 (密爾/秒) 冷卻48小時 (密爾/秒) 0 4.89 4.40 4.79 2 4.51 5.13 6.38 4 4.37 10.74 9.64 6 4.46 10.71 14.71 8 4.34 14.70 25.10 10 4.23 10.58 24.28 篩選等級碳酸辦(可得自美國喬治亞州拉茲威市之Imerys Corporation) 18 200418599 雖然本發明於上所述係有關於較佳實施例或說明實施 例,但是這些實施例係無意欲包含整個發明或限制本發 明。倒不如說是,本發明係意欲包括所有替代方案、改良 5 型式或是等同於附加的申請專利範圍所定義的精神或範疇 之型式。 L圖式簡單說明3 無 【圖式之主要元件代表符號表】 無CaC03% MoR (pounds / inch 2) AFL (pounds) MoE (pounds / inch 2) Fracture Index Bending Amount (mils) 0 564.40 9.44 268 38.38 6.32 5 566.48 9.11 306 33.16 5.78 10 580.84 8.64 305 32.67 6.02 20 577.19 8.64 305 32.67 6.02 30 559.01 6.71 355 24.90 5.62 10 List of heating and heat resistance data% CaC03 Heating properties MoR (lbs / in2) Financial properties MoR (lbs / in2) Heating properties AFL (lbs) Heat resistance AFL (Lbs) 0 1326.26 932.15 19.28 16.22 5 1127.35 809.54 15.44 11.94 10 923.31 729.07 15.44 11.14 20 723.13 558.85 9.75 6.54 30 793.39 496.62 7.81 5.59 CaC03 Cooling for 2 hours (mil / second) Cooling for 24 hours (mil / second) / S) Cooling for 48 hours (mils / s) 0 4.89 4.40 4.79 2 4.51 5.13 6.38 4 4.37 10.74 9.64 6 4.46 10.71 14.71 8 4.34 14.70 25.10 10 4.23 10.58 24.28 Screening Grade Carbonate Office (available from Razwell, Georgia, USA) Imerys Corporation) 18 200418599 Although the present invention is described above with regard to preferred embodiments or illustrative embodiments, these embodiments are not To contain the entire invention or to limit the invention. Rather, the present invention is intended to include all alternatives, modified 5 types, or types equivalent to the spirit or scope defined by the scope of additional patent applications. Brief description of L scheme 3 None [Representative symbols for main elements of the scheme] None

1919

Claims (1)

拾、申請專利範圍·· 1.、、一種改善環繞-金屬部份之_鑄造殼體之移除的方 法’其中該殼縣藉由將―高雜泥漿與H點泥灰 之交制沈積於-模型之上而製成,該方法係包含將一 5 有效量的驗金屬鹽或鹼土族金屬鹽添加至該殼體之至少 —層的步驟。 2· ^申請專利第丨項之方法,其t該鹼金屬鹽或驗土 無金屬鹽係選自包括碳酸_、硫自㈣、碳酸賴、碳酸 鎂、硫酸鎂、碳酸鳃及其混合物之族群。 1〇 3.如中請專利範圍第1項之方法,其中該驗金屬鹽或驗土 無金屬鹽係為碳酸J丐。 4. 如申請專利範圍第旧之方法,其中該驗金屬鹽或驗土 族金屬鹽係添加至該高熔點泥灰之至少一層。 5. 如申請專利範圍第旧之方法,其中該驗金屬鹽或驗土 15 族金屬鹽係添加至該高熔點泥漿之至少一層。 6·如申請專利範圍第1之方法,其中該驗域鹽或驗土 族金屬鹽係添加至該純點泥漿之至少_層,以及添加 至該高溶點泥灰之至少一層。 7·如申凊專利圍第1項之方法,其中該驗金屬鹽或驗土 2〇 族金屬鹽係以佔該殼體之約1至約30重量百份比的量,添 加至該殼體之至少一層。 8.如申請專利範圍第丨項之方法,其中紐金屬鹽或驗土 族金屬鹽係以佔該殼體之約5至約25重量百份比的量,添 加至該殼體之至少一層。 20 200418599 9. 如申請專利範圍第1項之方法,其中該鹼金屬鹽或鹼土 族金屬鹽係以佔該殼體之約8至約20重量百份比的量添 加至該殼體之至少一層。 10. —種改善環繞一金屬部份之熔模鑄造殼體之移除的方 5 法,其中該殼體係藉由將一高熔點泥漿與一高熔點泥灰 之交替層沈積於一模型之上所製成,該方法係包含將碳 酸鈣,以佔該殼體之約8至約20重量百份比的量添加至該 殼體之至少一層的步驟。 10 21 200418599 柒、指定代表圖: (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件代表符號簡單說明: (無) 捌、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無)Scope of patent application: 1. A method to improve the removal of cast-shells surrounding metal parts-where the shell counties are deposited on the intersection of high-mud mud and H-point marl -Made on top of the model, the method comprises the step of adding a 5 effective amount of metal test salt or alkaline earth metal salt to at least one layer of the shell. 2. The method of applying for item 丨 of the patent, wherein the alkali metal salt or soil-free metal salt is selected from the group consisting of carbonic acid, thiosulfan, carbonic acid, magnesium carbonate, magnesium sulfate, gill carbonate, and mixtures thereof. . 10. The method as described in item 1 of the patent application, wherein the metal test or soil test metal-free salt is carbonic acid. 4. If the method is the oldest in the scope of patent application, wherein the metal test salt or soil test metal salt is added to at least one layer of the high melting point marl. 5. As the oldest method in the scope of patent application, wherein the metal test salt or the Group 15 metal salt test is added to at least one layer of the high melting point mud. 6. The method according to the first scope of the patent application, wherein the domain inspection salt or soil inspection metal salt is added to at least one layer of the pure point mud and at least one layer of the high melting point mud. 7. The method of claim 1 in the patent application, wherein the metal test salt or soil test group 20 metal salt is added to the shell in an amount of about 1 to about 30 weight percent of the shell. At least one level. 8. The method according to item 丨 of the patent application, wherein the neometallic salt or the test metal salt is added to at least one layer of the shell in an amount of about 5 to about 25 weight percent of the shell. 20 200418599 9. The method of claim 1 in which the alkali metal salt or alkaline earth metal salt is added to at least one layer of the shell in an amount of about 8 to about 20 weight percent of the shell . 10. A method for improving the removal of an investment casting shell surrounding a metal part, wherein the shell is formed by depositing an alternating layer of a high melting point mud and a high melting point mud on a mold The method is made by adding calcium carbonate to at least one layer of the shell in an amount of about 8 to about 20 weight percent of the shell. 10 21 200418599 (1) Designated representative map: (1) The designated representative map in this case is: (). (II) Brief description of the component representative symbols of this representative map: (none) 捌 If there is a chemical formula in this case, please disclose the chemical formula that can best show the characteristics of the invention: (none)
TW092136213A 2003-01-07 2003-12-19 Method of improving the removal of investment casting shells TW200418599A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/337,799 US20070151702A1 (en) 2003-01-07 2003-01-07 Method of improving the removal of investment casting shells

Publications (1)

Publication Number Publication Date
TW200418599A true TW200418599A (en) 2004-10-01

Family

ID=32710958

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092136213A TW200418599A (en) 2003-01-07 2003-12-19 Method of improving the removal of investment casting shells

Country Status (4)

Country Link
US (1) US20070151702A1 (en)
AU (1) AU2003299726A1 (en)
TW (1) TW200418599A (en)
WO (1) WO2004062835A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081350A1 (en) * 2004-10-14 2006-04-20 Francois Batllo Method of improving the removal of investment casting shells
US9227241B2 (en) 2010-12-08 2016-01-05 Nalco Company Investment casting shells having an organic component

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057433A (en) * 1974-03-05 1977-11-08 Rem Metals Corporation Oxyfluoride-type mold for casting molten reactive and refractory metals
US4247333A (en) * 1979-12-26 1981-01-27 General Electric Company Alumina shell molds used for investment casting in directional solidification of eutectic superalloys
GB2126569B (en) * 1982-09-04 1986-01-15 Rolls Royce Non-silica based ceramic cores for castings
US4925492A (en) * 1987-09-21 1990-05-15 The Interlake Corporation Ceramic core for investment casting and method for preparation
US5529108A (en) * 1990-05-09 1996-06-25 Lanxide Technology Company, Lp Thin metal matrix composites and production methods
US5297615A (en) * 1992-07-17 1994-03-29 Howmet Corporation Complaint investment casting mold and method
JP3139918B2 (en) * 1993-12-28 2001-03-05 株式会社キャディック・テクノロジ−・サ−ビス Method for producing refractory molded article and binder for refractory molded article
US5468285A (en) * 1994-01-18 1995-11-21 Kennerknecht; Steven Ceramic core for investment casting and method for preparation of the same
TWI235740B (en) * 1998-02-11 2005-07-11 Buntrock Ind Inc Improved investment casting mold and method of manufacture
CZ20023124A3 (en) * 2000-03-17 2003-05-14 Daniel James Duffey Investment casting process
US6814131B2 (en) * 2000-11-10 2004-11-09 Buntrock Industries, Inc. Investment casting mold and method of manufacture

Also Published As

Publication number Publication date
AU2003299726A8 (en) 2004-08-10
AU2003299726A1 (en) 2004-08-10
US20070151702A1 (en) 2007-07-05
WO2004062835A2 (en) 2004-07-29
WO2004062835A3 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP6147295B2 (en) Fire resistant coating for mold coating production
US6540013B1 (en) Method of increasing the strength and solids level of investment casting shells
JP3878496B2 (en) Mold sand and manufacturing method thereof
JP7361819B2 (en) Use of expanded perlite closed-cell microspheres as filler for producing molded articles for the foundry industry
US7503379B2 (en) Method of improving the removal of investment casting shells
CA2621005C (en) Borosilicate glass-containing molding material mixtures
KR20140073576A (en) Coating compositions for inorganic casting molds and cores, containing salts, and use thereof
KR20140077196A (en) Coating compositions for inorganic casting molds and cores, comprising formic acid esters, and use thereof
UA125088C2 (en) Use of a size composition containing an acid in the foundry industry
RU2412019C1 (en) Method of producing ceramic shell moulds for investment casting
US6770699B2 (en) Investment casting binders for making molds having high green strength and low fired strength
TW200418599A (en) Method of improving the removal of investment casting shells
CN107931533A (en) A kind of soluble core based on fused salt and preparation method and application
JP6317995B2 (en) Slurry filler material for manufacturing precision casting mold, slurry obtained by using the filler, and precision casting mold
US9764377B2 (en) Method for the production of core sand and/or molding sand for casting purposes
JPH01500020A (en) Slurry for forming a shell mold, method for manufacturing a shell mold using the same, shell mold using the method, and casting method using the mold
RU2358827C1 (en) Suspension for manufacturing of ceramic shell moulds into foundring by dispensable pattern
Xu Characterization of investment shell thermal properties
SU948530A1 (en) Method of producing shell moulds
JP2013075312A (en) Stucco material for making initial layer mold for precision casting and mold for precision casting using the same
JP2001071094A (en) Filler for lost foam pattern mold
RU2146983C1 (en) Suspension for manufacture of shell molds in investment casting
Zych et al. Kinetics of hardening and drying of ceramic moulds with the new generation binder–colloidal silica
KR100348713B1 (en) Alumina-base investment casting shell mold and manufacturing method thereof
JP2003292383A (en) Manufacturing method for monolithic refractory