TW200413528A - RNA-cleaving DNA enzymes with altered regio-or enantioselectivity - Google Patents

RNA-cleaving DNA enzymes with altered regio-or enantioselectivity Download PDF

Info

Publication number
TW200413528A
TW200413528A TW92125352A TW92125352A TW200413528A TW 200413528 A TW200413528 A TW 200413528A TW 92125352 A TW92125352 A TW 92125352A TW 92125352 A TW92125352 A TW 92125352A TW 200413528 A TW200413528 A TW 200413528A
Authority
TW
Taiwan
Prior art keywords
catalytic
nucleic acid
item
dna molecule
patent application
Prior art date
Application number
TW92125352A
Other languages
Chinese (zh)
Inventor
Gerald F Joyce
Phillip T Ordoukhanian
Original Assignee
Scripps Research Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scripps Research Inst filed Critical Scripps Research Inst
Publication of TW200413528A publication Critical patent/TW200413528A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/319Chemical structure of the backbone linked by 2'-5' linkages, i.e. having a free 3'-position

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention provides catalytic single-stranded DNA molecules, and methods using the same, that have site-specific endonuclease activity that is specific for a cleavage site in a substrate nucleic acid sequence, that includes a non-naturally occurring single-stranded ribonucleic acid. The catalytic DNA molecule includes one or more loop regions and one or more binding regions, wherein the binding regions bind to complementary sequences of the substrate nucleic acid sequence. These non-naturally occurring single-stranded nucleic acids include a 2', 5' linked residue or an L-enantiomer residue.

Description

3528 玖、發明說明: 【發明所屬之技術領域】 本各月疋有關核酸酵素或催化性(酵素性)^^八分子,其 ^ °彳非自然生成心核甞酸,特別是核糖核甞酸。 【先前技術】 _ “ 9個重要特性是其催化速率加強作用 殊化學轉形之I # r ^ % 、〈專—性。此中有許多種專-性,包括對特殊 〜又貝利’對特殊之區域異構物,及對特殊之立體里構 物。不論是由蛋白質或核酸組成之自然生成的酵素,一均可 因:複雜結-·構而呈現出各型式的選擇性。即使是簡易的肤 或暴核苷酸,均可以高度的專一性操作I-3。 ,經由直接的長開獲得新穎蛋白質及核酸酵素之能力,已可 發展出可進行區域—或立體選擇性化學反應之人工酵素㈠。 所發出之蛋白質酵素頃發現有作為手性選擇性 (dm〇Selectlve)催化劑之工業用途8。已 , 催化狄爾斯-阿德一— 過里(enanit〇menCeXCeSS’縮窝成ee)&gt;95%(參見9)來操作。 當相同的RNA酵素自L_而非〇_核#酸所製備時’其當然可 產生有相同ee值之相對對映體產物。 已不出,核酸酵素可以區域特異之方式操作。例如,# 頦RNA連接酶核糖酶可選擇性催化3,,5,•而 弟 r ’J ''臂酸二g旨 酶連結之形成1G’U。鎚頭核糖酶可切割RNAt3, 5、而非2,曰 磷酸二酯連結12。δ肝炎病毒核糖酶可差別地 ,,^ ^天然的 J,)-連結,但也可以100倍左右較少之速率切 wJ ·磷酸二 &lt;S7851 2004135283528 发明 Description of the invention: [Technical field to which the invention belongs] This month 疋 related to nucleic acid enzymes or catalytic (enzymatic) ^ ^ eight molecules, which ^ ° 彳 unnaturally generated cardiac nuclear acid, especially ribose nuclear acid . [Prior art] _ "9 important characteristics are its catalytic rate enhancement effect, chemical transformation of I # r ^%, <specificity. There are many kinds of specificity, including the special ~ and Bailey's Special regioisomers and special stereostructures. Whether it is a naturally occurring enzyme composed of protein or nucleic acid, one can show various types of selectivity due to: complex structure-structure. Even if it is Simple peptides or nucleotides can operate I-3 with a high degree of specificity. The ability to obtain novel proteins and nucleic acid enzymes through direct long-distance opening has been developed to perform regional- or stereoselective chemical reactions. Artificial enzyme ㈠. The protein enzymes issued have been found to be industrially useful as chiral selective (dmOSelectlve) catalysts 8. Has been catalyzed Diener-Adeyi-Guoli (enanit〇menCeXCeSS 'denting into ee ) &gt; 95% (see 9) to operate. When the same RNA enzyme is prepared from L_ instead of 〇_nucleo # acid, it can of course produce relative enantiomeric products with the same ee value. No longer, Nucleic acid enzymes can be manipulated in a region-specific manner . For example, # 颏 RNA ligase ribozyme can selectively catalyze the formation of 3,5,5, and r'J '' armate diglyase to form 1G'U. Hammerhead ribozyme can cleave RNAt3, 5, Instead of 2, the phosphodiester is linked to 12. Delta Hepatitis Virus ribozyme can be differentiated, ^ ^ natural J,)-linked, but can also cut wJ · phosphate di <S7851 200413528

對於可特異地切割非天然聚核菩 需,如包括2Ή酸二5旨連此中仍有所 ==素的優點之—是可應用於診斷分析=; ^減叙水平非特異切割自然生成之聚核菩酸。 【發明内容】 用二Γ疋出具區域-及對映專-性之新類核酸酵素,可應 用试官内展開方法分離出新穎的而 嶋酵素有-群可切狀5|_連接的p_D姻核 許則切割3'·,5'·連接之β_核糖核替酸(圖1A)。利用試管内展 開万法可發現DNA酵素,其始自〜1()15任意序列dna分子之 分別族群。各族群可生成與Mg2+_有關之DNA酵素,其進行 標的反應。二群酵素均可製&amp;,以在分別的核酸受質上以 多重-酶變率(turnover)操作。可切割2,,5,_鱗酸二醋之酵素 DNA群,其呈現出之速率加強作用约2G,刪倍於未催化反 底而可切割L_核糖核甞酸之DNA酵素群,呈現出約6〇〇倍 &amp;催化速率加強作用。前者以約6000-倍之區域專一性操 作,而後者約50倍之對映選擇性。 在一方面,本發明提出具催化性之單股DNA分子,其具 有位置-特異之核酸内切酶活性,對受質核酸序列中之切割 位置具專一性,而其中的切割位置包括非自然生成之單股 核糖核酸,或其併合物。催化性之DNA分子包含有一個以 上的環帶區域及一個以上的結合區域,其中的結合區域結 合芏受質核酸序列之互補序列。 87851 200413528 具催化性之單股DNA分子對於受質核酸序列具有位置-特異之核酸内切酶活性,其可包括在切割位置上各樣非自 然生成之單股核酸。這些非自然生成之單股核酸,其較佳 具體實例包括2’,5’-連接的殘基,如2’,5’-連接之腺嘌呤核菩 酸或鳥嘌呤核甞酸核糖核甞酸殘基,或L-對映體殘基,如 L-對映體3f,5’-連接的腺嘌呤核甞酸殘基。 在一方面,本發明提出一種催化性單股DNA分子,其可 切割受質核酸序列,包括2’,5’-連接的核糖核甞酸,較好是 2’,5f-連接之腺嘌呤核甞酸或鳥嘌呤核苷酸核糖核苷酸殘 基。本發明此方面之催化性DNA分子具有一個催化功能部 位及一個確認功能部位。催化功能部位包括一個下游區 域,其包括序列 S’-XiXaACTCGGAGXsJ,(SEQ ID NO:28), 其可形成一個環帶;一個中央莖軸區域,鄰接在下游環帶 5’且具有5’-ΖιΖ2Ζ3Ζ4_3’之序列,以及一個上游區域鄰接在中 央莖軸區域之5’,可形成一個具有序列5,-GGGA-3,之環帶。 Χι是視所需之胞嘧啶核苷殘基,&amp;是胞嘧啶核甞或胸腺嘧 呢核菩殘基,且X3可結合受質核酸序列上之互補核苷酸, 其距切割位置上游二個核苷酸。A可結合受質核酸序列上 互補的核苷酸,其緊接在切割位置下游。在較佳具體實例 中’心是胞嘧啶核甞殘基,且&amp;是胍殘基。 確認功能部位包括一個上游側接區域及一個下游側接區 域。上游侧接區域鄰接上游環帶之5,,且下游側接區域鄰接 下游環帶之3,。在各種具體實例中,在侧接區中的個別核苷 酸可與受質核酸序列之侧接區域結合。 87851 -8 - 200413528 在本發明此方面的某些具體實例中,下游環帶具有 5,-CCACTCGGAG-3’(SEQ ID N〇:22)之序歹ij。在本發明此方 面的某些具體實例中,上游環帶具有序列5'-YGGAA^,其 中Y是0至5個核甞酸。在這些具體實例中,Y實質上可有0 至5個核甞酸之任何核甞酸序列。例如,Y可包括序列 5’-TTA-3,,例如 Y 可為 5,-GTTTA-3,(SEQ ID N〇:19), Si-GCTTA·^ (SEQ ID N〇:20),S’-GTTA-S1 (SEQ ID N〇:21)。 在如圖14B所說明之另一方面,本發明提出一種催化性單籲 股DNA分子,其可切割L-核糖核甞酸殘基上的受質核酸序 列,最好是連接的L-腺嘌呤核甞酸核糖核苷酸殘基。-在此方面,催化性DNA分子包括一個確認功能部位及一個 催化功能部位,其可形成包括有5LXA2X3GX4X5X6X7 GACX8X9-3,(SEQ ID Ν〇··29)核酸序列之環帶。XiT結合受 質核酸序列上的互補核甞酸,其可鄰接在受質核酸序列上 切割位置之下游,X2是胸腺核甞或胍殘基,X3是胞嘧啶核 首或胍殘基,X4是胞癌淀核菩或胸腺核甞殘基,X 5是胞喊 ^ 啶核苷或胸腺核苷,X6是胞嘧啶核甞或胸腺核甞,X7是腺 : 嘌呤核甞或胍殘基,X8是腺嘌呤核甞或胸腺核苷殘基,且 X9可結合受質核酸序列上之互補核苷酸,其距切割位置上 游二個核苷酸。 確認功能部位包括一個上游侧接區域,及一個下游侧接 區域,上游侧接區域緊接著催化功能部位5',且下游侧接區 域緊接催化功能部位之3’,如上文催化DNA分子所述,其 可切割核糖核苷酸。 — 87851 200413528 在本發明此方面催化DNA的某些具體實例中,X2是胸腺 核苷殘基,X3是胞嘧啶核苷殘基,X4是胸腺核甞殘基,X5 是胸腺核苷殘基,X6是胸腺核苷殘基,X7是腺嘌呤核甞殘 基,且X8是腺嘌呤核甞殘基。在本發明此方面催化DNA之 較佳具體實例特殊實例中,環帶含有V-TCGTCTTAGACA3’ (SEQ ID N〇:30)。 在另一方面,本發明提出一種受質核酸序列,其包括非 自然生成之核糖核甞酸,緊接在切割位置上游,其側接可 與結合區結合之互補序列,在此也稱為催化性DNA分子之 4 側接區域。在某些具體實例中,受質核酸序列之非自然生 成之核糖核甞酸是2’,5’核糖核甞酸,較好是腺嘌呤核苷酸或 鳥嘌呤核苷酸殘基,最好是鳥嘌呤核苷酸殘基。在其他具體 實例中,受質核酸序列之非自然生成核糖核甞酸是3’,5’-核糖 核苷酸之L-對映體,最好是腺嘌呤核甞酸殘基。 在另一方面,本發明提出如上文所述之非自然生成之單股 核酸受質,其包括一對由第一標幟及第二標幟所組成,並互 4 相以切割位置所分隔,之相互活性標幡。標幟可直接地或間 接地黏附至單股核酸受質。在某些具體實例中,第一標幟是 螢光部份,而第二標幟是冷卻劑,當螢光部份及冷卻劑均黏 附至單股核酸受質時,後者可冷卻螢光部份。 在另一方面,本發明提出偵測標的核酸序列之方法,其中 使用催化性核酸分子及本發明之受質核酸序列。方法與定量 PCR所用之方法有關,稱為nDzyNA-PCR’’。 因此,本方法包括在以下擴大緩衝溶液中摻和以下組份:- -10 - S7851 200413528 0棱酸樣品 ii)聚合酶For the specific cutting of non-natural polynuclear nucleus, such as including 2 and 2 dicarboxylic acid, there are still some advantages in this == prime-can be used in diagnostic analysis =; ^ reduction level naturally generated by non-specific cutting Polynuclear acid. [Summary of the Invention] A new type of nucleic acid enzyme with region- and antipodal specificity produced by two Γ 疋 can be used to isolate novel and enzyme-group-cuttable 5 | _ linked p_D marriages using in-house expansion methods. The cleavage permits the cleaving of the 3 ', 5' · linked β-ribonucleotide (Figure 1A). DNA enzymes can be found by spreading in a test tube, starting from separate groups of DNA molecules of any sequence ~ 1 () 15. Each group can generate a DNA enzyme related to Mg2 + _, which performs the target reaction. Both groups of enzymes can be made &amp; to operate with multiple-enzyme turnover on separate nucleic acid substrates. It can cleave the enzyme DNA group of 2,5, _dipic acid diacetate, which exhibits a rate-enhancing effect of about 2G, and deletes the DNA enzyme group that can cleave L_ribonucleic acid without catalysis and shows About 600 times &amp; catalytic rate enhancement. The former operates with a regional specificity of about 6000-fold, while the latter operates about 50-fold with enantioselectivity. In one aspect, the present invention proposes a catalytic single-stranded DNA molecule that has position-specific endonuclease activity and is specific for the cleavage position in the acceptor nucleic acid sequence, and the cleavage position includes non-naturally occurring Single-stranded RNA, or a combination thereof. Catalytic DNA molecules include more than one loop region and more than one binding region, where the binding region binds the complementary sequence of the acceptor nucleic acid sequence. 87851 200413528 Catalytic single-stranded DNA molecules have position-specific endonuclease activity for the acceptor nucleic acid sequence, which can include various non-naturally-generated single-stranded nucleic acids at the cleavage position. Preferred examples of these non-naturally occurring single-stranded nucleic acids include 2 ', 5'-linked residues, such as 2', 5'-linked adenine riboic acid or guanine ribonucleotide ribonucleotide Residues, or L-enantiomeric residues, such as the L-enantiomer 3f, 5'-linked adenine nucleotide residues. In one aspect, the present invention provides a catalytic single-stranded DNA molecule that cleaves a acceptor nucleic acid sequence, including a 2 ', 5'-linked ribonucleic acid, preferably a 2', 5f-linked adenine core Gallic acid or guanine nucleotide ribonucleotide residues. The catalytic DNA molecule of this aspect of the present invention has a catalytic function site and a confirmation function site. The catalytic functional site includes a downstream region including the sequence S'-XiXaACTCGGAGXsJ, (SEQ ID NO: 28), which can form a loop zone; a central stem axis region, which is adjacent to the downstream loop zone 5 'and has a 5'-ZιZ2Z3Z4_3 'The sequence, and an upstream region adjacent to the central stem axis region 5', can form a loop with the sequence 5, -GGGA-3 ,. Xι is the required cytosine nucleoside residue, &amp; is the cytosine nucleoside or thymidine core residue, and X3 can bind the complementary nucleotide on the acceptor nucleic acid sequence, which is two upstream from the cutting position Nucleotides. A can bind complementary nucleotides on the acceptor nucleic acid sequence, which is immediately downstream of the cleavage site. In a preferred embodiment, the &apos; heart is a cytosine nuclear residue, and &amp; is a guanidine residue. Confirm that the functional part includes an upstream side connection area and a downstream side connection area. The upstream flank region is adjacent to 5 of the upstream ring zone, and the downstream flank region is adjacent to 3 of the downstream ring zone. In various specific examples, individual nucleotides in the flanking region can be bound to the flanking region of the acceptor nucleic acid sequence. 87851 -8-200413528 In some specific examples of this aspect of the invention, the downstream loop zone has the sequence 歹 ij of 5, -CCACTCGGAG-3 '(SEQ ID NO: 22). In some specific examples of this aspect of the invention, the upstream loop zone has the sequence 5'-YGGAA ^, where Y is 0 to 5 nucleotides. In these specific examples, Y can have essentially any nucleotide sequence of 0 to 5 nucleotides. For example, Y may include the sequence 5′-TTA-3, for example, Y may be 5, -GTTTA-3, (SEQ ID NO: 19), Si-GCTTA. ^ (SEQ ID NO: 20), S ′ -GTTA-S1 (SEQ ID NO: 21). In another aspect as illustrated in FIG. 14B, the present invention provides a catalytic single strand DNA molecule that can cleave the acceptor nucleic acid sequence on the L-ribonucleic acid residue, preferably the linked L-adenosine Ribonucleotide ribonucleotide residues. In this aspect, the catalytic DNA molecule includes a confirmation functional site and a catalytic functional site, which can form a loop including a nucleic acid sequence of 5LXA2X3GX4X5X6X7 GACX8X9-3, (SEQ ID NO. · 29). XiT binds to a complementary nucleotide on the acceptor nucleic acid sequence, which can be adjacent to the downstream of the cleavage site on the acceptor nucleic acid sequence. X2 is the thymidine or guanidine residue, X3 is the cytosine core or guanidine residue, and X4 is Cytocarcinoma nucleus or thymic nucleus residue, X 5 is cytosine or thymidine, X6 is cytosine or thymic nucleus, X7 is gland: purine nucleus or guanidine residue, X8 It is an adenine nuclear thallium or thymidine residue, and X9 can bind to complementary nucleotides on the acceptor nucleic acid sequence, two nucleotides upstream from the cleavage position. Confirm that the functional part includes an upstream flanking region and a downstream flanking region. The upstream flanking region is immediately after the catalytic functional site 5 ', and the downstream flanking region is immediately adjacent to the catalytic functional site 3', as described in the catalytic DNA molecule above. , Which can cleave ribonucleotides. — 87851 200413528 In some specific examples of the catalytic DNA in this aspect of the present invention, X2 is a thymine residue, X3 is a cytosine residue, X4 is a thymidine residue, and X5 is a thymidine residue, X6 is a thymidine residue, X7 is an adenine nuclear crest residue, and X8 is an adenine nuclear crest residue. In a specific embodiment of the preferred embodiment of the catalytic DNA in this aspect of the present invention, the loop contains V-TCGTCTTAGACA3 '(SEQ ID NO: 30). In another aspect, the present invention provides a receptor nucleic acid sequence, which includes a non-naturally occurring ribonucleic acid, immediately upstream of a cleavage site, and is flanked by a complementary sequence that can bind to a binding region, also referred to herein as a catalyst 4 flanking regions of sex DNA molecules. In some specific examples, the non-naturally occurring ribonucleic acid of the subject nucleic acid sequence is 2 ', 5' ribonucleic acid, preferably adenine nucleotide or guanine nucleotide residue, and most preferably Is a guanine nucleotide residue. In other specific examples, the non-naturally occurring ribonucleotide of the acceptor nucleic acid sequence is the L-enantiomer of a 3 ', 5'-ribonucleotide, preferably an adenine riboic acid residue. In another aspect, the present invention proposes a non-naturally generated single-stranded nucleic acid substrate as described above, which includes a pair of a first flag and a second flag, which are separated by a cutting position in 4 phases, The mutual activity standard. Flags can be attached directly or indirectly to a single stranded nucleic acid substrate. In some specific examples, the first flag is a fluorescent part and the second flag is a coolant. When both the fluorescent part and the coolant are adhered to a single-stranded nucleic acid substrate, the latter can cool the fluorescent part. Serving. In another aspect, the present invention proposes a method for detecting a target nucleic acid sequence, wherein a catalytic nucleic acid molecule and a acceptor nucleic acid sequence of the present invention are used. The method is related to the method used for quantitative PCR and is called nDzyNA-PCR ''. Therefore, the method includes blending the following components in the following expansion buffer solution:-10-S7851 200413528 0 Phosphonic acid sample ii) Polymerase

Hl)受質非自然生成之單股核酸序列,包括一對由第一標 幟及第二標幟(可直接或間接黏附至寡核甞酸)組成之互相 活性標幟,其中第一標幟與第二標幟由如上述之非自然生 成之核糖核甞酸切劄位置所分隔,· W)—個向前之引子,可與標的核酸序列第一股之],部份 、、口 口,並以向前之方向指令標的核酸序列之聚核甞酸合 成;及 &quot;&quot; ν)—個反兩之引子,包括一個可與標的核酸序列第二股 足3邯份結合之區域,且可指令標的核酸序列以反向方向行 聚核甞酸之合成,且包括催化性單股DNA分子之補體,其 中催化性單股DNA分子可切割在切割位置處之受質核酸序 列。 &lt;後万法包括在擴大條件下培育所摻和之組份,以擴大 標的核酸序列。此造成催化性單股DNA分子之合成。所合 成,催化單股DNA分子,彳再切刻受質核酸序列,由是釋 =罘一標幟及第二標幟之交互作用。再偵測第一標幟,由 是偵測出標的核酸序列。 在本方法之示範具體實例中,非自然生成之核糖核菩酸 切d位置包括2',5'連結之殘基或L·對映體殘基,如上述之本 發明受質核酸序列。再者,催化性單股舰分子較好是上述 之催化性單股DNA分子之一。 本發明也包括利用直接之發展方法以產生有預定催化活 87851 -11- 200413528 性之核酸分子,以切割包括非自然生成核糖核苷酸之單股核 酉又因此,在另一方面,本發明提出鑑定具有位置一特異之 核酸内切酶活性之催化性DNA分子之方法,其對非自然生成 之核糖核《位置具有專-性。方法中包括構築雙股核酸分 子庫,其包括非自然生成之核糖核甞酸切割位置,且其包括 可能可與切割位S區域交互作用之㈣一序列核甞酸區 域。&lt;後再捕捉雙股核酸分子庫之一股,提供經捕獲之單股 核I刀子庫。接下來,在切割條件下培育經捕獲之單股核酸 刀子庫,以可在切割位置處切割,並釋出所切割之核酸分 子。之後,分離所切割之核酸分子,由是鑑定出具有位置一 特異之核酸内切酶活性之催化性DNA分子,其為非自然生成 之核糖核苷酸切割位置特異的。 、在說明之具體實例中,方法進-步包括擴大所切割之核酸 刀子並重複以上之捕獲,切割及分離步驟丨至5〇次之間, L苇土 20 /人之間。經選擇性擴大之經切割核酸分子可任意 大又足,以形成經哭變且切割之核酸分子。經突變且切割之 核酸分子,再擴大捕獲、切割及分離步驟達1至20次之間。 於說明具體實例中,如下實例中所明示的,在方法中切劃 ί卞件可丁以、交化,如此在接續之切割步騾重複發生下,切割 反應必須更有效率使核酸之切割可發生。 ,,許^具體實例中’非自然生成之核糖财酸切割位置是 2,3 _連結&lt; 鳥嘌呤核苷酸核糖核苷酸切割位置或L-腺嘌呤 核苷酸核糖核苷酸切割位置。 本各明也k出套組,其中包括催化性dna分子及/或受 87851 -12- 200413528 質,其具有非自然生成之核糖核甞酸。在另一具體實例中, 套組中也包括引子,聚合酶,及其他本發明方法中有用之 試劑。 【實施方式】 本發明提出一種催化性單股DNA分子,其具有位置-特異 之核酸内切酶活性,係受質核酸序列中之切割位置所特異 的,其中該切割位置包括非自然生成之單股核糖核酸,或 其併合物。催化性DNA分子包括一個以上的環帶區及一個 以上結合區,其中的結合區可結合受質核酸序列之互補序 列。在較佳具體實例中,非自然生成之單股核酸包括2’,5·-連結的殘基,較好是2’,5’-連結的腺嘌呤核苷酸或最好是2’,5’-連結的鳥嘌呤核苷酸核糖核苷酸殘基,或L-對映體殘基,最 好是L-對映體3’,5^連結的腺嘌呤核甞酸核糖核甞酸殘基。 如此中所用之’’催化性DNA分子”一詞是描述含有DNA之 核酸,其可作用如同酵素。在本揭示中,’’去氧核糖酶&quot;包括 核酸内切酶及去氧核酸内切酶,然而去氧核糖酶具有核酸内 切酶活性。其他可與去氧核糖酶交換使用之術語有’’酵素性 DNA分子&quot;,nDNA酶’’或”去氧核糖酶π,應了解包括其具酵素 活性之部份,不論是合成產生的或衍自有機體或其他來源。 本發明之催化性DNA分子,通常包括在受質-結合區中與 特殊寡核苷酸標的或受質有互補性之DNA分子;此分子也具 酵素活性,其具有特異切割寡核嘗酸受質之活性。酵素性 DN Α分子可於分子間切割寡核甞酸受質。此互補性功能,使 酵素性DNA分子與受質寡核苷酸可充份雜交,而可發生受質 -13 - 87851 200413528 之分子間切割。雖以100%之互補性為較佳,在75-100%範圍 内&lt;互補性,如90%,95%及99%互補性也是有用的,且涵蓋 在本發明内。 本發明之酵素性DNA分子可另外被描述成具核酸酶或核 糖核酸酶活性。這些術語在此可互換使用。 酵素性核酸”如此中所用包括酵素性RNA或DNA分子, 酵素性RNA-DNA聚合物,及其酵素活性部份或衍生物,雖 然酵素性DNA分子是本發明具酵素活性分子的一類型。 在一方面,本發明提出具催化性之單股DNA分子,其可 切割受質核Μ序列,其中包括2,,5,-連結的核糖核苷酸,如 2’,5’-連結的腺嘌呤核甞酸或鳥嘌呤核甞酸核糖核苷酸殘 基,如圖14Α所示。本發明此方面之催化性dna分子,具有 —個催化功能部位及一個確認功能部位(15,25)。催化性功 能部位包括一個下游區域,其包括序列 S’-XiX^CTCGGAGXy’(SEQ ID ΝΟ:28)其可形成一個環 帶;一個中央莖柄區緊接在下游環帶之5,,且具有 之序列,以及一個上游區緊接在中央莖柄區 之5,,可形成一個環帶,具有序列5’-GGGA-3’。在本發明此 方面催化性DNA分子中形成之環帶為内部膨起的環帶。&amp; 是視所需的胞喊淀核甞殘基,X2是胞嘧啶核苷或胸腺喃咬 核苷殘基’且&amp;可結合至受質核酸序列之互補核菩酸,其 距切割位置上游二個核苷酸。Z4可與受質核酸序列上的一 個核甞酸結合及/或形成擺動對,其緊接在切割位置下游。 在某些具體實例中,Z2是胞嘧啶核苷殘基,且4是一個脈 87851 -14- 200413528 殘基。 確涊功能邵位包括一個上游側接區(25),及一個下游侧接 區(15)。上游侧接區(25),緊接上游環帶之:,且下游側接 區(丨5)緊接下游之3,。在本發明的各種具體實例中,側接區 有各種長度變化。因此,例% ’側接區可包括由一個單一 核甘至75個核^:酸。’然而,應了解约3_25個核#酸長度 之側接區,較好長約3_15個核誓酸,且又較好約3_ι〇個核誓 酸長為特性。在各種具體實例中,在侧接區中之個別核芬 酸可與受質分子之核菩酸形成互補的驗基對;在其他具體 貫例中,可形成非標準的成對交互作用。互補及非標準配 對&lt;混合物也屬於本發明所揭示具體實例範圍内。 如某些具體實例中所述的,本發明提出—種催化性單股 亀分子,其可切割受質核酸序列,其中包括2,,5,連結的 核糖核料,較好是2,,5,_連結的腺嗓呤料酸或鳥嗓吟核 菩酸殘基,如圖14A所示。然而,此中所揭示與使用直接展 開有關之方法,可用來較可切割其他非自然生成核酸之 催化性單股DNA分子。例如,催化性單股舰分子可切割 如:2’_去氧_2,_胺基核#酸,2,_去氧.广氣核料,核打 硫代鱗酸,核卯,·15,)氨基磷酸醋,阿糖核#,及含經修 卿驗基之各種RNA類似物。 在另-具體實例中,本發明之催化性舰分子可進一步 含有-個第三側接區域。在本發明的某些具體實例中,催 化性DNA分子可進一步包括_ $夕^ 祜或多個可變或,,空間子”區域 介於侧接區之間。 87851 -15 · 200413528 在本發明此方面的某些具體實例中,下游環帶具有 5’-CCACTCGGAG-3f之序列(SEQ ID N〇:22)。在某些具體實 例中,上游環帶具有序列5’-YGGGA-3’,其中Y是0至5個核 苷酸。例如,Y可包括序列5’-TTA-3’,如Y可為5’-GTTTA-3, (SEQ ID N〇:19),5,-GCTTA-3,(SEQ ID N〇:20),5f-GTTA-3, (SEQ ID N〇:21)。 在某些具體實例中,z4是胍殘基,Xi是胞嘧啶核甞殘基, X2是胞嘧啶核甞殘基,且X3是胍殘基。在如圖2a,2b及9a ^ 所說明之另外較佳具體實例中,催化性DNA分子包括SEQ ID N〇:l,SEQ ID N〇:2,SEQ ID NO:3,SEQ ID N〇:4,SEQ ID N〇:5,SEQ ID NO:6,SEQ ID N〇:7,SEQ ID N〇:8,SEQ ID N〇:9,或 SEQ ID NO: 10。SEQ ID NO: 1-8不包括上游側接 區域,因此此區係在固定序列區,其在展開過程中是不許 突變的,如實例中所述。在一個特殊具體實例中,催化性 DNA 包括 SEQ ID NO:10。 在如圖14B所說明之另一方面,本發明提出一種催化性單 φ 股DNA分子,其可在L-核糖核甞酸殘基上切割受質核酸序 、 列,如1,5’-連結的L-腺嘌呤核苷酸核糖核甞酸殘基。在此 方面,催化性DNA分子包括一個確認功能部位及一個可形 成環帶之催化功能部位,其包括核酸序列 5t-X1X2X3GX4CX5X6X7GACX8X9-3’(SEQ ID NO:29)。環帶是 一個内部膨起環帶。X!可結合受質核酸序列上的一個互補 核苷酸,其緊接在受質核酸序列上切割位置之下游,乂21是 胸腺核嘗或胍殘基,X3是胞喊淀核甞或胍殘基,X4是胞喊 87851 -16- 200413528 啶核甞或胸腺核甞殘基,X5是胞嘧啶核甞或胸腺嘧啶核苷 殘基,χ6是胞嘧啶核甞或胸腺嘧啶核苷殘基,x7是腺苷或 胍殘基,x8是腺甞或胸腺核甞殘基,且X9是結合至受質核 酸序列上一個互補核苷酸上,其距切割位置上游二個核苷 酸。 確認功能部位包括一個上游侧接區及一個下游侧接區, 上游側接區緊接著催化功能部位之5’,而下游侧接區緊接催 化功能部位之3’,如上文對可切割2’,3’核糖核苷酸之催化性 0 DNA分子所述。 在本發明=此方面之催化性DNA較佳具體實例中,X2是胸 腺核苷殘基,X3是胞嘧啶核苷殘基,X4是胸腺核苷殘基, X5是胸腺核甞殘基,X6是胸腺核甞殘基,X7是腺苷殘基, 且X8是腺苷殘基。在本發明此方面之催化性DNA較佳具體 實例之特殊實例中,環帶包含有5TCGTCTTAGACA 3’(SEQ ID NO:30) ° 如圖2C及9Β中所說明的,在某些較佳具體實例中,本發 φ 明此方面之催化性DNA分子包括:SEQ ID NO:ll,SEQ ID ΝΟ·12,SEQ ID N〇:13,SEQ ID NO:14,SEQ ID N〇:15,SEQ ID N〇」6,SEQ ID N〇:17,或 SEQ ID N〇:18。SEQ ID NO: 11-17不包括上游侧接區域,因為此區域是在固定序列 區中,其在展開過程中不許突變,如實例中所述。 本發明催化性DNA分子之核酸内切酶活性,通常涉及在 切割位置上磷酸酯键之水解切割。在本發明某些具體實例 中,受質核酸序列及催化性DNA分子為相同DNA分子之部 ~ 87851 -17- 200413528 份。 催化性DNA分子之核酸内切酶活性,通常由某些金屬之 存在而加強,尤其是二價陽離子,如圖12中所述。在某些 具體實例中,催化性DNA分子可催化2’,5’核糖核甞酸之切 割,且催化性DNA分子之活性可由Mg2+,Sr2+,Ca2+,或Ba2+, 尤其是Mg2+之存在而加強。在其他具體實例中,催化性DNA 分子可催化L-核糖核甞酸之切割,且催化性DNA分子之活 性可因Mn2+,Mg2+,Sr2+,Ca2+,Pb2+或Zn2+之存在而加強,籲 尤其是Mn2+及Mg2+。 本發明之=催化性DNA分子及受質核酸序列可包括核甞酸 -類似物。π核苷酸類似物”通常指與A,T,G,C或U在結構 上有異之嘌呤或嘧啶核苷酸,但有足夠之相似性可替代核 酸分子中之正常核苷酸。如此中所用的,’’核苷酸類似物π 包括不同的鹼基,不同或不尋常糖類(即非’’ 一般”呋喃核糖 之糖),如L-核糖替代D-核糖,或不同鹼基及不同的或不尋 常糖之組合。 φ 在各種具體實例中,本發明之催化性DNA分子可混合以 私 一或多種修飾或突變,包括此中所揭示之特殊催化性DN A 分子序列之加入,刪除及置換,其係利用技藝中熟知之方 法所引入。在不同具體實例中,此突變或修飾可利用產生 任意或特異突變或修飾之方法所產生。這些突變,如可改 變環帶,空間子區域或確認序列(或功能部位)之長度,或改 變核甞酸序列。在一催化上活性之酵素DN A分子内的一或 多個突變,可與第二催化上活性之酵素DNA分子内的突變 87851 -18- 200413528 組合,產生含有二種分子突變之新穎的酵素性DNA分子。 本發明之催化性DNA分子,依據分子之型式及功能,依 適當情況可有各種的長度及折疊型式。例如,催化性DNA 分子可長約15至約400或更多核苷酸,然而典型是不超過約 2 5 0個核甞酸,以避免因太大或難處理而限制分子之治療用 途。在某些具體實例中,本發明的催化性DNA分子包括不 超過約1 00個核甞酸。又在其他具體實例中,本發明之催化 性DNA分子長約20-75個核苷酸,較好長約20-65個核苷 φ 酸。其他較佳之催化性DNA分子長約10-50個核甞酸。在其 他應用上,=催化性DNA分子所呈現之構型可和”鎚頭式&quot;核 糖酶類似。此催化性DNA分子通常不超過約75-100個核甞 酸長,或約20-50個核甞酸長。 也應了解,本發明之催化性DNA分子可包括催化性DNA 分子之酵素活性部份,或可包括有一或多個突變之催化性 DNA分子,如有一或多個可形成鹼基對之序列或空間子不 存在或經修飾,只要此刪除,加入或修飾不會有害地破壞 春 分子如酵素般行為之能力即可。 ’’寡核甞酸或聚核苷酸’’通常指單或雙股核甞酸之聚合 物。如此中所用的”寡核甞酸π及其文法上相等物包括全範 圍之核酸。寡核苷酸通常指含有核糖核苷酸或去氧核糖核 甞酸直線股之核酸分子。確實之大小依許多因素而定,其 中接著依最終之使用條件而定,如技藝中所熟知的。 本發明之催化性核酸分子也包括有不同確認位置或功能 部位者。在各種具體實例中,這些改變的確認功能部位可 -19- 87851 200413528 在酵性核酸分子上提供獨特的序列專一性,包括此確認功 能部位。存在於確認功能部位之確實鹼基,可決定可發生 切割處之鹼基序列。受質核酸之切割發生在確認功能部位 之内。此切割可在受質切割序列上留下2’,3’或2’,3’-環狀磷 酸酯基,及在核甞酸上之5’羥基,其原先緊接在原先受質中 受質切割序列之3’。切割可再指向首選位置,係變化存在於 催化DNA分子之受質結合區(也稱為確認序列(内部引導序 列))中之驗基。見,Murphy et al·,Proc. Natl. Acad· Sci. USA 86· 9218-9222 (1989)。 癟 再者,加入聚胺可能有用,以助催化DNA分子及其受質 間之確認及結合。有用聚胺實例包括亞精胺,腐胺或是精 胺。在特殊具體實例中,濃度約1 mM之亞精胺是效的,而 約0.1 mM至約10 mM之濃度範圍也是有用的。 在各_不同具體實例中,本發明之催化性DNA分子具有加 強的或更臻完善之能力可切割核酸受質,較好是RNA受質。 如精藝者所了解的,酵素-催化之反應速率依受質及酵素濃 度而變化,且一般而言,可在高受質或酵素濃度時成平抑狀 &lt; 態。將此種作用納入考量,酵素催化之反應動力學可在以 下定義反應之術語中予以描述。 本發明催化性DNA分子加強的或更臻完善之切割RNA受 質之能力,可在切割反應中決定,其中在催化性DNA分子存 在下變化經標記RNA受質之量。切割受質之能力通常由催化 速率(Keat)除以邁里斯常數(Michaelis constant (Km)來定義。Hl) A single-stranded nucleic acid sequence that is not naturally generated by the substrate, and includes a pair of mutually active flags consisting of a first flag and a second flag (which can be directly or indirectly attached to oligonucleotides), of which the first flag Separated from the second flag by the above-mentioned non-naturally generated ribonucleic acid cleavage site, · W) —a forward primer that can be related to the first strand of the target nucleic acid sequence], part, mouth , And direct the synthesis of the target nucleic acid sequence in the nucleic acid sequence; and &quot; &quot; ν)-an opposite primer, including a region that can be combined with the target nucleic acid sequence, the second leg of the 3 foot content, In addition, the target nucleic acid sequence can be used to synthesize polynucleic acid in the reverse direction, and includes the complement of a catalytic single-stranded DNA molecule, wherein the catalytic single-stranded DNA molecule can cleave the acceptor nucleic acid sequence at the cutting position. &lt; Post-manipulation methods include incubating the incorporated components under expansion conditions to expand the target nucleic acid sequence. This results in the synthesis of catalytic single-stranded DNA molecules. The resulting synthesis catalyzes a single-stranded DNA molecule, and then cuts the acceptor nucleic acid sequence, which is the interaction between the first flag and the second flag. Then the first flag is detected, so that the target nucleic acid sequence is detected. In the exemplary embodiment of the method, the non-naturally occurring ribonucleoside d-position includes 2 ', 5' linked residues or L · enantiomer residues, such as the above-mentioned subject matter nucleic acid sequences of the present invention. Furthermore, the catalytic single-stranded molecule is preferably one of the above-mentioned catalytic single-stranded DNA molecules. The present invention also includes the use of direct development methods to generate nucleic acid molecules with predetermined catalytic activity 87851 -11- 200413528 to cleave single-stranded nucleosides including non-naturally occurring ribonucleotides. Therefore, in another aspect, the present invention A method for identifying catalytic DNA molecules with position-specific endonuclease activity is proposed, which is specific to the position of the non-naturally occurring ribonucleic core. The method includes constructing a double-stranded nucleic acid molecular library, which includes a non-naturally occurring ribonucleic acid cleavage site, and which includes a first sequence of nucleotide regions that may interact with the cleavage site S region. &lt; After capturing one strand of the double-stranded nucleic acid molecular library, a captured single-strand nuclear I knife library is provided. Next, the captured single-stranded nucleic acid knife library is grown under cleavage conditions so as to be able to cut at the cleavage position and release the cut nucleic acid molecules. Thereafter, the cleaved nucleic acid molecule is isolated, so that a catalytic DNA molecule having a position-specific endonuclease activity is identified, which is specific for a non-naturally occurring ribonucleotide cleavage position. 2. In the illustrated specific example, the method further includes expanding the cut nucleic acid knife and repeating the above-mentioned capture, cutting and separation steps between 50 and 50 times, L reed soil between 20 / person. The selectively amplified cleaved nucleic acid molecule can be arbitrarily large and sufficient to form a cleaved and cleaved nucleic acid molecule. The mutated and cleaved nucleic acid molecule is extended to capture, cleave, and isolate steps between 1 and 20 times. In the specific examples described, as shown in the following example, the method of cutting the diced pieces can be divided into two groups, so that the cleavage reaction must be more efficient so that the cleavage of the nucleic acid can be performed in the subsequent cutting step. occur. In the specific example, the 'non-naturally occurring ribonucleic acid cleavage position is 2,3 _link &lt; guanine nucleotide ribonucleotide cleavage position or L- adenine nucleotide ribonucleotide cleavage position . Ben Gengming also produced kits, including catalytic DNA molecules and / or receptors 87851 -12-200413528, which have non-naturally occurring ribonucleotide. In another embodiment, the set includes primers, polymerases, and other reagents useful in the methods of the present invention. [Embodiment] The present invention provides a catalytic single-stranded DNA molecule, which has position-specific endonuclease activity, and is specific for the cleavage position in the subject nucleic acid sequence, wherein the cleavage position includes an unnaturally generated single-stranded DNA molecule. RNA, or a combination thereof. Catalytic DNA molecules include more than one circular band region and more than one binding region, wherein the binding regions can bind the complementary sequence of the acceptor nucleic acid sequence. In a preferred embodiment, the non-naturally occurring single-stranded nucleic acid includes 2 ', 5 · -linked residues, preferably 2', 5'-linked adenine nucleotides, or most preferably 2 ', 5 '-Linked guanine nucleotide ribonucleotide residues, or L-enantiomeric residues, preferably L-enantiomer 3', 5 ^ -linked adenine ribonucleotide ribonucleotide residues base. As used herein, the term `` catalytic DNA molecule '' is used to describe a nucleic acid containing DNA, which acts as an enzyme. In this disclosure, "deoxyribonuclease" includes endonucleases and endonucleases. Enzymes, however, deoxyribonuclease has endonuclease activity. Other terms that can be used interchangeably with deoxyribonuclease are "enzymatic DNA molecules", "nDNA enzyme" or "deoxyribonuclease π", which should be understood to include Its enzyme-active part, whether synthetic or derived from an organism or other source. The catalytic DNA molecule of the present invention generally includes a DNA molecule that is targeted to a specific oligonucleotide or is complementary to a substrate in a substrate-binding region; this molecule also has enzyme activity and has specific cleavage oligonucleotide Qualitative activity. Enzymatic DN A molecules can cleave oligonucleotide substrates between molecules. This complementary function allows the enzymatic DNA molecule to fully hybridize with the receptor oligonucleotide, and intermolecular cleavage of the receptor -13-87851 200413528 can occur. Although 100% complementarity is preferred, &lt; complementarity in the range of 75-100%, such as 90%, 95%, and 99% complementarity are also useful and are encompassed by the present invention. The enzymatic DNA molecule of the present invention may be further described as having nuclease or ribonuclease activity. These terms are used interchangeably herein. As used herein, "enzymatic nucleic acid" includes an enzyme RNA or DNA molecule, an enzyme RNA-DNA polymer, and an enzyme active moiety or derivative thereof, although an enzyme DNA molecule is a type of the enzyme-active molecule of the present invention. In one aspect, the present invention proposes a catalytic single-stranded DNA molecule that can cleave the mitochondrial M sequence, which includes 2,5, -linked ribonucleotides, such as 2 ', 5'-linked adenine Nucleic acid or guanine ribonucleotide ribonucleotide residues, as shown in Figure 14A. The catalytic DNA molecule of this aspect of the present invention has a catalytic function site and a confirmation function site (15, 25). The sexual function part includes a downstream region, which includes the sequence S'-XiX ^ CTCGGAGXy '(SEQ ID NO: 28), which can form an annulus; a central stem-stalk region is immediately adjacent to 5 of the downstream annulus, and has The sequence, and an upstream region immediately adjacent to the central stem region, can form a loop with the sequence 5'-GGGA-3 '. The loop formed in the catalytic DNA molecule in this aspect of the present invention is internally expanded. Circumferential zone. &Amp; is the required cell X2 is a nucleoside residue, X2 is a cytosine nucleoside or thymosine nucleoside residue 'and &amp; can be bound to the nucleic acid sequence of the complementary nuclear acid, two nucleotides upstream of the cleavage position. Z4 may Binds to and / or forms a oscillating pair on the acceptor nucleic acid sequence, immediately downstream of the cleavage site. In some specific examples, Z2 is a cytosine nucleoside residue, and 4 is a vein 87851- 14- 200413528 residues. The confirmatory function includes an upstream flanking region (25) and a downstream flanking region (15). The upstream flanking region (25) is immediately adjacent to the upstream loop zone: and the downstream side The junction region (5) is immediately downstream of 3. In various embodiments of the present invention, the side junction region has various length changes. Therefore, the example of the side junction region may include from a single nuclear to 75 nuclear ^ : Acid. 'However, it should be understood that the lateral region of about 3_25 nuclear #acid length, preferably about 3_15 nuclear acids, and preferably about 3_ιο nuclear acids are characteristic. In various specific examples In the flanking region, individual nuclear fenamic acids can form complementary test pairs with the nuclear acid of the acceptor molecule; In the conventional examples, non-standard paired interactions can be formed. Complementary and non-standard pairings are also within the scope of the specific examples disclosed in the present invention. As described in some specific examples, the present invention proposes a catalyst Single-stranded cricket molecule that can cleave the acceptor nucleic acid sequence, which includes 2,5, linked ribonucleosides, preferably 2,5, _ linked adenine or ornithine Residues, as shown in Figure 14A. However, the methods disclosed herein related to the use of direct expansion can be used to catalyze more catalytically single-stranded DNA molecules that are not naturally occurring nucleic acids. For example, catalytic single-stranded molecules can Cutting such as: 2'_deoxy_2, _amino group core #acid, 2, _deoxy. Wide-band nuclear material, nuclear thioscale acid, nuclear tritium, · 15,) phosphoramidate, arabinose #, And various RNA analogs containing Jing Xiu's test base. In another embodiment, the catalytic molecules of the present invention may further include a third lateral region. In some specific examples of the present invention, the catalytic DNA molecule may further include _ $ 夕 ^ 祜 or more variable or, the "spacer" region is between the flanking regions. 87851 -15 · 200413528 In the present invention In some specific examples of this aspect, the downstream loop has a sequence of 5'-CCACTCGGAG-3f (SEQ ID NO: 22). In some specific examples, the upstream loop has a sequence of 5'-YGGGA-3 ', Wherein Y is 0 to 5 nucleotides. For example, Y may include the sequence 5'-TTA-3 ', for example, Y may be 5'-GTTTA-3, (SEQ ID NO: 19), 5, -GCTTA- 3, (SEQ ID NO: 20), 5f-GTTA-3, (SEQ ID NO: 21). In some specific examples, z4 is a guanidine residue, Xi is a cytosine nuclear pyrene residue, and X2 is Cytosine nuclear pyrene residues, and X3 is a guanidine residue. In another preferred embodiment as illustrated in Figures 2a, 2b and 9a ^, the catalytic DNA molecule includes SEQ ID NO: 1, SEQ ID NO: 2. SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 10. SEQ ID NO: 1-8 does not include the upstream flanking region, so this flora A fixed sequence region that is not allowed to be mutated during expansion, as described in the example. In a particular embodiment, the catalytic DNA includes SEQ ID NO: 10. In another aspect illustrated in Figure 14B, the present invention A catalytic single φ strand DNA molecule is proposed, which can cleave the acceptor nucleic acid sequence and column on the L-ribonucleic acid residue, such as 1,5'-linked L-adenine nucleotide ribonucleic acid residue In this regard, a catalytic DNA molecule includes a confirmatory functional site and a catalytic functional site capable of forming a loop band, which includes the nucleic acid sequence 5t-X1X2X3GX4CX5X6X7GACX8X9-3 '(SEQ ID NO: 29). The loop band is an internal expansion X! Can bind a complementary nucleotide on the acceptor nucleic acid sequence, which is located immediately downstream of the cleavage site on the acceptor nucleic acid sequence, 乂 21 is the thymic nucleus or guanidine residue, and X3 is the cell Nuclear pyrene or guanidine residues, X4 is the cytosine 87851 -16- 200413528 pyrimidine or thymidine residue, X5 is the cytosine or thymidine residue, and χ6 is the cytosine or thymidine core Glycoside residue, x7 is adenosine or guanidine residue, x8 is adenosine or thorax Nucleic acid residues, and X9 is bound to a complementary nucleotide on the acceptor nucleic acid sequence, two nucleotides upstream from the cleavage position. Confirm that the functional site includes an upstream flanking region and a downstream flanking region, upstream The flanking region is immediately after 5 'of the catalytic function site, and the downstream flanking region is immediately after 3' of the catalytic function site, as described above for the catalytic 0 DNA molecule that can cleave 2 ', 3' ribonucleotides. In the preferred embodiment of the present invention = catalytic DNA in this aspect, X2 is a thymine residue, X3 is a cytosine residue, X4 is a thymine residue, X5 is a thymus nucleoside residue, X6 Is a thymic nucleus residue, X7 is an adenosine residue, and X8 is an adenosine residue. In a specific example of a preferred specific embodiment of the catalytic DNA in this aspect of the invention, the loop contains 5TCGTCTTAGACA 3 '(SEQ ID NO: 30) ° As illustrated in Figures 2C and 9B, in some preferred specific examples In the present invention, the catalytic DNA molecules of this aspect include: SEQ ID NO: 11, SEQ ID NO.12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID N O "6, SEQ ID NO: 17, or SEQ ID NO: 18. SEQ ID NOs: 11-17 do not include the upstream flanking region because this region is in a fixed sequence region and it must not be mutated during expansion, as described in the examples. The endonuclease activity of the catalytic DNA molecule of the present invention generally involves the hydrolytic cleavage of a phosphate bond at the cleavage site. In some specific examples of the present invention, the acceptor nucleic acid sequence and the catalytic DNA molecule are part of the same DNA molecule ~ 87851 -17- 200413528. The endonuclease activity of catalytic DNA molecules is usually enhanced by the presence of certain metals, especially divalent cations, as shown in Figure 12. In some specific examples, the catalytic DNA molecule can catalyze the cleavage of 2 ', 5' ribonucleic acid, and the activity of the catalytic DNA molecule can be enhanced by the presence of Mg2 +, Sr2 +, Ca2 +, or Ba2 +, especially Mg2 +. In other specific examples, the catalytic DNA molecule can catalyze the cleavage of L-ribonucleic acid, and the activity of the catalytic DNA molecule can be enhanced by the presence of Mn2 +, Mg2 +, Sr2 +, Ca2 +, Pb2 + or Zn2 +, especially Mn2 + And Mg2 +. The catalytic DNA molecule and the acceptor nucleic acid sequence of the present invention may include a nucleotide-analog. A "π nucleotide analog" generally refers to a purine or pyrimidine nucleotide that is structurally different from A, T, G, C, or U, but has sufficient similarity to replace a normal nucleotide in a nucleic acid molecule. As used in this article, `` nucleotide analogs π include different bases, different or unusual sugars (ie, non-'' normal '' ribofuranosyl sugars), such as L-ribose instead of D-ribose, or different bases and A combination of different or unusual sugars. φ In various specific examples, the catalytic DNA molecules of the present invention can be mixed with one or more modifications or mutations, including the addition, deletion, and substitution of the special catalytic DNA molecular sequence disclosed herein, which is based on the use of technology Well-known methods were introduced. In various specific examples, this mutation or modification can be produced by a method which generates any or specific mutation or modification. These mutations, for example, can change the length of loop bands, space subregions or confirmation sequences (or functional sites), or change the nucleotide sequence. One or more mutations in one catalytically-active enzyme DNA molecule can be combined with mutations in the second catalytically-active enzyme DNA molecule 87851 -18- 200413528 to produce novel enzyme properties containing two molecular mutations DNA molecule. The catalytic DNA molecule of the present invention may have various lengths and folding patterns depending on the type and function of the molecule, as appropriate. For example, catalytic DNA molecules can be about 15 to about 400 or more nucleotides in length, but typically no more than about 250 nucleotides, to avoid limiting the therapeutic use of the molecule because it is too large or difficult to handle. In certain embodiments, the catalytic DNA molecules of the present invention include no more than about 100 nucleotides. In still other specific examples, the catalytic DNA molecule of the present invention is about 20-75 nucleotides long, preferably about 20-65 nucleoside φ acids. Other preferred catalytic DNA molecules are about 10-50 nucleotides in length. In other applications, the configuration of the catalytic DNA molecule can be similar to the "hammerhead" ribozyme. This catalytic DNA molecule usually does not exceed about 75-100 nucleotides, or about 20-50 It should also be understood that the catalytic DNA molecule of the present invention may include the enzyme active portion of the catalytic DNA molecule, or may include one or more mutated catalytic DNA molecules, and if one or more of them can form The base pair sequence or space does not exist or has been modified, as long as the deletion, addition or modification will not detrimentally damage the ability of spring molecules to behave like enzymes. "Oligonucleotide or polynucleotide" Usually refers to a polymer of single or double stranded nucleotides. As used herein, "oligonucleotide π and its grammatical equivalents include the full range of nucleic acids. Oligonucleotides generally refer to nucleic acid molecules containing ribonucleotides or deoxyribonucleic acid linear strands. The exact size depends on a number of factors, which in turn depends on the end use conditions, as is well known in the art. The catalytic nucleic acid molecules of the present invention also include those having different confirmed positions or functional sites. In various specific examples, these altered confirmatory functional sites can provide unique sequence specificity on fermented nucleic acid molecules, including this confirmatory functional site. The exact bases present in the confirming functional site determine the sequence of bases where cleavage can occur. The cleavage of the host nucleic acid occurs within the identified functional site. This cleavage can leave 2 ', 3' or 2 ', 3'-cyclic phosphate groups on the cleavage sequence of the substrate, and a 5' hydroxyl group on the nucleic acid, which was originally directly adjacent to the original substrate. 3 'of the cleavage sequence. The cleavage can then be directed to the preferred location, which is a change in the test substrate present in the receptor-binding region of the catalytic DNA molecule (also known as the confirmation sequence (internal guide sequence)). See Murphy et al., Proc. Natl. Acad · Sci. USA 86 · 9218-9222 (1989).瘪 Furthermore, the addition of polyamines may be useful to facilitate the identification and binding of DNA molecules and their substrates. Examples of useful polyamines include spermidine, putrescine or spermine. In a specific embodiment, spermidine is effective at a concentration of about 1 mM, and a concentration range of about 0.1 mM to about 10 mM is also useful. In various specific examples, the catalytic DNA molecules of the present invention have enhanced or more perfect ability to cut nucleic acid substrates, preferably RNA substrates. As understood by the artisan, the rate of enzyme-catalyzed reaction varies depending on the substrate and enzyme concentration, and generally, it can be flattened &lt; at high substrate or enzyme concentrations. Taking this effect into account, the kinetics of the enzyme-catalyzed reaction can be described in the terms that define the reaction below. The ability of the catalytic DNA molecules of the present invention to enhance or improve the ability to cut RNA substrates can be determined in the cleavage reaction, wherein the amount of labeled RNA substrates is changed in the presence of the catalytic DNA molecules. The ability to cleave a substrate is usually defined by the catalytic rate (Keat) divided by the Michaelis constant (Km).

Kcat符號代表當受質趨近飽和值時之酵素反應最大速率。KM - -20- 87851 200413528 代表反應速率為最大值一半時之受質濃度。 例如,本發明之κΜ及Kcat值可以實驗決定,其中受質濃 度[S]超過催化性DNA分子之濃度[E]。在受質濃度範圍下之 最初反應速率(v〇)由最初直線相中估計,通常是反應之前 5%以下。以最小平方法將數據點合於理論直線,利用方程 式:ν=-ΚΜ(ν〇/[3])+νπ^χ。因此,由反應之最初速率,v0, 及受質濃度[S],可決定Keat及KM。 在各種不同具體實例中,本發明之催化性DNA分子具有 鲁 加強的或更臻完善之能力可切割有非自然生成核糖核苷酸 之核酸受質、在許多具體實例中,催化性DNA分子切割RNA -受質之加強的或更臻完善之能力,顯示出至少50倍之區域 選擇性或對映體。典型而言,催化性DNA分子呈現之Km值 少於約1 μΜ,或在某些具體實例中為少於約100 nM。 精藝者應了解,催化性DNA分子切割核酸受質之加強的 或更臻完善之能力,可依本發明試管内展開方法中所應用 之選擇限制而變化。 · 在以下實例中進一步描述變化本發明去氧核糖酶及其他 . 酵素性DNA分子及核酸酶之各種方法。 本發明也提出含有本發明一或多種型式或催化性DNA分 子族群之組合物,如不同型式或族群可確認並切割不同的 核苷酸序列。組合物中進一步可含有含核糖核酸之受質。 依據本發明之組合物可進一步鉛離子,鎂離子,或其他二 價或單價陽離子,如此中所討論的。 較好,催化性DNA分子之含量為約0.05 μΜ至約2 μΜ。典 87851 -21 - 200413528 型而言,催化性DNA分子含量為催化性DNA分子比受質為 由約1:5至約1:50。較典型地,催化性DNA分子存在於組合 物中之濃度為約0.1 μΜ至約1 μΜ。甚至,組合物中可含有 催化性DNA分子濃度為約0.1 μΜ至約0.5 μΜ。受質在組合 物内之含量為約0.5 μΜ至約1000 μΜ。 如先前所述,鎂離子,鉛離子或另外適合的單價或二價 陽離子,在組合物中之含量可由約1-100 mM。較妤,所選 定之離子於組合物中之含量為約2 mM至約5 0 mM,以約5 mM為特佳。精藝者了解,100 mM離子濃度僅為其來源(如 鎂)在水性溶液中之溶解度限度所局限,且希望催化性DNA 分子可以具活性之構型存在於相同組合物中。納入核酸切 割條件内之最適宜陽離子濃度,可由在特定陽離子濃度下 所切割之單股核酸含量而容易地決定。精藝者應了解,最 佳濃度依所應用之特殊催化性DNA分子而變。 經由變化催化性DN A分子確認功能部位之核菩酸序列, 所揭示之方法可在任何核甞酸序列上切割。如此在所選定 之位置上並無限制酶位置下,仍可切割單股核酸。 催化性DNA分子之有效劑量,是切割單股核酸内預定鹼 基序列所必需之量。典型而言,催化性DNA分子之含量為 DNA分子與受質切割位置之莫耳濃度比例由1至20。此比例 可予以變化,依所處理之長度及在所應用之特殊核酸切割 條件下,特殊催化性DNA分子之效率而定。 因此,在一個具體實例中,處理通常涉及在水溶液中摻 和含有RNA之受質及酵素以形成切割摻和物,再將如此形 -22- 87851 200413528 成之摻和物在RNA切割條件下維持一段充份時間,使催化 性DNA分子可切割RNA雙質,在尺]^八中任何預定的核甞酸 序列上。在各種具體貫例中’也提供離子源,如單價或二 價陽離子,或二者。 在本發明的一個具體實例中,已決定出催化性DNA分子 切割單股核酸所需之時間。時間由約1分鐘至約24小時,且 依反應物之濃度及反應溫度而定。通常,此時間由約1 〇分 至約2小時’如此牲化性DNA分子可在任何預定之核嘗酸 序列上切割單股核酸。 本發明進一步包括核酸切割條件,包括約pH 6〇至約pH 9.0之pH值。在一個具體實例中,pH值是由約pH 6.5至pH 8.0。在另一具體實例中,pH儘量是生理條件,即pIi是約 7·〇-7·8,以pH 7.5為最典型。 精藝者應明白,本發明方法可在大範圍pH值下操作,只 要用於核酸切割之pH值使催化性DNA分子可維持在活性構 型下即可。呈活性構型之催化性DNA分子可以其可在預定 核苷酸序列上切割單股核酸之能力而被容易地測及。 在各種具體實例中,核酸切割條件也包括各種溫度範 圍。如先前所述,尤以符合生理條件之溫度範圍為佳,然 而符合個別應用之溫度範圍也包括於此。在一個具體實例 中,溫度範圍由約15°C至約60°C。在另一變化中,核酸切 割條件包括由約30°C至約56°C之溫度。又在另一變化中, 核酸切割條件包括由約35°C至約50°C。又在一較佳具體督 例中,核酸切割條件包括由約37°C至約42°C之溫度範圍。 87851 -23 - 200413528 溫度範圍符合核酸切割條件僅受限於欲求之切割速率,及 在特殊溫度下特定催化性〇]^八分子之穩定性。 本發明也描述表現載體,其中包括編碼本發明催化性 驗分子並位在載體内之核酸片段,較妤其方式使催化性 DNA分子可在標的細胞内(如植物或動物細胞)。 如上逑,本發明《催化性DNA分子可切刻受質核酸序列 (圖14A及14B(上股))其中包括非自然生成之核糖核芬酸緊 接在切割位置上游(箭號),其側接可與結合區結合之互補序 列,也在此稱為側接區,屬催化性DNA分子。受質核酸序 列本身為本發明另一方面。在某些較好具體實例中,受質 核酸序列之非自然生成之核糖核甞酸是2,,5,核糖核苷酸,如 腺嗓呤核苷酸或鳥嗓呤核甞酸殘基。在另一具體實例中,受 質核酸序列之非自然生成核糖核菩酸,是3,,5,核糖核黎酸之 L-對映體,最好是鳥嘌呤核甞酸殘基。 在另一方面,本發明提出如上文所討論之非自然生成之單 股核酸受質,其包括由第一標幟及第二標幟所組成之交互作 用標幟對’各自為—切割位置所分隔。標幟或直接或間接黏 附至單股核酸受質。如上文所討論的,切割位置包括2,,5,_ 連結之殘基或L-對映體殘基。第一標幟可能是螢光部份,且 第二標幟是驟冷劑,其中當螢光部份及驟冷劑均黏附至單股 核酸受質時,騾冷劑可騾冷螢光部份。 本發明之受質核酸序列及催化性DNA分子,本質上並無對 應邯份。其在切割告知者分子上,特別可充作生化工具,例 如含有上述非天然核糖核苷酸之雙重標記的受質核酸序 87851 -24- 200413528 列。此告知者不為生物核酸酶所切割。 因此,本發明催化性核酸分子及受質核酸序列的一個應 用,是有關定量PCR之方法,稱之為’’DzyNA-PCR’’(圖示於圖 16 ;見 Todd,A. V·,et al·,Clin。Chem. 46, 625-630 (2000),以 全文列為本案參考;見Applegate et al. Clin. Chem.,48; 133 99-1488 (2002),已全文列為本案參考。)此方法應用可 切割RNA之DNA酵素以切割告知者寡核苷酸,其中含有螢 光標幟及騾冷劑於切割位置二側。DNA酵素之序列由黏附 φ 至二個PCR引子之一之51端之互補序列所編碼。當PCR擴大 作用進行時=,可產生功能性DNA酵素套數,其可切割告知 者分子,由是分開螢光標幟及騾冷劑,並產生具有螢光之 訊號。在現存之方法中因為告知者含有天然的核糖核苷 酸,其易受生物核糖核酸酶之切割。然而,當方法中所利 用的是本發明可切割告知者分子内非天然核糖核甞酸之催 化性DNA分子時,非並非如此。並無已知之生物核酸酶是 可切割2’,5’-連結的鳥嘌呤核甞酸或L-核糖核甞酸。 φ 因此,本發明的另一方面是提出一種方法,其中包括在 擴大緩衝溶液中掺和以下的组份: i) 核fei樣品, ii) 聚合酶; m)受質非自然生成之單股核酸序列,其中含由第一標幟 及第二標幟所組成,並直接或間接地黏附至寡核苷酸之交 互活性之標幟對,其中的第一標幟與第二標幟為非自然生 成之核糖核菩酸切割位置所分隔,如上文所討論的; -25- 87851 200413528 Π〇一個向前之引子,可結合至標的核酸之第一股3,部 份,並指令標的核酸序列以向前之方向行聚核苷酸合成;及 V)—個反向引子,包括可結合至標的核酸序列第二股3, 部份之區域,並可指令標的核酸序列以反向方向行聚核I菩 fe之合成,且包括依據本發明之催化性單股Dn a分予之互 補體,其中的催化性單股DNA分子可在切劄位置上切割^ 質核酸序列。 之後方法包括在擴大條件下培育所摻和之組份,以擴大 標的核酸序列。此使得催化性單股DNA分子可合成。所人 成之催化單股DNA分子可再切割受質核酸序列,由是釋出 第一及第二標幟之交互作用。第一標幟再予以偵測,可測 出標的核酸序列。 在方法的某些具體實例中,非自然生成之核糖核苷酸切 割位置包括2’,5’連結的殘基或L-對映體殘基,如上文對本發 明受質核酸序列所述一般。再者,催化性單股DNA分子通常 為上述較佳之催化性單股DNA分子之一。例如,當核糖核菩 酉艾切割位置是2 ’,51 -連結之腺嗓吟核菩酸或鳥p票呤核甞酸核 糖核菩殘基時’催化性DNA分子可包括一個確認功能部位 及一個催化功能部位,可形成一個環帶其中包括有核酸序列 S’-XiXAsGXWXsXsXAACXsXrS,(SEQ ID N〇:29)。 本發明方法用於偵測標的核酸序列所用之擴大步驟,通 常是聚合酶連鎖反應(PCR),如技藝中所熟知的,且述於如 口.8.?&amp;1:.]^〇3.4,683,195,4,683,195及4,800,159中,已全文列 為本案參考。當以PCR為擴大方法時,聚合酶是水生棲熱 -26 - 87851 200413528 菌(Thermus aquaticus,(Taq)) DNA聚合酶。 核酸樣品其實可為任何的核酸。在某些具體實例中,核 酸樣品可分離自天然來源,如,核酸可為基因體DNA或 RNA,如 mRNA(見 Applegate et al。(2002))。 在偵測標的核酸序列上,PCR以外的其他擴大方法也可 應用於本發明中,限制條件為擴大方法中所用的核酸分子 要有擴大引子及催化性DNA分子之互補體。 在一個方法中,PCR方法以自動化方式進行,其中利用 對熱穩定之酵素。在此方法中,反應混合物經由變性、引 子回冷,及今成等循環步騾,於是在聚合酶合成催化性DNA 分子中可切割核酸受質。可進行此方法之商品化設備可得 自Perkin-Elmer Cetus儀器公司,其設計成可使用熱穩定性 酵素。 在偵測標的核酸時採用納有本發明受質核酸序列之標幟 及標幡對之方法,可見US Pat No. 6,214,979,其以全文列 為本案參考。適用於本發明方法中之各種標幟,以及其中 納有受質核酸序列之方法,均是技藝中所熟知的,標幟包 括下列但不限於此:酵素(如驗性磷酸酶及萍菜過氧化酶), 及酵素受質,具放射活性之原子,螢光染料,發色團,化 學發光標幟,電化發光標幟,如Origin™ (Igen),具特殊結 合配對之配體,或其他任何可相互作用以加強、改變或消 除訊號之標幟。 ’’標幟&quot;如此中所用的,指可提供可被測及訊號(較好是可 定量的)之任何原子或分子,且其可黏附至核酸或蛋白質。 -27- 87851 200413528 t幡經由螢光、放射活性,比色法,重力計,X-射線繞射 或吸收作用,磁化,酵素活性等可提供可測及之訊號。 構築本發明經標記探針時,可充作標幟使用之螢光團包 括·蒼丹明(rhodamine)及衍生物,如Texas Red,螢光素及 衍生物’如5·溴甲基螢光素,Lucifer Yellow,IAEDANS, 7-Me2,N_香豆素-4_醋酸酯,7-OH-4_CH3-香豆素-7·醋酸 酿’ 7-NH2-4CH3-香豆素-3_醋酸酯(AMCA),單溴巴奈 (monochromometer),芘三磺酸酯,如 Cascade Blue,及單溴· 二甲基-氨巴奈。一般而言,以有寬大的斯托克司位移(st〇kes shifts)之螢光團為較佳,如此利用有濾膜之螢光計而非單色 計進行,並用增加偵測效率。 如上述’通常在單一受質核酸序列上使用二個交互活性 之標幟,但要考量標幟在受質核酸分子上要保有適當之間 隔距離,使標幟在受質核酸序列水解中可分離。在較佳具 體實例中,可以螢光團及騾冷劑標記受質核酸序列。當使 用凡正的文質核酸序列時,螢光團之螢光可以騾冷劑驟修 〜在本方法中,雙質核酸序列在螢光團及騾冷劑間切割,: 使邊光團可凡全呈現其螢光。標幟之交互作用,如榮光之 辱τ 7 及第一及第二標幟間(如螢光團及騾冷劑)能量之轉 和Q此螢光團之發射光譜及騾冷劑之吸收光譜必需重 ® °本發明此方面之較佳組合是螢光劑-若丹明590,加上 驟冷劑-結晶紫。 為偵測已水解之經標記探針,可利用如榮光極化現象, 此技術以分子傾覆(molecular _biing)為基礎,可區分大及_ 87851 -28 - 200413528 小分子。大分子(如完整之經標記探針)在溶液中之傾覆較小 分子慢,一旦螢光部份與重點分子(如經標記探針之端) 連結,此螢光部份可依分子傾覆為基礎而測定(及區別),因 此區分出完整的及經水解的探針。本發明方法中,若在PCR 中採用經標記之核酸序列受質,則標幟可在PCR之中直接 , 測得,或在PCR後才測知。 當標幟對之一是螢光標幟,則可使用針對螢光標記物分 析所設計的各種品化設備,如ABI Gene Anglyzer分析加有 春 螢光團之微沙量(attomole quantities) DNA,如ROX (6瘦基 -X-若丹明)1若丹明-NHS,TAMRA (5/6•羧基四甲基若丹明 NHS),及FAM(5’·羧基螢光素NHS)。這些化合物可由經過 探針5’-烷基胺之醯胺鍵黏附至探針。其他有用的螢光團包 括CNHS (7-胺基-4-甲基·香豆素-3-醋酸,琥珀醯亞胺酯), 其也可經由醯胺键黏附。 利用商品化之氨基亞磷酸酯試劑,吾等可產生經適當保 護之氨基亞磷酸酯在5’或3’末端含有官能基(如硫醇或一級 籲 胺)之受質核酸序列,且可利用上述之策略標記之··如PCR j Protocols: A Guide to Methods and Applications (Innis et al.? eds. Academic Press,Inc·,1990) 〇 本發明也包括利用直接展開方式,產生核酸分子之方 法,其具有預定之催化活性可切割單股核酸,其中包括非 自然生成之核糖核甞酸。酵素性DNA分子直接的試管内展 開方法總覽可見:1^?&amp;1&gt;^〇.6,3265174之實例1,其以全文 列為本案參考。 87851 -29- 200413528 試管内選擇及試管内展開技術,在即使無其組成或結構 之先前技術下仍可分離新的催化劑。此方法已被用於分離 出有新穎催化特性之RNA酵素。例如,在雜陽離子可行自 溶切割之核糖酶,已可自任意的tRNAPhe》子滙集中衍生 (Pan and Uhlebeck,Biochemistry 31: 3887-3895 (1992))。已 分離出I群之核糖酶變型,其可切割DNA (Bedudry and Joyce, Science 257:635_641 (1992))或其有不同的金屬依賴性 (Lehman and Joyce, Nature 361: 182-185 (1993))。由任意 RN A · 序列之匯集中,可得可催化類·聚合酶反應之分子(Bartel and Szostak/Science 261: 1411-1418 (1993)) ° 因此,在另一方面,本發明提出鑑定催化性DNA分子之 方法,其具有位置-專一性核酸内切酶活性,且為非自然生 成之核糖核甞酸切割位置所特異的。方法中包括構築雙股 核酸分子庫,其中包括非自然生成之核糖核苷酸切割位 置,且包括一區任意序列之核苷酸,其潛在上可與切割位 置區交互作用。接下來,捕獲雙股核酸分子庫之一股,可籲 提供所捕獲之單股核酸分子庫。接下來,捕獲之單股核酸 ; 分子庫,再於切割條件下培育,使可在切割位置處切割, 並釋出已切割之核酸分子。之後分離已切割之核酸分子, 可鑑定出具有位置-專一性核酸内切酶活性之催化性DNA 分子,其係與非自然生成之核糖核甞酸切割位置特異的。 在某些具體實例中,方法進一步包括擴大所切割之核酸 分子並重複捕獲,切割及分離步騾達1至50次,通常1至20 次。經選擇性切割之核酸分子,可任意地突變以形成突變 87851 -30· 200413528 疋切割核酸分子。經突變之切劃核酸分子再擴大此捕獲, 切割及分離步驟達1至20次左右。 在某些具體貫例中,非自然生成之核糖核苷酸切割位置 是2’,5’-連結之鳥嘌呤核苷酸核糖核苷酸切割位置,或^腺 甞核糖核甞酸切割位置。 貪例中說明構築雙股核酸分子庫之方法,其包括非自然 生成之核糖核苷酸切割位置,且其中有任何序列之核菩酸 區域’其潛在地可與切割位置區域交互作用。在此非限制 實例中,庫中之雙股核酸分子可由化學合成重疊的寡核答 酸對而產生配對中的第一寡核苷酸以非自然生成之核糖 核苷酸切割位置合成,第二寡核菩酸可具有與配對中第一 寡核苷酸互補之序列區,以及任意序列核甞酸區。第一及 第一暴核甞酸在條件下混合,使互補核酸序列可結合。第 一寡核甞酸可在引子伸展反應中延伸,利用DNA-依賴型 DNA聚合酶,如以反轉錄酶來合成庫中之雙股分子,但亦 不限於此。 也可使用聚合酶連鎖反應構築庫。然而,但要小心以免 在PCR之高溫條件下打斷核糖連結。並於另一方法,庫之 構築可由化學合成二股而成。 如圖1B所示,可構築寡核苷酸對,如此由寡核苷酸對形 成之雙股核酸分子可形成一個髮夾環帶,且任何序列之核 苷酸區域可潛在地與切割位置交互作用。在某些具體實例 中’髮夾環帶距切割位置6個核甞酸處。然而,雙股核酸分 子未必要形成髮夾環帶(如見,Brraker &amp; Joyce,1994,已全 87851 -31- 200413528 文列為本案參考;見Breaker &amp; Joyce,1995,已全文列為本 案參考,為包括一個髮夾在内之雙股核酸分子另一實例)。 為不受理論所縛,咸信髮夾可提供優點,因此咸信其可使 展開朝向尋求答案,其中涉及華特森-克利克確認功能部 位,如此將所生成之酵素普及至不同受質序列可更為容易。 , 如上述,鑑定本發明催化性DNA之方法通常包括在重複 的選擇循環中於至少一次係突變經選擇性擴大之經切割核 酸分予。突變核酸分子的許多方法是技藝中已知的。例如,_ 核酸分子之突變可經由化學修飾,納入任意突變之寡去氧 核甞酸,或經由聚合酶不正確烤具(如見Cadwell and Joyce, in PCR Methods and Applications 2: 28-33 (1992); Cadwell and Joyce,PCR Methods and Applications 3 (Suppl.): S136-S140 (1994); Chu? et al.? Virology 98: 168 (1979); Shortle, et al.5 Meth. Enzymol. 100: 457 (1983); Myers, et al.5 Science 229: 242 (1985); Matteucci, et al.? Nucleic Acids Res. 11: 3113 (1983); Wells, et al.? Gene 34: 315 (1985); McNeil, et · al.5 Mol. Cell. Biol. 5: 3545 (1985); Hutchison, et aL? PNAS · USA 83; 710 (1986); Derbyshire,et al·,Gene 46: 145 (1986); Zakour,et al·,Nature 295: 708 (1982); Lehtovaara,et al” Protein Eng. 2: 63 (1988); Leung, et al.? Technique 1: 11 (1989); Zhou,et al·,Nucl. Acids Res. 19: 6052 (1991)),如高 度致突變之PCR13。 如上述,本發明此方面之方法包括捕獲雙股核酸分子庫 的一股。捕獲雙股核分子之許多方法是技藝中已知的。 -32- 87851 200413528 基因產物可捕獲或另外選擇,如利用其與配體結合之能 力,或進行化學反應之能力(如見,Joyce Id· (1989); Robertson and Joyce, Nature 344: 467 (1990); Tuerk, et al.? Science 249: 505 (1990))。例如,雙股核酸分子可包括生物 素部份,如此其可為含有鏈抗生物素蛋白之固相載體所捕 獲。 如上述,鑑定催化性DNA分子之方法,依據本發明方法 包括擴大核酸分子。擴大核酸分子的許多方法均是技藝中 _ 已知的。例如,核酸分子之擴大可採往復引子法(reciprocal primer)如聚洽酶連鎖反應(PCR)。(如見 Saiki,et al.,Science 230: 1350_54 (1985); Saiki,et al·,Science 239: 487-491 (1988))。另外,核酸擴大可利用自我·持續序列複製(3SR) 來進行。(如見 Guatelli,et al·,PNAS USA 87: 1874 (1990), 其揭示已列為本案參考)。 如上述,鑑定催化性DNA之方法,依據本發明通常包括 在可於切割位置上切割之條件下,培育單股核酸分子庫。春 如精藝者所明白的,可在切割位置上切割之條件,依所企 求之特異催化活性而定。例如,當催化活性指的是切割非 自然生成核糖核苷酸之能力時,條件可包括:以三份3〇〇微 升反應緩衝溶液(10 mM MgCh,0.5 M NaCl,50 mM EPPS (pH 7.5)),在37°C下歷1小時,如實例所述。 在某些具體實例中,如下文所明示,方法中之切割條件 可有所變化,如此在接續切割步騾重複發生中,為了核酸 切割因此其條件要更有效率。即,本發明方法進一步包括, 33 - 87851 200413528 經由改變試管内展開方法中之選擇限制,以取得催化特性 有所改進《酵素。因此,如實例中所說明⑽,在接下來之 循裱中,如第7-1〇輪中,反應緩衝溶液可改成5 , ◦以^似咒祕砂叫心心且反應時間縮短^口第 輪之30分叙’第8輪之5分鐘,第9及1〇輪之丨分鐘。最後, 在引入突變後,所採用之反應緩衝溶液可更加迫切,如5mM ¥12’〇.15]^恥(:1及5〇111]\^?3_7.5),且反應時間縮 弟11輪之0 ·5分鐘,弟12· 1 5輪不超過溶離所需之時間。 本發明也提出用以偵測標的核酸序列之套組,其中含具 上逑非自然生成核糖核苷酸之催化性DNA分子及/或受 貝套組中可包括有:引子,聚合酶,及其他本發明方法 中有用之試劑。 在某些具體實例中,本發明偵測標的核酸序列之套組含 有·如上述之受質非自然生成之單股核酸序列,·一個向前 引子及反向引子,其包括有上述之催化性單股DNA分子互 補體,其中的催化性單股DNA分子可在切割位置處切割受 質核酸序列。 套組中可包括雙質,其中非自然生成之核糖核甞酸切割 位置包括2’,5’連續之殘基。在其他具體實例中,套組可包括 文質,其中非自然生成之核糖核甞酸切割位置包括L-對映體 殘基。 以下實例用以說明但不限制本發明。 實例1The Kcat symbol represents the maximum rate of enzyme response as the substrate approaches saturation. KM--20- 87851 200413528 represents the mass concentration when the reaction rate is half of the maximum value. For example, the κM and Kcat values of the present invention can be determined experimentally, where the substrate concentration [S] exceeds the concentration [E] of the catalytic DNA molecule. The initial reaction rate (v0) in the mass concentration range is estimated from the initial linear phase, usually below 5% before the reaction. The data points are combined with the theoretical straight line by the least square method, and the equation is used: ν = -ΚΜ (ν〇 / [3]) + νπ ^ χ. Therefore, Keat and KM can be determined by the initial reaction rate, v0, and the mass concentration [S]. In various specific examples, the catalytic DNA molecules of the present invention have enhanced or improved ability to cut nucleic acid substrates with non-naturally occurring ribonucleotides. In many specific examples, the catalytic DNA molecules are cleaved. RNA-enhanced or more refined ability of a substance, showing at least 50-fold regioselectivity or enantiomer. Typically, catalytic DNA molecules exhibit a Km value of less than about 1 μM, or in some specific examples, less than about 100 nM. The skilled artisan should understand that the enhanced or improved ability of the catalytic DNA molecule to cleave the nucleic acid substrate can vary depending on the selection limitations applied in the in-tube expansion method of the present invention. · The following examples further describe various methods of altering the present invention's DNAzymes and others. Enzymatic DNA molecules and nucleases. The present invention also proposes a composition containing one or more types or groups of catalytic DNA molecules of the present invention. Different types or groups can identify and cleave different nucleotide sequences. The composition may further contain a ribose-containing substrate. The composition according to the present invention may further be lead ions, magnesium ions, or other divalent or monovalent cations, as discussed herein. Preferably, the content of the catalytic DNA molecule is from about 0.05 μM to about 2 μM. For Code 87851 -21-200413528, the content of catalytic DNA molecules is from about 1: 5 to about 1:50. More typically, the catalytic DNA molecule is present in the composition at a concentration of about 0.1 μM to about 1 μM. Furthermore, the composition may contain a catalytic DNA molecule at a concentration of about 0.1 μM to about 0.5 μM. The content of the substrate in the composition is from about 0.5 μM to about 1000 μM. As mentioned previously, magnesium ions, lead ions, or other suitable monovalent or divalent cations can be present in the composition in an amount of about 1-100 mM. In comparison, the content of the selected ion in the composition is about 2 mM to about 50 mM, and about 5 mM is particularly preferred. The artisan understands that the concentration of 100 mM ion is only limited by the solubility limit of its source (such as magnesium) in aqueous solution, and it is expected that the catalytic DNA molecule can exist in the active configuration in the same composition. The optimum cation concentration to be included in the nucleic acid cleavage conditions can be easily determined by the content of the single-stranded nucleic acid cleaved at a specific cation concentration. The artisan should understand that the optimal concentration will vary depending on the particular catalytic DNA molecule used. The nucleotide sequence of the functional site is confirmed by changing the catalytic DNA molecule, and the disclosed method can cleave on any nucleotide sequence. In this way, single-stranded nucleic acids can still be cleaved without the restriction enzyme position at the selected position. The effective dose of a catalytic DNA molecule is the amount necessary to cleave a predetermined base sequence in a single-stranded nucleic acid. Typically, the content of catalytic DNA molecules is a molar ratio of DNA molecules to the cleavage site of the substrate from 1 to 20. This ratio can be varied depending on the length of the treatment and the efficiency of the particular catalytic DNA molecule under the particular nucleic acid cleavage conditions applied. Therefore, in a specific example, processing usually involves mixing RNA-containing substrates and enzymes in an aqueous solution to form a cleavage admixture, and then maintaining the adduct such as -22- 87851 200413528 under conditions of RNA cleavage. For a sufficient period of time, the catalytic DNA molecule can cleave the RNA duplex on any predetermined nucleotide sequence in the ruler. Ion sources are also provided in various embodiments, such as monovalent or divalent cations, or both. In a specific example of the invention, the time required for a catalytic DNA molecule to cleave a single-stranded nucleic acid has been determined. The time ranges from about 1 minute to about 24 hours, and depends on the concentration of the reactants and the reaction temperature. Generally, this time is from about 10 minutes to about 2 hours' so that the animal DNA molecule can cleave a single-stranded nucleic acid on any predetermined nucleotide sequence. The invention further includes nucleic acid cleavage conditions, including a pH value from about pH 60 to about pH 9.0. In a specific example, the pH is from about pH 6.5 to pH 8.0. In another specific example, the pH is as physiological as possible, that is, pIi is about 7.0--7, and pH 7.5 is the most typical. Those skilled in the art should understand that the method of the present invention can be operated at a wide range of pH values, as long as the pH value used for nucleic acid cleavage allows the catalytic DNA molecules to be maintained in the active configuration. Catalytic DNA molecules in an active configuration can be easily measured for their ability to cleave single-stranded nucleic acids on a predetermined nucleotide sequence. In various specific examples, nucleic acid cleavage conditions also include various temperature ranges. As mentioned earlier, the temperature range that meets physiological conditions is particularly preferred, but the temperature range that meets individual applications is also included here. In a specific example, the temperature range is from about 15 ° C to about 60 ° C. In another variation, the nucleic acid cutting conditions include a temperature from about 30 ° C to about 56 ° C. In yet another variation, the nucleic acid cleavage conditions include from about 35 ° C to about 50 ° C. In still another preferred embodiment, the nucleic acid cleavage conditions include a temperature range from about 37 ° C to about 42 ° C. 87851 -23-200413528 The temperature range that meets nucleic acid cleavage conditions is limited only by the desired cleavage rate and the specific catalytic properties at special temperatures. The invention also describes a performance vector, which includes a nucleic acid fragment encoding the catalytic test molecule of the present invention and located in the vector, in a way that allows the catalytic DNA molecule to be in the target cell (such as a plant or animal cell). As described above, the present invention "catalytic DNA molecule can cut the acceptor nucleic acid sequence (Figures 14A and 14B (upper strand)), which includes non-naturally generated riboflavin acid immediately upstream of the cutting position (arrow), and its side A complementary sequence that can be bound to a binding region is also referred to herein as a flanking region and is a catalytic DNA molecule. The acceptor nucleic acid sequence itself is another aspect of the invention. In certain preferred embodiments, the non-naturally occurring ribonucleic acid of the subject nucleic acid sequence is 2, 5, ribonucleotides, such as adenine nucleotides or guanine ribonate residues. In another specific example, the non-naturally occurring ribonucleoside acid of the receptor nucleic acid sequence is the L-enantiomer of 3,5, ribonucleic acid, preferably a guanine ribonate residue. In another aspect, the present invention proposes a non-naturally generated single-stranded nucleic acid substrate as discussed above, which includes an interaction flag pair consisting of a first flag and a second flag. Separated. Flags are either directly or indirectly attached to single-stranded nucleic acid substrates. As discussed above, the cleavage position includes residues of 2, 5, 5, or l-enantiomers. The first flag may be the fluorescent part, and the second flag is the quenching agent. When the fluorescent part and the quenching agent are both adhered to the single-stranded nucleic acid substrate, the cooling agent may cool the fluorescent part. Serving. The acceptor nucleic acid sequence and the catalytic DNA molecule of the present invention do not substantially correspond to the share. It is particularly useful as a biochemical tool in cleavage informant molecules, such as the double-labeled acceptor nucleic acid sequence 87851 -24- 200413528 containing the above-mentioned non-natural ribonucleotides. This informant is not cleaved by the biological nuclease. Therefore, one application of the catalytic nucleic acid molecule and the acceptor nucleic acid sequence of the present invention is a method related to quantitative PCR, which is called "DzyNA-PCR" (pictured in Figure 16; see Todd, A. V., et. al., Clin. Chem. 46, 625-630 (2000), which is incorporated by reference in its entirety; see Applegate et al. Clin. Chem., 48; 133 99-1488 (2002), which has been incorporated by reference in its entirety. ) This method uses a DNA enzyme that can cleave RNA to cleave the reporter oligonucleotide, which contains a fluorescent marker and a coolant on both sides of the cleaving position. The DNA enzyme sequence is encoded by a complementary sequence that attaches φ to the 51 end of one of the two PCR primers. When the PCR amplification effect is performed, it can generate a set of functional DNA enzymes, which can cleave the reporter molecules, so that the fluorescent marker and the coolant are separated, and a signal with fluorescence is generated. In the existing method, because the informant contains natural ribonucleic acid, it is easily cut by biological ribonuclease. However, this is not the case when the method utilizes a catalytic DNA molecule that can cleave non-natural ribonucleic acid within the informer molecule. There are no known biological nucleases that can cleave 2 ', 5'-linked guanine ribonucleic acid or L-ribonucleic acid. φ Therefore, another aspect of the present invention is to propose a method which comprises admixing the following components in an expansion buffer solution: i) a nuclear fei sample, ii) a polymerase; m) a single-stranded nucleic acid that is not naturally produced by the substrate A sequence containing a pair of markers consisting of a first marker and a second marker and directly or indirectly attached to the interactive activity of the oligonucleotide, wherein the first marker and the second marker are unnatural The generated ribonucleic acid is cleaved by the cleavage position, as discussed above; -25- 87851 200413528 Π〇 a forward primer that can bind to the first 3, part of the target nucleic acid, and instruct the target nucleic acid sequence Polynucleotide synthesis in the forward direction; and V)-a reverse primer, including a region that can bind to the second 3, part of the target nucleic acid sequence, and can direct the target nucleic acid sequence to polymerize in the reverse direction The synthesis of nuclear I and fe and includes the complementary single-stranded Dn a according to the present invention, in which the catalytic single-stranded DNA molecule can cleave the nucleic acid sequence at the cutting position. Subsequent methods include incubating the incorporated components under expansion conditions to expand the target nucleic acid sequence. This enables the synthesis of catalytic single-stranded DNA molecules. The resulting catalytic single-stranded DNA molecule can cleave the acceptor nucleic acid sequence again, thus releasing the interaction of the first and second flags. The first flag can be detected to detect the target nucleic acid sequence. In certain specific examples of the method, the non-naturally occurring ribonucleotide cleavage positions include 2 ', 5' linked residues or L-enantiomeric residues, as described above for the subject nucleic acid sequences of the invention. Furthermore, the catalytic single-stranded DNA molecule is usually one of the above-mentioned preferred catalytic single-stranded DNA molecules. For example, when the ribonucleic acid cleavage position is 2 ', 51-linked adenopharyngeal nucleophilic acid or ornithine ribonucleotide ribonucleic acid ribonucleic acid residue', the catalytic DNA molecule may include a confirmatory functional site and A catalytic functional site can form a loop containing the nucleic acid sequence S'-XiXAsGXWXsXsXAACXsXrS, (SEQ ID NO: 29). The amplification step used for the method of the present invention for detecting the target nucleic acid sequence is usually a polymerase chain reaction (PCR), as is well known in the art, and is described in, for example, 口 .8.? &Amp; 1:.] ^ 〇3.4 Nos. 683, 195, 4, 683, 195, and 4,800, 159 are listed in their entirety for reference. When PCR is used as the expansion method, the polymerase is aquatic habitat heat -26-87851 200413528 bacteria (Thermus aquaticus (Taq)) DNA polymerase. A nucleic acid sample can be virtually any nucleic acid. In some specific examples, the nucleic acid sample can be isolated from a natural source. For example, the nucleic acid can be genomic DNA or RNA, such as mRNA (see Applegate et al. (2002)). In the detection of the target nucleic acid sequence, other amplification methods other than PCR can also be applied in the present invention. The limitation is that the nucleic acid molecules used in the amplification method must have complementary primers and catalytic DNA molecules. In one method, the PCR method is performed in an automated manner, in which enzymes that are stable to heat are used. In this method, the reaction mixture undergoes cyclic steps such as denaturation, primer cooling, and genseng, so that the nucleic acid substrate can be cleaved in the polymerase synthesizing catalytic DNA molecule. Commercial equipment that can perform this method is available from Perkin-Elmer Cetus Instruments and is designed to use thermostable enzymes. In detecting the target nucleic acid, the method of incorporating the flag and target pair of the acceptor nucleic acid sequence of the present invention can be found in US Pat No. 6,214,979, which is incorporated herein by reference in its entirety. Various flags suitable for use in the method of the present invention, as well as methods in which the acceptor nucleic acid sequence is contained, are well known in the art. The flags include the following but are not limited to this: Oxidase), and enzyme substrates, radioactive atoms, fluorescent dyes, chromophores, chemiluminescence flags, chemiluminescence flags, such as Origin ™ (Igen), ligands with special binding pairs, or other Any sign that can interact to enhance, change, or eliminate the signal. The "flag" as used herein refers to any atom or molecule that can provide a measurable and preferably quantifiable signal and that can be attached to a nucleic acid or protein. -27- 87851 200413528 t 幡 can provide measurable signals through fluorescence, radioactivity, colorimetry, gravimeter, X-ray diffraction or absorption, magnetization, and enzyme activity. When constructing the labeled probe of the present invention, the fluorophores that can be used as flags include rhodamine and derivatives such as Texas Red, fluorescein and derivatives such as 5.bromomethylfluorescence. , Lucifer Yellow, IAEDANS, 7-Me2, N_coumarin-4_acetate, 7-OH-4_CH3-coumarin-7 · acetic acid '7-NH2-4CH3-coumarin-3_acetic acid Ester (AMCA), monochromometer, monotrisulfonate, such as Cascade Blue, and monobromo dimethyl-ambanaide. Generally speaking, it is better to use a fluorescent group with wide stokes shifts. This is done by using a filter-based fluorometer instead of a monochromator, and to increase the detection efficiency. As mentioned above, two cross-active flags are usually used on a single nucleic acid sequence. However, it is necessary to consider that the flags must be kept at an appropriate distance on the nucleic acid molecule so that the flags can be separated during the hydrolysis of the nucleic acid sequence. . In a preferred embodiment, the acceptor nucleic acid sequence can be labeled with a fluorophore and a refrigerant. When normal positive nucleic acid sequences are used, the fluorescence of the fluorophore can be repaired by the coolant. In this method, the duplex nucleic acid sequence is cut between the fluorophore and the coolant. Where all show their fluorescence. The interaction of flags, such as the glory of disgrace τ 7 and the energy transfer between the first and second flags (such as fluorophores and refrigerants) and the emission spectrum of this fluorescent group and the absorption spectrum of refrigerants Necessary ® The preferred combination of this aspect of the invention is the fluorescer-rhodamine 590 plus the quencher-crystal violet. In order to detect hydrolyzed labeled probes, such as polarized light can be used. This technology is based on molecular _biing, which can distinguish between large and _ 87851 -28-200413528 small molecules. The large molecules (such as intact labeled probes) are slower in solution than the smaller molecules. Once the fluorescent portion is connected to the key molecule (such as the end of the labeled probe), this fluorescent portion can be inverted according to the molecule as Basically determined (and differentiated), thus distinguishing between intact and hydrolyzed probes. In the method of the present invention, if a labeled nucleic acid sequence is used in the PCR for the substrate, the flag can be directly detected in the PCR, or detected after the PCR. When one of the marker pairs is a fluorescent marker, you can use various characterization equipment designed for fluorescent marker analysis, such as the ABI Gene Anglyzer to analyze attomole quantities of DNA with spring fluorescent groups, such as ROX (6 leptyl-X-rhodamine) 1 rhodamine-NHS, TAMRA (5/6 • carboxytetramethylrhodamine NHS), and FAM (5 ′ • carboxyfluorescein NHS). These compounds can be attached to the probe by an amidine bond via a 5'-alkylamine of the probe. Other useful fluorophores include CNHS (7-amino-4-methyl-coumarin-3-acetic acid, succinimide), which can also be attached via an amidine bond. Using commercially available amino phosphite reagents, we can generate appropriately protected amino phosphites containing acceptor nucleic acid sequences containing functional groups (such as thiols or primary amines) at the 5 'or 3' end, and can utilize The above-mentioned strategy labeling, such as PCR j Protocols: A Guide to Methods and Applications (Innis et al.? Eds. Academic Press, Inc., 1990) 〇 The present invention also includes a method for generating a nucleic acid molecule using a direct expansion method, It has a predetermined catalytic activity to cleave single-stranded nucleic acids, including non-naturally occurring ribonucleic acid. An overview of the method for direct in-tube expansion of an enzymatic DNA molecule can be found in Example 1 of 1 ^ &amp; 1 &gt; 6,3265174, which is incorporated herein by reference in its entirety. 87851 -29- 200413528 In-tube selection and in-tube expansion techniques allow new catalysts to be separated even without prior techniques of their composition or structure. This method has been used to isolate RNA enzymes with novel catalytic properties. For example, ribozymes that are feasible for autolytic cleavage of heterocations have been derived from any tRNAPhe subpopulation (Pan and Uhlebeck, Biochemistry 31: 3887-3895 (1992)). A ribozyme variant of group I has been isolated that can cut DNA (Bedudry and Joyce, Science 257: 635_641 (1992)) or that it has different metal dependencies (Lehman and Joyce, Nature 361: 182-185 (1993)) . From the collection of arbitrary RN A · sequences, molecules that can catalyze polymerase reactions can be obtained (Bartel and Szostak / Science 261: 1411-1418 (1993)) ° Therefore, in another aspect, the present invention proposes to identify catalytic properties The method of DNA molecules has position-specific endonuclease activity and is specific for non-naturally occurring ribonucleic acid cleavage sites. The method includes constructing a double-stranded nucleic acid molecular library, which includes non-naturally occurring ribonucleotide cleavage sites, and includes a region of any sequence of nucleotides that can potentially interact with the cleavage site region. Next, capturing one strand of a double-stranded nucleic acid molecular library may call for the provision of a single-stranded nucleic acid molecular library captured. Next, the captured single-stranded nucleic acid; molecular library is incubated under cleavage conditions so that it can be cut at the cleavage position and the cleavage nucleic acid molecules are released. Isolation of the cleaved nucleic acid molecules can then identify catalytic DNA molecules with position-specific endonuclease activity that are specific to the cleavage position of the non-naturally occurring ribonucleic acid. In some specific examples, the method further comprises expanding the cleaved nucleic acid molecule and repeating the capture, cleavage and separation steps 1 to 50 times, usually 1 to 20 times. The selectively cleaved nucleic acid molecule can be mutated arbitrarily to form mutation 87851-30 · 200413528 疋 cleaved nucleic acid molecule. The mutated nucleic acid molecule expands this capture, and the cleavage and separation steps are about 1 to 20 times. In some specific embodiments, the non-naturally occurring ribonucleotide cleavage position is a 2 ', 5'-linked guanine nucleotide ribonucleotide cleavage position, or a glandular ribonucleoside ribonucleotide cleavage position. The example illustrates a method of constructing a double-stranded nucleic acid molecular library, which includes a non-naturally occurring ribonucleotide cleavage site, and a nucleotide region of any sequence therein, which can potentially interact with the cleavage site region. In this non-limiting example, the double-stranded nucleic acid molecules in the library can be synthesized by chemically synthesizing overlapping oligonucleotide pairs to produce a first oligonucleotide in the pair that is synthesized at a non-naturally occurring ribonucleotide cleavage position, and a second Oligonucleotide may have a sequence region complementary to the first oligonucleotide in the pair, as well as an arbitrary sequence nucleotide region. The first and first nucleotides are mixed under conditions such that complementary nucleic acid sequences can be bound. The first oligonucleotide can be extended in the primer extension reaction, and DNA-dependent DNA polymerase, such as reverse transcriptase, is used to synthesize the double-stranded molecules in the library, but it is not limited to this. Libraries can also be constructed using polymerase chain reactions. However, care must be taken to avoid breaking the ribose linkage under the high temperature conditions of PCR. In another way, the construction of the library can be made by chemical synthesis. As shown in Figure 1B, oligonucleotide pairs can be constructed so that the double-stranded nucleic acid molecule formed by the oligonucleotide pairs can form a hairpin loop, and the nucleotide region of any sequence can potentially interact with the cleavage site effect. In certain embodiments, the &apos; hairpin band is 6 nucleotides from the cutting position. However, it is not necessary for double-stranded nucleic acid molecules to form a hairpin loop band (see, for example, Brorraker &amp; Joyce, 1994, already 87851 -31- 200413528, which is listed as a reference to this case; see Breaker &amp; Joyce, 1995, which is listed as a full case in this case) Reference is another example of a double-stranded nucleic acid molecule including a hairpin). Without being bound by theory, Xianxin hairpins can provide advantages, so Xianxin can open up to find answers, which involves the identification of functional sites by Watson-Clike, thus popularizing the generated enzymes to different substrate sequences Can be easier. As described above, the method for identifying the catalytic DNA of the present invention usually includes administering a nicked nucleic acid that is selectively amplified by mutation at least once in a repeated selection cycle. Many methods of mutating nucleic acid molecules are known in the art. For example, mutations in nucleic acid molecules can be chemically modified to incorporate oligodeoxyribonucleic acid in any mutation, or via a polymerase incorrect grill (see Cadwell and Joyce, in PCR Methods and Applications 2: 28-33 (1992 ); Cadwell and Joyce, PCR Methods and Applications 3 (Suppl.): S136-S140 (1994); Chu? Et al.? Virology 98: 168 (1979); Shortle, et al. 5 Meth. Enzymol. 100: 457 (1983); Myers, et al. 5 Science 229: 242 (1985); Matteucci, et al.? Nucleic Acids Res. 11: 3113 (1983); Wells, et al.? Gene 34: 315 (1985); McNeil , et. al. 5 Mol. Cell. Biol. 5: 3545 (1985); Hutchison, et al. PNAS · USA 83; 710 (1986); Derbyshire, et al., Gene 46: 145 (1986); Zakour, et al., Nature 295: 708 (1982); Lehtovaara, et al ”Protein Eng. 2: 63 (1988); Leung, et al.? Technique 1: 11 (1989); Zhou, et al., Nucl. Acids Res. 19: 6052 (1991)), such as highly mutagenic PCR13. As mentioned above, the method of this aspect of the invention includes capturing one strand of a double-stranded nucleic acid molecule library. Many methods of capturing double-stranded nuclear molecules are in the art -32- 87851 200413528 The gene product can be captured or otherwise selected, such as using its ability to bind to a ligand, or to perform a chemical reaction (see, for example, Joyce Id · (1989); Robertson and Joyce, Nature 344: 467 (1990); Tuerk, et al.? Science 249: 505 (1990)) For example, a double-stranded nucleic acid molecule can include a biotin moiety so that it can be captured by a solid-phase carrier containing streptavidin. As described above, a method for identifying a catalytic DNA molecule, according to the method of the present invention, comprises expanding a nucleic acid molecule. Many methods for expanding nucleic acid molecules are known in the art. For example, nucleic acid molecules can be amplified using reciprocal primers such as polychazinase chain reaction (PCR). (See, for example, Saiki, et al., Science 230: 1350_54 (1985); Saiki, et al., Science 239: 487-491 (1988)). In addition, nucleic acid amplification can be performed by self-sustained sequence replication (3SR). (See, for example, Guatelli, et al., PNAS USA 87: 1874 (1990), whose disclosure is incorporated herein by reference). As described above, the method of identifying catalytic DNA according to the present invention generally includes growing a library of single-stranded nucleic acid molecules under conditions that allow cleavage at a cleavage site. Spring As understood by the artisan, the conditions for cutting at the cutting position depend on the specific catalytic activity required. For example, when catalytic activity refers to the ability to cleave unnaturally generated ribonucleotides, conditions may include: in three 300 microliter reaction buffer solutions (10 mM MgCh, 0.5 M NaCl, 50 mM EPPS (pH 7.5) )), At 37 ° C for 1 hour, as described in the examples. In some specific examples, as shown below, the cleavage conditions in the method may vary, so that in subsequent repetitive cleavage steps, the conditions are more efficient for nucleic acid cleavage. That is, the method of the present invention further includes: 33-87851 200413528 by changing the selection restriction in the in-tube expansion method to obtain improved catalytic properties. Therefore, as illustrated in the example, in the following cycle, such as in the 7th to 10th rounds, the reaction buffer solution can be changed to 5, ◦ call the heart like ^ mysterious sand and shorten the reaction time ^ 口 第30 minutes of the round, 5 minutes of the 8th round, 9 minutes of the 10th round. Finally, after the mutation is introduced, the reaction buffer solution used can be more urgent, such as 5mM ¥ 12'〇.15] ^ ((1 and 5〇111) \ ^? 3_7.5), and the reaction time is reduced by 11 The round of 0.5 minutes, the younger brother of 12.15 does not exceed the time required for dissolution. The present invention also proposes a set for detecting a target nucleic acid sequence, which contains a catalytic DNA molecule with a non-naturally occurring ribonucleotide and / or an acceptor set, which may include: a primer, a polymerase, and Other reagents useful in the methods of the invention. In some specific examples, the set of nucleic acid sequences to be detected by the present invention contains: a single-stranded nucleic acid sequence that is not naturally generated as described above, a forward primer and a reverse primer, which include the aforementioned catalytic A single-stranded DNA molecule complement, in which a catalytic single-stranded DNA molecule can cleave a acceptor nucleic acid sequence at a cleavage site. The kit can include duplexes, where the non-naturally occurring ribonucleoside cleavage site includes 2 ', 5' contiguous residues. In other specific examples, the kit may include a literary substance, wherein the non-naturally occurring ribonucleoside cleavage position includes an L-enantiomeric residue. The following examples are used to illustrate but not limit the invention. Example 1

87851 -34- 200413528 以下實例說明直接展開以產生及分離DNA酵素之用法, 其可切割非自然生成之核糖核嘗酸,以及所分離DNA酵素 之鑑定。在此實例中說明的這些酵素可在D-核糖核答酸之 後之2,,5’-構酸二酯處切割受質核酸序列,或切割L-核糖核 苷酸後之3’,5f-磷酸二酯。 * 實驗段落 寡核菩酸之化學合成。第三-丁基-二甲基碎燒基-及(3-L-2’-第三-丁基-二甲基矽烷基-核糖核苷氨基亞磷酸 _ 酯,得自ChemGenes (Ashland,MA),且其他所有的核甞氨 基亞填酸酯均得自Glen Research (Sterling,VA)。所有寡核 誓酸均以自動合成製備,利用Applied Biosystems Expedite Nucleic Acid合成儀。3’_第三-丁基-二甲基矽燒基·及L-核糖 核甞氨基亞磷酸酯採用15分鐘之偶合步騾。生成的寡核苷 酸經由培育在無水飽和NH3 :乙醇中,37°C下36小時而去保 護之,繼之在1 Μ四丁钕化氟於THF之溶液中以室溫培育一 夜。其他所有的寡核嘗酸利用標準步驟合成及去保護。所 _ 有寡核茫酸之純化均利用變性的聚丙烯醯胺凝膠電泳 · (PAGE),並在 ΝΑΡ-25 管柱上去鹽化(Pharmacia Biotech, Piscatway,NJ) 〇 試管内選擇 將4毫微莫耳5’_生物素-d(TTTTAGAGACGATGACG ATGCAXTCGGACAGTCGCGAGACTGV3, (SEQ ID NO:23)87851 -34- 200413528 The following examples illustrate the use of direct expansion to produce and isolate DNA enzymes, which can cleave non-naturally occurring ribonucleotides and the identification of isolated DNA enzymes. The enzymes illustrated in this example can cleave the acceptor nucleic acid sequence at 2,5'-acid diester after D-ribonucleotide, or 3 ', 5f- after cleaving L-ribonucleotide. Phosphodiester. * Experimental paragraph Chemical synthesis of oligonuclear acid. Tertiary-butyl-dimethyl sulfanyl- and (3-L-2'-tertiary-butyl-dimethylsilyl-ribonucleoside aminophosphite) from ChemGenes (Ashland, MA ), And all other nuclear amino amino linoleates were obtained from Glen Research (Sterling, VA). All oligonucleotide acids were prepared by automated synthesis using an Applied Biosystems Expedite Nucleic Acid Synthesizer. Butyl-dimethylsilyl and L-ribose riboamidophosphite are coupled in a 15-minute coupling step. The resulting oligonucleotides are incubated in anhydrous saturated NH3: ethanol at 37 ° C for 36 hours Deprotection was followed by incubation overnight in a 1 M solution of tetrabutyl neodymium fluoride in THF at room temperature. All other oligonucleotides were synthesized and deprotected using standard procedures. All purification of oligonucleotides All were subjected to denaturing polyacrylamide gel electrophoresis (PAGE) and desalted on NAP-25 column (Pharmacia Biotech, Piscatway, NJ). 4 Nanomolar 5'_Biotin- d (TTTTAGAGACGATGACG ATGCAXTCGGACAGTCGCGAGACTGV3, (SEQ ID NO: 23)

(引子1 ; X=2’,5’-rG 或 L-i:A)在 6 毫微莫耳 5’-d(GTGCCAAGC TTACCG-N.n-CAGTCTCGCGACT GTCCGAV3, (SEQ ID 87851 -35- 200413528 N〇:24) (N=A,C,G或T;互補序列底下劃線)上行延伸反應, 可構築〜1015 DNA分子之起始匯集。1毫升的反應混合物中 含有5單位/微升的Superscript II反轉錄酶(Life Technologies, Gaithersburg,MD),3 mM MgCl〗,75 mM KC1 ’ 50 mM奏(經 甲基)_胺基甲烷(Tris5 pH 8.3),及各 0.25 mM的 dATP,dGTP, dCTP及TTP 〇延伸反應之進行是將二個寡核苷酸在85〇C下 回冷4分鐘,冷卻至室溫,加入MgCl2及反轉錄酶,再於37 °C下培育1小時。延伸產物以未變性之page純化,自凝膠 籲 中溶離,以乙醇沉殿,再溶於1毫升含有1 -2 μΜ延伸產物, 0·5 M NaCL·,0.2 mM Na2EDTA,及50 mM Ν-(2-羥乙基)-哌 _ -Ν、3 -丙燒續酸之溶液(EPPS,pH 7.0)。此物質施加至親 和力管柱,其中含有300微升UltraLink Immobilized Streptavidin PLUS凝膠(Pierce,Rockford,IL),且先以四份 400微升之洗滌缓衝溶液(0.5 MNaC卜0·1 mMNa2EDTA,50 mM EPPS (pH 7.0))預平衡。管柱以五份400微升洗滌缓衝溶 液,五份400微升冰冷的〇·1 N NaOH/150 mM NaCl及五份400 修 微升洗滌緩衝溶液,在37°C下潤洗1小時,再於37°C下以三 , 份3 00微升之反應緩衝溶液(10 mM MgCl2,0.5 M NaCl,50 mM EPPS (pH 7.5))溶離。自管柱溶離出之分子以乙醇,在 150 微微莫耳引子 5’-d(TCGGACAGT CGCGAGACTG)-3’ (SEQ ID NO:25)(引子2)及250微微莫耳引子5,-d(AACA ACAACYYYGTGCCAAGCTTACCG)-3,(SEQ ID N〇:26)(引 子3 ; 無鹼性核甞酸類似物)存在下沉澱而溶離,再以500 微升體積行PCR擴大反應。三個無鹼性類似物可為Taq聚合 87851 -36- 200413528 酶生成一個停止位置,其造成PCR產物股之一較另一者短 12個核甞酸。 所擴大之產物以乙醇沉澱,二股中較長者以變性PAGE分 離,自凝膠中溶離,再以乙醇再次沉澱。溶離出之DNA取 一半(〜8 0微微莫耳)應用於模板-指令之延伸反應中,其中在 . 如上述之相同條件下應用200微微莫耳之引子1。在此及接 續所有的選擇性擴大循環中,延伸產物固化在50微升 Streptavidin Plus凝膠上,以五份200微升洗滌缓衝溶液,五 _ 份200微升冰冷的0.1 N Na〇H/150 mM NaCl及五份200微升 洗滌緩衝溶=液在37°C下潤洗,再以三份40微升的反應緩衝 溶液溶離1小時。在二輪中,所反應之分子可依據在變性聚 丙烯醯胺凝膠上之電泳移動力,再予以额外地選擇。在7-10 輪中,反應緩衝溶液改成5 mMMgCl2,0.2MNaCl及50mM EPPS (pH 7·5) ’且在第七輪時反應時間可減至3〇分鐘,於 第八輪為5分鐘,第九及十輪為丨分鐘。於第十輪後,可由 致南哭變PCR13引入任意的突變。進行另五輪選擇性擴大反籲 應’其中反應緩衝落液改成5 mMMgCl2,0.15 MNaCl及50 : mM EPPS (pH 7·5) ’並在第u輪時將反應時間減成〇 5分 I里,且在第12-15輪時則是不超過溶離所需之時間。 個別純系之分析(Primer 1; X = 2 ', 5'-rG or Li: A) at 6 nanomolar 5'-d (GTGCCAAGC TTACCG-Nn-CAGTCTCGCGACT GTCCGAV3, (SEQ ID 87851 -35- 200413528 No.:24) (N = A, C, G, or T; underlined complementary sequences) The upward extension reaction can construct a starting pool of ~ 1015 DNA molecules. 1 ml of the reaction mixture contains 5 units / microliter of Superscript II reverse transcriptase ( Life Technologies, Gaithersburg, MD), 3 mM MgCl, 75 mM KC1 '50 mM (via methyl) -aminomethane (Tris5 pH 8.3), and 0.25 mM dATP, dGTP, dCTP, and TTP extension reactions The two oligonucleotides were cooled back at 85 ° C for 4 minutes, cooled to room temperature, added MgCl2 and reverse transcriptase, and incubated at 37 ° C for 1 hour. The extension product was purified by undenatured page Dissolve from the gel, immerse in ethanol, and re-dissolve in 1 ml containing 1-2 μM extension product, 0.5 M NaCL ·, 0.2 mM Na2EDTA, and 50 mM Ν- (2-hydroxyethyl)- Piperazine-N, 3-propanedioic acid solution (EPPS, pH 7.0). This substance was applied to an affinity column containing 300 microliters of UltraLink Immobilized Streptav idin PLUS gel (Pierce, Rockford, IL) and pre-equilibrated with four 400 μl wash buffer solutions (0.5 MNaC, 0.1 mM Na2EDTA, 50 mM EPPS (pH 7.0)). The column was divided into five 400 microliters of wash buffer solution, five 400 microliters of ice-cold 0.1 N NaOH / 150 mM NaCl and five 400 microliters of wash buffer solution, rinse for 1 hour at 37 ° C, and then at 37 ° C Dissolve in three, three hundred microliters of reaction buffer solution (10 mM MgCl2, 0.5 M NaCl, 50 mM EPPS (pH 7.5)). The molecules leached from the column are ethanol, and the primers are 150 μM 5 ' -d (TCGGACAGT CGCGAGACTG) -3 '(SEQ ID NO: 25) (primer 2) and 250 picomolar primer 5, -d (AACA ACAACYYYGTGCCAAGCTTACCG) -3, (SEQ ID NO: 26) (primer 3; none Basic nucleic acid analogs) were precipitated and dissolved in the presence of 500 μl of PCR amplification reaction. Three non-basic analogs can generate a stop position for the Taq polymer 87851 -36- 200413528 enzyme, which causes one of the PCR product strands to be 12 nucleotides shorter than the other. The enlarged product was precipitated with ethanol, the longer of the two strands was separated by denaturing PAGE, dissolved from the gel, and precipitated again with ethanol. Take half of the dissociated DNA (~ 80 picomoles) and apply it to the template-command extension reaction, where 200 picomoles primer 1 is applied under the same conditions as above. In this and all subsequent selective expansion cycles, the extension product is solidified on 50 microliters of Streptavidin Plus gel, five 200 microliters of wash buffer solution, and five microliters of 200 microliters of ice-cold 0.1 N NaOH / 150 mM NaCl and five 200 microliter wash buffer solutions were rinsed at 37 ° C, and then dissolved in three 40 microliter reaction buffer solutions for 1 hour. In the second round, the molecules to be reacted can be additionally selected based on the electrophoretic moving force on the denatured polyacrylamide gel. In the 7-10 round, the reaction buffer solution was changed to 5 mMMgCl2, 0.2M NaCl and 50 mM EPPS (pH 7.5). The reaction time can be reduced to 30 minutes in the seventh round, and 5 minutes in the eighth round. The ninth and tenth rounds are minutes. After the tenth round, arbitrary mutations can be introduced by PCR13. Perform another five rounds of selective expansion response, in which the reaction buffer solution was changed to 5 mMMgCl2, 0.15 MNaCl and 50: mM EPPS (pH 7.5), and the reaction time was reduced to 0.05 minutes in the u-th round. , And in the 12-15 round is not more than the time required for dissolution. Analysis of individual pure lines

在第10及15輪〈後,DNa分子以pCR擴大,其中利用到 引子2及引子3《截斷版,具有序列5,_d(GTGCCAA GCTTACCG)-3’(SEQ ID K〇:27)。PCR產物利用 ΤΑ選殖套組 及 INVaF’勝任細胞(Invitr〇gen,Carlsbad,CA)選殖。個別純 87851 • 37 - 200413528 系在瓊脂盤上分離,再以集落PCR或2毫升培養物之接種擴 大之。DNA以二去氧鏈終結方法14分離及定序。進行切割分 析,其條件和在試管内選擇所應用的相似。反應之中止是 加入等體積含有10 Μ尿素及50 mM Na2EDTA之混合物,且 反應產物以變性PAGE分離,再以Molecular Dynamics Phosphorimager分析。 動力學分析 於25 mM MgCl2,150 mM NaCl及50 mM EPPS (pH 7.5)存 在下,於37 °C下進行分子間切割反應。反應之啟動是加受 質至酵素,各自在混合物中相當於最終反應緩衝溶液。反 應產物以變性PAGE分離,再以Molecular Dynamics Phosphorimager分析。在單一轉換(酵素過量)條件下可得 Us值,其中應用各種濃度的酵素及痕量的[5’-32P]經標記受 質。L-核糖核甞酸-切割DNA酵素之實驗數據使合於單指~數 方程式: F^Fyi-e—^+Fo, 其中A是在t時間切割之部份,是在反應最大程度下切 割之部份,且R是在零時間下切割之部份。2’,5’-核糖核甞 酸切割性DNA酵素之實驗數據,使合於雙指數方程式:After the 10th and 15th rounds, the DNa molecule was enlarged with pCR, and primers 2 and 3 were used. The truncated version has the sequence 5, _d (GTGCCAA GCTTACCG) -3 '(SEQ ID K0: 27). PCR products were cloned using the TA colony kit and INVaF 'competent cells (Invitrogen, Carlsbad, CA). Individual pure 87851 • 37-200413528 were isolated on agar plates and expanded by colony PCR or 2 ml culture inoculation. DNA was isolated and sequenced by dideoxy chain termination method 14. The cut analysis was performed under conditions similar to those applied in the test tube selection. The reaction was stopped by adding an equal volume of a mixture containing 10 M urea and 50 mM Na2EDTA, and the reaction products were separated by denaturing PAGE and analyzed by Molecular Dynamics Phosphorimager. Kinetic analysis In the presence of 25 mM MgCl2, 150 mM NaCl and 50 mM EPPS (pH 7.5), an intermolecular cleavage reaction was performed at 37 ° C. The start of the reaction is the addition of substrates to enzymes, each corresponding to the final reaction buffer solution in the mixture. The reaction products were separated by denaturing PAGE and analyzed by Molecular Dynamics Phosphorimager. The Us value can be obtained under a single conversion (enzyme excess) condition, in which various concentrations of enzymes and trace amounts of [5'-32P] are labeled substrates. The experimental data of L-ribonucleic acid-cleaving DNA enzymes are combined into the single-finger equation: F ^ Fyi-e — ^ + Fo, where A is the part that cuts at time t, and it cuts to the maximum extent Part, and R is the part cut at zero time. The experimental data of 2 ′, 5’-ribonucleic acid cleavable DNA enzymes are combined into the double exponential equation:

Ft=F1(l^ekobsht)+F2(l^ekobs2^)+F〇 ^ 其中Fi是在t時間切割之部份,A及是反應二相之振 幅,及^^2是各相之相當速率,且A是在零時間切割之 部份。這些變數利用1^¥61^6[8-]\^1^1^1(11:演算法(〇61138以口11 4.5,SPSS Science)以非線性回歸估計。 87851 -38- 200413528 在多轉換(受質過量)條件下也可得到^^值,其中受質之 濃度範圍跨越。在反應前〜15%以上可得數據,並使合於 直線’其通常以六個數據點為基礎。由u-21個數據點組成 之標準Michaelis_Menten飽和劃圖中可得變數【Μ及4,且 [S]始終至少1〇倍過量於[E],且[E]至少5倍低於尤⑺。調整數 據,要考慮針對L-核糖核甞酸-切割〇]^入酵素之最大反應程 度,以及針對2,,5,-核糖核苷酸切割DNA酵素之反應第一相 之振幅。利用SigmaPlot (SPSS Science)計算標準誤差值。 在標準反應條件下培育1 nM [5,-32P]-標記之受質,可決定 未催化之切淛速率。在5天期間取出各份,以變性1&gt;八〇£分 析。由所切割部份對時間作圖之最配合直線斜率中可得 k u n c a t 八支。 金屬,溫度及pH依賴性。所有的值均在單轉換條件下 取得,其中應用9〇 χιΜ酵素及1 nM [5,_32P]-標記之受質,其 在如上述之標準反應條件下培育。MgCL依賴性評估,於 2’,5’-核糖核甞酸-切割DNA酵素時採用uoo 濃 度範圍,且於L_核糖核苷酸·切割Dna酵素時為o.uomM。 利用10 mM M2+測試金屬離子必要條件,但pb2+例外係在1 mM濃度下測試。溫度依賴性之測定在1 〇-651範圍下,使 用溫度板及加熱蓋以控制高溫下之蒸發作用。pH依賴性在 6.0-9.5範圍下評估,應用三種不同的緩衝物質;2_[N-嗎福 琳基]-乙燒績酸(MES),於pH 6.0-7·0,EPPS於pH 7 0-8 5, 及環己基胺基]-乙烷磺酸(CHES)於pH 8.5-9.5。 切割產物之鑑定 87851 -39- 200413528 進行大規模反應,其中應用1毫微莫耳的含2’,5'-或L-核糖 核苷酸之受質,加上1毫微莫耳相當的DNA酵素,在上述之 標準反應條件下。24小時後中止反應,切割產物以變性 PAGE純化。反應前,含L·-核糖核甞酸之受質以T4聚核苷酸 激酶及ATP 5’-磷醯化。如此可經由其不同的電泳移動力, 分離出二個9成員之切割產物。以凝膠純化之產物在 Nensorb-20 管柱(NEN Life sciences)上去鹽,再以 MALDI-TOF 質譜法分析,此中使用 PerSeptive Biosystems Voyager-STR質譜儀。 結果 - 試管内選擇。構築二個各〜i〇15dna分子之分別庫,一者 含一個單一的2’,5f-連結的鳥嘌呤核苷酸核糖核苷酸,且另一 者為單一的L-腺嗓吟核菩酸核糖核甞酸,包埋在内的是其他 方面之全DNA序列。庫由引子伸展反應而構築,利用含有非 天然核糖核苷酸連結之5’-生物素化之引子。引子所雜交之 DNA模板含有50個任意序列之去氧核苷酸,側接有明確序 列之殘基,其可充作引子結合位置。和前所應用之策略相 似15,將DNA髮夾遺傳操作至分子匯集内,以益標的核糖核 甞酸類似物四週之鹼基-配對交互作用(圖1B)。 利用反轉錄酶行引子延伸反應,此酶充作DNA-依賴型 DNA聚合酶,以產生雙股產物。在引子延伸反應中因為二 股維持雙股型式(duplex)因此不會發生DNA-催化之切割反 應。全長的雙股產物以非變性PAGE純化,並依據其UV吸光 率定量之。經純化之物質固化在含有鏈抗生物素蛋白之固 87851 -40- 200413528 相載體上,且未生物素化之一股以0.1 N NaOH之冰冷溶液 快速洗滌而移去。經生物素化之單股分子仍維持結合至載 體上,再挑戰以切割所包埋之核糖核甞酸連結,由是可自 載體中釋出。最初,所選用之反應條件係有利雙股之形成, 有10 mM MgCl2及500 mM NaCl之高鹽濃度,在pH 7.5及37 ψ °C下。所釋出之分子收集再以PCR擴大,因此加豐有反應 性分子之族群。 共進行15輪之選擇性擴大反應,以得最具活性之催化 0 劑。在前六輪中,反應條件如上述,反應時間為1小時。在 7-10輪中,反應條件改成5 mM MgCl2及200 mM NaC卜在pH 7.5及37 °C下。在第7及8輪中,反應時間可減為5分鐘以增 加選擇之迫切度;於第9及10輪中,時間進一步減為1分鐘。 在第10輪後,個別分子自族群中選殖,再定序及進行催化 活性測試。族群再任意突變,頻率為每個核甞酸位置 〜10%,並進行另5個選擇性擴大之循環,應用5 mM MgCl2 及150 mM NaCl,pH 7.5及37°C下反應條件。反應時間為第 φ 11輪之0.5分鐘,至第12-15輪間不超過溶離所需之時間。個 體再次選殖自族群中,並予以定序,顯示出在以前任意序列 區内序列具有高度之相似性(見補充材料)。 催化性基序之鑑定。在第10輪針對2’,5’-場酸二酯-切割活 性之選擇後所分離出之經選殖個體之一有特殊高活性,選 出後再進一步研究。其命為’f2f :10-16”,乃因其係第10輪後 所分離出之第16個純系之事實數。其序列分析可推知有一 個似合理的二級結構,如圖2 A所示。可分別製備酵素及受 87851 -41 200413528 質股’係對切割位置四週之假定鹼基對區域行延伸反應, 並修補任何的鹼基誤配。針對2,,5,-磷酸二酯_切割活性,在 第15輪選擇後分離之經選殖個體,具有和2,:1〇_16純系大約 相同之活性水平。在第15輪後分離之純系中,可注意到序 列相似度極高(見圖9A)。一個命為,,2\· 15-2,,之代表性純系, 被選出以進一步分析。其經由化學合成製備,分出酵素及 受質股如此在分子間反應型式中可發生切割現象(圖2b)。 如下文將詳述的,2,··1(Μ6及2,:15_2 DNA酵素可以〜〇 〇1分 鐘1之多轉換速率,切割分開之受質。 在努力證實2’,5,-磷酸二酯_切割DNA酵素所推測之二級 結構時,可在内部未成對區域内,在此也稱為内部膨起之 環帶(見圖15)製成各種核苷酸置換及刪除,其大多數可造成 催化活性%全之喪失。示出二個内部膨起環帶任一側之推 想的側接區域,其可與在催化速率上少有或無作用之任何 或鹼基對 &lt; 核甞酸互換。當内部膨起環帶距切割位置最遠 時,在此也稱為上游環帶區,可為單一 τ殘基所取代,形成 在切割位置下游 &lt; 驗基對連續段,催化活性被消除。然而, 此内邵膨起環帶多少可有些改變,利用3,-AGGGATTTG-5, (圖 2A) ’ 3 -AGGG-5’(圖 2B),3,-AGGGATTCG-5,及 ’均可造成完全的催化活性。最後,在受 質分子上,緊接在切割位置上游之未成對的G殘基,可改成 活生…/并減少,但當改成。或u時,則造成活性完全 的喪失。 針對匕核糖核菩酸切割活性,纟第15輪選擇後所分離之 87851 -42- 200413528 經選擇個體,與在第10輪後分離者更具活性。於最後一輪 後分離之純系間,同樣地有高度的序列相似性。(見圖9b)。 個代表性純系,命名為”L:丨5_3〇”,被選出以進一步分析。 其以化學合成製備,分出酵素及受質股,將切割位置四週 推測之鹼基配對區延伸,同時修補任何的鹼基誤配(圖 2C)。於2’,5’-磷酸二酯-切割之DNA酵素方面,在切割位置 四週之鹼基配對核苷酸可為任何在催化速率上少有或無作 用 &lt;任何成對核苷酸所替代。在核糖核甞酸_切割基序上 不再進行突變分析。 DNA酵素之生化特性。上述三種DNA酵素之催化特性, 均在分子間反應型式上研究(圖2A_C)。時間_流程實驗顯 示,2’:10-16及2,:15-2DNA酵素呈現二相式動力學,先是快 的起始速率,繼之較慢的反應第二期(圖3)。因此,數據可 口 I雙彳曰數方程式,並對反應之各相決定其催化速率常數 (見實驗部份)。相反的,L:15_30DNA酵素,呈現出單相式 動力學’其極合於單指數方程式(圖3)。 在多重轉換條件下,產物釋出為速率限制所有2,1〇_丨6及 2’:15-2 DNA酵素。此可由在酵素過量條件下進行多轉換反 應及單轉換反應比較中可證知,後者約快1〇倍。在切割位 置任一或二侧,均縮短酵素及受質間之鹼基配對區域有益 產物之釋出。然而,產物之釋出仍是速率限制,直到將成 對區縮短至催化活性受損為止(數據未示出)。當2,:1〇_16酵 素在酵素_受質複合物之各末端有一鹼基對之縮短時,可得 最高之尤加值。在多轉換條件下,此構體呈現〇 〇〇36±〇 〇〇〇ι 87851 -43 - 200413528 分鐘值,及021±0 03虛之[⑺值(圖4B)。比較知, 全長構體呈現0·0022 ±0·0001分鐘-1之[加值,及〇〇42 士 0.008 riM之4值(圖4Α)。在酵素過量之條件下,全長之切 割速率於2’:10·16酵素為〇.〇 11 ±0.0004分鐘圖5A),較在 多轉換條件下所得高出5倍。2,:15_2酵素在單一及多轉換條 件下均略快於2’:1〇-16酵素。2,:15-2酵素之[cai值為〇·〇12土 0.0004分鐘-1及0 064±〇〇〇9碰之l值(圖4C)。此相當於 〜1〇8 NT1分鐘·1之催化效率,‘,/1。在酵素過量之條件下, 2 :15-2酵素之速率是〇 〇34±〇 〇〇1分鐘-ι(圖π),其較在多鲁 轉換條件下所得的高出約3倍。 在L:15-30 DNA酵素及其受質間之鹼基配對區可縮短,如 此產物之釋出不再是速率限制,且也不致造成催化速率之 減少。在多轉換條件下,縮短的酵素呈現出Michaeiis-Menten飽和動力學,U直為0.0012 ±0.0001分鐘-1,及‘ 值是2.9土0.8 11]\1(圖4〇)。在酵素過量之條件下,催化速率 是〇·〇〇16±〇·〇〇01分鐘-1 (圖5C),此與在多轉換條件下所得 之尤cai值十分相似。 針對2’:1(M6及L:15-30 DNA酵素,在單轉換條件下探究 _ 出溫度,pH及Mg2+濃度在DNA-催化反應上之影響。二種酵 素之最適宜溫度為〜42°C,略高於在試管内選擇過程(見補 充材料)中所應用之溫度。2,:1(M6 DNA酵素最適宜pH值是 約7·5,在pH 6·5以下及pH 8·5以上則活性減低(圖6A)。 L:1 5-3 0 DNA酵素之催化速率在ρΗ 6.0-9.0範圍中是不依賴 PH值的(圖6B),推知反應之速率決定步騾並非化學步騾。 87851 -44- 200413528 2’: 10-16及L: 15-3 0 DNA酵素之催化速率均和Mg2+濃度有 關,在二例中均呈現飽和行為。2,:1〇-16酵素之表觀Ft = F1 (l ^ ekobsht) + F2 (l ^ ekobs2 ^) + F〇 ^ where Fi is the part cut at time t, A and A are the amplitudes of the two phases of the reaction, and ^^ 2 is the equivalent rate of each phase , And A is the part cut at zero time. These variables are estimated using 1 ^ ¥ 61 ^ 6 [8-] \ ^ 1 ^ 1 ^ 1 (11: algorithm (〇61138 to 114.5, SPSS Science) with non-linear regression. 87851 -38- 200413528 The value of ^^ can also be obtained under the condition of excess mass, where the concentration range of the mass spans. Before the reaction, more than 15% of the data can be obtained, and the data are combined on a straight line. It is usually based on six data points. In the standard Michaelis_Menten saturation plot consisting of u-21 data points, the variables [M and 4] can be obtained, and [S] is always at least 10 times greater than [E], and [E] is at least 5 times lower than the threshold. Adjustment The data should take into account the maximum reaction level for L-ribose ribonate-cleaving enzymes, and the amplitude of the first phase of the reaction for cleavage of DNA enzymes with 2,5, -ribonucleotides. Using SigmaPlot (SPSS Science) to calculate the standard error value. Incubate 1 nM [5, -32P] -labeled substrate under standard reaction conditions to determine the rate of uncatalyzed cutting. Take out each portion during 5 days to denaturate 1> 80. £ analysis. From the slope of the most suitable straight line plot of the cut part versus time, eight kuncat can be obtained. Metal, temperature and pH Dependence. All values were obtained under single conversion conditions, where 90 × M enzyme and 1 nM [5, _32P] -labeled substrate were used, which were cultured under standard reaction conditions as described above. MgCL dependency assessment, Uoo concentration range is used for 2 ', 5'-ribonucleic acid-cleaving DNA enzymes, and o.uomM is used for L-ribonucleotides and cleavage DNA enzymes. 10 mM M2 + is necessary for testing metal ions, but The pb2 + exception is tested at a concentration of 1 mM. The temperature dependence is determined in the range of 10-651, using a temperature plate and a heating cover to control evaporation at high temperatures. The pH dependence is evaluated in the range of 6.0-9.5, using three Different buffering substances; 2_ [N-morpholinyl] -Ethyl carbamic acid (MES), at pH 6.0-7 · 0, EPPS at pH 7 0-8 5, and cyclohexylamino] -ethanesulfonate Acid (CHES) at pH 8.5-9.5. Identification of cleavage products 87851 -39- 200413528 For large-scale reactions, using 1 nanomolar substrate containing 2 ', 5'- or L-ribonucleotides, Add 1 nanomolar equivalent DNA enzyme under the above standard reaction conditions. After 24 hours, the reaction is stopped and the product is cleaved to Purification by denaturing PAGE. Prior to the reaction, the receptor containing L · -ribonucleic acid is T4 polynucleotide kinase and ATP 5'-phosphorylated. In this way, two 9 members can be separated by their different electrophoretic mobility. The product was cut. The gel-purified product was desalted on a Nensorb-20 column (NEN Life sciences) and analyzed by MALDI-TOF mass spectrometry, where a PerSeptive Biosystems Voyager-STR mass spectrometer was used. Result-In-tube selection. Construct two separate libraries of ~ 1015dna molecules, one containing a single 2 ', 5f-linked guanine nucleotide ribonucleotide, and the other a single L-adenosine Acid ribonucleoside, embedded in the whole DNA sequence of other aspects. The library is constructed by a primer extension reaction, using 5'-biotinylated primers containing non-natural ribonucleotide linkages. The DNA template to which the primer hybridizes contains 50 deoxynucleotides of any sequence, flanked by residues of a defined sequence, which can be used as a primer binding site. Similar to the previously applied strategy, 15 DNA hairpins are genetically manipulated into molecular pools to facilitate base-pair interactions around the target ribonucleoside analogs (Figure 1B). A primer extension reaction is performed using a reverse transcriptase, which acts as a DNA-dependent DNA polymerase to produce a double-stranded product. In the primer extension reaction, since the two strands maintain a duplex, no DNA-catalyzed cleavage reaction occurs. The full-length double-stranded product was purified by non-denaturing PAGE and quantified based on its UV absorbance. The purified material is solidified on a solid 87851 -40-200413528 phase carrier containing streptavidin, and the non-biotinylated strand is quickly washed and removed with an ice-cold solution of 0.1 N NaOH. Biotinylated single-stranded molecules still remain bound to the carrier, and then challenged to cleave the embedded ribonucleotide linkage, which can be released from the carrier. Initially, the reaction conditions chosen were favorable for the formation of double strands, with high salt concentrations of 10 mM MgCl2 and 500 mM NaCl, at pH 7.5 and 37 ψ ° C. The released molecule collection was amplified by PCR, thus enriching the population of reactive molecules. A total of 15 rounds of selective expansion reactions were carried out to obtain the most active catalyst. In the first six rounds, the reaction conditions were as described above, and the reaction time was 1 hour. In 7-10 rounds, the reaction conditions were changed to 5 mM MgCl2 and 200 mM NaC at pH 7.5 and 37 ° C. In rounds 7 and 8, the reaction time can be reduced to 5 minutes to increase the urgency of choice; in rounds 9 and 10, the time is further reduced to 1 minute. After the 10th round, individual molecules were selected from the population, then sequenced and tested for catalytic activity. The population was mutated arbitrarily, with a frequency of ~ 10% per nucleotide position, and another 5 cycles of selective expansion were performed, using 5 mM MgCl2 and 150 mM NaCl, pH 7.5 and 37 ° C reaction conditions. The reaction time is 0.5 minutes for the 11th round, and the time required for dissolution is not more than 12-15 rounds. Individuals were re-selected from the population and sequenced, showing a high degree of similarity of sequences within any previously sequenced region (see supplementary material). Identification of catalytic motifs. One of the selected individuals isolated after selection of the 2 ', 5'-field acid diester-cleaving activity in the 10th round had a particularly high activity, and was selected for further research. Its fate is 'f2f: 10-16', because it is the 16th pure line of facts separated after the 10th round. The sequence analysis can infer that there is a reasonable secondary structure, as shown in Figure 2A The enzyme can be prepared separately and affected by the 87851 -41 200413528 mass strand 'system to extend the reaction to the putative base pair region around the cleavage position, and repair any base mismatches. For 2,5, -phosphodiester_ Cleavage activity. The selected individuals isolated after the 15th round of selection have approximately the same level of activity as the 2 :: 10-16 pure line. In the pure lines isolated after the 15th round, it can be noted that the sequence similarity is extremely high. (See Figure 9A). A representative pure line with a life of, 2 \ · 15-2, was selected for further analysis. It was prepared through chemical synthesis, and the enzyme and receptor stock were separated in the intermolecular reaction pattern. A cleavage phenomenon can occur (Figure 2b). As will be described in detail below, 2, ·· 1 (M6 and 2: 15_2 DNA enzymes can cut as much as 1 ~ 1 minute 1 and separate the substrates. In efforts When confirming the 2 ', 5, -phosphodiester_ cleavage of the inferred secondary structure of DNA enzymes, Inside the unpaired region, also referred to herein as internally bulging loops (see Figure 15), various nucleotide substitutions and deletions are made, most of which can result in a total loss of catalytic activity. Two internal bulges are shown The inferred flanking region on either side of the loop belt can be interchanged with any or base pair &lt; nucleotides that have little or no effect on the catalytic rate. When the inner loop belt is furthest from the cutting position Also referred to as the upstream loop zone here, it can be replaced by a single τ residue, forming a contiguous segment downstream of the cleavage site, and the catalytic activity is eliminated. However, this inner swelling loop zone may be somewhat Alterations using 3, -AGGGATTTG-5, (Figure 2A) '3-AGGG-5' (Figure 2B), 3, -AGGGATTCG-5, and 'can all result in complete catalytic activity. Finally, on the receptor molecule The unpaired G residues immediately upstream of the cleavage position can be changed to live ... / and reduced, but when changed to .or u, it results in a complete loss of activity. For the cleavage activity of ribonucleic acid, 878 87851 -42- 200413528 separated after the 15th round of selection After selecting the individual, and after the 10th round of selection, The isolates are more active. The pure lines that were separated after the last round also have a high degree of sequence similarity. (See Figure 9b). A representative pure line, named "L: 5_3〇", was selected for further analysis. It is prepared by chemical synthesis, separating enzymes and substrates, extending the base pairing region inferred around the cleavage position, and repairing any base mismatch (Figure 2C). At 2 ', 5'-phosphodiester -In terms of cleaved DNA enzymes, the base paired nucleotides around the cleaved position can be replaced by any little or no effect on the catalytic rate &lt; any paired nucleotides. Mutation analysis is no longer performed on the ribonucleotide cleavage motif. Biochemical properties of DNA enzymes. The catalytic properties of the above three DNA enzymes were all studied in the intermolecular reaction pattern (Figure 2A_C). Time_flow experiments show that 2 ′: 10-16 and 2: 15-2 DNA enzymes exhibit two-phase kinetics, starting with a fast onset rate and followed by a slower reaction in the second phase (Figure 3). Therefore, the data is delicious. I double the number equation and determine the catalytic rate constant for each phase of the reaction (see the experimental section). In contrast, the L: 15_30 DNA enzyme exhibits a single-phase kinetics, which is very close to the single exponential equation (Figure 3). Under multiple conversion conditions, the product is released as rate-limiting all 2,10-6 and 2 ': 15-2 DNA enzymes. This can be confirmed by comparison of multiple conversion reactions and single conversion reactions under conditions of excess enzymes, the latter being about 10 times faster. On either or both sides of the cleavage position, the release of beneficial products from the base-pairing region between the enzyme and the substrate is shortened. However, the release of the product is still rate limiting until the paired regions are shortened to impaired catalytic activity (data not shown). The highest value is obtained when the 2 :: 10-16 enzyme is shortened by one base pair at each end of the enzyme-receptor complex. Under multiple conversion conditions, this construct exhibited a value of 〇0036 ± 〇〇〇〇 87851 -43-200413528 minutes, and 021 ± 0 03 [the value (Figure 4B). By comparison, the full-length construct exhibits a [value-added value of 0.0002 ± 0.0001 minutes-1, and a value of 0.0042 ± 0.008 riM (Figure 4A). Under the condition of excessive enzymes, the full-length cutting rate is 2 ′: 10.16 enzymes are 0.001 11 ± 0.0004 minutes (Figure 5A), which is 5 times higher than that obtained under multiple conversion conditions. The 2 :: 15_2 enzyme was slightly faster than the 2 ′: 1〇-16 enzyme under both single and multiple conversion conditions. 2 :: 15-2 [cai value: 0.0012 min 0.0004 min-1 and 0 064 ± 〇09 hit l value (Figure 4C). This corresponds to a catalytic efficiency of ~ 108 NT1 min · 1, ‘, / 1. Under the conditions of excess enzyme, the rate of 2: 15-2 enzyme is 〇034 ± 〇0011 minute-ι (Figure π), which is about 3 times higher than that obtained under Douer conversion conditions. The base-pairing region between L: 15-30 DNA enzymes and their substrates can be shortened, so the release of this product is no longer rate-limiting and does not cause a reduction in catalytic rate. Under multiple conversion conditions, the shortened enzyme exhibited Michaeiis-Menten saturation kinetics, U = 0.0012 ± 0.0001 min-1, and the 'value was 2.9 ± 0.8 11] \ 1 (Figure 4). In the case of enzyme excess, the catalytic rate is 0.0001 ± 1.001 min-1 (Fig. 5C), which is very similar to the special cai value obtained under multiple conversion conditions. For 2 ': 1 (M6 and L: 15-30 DNA enzymes, explore the effects of temperature, pH, and Mg2 + concentration on DNA-catalyzed reactions under single conversion conditions. The optimal temperature for the two enzymes is ~ 42 ° C, slightly higher than the temperature used in the selection process in the test tube (see supplementary materials). 2,: 1 (M6 DNA enzyme is most suitable for pH of about 7.5, below pH 6 · 5 and pH 8 · 5 The above decreases the activity (Figure 6A). L: 1 5-3 0 The catalytic rate of DNA enzymes is pH-independent in the range of ρΗ 6.0-9.0 (Figure 6B). It is inferred that the reaction rate determines the step (not a chemical step). 87851 -44- 200413528 2 ': 10-16 and L: 15-3 0 The catalytic rates of DNA enzymes are related to the concentration of Mg2 +, and both show saturation behavior in two cases. 2 :: Appearance of 10-16 enzymes

A^(Mg2+)IKNF 〜4 mM,MBLL L.15-30 DNA酵素為〜〇·6 mM (見圖10)。 測試許多不同的二價金屬陽離子,是否有支持2,: 10-16及 L:15-30 DNA酵素催化反應之能力。2,:1(M6 dnA酵素在A ^ (Mg2 +) IKNF ~ 4 mM, MBLL L.15-30 DNA enzyme is ~ 0.6 mM (see Figure 10). Test the ability of many different divalent metal cations to support 2, 10-16 and L: 15-30 DNA enzymes to catalyze the reaction. 2: 1 (M6 dnA enzyme in

Mg存在下示出取南之活性水平,於ca2+、^2+或Ba2+存在 下活性則逐漸減低,而在Mn2+,Pb2+,cd2+,Co2+咬Zn2+存 在下少有或無活性。L·· 15-30 DNA酵素在Mn2+存在下最具活 性,在Mgu,Ca2+或Pb2+存在下活性漸減,且Ba2+,Sr2+, Cd2+,Co2+或Zn2+存在下少有或無活性(見圖丨2)。在c〇(NH3)6 存在下,無一酵素呈現活性(數據未示出)。 以高解析PAGE及MALDI質譜法分析在2,:1〇_16及^15_3〇 dna酵素下由反應中所得之切割產物。在二例中,5,_切割 產物是有預期長度之寡核甞酸,在2,,3,_環狀磷酸或2,_或3,_ 單鱗鉍終止(見圖7及圖13)。3’-切割產物也有預期長度,並終 止在自由態之5’-羥基,可由MALDI質譜法證實(見圖13)。 在單轉換條件下分別決定2,,5,_磷酸二酯切割性及1_核 糖核甞酸-切割性DNA酵素之區域-及對映專一性,比較在 切割位置處含有非天然的或天然核糖核甞酸之受質(比較 圖3及8)。也可各種受質來偵測未催化之切割速率(見圖 14)。對於含有2,,5,-連結的核糖核苷酸,2,:15-2DNA酵素呈 現〜20,000之尺⑽/U直,而含有3,,5,_連結的核糖核甞酸之 相當受質則有3.3之尤,反映出以約6,〇〇〇倍之區域選 87851 -45- 200413528 擇性較喜非天然的受質。2f :10-16 DNA酵素呈現之區域選 擇性約為2,000倍。L:15-30 DNA酵素選擇性不如2’,5^切割 性DNA酵素。對於含有L_核糖核甞酸之受質,如約 500,而含D-核糖核苷酸之相當受質,炙加約13。此相 當於約40倍之對映體選擇性較喜非天然受質。在圖7之放射 自顯圖中,分別明示出2’,5’-磷酸-或L-核糖核甞酸-切割性 DNA酵素之區域-或對映體選擇性。 討論 酵素之受質專一性,由其可區別受質結合步騾及反應化 學步驟之能力而決定。對小分子受質而言,和大分子受質 比較下,其達到高度區別度較為困難,因為酵素及小分子 間之可能交互作用次數較少。二種核酸分子間之交互作用 可具高度專一性,可依涉及華特森-克利克(Watson-Crick) 鹼基配對之序列確認以及非標準配對交互作用為準。核酸 分子依據其區域-或對映異構組成為準互相區別之能力也 加以探究。例如,2’,5’-連結的RNA可與2’,5’-或3’,5’-連結的 RNA形成一個穩定的雙股,但與3’,5’-連結的DNA則否16。 類似地,2’,5’-連結的DNA可與3f,5f-連結的RNA形成一個穩 定的雙股,但與3’,5’-連結的DNA則否17。以六個鳥嘌呤核 苷酸殘基組成的全-L-寡去氧核甞酸已示出可與互補的全 -D-RNA股配對,但與相當的全-D-DNA則否18。然而另一研 究則報告,全-L-DNA與全-D-RNA或全-D-DNA均無法形成 雙股19。在本研究中,受質含有一個單一非天然的核糖核苷 酸,包埋在另外全-非天然DNA分子内,對於區域-或對映 87851 -46- 200413528 特異之確認均呈現較為困難的挑戰。 在本貪例中所揭示之DNA酵素,對於含單一非天然核糖 核善酸之受質具高度專一性。一酵素以6,000倍之區域專一 性區別2’55,_及3,,5,-連結的殘基。另一則以4〇倍之對映體選 擇性區別L-及D-殘基。磷酸二酯-切割性DNA酵素之催 化速率為〜0·01分鐘-1。而L_核糖核甞酸-切割性DNA酵素則 為約10倍較慢些。這些速率均較可切割天然核糖核甞酸之 其他已報告之RNA-切割性DNA酵素均來得顯著較慢23。例 如,10-23’’ DNA酵素,在最適宜之反應條件下可達到高達 分鐘-1之催化速率24。可能可切割非天然核糖核甞酸之 DNA酵素,在折疊成活性構型上有難處,或放入二價金屬 陽離予有助於標的磷酸二酯之切割。經由與已知核糖核酸 酶類似下,切割機制似乎涉及自由態2,_或3,_羥基之去質子 作用之後所生成之氧陰離子再黏附至相鄰接之磷酸 上。對於此黏附需有連線之方位,其經由將在切割位置前 &lt;核苷酸強入螺旋外位置可達成此點25。在另外完全雙股結 構内的單一未成對嘌呤核苷酸,經由局部構型變化尤其易 達到此方位,其中主要涉及ε&amp;ζ骨架之扭力角度%。為了達 到華特森-克利克雙股内所需之方位,對2,,扎連結的D_核糖 核甞酸可能較為困難,且尤其是3,,5,_連結的^核糖核苷 鉍。因此,為完成這些非天然核糖核甞酸之切割,需有額 外的催化辅助。 RNA中3’,5’-磷酸二酯未催化下之切割速率,針對包埋在 另外全-DNA分子内之單一核糖核苷酸27,及對全_RNA寡物μ 87851 -47- 200413528 均進行測度。RNA中磷酸二酯未催化下之水解速率, 在二價金屬陽離子存在或不存在下,均和3\5'-磷酸二酯相 似12’29_32,除了當RNA係結合至互補股時外。在該例中,2’,5’-連結之不安定性約7倍多,而3',5’-連結則約5倍以下之穩定33。 為了決定此’’雙股效應”是否應對在2f,5’-切割性DNA酵素中 所觀察到之催化速率加強負部份的貴任時,將含有2’,5’-連 結之核糖核苷酸之受質與互補DNA股雜交,且其中之水解 速率再與單獨受質之水解比較。在此二條件下,未催化之 切割速率並無差異。(數據未示出)。針對單一包埋之核糖核甞 酸所測及之未催化的切割速率,和先前所報告的相似14’28。 在此研究中所發展之DNA酵素,本質上並無任何對映部 份,且以任何已知的生物受質均無法作用。然而,其在切 割含有非天然核糖核嘗酸之告知者分子上,可充作有用的 生化工具。此告知者以生物核酸酶是無法切割的。此活性 一個具潛力之應用,如上文所詳述的,係關於定量性PCR 之方法,稱為MDzyNA-PCR’’34。此方法中應用RNA-切割性 DNA酵素來切割-告知者寡核苷酸,而其係在切割位置任一 侧含有一螢光標幟及騾冷劑。DNA酵素之序列為黏附在二 個PCR引子之一之51端之互補序列所編碼。當PCR擴大作用 進行時,可產生DNA酵素具功能之套數。其可切割告知者 分子,分離螢光標幟及驟冷劑,產生出螢光訊號。在既存 的方法中,因為告知者含有天然的核糖核甞酸,其易受生 物性核糖核酸酶之切割。然而,若吾等應用可切割告知者 分子内有非天然核糖核苷酸之DNA酵素時,此將非如此。 87851 -48- ^528 此中有自然生成之核糖核酸酶可切割2,,5»_連結的寡腺嘌呤 核酸這些分子之產生係干擾素反應路徑的一部份。然 而’對於2’,5、連結之鳥嘌呤核甞酸或^核糖核甞酸之切 割’此中並無已知之生物性核酸酶。 除了其在充作生化工具之潛在應用外,此中所述之DNA 酵素說明,核酸酵素所呈現之受質區域_及對映體選擇性比 知上其天然的蛋白質對映部份。例如,蛇毒構酸二酯酶I, 可切割D-或L-核糖核甞酸,但在切割天然的d-RNA受質上 _ 則活性強1,800倍36。再者於進一步的試管内展開實驗中, 尤其是應用1力能性加強之核酸類似物者37,38,將可發展出甚 至有更大區域·或對映選擇性之新穎的催化劑。 87851 49- 200413528 參考文獻 (1) Joyce, G. F.; Visser, G. M.; van Boeekel, C. A. A.; van Boom, J. H.; Orgel, L. E.; van Westrenen, J. Nature 1984, 310, 602-604. (2) Kozlov, I. A.; Pitsch, S.; Orgel, L. E. Proc. Natl Acad, Sci, USA 1998, 95, 13448-13452. (3) Saghatelian, A.; Yokobayashi, Y.; Soltani, K.; Ghadiri, M. R. Nature 2001, 409, 797-801. (4) Breaker, R. R. Chem. Rev. 1997, 97, 371-390. (5) Jenne, A.; Famulok, M. Topics Curr. Chem. 1999, 202, 101-131. (6) Petrounia, I. P.; Arnold, F. H. Curr. Opin. Biotechnol 2000, 77, 325- 330. (7) Kolkman, J. A.; Stemmer, W. P. C. Nature Biotechnol 2001,19, 423- 428. - (8) Reetz, Μ. T. Angew. Chem. Int. Ed. Engl 2001, 40, 284-310. (9) Seelig, B.; Keiper, S.; Stuhlmann, F.; Jaschke, A. Angew, Chem, Int Ed, Engl 2000, 39, 4576-4579. (10) Bartel, D. P.; Szostak, J. W. Science 1993, 26191411-1417. (11) Ekland, E. H.; Szostak, J. W.; Bartel, D. P. Science 1995, 269, 364- 370. (12) Shih, L-Η.; Been, M. D. RNA 1999, 5, 1140-1148. (13) Vartanian, J.-P.; Henry, M.; Wain-Hobson, S. Nucleic Acids Res. 1996, 24, 2627-2631. (14) Sanger, F.; Nickelson, S.; Coulson, A. R. Proc. Natl Acad. Sci. USA 1977, 74, 5463-5467. (15) Breaker, R. R.; Joyce, G. F. Chem. Biol. 1995, 2, 655-660. (16) Wasner,M·; Arion,D.; Borkow,G.; Noronha,A·; Uddin,A. H·; Pamiak,M· A·; Damha,M· J·所1998, 37, 7478-7486· (17) Alul, R.; Hoke, G. D. Antisense Res. Dev. 1995, 5, 3-11. (18) Fujimori, S.; Shudo, K. J. Am. Chem. Soc. 1990,1129 7436-7438. (19) Garbesi,A·; Capobianco, M. L·; Colonna,F. P·; Tondelli,L.; Arcamone, F.; Manzini, G.; Hilbers, C.*W.; Aden, J. Μ. E.; Blommers, M. J. J. Nucleic Acids Res. 1993, 27, 4159-4165. -50- 87851 200413528 (20) 4266. Santoro, S.; Joyce, G. F. Proc. Natl. Acad. Sci. USA 1997, 94, 4262- (21) 282. Sugimoto, N.; Okumoto, Y. Nucleic Acids Symp. Series 1999, 42, 281- (22) 481-488. Li, J.; Zheng, W.; Kwon, A. H.; Lu, Y. Nucleic Acids Res. 2000,28, (23) Feldman, A. R.; Sen, D. J. Mol. Biol. 2001, 313y 283-294. (24) Santoro, S.; Joyce, G. F. Biochemistry 1998, 37, 13330-13342. (25) Husken, D.; Goodall, G.; Blommers, M. J. J.; Jahnke, W.; Hall, J.; Haner, R.; Moser, Η. E. Biochemistry 1996, 55, 16591-16600. (26) Tereshko, V.; Wallace, S. T.; Usman, N.; Wincott, F. E.; Egli, M. RNA 2001,7, 405-420. (27) Jenkins, L. A.; Autry, Μ. E.; Bashkin, J. K. J. Am. Chem. Soc. 1996, 118, 6822-6825. (28) Li, Y.; Breaker, R. R. J. Am, Chem. Soc. 1999,121, 5364-5372. (29) Oivanen, M.; Kuusela, S.; Lonnberg, H. Chem. Rev. 1998, 98, 961- 990. (30) Oivanen, M.; Schnell, R.; Pfleiderer, W.; Lonnberg, H. J. Org. Chem. 1991, 56, 3623-3628. (31) Jarvinen, P.; Oivanen, M.; Lonnberg, H. J. Org. Chem. 1991, 56, 5396-5401. (32) (33) 1149-1153. Anslyn, E.; Breslow, R. J, Am. Chem. Soc. 1989, 111, 4473-4482. Usher, D. A.; McHale, A. H. Proc. Natl Acad. Sci. USA 1976, 73, (34) Todd, A. V.; Fuery, C. J.; Impey, H. L.; Applegate, T. L.; Haughton, M. A. Clin. Chem. 2000, 46, 625-630. (35) Nilsen, T. W.; Wood, D. L.; Baglioni, C. 1 Biol Chem. 1982, 257, 1602—1605. (36) 1484. Moyroud, E.; Biala, E.; Strazewski, P. Tetrahedron 2000, 56, 1475- (37) Santoro, S.; Joyce, G. F.; Sakthivel, K.; Gramatikova, S.; Barbas, C. F. J. Am. Chem. Soc. 2000,122, 2433-2439. (38) Perrin, D. M.; Garestier, T.; Helene, C. J, Am. Chem. Soc. 2001,123, 1556-1563. -51- 87851 200413528 雖然本發明已參照以上實例加以描述,但應了解修飾及 變化均涵蓋在本發明之精義及範圍之内。因此,本發明僅 由以下申睛專利範圍所偈限。 【圖式簡單說明】 圖1A及1B示出用於發展dna酵素之化合物,此酵素可切 割非天然的核糖核甞酸類似物。圖1A示出2,,5,·連結的 鳥嗓吟核菩酸之化學結構(左),及3,,5,_連結的p-L_腺嘌呤核 甘酸(右)°圖1B圖示用來獲得具欲求活性之DNA酵素之 DNA分子起始庫之結構。各分子含有一個5,_末端生物素(閉 合的B),在標的切割位置(χ)上是2,,5,_連結的D_核糖核甞酸 或3’,5’-連結的L-核糖核甞酸,在切割位置下游是固定的髮 爽環帶區(示出序列)(SEq ID n〇:31)及50個任意序列之去 氧核糖核甞酸(N5〇)。 圖 2A-2C示出 2’:1(M6 (SEQ ID NOS:32,9)(圖 2A),2,:15-2 (SEQ ID NOS:32,1〇)(圖 2B),及L:15-30 (SEQ ID NOS:33, 18)(圖2C)催化性DNA分子之推想的二級結構,各示出其以 分子間反應型式與受質結合。粗字母〇或入顯示分別為2,,5,_ 連結的β-D-烏嘌呤核甞酸或3,,5,_連結的卜L_腺嘌呤核甞 酸。箭號示出切割位置。 圖3示出由2,:10-16(實心圈),2,:15-2(實心正方形),及 L· 15-30 DNA酵素(實心三角型)所催化之切割反應之時間 過程,係在單轉換條件下測定。插圖示出反應前j,〇〇〇分鐘 詳情,示出二種2’,5’_磷酸二酯-切割性酵素之二相式本質。 數據可合於單一或雙指數方程式(見實例之實驗部份)。反應 87851 -52- 200413528 條件為 25 mM MgCl2,150 mM NaCl,pH 7.5及 37°C。 圖4A-4D示出可切割非天然核糖核苷酸類似物之〇ΝΑ酵 素之催化活性,在多轉換條件下。(圖4A) 2,:1(M6 DNA酵 素在切割位置四週有全長之莖幹區域;(圖4B) 2,: 10-16 DNA酵素其莖幹區各有一鹼基對短少;(圖4C)2’:i5-2DNA 酵素’(圖4D) L:15-30 DNA酵素。數據合於以Michaelis-Menten方程式為基礎之曲線:v=u受質][受質])。反 應條件:25 111]^]\^0:12,15〇111]\4仙〇卜?117.5及37。(:。 圖5A_C示出可切割非天然核糖核甞酸類似物之dna酵素 之催化活性β’係在單轉換條件下測定。在各種酵素濃度 下決定,且數據合於以下之方程式:匕严U酵素]/(A+[酵 素]),其中在飽和濃度下,且A是酵素受質複合物 之表觀切割常數。(圖5A) 2’: 10-16 DNA酵素,灸如為〇.〇11 土 0.0004分鐘 1 ’ A是o n ±0·01 nM ;(圖 5B) 2’:15-2 DNA酵 素’免加是〇.034±0.001分鐘-1,且心是〇.12±〇.〇111^1;(圖5(3) L:15-30 DNA 酵素,m〇〇l6±〇.〇〇〇l 分鐘-1 且心是3 2土 0·5 nM。反應條件:25 mM MgCl2,150 mM NaCl,pH 7.5 且 37°C。 圖6A-6B示出DNA-催化的反應之PH值依賴性。(圖6A) 2f:10-16DNA酵素;(圖6B)L:15_30DNA酵素。緩衝溶液為 MES(圈),EPPS(正方型)或CHES(三角型)。 圖7示出放射自顯圖,為由L: 15-30 DNA酵素或2,: 10-16 DNA酵素所催化之切割反應,各自以其相當的非天然核糖核 苷酸受質,或其中非天然核糖核苷酸為標準核糖核苷酸所取 87851 -53 - 200413528 代之受質。反應條件:25 mMMgCl2,150 mMNaa, 及37 C,並在DNA酵素存在(+)或不存在㈠下培育6小時。非 天然的核糖核苷酸受質也接受鹼水解⑴,係將之培育在 0.1 N NaOH存在下,37°C下歷6小時。 圖8示出受質之DNA所催化切割之動力學,其中含有一個 天然的核糖核誓酸取代非天然的核糖核誓酸。反應在Dna 酵素飽和濃度存在下進行,其中應用2,:1〇-16 DNA(圈), 2f:15-2 DNA酵素(正方形)或l:15_30 DNA酵素(三角形)。由 數據對時間函數作圖之最合直線中可得催化速率。反應條 件:25 mM MgCl2,150 mM NaQ,pH 7.5及37°C。 圖9A-9B示出在試管内選擇第15輪後,針對2,,[磷酸二 酯-或L-核糖核菩酸-切割活性,所分離之個別純系可變區之 序列(SEQ ID NOS 1-8及11-17)。框框示出有高度序列相似 性之區域。In the presence of Mg, the activity level of the south is shown, and the activity gradually decreases in the presence of ca2 +, ^ 2 +, or Ba2 +, and there is little or no activity in the presence of Mn2 +, Pb2 +, cd2 +, and Co2 +. L · · 15-30 DNA enzyme is most active in the presence of Mn2 +, and its activity gradually decreases in the presence of Mgu, Ca2 + or Pb2 +, and there is little or no activity in the presence of Ba2 +, Sr2 +, Cd2 +, Co2 + or Zn2 + (see Figure 丨 2) . None of the enzymes showed activity in the presence of co (NH3) 6 (data not shown). The high-resolution PAGE and MALDI mass spectrometry were used to analyze the cleavage products obtained from the reaction under the enzymes 2: 10-16 and 15-30. In two cases, the 5, _ cleavage product is an oligonucleotide of the expected length, which terminates at 2,3, _cyclic phosphoric acid or 2, _ or 3, _monoscale bismuth (see Figures 7 and 13) . The 3'-cleaved product also has the expected length and terminates in the free 5'-hydroxyl group, which can be confirmed by MALDI mass spectrometry (see Figure 13). Determine the 2,5, _phosphodiester cleavability and 1_ribonucleic acid-the region of cleavable DNA enzymes-and the enantiomerism specificity under single conversion conditions, and compare the non-natural or natural Substances of ribonucleic acid (compare Figures 3 and 8). Various substrates can also be used to detect uncatalyzed cutting rates (see Figure 14). For 2,5, -linked ribonucleotides, 2,: 15-2 DNA enzymes present ~ 20,000 ft / U straight, while 3,5, _- linked ribonucleosides are quite substrate There is 3.3 especially, reflecting that the regional selection of 87,851-45-200413528 is about 6,000 times more selective than non-natural receptors. 2f: 10-16 The area of DNA enzymes is approximately 2,000 times more selective. L: 15-30 DNA enzymes are not as selective as 2 ′, 5 ^ cleavable DNA enzymes. For substrates containing L-ribonucleic acid, such as about 500, and for substrates containing D-ribonucleotides, increase by about 13. This is equivalent to about 40 times the enantioselectivity of non-natural substrates. In the autoradiogram of Fig. 7, the 2 ', 5'-phosphate- or L-ribonucleic acid-region of cleavable DNA enzyme-or enantioselectivity is shown clearly. Discussion Enzyme specificity of an enzyme is determined by its ability to discriminate between substrate-binding steps and chemical reactions. For small molecule substrates, it is more difficult to achieve a high degree of differentiation compared to large molecule substrates, because the number of possible interactions between enzymes and small molecules is less. The interaction between the two nucleic acid molecules can be highly specific, subject to sequence confirmation involving Watson-Crick base pairing and non-standard pairing interactions. Nucleic acid molecules have also been explored for their ability to distinguish one another based on their region- or enantiomeric composition. For example, 2 ', 5'-linked RNA can form a stable double strand with 2', 5'- or 3 ', 5'-linked RNA, but 3', 5'-linked DNA is not 16 . Similarly, 2 ', 5'-linked DNA can form a stable double strand with 3f, 5f-linked RNA, but 3', 5'-linked DNA is not17. All-L-oligodeoxynucleotide consisting of six guanine nucleotide residues has been shown to be paired with complementary all-D-RNA strands, but not comparable to all-D-DNA18. However, another study reported that neither all-L-DNA nor all-D-RNA or all-D-DNA could form double strands19. In this study, the substrate contains a single unnatural ribonucleotide and is embedded in another all-unnatural DNA molecule. It presents a more difficult challenge for the specific confirmation of the region- or enantiomer 87851 -46- 200413528. . The DNA enzyme disclosed in this example is highly specific for receptors containing a single non-natural ribose ribonucleic acid. An enzyme distinguishes 2'55, _ and 3,, 5, -linked residues with a region specificity of 6,000 times. The other selectively distinguishes L- and D-residues by 40-fold enantiomers. The catalytic rate of the phosphodiester-cleavable DNA enzyme is ~ 0.01 min-1. The L-ribonucleic acid-cleaving DNA enzyme is about 10 times slower. These rates are significantly slower than other reported RNA-cleaving DNA enzymes that cleave natural ribonucleic acid23. For example, 10-23 '' DNA enzymes can reach catalytic rates of up to min-1 under the most suitable reaction conditions24. It may be possible to cleave non-natural ribonucleic acid DNA enzymes, which is difficult to fold into an active configuration, or put a divalent metal ionization to help the cutting of the target phosphate diester. Similar to known ribonucleases, the cleavage mechanism appears to involve the deprotonation of the free state 2, _ or 3, _ hydroxyl groups, and the oxygen anions generated after the protonation reattach to the adjacent phosphate. For this adhesion, there needs to be a line of orientation, which can be achieved by forcing the nucleotides out of the helix before the cleavage position25. A single unpaired purine nucleotide in another fully double-stranded structure is particularly easy to achieve with this orientation via a local configuration change, which mainly involves the% of torsion angle of the ε &amp; ζ skeleton. In order to achieve the desired orientation within the Watson-Crick double strand, it may be difficult to bind the linked D-ribose riboic acid, and especially the 3,5, _ linked ribonucleoside bismuth. Therefore, in order to complete the cleavage of these non-natural ribonucleosides, additional catalytic assistance is required. The uncatalyzed cleavage rate of 3 ', 5'-phosphodiester in RNA is for single ribonucleotide 27 embedded in another all-DNA molecule, and for all-RNA oligos μ 87851 -47- 200413528 both Take measurements. The hydrolysis rate of phosphoric diesters in RNA without catalysis is similar to 3'5'-phosphodiesters 12′29_32 in the presence or absence of divalent metal cations, except when the RNA is bound to complementary strands. In this example, the 2 ', 5'-linkage is about 7 times more unstable, and the 3', 5'-linkage is about 5 times less stable33. In order to determine whether this "double-stranded effect" should respond to the noble task of enhancing the negative part of the catalytic rate observed in 2f, 5'-cleaving DNA enzymes, it will contain 2 ', 5'-linked ribonucleosides The substrate of the acid hybridizes with the complementary DNA strand, and the hydrolysis rate is compared with the hydrolysis of the substrate alone. Under these two conditions, there is no difference in the uncatalyzed cleavage rate. (Data not shown). For single embedding The uncatalyzed cleavage rate measured by ribonucleic acid is similar to the previously reported 14'28. The DNA enzyme developed in this study does not essentially have any enantiomeric moiety and is known by any known None of the biological receptors can function. However, it can be used as a useful biochemical tool in cutting the informer molecule containing non-natural ribonucleotide and acid. This informer cannot be cut by biological nucleases. This activity has a The potential application, as detailed above, is a method for quantitative PCR, called MDzyNA-PCR''34. In this method, RNA-cleaving DNA enzymes are used to cleave-informer oligonucleotides, and their Tie on either side of the cutting position There is a fluorescent marker and a cooling agent. The sequence of the DNA enzyme is encoded by a complementary sequence that is adhered to the 51 end of one of the two PCR primers. When PCR amplification is performed, it can generate a set of functional DNA enzymes. It can cut The informer molecule separates the fluorescent marker and the quencher to generate a fluorescent signal. In the existing method, because the informant contains natural ribonucleic acid, it is susceptible to cleavage by biological ribonuclease. However, if This is not the case when we use DNA enzymes that can cleave informants that have non-natural ribonucleotides in the molecule. 87851 -48- ^ 528 There are naturally occurring ribonucleases that cleave 2, 5 »_link The production of these molecules is part of the interferon response pathway. However, 'for 2', 5, the cleavage of linked guanine ribonucleic acid or ^ ribonucleic acid 'has no known organisms. In addition to its potential application as a biochemical tool, the DNA enzymes described here indicate that the acceptor region_ and enantioselectivity of nucleic acid enzymes are better than their natural protein counterparts. Servings Snake venom structure acid diesterase I can cleave D- or L-ribonucleic acid, but it is 1,800 times more active in cleaving natural d-RNA substrates. 36 It is then expanded in further test tubes In experiments, especially those with enhanced potency nucleic acid analogs 37,38, novel catalysts with even larger regions or enantioselectivity will be developed. 87851 49- 200413528 References (1) Joyce , GF; Visser, GM; van Boeekel, CAA; van Boom, JH; Orgel, LE; van Westrenen, J. Nature 1984, 310, 602-604. (2) Kozlov, IA; Pitsch, S .; Orgel, LE Proc. Natl Acad, Sci, USA 1998, 95, 13448-13452. (3) Saghatelian, A .; Yokobayashi, Y .; Soltani, K .; Ghadiri, MR Nature 2001, 409, 797-801. (4) Breaker , RR Chem. Rev. 1997, 97, 371-390. (5) Jenne, A .; Famulok, M. Topics Curr. Chem. 1999, 202, 101-131. (6) Petrounia, IP; Arnold, FH Curr Opin. Biotechnol 2000, 77, 325-330. (7) Kolkman, JA; Stemmer, WPC Nature Biotechnol 2001, 19, 423- 428.-(8) Reetz, Μ. T. Angew. Chem. Int. Ed. Engl 2001, 40, 284 -310. (9) Seelig, B .; Keiper, S .; Stuhlmann, F .; Jaschke, A. Angew, Chem, Int Ed, Engl 2000, 39, 4576-4579. (10) Bartel, DP; Szostak, JW Science 1993, 26191411-1417. (11) Ekland, EH; Szostak, JW; Bartel, DP Science 1995, 269, 364-370. (12) Shih, L-Η .; Been, MD RNA 1999, 5, 1140 -1148. (13) Vartanian, J.-P .; Henry, M .; Wain-Hobson, S. Nucleic Acids Res. 1996, 24, 2627-2631. (14) Sanger, F .; Nickelson, S .; Coulson, AR Proc. Natl Acad. Sci. USA 1977, 74, 5463-5467. (15) Breaker, RR; Joyce, GF Chem. Biol. 1995, 2, 655-660. (16) Wasner, M .; Arion , D .; Borkow, G .; Noronha, A ·; Uddin, A. H ·; Pamiak, M · A ·; Damha, M · J. 1998, 37, 7478-7486 · (17) Alul, R. ; Hoke, GD Antisense Res. Dev. 1995, 5, 3-11. (18) Fujimori, S .; Shudo, KJ Am. Chem. Soc. 1990, 1129 7436-7438. (19) Garbesi, A ·; Capobianco , M. L .; Colonna, F. P .; Tondelli, L .; Arcamone, F .; Manzini, G .; Hilbers, C. * W .; Aden, J. Μ. E .; Blommers, MJJ Nucleic Acids Res. 1993, 27, 415 9-4165. -50- 87851 200413528 (20) 4266. Santoro, S .; Joyce, GF Proc. Natl. Acad. Sci. USA 1997, 94, 4262- (21) 282. Sugimoto, N .; Okumoto, Y . Nucleic Acids Symp. Series 1999, 42, 281- (22) 481-488. Li, J .; Zheng, W .; Kwon, AH; Lu, Y. Nucleic Acids Res. 2000, 28, (23) Feldman, AR; Sen, DJ Mol. Biol. 2001, 313y 283-294. (24) Santoro, S .; Joyce, GF Biochemistry 1998, 37, 13330-13342. (25) Husken, D .; Goodall, G .; Blommers , MJJ; Jahnke, W .; Hall, J .; Haner, R .; Moser, Η. E. Biochemistry 1996, 55, 16591-16600. (26) Tereshko, V .; Wallace, ST; Usman, N .; Wincott, FE; Egli, M. RNA 2001, 7, 405-420. (27) Jenkins, LA; Autry, M. E .; Bashkin, JKJ Am. Chem. Soc. 1996, 118, 6822-6825. (28 ) Li, Y .; Breaker, RRJ Am, Chem. Soc. 1999, 121, 5364-5372. (29) Oivanen, M .; Kuusela, S .; Lonnberg, H. Chem. Rev. 1998, 98, 961- 990. (30) Oivanen, M .; Schnell, R .; Pfleiderer, W .; Lonnberg, HJ Org. Chem. 1991, 56, 3623-3628. (31) Jarvinen, P .; Oivanen, M .; Lonnberg, H J. Org. Chem. 1991, 56, 5396-5401. (32) (33) 1149-1153. Anslyn, E .; Breslow, R. J, Am. Chem. Soc. 1989, 111, 4473-4482. Usher, DA; McHale, AH Proc. Natl Acad. Sci. USA 1976, 73, (34) Todd, AV; Fuery, CJ; Impey, HL; Applegate, TL; Haughton, MA Clin. Chem. 2000, 46, 625 -630. (35) Nilsen, TW; Wood, DL; Baglioni, C. 1 Biol Chem. 1982, 257, 1602-1605. (36) 1484. Moyroud, E .; Biala, E .; Strazewski, P. Tetrahedron 2000, 56, 1475- (37) Santoro, S .; Joyce, GF; Sakthivel, K .; Gramatikova, S .; Barbas, CFJ Am. Chem. Soc. 2000, 122, 2433-2439. (38) Perrin, DM; Garestier, T .; Helene, C. J, Am. Chem. Soc. 2001, 123, 1556-1563. -51- 87851 200413528 Although the present invention has been described with reference to the above examples, it should be understood that modifications and variations are covered It is within the spirit and scope of the present invention. Therefore, the present invention is limited only by the following patent claims. [Brief Description of the Drawings] Figures 1A and 1B show compounds used to develop DNA enzymes, which can cut non-natural ribonucleic acid analogs. Fig. 1A shows the chemical structure of 2,5, · -linked bird's throat nucleic acid (left), and 3,5, _- linked p-L_adenine nucleotide (right). Figure 1B diagram Structure of a DNA molecule starting library for obtaining a desired DNA enzyme. Each molecule contains a 5, terminal biotin (closed B), and at the target cleavage position (χ) is 2, 5, 5, linked D_ ribonucleotide or 3 ', 5'-linked L- Ribonucleic acid, downstream of the cleavage site, is a fixed hair band region (shown as a sequence) (SEq ID n0: 31) and 50 arbitrary sequences of deoxyribonucleic acid (N50). Figures 2A-2C show 2 ': 1 (M6 (SEQ ID NOS: 32,9) (Figure 2A), 2 :: 15-2 (SEQ ID NOS: 32,10) (Figure 2B), and L: 15-30 (SEQ ID NOS: 33, 18) (Figure 2C) The inferred secondary structure of the catalytic DNA molecule, each showing its binding to the substrate in an intermolecular reaction pattern. The bold letters 〇 or 入 show 2 respectively. , 5, _ linked β-D-uridine nucleotide or 3,5, _ linked L_adenine nucleotide. The arrow shows the cutting position. Figure 3 -16 (filled circles), 2: 15-2 (filled squares), and the time course of the cleavage reaction catalyzed by L · 15-30 DNA enzymes (filled triangles) are measured under single conversion conditions. Illustration Shows the details of j, 000 minutes before the reaction, showing the two-phase nature of two 2 ', 5'_phosphodiester-cleaving enzymes. Data can be combined into single or double exponential equations (see experimental section of the example) Parts). The reaction was 87851 -52- 200413528 under the conditions of 25 mM MgCl2, 150 mM NaCl, pH 7.5 and 37 ° C. Figures 4A-4D show the catalytic activity of an ONA enzyme that can cleave non-natural ribonucleotide analogs, Under multiple conversion conditions. (Figure 4A) 2: 1 (M6 DNA enzyme has a full-length stem area around the cutting position; (Figure 4B) 2: 10-16 DNA enzymes each have a base pair short in the stem area; (Figure 4C) 2 ': i5 -2 DNA enzyme '(Figure 4D) L: 15-30 DNA enzyme. The data are combined in a curve based on the Michaelis-Menten equation: v = u substrate] [substrate]). Reaction conditions: 25 111] ^] \ ^ 0: 12, 15〇111] \ 4 cents? 117.5 and 37. (:. Figures 5A-C show that the catalytic activity of the DNase enzyme that can cleave non-natural ribonucleic acid analogs is β 'under single conversion conditions. Determination. It is determined under various enzyme concentrations, and the data are combined with the following equations: dagger U enzyme] / (A + [enzyme]), where at a saturated concentration, and A is the apparent cleavage constant of the enzyme receptor complex. (Figure 5A) 2 ': 10-16 DNA enzymes, such as moxibustion of 〇11 soil 0.0004 minutes 1' A is on ± 0 · 01 nM; (Figure 5B) 2 ': 15-2 DNA enzymes' free addition is 0.034 ± 0.001 min-1, and the heart is 0.12 ± 0.011; (Fig. 5 (3) L: 15-30 DNA enzyme, m1616 ± 0.001 min- 1 and the heart is 3 2 soil 0.5 nM. Reaction conditions: 25 mM MgCl2, 150 mM NaCl, pH 7.5 and 37 ° C. Figures 6A-6B show the pH dependence of DNA-catalyzed reactions. (Figure 6A) 2f: 10-16 DNA enzyme; (Figure 6B) L: 15_30 DNA enzyme. The buffer solution is MES (circle), EPPS (square) or CHES (triangular). Fig. 7 shows an autoradiogram, which is a cleavage reaction catalyzed by L: 15-30 DNA enzyme or 2: 10-16 DNA enzyme, each of which is substrated by its equivalent unnatural ribonucleotide, or where Natural ribonucleotides were replaced by the standard ribonucleotides 87851 -53-200413528. Reaction conditions: 25 mMMgCl2, 150 mM Naa, and 37 C, and incubated for 6 hours in the presence or absence of DNA enzyme (+). The non-natural ribonucleotide substrate also undergoes alkaline hydrolysis of plutonium, which was cultivated in the presence of 0.1 N NaOH for 6 hours at 37 ° C. Fig. 8 shows the kinetics of cleavage catalyzed by plasmid DNA, which contains a natural ribonucleic acid in place of unnatural ribonucleic acid. The reaction was performed in the presence of a saturated concentration of DNA enzyme, in which 2 :: 10-16 DNA (circle), 2f: 15-2 DNA enzyme (square) or 1: 15_30 DNA enzyme (triangle) were used. The catalytic rate is obtained from the most straight line plot of the data as a function of time. Reaction conditions: 25 mM MgCl2, 150 mM NaQ, pH 7.5 and 37 ° C. 9A-9B show the sequence of individual pure variable regions (SEQ ID NOS 1) isolated for 2, [[phosphodiester- or L-ribose riboic acid-cleaving activity] after the 15th round selection in a test tube -8 and 11-17). Boxes show regions with a high degree of sequence similarity.

圖 10A-10B示出(圖 10A) 2’:10-16及(圖 10B) L-15-30 DNA 酵素,催化速率在Mg2+濃度上之依賴性。曲線代表以下方 程式為準之最合曲線:U尸灸而[Mg2+]/([Mg2+]+L),其中‘以 是飽和Mg2+存在下之^,且仏是Mg2+表觀的切割常數。 圖 11A-11B 示出針對(圖 11A) 2,:10-16及(圖 11B) L:15-30 DNA酵素之DNA-催化性反應之溫度依賴性。反應條件:25 mM MgCl2,150 mM NaCl及pH 7·5。 圖 12Α-12Β 示出針對(圖 12Α) 2,:10_16及(圖 12Β) L:15-30 DNA酵素之DNA-催化性反應之二價金屬依賴性。反應條 件·· 10 mM M2+,150 mM NaCl,pH 7.5及37°C。金屬由左 87851 -54- 200413528 到至右’以減低相當金屬水合物之pka值。 圖13A-13D示出寡核甞酸產物之MALDI質量光譜,其始 自2s: 10-16及L: 15-30 DNA酵素之催化反應。(圖13A)來自含 有2’,5’-磷酸二酯的受質之心產物,主要產物離子有3,346之 預期m/z,·(圖13B)來自含有2’,5’-磷酸二酯之受質之3,-產 物’具有4,200預期的济/z;(圖來自含有L-核糖核苷酸 〈雙質之5’_產物,具有2,971之預期m/z;(圖13D)來自含有 L-核糖核甞酸受質之3,_產物,具有2,8〇4之預期m々。 圖14示出此研究中所用受質之未經催化之切割。(實心圈) 為含有2’,5’-磷酸二酯之受質,具1χ1〇-6分鐘-^之灸㈣^值;(空 心圈)為含有3’,5’-磷酸二酯之受質,具有2&gt;&lt;1〇-6分鐘-〗之 值’(貫心正方形)含有l·核糖核甞酸之受質,具有 1〇分鐘之h⑽(空心正方形)含有0-核糖核甞酸之受 質,具有4Χ 1〇-6分鐘·1之匕_,值。可由數據對時間函數作圖 &lt;最佳合線中取得切割速率。反應條件:25 mM MgC12,15〇 mM NaCl,pH 7·5及37°C 下。 圖15A-15B是依據本發明之催化性DNA分子圖示(下方之 核酸序列)(SEQ ID NOS:34,29),與相當的受質排成行(上 方核酸序列)。在二圖中箭號表示切割位置,而區域1〇及2〇 代表與本發明催化性DNA分子之上游(25)及下游〇5)側接 區域互補之受質核酸序列區。圖15A說明催化性DNA分子, 其可切割有2’,5’連結之受質核糖核甞酸。圖15B說明可切割 有3’,5’連結之受質L-對映體核糖核苷酸之催化性DNA分子。 圖16 π出特殊核酸序列行均質擴大反應及偵測所用之 DzyNA-PCR策略。 87851 -55- 200413528 序歹,j表 &lt;110&gt; THE SCRIPPS RESEARCH INSTITUTE JOYCE, Gerald F. ORDOUKHANIAN, Phillip T. &lt;120&gt; 具改變之區域或對映選擇性之切割RNA之DNA酵素Figures 10A-10B show (Figure 10A) 2 ': 10-16 and (Figure 10B) L-15-30 DNA enzyme, the dependence of the catalytic rate on Mg2 + concentration. The curve represents the best curve based on the following equation: U cadaver moxibustion and [Mg2 +] / ([Mg2 +] + L), where ‘is the presence of saturated Mg2 + ^, and ^ is the apparent cutting constant of Mg2 +. Figures 11A-11B show the temperature dependence of DNA-catalyzed reactions against (Figure 11A) 2 :, 10-16 and (Figure 11B) L: 15-30 DNA enzymes. Reaction conditions: 25 mM MgCl2, 150 mM NaCl and pH 7.5. Figures 12A-12B show the bivalent metal dependence of DNA-catalyzed reactions against (Figure 12A) 2 :: 10_16 and (Figure 12B) L: 15-30 DNA enzymes. Reaction Conditions · 10 mM M2 +, 150 mM NaCl, pH 7.5 and 37 ° C. The metal goes from 87851 -54- 200413528 to the right to reduce the pka value of the equivalent metal hydrate. Figures 13A-13D show the MALDI mass spectra of oligonucleotide products, starting from the catalytic reaction of 2s: 10-16 and L: 15-30 DNA enzymes. (Fig. 13A) From the product of the substrate containing 2 ', 5'-phosphodiester, the main product ion has an expected m / z of 3,346. (Fig. 13B) From the product containing 2', 5'-phosphodiester Substance 3, -product 'has 4,200 expected z / z; (figure from product containing L-ribonucleotides <5' of doublet, with expected m / z 2,971; (Figure 13D) -The 3, _ product of the ribonucleotide substrate with an expected m々 of 2,800. Figure 14 shows the uncatalyzed cleavage of the substrate used in this study. (Filled circle) contains 2 ', The substrate of 5'-phosphodiester has a moxibustion value of 1 × 10-6 minutes- ^; (open circle) is a substrate containing 3 ', 5'-phosphate diester, which has 2 &gt; &lt; 1. The value of -6 minutes' (through the square) contains a l · ribose riboic acid substrate, with a 10 minute h⑽ (open square) containing a 0-ribose riboic acid substrate, with 4 × 1〇- The value of 6 minutes · 1. The cutting rate can be obtained from the plot of the data as a function of time &lt; the optimal cutting line. Reaction conditions: 25 mM MgC12, 150 mM NaCl, pH 7.5 and 37 ° C. 15A-15B are diagrams according to the present invention. Illustration of chemical DNA molecules (nucleic acid sequences below) (SEQ ID NOS: 34, 29), aligned with the corresponding substrate (nucleic acid sequences above). In the two figures, the arrow indicates the cutting position, and the region 1 And 20 represents the acceptor nucleic acid sequence region complementary to the upstream (25) and downstream (5) flanking regions of the catalytic DNA molecule of the present invention. Fig. 15A illustrates a catalytic DNA molecule that can cleave a 2 ', 5'-linked mitochondrial ribonucleotide. Figure 15B illustrates a catalytic DNA molecule that can cleave a 3 ', 5'-linked acceptor L-enantiomer ribonucleotide. Figure 16 shows the DzyNA-PCR strategy used for homogeneous amplification reaction and detection of special nucleic acid sequences. 87851 -55- 200413528 Preface, j table &lt; 110 &gt; THE SCRIPPS RESEARCH INSTITUTE JOYCE, Gerald F. ORDOUKHANIAN, Phillip T. &lt; 120 &gt; RNA enzymes that cleave RNA with altered regions or enantioselectivity

&lt;130&gt; SCRIP1550TW &lt;140&gt; 092125352 &lt;141&gt; 2003-09-15 &lt;150&gt; US 60/410,973 &lt;151&gt; 2002-09-16 &lt;160&gt; 34 &lt;170〉 Patentln version 3.1 &lt;210&gt; 1 &lt;211&gt; 50 &lt;212&gt; DNA &lt;213〉 人工序列 &lt;220&gt; &lt;223〉 催化性DNA片段 &lt;400&gt; 1 gggaccggcc actcggaggc atccatcgtt gcagaccttc ttccccctgc 50 &lt;210&gt; 2 &lt;211&gt; 50 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;400&gt; 2 gggaccggcc actcggaggc atccatcgtt gcaaaccttg ttccccctgc 50 &lt;210&gt; 3 &lt;211&gt; 50 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;400&gt; 3 gggaccggcc actcggaggc atccatcgtt gcagacctcc ttccccctgc 50 &lt;210&gt; 4 &lt;211&gt; 50 &lt;212〉 DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223〉 催化性DNA片段 87851 200413528 &lt;400&gt; 4 gggaccggcc actcggaggc atccatcgtt gcagaccttc ttccccctgc 50 &lt;210〉 5 &lt;211〉 50 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;220&gt; &lt;221&gt; misc feature &lt;222&gt; (3〇).T(30) &lt;223&gt; n是任何的核答酸&lt; 130 &gt; SCRIP1550TW &lt; 140 &gt; 092125352 &lt; 141 &gt; 2003-09-15 &lt; 150 &gt; US 60 / 410,973 &lt; 151 &gt; 2002-09-16 &lt; 160 &gt; 34 &lt; 170> Patentln version 3.1 &lt; 210 &gt; 1 &lt; 211 &gt; 50 &lt; 212 &gt; DNA &lt; 213> Artificial sequence &lt; 220 &gt; &lt; 223> Catalytic DNA fragment &lt; 400 &gt; 1 gggaccggcc actcggaggc atccatcgtt gcagaccttc 50 ltccccctgc 50 &lt; 210 &gt; 2 &lt211; 50 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence &lt; 220 &gt; &lt; 223 &gt; catalytic DNA fragment &lt; 400 &gt; 2 gggaccggcc actcggaggc atccatcgtt gcaaaccttg ttccccctgc 50 &lt; 210 &gt; 3 &lt; 211 &gt; 50 &lt; DNA &lt; 213 &gt; Artificial Sequence &lt; 220 &gt; &lt; 223 &gt; Catalytic DNA Fragment &lt; 400 &gt; 3 gggaccggcc actcggaggc atccatcgtt gcagacctcc ttccccctgc 50 &lt; 210 &gt; 4 &lt; 211 &gt; 50 &lt; 212> DNA &lt; 213 &gt; Sequence &lt; 220 &gt; &lt; 223> catalytic DNA fragment 87851 200413528 &lt; 400 &gt; 4 gggaccggcc actcggaggc atccatcgtt gcagaccttc ttccccctgc 50 &lt; 210> 5 &lt; 211> 50 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence &lt; 220 &gt; &lt; 223 &gt; catalytic DNA fragment &lt; 220 &gt; &lt; 221 &gt; misc feature &lt; 222 &gt; (3〇) .T (30) &lt; 223 &gt; n is any nucleic acid

Λ Λ Λ Λ 0 12 3 2 2 2 2 2 2 2 2 &lt; V V V misc一feature (33)二(33) η是任何的核甞酸 &lt;400&gt; 5 gggaccggcc actcggaggc atctatcgtn gcngaccttc ttccccctgc 50 &lt;210〉 6 , &lt;211&gt; 50 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 Λ Λ Λ Λ 0 12 3 2 2 2 2 2 2 2 2 V &lt; &lt; &lt; misc 一 feature (43).:(43) n是任何的核芬酸 &lt;400&gt; 6 gggaccggct actcggagtg cttcgtatgt cggtgagggt ctncctcccc 50 &lt;210&gt; 7 &lt;211&gt; 50 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;220&gt; &lt;221〉 misc feature &lt;222&gt; (24)-(49) &lt;223&gt; n是任何岛核答酸 &lt;400&gt; 7 87851 200413528 gggaccggcc actcggaggc atcnatngtt gnggaccttt ttccccccnc 列 序 ΝΑ工 850DN人 &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;220&gt; &lt;223〉 催化性DNA片段 &lt;400&gt; 8 gggaccggcc actcggaggc atctatcgtt gcagaccttc ttccccctgc &lt;210〉 9 &lt;211〉 41 &lt;212〉 DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA &lt;400&gt; 9 gcgagagtgg tttagggacc ggcactcgga gtgcagagag g &lt;210&gt; 10 &lt;211〉 37 &lt;212〉 DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223〉 催化性DNA &lt;400〉 10 gcgagagtgg ggaccggcca ctcggagtgc agagagg &lt;210&gt; 11 &lt;211〉 48 &lt;212〉 DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;220&gt; &lt;221&gt; misc 一 feature &lt;222&gt; (20)·一 (37) &lt;223〉 n是任何核甞酸 &lt;400&gt; 11 ggcgatcgtc tcagacatgn atnncatctt ggagggncag ttcgtcca &lt;210&gt; 12 &lt;211〉 50 &lt;212&gt; DNA &lt;213〉 人工序列 87851 200413528 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;400&gt; 12 gaccggtcgc cttagacttg cagagtcgat gacgctcgta tcccactggg 50 &lt;210&gt; 13 &lt;211&gt; 50 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;400&gt; 13 gcacgatcgt cttagacatg ctgaggtctt gctctctaca gttgccgtca 50 &lt;210&gt; 14 &lt;211&gt; 50 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;400&gt; 14 gctgatcgtc ccagacatgc atagtccaac tctccctgac acccttagca 50 &lt;210&gt; 15 &lt;211〉 51 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;400&gt; 15 &lt;210&gt; &lt;211&gt; &lt;212〉 &lt;213〉 gacgatcgtc ttagacatgc acgttatcgc gacgcctcga acggtccgcc c 51 6 o 1 DNA 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;400&gt; 16 gacgatcgtc tcagacataa atccgttagt ctctgttgtt ttgcgcgcta 50 &lt;210〉 &lt;211〉 &lt;212〉 &lt;213〉 7 o 1 5 DNA 人工序列 87851 -4- 200413528 &lt;220&gt; &lt;223〉 催化性DNA片段 &lt;400&gt; 17 gacgagggtc ttggacataa atcggacgtc gatgtgacag caccagtccc 50 &lt;210&gt; 18 &lt;211〉 29 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA &lt;400&gt; 18 gcctcctcat cgtcttagac agcctctcc 29 &lt;210&gt; 19 &lt;211〉 5 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223〉 上游'-環帶片段 &lt;400&gt; 19 gttta 5 &lt;210&gt; 20 &lt;211&gt; 5 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220〉 &lt;223&gt; 上游環帶片段 &lt;400&gt; 20 gctta 5 &lt;210&gt; 21 &lt;211&gt; 4 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 上游環帶片段 &lt;400&gt; 21 gtta 4 &lt;210&gt; 22 &lt;211&gt; 10 &lt;212&gt; DNA &lt;213&gt; 人工序列 87851 &lt;220&gt; 200413528 &lt;223&gt; 下游環帶 &lt;400&gt; 22 ccactcggag &lt;210〉 23 &lt;211&gt; 42 &lt;212〉 DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 引子 &lt;220&gt; &lt;221&gt; misc_feature &lt;222&gt; (23).~(23)Λ Λ Λ Λ 0 12 3 2 2 2 2 2 2 2 2 &lt; VVV misc-feature (33) di (33) η is any nuclear acid &lt; 400 &gt; 5 gggaccggcc actcggaggc atctatcgtn gcngaccttc ttccccctgc 50 &lt; 210> 6 &lt; 211 &gt; 50 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence &lt; 220 &gt; &lt; 223 &gt; catalytic DNA fragment Λ Λ Λ Λ 0 12 3 2 2 2 2 2 2 2 2 V &lt; &lt; &lt; misc-feature (43) .: (43) n is any nuclear fenamic acid &lt; 400 &gt; 6 gggaccggct actcggagtg cttcgtatgt cggtgagggt ctncctcccc 50 &lt; 210 &gt; 7 &lt; 211 &gt; 50 &lt; 212 &gt; DNA &lt; 213 &gt; Artificial sequence &lt; 220 &gt; &lt; 223 &gt; Catalytic DNA fragment &lt; 220 &gt; &lt; 221> misc feature &lt; 222 &gt; (24)-(49) &lt; 223 &gt; n is any island nucleic acid &lt; 400 &gt; 7 87851 200413528 gggaccggcc actcggaggc atcnatngtt gnggaccttt ttccccccnc column order NAA 850DN people &lt; 210 &gt; &lt; 211 &gt; &lt; 212 &gt; &lt; 213 &gt; &lt; 220 &gt; &lt; 223> Catalytic DNA fragment &lt; gag &gt; gcctgt actct gcc gcagaccttc ttccccctgc &lt; 210〉 9 &lt; 211〉 41 &lt; 212〉 DNA &lt; 213 &gt; Sequence &lt; 220 &gt; &lt; 223 &gt; catalytic DNA &lt; 400 &gt; 9 gcgagagtgg tttagggacc ggcactcgga gtgcagagag g &lt; 210 &gt; 10 &lt; 211〉 37 &lt; 212〉 DNA &lt; 213 &gt; artificial sequence &lt; 220 &gt; &lt; 223> Catalytic DNA &lt; 400> 10 gcgagagtgg ggaccggcca ctcggagtgc agagagg &lt; 210 &gt; 11 &lt; 211> 48 &lt; 212> DNA &lt; 213 &gt; Artificial sequence &lt; 220 &gt; &lt; 223 &gt; Catalytic DNA fragment &lt; 220 &gt; &lt; 221 &gt; misc-feature &lt; 222 &gt; (20) · (37) &lt; 223〉 n is any nucleic acid &lt; 400 &gt; 11 ggcgatcgtc tcagacatgn atnncatctt ggagggncag ttcgtcca &lt; 210 &gt; 12 &lt; 211> 50 &lt; 212 &gt; DNA &lt; 213> Artificial sequence 87851 200413528 &lt; 220 &gt; &lt; 223 &gt; Catalytic DNA fragment &lt; 400 &gt; 12 gaccggtcgc cttagacttg cagagtcgat gacgctcgta tcccactggg 50 &lt; 210 &gt; 13 &lt; 211 &gt; 50 DNA &lt; 213 &gt; Artificial sequence &lt; 220 &gt; &lt; 223 &gt; Catalytic DNA fragment &lt; 400 &gt; 13 gcacgatcgt cttagacatg ctgaggtctt gctctctaca gttgccgtca 50 &lt; 210 &gt; 14 &lt; 211 &gt; 50 &lt; 212 &g; DNA &lt; 213 t; artificial sequence &lt; 220 &gt; &lt; 223 &gt; catalytic DNA fragment &lt; 400 &gt; 14 gctgatcgtc ccagacatgc atagtccaac tctccctgac acccttagca 50 &lt; 210 &gt; 15 &lt; 211> 51 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence &lt; 220 &gt; &lt; 223 &gt; Catalytic DNA fragment &lt; 400 &gt; 15 &lt; 210 &gt; &lt; 211 &gt; &lt; 212〉 &lt; 213〉 gacgatcgtc ttagacatgc acgttatcgc gacgcctcga acggtccgcc c 51 6 o 1 DNA artificial sequence &lt; 220 &gt; 223 &gt; Catalytic DNA fragment &lt; 400 &gt; 16 gacgatcgtc tcagacataa atccgttagt ctctgttgtt ttgcgcgcta 50 &lt; 210〉 &lt; 211〉 &lt; 212〉 &lt; 213〉 7 o 1 5 DNA artificial sequence 87851 -4- 200413528 &lt; 220 &gt; &lt; 220 &gt;; 223> catalytic DNA fragment &lt; 400 &gt; 17 gacgagggtc ttggacataa atcggacgtc gatgtgacag caccagtccc 50 &lt; 210 &gt; 18 &lt; 211> 29 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence &lt; 220 &gt; &lt; 223 &gt; catalytic &lt; 400 &gt; 18 gcctcctcat cgtcttagac agcctctcc 29 &lt; 210 &gt; 19 &lt; 211〉 5 &lt; 212 &gt; DNA &lt; 213 &gt; Artificial Sequence &lt; 220 &gt; &lt; 223> Upstream'-Loop Fragment &lt; 400 &gt; 19 gttta 5 &lt; 210 &gt; 20 &lt; 211 &gt; 5 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence &lt; 220> &lt; 223 &gt; upstream loop fragment &lt; 400 &gt; 20 gctta 5 &lt; 210 &gt; 21 &lt;; 211 &gt; 4 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence &lt; 220 &gt; &lt; 223 &gt; upstream loop band fragment &lt; 400 &gt; 21 gtta 4 &lt; 210 &gt; 22 &lt; 211 &gt; 10 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence 87851 &lt; 220 &gt; 200413528 &lt; 223 &gt; downstream loop &lt; 400 &gt; 22 ccactcggag &lt; 210> 23 &lt; 211 &gt; 42 &lt; 212> DNA &lt; 213 &gt; artificial sequence &lt; 220 &gt; &lt; 223 &gt; Primers &lt; 220 &gt; &lt; 221 &gt; misc_feature &lt; 222 &gt; (23). ~ (23)

&lt;223〉 n是 2’,5'-rG或 L-rA &lt;400&gt; 23 ttttagagac gatgacgatg cantcggaca gtcgcgagac tg &lt;210&gt; 24 &lt;211&gt; 84 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 模板序列&lt; 223> n is 2 ', 5'-rG or L-rA &lt; 400 &gt; 23 ttttagagac gatgacgatg cantcggaca gtcgcgagac tg &lt; 210 &gt; 24 &lt; 211 &gt; 84 &lt; 212 &gt; DNA &lt; 213 &gt; Artificial sequence &lt; 220 &gt; &lt; 223 &gt; template sequence

&gt; &gt; &gt; &gt; 0 12 3 2 2 2 2 2 2 2 2 V V V V misc 一 feature (16)·Τ(65) n是任何核甞酸 &lt;400&gt; 24 gtgccaagct taccgnnnnn ηηηηηηηηηη ηηηηηηηηηη ηηηηηηηηηη ηηηηηηηηηη nnnnncagtc tcgcgactgt ccga &lt;210&gt; 25 &lt;211〉 19 &lt;212&gt; DNA &lt;213〉 人工序列 &lt;220&gt; &lt;223〉 引子 &lt;400&gt; 25 tcggacagtc gcgagactg &lt;210〉 26 &lt;211&gt; 27 &lt;212&gt; DNA &lt;213&gt; 人工序列 87851 -6 - 200413528 &lt;220&gt; &lt;223〉 引子 &lt;220&gt; &lt;221&gt; misc—feature &lt;222〉 (10).:(12) &lt;223 &gt; η是非鹼性核苷酸類似物 &lt;400&gt; 26 aacaacaacn nngtgccaag cttaccg 27 &lt;210〉 27 &lt;211〉 15 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 引子 &lt;400&gt; 27 gtgccaagct taccg 15 &lt;210&gt; 28 a &lt;211&gt; 11 &lt;212〉 DNA &lt;213〉 人工序列 &lt;220&gt; &lt;223&gt; 催化功能部位之下游區 &gt; &gt; &gt; &gt; 0 12 3 2 2 2 2 2 2 2 2 V &lt; V &lt; misc 一 feature(1).0) , ^ n是視所需之胞嘧啶核甞殘基&gt; &gt;> ccga &lt; 210 &gt; 25 &lt; 211〉 19 &lt; 212 &gt; DNA &lt; 213〉 artificial sequence &lt; 220 &gt; &lt; 223〉 primer &lt; 400 &gt; 25 tcggacagtc gcgagactg &lt; 210> 26 &lt; 211 &gt; 27 &lt; 212 &gt; DNA &lt; 213 &gt; Artificial sequence 87851 -6-200413528 &lt; 220 &gt; &lt; 223〉 Primer &lt; 220 &gt; &lt; 221 &gt; misc-feature &lt; 222〉 (10). :( 12) &lt; 223 &gt; η is a non-basic nucleotide analog &lt; 400 &gt; 26 aacaacaacn nngtgccaag cttaccg 27 &lt; 210〉 27 &lt; 211> 15 &lt; 212 &gt; DNA &lt; 213 &gt; Artificial sequence &lt; 220 &gt; &lt; 223 &gt; Primer &lt;; 400 &gt; 27 gtgccaagct taccg 15 &lt; 210 &gt; 28 a &lt; 211 &gt; 11 &lt; 212〉 DNA &lt; 213> artificial sequence &lt; 220 &gt; &lt; 223 &gt; downstream region of catalytic functional site &gt; &gt; &gt; &gt; 0 12 3 2 2 2 2 2 2 2 2 V &lt; V &lt; misc a feature (1). 0), ^ n are the required cytosine nuclear residues

&gt; &gt; &gt; &gt; 0 12 3 2 2 2 2 2 2 2 2 V V V V misc—feature(2)..(2) n是胞嘧啶核甞或胸腺嘧啶核甞殘基&gt; &gt; &gt; &gt; 0 12 3 2 2 2 2 2 2 2 2 V V V V misc-feature (2) .. (2) n is a cytosine or thymidine residue

&gt; &gt; &gt; &gt; 0 12 3 2 2 2 2 2 2 2 2 V &lt; V V nisc 一 feature 11).一 (11) ^結合至受質核酸序列上的互補核#酸 &lt;400&gt; 28 nnactcggag η 11 &lt;210&gt; 29 &lt;211〉 14 &lt;212&gt; DNA &lt;213&gt; 人工序列 87851 200413528 &lt;220&gt;&lt;223&gt; 一個確認功能部位及一個催化功能部位 &lt;220&gt; &lt;221&gt; misc 一feature &lt;222&gt; (!)..〇)&lt;223&gt; η結合至受質核酸序列上之互補核甞酸,其位在受質核酸序列上緊接切割位置下游處 &lt;220&gt; &lt;22 1 &gt; misc_feature &lt;222&gt; (2)..(2)&lt;223&gt; η是胸腺續淀核誓或胍殘基 &lt;220&gt; &lt;22 1 &gt; misc—feature &lt;222&gt; (3)··【3)&lt;223&gt; η是密淀核嘗或狐殘基&gt; &gt; &gt; &gt; 0 12 3 2 2 2 2 2 2 2 2 V &lt; VV nisc -feature 11). One (11) ^ Complementary Nucleic Acids Binding to the Nucleic Acid Nucleic Acid Sequence # 酸 &lt; 400 &gt; 28 nnactcggag η 11 &lt; 210 &gt; 29 &lt; 211> 14 &lt; 212 &gt; DNA &lt; 213 &gt; artificial sequence 87851 200413528 &lt; 220 &gt; &lt; 223 &gt; a confirmation functional site and a catalytic functional site &lt; 220 &gt; &lt; 221 &gt; misc-feature &lt; 222 &gt; (!) .. 〇) &lt; 223 &gt; Complementary nucleic acid binding to the acceptor nucleic acid sequence, located immediately downstream of the cleavage position on the acceptor nucleic acid sequence &lt; 220 &gt; &lt; 22 1 &gt; misc_feature &lt; 222 &gt; (2) .. (2) &lt; 223 &gt; η is a nuclear thymocyte or guanidine residue &lt; 220 &gt; &lt; 22 1 &gt; misc-feature &lt; 222 &gt; (3) · [3) &lt; 223 &gt; η is a dense lake or fox residue

Λ Λ Λ&gt; 0 12 3 2 2 2 2 2 2 2 2 &lt; &lt; V V misc 一 feature (5)..【5)η是胞嘧啶核苷或胸腺嘧啶核甞殘基 Λ &gt; Λ Λ 0 12 3 2 2 2 2 2 2 2 2 V V V &lt; misc 一 feature (7)..Γ7)η是胞嘧啶核甞或胸腺嘧啶核甞殘基 &lt;220&gt; &lt;221〉 misc 一feature &lt;222&gt; (8)..(8)&lt;223〉 η是胞嘧啶核甞或胸腺嘧啶核甞殘基 Λ Λ Λ Λ 0 12 3 2 2 2 2 2 2 2 2 &lt; V V &lt; misc__feature(9)..(9)n是腺嘌呤核苷或胍殘基 &lt;220&gt; &lt;221〉 misc_feature &lt;222&gt; (13)&quot;(13)&lt;223&gt; η腺嘌呤核甞或胸腺嘧啶核苷殘基 &lt;220&gt; &lt;221&gt; misc 一 feature&lt;222&gt; (14)::(14) ... ^&lt;223&gt; η結合至受質核酸序列上互補的核甞酸,其距切割位置上游二個核甞酸&lt;400&gt; 29 87851 200413528 nnngncnnng acnn &lt;210&gt; 30 &lt;211〉 12 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223〉 催化性DNA片段 &lt;400&gt; 30 tcgtcttaga ca &lt;210〉 31 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; 人工序列 &lt;220&gt; &lt;223&gt; 催化性DNA片段 &lt;220&gt; a &lt;221〉 misc 一 feature &lt;222&gt; (1)..(1)Λ Λ Λ &gt; 0 12 3 2 2 2 2 2 2 2 2 &lt; &lt; VV misc-feature (5) .. [5) η is a cytosine or thymidine residue Λ &gt; Λ Λ 0 12 3 2 2 2 2 2 2 2 2 VVV &lt; misc-feature (7): Γ7) η is a cytosine or thymidine residue &lt; 220 &gt; &lt; 221〉 misc-feature &lt; 222 &gt; (8) .. (8) &lt; 223> η is a cytosine or thymidine residue Λ Λ Λ Λ 0 12 3 2 2 2 2 2 2 2 2 &lt; VV &lt; misc__feature (9) .. (9) n is adenine nucleoside or guanidine residue &lt; 220 &gt; &lt; 221> misc_feature &lt; 222 &gt; (13) &quot; (13) &lt; 223 &gt; η adenine nuclear thymidine or thymidine Residues &lt; 220 &gt; &lt; 221 &gt; misc-feature &lt; 222 &gt; (14): :( 14) ... ^ &lt; 223 &gt; Upstream two nucleotides &lt; 400 &gt; 29 87851 200413528 nnngncnnng acnn &lt; 210 &gt; 30 &lt; 211〉 12 &lt; 212 &gt; DNA &lt; 213 &gt; Artificial sequence &lt; 220 &gt; &lt; 223> Catalytic DNA fragment &lt; 400 &gt; 30 tcgtcttaga ca &lt; 210> 31 &lt; 211 &gt; 20 &lt; 212 &gt; DNA &lt; 213 & g t; artificial sequence &lt; 220 &gt; &lt; 223 &gt; catalytic DNA fragment &lt; 220 &gt; a &lt; 221〉 misc a feature &lt; 222 &gt; (1) .. (1)

&lt;223&gt; n是-rG或 L-rA &lt;400&gt; 31 ntcggacagt cgcgagactg &lt;210&gt; 32 &lt;211〉 25 &lt;212&gt; DNA &lt;213〉 人工序列 &lt;220&gt; &lt;223〉 標的序列 &lt;400&gt; 32 cctctctgca gtcggacact ctcgc &lt;210&gt; 33 &lt;211〉 18 &lt;212&gt; DNA &lt;213〉 人工序列 &lt;220&gt; &lt;223 &gt; 標的序列 &lt;400&gt; 33 ggagaggcat gaggaggc &lt;210&gt; 34 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213〉 人工序列 87851 200413528 &lt;220&gt; &lt;223&gt; 催化性DNA片段&lt; 223 &gt; n is -rG or L-rA &lt; 400 &gt; 31 ntcggacagt cgcgagactg &lt; 210 &gt; 32 &lt; 211〉 25 &lt; 212 &gt; DNA &lt; 213> artificial sequence &lt; 220 &gt; &lt; 223> target sequence &lt; 400 &gt; 32 cctctctgca gtcggacact ctcgc &lt; 210 &gt; 33 &lt; 211> 18 &lt; 212 &gt; DNA &lt; 213> artificial sequence &lt; 220 &gt; &lt; 223 &gt; target sequence &lt; 400 &gt; 33 ggagaggcat gaggaggc &lt; 210 &gt;; 34 &lt; 211 &gt; 21 &lt; 212 &gt; DNA &lt; 213> artificial sequence 87851 200413528 &lt; 220 &gt; &lt; 223 &gt; catalytic DNA fragment

Λ Λ Λ &gt; ο ,—,12 3 2 2 2 2 2 2 2 2 V V V V misc 一 feature (1)··(2) η是祐知的核芬酸 &lt;220&gt; &lt;221&gt; misc 一feature &lt;222&gt; (7)..^7) &lt;223&gt; η是中央莖幹區V核甞酸 &lt;220&gt; &lt;221&gt; misc 一feature &lt;222〉 (8)··【8) &lt;223&gt; η是胞嘧啶核甞殘基 &lt;220&gt; &lt;221 &gt; misc 一feature &lt;222&gt; (9).·【9) &lt;223&gt; η是胍殘基Λ Λ Λ &gt; ο, —, 12 3 2 2 2 2 2 2 2 2 VVVV misc-feature (1) · (2) η is a well-known nuclear fenamic acid &lt; 220 &gt; &lt; 221 &gt; misc-feature &lt; 222 &gt; (7) .. ^ 7) &lt; 223 &gt; η is the V nuclear acid in the central stem region &lt; 220 &gt; &lt; 221 &gt; misc-feature &lt; 222> (8) · [8] &lt; 223 &gt; η is a cytosine nuclear residue &lt; 220 &gt; &lt; 221 &gt; misc-feature &lt; 222 &gt; (9). [9) &lt; 223 &gt; η is a guanidine residue

Λ Λ Λ Λ οι—- 2 3 2 2 2 2 2 2 2 2 V V V V misc 一 feature(10):(10) ri結合受質核酸序列上之互補核苷酸,其緊接在切割位置下游Λ Λ Λ Λ ο—- 2 3 2 2 2 2 2 2 2 2 V V V V misc a feature (10) :( 10) ri binds to the complementary nucleotide on the acceptor nucleic acid sequence, which is immediately downstream of the cutting position

Λ Λ Λ Λ 0 12 3 2 2 2 2 2 2 2 2 &lt; V V V misc 一 feature(11)二(11) η是視所需之胞嘧啶核甞殘基 &lt;220&gt; &lt;221&gt; mi sc 一feature &lt;222&gt; (12)·Τ(12) &lt;223&gt; η是嘧啶核甞或胸腺嘧啶核甞殘基Λ Λ Λ Λ 0 12 3 2 2 2 2 2 2 2 2 &lt; VVV misc one feature (11) two (11) η is the required cytosine nuclear tritium residue &lt; 220 &gt; &lt; 221 &gt; mi sc -Feature &lt; 222 &gt; (12) · T (12) &lt; 223 &gt; η is a pyrimidine or thymidine residue

&gt; &gt; &gt; &gt; 0 12 3 2 2 2 2 2 2 2 2 V V V V misc 一 feature (21)'(21) n結合至受質核酸序列之互補核甞酸,其距離位罝上游二個 核甞酸處 &lt;400&gt; 34 nngggannnn nnactcggag η 21 87851 10-<gt; &gt; Nucleic acid &lt; 400 &gt; 34 nngggannnn nnactcggag η 21 87851 10-

Claims (1)

200413528 拾、申請專利範園: 1. 一種催化性單股DNA分子,其包含一或多個環帶區及一 或多個結合區,其中該結合區結合至受質核酸序列之互 補序列,且其中該催化性DNA分子具有對受質核酸序列 中之切割位置具專一性之位置-專一性核酸内切酶活性, 切割位置包含一非天然生成之單股核糖核酸。 2. 根據申請專利範圍第1項之催化性DN A分子,其中該非自 然生成的卓股核酸包含一個2 ’,5 ’連結的殘基。 3. 根據申請專利範圍第2項之催化性dna分子,其中該2, 5, 連結的殘基是2,,5’-連結的腺嘌呤核甞酸或鳥嘌呤核甞酸 殘基。 4. 根據申請專利範圍第1項之催化性DNA分子,其中該非自 然生成的單股核酸包括L-對映體殘基。 5·根據申睛專利範圍第4項之催化性DNA分子,其中該L-對 映體殘基是3’,5,_連結的腺嘌呤核苷酸殘基。 6·根據申請專利範圍第1項之催化性DNA分子,其中該受質 核酸序列係黏附至該催化性DNA分子。 7·根據申請專利範圍第1項之催化性DNA分子,其中該核酸 内切酶活性可因Mg2+之存在而加強。 8. 根據申睛專利範圍第1項之催化性DNA,其中該核酸内切 酶活性包括在該切割位置上磷酸酯键之水解性切割。 9. 根據申請專利範圍第1項之催化性DNA分子,其中該催化 性DNA分子呈現之Km值少於約丨μΜ。 10·根據申請專利範圍第丨項之催化性1)]^人分子,其中該核酸- 87851 11200413528 内切酶活性可因二價陽離子之存在而加強。 根據申請專利範圍第1 〇項之催化性DNA分子,其中該二 價陽離子選自由Pb2+,Mg2+,,Zna及Ca2'組成之群 中。 12. 13. 14. 根據申請專利範圍第7項之催化性單股dna分子,其包 含: a) —催化性功能部位,包括: i)可形成環帶之下游區,其包括心XiX2ACTCGGA GX3_3 (SEQ ID NO:28),义〗是視所需的胞嘧啶核甞殘基, &amp;是胞嘧喊核甞或胸腺嘧啶核苷殘基,且&amp;結合至受質 核酸序列上的互補核苷酸,其距切割位置上游二個核甞 酸; 11) 一中央莖幹區,包括5LZiZ2Z3Z4_3,,緊接至下 游環帶5’ ’其中Z4結合至受質核酸序列的一個互補核甞 酸’其緊接在切割位置下游;及 iii) 一可形成環帶之上游區,包括4個核甞酸緊接 至里幹區之5’,其中上游區環帶含有5,_GGga_3,;及 b) —確認功能部位,包括一個上游侧接區及一個下游 侧接區’上游侧接區係緊接至上游環帶之5,且下游側接區 係緊接至下游環帶之3,。 根據申請專利範圍第12項之催化性Dna分子,其中該Z2 是胞喊淀核苷殘基,且Zs是胍殘基。 根據申請專利範圍第12項之催化性DNA分子,其中該下 游環帶含有 5,-CCACTCGGAG-3,(SEQ ID NO:22)。 87851 -2 - 200413528 15·根據申請專利範圍第12項之催化性DNA分子,其中該Z4 是胍殘基,Χι是胞喊淀核甞殘基,X2是胞密淀核甞殘基, 且Xs是脈殘基。 16. 根據申請專利範圍第12項之催化性DNA分子,其中該上 游環帶含有5f-YGGGA-3’,其中Y是0至5個核甞酸。 17. 根據申請專利範圍第16項之催化性DNA分子,其中Y包含 5,-TTA-3,。 18. 根據申請專利範圍第17項之催化性DNA分子,其中Y包含 5,-GTTTA-3,(SEQ ID NO:19)。 19. 根據申請專利範圍第17項之催化性DNA分子,其中Y包含 5,-GCTTA-3’(SEQ ID ΝΟ:20)。 20. 根據申請專利範圍第17項之催化性DNA分子,其中Υ包含 5,-GTTA-3,(SEQ ID ΝΟ:21)。 21. 根據申請專利範圍第12項之催化性DNA分子,其中該催 化性DNA分子包括 SEQ ID NO:l,SEQ ID NO:2,SEQ ID N〇:3,SEQ ID NO:4,SEQ ID NO:5,SEQ ID NO:6,SEQ ID NO:7,SEQ ID NO:8,SEQ ID NO:9,或 SEQ ID NO:10。 22. 根據申請專利範圍第9項之催化性單股DNA分子,其包 含: a) —可形成環帶之催化性功能部位,其包含 S’-XiXdsGXztCXsXsXTGACXsXrS’(SEQ ID NO:29),其中 Xi結合至受質核酸序列上的一個互補核甞酸,其緊接在 切割位置下游,χ2是胸腺嘧啶核甞或胍殘基,X3是胞嘧 啶核甞或胍殘基,X4是胞嘧啶核甞或胸腺嘧啶核苷殘 87851 200413528 基,X5是胞嘧啶核甞或胸腺嘧啶核甞殘基,心是胞嘧啶 核甞或胸腺嘧啶核甞殘基,x?是腺嘌呤核苷或胍殘基, X8是腺嘌呤核苷或胸腺嘧啶核甞殘基,且&amp;結合至受質 核酸序列上一個互補的核苷酸,其距切割位置上游二個 核甞酸;及 b) —確認功能部位,其包含一上游側接區及一下游側 接區’上游侧接區係緊接至催化功能部位5,,且下游側接 區係緊接催化功能部位3,。 23. 根據申請專利範圍第22項之催化性DNA分子,其中乂2是 胞腺嘧啶舷甞殘基,X3是胞嘧啶核苷殘基,χ4是胸腺嘧 贫核甞殘基,X5是胸腺嘧啶核甞殘基,χ6是胸腺嘧啶核 誓殘基,X7是腺嘌呤核苷殘基,且χ8是腺嘌呤核苷殘基。 24. 根據申請專利範圍第22項之催化性dna分子,其中該環 帶包含 5’-TCGTCTTAGCA-3,(SEQ ID ΝΟ:30)。 25·根據申請專利範圍第22項之催化性DNA分子,其中該催 化性DNA分子包括:SEQ ID NO:ll,SEQ ID NO:12,SEQ _ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID , NO:16,SEQ ID NO:17或 SEQ ID NO:18。 26·根據申請專利範圍第22項之催化性dna分子,其中該催 化性DNA分子包括SEQ ID NO:18。 27. —種偵測標的核酸序列之方法,該方法包括: a)在擴大反應缓衝溶液中摻和: i) 一核酸樣品; i〇 —聚合酶; 87851 200413528 支貝非自然生成之單股核酸序列,包含由第 一標幟及第二標幟組成之交互活性標幟對,其係直接或 間接黏附至寡核甞酸,其中第一標幟由非自然生成之核 糖核苷酸切割位置與第二標幟分隔,· IV) —正向引子,其可結合至標的核酸序列第一股 (3邯份並指令標的核酸序列以正向方向合成聚核苷 酸;及 V) —反向引子,其包括可結合至標的核酸序列第 一股3邵份&lt;區域,並指令標的核酸序列以反向方向合成 水核甘酸,且包含根據申請專利範圍第丨項之催化性單股 DNA分子之互補體,其中該催化性單股dna分子可在切 割位置上切割受質核酸序列; b)在擴大反應條件下培育所接和之組#,以提供標的 核酸序列之擴大,合成催化性單股DNA分子,並由催化 料股DNA分子切割受質核酸序列,由是釋出第-標織 及弟一標幟之又互作用;及 e)偵測第-標幟’由是可偵測出標的核酸序列。 28. 29. 30. 31. 根據申請專利範圍第27項之古 牙員义万去,其中非自然生成之核糖 核甞酸切割位置包括一個2,,5,·連結的殘基。 根據申請專利範圍第27項之古、、土甘+ u ^ 、 岸貝又万法,其中非自然生成之核糖 核甞酸切割位置含有L-對映體殘基。 根據申請專利範圍第27項之 甘+ ^ ,、义万法,其中弟一標幟是螢光部 份,且第二標幟是騾冷劑。 根據申請專利範圍第27項 ” &lt;万去,其中孩催化性單股DNA 87851 200413528 分子疋根據申請專利範圍第1項之催化性單股DNA分子。 32·根據申請專利範圍第31項之方法,其中該催化性單股dna 分子是根據申請專利範圍第6項之催化性單股1)]^入分子。 33. 根據申睛專利範圍第28項之方法,其中該2,,5,連結的殘基 疋2,5-連結的腺嘌呤核甞酸或鳥嘌呤核苷酸核糖核甞酸 殘基。 34. 根據申睛專利範圍第33項之方法,其中該催化性單股 分子疋根據申請專利範圍第1項之催化性單股dna分子。 35·根據申請專利範圍第33項之方法,其中該催化性單股DNA 分子疋根據申請專利範圍第3項之催化性單股dna分子。 3 6.根據申請專利範圍第27項之方法,其中非自然生成的單股 核酸包括L-對映體殘基。 37.根據申請專利範圍第36項之方法,其中該L-對映體殘基是 3’,5^連結的腺嘌吟核嘗酸核糖核菩酸殘基。 3 8·根據申請專利範圍第37項之方法,其中該催化性單股dna 分子是根據申請專利範圍第1項之催化性dna分子。 39·根據申請專利範圍第27項之方法,其中該聚合酶是水生棲 熱菌(Thermusaquaticus)DNA聚合酶,且其中擴大反應係 利用聚合酶連鎖反應來進行。 40· —種非自然生成之單股核酸受質,其包括由第一標織及 第二標幟所組成之交互活性標幟對,其係直接或間接黏 附至寡核苷酸,其中第一標幟與第二標幟由包括2,,5,-連 結的殘基或L-對映體殘基之切割位置所分隔。 41 ·根據申請專利範圍第4 0項之受質,其中第一標織是一種 87851 200413528 螢光部份,且第二標幟是一種騾冷劑。 42. 43. 44. 45. 46. 47. 根據申請專利範圍第40項之受質,其中切割位置包括2,,5, 連結的殘基。 根據申請專利範圍第42項之受質,其中切割位置包括 2,5’-連結的腺嘌呤核甞酸或鳥嘌呤核苷酸核糖核苷酸殘 基。 根據申請專利範圍第43項之受質,其中切割位置包括l_ 對映體殘基。 根據申請專利範圍第44項之受質,其中L-對映體殘基是 3’,5’-連結的腺嘌呤核甞酸核糖核苷酸殘基。 一種含有二或多種根據申請專利範圍第1項之催化性 DNA分子族群之組合物,其中催化性〇ΝΑ分子各族群可 切割一受質上不同的核酸序列。 一種鑑定催化性DNA分子之方法,該DNA分子具有位置 專一性核酸内切酶活性,對非自然生成之核糖核甞酸切 割位置具專一性,此方法包括: a) 構築雙股核酸分子庫,其包含非自然生成之核糖核 甘切劃位置’且包括可能可與切割位置區域交互作用 之任意序列之核苷酸區域; b) 捕獲雙股核酸分子庫之一股,由是可提供經捕獲的 單股核酸分子庫; c) 在切割條件下培育所捕獲之單股核酸分子庫,造成 切割位置上之切割並釋出所切割之核酸分子;及 d) 分離所切割之核酸分子,由是可鑑定出具有位置_ 87851 200413528 專一性核酸内切酶活性之催化性DNA分子,其對非自然 生成之核糖核苷酸切割位置具專一性。 μ 48. 根據申請專利範圍第47項之方法,其中該方法進 括: ^ Θ擴大所切割的核酸分子並重複步驟卜“至川次; g) 將經選擇性擴大的經切割核酸分子任意地突變,以 ’ 形成突變且切割之核酸分子;及 h) 擴大所突變且切割之核酸分子並重複步驟b_e丨至 20 次。 · 49. 根據申請專利範圍第48項之方法,其中在接續的步驟句 重複發生中變化切割條件,如此切割反應必是更有效率 使核酸切割可發生。 5〇·根據申請專利範圍第47項之方法,其中非自然生成之核 糖核甞酸切割位置是2,,5,-連結的鳥嘌呤核菩酸核糖核甞 酸切割位置。 5 1.根據申請專利範圍第47項之方法,其中非自然生成的核鲁 糖核甞酸切割位置是L-腺嘌呤核苷酸核糖核苷酸切割位 ·— 置。 、 52· —種偵測標的核酸序列之套組,此套組包括·· A) —觉質非自然生成之單股核酸序列,其中包括由第 一標幟及第二標幟組成之交互活性標幟對,其係直接或 間接地黏附至寡核苷酸,其中第一標幟與第二標幟為非 自然生成之核糖核甞酸切割位置所分隔; B) —正向引子,其可結合至標的核酸序列第一股之3, 87851 -8 - 200413528 邵份’並指令標的核酸序列以正向方向合成聚核誓酸,。及 C) 一反向引子,其含有可結合至標的核酸序列第二股 3 ^邵份之區域,— 並指令標的核酸序列以反向方向合成聚核 知’且包括根據申請專利範圍第1項之催化性單股Dna 为子之互補體,其中該催化性單股DNA分子可在切害彳位置 處切割受質核酸序列。 53. 54. 55. 56. 57. 58. 59. 60. 61. 根據申請專利範圍第52項之套組,其中非自然生成之核 糖核甞酸切割位置含有2’,5f連接之殘基。 根據申請專利範圍第52項之套組,其中非自然生成之核 糖核甞酸切割位置含有L-對映體殘基。 根據申請專利範圍第5 2項之套組,其中第一標織是螢光 β f刀且弟一標織是驟冷劑。 根據申請專利範圍第52項之套組,其中該催化性單股DNA 分子是根據申請專利範圍第1項之催化性單股DNa分子。 根據申睛專利範圍第56項之套組,其中該催化性單股DNA 刀子疋根據申請專利範圍第6項之催化性單股DNA分子。 根據申請專利範圍第53項之套組,其中該2,,5,連結的殘基 是2’,5’-連結的腺嗓呤核菩酸或鳥嘌呤核苷酸核糖核苷酸 殘基。 根據申请專利範圍第58項之套組,其中該催化性單股DNA 分子是根據申請專利範圍第1項之催化性單股DNA分子。 根據申请專利範圍第58項之套組,其中該催化性單股DNA 刀子疋根據申請專利範圍第3項之催化性單股DNA分子。 根據申請專利範圍第52項之套組,其中非自然生成之單 87851 200413528 股核酸含有L-對映體殘基。 62,根據申請專利範圍第61項之套組,其中該L-對映體殘基 是連結的腺嘌呤核甞酸核糖核甞酸殘基。 10- 87851200413528 Patent application park: 1. A catalytic single-stranded DNA molecule comprising one or more loop band regions and one or more binding regions, wherein the binding region binds to the complementary sequence of the acceptor nucleic acid sequence, and The catalytic DNA molecule has a site-specific endonuclease activity specific to the cleavage site in the acceptor nucleic acid sequence, and the cleavage site includes a non-naturally occurring single-stranded ribonucleic acid. 2. The catalytic DNA molecule according to item 1 of the scope of the patent application, wherein the non-naturally generated stranded nucleic acid comprises a 2 ', 5' linked residue. 3. The catalytic DNA molecule according to item 2 of the scope of the patent application, wherein the 2,5, linked residues are 2,5'-linked adenine nucleotides or guanine nucleotides. 4. The catalytic DNA molecule according to item 1 of the patent application, wherein the non-naturally generated single-stranded nucleic acid includes an L-enantiomeric residue. 5. The catalytic DNA molecule according to item 4 of the Shen Yan patent scope, wherein the L-enantiomeric residue is a 3 ', 5, _ linked adenine nucleotide residue. 6. The catalytic DNA molecule according to item 1 of the application, wherein the acceptor nucleic acid sequence is adhered to the catalytic DNA molecule. 7. The catalytic DNA molecule according to item 1 of the scope of patent application, wherein the endonuclease activity can be enhanced by the presence of Mg2 +. 8. The catalytic DNA according to item 1 of Shenyan's patent scope, wherein the endonuclease activity includes a hydrolytic cleavage of a phosphate bond at the cleavage position. 9. The catalytic DNA molecule according to item 1 of the patent application scope, wherein the Km value exhibited by the catalytic DNA molecule is less than about 1 μM. 10. Catalytic activity 1)] human molecule according to item 丨 of the scope of patent application, wherein the nucleic acid-87851 11200413528 endonuclease activity can be enhanced by the presence of divalent cations. The catalytic DNA molecule according to item 10 of the application, wherein the divalent cation is selected from the group consisting of Pb2 +, Mg2 +, Zna and Ca2 '. 12. 13. 14. The catalytic single-stranded DNA molecule according to item 7 of the scope of the patent application, which comprises: a)-a catalytic functional site, including: i) a downstream region that can form an annular zone, which includes the heart XiX2ACTCGGA GX3_3 ( (SEQ ID NO: 28), meaning is the cytosine nuclear residue, as needed, &amp; is a cytosine nuclear thymidine or thymidine residue, and &amp; binds to a complementary nucleus on the acceptor nucleic acid sequence Nucleic acid, two nucleotides upstream from the cleavage position; 11) A central stem region, including 5LZiZ2Z3Z4_3, immediately to the downstream loop 5 '' where Z4 binds to a complementary nucleic acid sequence of a complementary nucleic acid ' It is immediately downstream of the cutting position; and iii) an upstream zone that can form an endless zone, including 4 nucleotides 5 'to the inner dry zone, where the upstream zone contains 5, _GGga_3, and b) — Confirm the functional parts, including an upstream side connection area and a downstream side connection area. The 'upstream side connection area' is immediately connected to 5 of the upstream endless belt, and the downstream side connection area is immediately connected to 3 of the downstream endless belt. The catalytic DNA molecule according to item 12 of the application, wherein Z2 is a nucleoside residue and Zs is a guanidine residue. The catalytic DNA molecule according to item 12 of the application, wherein the downstream band contains 5, -CCACTCGGAG-3, (SEQ ID NO: 22). 87851 -2-200413528 15. The catalytic DNA molecule according to item 12 of the scope of patent application, wherein Z4 is a guanidine residue, X1 is a cytoplasmic nucleus residue, X2 is a cytoplasmic nucleus residue, and Xs Is a pulse residue. 16. The catalytic DNA molecule according to item 12 of the application, wherein the upstream loop contains 5f-YGGGA-3 ', where Y is 0 to 5 nucleotides. 17. A catalytic DNA molecule according to item 16 of the patent application, wherein Y contains 5, -TTA-3 ,. 18. A catalytic DNA molecule according to item 17 of the patent application, wherein Y comprises 5, -GTTTA-3, (SEQ ID NO: 19). 19. A catalytic DNA molecule according to item 17 of the patent application, wherein Y comprises 5, -GCTTA-3 '(SEQ ID NO: 20). 20. The catalytic DNA molecule according to item 17 of the application, wherein Υ includes 5, -GTTA-3, (SEQ ID NO: 21). 21. The catalytic DNA molecule according to item 12 of the application, wherein the catalytic DNA molecule includes SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO : 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 10. 22. The catalytic single-stranded DNA molecule according to item 9 of the patent application scope, comprising: a) a catalytic functional site capable of forming a loop, which includes S'-XiXdsGXztCXsXsXTGACXsXrS '(SEQ ID NO: 29), where Xi A complementary nucleotide that binds to the acceptor nucleic acid sequence, immediately downstream of the cleavage site, χ2 is a thymidine or guanidine residue, X3 is a cytosine residue or a guanidine residue, and X4 is a cytosine residue Or thymidine residue 87851 200413528 group, X5 is a cytosine core or a thymidine residue, the heart is a cytosine core or a thymidine residue, x? Is an adenine nucleoside or a guanidine residue, X8 is an adenine or thymidine residue, and &amp; binds to a complementary nucleotide on the acceptor nucleic acid sequence, two nucleotides upstream of the cleavage position; and b)-confirm the functional site, It includes an upstream side connection area and a downstream side connection area. The upstream side connection area is immediately adjacent to the catalytic function portion 5, and the downstream side connection area is immediately adjacent to the catalytic function portion 3. 23. The catalytic DNA molecule according to item 22 of the scope of application, wherein 乂 2 is a cytosine residue, X3 is a cytosine residue, χ4 is a thymine depletion 甞 residue, and X5 is a thymine For nucleocapsid residues, χ6 is a thymine nuclear oath residue, X7 is an adenine nucleoside residue, and χ8 is an adenine nucleoside residue. 24. The catalytic DNA molecule according to item 22 of the application, wherein the loop comprises 5'-TCGTCTTAGCA-3, (SEQ ID NO: 30). 25. The catalytic DNA molecule according to item 22 of the application, wherein the catalytic DNA molecule includes: SEQ ID NO: 11, SEQ ID NO: 12, SEQ_ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID, NO: 16, SEQ ID NO: 17 or SEQ ID NO: 18. 26. The catalytic DNA molecule according to item 22 of the application, wherein the catalytic DNA molecule includes SEQ ID NO: 18. 27. A method for detecting a target nucleic acid sequence, the method comprising: a) blending in an amplification reaction buffer solution: i) a nucleic acid sample; i0-polymerase; 87851 200413528 non-naturally occurring single strands of lobster Nucleic acid sequence, including an interactive tag pair consisting of a first tag and a second tag, which are directly or indirectly attached to oligonucleotides, where the first tag is cut by a non-naturally occurring ribonucleotide Separate from the second flag, · IV) — forward primer that can bind to the first strand of the target nucleic acid sequence (3 copies and instruct the target nucleic acid sequence to synthesize a polynucleotide in the forward direction; and V) — reverse Primer, which can be bound to the first 3 &lt; region of the target nucleic acid sequence, and instructs the target nucleic acid sequence to synthesize hydroglyceric acid in the reverse direction, and contains a catalytic single-stranded DNA molecule according to the scope of the patent application Complementary, in which the catalytic single-stranded DNA molecule can cleave the acceptor nucleic acid sequence at the cleavage position; b) cultivate the connected group # under the expansion reaction conditions to provide the expansion of the target nucleic acid sequence and synthesize the catalytic property Strands of DNA molecules, and cleavage of the acceptor nucleic acid sequence by the catalytic material strands of DNA molecules, so as to release the interaction between the-flag and the brother flag; and e) detection of the-flag can be detected Targeted nucleic acid sequence. 28. 29. 30. 31. According to the ancient dentist in item 27 of the scope of the patent application, the non-naturally occurring ribose ribonucleic acid cleavage site includes a 2, 5, · -linked residue. According to the 27th item of the scope of the patent application, Tugan + u ^, Anibei Wanwan method, where the non-naturally occurring ribose ribonucleotide cleavage position contains L-enantiomeric residues. According to Gan + ^, Yi Wan Fa, item 27 of the scope of patent application, the first flag is the fluorescent part, and the second flag is the refrigerant. According to item 27 of the scope of patent application "&lt; Wan Qu, among which catalytic single-stranded DNA 87851 200413528 molecule 疋 catalytic single-strand DNA molecule according to the scope of patent application item 1. 32. Method according to the scope of patent application item 31 The catalytic single-stranded DNA molecule is based on the catalytic single-stranded 1)] ^ molecule in accordance with the scope of the patent application No. 6 33. The method according to the scope of the patent application No. 28, wherein the 2, 5, 5, link 2,5-linked adenine nucleotide or guanine nucleotide ribonucleoside acid residue. 34. The method according to item 33 of Shenyan patent scope, wherein the catalytic single-stranded molecule is based on Catalytic single-stranded DNA molecule in the scope of application for patent item 1. 35. The method according to the scope of the patent application in item 33, wherein the catalytic single-stranded DNA molecule is based on the catalytic single-stranded DNA molecule in item 3 of the applied patent scope. 3 6. The method according to item 27 of the patent application, wherein the non-naturally occurring single-stranded nucleic acid includes L-enantiomeric residues. 37. The method according to item 36 of the patent application, wherein the L-enantiomer residue Base is 3 ', 5 ^ linked adenine Taste acid ribose riboic acid residues. 3 8. The method according to item 37 of the scope of patent application, wherein the catalytic single-stranded DNA molecule is the catalytic DNA molecule according to item 1 of the scope of patent application. 39. According to the scope of patent application The method of item 27, wherein the polymerase is a Thermusaquaticus DNA polymerase, and wherein the amplification reaction is performed by using a polymerase chain reaction. 40 · —a non-naturally occurring single-stranded nucleic acid substrate, Includes an interactive tag pair consisting of a first tag and a second tag, which are directly or indirectly attached to the oligonucleotide, where the first tag and the second tag consist of 2, 5 ,,- Separated by the cleavage position of linked residues or L-enantiomeric residues. 41 · According to the acceptance of item 40 in the scope of the patent application, the first weave is a 87851 200413528 fluorescent part, and the second This flag is a refrigerant. 42. 43. 44. 45. 46. 47. According to the subject matter of the scope of the patent application, the cutting position includes 2, 5, 5, residues connected. According to the scope of the patent application, 42 Acceptance of item, where the cutting position includes 2 5'-linked adenine riboic acid or guanine nucleotide ribonucleotide residues. According to the subject matter in the scope of patent application No. 43, wherein the cleavage position includes l_ enantiomeric residues. Substances of item 44 wherein the L-enantiomeric residue is a 3 ', 5'-linked adenine ribonucleotide ribonucleotide residue. One contains two or more of the catalytic properties according to item 1 of the scope of the patent application A composition of DNA molecule groups, in which each group of catalytic ONA molecules can cleave a nucleic acid sequence that is different in quality. A method for identifying catalytic DNA molecules having position-specific endonuclease activity and specificity for non-naturally occurring ribonucleic acid cleavage positions. This method includes: a) building a double-stranded nucleic acid molecule library, It contains a non-naturally occurring ribonucleoside cut site 'and includes nucleotide regions of any sequence that may interact with the cleavage site region; b) captures one strand of a double-stranded nucleic acid molecular library, which can provide captured A single-stranded nucleic acid molecule library; c) growing the captured single-stranded nucleic acid molecule library under cleavage conditions, causing cleavage at the cleavage site and releasing the cleavage nucleic acid molecule; and d) separating the cleavage nucleic acid molecule, so that A catalytic DNA molecule with a position _ 87851 200413528 specific endonuclease activity was identified, which is specific for non-naturally occurring ribonucleotide cleavage positions. μ 48. The method according to item 47 of the scope of patent application, wherein the method includes: ^ Θ enlarges the cleaved nucleic acid molecule and repeats steps “1 to 4 times; g) randomly selects the selectively enlarged cleaved nucleic acid molecule Mutation to form a mutated and cleaved nucleic acid molecule; and h) expanding the mutated and cleaved nucleic acid molecule and repeating steps b_e 丨 to 20 times. 49. The method according to item 48 of the scope of the claimed patent, wherein in subsequent steps The cleavage conditions are changed during repeated sentences, so the cleavage reaction must be more efficient so that nucleic acid cleavage can occur. 50. According to the method in the 47th scope of the patent application, the non-naturally occurring ribonucleic acid cleavage position is 2, 5, -linked guanine ribonucleoside ribonucleoside cleavage site. 5 1. The method according to item 47 of the patent application scope, wherein the non-naturally occurring ribose nucleoside cleavage site is L-adenosine Acid ribonucleotide cleavage sites. — 52. — A set of nucleic acid sequences for detection of targets, this set includes ... A) — a single-stranded nucleic acid sequence that is unnaturally generated, Includes a pair of interactively active flags consisting of a first flag and a second flag, which are directly or indirectly attached to the oligonucleotide, where the first flag and the second flag are non-naturally generated ribose nuclei Separate by the cleavage position of acetic acid; B) — a forward primer that can bind to the first strand of the target nucleic acid sequence 3, 87851 -8-200413528 Shao Fen 'and instruct the target nucleic acid sequence to synthesize polynuclear acid in the forward direction, And C) a reverse primer that contains a region that can bind to the second strand of the target nucleic acid sequence, and instructs the target nucleic acid sequence to synthesize polynucleotides in the reverse direction 'and includes the first The catalytic single-stranded DNA of item is a complement of a daughter, wherein the catalytic single-stranded DNA molecule can cleave the acceptor nucleic acid sequence at the position of the cutting damage. 53. 54. 55. 56. 57. 58. 59. 60. 61. According to the set of patent application scope 52, the non-naturally occurring ribonucleoside cleavage position contains 2 ', 5f linked residues. According to the set of patent application scope 52, the non-naturally occurring The ribonucleotide cleavage site contains the L-enantiomer According to the set of 52 of the scope of patent application, the first standard weave is a fluorescent β f knife and the first standard is a quenching agent. According to the set of 52 scope of the patent application, the catalytic property is The single-stranded DNA molecule is a catalytic single-stranded DNa molecule according to item 1 of the scope of the patent application. According to the 56th set of patent scope of the patent, the catalytic single-stranded DNA knife Single-stranded DNA molecule. The set according to item 53 of the patent application, wherein the 2,5, linked residues are 2 ', 5'-linked adenine ribonucleotide or guanine nucleotide ribose Nucleotide residues. The kit according to item 58 of the scope of patent application, wherein the catalytic single-stranded DNA molecule is the catalytic single-strand DNA molecule according to item 1 of the scope of patent application. The kit according to item 58 of the scope of patent application, wherein the catalytic single-stranded DNA knife is based on the catalytic single-strand DNA molecule of item 3 of the scope of patent application. According to the set of patent application scope 52, the non-naturally occurring single 87851 200413528 strand nucleic acid contains L-enantiomeric residues. 62. The set according to the scope of patent application No. 61, wherein the L-enantiomeric residue is a linked adenine ribonate ribonucleoside residue. 10- 87851
TW92125352A 2002-09-16 2003-09-15 RNA-cleaving DNA enzymes with altered regio-or enantioselectivity TW200413528A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US41097302P 2002-09-16 2002-09-16

Publications (1)

Publication Number Publication Date
TW200413528A true TW200413528A (en) 2004-08-01

Family

ID=31994227

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92125352A TW200413528A (en) 2002-09-16 2003-09-15 RNA-cleaving DNA enzymes with altered regio-or enantioselectivity

Country Status (3)

Country Link
AU (1) AU2003268332A1 (en)
TW (1) TW200413528A (en)
WO (1) WO2004024864A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278616B (en) * 2021-06-17 2022-07-01 温州医科大学 DNAzyme capable of specifically recognizing toxoplasma gondii and having RNA cutting function and kit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102694A1 (en) * 2000-03-31 2002-08-01 Ronald Breaker Nucleozymes with endonuclease activity

Also Published As

Publication number Publication date
AU2003268332A8 (en) 2004-04-30
WO2004024864A2 (en) 2004-03-25
WO2004024864A3 (en) 2005-01-20
AU2003268332A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US10704042B2 (en) Ligation-based RNA amplification
JP4001624B2 (en) DNA enzyme molecules
EP1350854B1 (en) Catalytic nucleic acid and its medical use
JP5066016B2 (en) Enzymatic DNA molecule
US6110462A (en) Enzymatic DNA molecules that contain modified nucleotides
US7083926B2 (en) Method for identifying accessible binding sites on RNA
JPH10500021A (en) Novel enzyme RNA molecule
JPH05505937A (en) Site-specific cleavage of single-stranded DNA
EP1353935A2 (en) Selection of catalytic nucleic acids targeted to infectious agents
JPH05503423A (en) Nucleic acid enzyme for DNA cutting
PAN et al. A selection system for identifying accessible sites in target RNAs
Matysiak et al. Sequential folding of the genomic ribozyme of the hepatitis delta virus: structural analysis of RNA transcription intermediates
JPH11513881A (en) Synthesis of enzymatically cleavable oligonucleotides based on templates and primers
WO1997010332A2 (en) Chimaeric oligonucleotides and uses thereof in the identification of antisense binding sites
TW200413528A (en) RNA-cleaving DNA enzymes with altered regio-or enantioselectivity
EP1086216B1 (en) Pseudo-cyclic oligonucleobases
Boiziau et al. A method to select chemically modified aptamers directly
JP7437020B2 (en) DNA enzyme and RNA cutting method
Smail et al. Ribozyme‐Catalyzed RNA Recombination
KR100564061B1 (en) Enzymatic DNA molecules
AU2012200749B2 (en) Ligation-based RNA amplification
AU2002228756B2 (en) Selection of catalytic nucleic acids targeted to infectious agents
Bossmann Sabine Müller, Rüdiger Welz, Sergei A. Ivanov, and
Liu et al. [17] In vitro selection of RNA substrates for ribonuclease P and its catalytic RNA
Feldman Bachelors in Biological Sciences, Universidade Federal do Paraná, Curitiba, Brazil, 1996