TW200413421A - Catalysts for polymerizing olefins and process for producing olefin polymer - Google Patents

Catalysts for polymerizing olefins and process for producing olefin polymer Download PDF

Info

Publication number
TW200413421A
TW200413421A TW92101712A TW92101712A TW200413421A TW 200413421 A TW200413421 A TW 200413421A TW 92101712 A TW92101712 A TW 92101712A TW 92101712 A TW92101712 A TW 92101712A TW 200413421 A TW200413421 A TW 200413421A
Authority
TW
Taiwan
Prior art keywords
compound
propylene
ethylene
magnesium
halogen
Prior art date
Application number
TW92101712A
Other languages
Chinese (zh)
Inventor
Nobuhiro Yabunouchi
Takanori Sadashima
Original Assignee
Idemitsu Petrochemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co filed Critical Idemitsu Petrochemical Co
Priority to TW92101712A priority Critical patent/TW200413421A/en
Publication of TW200413421A publication Critical patent/TW200413421A/en

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Solid catalyst components for polymerizing olefins obtained by reacting the following compounds (i), (ii) and (iv) or (i), (ii), (iii) and (iv) are disclosed, in which (i) is a halogen-containing titanium compound; (ii) is an alkoxy-containing magnesium compound obtained by reacting metallic magnesium, an alcohol and a halogen and/or a halogen-containing compound containing at least 0.0001 gram atom of a halogen atom per mol of the metallic magnesium; (iii) is a halogen-containing silicon compound; and (iv) is an electron donating compound represented by the following general formula (I). (in the formula, R1 represents linear or branched alkyl having 1 or more carbon atoms; and R2 and R3 independently represent each liner or branched C1-20 alkyl.)

Description

200413421 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係關於製造α -烯烴之單獨聚合物或共聚物用 之聚合烯烴用觸媒及烯烴聚合物之製造方法。 【先前技術】 一般,烯烴聚合物係由鈦化合物及有機鋁化合物所形 成之齊格拉納塔〔Z i e g 1 e r N a 11 a〕觸媒所聚合。例如,於 烯烴聚合物之一之聚丙烯之製造時,雖然係使用主要包含 由鈦、鎂、氯及電子供予性化合物所形成之固體觸媒成 份、作爲輔助觸媒成份之有機鋁化合物及立體規則性提升 劑之具有烷氧基之有機矽化合物之觸媒,而得規聚丙烯 (Isotactic-Polypropylene),現在則企圖提升聚合時之觸媒 活性、提升烯烴聚合物之立體規則性及改良安定生產烯烴 聚合物用之粉末型態等。 例如,以改良烯烴聚合物之粒徑及形狀等之型態 (Morphology)爲目的,於特開昭63 — 2 8 0707號公報等 揭示,於二氧化矽等之無機氧化物上,載持鎂化合物的方 法,另外,於特開昭5 8 - 0008 1 1號公報等揭示,使用先 將鎂化合物以醇類等之溶媒溶解後,再次析出者之方法。 然而,這些方法中,鎂化合物之載持、溶解及析出等 之處理爲必要,所以步驟極爲煩雜。另外,這些方法係爲 僅提高聚合初期之觸媒活性,所以有觸媒欠缺性能安定性 之缺點,或聚合時觸媒活性及烯烴聚合物之立體規則性方 -6- (2) (2)200413421 面不能充份地發生性能之缺點。 因此,作爲改良這些缺點之手法,於特開平02 -413883號公報等揭示,使用金屬鎂、醇及特定量之鹵素 之反應生成物作爲觸媒之載體之方法,另外,於特公平 07 - 025822號公報揭示,於烷氧基鎂、鹵化劑及烷氧基 ‘ 鈦之反應生成物中加入有機酸酯,再使用含有鹵化鈦反應 所得固體觸媒成份之Ziegler Natta觸媒之烯烴聚合物之 製造方法。 · 然而,這些方法之聚合時觸媒活性及烯烴聚合物之立 體規則性依然不足。 另外,於特開平1 1 - 2692 1 8號公報揭示,將鎂化合 物及鈦化合物,於電子供予性化合物之存在下,以1 2 0 °C 〜1 5 0 °C之溫度接觸後,於1 0 0 °C〜1 5 0 °C之溫度下,以不 活性溶媒洗淨所得之聚合烯烴用固體觸媒成份,對於抑制 聚合時之觸媒活性之經時性降低及提升烯烴聚合物之立體 規則性,可得到效果。 · 然而,該觸媒之聚合活性並不一定足夠,有進一步改 良的必要。 因此,欲獲得可使聚合時的觸媒活性、烯烴聚合物的 立體規則性與粉末形態全部提昇之觸媒系,必須尋求可完 全滿足上述條件般已改良且具高性能的觸媒系。 · 另一方面,與丙烯單獨聚合物相比,藉由無規共聚合 丙烯與乙烯所得之丙烯一乙烯無規共聚物因具有優秀耐衝 擊性、透明性以及比較低的融點,故具有優秀的熱封密性 (3) (3)200413421 等特徵,可廣泛地利用在使用各種薄膜之包裝材料的領域 等中。 然而,藉由以往技術所製成的丙烯-乙烯無規共聚 物,其品質並非十分優秀,故目前依用途,其使用仍受限 制。 爲此,目前已知的方法,例如藉由更進一步地提升耐 衝擊性、熱封密性爲手段來提高丙烯一乙烯無規共聚物中 之乙烯含有量的方法。 然而,提高乙烯含有量雖可改良耐衝擊性、熱封密 性,然而低分子量非晶成分的副生量增加,將使薄膜的發 黏性增加,進而因成塊現象的產生而有所謂損害到商品價 値的問題。又,低分子量非晶成分亦可能成爲低溫熱封密 性、耐衝擊性的阻害因子。 此外,即使於丙烯-乙烯無規共聚物的製造上,在使 用以丙烯作爲媒介的淤漿聚合來製造時,共聚物間的附 著、聚合系黏度的增加不僅會降低生產性,亦會成爲生產 上重要的困擾。 更者,雖一般可使用由鹵化鈦、有機鋁化合物所構成 的觸媒來製造聚丙烯以及丙烯系共聚物,然而當聚合物中 含有多量的觸媒殘留物時,因成形品的色調變黃而產生外 觀不佳的問題。特別是當聚合物中含有多量的氯原子的情 況下,於薄膜成形時將發生滾筒污髒或晶格堵塞的現象, 進而損害薄膜外觀上的品質。 又,以往大多數雖以提升剛性、耐衝擊性等之物性平 -8 - (4) (4)200413421 衡爲重要指標來進行丙烯-乙烯嵌段共聚物的改良檢討, 然而其中作爲有效途徑者,亦有自固體構造面進行檢討 者。 亦即’將形成該共聚物基體的丙烯單獨聚合部與形成 橡膠狀彈性體的丙烯-乙烯共聚部所構成之固體構造對強 度物性之影響,以所謂各自的成份量比、各部分的分子 量、_LL體規則性之聚合因素來描述,並將其反映於聚合體 設計上,進而反饋於製造其聚合體之聚合技術者。 然而,即使現在,亦期待能更一層地改良其剛性與耐 衝擊性,特別是期待具更高耐衝擊性之改良品的出現。 因而,本發明的目的,係提供可得到聚合活性高、立 體規則性及粉末型態優異之烯烴聚合物之聚合烯烴用觸媒 以及烯烴聚合物之製造方法。 本發明的其他目的,係提供新規的丙烯-乙烯共聚合 用觸媒以及丙烯-乙烯共聚物之製造方法。 本發明的其他目的,係提供乙烯含有量高而低分子量 非晶成分少之丙烯一乙烯無規共聚物。 本發明的其他目的,係提供具有優秀剛性、耐衝擊性 等之物性平衡的丙烯-乙烯嵌段共聚物。 【發明的內容】 發明之揭示 本發明的最佳狀態如下所述° (5) (5)200413421 [烯烴聚合] (1 )使下述化合物(i ) 、( i i )及(i V )或 下述化合物(i ) 、( i i ) 、( i i i )及(i V )反 應所得之聚合烯烴用固體觸媒成份。 (i )含有鹵素之鈦化合物 (i i )金屬鎂、醇類及相對於1莫耳之上述金屬鎂 之含有O.OOOlg原子以上之鹵素原子之鹵素及/含有鹵素 之化合物反應所得之含有烷氧基之鎂化合物 鲁 (i i i)含有鹵素之矽化合物 (i V)以下述之一般式(I )所表示之電子供予性 化合物 R1200413421 (1) (i) Description of the invention [Technical field to which the invention belongs] The present invention relates to a catalyst for polymerizing olefins and a method for producing an olefin polymer, which are used to produce a polymer or copolymer of an α-olefin alone. [Prior art] Generally, olefin polymers are polymerized by Ziegranata [Z i e g 1 e r N a 11 a] catalyst formed of titanium compounds and organoaluminum compounds. For example, in the production of polypropylene, which is one of the olefin polymers, although a solid catalyst component mainly composed of titanium, magnesium, chlorine, and an electron donating compound, an organoaluminum compound as an auxiliary catalyst component, and Isotactic-Polypropylene, a catalyst for organosilicone compounds with alkoxy groups for stereoregularity enhancers, is now attempting to improve the catalyst activity during polymerization, the stereoregularity and improvement of olefin polymers Stable powder type used in the production of olefin polymers. For example, in order to improve the particle size and shape of olefin polymers (Morphology), it is disclosed in Japanese Patent Application Laid-Open No. 63-2 8707, etc., that magnesium is supported on an inorganic oxide such as silicon dioxide. The method of the compound is disclosed in Japanese Patent Application Laid-Open No. 5 8-0008 1 1 and the like, and a method in which a magnesium compound is first dissolved in a solvent such as an alcohol and then precipitated again is used. However, in these methods, processes such as supporting, dissolving, and precipitating a magnesium compound are necessary, so that the steps are extremely complicated. In addition, these methods only improve the catalyst activity at the initial stage of polymerization, so they have the disadvantage of lack of stability of catalyst performance, or the catalyst activity during polymerization and the stereoregularity of olefin polymers. -6- (2) (2) 200413421 The disadvantage of performance cannot occur sufficiently. Therefore, as a method for improving these disadvantages, Japanese Unexamined Patent Publication No. 02-413883 discloses a method of using a reaction product of metal magnesium, alcohol, and a specific amount of halogen as a carrier for the catalyst. In addition, U.S. Patent No. 07-025822 Gazette discloses the production of an olefin polymer by adding an organic acid ester to the reaction product of magnesium alkoxide, halogenating agent and alkoxy 'titanium, and then using Ziegler Natta catalyst containing solid catalyst components obtained by the reaction of titanium halide. method. · However, the polymerization activity of these methods and the stereoregularity of olefin polymers are still insufficient. In addition, Japanese Unexamined Patent Publication No. 1 1-2692 18 discloses that a magnesium compound and a titanium compound are contacted at a temperature of 120 ° C to 150 ° C in the presence of an electron-donating compound, and then The solid catalyst component for polymerized olefins obtained by washing with an inert solvent at a temperature of 100 ° C to 150 ° C reduces the chronological properties of the catalyst activity during polymerization and suppresses the improvement of the olefin polymer. Three-dimensional regularity can get the effect. · However, the polymerization activity of the catalyst is not necessarily sufficient, and further improvement is necessary. Therefore, in order to obtain a catalyst system that can improve the catalyst activity during polymerization, the three-dimensional regularity of the olefin polymer, and the powder form, it is necessary to find a catalyst system that has been improved to meet the above conditions and has high performance. · On the other hand, the propylene-ethylene random copolymer obtained by random copolymerization of propylene and ethylene is superior to propylene alone polymers because it has excellent impact resistance, transparency, and a relatively low melting point, so it has excellent properties. (3) (3) 200413421 and other characteristics, can be widely used in the field of packaging materials using a variety of films. However, the propylene-ethylene random copolymers made by the prior art are not very good in quality, so their use is currently restricted depending on the application. For this reason, currently known methods include, for example, a method of increasing the ethylene content in a propylene-ethylene random copolymer by further improving impact resistance and heat-sealing properties. However, although increasing the ethylene content can improve the impact resistance and heat sealability, the increase in the amount of by-products of the low-molecular-weight amorphous component will increase the tackiness of the film, which will cause so-called damage due to the formation of agglomeration. To the price of goods. In addition, the low molecular weight amorphous component may also be a hindrance factor to low-temperature heat-sealability and impact resistance. In addition, even in the production of propylene-ethylene random copolymers, when the slurry polymerization using propylene as a medium is used for production, adhesion between copolymers and an increase in the viscosity of the polymerization system will not only reduce productivity, but also become production. Important troubles. Furthermore, although catalysts composed of titanium halides and organoaluminum compounds can generally be used to produce polypropylene and propylene-based copolymers, when the polymer contains a large amount of catalyst residues, the color tone of the molded product becomes yellow. This causes a problem of poor appearance. In particular, when the polymer contains a large amount of chlorine atoms, roller fouling or lattice blockage may occur during film formation, thereby deteriorating the appearance quality of the film. In addition, in the past, the improvement of propylene-ethylene block copolymers has been reviewed mainly by improving physical properties such as rigidity, impact resistance, etc.-(4) (4) 200413421, but among them, effective methods There are also those who review from solid structural surfaces. In other words, the influence of the solid structure composed of the propylene alone polymerized part forming the copolymer matrix and the propylene-ethylene copolymerized part forming the rubber-like elastomer on the strength and physical properties is based on the so-called individual component ratio, molecular weight of each part, _LL body regularity is described by the aggregation factors, and reflected in the polymer design, and then fed back to the polymerization technology manufacturer who made the polymer. However, even now, it is expected to further improve its rigidity and impact resistance, and in particular, the appearance of improved products with higher impact resistance is expected. Accordingly, an object of the present invention is to provide a catalyst for polymerizing olefins, and a method for producing an olefin polymer, which can obtain an olefin polymer having high polymerization activity, excellent regularity in the stereo, and excellent powder form. Another object of the present invention is to provide a novel propylene-ethylene copolymerization catalyst and a method for producing a propylene-ethylene copolymer. Another object of the present invention is to provide a propylene-ethylene random copolymer having a high ethylene content and a low molecular weight amorphous component. Another object of the present invention is to provide a propylene-ethylene block copolymer having a balance of physical properties such as excellent rigidity and impact resistance. [Contents of the invention] The disclosure of the invention The best state of the present invention is as follows: (5) (5) 200413421 [olefin polymerization] (1) The following compounds (i), (ii) and (i V) or lower The solid catalyst component for polymerized olefins obtained by the reaction of the compounds (i), (ii), (iii) and (iV) is described. (i) Halogen-containing titanium compounds (ii) Metal magnesium, alcohols, and halogens containing halogen atoms of at least 1,000 lg atoms with respect to 1 mol of the above-mentioned metal magnesium, and / or alkoxy-containing compounds obtained by the reaction of halogen-containing compounds (Iii) halogen-containing silicon compound (i V) is an electron donating compound R1 represented by the following general formula (I)

I R2—〇—c——C——C 一 0—R3 ...... (I)I R2—〇—c——C——C— 0—R3 ...... (I)

II I II ο I 〇 H · [一般式(I )中,R1爲碳數1以上的直鏈狀或支 鏈狀的烷基,R2至R3爲互相獨立,碳數1〜20的直鏈狀 或支鏈狀的烷基。] ~ 藉由使用如此的固體觸媒成分,即可得到高聚合活性 . 的觸媒,更者,亦可獲得立體規則性及粉末型態優異之烯 烴聚合物。 例如,藉由使用含烷氧基之鎂化合物(i i ),即可 提升烯烴聚合物的型態。如(i i )所記載般製造的含烷 -10- (6) (6)200413421 氧基之鎂化合物(i i ),型態近似球狀,故無須分級操 作。 又,藉由使用電子供予性化合物(iV),在原封不 動地維持高立體規則性下,亦可發現高聚合活性。因如此 的電子供予性化合物(i V )不含芳香環,故可減輕安全 衛生上的問題。 更者,雖相應於需要而使用含鹵素的矽化合物( i i i),然而藉由使用此化合物,亦可減低聚合時觸媒 活性、立體規則性之提升以及烯烴聚合物聚合物中所含之 微粉量。 (2 )如上記型態(1 )中所記載之聚合烯烴用固體觸 媒成份,前述的鹵素爲碘。 碘在處理上極爲便利。又,藉由碘的使用,可製造粒 徑分佈狹小,球狀的(i i )成分。 (3 )如上記型態(1 )或(2 )中所記載之聚合烯烴 用固體觸媒成份,前述含鹵素之化合物爲氯化鎂。 氯化鎂在處理上極爲便利。又,藉由氯化鎂的使用, 可製造粒徑分佈狹小,球狀的(i i )成分。 (4 )如上記型態(1 )〜(3 )中任一項所記載之聚 合烯烴用固體觸媒成份,前述含鹵素之矽化合物( i i i)爲四氯化砂。 藉由使用四氯化矽,觸媒的形狀爲球狀,亦可使粒徑 分佈變狹窄。 (5 )如上記型態(1 )〜(4 )中任一項所記載之聚 -11 - (7) (7)200413421 合烯烴用固體觸媒成份,前述電子供予性化合物(i V) 爲正丁基丙二酸二乙酯。 藉由使用正丁基丙二酸二乙酯,可在更高活性下製造 更高立體規則性的聚合物I。 (6 )如上記型態(1 )至(5 )中任一項所記載之聚 合烯烴用固體觸媒成份,使前述之化合物(i )、( i i ) 、 (iV)反應時,使前述含鹵素的鈦化合物 (i )以及前述含烷氧基的鎂化合物(i i )接觸後,再 與前述電子供予性化合物(i V )接觸。 另一方面,在使化合物(i) 、(i i)、( i i i) 、 (iV)反應來製造聚合烯烴用固體觸媒成份 時,最好是使化合物(i i )與(i i i )接觸後,再與 化合物(i V )接觸,然後更進一步地與化合物(i )接 fytm 觸。 (7)含有下述成份[A]及[B]或下述成份[A]、[B]及[C] 之聚合烯烴用觸媒。 [A] 如上記型態(1 )〜(6 )中任一項所記載之固體 觸媒成份 [B] 有機鋁化合物 [C] 電子供予性化合物 藉由構成如此般的觸媒,即可得到聚合活性高的觸 媒,進而可獲得具有優秀立體規則性及粉末型態的烯烴聚 合物。 又,雖相應於需要而含有電子供予性化合物[C],然 (8) 200413421 而藉由含有此化合物,更進一步地可製造高立體規則性的 聚合物,或可控制分子量分佈的聚合物。 (8 )使用如上記型態(7 )中所記載的觸媒來聚合烯 烴之烯烴聚合物的製造方法 藉由如此的製造方法,即可在高的聚合活性下製造具 有優秀立體規則性及粉末型態的烯烴聚合物。 [丙烯一乙烯共聚合] (9)使下述化合物(a) 、(b) 、(c)或下述化合 物(a) 、( b ) 、( c ) 、(d)反應所得之丙烯一乙烯共 聚合用固體觸媒成份。 (a )鎂化合物 (b )鈦化合物化合物 (c ) 一般式(Π )所表示之電子供予性化合物 R4 (I)II I II ο I 〇H · [In the general formula (I), R1 is a linear or branched alkyl group having 1 or more carbon atoms, and R2 to R3 are independent of each other and a linear chain having 1 to 20 carbon atoms Or branched alkyl. ] ~ By using such a solid catalyst component, a catalyst with a high polymerization activity can be obtained. Furthermore, an olefin polymer having excellent stereoregularity and powder form can be obtained. For example, by using a magnesium compound (i i) containing an alkoxy group, the form of the olefin polymer can be improved. The magnesium compound (i i) containing an alkane -10- (6) (6) 200413421 oxygen group produced as described in (i i) has an approximately spherical shape, and therefore does not need to be classified. Further, by using an electron donating compound (iV), a high polymerization activity can be found while maintaining high stereoregularity as it is. Since such an electron donating compound (i V) does not contain an aromatic ring, it is possible to reduce safety and health problems. Furthermore, although a halogen-containing silicon compound (iii) is used in accordance with the need, by using this compound, the catalyst activity during polymerization, the improvement of stereoregularity, and the fine powder contained in the olefin polymer polymer can be reduced. the amount. (2) The solid catalyst component for polymerizing olefins as described in the above aspect (1), wherein the aforementioned halogen is iodine. Iodine is extremely convenient to handle. Further, by using iodine, a spherical (i i) component having a narrow particle size distribution can be produced. (3) The solid catalyst component for polymerizing olefins as described in the above-mentioned aspect (1) or (2), wherein the halogen-containing compound is magnesium chloride. Magnesium chloride is extremely convenient in handling. Furthermore, by using magnesium chloride, a spherical (i i) component having a narrow particle size distribution can be produced. (4) The solid catalyst component for polymerized olefins according to any one of the above-mentioned aspects (1) to (3), wherein the halogen-containing silicon compound (i i i) is sand tetrachloride. By using silicon tetrachloride, the catalyst has a spherical shape, and the particle size distribution can also be narrowed. (5) The poly-11 described in any one of the above-mentioned forms (1) to (4)-(7) (7) 200413421 solid catalyst component for olefins, the aforementioned electron donating compound (i V) Diethyl n-butylmalonate. By using diethyl n-butylmalonate, polymer I with higher stereoregularity can be produced at higher activity. (6) When the solid catalyst component for polymerizing olefins described in any one of the forms (1) to (5) above is reacted with the aforementioned compounds (i), (ii), (iV), The halogen titanium compound (i) and the alkoxy group-containing magnesium compound (ii) are contacted, and then contacted with the electron donating compound (i V). On the other hand, when the compounds (i), (ii), (iii), and (iV) are reacted to produce a solid catalyst component for polymerized olefins, it is preferable to contact the compound (ii) and (iii), and then The compound (i V) is contacted, and then the compound (i) is further contacted with fytm. (7) A catalyst for polymerizing olefins containing the following components [A] and [B] or the following components [A], [B], and [C]. [A] The solid catalyst component described in any one of the above-mentioned types (1) to (6) [B] Organoaluminum compound [C] The electron donating compound may be constituted by such a catalyst A catalyst with high polymerization activity is obtained, and an olefin polymer having excellent stereoregularity and powder form can be obtained. In addition, although it contains an electron-donating compound [C] according to need, (8) 200413421 By containing this compound, it is possible to further produce polymers with high stereoregularity or polymers with controllable molecular weight distribution. . (8) A method for producing an olefin polymer using the catalyst described in the above-mentioned form (7) to polymerize olefins. With such a production method, it is possible to produce an excellent stereoregularity and powder with high polymerization activity. Type of olefin polymer. [Propylene-ethylene copolymerization] (9) propylene-ethylene obtained by reacting the following compounds (a), (b), (c) or the following compounds (a), (b), (c), (d) Solid catalyst component for copolymerization. (a) Magnesium compound (b) Titanium compound compound (c) Electron donating compound represented by general formula (Π) R4 (I)

η2—〇—C—C—C 一 Ο—R3 II I 11 〇 L 〇 [一般式(Π)中,R4爲碳數1〜2 0直鏈狀、支鏈狀或環狀 的烷基,R5爲Η或碳數1〜2的烷基,R4及R5亦可爲相互 結合而形成環,R2及R3可相同亦可相異而爲碳數1〜20 直鏈狀或支鏈狀的烷基。] (d )矽化合物 (1 0 )如上記型態(9 )所記載之丙烯一乙烯共聚合 -13- (9) (9)200413421 用固體觸媒成份,前述固體觸媒成分係在前述化合物 (b)的存在下,於 120〜150 °C下,使前記化合物(a) 及(c ),或前記化合物(a ) 、( c )及(d )接觸後,再 . 於120〜150 °C下藉由不活性溶劑來洗淨所獲得之固體觸 媒成份。 藉由使用如此般生成的固體觸媒成分,可製造低分子 量非晶成分的副生量少之丙嫌-乙烯無規共聚物。 又,藉由使用如此般生成的固體觸媒成分,可製造含 · 有高立體規則性的聚丙烯成分之丙烯-乙烯嵌段共聚物。 (1 1 )如上記型態(9 )或(1 0 )所記載之丙烯一乙 烯共聚合用固體觸媒成份,前記鎂化合物(a)係金屬 鎂、醇類及相對於1莫耳之上述金屬鎂之含有O.OOOlg原 子以上之鹵素原子之鹵素及/含有鹵素之化合物反應所得 之含有烷氧基之鎂化合物。 藉由使用含有烷氧基之鎂化合物,可製造粒子形狀優 秀、粒徑分佈均一之共聚物。 · (1 2 )如上記型態(9 )〜(1 1 )中任一項所記載之 丙烯-乙烯共聚合用固體觸媒成份,在前記一般式(Π ) 中,R4爲碳數1〜20直鏈狀、支鏈狀或環狀的烷基,R5爲 Η或碳數1〜2的烷基。 藉由使用如此般的電子供予體,可有效率地製造低分 子量非晶成分的副生量少之丙烯-乙烯無規共聚物。 又’藉由使用如此般的電子供予體,可製造由高立體 規則性的聚丙烯成分與組成均一的共聚物所構成之丙烯- -14- (10) (10)200413421 乙烯嵌段共聚物。 (1 3 )如上記型態(9 )〜(1 2 )中任一項所記載之 丙烯-乙烯無規用固體觸媒成份,前記電子供予性化合物 (c)爲正丁基丙二酸二乙酯。 藉由使用正丁基丙二酸二乙酯,可製造發黏性更低之 丙烯-乙烯無規共聚物。 又,藉由使用正丁基丙二酸二乙酯’可製造分子量分 佈狹窄之丙烯一乙烯嵌段共聚物。 (1 4 )如上記型態(9 )〜(1 2 )中任一項所記載之 丙烯-乙烯無規用固體觸媒成份,前記電子供予性化合物 (c)爲環丁烷一 1,1 一二羧酸二丁酯。 藉由使用環丁烷- 1,1 一二羧酸二丁酯,可製造發黏 性更低之丙烯-乙烯無規共聚物。 又,藉由使用環丁烷一 1,1 一二羧酸二丁酯,可製造 分子量分佈狹窄之丙烯-乙烯嵌段共聚物。 (1 5 )如上記型態(9 )〜(1 4 )中任一項所記載之 丙烯-乙烯共聚合用固體觸媒成份,前記固體觸媒成分係 丙烯-乙烯無規共聚合用固體觸媒成份。 (1 6 )如上記型態(9 )〜(1 4 )中任一項所記載之 丙烯-乙烯共聚合用固體觸媒成份,前記固體觸媒成分係 丙烯-乙烯嵌段共聚合用固體觸媒成份。 (17 )含有下述成份[A]及[B]或下述成份[A]、[B]及 [C]之丙烯一乙烯共聚合用觸媒。 [A]如上記型態(9 )〜(1 4 )中任一項所記載之固體 (11) (11)200413421 觸媒成份 [B] 有機鋁化合物 [C] 電子供予性化合物 (1 8 )如上記型態(1 7 )所記載之丙烯—乙烯共聚合 用觸媒,前記觸媒,係在[A]、[B]及[C]的存在下與烯 烴類接觸所得,預備聚合量0.1〜100重量%之預備聚合 觸媒。 藉由使用如此般的預備聚合觸媒,可製造粒子形狀優 秀、粒徑分佈均一之共聚物。 (1 9 )如上記型態(1 7 )或(1 8 )所記載之丙烯一乙 嫌共聚合用觸媒,前記觸媒係丙嫌一乙嫌無規共聚合用觸 媒。 (20 )如上記型態(1 7 )或(1 8 )所記載之丙烯一乙 烯共聚合用觸媒,前記觸媒係丙烯一乙烯嵌段共聚合用觸 媒。 [丙烯一乙烯無規共聚物] (2 1 ) —種丙烯一乙烯無規共聚物的製造方法,係使 用如上記型態(1 9 )所記載的觸媒來無規共聚合丙烯與乙 烯者。 (22) —種丙烯一乙烯無規共聚物,係藉由如上記型 態(2 1 )所記載的製造方法所獲得者。 藉由如此般的製造方法,即可得到具有優秀低溫熱密 封性、耐衝性之丙烯-乙烯無規共聚物。 -16· (12) (12)200413421 又,藉由使用一般式(Π )所示的電子供予體,即可 在高活性下得到發黏成分少之共聚物。 (2 3 )如上記型態(2 2 )所記載之丙烯-乙烯無規共 聚物’其中,乙烯含有量爲0 · 1重量%以上4重量%以 下,〇 °C可溶成份量爲1 .0重量%以下。 0 °C可溶成份量爲非結晶性成份量的指標。與其說〇 °〇可溶成份量無助於聚合物的力學特性,無寧說其將成爲 阻害要素。又,其亦將成爲聚合物表面發黏的原因。爲 此,此成分越少越好。 (24)如上記型態(22)或(23)所記載之丙烯一乙 嫌無規共聚物,其中,乙烯含有量多於4重量%爲5重量 %以下,0 °C可溶成份量多於1 . 〇重量%爲2 · 0重量%以 下。 [丙烯一乙烯嵌段共聚物] (25 ) —種丙烯-乙烯嵌段共聚物的製造方法,係包 含使丙烯聚合來形成聚丙烯成分之製程,以及使乙烯與丙 嫌聚合來形成乙烯/丙烯共聚物成分之製程者,在前記聚 丙燒成分形成製程與前記乙烯/丙烯共聚物成分形成製程 裡至少一種製程中,使用如上記型態(20 )所記載的觸 媒。 (26 ) —種丙烯一乙烯嵌段共聚物,係藉由如上記型 態(2 5 )所記載的製造方法所獲得者。 藉由本發明’即可得到聚丙烯成分具高立體規則性, -17- (13) (13)200413421 而乙烯/丙烯共聚物成分爲均一的橡膠狀彈性體成分所構 成之丙烯-乙烯嵌段共聚物。相對於乙烯含有量,乙烯/ 丙烯共聚物成分爲相對均一的橡膠狀彈性體成分,亦即由 不僅幾種硬度相異的橡膠狀彈性體,且具有均一性狀之橡 膠狀彈性體所構成。 藉由使用一般式(Π)所示的電子供予體,即可製造 同時具有優秀剛性與耐衝擊性的丙烯一乙烯嵌段共聚物。 (27 )如上記型態(26 )所記載之丙烯一乙烯嵌段共 · 聚物,其中,MFR爲10〜20g/10分。 若MFR爲10〜20g/10分,則將形成流動性良好的樹 脂,而且可提升成形時的生產性。 用以實施發明之最佳型態 [烯烴聚合] 首先,針對本發明的烯烴聚合用觸媒以及使用此觸媒 的烯烴聚合物之製造方法來加以說明。 鲁 1.觸媒成份 [A]固體觸媒成份 固體觸媒成份係使以下的化合物(i ) 、 ( i i ) 及(i V )或以下的化合物(i ) 、( i i )、 (i i i )及(i V )反應所得者。 (i )含有鹵素之鈦化合物 作爲含有鹵素之鈦化合物,雖無特別地限制,然 -18- (14) (14)200413421 而可適合使用下述一般式(m)所表示之化合物。η2—〇—C—C—C—10—R3 II I 11 〇L 〇 [In the general formula (Π), R4 is a linear, branched or cyclic alkyl group having 1 to 2 carbon atoms, and R5 R4 and R5 are alkyl groups having 1 to 2 carbon atoms, and R4 and R5 may be bonded to each other to form a ring. R2 and R3 may be the same or different, and are 1 to 20 linear or branched alkyl groups. . (d) Silicon compound (1 0) The propylene-ethylene copolymerization described in the above-mentioned form (9) -13- (9) (9) 200413421 A solid catalyst component is used, and the solid catalyst component is in the aforementioned compound (b) In the presence of 120 ~ 150 ° C, contact the aforementioned compounds (a) and (c), or the aforementioned compounds (a), (c) and (d), and then at 120 ~ 150 ° The solid catalyst component obtained under C was washed with an inactive solvent. By using the solid catalyst component thus produced, a polypropylene-ethylene random copolymer having a low by-product amount of a low molecular weight amorphous component can be produced. Furthermore, by using the solid catalyst component thus produced, a propylene-ethylene block copolymer containing a polypropylene component having high stereoregularity can be produced. (1 1) The solid catalyst component for propylene-ethylene copolymerization as described in the above-mentioned form (9) or (1 0), the magnesium compound (a) described above is metallic magnesium, alcohols, and 1 mole of the above An alkoxy group-containing magnesium compound obtained by the reaction of a magnesium metal containing a halogen atom having a halogen atom of at least 1,000 g atoms and / or a halogen-containing compound. By using a magnesium compound containing an alkoxy group, a copolymer having an excellent particle shape and a uniform particle size distribution can be produced. (1 2) The solid catalyst component for propylene-ethylene copolymerization as described in any one of the above-mentioned forms (9) to (1 1), in the general formula (Π) of the foregoing, R4 is a carbon number of 1 to 20 A linear, branched, or cyclic alkyl group, and R5 is fluorene or an alkyl group having 1 to 2 carbon atoms. By using such an electron donor, it is possible to efficiently produce a propylene-ethylene random copolymer with low by-products of a low molecular weight amorphous component. Also, by using such an electron donor, it is possible to produce a propylene--14- (10) (10) 200413421 ethylene block copolymer composed of a highly stereoregular polypropylene component and a copolymer having a uniform composition. . (1 3) The propylene-ethylene random solid catalyst component according to any one of the above-mentioned forms (9) to (1 2), wherein the electron-donating compound (c) is n-butylmalonic acid Diethyl ester. By using diethyl n-butylmalonate, a propylene-ethylene random copolymer having lower tackiness can be produced. Further, by using diethyl n-butylmalonate ', a propylene-ethylene block copolymer having a narrow molecular weight distribution can be produced. (1 4) The propylene-ethylene random solid catalyst component described in any one of the above-mentioned forms (9) to (1 2), and the aforementioned electron-donating compound (c) is cyclobutane-1, 1 Dibutyl dicarboxylic acid. By using cyclobutane-1,1-dicarboxylic acid dibutyl ester, a propylene-ethylene random copolymer having a lower viscosity can be produced. Further, by using cyclobutane-1,1-dicarboxylic acid dibutyl ester, a propylene-ethylene block copolymer having a narrow molecular weight distribution can be produced. (1 5) The solid catalyst component for propylene-ethylene copolymerization as described in any one of the above-mentioned forms (9) to (1 4). The solid catalyst component described above is a solid catalyst for random copolymerization of propylene-ethylene. MEDIA COMPONENTS. (1 6) The solid catalyst component for propylene-ethylene copolymerization as described in any one of the above-mentioned forms (9) to (1 4). The solid catalyst component described above is a solid catalyst for propylene-ethylene block copolymerization. MEDIA COMPONENTS. (17) A propylene-ethylene copolymerization catalyst containing the following components [A] and [B] or the following components [A], [B], and [C]. [A] The solid (11) (11) 200413421 as described in any one of the above forms (9) to (1 4), the catalyst component [B] an organoaluminum compound [C] an electron donating compound (1 8 ) The catalyst for propylene-ethylene copolymerization described in the above-mentioned type (1 7), the former catalyst is obtained by contact with olefins in the presence of [A], [B], and [C], and the preliminary polymerization amount 0.1 to 100% by weight of preliminary polymerization catalyst. By using such a preliminary polymerization catalyst, a copolymer having an excellent particle shape and a uniform particle size distribution can be produced. (19) The catalyst for propylene-ethylbenzene copolymerization as described in the above-mentioned type (17) or (18), the catalyst mentioned above is a catalyst for random copolymerization of propylene-ethylbenzene. (20) The catalyst for propylene-ethylene copolymerization as described in the above-mentioned aspect (1 7) or (1 8). The catalyst described above is a catalyst for propylene-ethylene block copolymerization. [Propylene-ethylene random copolymer] (2 1) —A method for producing a propylene-ethylene random copolymer, which is a copolymer of propylene and ethylene randomly using a catalyst as described in the above-mentioned type (19). . (22) A propylene-ethylene random copolymer obtained by the production method described in the above-mentioned aspect (2 1). By such a manufacturing method, a propylene-ethylene random copolymer having excellent low-temperature heat-sealability and impact resistance can be obtained. -16 · (12) (12) 200413421 By using an electron donor represented by the general formula (Π), a copolymer having a small amount of tacky components can be obtained under high activity. (2 3) The propylene-ethylene random copolymer according to the aspect (2 2) described above, wherein the ethylene content is from 0.1 to 4% by weight, and the soluble component at 0 ° C is 1. 0% by weight or less. 0 ° C soluble content is an indicator of the amount of non-crystalline components. Rather than saying that the amount of soluble ingredients of 0 ° 〇 does not contribute to the mechanical properties of the polymer, Wu Ning said that it will become an obstruction factor. In addition, it will become the cause of stickiness on the polymer surface. For this reason, the less this ingredient, the better. (24) The propylene-ethylene pseudo random copolymer according to the above-mentioned aspect (22) or (23), wherein the ethylene content is more than 4% by weight and the content is less than 5% by weight, and the amount of soluble components at 0 ° C is large At 1.0% by weight, it is 2.0% by weight or less. [Propylene-ethylene block copolymer] (25)-a method for producing a propylene-ethylene block copolymer, comprising a process of polymerizing propylene to form a polypropylene component, and polymerizing ethylene and propylene to form ethylene / propylene For the copolymer component manufacturing process, the catalyst described in the above-mentioned type (20) is used in at least one of the foregoing polypropylene burning component forming process and the foregoing ethylene / propylene copolymer component forming process. (26) A propylene-ethylene block copolymer obtained by the production method described in the above-mentioned aspect (2 5). According to the present invention, a propylene-ethylene block copolymer composed of polypropylene with high stereoregularity, -17- (13) (13) 200413421, and an ethylene / propylene copolymer component having a uniform rubber-like elastomer component can be obtained. Thing. Relative to the ethylene content, the ethylene / propylene copolymer component is a relatively uniform rubber-like elastomer component, that is, it is composed of not only several rubber-like elastomers having different hardnesses but also having uniform properties. By using an electron donor represented by the general formula (Π), a propylene-ethylene block copolymer having excellent rigidity and impact resistance can be produced. (27) The propylene-ethylene block copolymer as described in the above aspect (26), wherein the MFR is 10 to 20 g / 10 minutes. When the MFR is 10 to 20 g / 10 minutes, a resin having good fluidity will be formed, and productivity during molding can be improved. Best Mode for Implementing the Invention [Olefin Polymerization] First, the catalyst for olefin polymerization of the present invention and a method for producing an olefin polymer using the catalyst will be described. Lu 1. Catalyst component [A] Solid catalyst component The solid catalyst component refers to the following compounds (i), (ii) and (i V) or below compounds (i), (ii), (iii) and (I V) The person who obtained the reaction. (i) Halogen-containing titanium compound Although the halogen-containing titanium compound is not particularly limited, a compound represented by the following general formula (m) can be suitably used.

TiXp ( OR6 ) 4- p- ( π ) 上述一般式(皿)中,x係表示鹵素原子,其中以 氯原子及溴原子爲宜,以氯原子尤佳。R6爲烴基,可爲 飽和基或不飽和基,亦可爲直鏈狀者或具有支鏈者或環狀 者’另外,含有硫、氮、氧、矽及磷等異元素者亦可。其 中碳原子數爲1至ίο個之烴基,以烷基、烯基、環烯 基、芳基及芳烷基等爲宜,以直鏈或支鏈之烷基尤佳。 〇R6爲複數存在時,其彼此間相同或相異均可。R6之具體 例如,甲基、乙基、正丙基、異丙基、正丁基、仲丁基、 異丁基、正戊基、正己基、正庚基、正辛基、正癸基、烯 丙基、丁烯基、環戊基、環己基、環己烯基、苯基、甲苯 基、苯甲基及苯乙基等。p係表示1至4之整數。 上述一般式(瓜)所表示之含有鹵素之鈦化合物之具 體例如,四氯化鈦、四溴化鈦及四碘化鈦等之四鹵素化 鈦;甲氧基三氯化鈦、乙氧基三氯化鈦、丙氧基三氯化 鈦、正丁氧基三氯化鈦及乙氧基三溴化鈦等之三鹵素化烷 氧基鈦;二甲氧基二氯化鈦、二乙氧基二氯化鈦、二異丙 氧基二氯化鈦、二正丙氧基二氯化鈦及二乙氧基二溴化鈦 等之二鹵素化二烷氧基鈦;三甲氧基氯化鈦、三乙氧基氯 化鈦、三異丙氧基氯化鈦、三正丙氧基氯化鈦及三正丁氧 基氯化鈦等之單鹵素化三烷氧基鈦等。其中,就聚合活性 -19- (15) (15)200413421 而言,含有高鹵素之鈦化合物,尤其以四氯化鈦爲宜。這 些含有鹵素之鈦化合物,可分別單獨使用,亦可組合2種 以上使用。 (i i)含有烷氧基之鎂化合物 本發明中,作爲含有烷氧基之鎂化合物,除使金屬 鎂、醇類及相對於1莫耳之金屬鎂之含有O.OOOlg原子以 上之鹵素原子之鹵素及/含有鹵素之化合物反應所得化合 物外,雖無特別地限制,然而可適合使用下述一般式 (IV )所表示之化合物。TiXp (OR6) 4- p- (π) In the above general formula (dish), x represents a halogen atom, of which a chlorine atom and a bromine atom are preferred, and a chlorine atom is particularly preferred. R6 is a hydrocarbon group, which may be a saturated group or an unsaturated group, a linear group, a branched group, or a cyclic group '. Alternatively, a group containing a hetero element such as sulfur, nitrogen, oxygen, silicon, and phosphorus may be used. Among them, the hydrocarbon group having 1 to 8 carbon atoms is preferably an alkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, an aralkyl group, and the like, and a linear or branched alkyl group is particularly preferable. When R6 is plural, they may be the same or different from each other. Specific examples of R6 include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, Allyl, butenyl, cyclopentyl, cyclohexyl, cyclohexenyl, phenyl, tolyl, benzyl, phenethyl and the like. p is an integer from 1 to 4. Specific examples of the halogen-containing titanium compound represented by the above general formula (melon) include, for example, titanium tetrahalide, titanium tetrabromide, titanium tetraiodide, and the like; titanium methoxy trichloride, and ethoxy Trihalogenated titanium alkoxy titanium such as titanium trichloride, propoxy titanium trichloride, n-butoxy titanium trichloride, and titanium ethoxy tribromide; dimethoxy titanium dichloride, diethyl Dihalogenated titanium dialkoxy titanium, such as oxy titanium dichloride, diisopropoxy titanium dichloride, di-n-propoxy titanium dichloride, and diethoxy dibromide; trimethoxy chloride Monohalogenated trialkoxy titanium, such as titanium oxide, triethoxy titanium chloride, triisopropoxy titanium chloride, tri-n-propoxy titanium chloride, and tri-n-butoxy titanium chloride. Among them, in terms of polymerization activity, -19- (15) (15) 200413421, titanium compounds containing high halogens, especially titanium tetrachloride are preferable. These halogen-containing titanium compounds may be used singly or in combination of two or more kinds. (ii) Magnesium compounds containing alkoxy groups In the present invention, as magnesium compounds containing alkoxy groups, metal magnesium, alcohols, and halogen atoms containing at least 0.001 lg atoms with respect to 1 mole of metal magnesium are used. The compound obtained by the reaction of halogen and / or a halogen-containing compound is not particularly limited, but a compound represented by the following general formula (IV) can be suitably used.

Mg ( OR7 ) qRS.q …(IV ) 上述一般式(IV )中,R7係表示烴基,R8係表示烴 基或鹵素原子。在此,作爲R7及R8之烴基,可舉例如碳 原子數爲1至12個之烷基、環烷基、芳基及芳烷基等, 其可爲相同或相異。又,作爲R8之鹵素原子,可舉例如 氯、溴、碘及氟等。q係表示1至2整數。 上述一般式(IV)所表示之含有烷氧基之鎂化合物之 具體例如二甲氧基鎂、二乙氧基鎂、二丙氧基鎂、二丁氧 基鎂、二己氧基鎂、二辛氧基鎂、二苯氧基鎂及二環己氧 基鎂之二烷氧基鎂及二烯丙氧基鎂;乙氧基乙基鎂、苯氧 基乙基鎂、乙氧基苯基鎂、環己氧基苯基鎂等之烷氧基烷 基鎂,烯丙氧基烷基鎂,烷氧基烯丙基鎂,烯丙氧基烯丙 -20- (16) (16)200413421 基鎂;丁氧基氯化鎂、環己氧基氯化鎂、苯氧基氯化鎂、 乙氧基氯化鎂、乙氧基溴化鎂、丁氧基溴化鎂及乙氧基碘 化鎂之烷氧基氯化鎂及芳氧基氯化鎂等。 這些鎂化合物中,就聚合活性及立體規則性而言,以 二烷氧基鎂爲宜,以二乙氧基鎂尤佳。 就觸媒之聚合活性、烯烴聚合物之粉末型態及立體規 則性而言’含有烷氧基之鎂化合物(i i )最好爲使金屬 鎂、醇類及相對於1莫耳之金屬鎂之含有o.oooig原子以 上之鹵素原子之鹵素及/含有鹵素之化合物反應所得者。 此時,對於金屬鎂之形狀等並無特別的限制。因此, 任何粒徑之金屬鎂,例如顆料狀、蝴蝶結狀及粉末狀等之 金屬鎂均可使用。又,對於金屬鎂之表面狀態亦無特別的 限制,但是以表面上未生成氫氧化鎂等之被膜者爲宜。 此外’醇的種類雖無特別地限制,然而其係以使用碳 原子數爲1至6個之低級醇爲宜。特別是使用乙醇時,可 得到明顯地提升觸媒性能發生之固體生成物,所以適宜。 醇類之純度及含水量雖亦無限制,若使用含水量多的醇類 時,因爲會於金屬鎂之表面生成氫氧化鎂,所以使用含水 量爲1%以下,尤其2,000ppm以下之醇類爲宜。另外, 爲得到更良好的型態,水份愈少愈好,一般係以200ppm 以下爲宜。 關於鹵素的種類方面,雖無特別地限制,然而以使用 氯、溴或碘爲宜,其中以碘最佳。 另外’含鹵素化合物的種類並無限制,只要在其化學 -21 - (17) (17)200413421 式中含有鹵素原子之化合物即可使用。此時,關於鹵素原 子的種類方面雖無特別地限制,然而以氯、溴或碘爲宜。 另外’含有鹵素之化合物中,以含有鹵素之金屬化合物尤 佳。作爲含有鹵素之化合物,具體上可適合地使用 MgCh、Mgl2、Mg(OEt)Cl、Mg(OEt)I、MgBr2、CaCl2、 NaCl及KBr等。其中以MgCl2尤佳。其狀態、形狀及粒 翠等並無特別的限制,任何物均可,例如可於醇系溶媒 (例如乙醇)中之溶液使用。 有關醇類的使用量上雖無限制,然而相對於1莫耳之 金屬鎂,其以2至100莫耳爲宜,以5至50莫耳尤佳。 醇類的使用量過多時,型態良好之含有烷氧基之鎂化合物 (i i)之回收率將降低,若過少時,於反應槽時的攪拌 將不能順利進行。然而,並不限制該莫耳比。 鹵素的使用量係相對於1莫耳之金屬鎂,鹵素原子量 爲O.OOOlg原子以上,以0.0005g原子以上爲宜,進而以 O.OOlg原子以上尤佳。O.OOOlg原子未滿時,與以鹵素作 爲反應引發劑來使用的量無很大的差異,將所得的含烷氧 基之鎂化合物(i 1 )作爲觸媒的載體來使用時,觸媒活 性或烯烴聚合物之型態等會發生不良。 又,含鹵素的化合物之使用量係相對於1莫耳之金屬 鎂,含鹵素之化合物中之鹵素原子量爲〇.〇〇〇ig原子以 上,以0.0005g原子以上爲宜,進而以O.OOlg原子以上 尤佳。O.OOOlg原子未滿時,與以鹵素作爲反應引發劑來 使用的量無很大的差異,將所得的含烷氧基之鎂化合物 -22- (18) (18)200413421 (i i )作爲觸媒之載體使用時,觸媒活性或烯烴聚合物 之型態等會發生不良。 又,在本發明中,鹵素及含有鹵素之化合物係可分別 單獨使用,亦可組合2種以上使用。另外,組合鹵素及含 有鹵素之化合物亦可。如此般地組合鹵素及含有鹵素之化 合物來使用時,鹵素及含有鹵素之化合物中之全部鹵素原 子量相對於1莫耳之金屬鎂,爲O.OOOlg原子以上,以 0.0005g原子以上爲宜,以O.OOlg原子以上尤佳。 · 對於鹵素及含有鹵素之化合物使用量之上限,並無特 別的限制,只要於可得到本發明所使用之含有烷氧基之鎂 化合物(i i )之範圍下,適當地選擇即可,一般係以未 達〇.〇6g原子爲宜。 在本發明的烯烴聚合物之製造方法中,適當地選擇鹵 素及含有鹵素之化合物之使用量,,可自由地控制含烷氧 基的鎂化合物(i i )之粒徑。 通常,在製造含有烷氧基之鎂化合物(i 1)之製造 鲁 係進行至認爲不再發生氫氣爲止(通常爲1至3 0小 時)。具體上,使用鹵素之碘時,於金屬鎂、乙醇溶液 中’投入固體狀之碘後,加熱使之反應的方法,及於金屬 鎂、乙醇溶液中,滴入碘之醇溶液後,加熱使之反應的方 法以及邊加熱金屬鎂之醇溶液,邊滴入碘之醇溶液,使之 反應的方法。 另外,任何方法均以在不活性氣體(例如氮氣、氬 氣)環境下,有時適合使用不活性有機溶媒(例如正己烷 •23- (19) (19)200413421 等之飽和烴)進行。 另外,關於投入金屬鎂、醇類及鹵素,並不必從最初 就分別全量投入,可分次投入。 尤其適合的型態係將醇類從最初就投入全量,將金屬 鎂分數次投入之方法。如此情況下,可防止一瞬間氫氣大 量產生,就安全性上係非常希望的。並且亦可使反應槽小 型化。另外,亦可防止氫氣一瞬間大量產生所引起之醇類 或鹵素一起成飛沬。分開次數係考慮反應槽規模決定即 可,並無特別的規定,若考慮操作之煩雜程度,通常係以 5至1 0次爲宜。 另外,反應本身可爲批式或連續式。另外,作爲其變 法,最初投入全量之醇類中,先投入少量金屬鎂,將反應 所生成之生成物分離至別槽除去後,再投入少量金屬鎂之 反覆操作亦可。 將含有烷氧基之鎂化合物(i i ),使用於固體觸媒 成份[A]之調製時,可使用乾燥物,並且亦可過濾後,使 用庚烷等之不活性溶媒洗淨者。任何情況之含有烷氧基之 鎂化合物(i i )係可不進行粉碎或使粒徑分佈整齊之分 級操作而可使用於以下之步驟。另外,含有烷氧基之鎂化 合物(i i )爲近似球形而且粒徑分佈集中。更進一步, 檢視每顆粒子,其球形度之差異性小。 另外,這些含有烷氧基之鎂化合物(i i)可單獨使 用’亦可組合2種以上使用。更者,載持於二氧化砂、氧 化鋁及聚苯乙烯等之支持體使用亦可,與鹵素等之混合物 -24- (20) 200413421 使用亦可。 (iii)含有鹵素之矽化合物 在固體觸媒成份[A]的製造中,因應需要而使用含有 鹵素之矽化合物(i i i )。 作爲含有鹵素之矽化合物者,雖無特別地限制,然而 可使用下述一般式(V )所表示之化合物。Mg (OR7) qRS.q (IV) In the general formula (IV), R7 represents a hydrocarbon group, and R8 represents a hydrocarbon group or a halogen atom. Here, examples of the hydrocarbon group of R7 and R8 include an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an aryl group, and an aralkyl group, which may be the same or different. Examples of the halogen atom of R8 include chlorine, bromine, iodine, and fluorine. q represents an integer of 1 to 2. Specific examples of the alkoxy-containing magnesium compound represented by the general formula (IV) include dimethoxy magnesium, diethoxy magnesium, dipropoxy magnesium, dibutoxy magnesium, dihexyl magnesium, and Magnesium octyloxy, diphenoxymagnesium and dicyclohexyloxymagnesium dialkoxymagnesium and diallyloxymagnesium; ethoxyethylmagnesium, phenoxyethylmagnesium, ethoxyphenyl Alkoxyalkyl magnesium, magnesium allyloxyphenyl magnesium, allyloxy alkyl magnesium, alkoxy allyl magnesium, allyloxy allyl-20- (16) (16) 200413421 Methyl magnesium; butoxy magnesium chloride, cyclohexyloxy magnesium chloride, phenoxy magnesium chloride, ethoxy magnesium chloride, ethoxy magnesium bromide, butoxy magnesium bromide, and alkoxy magnesium chloride of ethoxy magnesium iodide and Aryloxy magnesium chloride and so on. Among these magnesium compounds, in terms of polymerization activity and stereoregularity, dialkoxymagnesium is preferred, and diethoxymagnesium is particularly preferred. In terms of the polymerization activity of the catalyst, the powder form and stereoregularity of the olefin polymer, the alkoxy-containing magnesium compound (ii) is preferably made of metallic magnesium, alcohols, It is obtained by reacting a halogen containing a halogen atom of at least o.oooig and / or a halogen-containing compound. In this case, the shape and the like of the metal magnesium are not particularly limited. Therefore, metallic magnesium of any particle size, such as metallic, bow-shaped, and powdery metallic magnesium, can be used. In addition, there is no particular limitation on the surface state of the magnesium metal, but it is preferable that a film such as magnesium hydroxide is not formed on the surface. The type of the alcohol is not particularly limited, but it is preferable to use a lower alcohol having 1 to 6 carbon atoms. In particular, when ethanol is used, a solid product that significantly enhances catalyst performance can be obtained, which is suitable. Although the purity and water content of alcohols are not limited, if alcohols with high water content are used, magnesium hydroxide will be formed on the surface of metal magnesium, so alcohols with a water content of 1% or less, especially alcohols of 2,000 ppm or less Better. In addition, in order to obtain a better shape, the less the water content, the better. Generally, it is preferably 200 ppm or less. The type of halogen is not particularly limited, but it is preferable to use chlorine, bromine or iodine, with iodine being the most preferable. In addition, the type of the halogen-containing compound is not limited, and any compound containing a halogen atom in the formula of its -21-(17) (17) 200413421 can be used. In this case, although there are no particular restrictions on the type of halogen atom, chlorine, bromine or iodine is preferred. Among the halogen-containing compounds, a halogen-containing metal compound is particularly preferred. As the halogen-containing compound, specifically, MgCh, Mgl2, Mg (OEt) Cl, Mg (OEt) I, MgBr2, CaCl2, NaCl, KBr, and the like can be suitably used. Among them, MgCl2 is particularly preferred. There is no particular limitation on the state, shape, and shape of the particles, and any substance may be used. For example, it can be used in a solution in an alcohol-based solvent (such as ethanol). Although there are no restrictions on the amount of alcohols, it is preferably 2 to 100 mols, and more preferably 5 to 50 mols, relative to 1 mol of metal magnesium. When the amount of the alcohol is too much, the recovery rate of the magnesium compound (i i) containing an alkoxy group in a good form will decrease. If the amount is too small, the stirring in the reaction tank will not be performed smoothly. However, this Morse ratio is not limited. The amount of halogen to be used is 1 mol of metal relative to 1 mol of metallic magnesium, preferably 0.0005 g or more, and more preferably 0.001 g or more. When the O.OOOlg atom is not full, there is no significant difference from the amount used with halogen as a reaction initiator. When the obtained alkoxy-containing magnesium compound (i 1) is used as a catalyst carrier, the catalyst Deterioration of living or olefin polymer may occur. In addition, the amount of halogen-containing compounds used is relative to 1 mol of metal magnesium, and the amount of halogen atoms in the halogen-containing compounds is 0.0000 ig atoms or more, preferably 0.0005 g atoms or more, and 0.00000 g. Above atomic is preferred. When the O.OOOlg atom is not full, there is no great difference from the amount used with halogen as a reaction initiator, and the obtained alkoxy-containing magnesium compound-22- (18) (18) 200413421 (ii) is used as a catalyst. When a carrier is used as a vehicle, the catalyst activity or the type of the olefin polymer may be defective. In the present invention, the halogen and the halogen-containing compound may be used alone or in combination of two or more kinds. Alternatively, a halogen and a halogen-containing compound may be combined. When a halogen and a halogen-containing compound are used in combination in this manner, the total amount of halogen atoms in the halogen and the halogen-containing compound is preferably equal to or greater than 0.001 lg atom, preferably equal to or greater than 0.0005 g atom, relative to 1 mol of metallic magnesium. O.OOlg or more is particularly preferred. · The upper limit of the amount of halogen and halogen-containing compounds used is not particularly limited, as long as it is appropriately selected within the range in which the alkoxy-containing magnesium compound (ii) used in the present invention can be obtained, generally It is preferably less than 0.06 g atoms. In the method for producing an olefin polymer of the present invention, the amount of the halogen and the halogen-containing compound is appropriately selected, and the particle size of the alkoxy group-containing magnesium compound (i i) can be freely controlled. In general, the manufacturing process of the magnesium compound (i 1) containing an alkoxy group is carried out until it is considered that hydrogen is no longer generated (usually 1 to 30 hours). Specifically, when halogen iodine is used, a method of adding solid iodine to a solution of metal magnesium and ethanol, and heating and reacting it, and dropping a solution of iodine into the metal magnesium and ethanol solution, and heating A method for the reaction and a method for reacting while heating an alcohol solution of magnesium metal while dripping an alcohol solution of iodine. In addition, any method is carried out in an inert gas (such as nitrogen, argon) environment, and sometimes it is suitable to use an inert organic solvent (such as a saturated hydrocarbon such as n-hexane • 23- (19) (19) 200413421). In addition, magnesium metal, alcohols, and halogens need not be added in their entirety from the beginning. A particularly suitable type is a method in which alcohol is added in full amount from the beginning, and magnesium is added in several times. In this case, a large amount of hydrogen gas can be prevented in an instant, and safety is highly desirable. In addition, the reaction tank can be miniaturized. In addition, alcohols or halogens caused by the large amount of hydrogen produced in an instant can be prevented from flying together. The number of divisions may be determined in consideration of the size of the reaction tank, and there is no special rule. If the degree of complexity of the operation is considered, it is usually appropriate to use 5 to 10 times. In addition, the reaction itself may be batch or continuous. In addition, as a modification, a small amount of magnesium metal is initially charged into the entire amount of alcohol, and the product produced by the reaction is separated into a separate tank for removal, and then a small amount of magnesium metal is repeatedly introduced. When the magnesium compound (i i) containing an alkoxy group is used for the preparation of the solid catalyst component [A], a dried product may be used, or after filtering, the solvent may be washed with an inactive solvent such as heptane. In any case, the magnesium compound (i i) containing an alkoxy group can be used in the following steps without performing a grading operation or grading operation with a uniform particle size distribution. The magnesium compound (i i) containing an alkoxy group is approximately spherical and has a concentrated particle size distribution. Furthermore, when examining each particle, the difference in sphericity is small. These alkoxy-containing magnesium compounds (i i) may be used alone 'or in combination of two or more. Furthermore, it is also possible to use a support supported on sand dioxide, alumina, polystyrene, etc., and a mixture with a halogen, etc. -24- (20) 200413421 can also be used. (iii) Halogen-containing silicon compound In the production of the solid catalyst component [A], a halogen-containing silicon compound (i i i) is used as required. The halogen-containing silicon compound is not particularly limited, but a compound represented by the following general formula (V) can be used.

Si ( OR9 ) rX4- r- ( V ) 上述一般式(V)中,X係表示鹵素原子,其中,以 氯原子及溴原子爲宜,以氯原子尤佳。R9爲烴基,可爲 飽和基或不飽和基,亦可爲直鏈狀者或具有支鏈者或環狀 者,另外,含有硫、氮、氧、矽及磷等異元素者亦可。其 中’碳原子數爲1至10個之烴基,以烷基、烯基、環稀 基、芳基及芳烷基等爲宜。OR9爲複數存在時,其彼此間 相同或相異均可。R9之具體例如,甲基、乙基、正丙 基、異丙基、正丁基、仲丁基、異丁基、正戊基、正己 基、正庚基、正辛基、正癸基、烯丙基、丁烯基、環戊 基、環己基、環己烯基、苯基、甲苯基、苯甲基及苯乙基 等。r係表示0至3之整數。 上述一般式(V )所表示之含有鹵素之鈦化合物之具 體例如,四氯化矽、甲氧基三氯矽烷、二甲氧基二氯矽 烷、三甲氧基氯矽烷、乙氧基三氯矽烷、二乙氧基二氯矽 烷、三乙氧基氯矽烷、丙氧基三氯矽烷、二丙氧基二氯矽 -25- (21) 200413421 烷及三丙氧基氯矽烷等。其中,以四氯化矽爲宜。這些含 有鹵素之矽化合物,可分別單獨使用,亦可組合2種以上 使用。 (i V )電子供予性化合物 本發明中,作爲電子供予性化合物,係使用以下述之 一般式(I )所表示之丙二酸二酯。Si (OR9) rX4- r- (V) In the general formula (V), X represents a halogen atom. Among them, a chlorine atom and a bromine atom are preferred, and a chlorine atom is particularly preferred. R9 is a hydrocarbon group, which may be a saturated group or an unsaturated group, and may be a linear one or a branched or cyclic one. In addition, R9 may contain a different element such as sulfur, nitrogen, oxygen, silicon, and phosphorus. Among these, a hydrocarbon group having 1 to 10 carbon atoms is preferably an alkyl group, an alkenyl group, a cyclodialkyl group, an aryl group, an aralkyl group, or the like. When OR9 is plural, it may be the same as or different from each other. Specific examples of R9 include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, Allyl, butenyl, cyclopentyl, cyclohexyl, cyclohexenyl, phenyl, tolyl, benzyl, phenethyl and the like. r is an integer from 0 to 3. Specific examples of the halogen-containing titanium compound represented by the general formula (V) are, for example, silicon tetrachloride, methoxytrichlorosilane, dimethoxydichlorosilane, trimethoxychlorosilane, and ethoxytrichlorosilane. , Diethoxydichlorosilane, triethoxychlorosilane, propoxytrichlorosilane, dipropoxydichlorosilane-25- (21) 200413421 alkane, and tripropoxychlorosilane. Among them, silicon tetrachloride is suitable. These halogen-containing silicon compounds may be used singly or in combination of two or more kinds. (i V) Electron donating compound In the present invention, as the electron donating compound, a malonic acid diester represented by the following general formula (I) is used.

R1 (I) R2一Ο一C—C—C一Ο一R3R1 (I) R2 one hundred one C—C—C one hundred one R3

it I II ο I 〇 Η [在一般式(I)中,r1爲碳數1以上的直鏈狀或支鏈狀 的烷基,R2及R3爲互相獨立碳數1〜20的直鏈狀或支鏈 狀的烷基。] R1係以碳數1〜8爲佳,最者爲碳數2〜4。 又,R2及R3係以碳數2〜8爲佳,最者爲碳數2〜 作爲電子供予性化合物的具體例者,可舉出如甲基丙 二酸、乙基丙二酸、正丙基丙二酸、異丙基丙二酸、正丁 基丙二酸、異丁基丙二酸、仲丁基丙二酸、叔丁基丙二酸 等之二甲基酯、二乙基酯、二正丙基酯、二異丙基酯、二 正丁基酯、二異丁基酯、二叔丁基酯、二正戊基酯、二正 庚基酯、二正辛基酯、二新戊基酯等。其中,以正丁基丙 二酸二酯爲佳。又,這些化合物,可分別單獨使用,或亦 -26- (22) (22)200413421 可組合2種以上使用。 [B] 有機鋁化合物 、 作爲本發明所使用之有機鋁化合物[B],並無特別的 限制,烷基、鹵素原子、氫原子、具有烷氧基者、鋁氧烷 ^ ~ (aluminoxane )及其混合物可適合地使用。具體上可舉 例如三甲基鋁、三乙基鋁、三異丙基鋁、三異丁基鋁及三 辛基鋁等之三烷基鋁;二乙基鋁一氯、二異丙基鋁一氯、 φ 二異丁基鋁一氯及二辛基鋁一氯等之二烷基鋁一氯;乙基 鋁倍半氯等之烷基鋁倍半氯化物;甲基鋁氧烷等之鏈狀鋁 氧烷等。這些有機鋁化合物中,具有碳原子數爲1至5個 之低級烷基之三烷基鋁,尤其以具體上可舉例如三甲基 鋁、三乙基鋁、三丙基鋁及三異丁基鋁尤佳。這些有機鋁 化合物,可分別單獨使用,亦可組合2種以上使用。 [C] 電子供予性化合物 鲁 於本發明之聚合烯烴用觸媒,因應需要而使用電子供 予性化合物。作爲如此之電子供予性化合物[C],可使用 具有烷氧基之有機矽化合物、含氮化合物、含磷化合物及 含氧化合物。其中,以使用具有烷氧基之有機矽化合物爲 宜。 , 具有烷氧基之有機矽化合物之具體例,可舉例如三甲 基甲氧基矽烷、三甲基乙氧基矽烷、三乙基甲氧基矽烷、 三乙基乙氧基矽烷、二甲基二甲氧基矽烷、二甲基二乙氧 -27· (23) (23)200413421 基矽烷、乙基異丙基二甲氧基矽烷、丙基異丙基二甲氧基 矽烷、二異丙基二甲氧基矽烷、二異丁基二甲氧基矽烷、 異丙基異丁基二甲氧基矽烷、二叔丁基二甲氧基矽烷、叔 丁基甲基二甲氧基矽烷、叔丁基乙基二甲氧基矽烷、叔丁 基丙基二甲氧基矽烷、叔丁基異丙基二甲氧基矽烷、叔丁 基丁基二甲氧基矽烷、叔丁基異丁基二甲氧基矽烷、叔丁 基(仲丁基)二甲氧基矽烷、叔丁基戊基二甲氧基矽烷、 叔丁基己基二甲氧基矽烷、叔丁基庚基二甲氧基矽烷、叔 丁基辛基二甲氧基矽烷、叔丁基壬基二甲氧基矽烷、叔丁 基癸基二甲氧基矽烷、叔丁基(3,3,3 -三氟化甲基丙 基)二甲氧基矽烷、環己基甲基二甲氧基矽烷、環己基乙 基二甲氧基矽烷、環己基丙基二甲氧基矽烷、環己基異丁 基二甲氧基矽烷、二環己基二甲氧基矽烷、二環己基叔丁 基二甲氧基矽烷、環戊基甲基二甲氧基矽烷、環戊基乙基 二甲氧基矽烷、環戊基丙基二甲氧基矽烷、環戊基叔丁基 二甲氧基矽烷、二環戊基二甲氧基矽烷、環戊基環己基二 甲氧基矽烷、雙(2 —甲基環戊基)二甲氧基矽烷、雙 (2,3 —二甲基環戊基)二甲氧基矽烷、萘基一 1, 1,2 —三甲基丙基二甲氧基矽烷、正四癸基一 1,1,2 — 三甲基丙基二甲氧基矽烷、1,1,2—三甲基丙基甲基二 甲氧基矽烷、1,1,2-三甲基丙基乙基二甲氧基矽烷、 1,1,2—三甲基丙基異丙基二甲氧基矽烷、1,1,2—三 甲基丙基環戊基二甲氧基矽烷、1,1,2 -三甲基丙基環 己基二甲氧基矽烷、1,1,2—三甲基丙基十四烷基二甲 -28- (24) (24)200413421 氧基矽烷、二苯基二甲氧基矽烷、二苯基二乙氧基矽烷、 苯基三乙氧基矽烷、甲基三甲氧基矽烷、甲基三乙氧基矽 烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、丙基三甲氧 基矽烷、異丙基三甲氧基矽烷、丁基三甲氧基矽烷、丁基 三乙氧基矽烷、異丁基三甲氧基矽烷、叔丁基三甲氧基矽 烷、仲丁基三甲氧基矽烷、戊基三甲氧基矽烷、異戊基三 甲氧基矽烷、環戊基三甲氧基矽烷、環己基三甲氧基矽 烷、原菠烷三甲氧基矽烷、印基三甲氧基矽烷、2-甲基 環戊基三甲氧基矽烷、乙基三異丙氧基矽烷、甲基環戊基 (叔丁氧基)二甲氧基矽烷、異丙基(叔丁氧基)二甲氧 基矽烷、叔丁基(叔丁氧基)二甲氧基矽烷、(異丁氧 基)二甲氧基矽烷、叔丁基(叔丁氧基)二甲氧基矽烷、 乙烯基三乙氧基矽烷、乙烯基三丁氧基矽烷、氯化三乙氧 基矽烷、7 -氯化丙基三甲氧基矽烷、7 -氨基丙基三甲 氧基矽烷、1,1,2—三甲基丙基三甲氧基矽烷、1,1,2 一三甲基丙基異丙氧基二甲氧基矽烷、1,1,2—三甲基 丙基(叔丁氧基)二甲氧基矽烷、四甲氧基矽烷、四乙氧 基矽烷、四丁氧基矽烷、四異丁氧基矽烷、矽酸乙酯、矽 酸丁酯、三甲基苯氧基矽烷、甲基三烯丙氧基矽烷、乙烯 基三(Θ —甲氧基乙氧基)矽烷、乙烯基三乙酸基矽烷、 二甲基四乙氧基二矽氧烷、環戊基(叔丁氧基)二甲氧基 矽烷、叔丁基(異丁氧基)二甲氧基矽烷、thexyl三甲氧 基矽烷、thexyl異丙氧基二甲氧基矽烷、thexyl (叔丁氧 基)二甲氧基砂院、thexyl甲基二甲氧基砂院、thexyl乙 (25) (25)200413421 基二甲氧基矽烷、thexyl異丙基二甲氧基矽烷、thexyl環 戊基二甲氧基矽烷、thexyl十四烷基二甲氧基矽烷、 thexyl環己基二甲氧基矽烷、環己基異丙基二甲氧基矽 烷、異丁基異戊基二甲氧基矽烷、二正異丁基二甲氧基矽 烷、環戊基異丁基二甲氧基矽烷等。這些有機矽化合物, 可分別單獨使用,或亦可組合2種以上使用。 另外,作爲如此之有機矽化合物,亦可舉例如將未具 有Si — Ο— C鍵結之矽化合物與具有Ο - C鍵結之有機化 合物預先使之反應,或於聚合α -烯烴時,使之反應所得 之化合物。具體上可舉例如使四氯化矽與醇類反應所得之 化合物。 作爲含氮化合物之具體例如,2,6 -二異丙基哌啶、 2’ 6 —二異丙基一4 —甲基脈H定及Ν —甲基一 2,2,6,6 一四甲基哌啶等之2,6-取代哌啶類;2,5-二異基偶 氮賴胺酸及Ν — methyl— 2,2,5,5 —四甲基偶氮賴胺酸 等之2,5—取代偶氮賴胺酸類;Ν,Ν,Ν’ ,Ν,—四甲 基甲撐二胺及Ν,Ν,Ν’ ,Ν, 一四乙基甲撐二胺等之甲 撐二胺類;1,3 -二苯基咪唑賴胺酸及1,3 -二苯基-2· 苯基咪唑賴胺酸等之取代咪唑賴胺酸類等。 作爲含磷化合物之具體例如,磷酸三乙酯、磷酸三正 丙酯、磷酸三異丙酯、磷酸三正丁酯、磷酸三異丁酯、磷 酸二乙基正丁酯及磷酸二乙基苯酯等之亞磷酸酯類等。 作爲含氧化合物之具體例如,2,2,5,5—四甲基四 氫呋喃及2,2,5,·5 -四乙基四氫呋喃等之2,5 —取代 -30· (26) (26)200413421 四氫呋喃類;1,1—二甲氧基—2,3,4,5 —四氯環戊二 烷、9,9一二甲氧基芴及二苯基二甲氧基甲烷等之二甲氧 基甲烷衍生物等。 2·固體觸媒成份[A]之製造方法 作爲固體觸媒成份[A]之製造方法,只要在特定的溫 度下,使上述之含有鹵素之鈦化合物(i)、含有烷氧基 之鎂化合物(i i )、應需要而含有特定量鹵素之矽化合 物(i i i )及電子供予性化合物(i V )接觸反應即 可,關於其接觸順序並無特別的限制。 然而,亦可使化合物(i )與化合物(i i )、 (iii) ' ( i V )或化合物(i i ) 、( i V )接觸 反應後,再次(1次以上)與這些化合物接觸反應。又, 此法最佳。 又,使化合物(i ) 、( i i ) 、( i V )反應來製 造[A]成分時,係以使含有鹵素之鈦化合物(i )與含有 烷氧基之鎂化合物(i i )接觸後,再與電子供予性化合 物(i V )接觸反應者爲佳。 更者,使化合物(i ) 、( i i ) 、 ( i i i )、 (i V )反應來製造[A ]成分時,係以使含有烷氧基之鎂 化合物(i i )與含有鹵素之矽化合物(i 1 i )接觸 後,然後與電子供予性化合物(i V )接觸’最後再與含 有鹵素之鈦化合物(i )反應者爲佳。若以如此的順序接 觸,則有可能提高聚合活性。 -31 - (27) (27)200413421 又,這些各個成份可於烴等之不活性溶媒之存在下接 觸,亦可預先以烴等之不活性溶媒稀釋各成份而接觸。作 爲該不活性溶媒,可舉例如辛烷、癸烷及乙基環己烷等之 脂肪族烴或脂環式烴、甲苯、乙苯及二甲苯等之芳香族 烴、以及氯苯、四氯乙烷及氯氟碳化物等之鹵素化烴或這 些之混合物。其中,使用時以脂肪族烴及芳香族烴爲宜, 以脂肪族烴尤佳。 於此,含有鹵素之鈦化合物(i )係相對於1莫耳之 含有烷氧基之鎂化合物(i i )之鎂,通常使用0.5至 1〇〇莫耳,以1至50莫耳爲宜。此莫耳比若超出上述範 圍時,則觸媒活性就會不足。 另外,電子供予性化合物(i V )係相對於1莫耳之 含有烷氧基之鎂化合物(ii)之鎂,通常使用0.01至 10莫耳,以〇.〇5至1.0莫耳爲宜。若此莫耳比偏離前記 範圍,則觸媒活性或立體規則性將變差。 又,相對於含有烷氧基之鎂化合物(i i ),在鹵素 /烷氧基的莫耳比下,含鹵素之矽化合物(i i i )的使 用量約爲〇〜1倍莫耳。 更者,上記的化合物(i )〜(i V )的接觸反應係 全部加入後,通常進行之溫度範圍爲90至150°C,以125 至140 °C爲宜。該接觸溫度於上述範圍外時,將不能充份 發揮提升觸媒活性或立體規則性的效果。另外,接觸係通 常以1分鐘至24小時,以1 〇分鐘至6小時爲宜進行。此 時之壓力,雖依使用溶媒時之其種類及接觸溫度等有所改 -32- (28) (28)200413421 變,通常進行範圍爲 0〜5Mpa,以 0〜IMpa爲宜。另 外,接觸操作中,就接觸之均勻性及接觸效率而言,以進 行攪拌爲宜。對於與第 2次以後之含鹵素的鈦化合物 (i )接觸之反應亦相同。 含有鹵素之鈦化合物(i )之接觸操作中,使用溶媒 時,相對於1莫耳之含有鹵素之鈦化合物(i ),通常所 使用溶媒爲5,000ml以下,以10〜l,〇〇〇ml爲宜。該比率 若超出上述範圍時,接觸之均勻性或接觸效將惡化。 另外,第一次之含鹵素的鈦化合物(i )之接觸反應 後,通常以90〜150 °C,尤其以120〜140 °C之不活性溶媒 洗淨爲宜。此洗淨溫度若超出上述範圍外,將不能充份發 揮提升觸媒活性或立體規則性的效果。作爲該不活性溶 媒,可舉例如辛烷及癸烷等之脂肪族烴、甲基環己烷及乙 基環己烷等之脂環式烴、甲苯、二甲苯及乙苯等之芳香族 烴、以及氯苯、四氯乙烷及氯氟碳化物等之鹵素化烴或這 些之混合物。其中,使用時以脂肪族烴及芳香族烴爲宜。 另外,對於第二次以後之與含鹵素的鈦化合物(i ) 之接觸反應後之洗淨溫度,並無特別的限制,但就立體規 則性而言,以90至150°C,尤其以120至140。(:之不活性 溶媒洗淨爲宜。 洗淨方法雖無特別地限制,然而以傾析及過濾等方式 爲宜,對於不活性溶媒之使用量、洗淨時間及洗淨次數並 無特別的限制’相對於1莫耳之鎂化合物,通常所使用溶 媒爲100〜100,000ml,以1000〜50,000ml爲宜,接觸係 (29) 200413421 通常以1分鐘〜24小時,尤其以10分鐘〜6小時進行。 該比率若超出上述範圍時,將會洗淨不完全。 此時之壓力,雖依溶媒之種類及洗淨溫度等其範圍有 所改變,通常進行範圍爲0〜5Mpa,以0〜IMpaG爲宜。 另外,洗淨操作中,就洗淨之均勻性及接觸效率而言,以 進行攪拌爲宜。另外,所得之固體觸媒成份係可保存於乾 燥狀態或烴等之不活性溶媒中。 3 .烯烴聚合物之製造方法 對於本發明之聚合烯烴用觸媒之各成份之使用量,並 無特別的限制,固體觸媒成份[A],換算爲鈦原子,每i L 之反應容積,通常使用量範圍爲0.00005〜lml。 有機鋁化合物[B]之鋁/鈦原子比,通常使用量範圍爲 1〜1,000,以10〜500爲宜。該原子比率若超出上述範圍 時,觸媒活性將不足。 另外,使用電子供予性化合物[C ]時,[C ] / [ B ](莫耳 比),通常所使用量範圍爲0.001〜5.0,以0.01〜2.0爲 宜,以0.05〜1.0尤佳。該莫耳比若超出上述範圍時,將 不能得到充份的觸媒活性及立體規則性。但是,進行預備 聚合時,可再減低電子供予性化合物[C ]的使用量。 本發明中所使用之烯烴係以一般式(VI )所表示之α 一烯烴爲宜。 (VI ) R10- CH= CH2 (30) (30)200413421 上述一般式(VI)中,R1G爲氫原子或烴基,可爲飽 不飽和基,亦可爲直鏈狀者或具有支鏈者或環狀 者。具體例如,乙烯、丙烯、1 一 丁烯、1 一戊烯、1 一己 烯、丨一庚烯、1 一辛烯、1 一癸烯、3 —甲基一 1 一戊烯、4 一甲基〜1 一戊烯、乙烯基環己烷、丁二烯、異戊二烯及 胃1¾ I _等。這些烯烴係可分別單獨使用,亦可組合2種 以上使用。上述之烯烴中係以乙烯及丙烯尤佳。 隹 本發明中之烯烴之聚合中,聚合活性,就烯烴聚合物 2 ίΖ:體規則性及粉末型態而言,因應需要,可先進行烯烴 之預備聚合後,再進行本聚合。此時,將固體觸媒成份 [Α] '有機鋁化合物[Β]及必要時之電子供予性化合物 [C] ’分別以一定比率混合所成之觸媒的存在下,將烯 烴’通常於1〜100°C範圍之溫度中,以常壓至5MpaG左 右之壓力使之預備聚合,接著,於觸媒及預備聚合生成物 之存在下,進行烯烴本聚合。 φ 本聚合中之聚合形式並無特別的限制,任何溶液聚 合、淤漿聚合、氣相聚合及本體聚合等均適合使用,另 外,任一種批次聚合或連續聚合均適合使用,相異條件下 之2階段聚合或多階段聚合亦適合使用。 另外,關於反應條件,該聚合壓力,並無特別的限 制’就聚合活性而目’通常爲大氣壓至8MpaG*以0.2〜 5MpaG爲宜,聚合溫度通常爲0〜200°C,以30〜100°C 爲宜之範圍下適當地選擇。聚合時間雖依原料烯烴之種類 -35- (31) (31)200413421 或聚合溫度而異,但通常爲5分鐘〜20小時,以10分鐘 〜1 0小時左右爲佳。 燃烴聚合物之分子量係可以鏈轉移劑之添加,尤其以 氫的添加爲宜,進行調節。另外,亦可存在氮氣等之不活 性氣體。另外,本發明中之觸媒成份,將固體觸媒成份 [A]、有機鋁化合物[B]及電子供予性化合物[c],以一定 之比率混合接觸後,可立即導入烯烴,進行聚合,亦可接 觸後’經0 · 2至3小時左右熟成後,再導入烯烴,進行聚 合。另外,該觸媒成份係可以不活性溶媒或烯烴等懸濁後 供給。於本發明中,聚合後之後處理,可以常法進行。亦 即’於氣相聚合法中,聚合後,由聚合器所導出之聚合物 粉體中,爲除去其中所含之烯烴等,可使氮氣氣流等通 過’另外,亦可依所需,以押出機使其錠劑化,此時,爲 使觸媒完全失活,亦可添加少量的水及醇類等。另外,於 本體聚合法中,聚合後,將由聚合器所導出之聚合物粉 體,完全地分離單體後,進行錠劑化。 [丙烯一乙烯共聚合] 針對本發明的丙烯-乙烯共聚合用觸媒以及使用此觸 媒的丙烯一乙烯共聚物之製造方法來加以說明。本發明的 丙烯一乙烯共聚合包含無規共聚合、嵌段共聚合。 更者,針對藉由這些製造方法所得之丙烯一乙烯無規 共聚物、丙烯一乙烯嵌段共聚物來加以說明。 -36- (32) (32)200413421 1.觸媒成份 [A]固體觸媒成份 固體觸媒成份係包含鈦、鎂以及電子供予體者,亦 即由以下的(a )鎂化合物、(b )鈦化合物化合物、 (c )電子供予體,以及相應於需要之(d )矽化合物所形 成者。 鎂化合物 鎂化合物可使用下述一般式(W)所表示之化合物。it I II ο I 〇Η [In the general formula (I), r1 is a linear or branched alkyl group having 1 or more carbon atoms, and R2 and R3 are linear or branched independently of 1 to 20 carbon atoms. Branched alkyl group. ] R1 is preferably a carbon number of 1 to 8, and the most carbon number is 2 to 4. Further, R2 and R3 are preferably 2 to 8 carbon atoms, and the most preferable is 2 to 8 carbon atoms. Specific examples of the electron donating compound include methylmalonic acid, ethylmalonic acid, and Dimethyl esters of propylmalonate, isopropylmalonate, n-butylmalonate, isobutylmalonate, sec-butylmalonate, tert-butylmalonate, etc. Ester, di-n-propyl ester, di-isopropyl ester, di-n-butyl ester, di-isobutyl ester, di-t-butyl ester, di-n-pentyl ester, di-n-heptyl ester, di-n-octyl ester, Dinepentyl esters and the like. Among them, n-butylmalonic acid diester is preferred. These compounds may be used singly or in combination. -26- (22) (22) 200413421 may be used in combination of two or more kinds. [B] An organoaluminum compound and the organoaluminum compound [B] used in the present invention are not particularly limited, and alkyl groups, halogen atoms, hydrogen atoms, those having an alkoxy group, aluminoxane ^ ~ (aluminoxane), and Its mixture can be suitably used. Specific examples include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, and trioctylaluminum; diethylaluminum monochloride, diisopropylaluminum Dialkyl aluminum monochloride such as monochloro, φ diisobutyl aluminum monochloride and dioctyl aluminum monochloride; alkyl aluminum sesquichloride such as ethyl aluminum sesquichloride; methyl alumoxane and the like Chain aluminoxane and the like. Among these organoaluminum compounds, trialkylaluminum having a lower alkyl group having 1 to 5 carbon atoms, and specifically, for example, trimethylaluminum, triethylaluminum, tripropylaluminum, and triisobutyl Aluminium is particularly preferred. These organoaluminum compounds may be used singly or in combination of two or more kinds. [C] Electron donating compound In the catalyst for polymerizing olefins of the present invention, an electron donating compound is used as needed. As such an electron donating compound [C], an organic silicon compound having an alkoxy group, a nitrogen-containing compound, a phosphorus-containing compound, and an oxygen-containing compound can be used. Among them, it is preferable to use an organosilicon compound having an alkoxy group. Specific examples of the organosilicon compound having an alkoxy group include trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, triethylethoxysilane, and dimethyl (23) (23) 200413421 silane, ethyl isopropyl dimethoxy silane, propyl isopropyl dimethoxy silane, diiso Propyldimethoxysilane, diisobutyldimethoxysilane, isopropylisobutyldimethoxysilane, di-tert-butyldimethoxysilane, tert-butylmethyldimethoxysilane, tertiary Butylethyldimethoxysilane, tert-butylpropyldimethoxysilane, tert-butylisopropyldimethoxysilane, tert-butylbutyldimethoxysilane, tert-butylisobutyl Dimethoxysilane, tert-butyl (sec-butyl) dimethoxysilane, tert-butylpentyldimethoxysilane, tert-butylhexyldimethoxysilane, tert-butylheptyldimethoxysilane, Tert-butyloctyldimethoxysilane, tert-butylnonyldimethoxysilane, tert-butyldecyldimethoxysilane, tert-butyl (3,3,3-trifluoromethane Propyl) dimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylethyldimethoxysilane, cyclohexylpropyldimethoxysilane, cyclohexylisobutyldimethoxysilane , Dicyclohexyldimethoxysilane, dicyclohexylt-butyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclopentylethyldimethoxysilane, cyclopentylpropyldi Methoxysilane, cyclopentyl tert-butyldimethoxysilane, dicyclopentyldimethoxysilane, cyclopentylcyclohexyldimethoxysilane, bis (2-methylcyclopentyl) dimethyl Oxysilane, bis (2,3-dimethylcyclopentyl) dimethoxysilane, naphthyl-1,1,2-trimethylpropyldimethoxysilane, n-tetradecyl-1,1 2,2-trimethylpropyldimethoxysilane, 1,1,2-trimethylpropylmethyldimethoxysilane, 1,1,2-trimethylpropylethyldimethoxy Silane, 1,1,2-trimethylpropylisopropyldimethoxysilane, 1,1,2-trimethylpropylcyclopentyldimethoxysilane, 1,1,2-trimethylsilane Propylcyclohexyldimethoxysilane, 1,1 2-trimethylpropyltetradecyldimethyl-28- (24) (24) 200413421 oxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phenyltriethoxy Methylsilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, butyl Trimethoxysilane, butyltriethoxysilane, isobutyltrimethoxysilane, tert-butyltrimethoxysilane, sec-butyltrimethoxysilane, pentyltrimethoxysilane, isopentyltrimethoxy Silane, cyclopentyltrimethoxysilane, cyclohexyltrimethoxysilane, orthospinyltrimethoxysilane, indotrimethoxysilane, 2-methylcyclopentyltrimethoxysilane, ethyltriisopropoxy Methylsilane, methylcyclopentyl (tert-butoxy) dimethoxysilane, isopropyl (tert-butoxy) dimethoxysilane, tert-butyl (tert-butoxy) dimethoxysilane, (Isobutoxy) dimethoxysilane, tert-butyl (tert-butoxy) dimethoxysilane, vinyltriethoxysilane, ethylene Tributoxysilane, triethoxysilane, 7-chloropropyltrimethoxysilane, 7-aminopropyltrimethoxysilane, 1,1,2-trimethylpropyltrimethoxysilane , 1,1,2,1-trimethylpropylisopropoxydimethoxysilane, 1,1,2-trimethylpropyl (tert-butoxy) dimethoxysilane, tetramethoxysilane , Tetraethoxysilane, tetrabutoxysilane, tetraisobutoxysilane, ethyl silicate, butyl silicate, trimethylphenoxysilane, methyltriallyloxysilane, vinyltrisiloxane (Θ —methoxyethoxy) silane, vinyltriacetoxysilane, dimethyltethoxydisilaxane, cyclopentyl (tert-butoxy) dimethoxysilane, tert-butyl ( Isobutoxy) dimethoxysilane, thexyl trimethoxysilane, thexyl isopropoxydimethoxysilane, thexyl (tert-butoxy) dimethoxy sand institute, thexyl methyl dimethoxy sand Institute, thexyl di (25) (25) 200413421 dimethoxysilane, thexyl isopropyldimethoxysilane, thexyl cyclopentyldimethoxysilane, thexyl tetradecyldimethoxysilane thexyl cyclohexyldimethoxysilane, cyclohexylisopropyldimethoxysilane, isobutylisopentyldimethoxysilane, di-n-isobutyldimethoxysilane, cyclopentylisobutyldi Methoxysilane, etc. These organosilicon compounds may be used individually or in combination of 2 or more types. In addition, as such an organic silicon compound, for example, a silicon compound having no Si—O—C bond and an organic compound having a 0—C bond may be reacted in advance, or when an α-olefin is polymerized, The compound obtained by the reaction. Specific examples include compounds obtained by reacting silicon tetrachloride with alcohols. As specific examples of the nitrogen-containing compound, 2,6-diisopropylpiperidine, 2 '6-diisopropyl-4-methyl vein, and N-methyl-2, 2, 6, 6-14 2,6-substituted piperidines of methylpiperidine, etc .; 2,5-diisoylazolysine and N-methyl-2,2,5,5-tetramethylazolysine, etc. 2,5—Substituted azolysine acids; Ν, Ν, Ν ′, Ν, —tetramethylmethylene diamine and methine such as Ν, Ν, Ν ′, Ν, tetraethylmethylene diamine, etc. Diamines; Substituted imidazolysines such as 1,3-diphenylimidazolysine and 1,3-diphenyl-2 · phenylimidazolysine. Specific examples of the phosphorus-containing compound include triethyl phosphate, tri-n-propyl phosphate, tri-isopropyl phosphate, tri-n-butyl phosphate, tri-isobutyl phosphate, diethyl-n-butyl phosphate, and diethylbenzene phosphate. Phosphites and the like. As specific examples of the oxygen-containing compound, 2,2,5,5-tetramethyltetrahydrofuran and 2,2,5, · 5-tetraethyltetrahydrofuran etc. are substituted by 2,5—30 · (26) (26) 200413421 Tetrahydrofurans; 1,1-dimethoxy-2,3,4,5-tetrachlorocyclopentane, 9,9-dimethoxyfluorene, and diphenyldimethoxymethane Oxymethane derivatives, etc. 2. · Manufacturing method of solid catalyst component [A] As the manufacturing method of solid catalyst component [A], as long as the titanium compound (i) containing a halogen and the magnesium compound containing an alkoxy group are made at a specific temperature, (Ii) The silicon compound (iii) and the electron donating compound (i V) containing a specific amount of halogen may be contacted as required, and there is no particular limitation on the order of contact. However, the compound (i) may be contacted with the compound (i i), (iii) ′ (i V) or the compounds (i i), (i V), and then contacted with (1 or more) these compounds. Again, this method is the best. When the compounds (i), (ii), and (iV) are reacted to produce the component [A], the halogen-containing titanium compound (i) is brought into contact with the alkoxy-containing magnesium compound (ii), It is preferable to contact the electron-donating compound (i V) and react. Furthermore, when the compounds (i), (ii), (iii), (iV) are reacted to produce the [A] component, the magnesium compound (ii) containing an alkoxy group and the silicon compound containing a halogen ( After contacting i 1 i), it is then preferably contacted with an electron donating compound (i V), and finally reacted with a halogen-containing titanium compound (i). When contacted in this order, the polymerization activity may be improved. -31-(27) (27) 200413421 These components can be contacted in the presence of an inactive solvent such as a hydrocarbon, or they can be contacted by diluting the components with an inactive solvent such as a hydrocarbon in advance. Examples of the inactive solvent include aliphatic hydrocarbons or alicyclic hydrocarbons such as octane, decane, and ethylcyclohexane; aromatic hydrocarbons such as toluene, ethylbenzene, and xylene; and chlorobenzene and tetrachloride. Halogenated hydrocarbons such as ethane and chlorofluorocarbons, or mixtures of these. Among them, aliphatic hydrocarbons and aromatic hydrocarbons are preferred, and aliphatic hydrocarbons are particularly preferred. Here, the halogen-containing titanium compound (i) is usually 0.5 to 100 mol, preferably 1 to 50 mol, relative to 1 mol of the alkoxy-containing magnesium compound (i i). If the molar ratio is out of the above range, the catalyst activity will be insufficient. In addition, the electron-donating compound (i V) is generally 0.01 to 10 mol, and preferably 0.05 to 1.0 mol relative to 1 mol of the alkoxy-containing magnesium compound (ii). . If this molar ratio deviates from the range described above, the catalyst activity or stereoregularity will be deteriorated. In addition, the amount of halogen-containing silicon compound (i i i) is about 0 to 1 mole relative to the alkoxy-containing magnesium compound (i i) at a molar ratio of halogen / alkoxy group. In addition, the contact reaction of the compounds (i) to (i V) described above is generally carried out at a temperature ranging from 90 to 150 ° C, preferably from 125 to 140 ° C, after the addition. When the contact temperature is outside the above range, the effect of improving catalyst activity or three-dimensional regularity cannot be fully exerted. The contacting is usually performed for 1 minute to 24 hours, and preferably for 10 minutes to 6 hours. The pressure at this time varies depending on the type and contact temperature of the solvent used. -32- (28) (28) 200413421 The pressure range is usually 0 ~ 5Mpa, preferably 0 ~ IMpa. In addition, in the contact operation, it is preferable to perform stirring in terms of contact uniformity and contact efficiency. The same applies to the contact with the halogen-containing titanium compound (i) after the second time. In the contact operation of the halogen-containing titanium compound (i), when a solvent is used, the solvent used is usually 5,000 ml or less, in the range of 10 to 1,000 ml, relative to 1 mole of the halogen-containing titanium compound (i). Better. If the ratio is out of the above range, the uniformity or effectiveness of the contact will deteriorate. In addition, after the first contact reaction of the halogen-containing titanium compound (i), it is usually suitable to wash it with an inactive solvent at 90 to 150 ° C, especially 120 to 140 ° C. If the cleaning temperature is outside the above range, the effect of improving catalyst activity or three-dimensional regularity cannot be fully exerted. Examples of the inactive solvent include aliphatic hydrocarbons such as octane and decane, alicyclic hydrocarbons such as methylcyclohexane and ethylcyclohexane, and aromatic hydrocarbons such as toluene, xylene, and ethylbenzene. And halogenated hydrocarbons such as chlorobenzene, tetrachloroethane, and chlorofluorocarbons, or mixtures of these. Among them, aliphatic hydrocarbons and aromatic hydrocarbons are suitable for use. In addition, there is no particular limitation on the cleaning temperature after the second and subsequent contact reactions with the halogen-containing titanium compound (i), but in terms of stereoregularity, it is 90 to 150 ° C, especially 120 To 140. (: It is advisable to wash the inactive solvent. Although the washing method is not particularly limited, it is advisable to use decantation and filtration methods. There is no particular limitation on the amount of inactive solvent, washing time and washing times. Restricted 'with respect to 1 mole of magnesium compounds, usually the solvent used is 100 ~ 100,000ml, preferably 1000 ~ 50,000ml, contact system (29) 200413421 usually 1 minute ~ 24 hours, especially 10 minutes ~ 6 hours If the ratio exceeds the above range, the washing will be incomplete. Although the pressure at this time varies depending on the type of solvent and washing temperature, the range is usually 0 ~ 5Mpa and 0 ~ IMpaG. In addition, in the cleaning operation, it is advisable to stir in terms of uniformity and contact efficiency of the cleaning. In addition, the solid catalyst component obtained can be stored in a dry state or an inactive solvent such as a hydrocarbon. 3. Method for producing olefin polymer There is no particular limitation on the amount of each component of the catalyst for polymerizing olefins of the present invention. The solid catalyst component [A] is converted into a titanium atom and the reaction volume per i L Which usually makes The amount ranges from 0.00005 to 1 ml. The aluminum / titanium atomic ratio of the organoaluminum compound [B] is generally used in the range of 1 to 1,000, preferably 10 to 500. If the atomic ratio exceeds the above range, the catalyst activity is In addition, when the electron-donating compound [C] is used, [C] / [B] (molar ratio) is usually used in an amount ranging from 0.001 to 5.0, preferably 0.01 to 2.0, and 0.05 to 1.0. If the molar ratio is out of the above range, sufficient catalyst activity and stereoregularity will not be obtained. However, the amount of the electron-donating compound [C] can be further reduced during preliminary polymerization. The olefin used in the invention is preferably an α-olefin represented by the general formula (VI): (VI) R10-CH = CH2 (30) (30) 200413421 In the general formula (VI), R1G is a hydrogen atom or The hydrocarbon group may be a saturated unsaturated group, or a linear one or a branched or cyclic one. Specific examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 1-heptane. Ene, 1-octene, 1-decene, 3-methyl-1, 1-pentene, 4-methyl-1, 1-pentene, vinyl ring Alkane, butadiene, isoprene, and stomach, etc. These olefins can be used alone or in combination of two or more. Among the above olefins, ethylene and propylene are particularly preferred. 之 In the present invention In the polymerization of olefins, the polymerization activity, in terms of the regularity of the olefin polymer 2 and the powder type, can be carried out after the preliminary polymerization of the olefin as required, and then the present polymerization. At this time, the solid catalyst component [Α] 'Organic aluminum compound [B] and the electron-donating compound [C]' in the presence of a catalyst mixed at a certain ratio, respectively, the olefin 'is usually at a temperature ranging from 1 to 100 ° C In the process, preliminary polymerization is performed at a pressure of normal pressure to about 5 MpaG, and then olefin-based polymerization is performed in the presence of a catalyst and a preliminary polymerization product. φ There is no particular limitation on the form of polymerization in this polymerization. Any solution polymerization, slurry polymerization, gas phase polymerization, and bulk polymerization are suitable for use. In addition, any batch polymerization or continuous polymerization is suitable for use, under different conditions. Two-stage polymerization or multi-stage polymerization is also suitable. In addition, regarding the reaction conditions, the polymerization pressure is not particularly limited. "In terms of polymerization activity," it is usually atmospheric pressure to 8 MpaG * preferably 0.2 to 5 MpaG, and the polymerization temperature is usually 0 to 200 ° C and 30 to 100 °. C is appropriately selected within a suitable range. Although the polymerization time varies depending on the type of the raw olefin -35- (31) (31) 200413421 or the polymerization temperature, it is usually 5 minutes to 20 hours, and preferably 10 minutes to 10 hours. The molecular weight of the hydrocarbon-burning polymer can be adjusted by adding a chain transfer agent, particularly hydrogen. In addition, inert gas such as nitrogen may be present. In addition, as the catalyst component in the present invention, the solid catalyst component [A], the organoaluminum compound [B], and the electron donating compound [c] are mixed and contacted at a certain ratio, and the olefin can be immediately introduced for polymerization Alternatively, after contacting, it is matured in about 0.2 to 3 hours, and then the olefin is introduced to perform polymerization. The catalyst component can be supplied after being suspended by an inactive solvent or an olefin. In the present invention, the post-polymerization treatment can be carried out in a conventional manner. That is, in the gas-phase polymerization method, after the polymerization, the polymer powder derived from the polymerizer can pass nitrogen gas flow to remove olefins and the like. In addition, it can also be extruded as required. In order to completely deactivate the catalyst, a small amount of water, alcohols, etc. may be added at this time. In the bulk polymerization method, after polymerization, the polymer powder derived from the polymerizer is completely separated from the monomers, and then tabletized. [Propylene-ethylene copolymerization] The catalyst for propylene-ethylene copolymerization of the present invention and a method for producing a propylene-ethylene copolymer using the catalyst will be described. The propylene-ethylene copolymerization of the present invention includes random copolymerization and block copolymerization. Furthermore, the propylene-ethylene random copolymer and propylene-ethylene block copolymer obtained by these production methods will be described. -36- (32) (32) 200413421 1. Catalyst component [A] Solid catalyst component The solid catalyst component contains titanium, magnesium, and an electron donor, that is, the following (a) magnesium compounds, ( b) a titanium compound compound, (c) an electron donor, and (d) a silicon compound corresponding to the need. Magnesium compound As the magnesium compound, a compound represented by the following general formula (W) can be used.

MgRMR12…(W ) 上述一般式(W)中,R11及R12係表示烴基,OR13基 (R13爲烴基)或鹵素原子。更詳細地說,作爲烴基者, 可舉例如碳原子數爲1〜12個之烷基、環烷基、芳基及芳 烷基等,作爲OR13基者,可舉例如R13爲碳原子數1〜12 個之烷基、環烷基、芳基及芳烷基等,作爲鹵素原子者, 可舉例如氯、溴、碘及氟等。又,R11及R12可爲相同或 相異。 上述一般式(W)所表示之鎂化合物之具體例者,可 舉出如二甲基鎂、二乙基鎂、二異丙基鎂、二丁基鎂、二 己基鎂、二辛基鎂、乙基丁基鎂、二苯氧基鎂、二環己氧 基鎂之烷基鎂、芳基鎂;二甲氧基鎂、二乙氧基鎂、二丙 氧基鎂、二丁氧基鎂、二己氧基鎂、二辛氧基鎂、二苯氧 基鎂及二環己氧基鎂之二烷氧基鎂、二烯丙氧基鎂;乙基 -37- (33) (33)200413421 氯化鎂、丁基氯化鎂、己基氯化鎂、異丙基氯化鎂、異丁 基氯化鎂、叔丁基氯化鎂、苯基氯化鎂、苄基氯化鎂、乙 基溴化鎂、丁基溴化鎂、苯基溴化鎂、丁基碘化鎂等之烷 基鹵化鎂、芳基鹵化鎂;丁氧基氯化鎂、環己氧基氯化 鎂、苯氧基氯化鎂、乙氧基溴化鎂、丁氧基溴化鎂及乙氧 基碘化鎂之烷氧基氯化鎂、芳氧基氯化鎂等;氯化鎂、溴 化鎂、碘化鎂等之鹵化鎂等。 另外,這些鎂化合物可單獨使用,亦可載持於二氧化 矽、氧化鋁及聚苯乙烯等之支持體使用,更者組合2種以 上使用亦可。進一步地亦可與鹵素等之混合物使用。 在鎂化合物中,最佳者爲氯化鎂,或在上述一般式 (W)中,R11以及/或R12係OR13基含烷氧基之鎂化合 物。 如此般的含烷氧基之鎂化合物,就觸媒的聚合活性等 方面而言,以金屬鎂、醇類及相對於1莫耳之金屬鎂之含 有O.OOOlg原子以上的鹵素原子之鹵素及/含有鹵素之化 合物反應所得之含有烷氧基之鎂化合物爲佳。 在醇的種類、鹵素種類、含鹵素化合物的種類方面, 如同烯烴聚合用觸媒之含烷氧基鎂化合物(i i )所記載 一般。 (b )鈦化合物 鈦化合物可使用一般式(VDI )所表示之化合物。 -38- (34) (34)200413421MgRMR12 ... (W) In the general formula (W), R11 and R12 represent a hydrocarbon group, an OR13 group (R13 is a hydrocarbon group) or a halogen atom. More specifically, examples of the hydrocarbon group include alkyl, cycloalkyl, aryl, and aralkyl groups having 1 to 12 carbon atoms. Examples of the OR13 group include R13 having 1 carbon atom. Examples of the alkyl group, the cycloalkyl group, the aryl group, and the aralkyl group of ~ 12, as the halogen atom include chlorine, bromine, iodine, and fluorine. R11 and R12 may be the same or different. Specific examples of the magnesium compound represented by the general formula (W) include dimethyl magnesium, diethyl magnesium, diisopropyl magnesium, dibutyl magnesium, dihexyl magnesium, dioctyl magnesium, Ethylbutylmagnesium, diphenoxymagnesium, dicyclohexylmagnesium alkylmagnesium, arylmagnesium; dimethoxymagnesium, diethoxymagnesium, dipropoxymagnesium, dibutoxymagnesium , Magnesium dihexyl oxide, magnesium dioctyl oxide, magnesium diphenoxy and magnesium dialkoxy, magnesium diallyloxy; ethyl-37- (33) (33) 200413421 Magnesium chloride, butyl magnesium chloride, hexyl magnesium chloride, isopropyl magnesium chloride, isobutyl magnesium chloride, tert-butyl magnesium chloride, phenyl magnesium chloride, benzyl magnesium chloride, ethyl magnesium bromide, butyl magnesium bromide, phenyl magnesium bromide Alkyl magnesium halides, aryl magnesium halides, butyl magnesium iodide, etc .; butoxy magnesium chloride, cyclohexyloxy magnesium chloride, phenoxy magnesium chloride, ethoxy magnesium bromide, butoxy magnesium bromide, and ethoxylate Alkoxymagnesium chloride, aryloxymagnesium chloride, etc. of magnesium iodide; magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, etc. These magnesium compounds may be used singly, or may be used by being supported on a support such as silica, alumina, polystyrene, or a combination of two or more. Furthermore, it can also be used in mixture with halogen or the like. Among the magnesium compounds, magnesium chloride is the most preferable, or in the general formula (W), R11 and / or R12 is an OR13 group alkoxy group-containing magnesium compound. Such an alkoxy-containing magnesium compound, in terms of the polymerization activity of the catalyst, includes metal magnesium, alcohols, and halogens having a halogen atom of at least 0.001 lg with respect to 1 mol of metal magnesium and The alkoxy-containing magnesium compound obtained by the reaction of the halogen-containing compound is preferred. The type of alcohol, the type of halogen, and the type of halogen-containing compound are the same as those described for the alkoxy-containing magnesium compound (i i) as a catalyst for olefin polymerization. (b) Titanium compound As the titanium compound, a compound represented by general formula (VDI) can be used. -38- (34) (34) 200413421

TiXs ( OR14) 4_ s... ( yin ) 上述一般式(μ)中’ x係表示鹵素原子,這些中 以氯原子及溴原子爲宜,以氯原子尤佳。R14爲烴基,可 爲飽和基或不飽和基,亦可爲直鏈狀者或具有支鏈者或環 狀者,更者,雖具有硫、氮、氧、矽及磷等異元素者亦 可,然而其中碳原子數爲1〜10個之烴基,以烷基、烯 基、環嫌基、芳基及芳院基等爲宜,更進一步地以直鏈或 支鏈之烷基尤佳。-OR14爲複數存在時,其彼此間相同 或相異均可。R14之具體例如,甲基、乙基、正丙基、異 丙基、正丁基、仲丁基、異丁基、戊基、己基、庚基、辛 基、癸基、烯丙基、丁烯基、環戊基、環己基、環己烯 基、苯基、甲苯基、苯甲基及苯乙基等。s係表示〇〜4 之整數。 上述一般式()所表示之鈦化合物的具體例,可舉 出如四甲氧基鈦、四乙氧基鈦、四正丙氧基鈦、四異丙氧 基鈦、四正丁氧基鈦、四異丁氧基鈦、四環己氧基鈦、四 苯氧基鈦等之四烷氧基鈦,以及烯烴聚合用觸媒之含鹵素 鈦化合物(i )所記載的具體例等。這些之中,含有高鹵 素之鈦化合物,尤其以四氯化鈦爲宜。這些鈦化合物,可 分別單獨使用,亦可組合2種以上使用。 (Ο電子供予體 作爲電子供予體者,可使用一般式(Π )所表示之丙 二酸二酯。 -39 - (35) (35) 200413421 R4 r2—o-c—c—c-o-R3 ...... (n)TiXs (OR14) 4_ s ... (yin) In the above general formula (μ), the 'x' represents a halogen atom. Among these, a chlorine atom and a bromine atom are preferred, and a chlorine atom is particularly preferred. R14 is a hydrocarbon group, which may be a saturated group or an unsaturated group, and may be a linear one or a branched one or a cyclic one. Furthermore, it may have a different element such as sulfur, nitrogen, oxygen, silicon, and phosphorus. However, a hydrocarbon group having 1 to 10 carbon atoms is preferably an alkyl group, an alkenyl group, a cyclophosphyl group, an aryl group, an aromatic group, or the like, and a linear or branched alkyl group is more preferable. When -OR14 is plural, it may be the same or different from each other. Specific examples of R14 include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, decyl, allyl, butyl Alkenyl, cyclopentyl, cyclohexyl, cyclohexenyl, phenyl, tolyl, benzyl, and phenethyl. s is an integer of 0 to 4. Specific examples of the titanium compound represented by the general formula () include tetramethoxy titanium, tetraethoxy titanium, tetra-n-propoxy titanium, tetra-isopropoxy titanium, and tetra-n-butoxy titanium. Concrete examples described in tetraalkoxy titanium such as tetraisobutoxy titanium, tetracyclohexyl titanium, tetraphenoxy titanium, and the like, and halogen-containing titanium compounds (i) for olefin polymerization catalysts. Among these, high-halogen-containing titanium compounds are particularly preferred, titanium tetrachloride. These titanium compounds may be used singly or in combination of two or more kinds. (0 Electron donor As the electron donor, a malonic acid diester represented by the general formula (Π) can be used. -39-(35) (35) 200413421 R4 r2-oc-c-co-R3. ..... (n)

II H 0 r5 〇 [―般式(Π )中,R4爲碳數1〜20直鏈狀、支鏈狀或 環狀的烷基,R5爲Η或碳數1〜2的烷基,R4及R5亦可爲 相互結合而形成環,R2及R3可相同亦可相異而爲碳數 1〜2 0直鏈狀或支鏈狀的烷基。] r4係以碳數1〜2 0直鏈狀、支鏈狀或環狀的烷基爲 佳,碳數1〜8者更佳,最佳者爲正丁基。 R5係以Η爲佳。 又’ R4及R5係以形成環者爲佳。 R2及R3係以碳數2〜8者爲佳,最佳者爲乙基。 作爲上記化合物的具體例者,可舉出如環戊烷- 1,1 一二羧酸、環丁烷一 1,1 一二羧酸、環丁烷一 1,1 一二羧酸 二丁酯、環丙烷—1,1 一二羧酸、二甲基丙二酸、二乙基 丙二酸'甲基異丙基丙二酸、甲基異丁基丙二酸、甲基丙 二酸、乙基丙二酸、正丙基丙二酸、異丙基丙二酸、正丁 基丙二酸、異丁基丙二酸、環丁基丙二酸、環戊基丙二 酸、環己基丙二酸等之二甲基酯、二乙基酯、二正丙基 酯、二異丙基酯、二正丁基酯、二異丁基酯、二叔丁基 酯、二正戊基酯、二正庚基酯、二正辛基酯、二新戊基酯 等。又,這些化合物,可分別單獨使用,或亦可組合2種 以上使用。 -40- (36) (36)200413421 上記得丙二酸酯類,可藉由公知的方法,例如與「實 驗化學講座第4版、22卷、59頁、九善」所記載的方法 相同之方法’亦即丙二酸酯合成,或者是與「新實驗化學 講座、14卷—Π、931頁及1003頁、九善」所記載的方 法相同之方法’亦即酯交換反應來製造。 (d )砂化合物 作爲矽化合物者,可使用下述一般式(κ)所表示 之矽化合物。II H 0 r5 〇 [—In the general formula (Π), R4 is a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, R5 is fluorene or an alkyl group having 1 to 2 carbon atoms, and R4 and R5 may be bonded to each other to form a ring, and R2 and R3 may be the same or different, and may be a linear or branched alkyl group having 1 to 20 carbon atoms. ] r4 is preferably a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably n-butyl. R5 is better. It is preferable that R 'and R5 are those forming a ring. R2 and R3 are preferably those having 2 to 8 carbon atoms, and the most preferable are ethyl. Specific examples of the above compounds include cyclopentane-1,1-dicarboxylic acid, cyclobutane-1,1-dicarboxylic acid, and cyclobutane-1,1-dicarboxylic acid dibutyl ester. , Cyclopropane-1,1 dicarboxylic acid, dimethylmalonic acid, diethylmalonic acid'methylisopropylmalonic acid, methylisobutylmalonic acid, methylmalonic acid, Ethylmalonate, n-propylmalonate, isopropylmalonate, n-butylmalonate, isobutylmalonate, cyclobutylmalonate, cyclopentylmalonate, cyclohexyl Dimethyl ester, diethyl ester, di-n-propyl ester, diisopropyl ester, di-n-butyl ester, diisobutyl ester, di-t-butyl ester, di-n-pentyl ester, etc. , Di-n-heptyl ester, di-n-octyl ester, di-n-pentyl ester, and the like. These compounds may be used singly or in combination of two or more kinds. -40- (36) (36) 200413421 remembers the malonates, which can be obtained by a known method, for example, the same method as described in "Experimental Chemistry Lecture 4th edition, 22 volumes, p. 59, nine good" The method 'is a method of synthesizing malonate, or it is the same as the method described in "New Experimental Chemistry Lectures, Vol. 14-II, pages 931 and 1003, Jiushan", which is a transesterification reaction. (d) Sand compound As the silicon compound, a silicon compound represented by the following general formula (κ) can be used.

Si ( OR15 ) tX4- ( K ) 上述一般式(K)中,X係表示鹵素原子,其中,以 氯原子及溴原子爲宜,以氯原子尤佳。R15爲烴基,可爲 飽和基或不飽和基,亦可爲直鏈狀者或具有支鏈者或環狀 者’另外,雖含有硫、氮、氧、矽及磷等異元素者亦可, 然而其中碳原子數爲1至1 0個之烴基,以烷基、烯基、 環烯基、芳基及芳烷基等爲宜。R15爲複數存在時,其彼 此間相同或相異均可。R15之具體例如,甲基、乙基、正 丙基、異丙基、正丁基、仲丁基、異丁基、戊基、己基、 庚基、辛基、癸基、烯丙基、丁烯基、環戊基、環己基、 環己烯基、苯基、甲苯基、苯甲基及苯乙基等。t係表示 0〜4之整數。 上述一般式(IX )所表示之鈦化合物的具體例如,四 氯化矽、甲氧基三氯矽烷、二甲氧基二氯矽烷、三甲氧基 -41 · (37) (37)200413421 氯矽烷、乙氧基三氯矽烷、二乙氧基二氯矽烷、三乙氧基 氯矽烷、丙氧基三氯矽烷、二丙氧基二氯矽烷及三丙氧基 氯矽烷等。其中,以四氯化矽爲宜。這些含有鹵素之矽化 合物,可分別單獨使用,亦可組合2種以上使用。 相應於所期望而使用之(d)成分的矽化合物,其矽 化合物/鎂化合物的莫耳比,通常係使用0.01以上,最好 爲〇.1〇以上的比例。若此莫耳比低於0.01,則可能產生 觸媒活性或立體規則性的提升效果無法充分發揮,或者是 所生成聚合物中的微粉量變多之問題。 在固體觸媒成分[A]的製造上,除加入化合物(c) 外,亦可使用其以外的電子供予體。作爲如此的電子供予 體者,可舉出後述的電子供予性化合物(C)或醇類、有 機酸。 [B] 有機鋁化合物 同於烯烴聚合用觸媒所使用的有機鋁化合物。 [C] 電子供予性化合物 同於烯烴聚合用觸媒所使用的電子供予性化合物 2.固體觸媒成份之調製 固體觸媒成份[A]的調製,使上述之(a)鈦化合物、 (b )鎂化合物、(c )電子供予體以及相應需要的(d ) 矽化合物接觸反應。 -42· (38) (38)200413421 在公知的方法上,可舉出特開昭5 3 — 43 094、特開昭 55 — 135102、特開昭 55 — 135103、特開昭 56 — 18606 所 記載的方法等。例如,可藉由(1 )在電子供予體以及相 應所期望而使用的粉碎助劑等的存在下,粉碎鎂化合物或 者是鎂化合物與電子供予體的錯化合物,再使其與鈦化合 物反應之方法;(2)在電子供予體的存在下,使不具還 原能的鎂化合物之液狀物與液狀鈦化合物反應,再析出固 體狀的鈦複合物之方法;(3 )使鈦化合物與前記(1 )或 (2 )所得者反應之方法;(4 )更進一步地,使電子供予 體及鈦化合物與前記(1 )或(2 )所得者反應之方法; (5 )在電子供予體、鈦化合物以及相應所期望而使用的 粉碎助劑等的存在下,粉碎鎂化合物或者是鎂化合物與電 子供予體的錯化合物,然後再以鹵素或鹵素化合物處理之 方法等來調製。 更者,亦可藉由這些方法以外的特開昭 56 -166205、特開昭57— 63309、特開昭57 — 190004、特開昭 57 — 300407、特開昭58— 47003所記載的方法等來調製前 記的[A]固體觸媒成份。 於此,上記鈦化合物(b )的使用量,係相對於1莫 耳之上記鎂化合物(a)之鎂,通常使用0.5〜1〇〇莫耳, 以1〜50莫耳的範圍爲宜。另外,上記電子供予體(c) 的使用量係相對於1莫耳之上記鎂化合物(c )之鎂,通 常使用0.01〜10莫耳,以0.05〜1.0莫耳的範圍爲宜。更 者,亦可添加作爲鹵化物的四氯化矽。 -43- (39) 200413421 又,進行2次以上鈦化合物的接觸,亦可 充分地發揮做爲觸媒載體之任務。以上的接觸 觸媒成分亦可在碳氫化合物等的不活性溶劑下 活性溶劑可爲上記者。又,此固體生成物亦可 或碳氫化合物等的不活性溶劑中保存。 更者,上記的化合物(a)〜(d)的接觸 加入後,在1 2 0〜1 5 0 °C,最好以1 2 5〜1 4 0 °C 下進行。該接觸溫度於上述範圍外時,將不能 升觸媒活性或立體規則性的效果。另外,接觸 分鐘〜24小時,以1 〇分鐘〜6小時爲宜進行 力,雖依使用溶媒時之其種類及接觸溫度等其 變,通常進行範圍爲0〜5Mpa ( Gauge ) ,J (Gauge )爲宜。另外,接觸操作中,就接觸 接觸效率而言,以進行攪拌爲宜。 有關此接觸的順序並無特別地限制。例如 可於烴等之不活性溶媒之存在下接觸,亦可預 不活性溶媒稀釋各成份而接觸。作爲該不活性 例如正戊烷、異戊烷、正己烷、正庚烷、辛烷 脂肪族烴;苯、甲苯、乙苯及二甲苯等之芳香 之混合物。 又,進行2次以上鈦化合物的接觸,亦可 充分地發揮做爲觸媒載體之任務。在接觸操作 媒時,相對於1莫耳之含有鹵素之鈦化合物, 溶媒爲5,000ml以下,以1〇至i,〇〇〇mi爲宜 使鎂化合物 所得之固體 洗淨。此不 在乾燥狀態 反應係全部 之溫度範圍 充份發揮提 係通常以1 。此時之壓 範圍有所改 乂 0 〜1 Mpa 之均勻性及 ,各個成份 先以烴等之 溶媒,可舉 、癸烷等之 族烴或這些 使鎂化合物 中,使用溶 通常所使用 。該比率若 (40) 200413421 超出上述範圍時,接觸之均勻性或接觸效將惡化。 以上的接觸所得的固體觸媒成分,係以〇至1 5 0 °c 尤其以1 2 0至1 4 0 °C之不活性溶媒洗淨爲宜。此洗淨溫 若超出上述範圍外,將不能充份發揮提升觸媒活性或立 規則性的效果。作爲該不活性溶媒,可舉例如辛烷及癸 等之脂肪族烴、甲基環己烷及乙基環己烷等之脂環式烴 甲苯、二甲苯等之芳香族烴、以及四氯乙烷及氯氟碳化 等之鹵素化烴或這些之混合物。其中,使用時以脂肪族 爲宜。 有關洗淨方法與壓力方面,與烯烴聚合用觸媒相同 3.丙烯一乙烯共聚物之製造方法 本發明的丙烯一乙烯無規共聚物之製造方法,係於 記的觸媒存在下使乙烯與丙烯共聚合之方法。 本發明的丙烯-乙烯嵌段共聚物的製造方法,係包 使丙烯聚合來形成聚丙烯成分之製程,以及使乙烯與丙 聚合來形成乙烯/丙烯共聚物成分之製程者,在聚丙烯 分形成製程與乙烯/丙烯共聚物成分形成製程裡至少一 製程中,使用前記觸媒之方法。最好在兩製程中皆使用 記的觸媒。 對於觸媒成份的使用量,並無特別的限制,固體觸 成份[A],換算爲鈦原子,每1L之反應容積,通常使用 範圍爲 0.00005至lml,有機鋁化合物[B]之鋁/鈦原 比,通常使用量範圍爲1〜1,000,以10〜500爲宜。該 度 體 院 物 烴 前 含 烯 成 種 V/· 刖 媒 量 子 原 (41) (41)200413421 子比率若超出上述範圍時,觸媒活性將不足。另外’有機 矽化合物等的電子供予性化合物[C],其電子供予性化合 物[C]/有機鋁化合物[B]的莫耳比,通常所使用量範圍爲 0.001至5.0,尤以0.01〜1.0爲佳。該莫耳比若超出上述 範圍時,將不能得到充份的觸媒活性。 更者,聚合時的觸媒,亦可使用預先在一烯烴中進 行預備聚合者。 α -烯烴係以一般式(VI)所表示之α -烯烴爲宜。 R10- CH= CH2 …(VI ) 上述一般式(VI)中,R1G爲氫原子或烴基,可爲飽 和基或不飽和基,亦可爲直鏈狀者或具有支鏈者或環狀 者。 具體例如,乙烯、丙烯、1 一丁烯、1一戊烯、1 一己 烯、1 一庚烯、1 一辛烯、1 一癸烯、3_甲基一 1—戊烯、4 一甲基- 1-戊烯、乙烯基環己烷等。這些烯烴係可分別 單獨使用,亦可組合2種以上使用。 上述之烯烴中係以乙烯及丙烯尤佳。又,亦可使用丁 二烯等之二烯類、其他各種的烯烴類。本發明中之丙烯-乙烯共聚合中,因應需要,可先進行烯烴之預備聚合後, 再進行本聚合。此時,將固體觸媒成份[A]、有機鋁化合 物[B]及電子供予性化合物[C],分別以一定比率混合所成 之觸媒的存在下,將烯烴,通常於1至l〇(TC範圍之溫度 (42) (42)200413421 中’以常壓至5Mpa ( Gauge)左右之壓力使之預備聚合即 可(聚合時間爲1分鐘〜1 〇小時,以1 〇分鐘〜5小時爲 佳)。 相對於固體觸媒成分,預備聚合量通常以〇」〜1000 重量% ,較佳1.0〜500重量% ,最佳1.0〜200重量%聚 合即可。若預備聚合量超過上記範圍,則無法得到充分的 觸媒活性,反之若過低則微粉將變多。 其次’在[B]、[C]成分與預備聚合生成物的存在下, 進行丙烯-乙烯共聚合(無規或嵌段共聚合)。 在本發明中,除乙烯與丙烯以外,相應於需要,亦可 使用少量的α —烯烴。作爲-烯烴者,可舉出前記的^ 一烯烴。更者,亦可使用丁二烯等之二烯類、其他各種的 烯烴類。 本發明的製造方法中之聚合形式並無特別的限制,任 何溶液聚合、淤漿聚合、氣相聚合及本體聚合等均適合使 用,更者,作爲聚合方式,任一種批次聚合或連續聚合均 可。又,相異條件下之2階段聚合或多階段聚合亦適合使 用。 在製造丙烯-乙烯嵌段共聚物時,無論是批次聚合或 連續聚合的任何一種,一般而言首先進行丙烯單獨聚合部 分,然後再進行共聚合部分。例如以連續式製造時,在前 段聚合槽中將分子量調製劑的氫氣、觸媒供給於原料丙烁 氣體中,於聚合時間內控制聚合量來製造丙烯單獨聚合部 分,然後將其移動至後段的聚合槽後,更進一步地在原料 -47 - (43) (43)200413421 丙烯氣體中添加乙烯氣體、氫氣以及相應於需要之觸媒來 製造共聚合部分,即可獲得嵌段共聚物。 在製造本發明的共聚合部分時,雖可單獨使用乙嫌’ ^ 然而相應於需要,亦可使用前記一般式(W)所表示之❹ 一烯烴。更者,相應於需要,亦可使用丁二嫌等之二烯 類、其他各種的烯烴類。 在本發明的丙烯-乙烯共聚物的製造方法中之聚合條 件,與上述的烯烴聚合相同。 φ 分子量係可以鏈轉移劑之添加,尤其以氫的添加爲 宜,進行調節。另外,亦可存在氮氣等之不活性氣體。 又,乙烯分壓,使共聚體中之乙烯單位含有量成爲所期望 之値般地,藉由乙烯供給量來調製。 又,本發明中之觸媒成份,將[A]、[B]及[C],以一 定之比率混合接觸後,可立即導入乙烯與丙烯來進行聚 合,亦可接觸後,經〇 · 2至3小時左右熟成後,再導入乙 嫌與丙烯來進行聚合。另外,該觸媒成份係可以不活性溶 鲁 媒或烯烴等懸濁後供給。 聚合後之後處理,與上述的烯烴聚合相同。 4·丙烯一乙烯無規共聚物 本發明的丙烯-乙烯無規共聚物,係藉由前記的製 . 造方法所獲得之聚合體。由13C - NMR所求得的乙烯含有 量’通常爲0.1〜10.0重量% ,以〇·5〜7·〇重量%爲佳。 若高於此範圍,則將增加昇溫分別法的〇 可溶部量,進 -48- (44) (44)200413421 而使成塊性惡化。若過低則將顯示出其熱封閉性無法下降 之狀態。 又,藉由凝膠滲透色譜法所測得的分子量分佈 (Mw/Mn ),通常爲3.5〜5_0,以3.5〜4.5爲佳,若廣於 此範圍,則將使成塊性惡化,若過窄則將使成形性惡化。 更者,通常以JIS— K7210爲基準,於23 0 °C、2.16kg 下所測得之熔體流動速度(MFR)爲0.01〜l〇〇〇g/l〇分, 以 0.1〜500g/10分爲佳,最佳者爲!〜;[〇〇g/1〇分。若 MFR大於此範圍,則將使衝擊性降低,若過小則將難以 成形。 聚合活性係以350kg/g - Ti以上爲佳,較佳者爲 5 00kg/g— Ti以上,最佳者爲700kg/g— Ti以上。 5·丙烯-乙烯嵌段共聚物 本發明的丙烯一乙烯嵌段共聚物,以JIS— K7210爲 基準,於 2 3 0 °C 、2.16kg下所測得之熔體流動速度 (MFR)爲 〇·1 〜5 00g/10 分,以 〇.1 〜l〇〇g/l〇 分爲佳, 最佳者爲10〜20g/10分。 若MFR大於此範圍,則將使衝擊性降低,若過小則 將難以成形。 又’藉由凝膠滲透色譜法所測得的分子量分佈 (Mw/Mn),通常爲3.5〜5.0,以3.5〜4.5爲佳。 若Mw/Mn過小則流動性降低,將使成形性惡化。 又’若過大則低分子量成分增加,而顯示出透明性下降之 -49- (45) (45)200413421 傾向。 本發明的丙嫌〜乙烯嵌段共聚物,其在25 t之二甲 本可溶成份(亦稱爲非結晶部分)量係以5〜5 0重量%爲 佳。若大於此範圍’則剛性降低,若過小則將顯示出衝擊 性下降之傾向。又,非結晶部分的乙烯含有量係以1 5〜 5 〇莫耳%爲佳。若超過此範圍,則橡膠的分散性變差, 此時,將使剛性、衝擊性等之物性隨之下降。 本發明的丙;-乙烯嵌段共聚物,其彎曲彈性率係以 800MPa ( Gauge ) 以上爲佳,更佳者爲 i〇〇〇MPa (Gauge)以上。 常溫艾佐德衝擊強度,係以7 kJ/m2以上爲佳。 低溫艾佐德衝擊強度,係以4 kJ/m2以上爲佳,更佳 者爲6 kJ/m2以上。 其次,以實施例具體地表示本發明,但本發明不以下 述之實施例爲限。 [烯烴聚合的實施例] 物性的評價方法如下所述。 (1 )觸媒活性:將製造所得的固體觸媒成分充分乾 燥後,精準地將其秤重,再使用3N的硫酸充分脫灰。其 後,濾過不溶物,再於濾液中添加作爲消色劑之磷酸,然 後添加3 %過氧化氫水使溶液發色。使用FT - IR測定此 發色溶液於42 Onm的吸光度來求得Ti的濃度,即可算出 固體觸媒成分中的Ti載體量。然後算出以此Ti載體量爲 -50 · (46) 200413421 基礎之lg鈦的觸媒活性。 (2) [7?]:使用(股份公司)離合 型自動黏度計,於萘滿溶劑中,在1 3 5 °C · (3 ) [mmmm]:溶解所得之嫌烴聚 (容量比)之1,2, 4一三氯苯及重苯之 I3C — NMR (日本電子(株)製、商品名 於130 °C下,依據質子完全去偶合法,使 信號而定量之。 另外,所謂[mmmm]係由 A, Macromolecules 誌、第 6 卷、第 925 頁( 係指由13C — NMR光譜所求出之聚丙烯分 單位中之等規分率。 另外,13C - NMR 光譜之高峰 A · Z a m b e 11 i 等於 M a c r 〇 m ο 1 e c u 1 e s 誌、第 (1 97 5 )所提出者。 (4 )含烷氧基之鎂化合物(i i ) 含烷氧基之鎂化合物(i i )懸浮於碳氫 由光透過法來測定平均粒徑。將所測定之 表示於對數正規確率紙上,求出以50% 粒子徑。 (5 )聚烯烴粉末之粒子形態(平均 微分量):將使用餘子所測定之粒徑分佈 數正規確率紙上,求出以5 0 %粒子徑作 另外,以2,830//m以上之粉末做爲粗分 社的 VMR — 053 F進行測定。 合物於 9 0 : 1 0 混合溶液,使用 :L A — 5 0 0 ), 用所測定甲基之 Zambelli 等於 1 973 )所提出, 子鏈中之五合體 決定法係遵照 8卷、第68 7頁 之平均粒徑:將 化合物中,再藉 粒徑分佈以圖面 粒子徑作爲平均 粒徑、粗分量、 以圖面表示於對 爲平均粒子徑。 ,以 2 5 0 // m 以 (47) (47)200413421 下之粉末做爲微分來求出這些的量。 【實施方式】 實施例1 (1) 含有烷氧基之鎂化合物之製造 以氮氣充分地置換內容積約6L之附有攪拌機的玻璃 製反應器後,投入約243 0g之乙醇、160g ( 6.6莫耳)之 金屬鎂及15g(0.12g原子)之碑,一邊攪拌一邊於環流 條件及加熱下反應至系統內不再發生氫爲止’即可獲得二 乙氧基鎂。 (2) 固體觸媒成份之製造 將內容積爲0.5L之附有攪拌器之三口燒瓶,以氮氣 取代後,加入80ml之脫水處理過之辛烷、16g之(1 )所 調製之二乙氧基鎂,然後加熱至40°C,再滴入77ml之四 氯化鈦後,昇溫至90 °C,再加入2.8ml之正丁基丙二酸二 乙酯。於內溫爲1 2 5 °C下,攪拌此溶液2小時,進行接觸 操作,其後,使用脫水辛烷充份洗淨。然後,加入122ml 之四氯化鈦,於內溫爲125 °C下,攪拌2小時,再度進行 接觸操作後,以脫水辛烷充份洗淨,即可獲得固體觸媒成 份。 (3 )丙烯聚合 將內容積爲1L之附有攪拌機之不銹鋼製殺菌釜充份 乾燥後,以氮氣取代後,於室溫下,加入400ml之脫水處 理過之庚烷。然後於其中加入2.0mmole之三乙基鋁、 (48) (48)200413421 0.2 5mm〇le之環己基甲基二甲氧基矽烷、以鈦原子換算爲 0.0025 mmole之(2)所製造之固體觸媒成份,加入氫氣 至 O.OIMPaG,接著邊導入丙烯,邊升溫升壓至 8(TC, 〇.8MPaG之全壓,進行聚合1小時。 其後降溫,脫壓,取出內容物,投入2L之甲醇中, 進行觸媒失活。將其過濾,真空乾燥而得丙烯聚合物。針 對所得之丙烯聚合物來測定固有黏度以及立體規則性。結 果如表1所示。 比較例1 (1)固體觸媒成份之製造 於以氮氣取代後之內容積爲500mL之附有攪拌器之 三口燒瓶中,投入13.3g之氯化鎂(無水物)、70ml之癸 院及65.5ml(0.42mole)之2—乙基己醇,於130°C下進 行加熱反應2小時,成爲均勻溶液。之後,於該溶液中加 入3.12g之苯二酸酸酐,於130 °C下再進行攪拌混合1小 時,將苯二酸酸酐溶解於上述之均勻溶液。 如此所得之均勻溶液,冷卻至室溫後,以1小時時間 全量滴入於373ml之保存於—20 °C之四氯化鈦。滴下後, 將所得之均勻溶液之溫度,以4小時時間升溫至n (TC, 至1 1(TC時,加入2.3ml之正丁基丙二酸二乙酯,其後一 邊保持1 1 〇 t,邊攪拌2小時。 2小時之反應終了後,趁熱過濾,採取固體部份,將 該固體部份,以2 75ml之四氯化鈦再度懸濁後,再次於 -53· (49) (49)200413421 1 1 0 °C下,進行加熱反應2小時。 反應終了後,再次趁熱過濾,採取固體部份,使用 1 1 〇 °C之癸烷及己烷洗淨。該洗淨係進行至洗淨液中未檢 出鈦化合物爲止,而得固體觸媒成份。 (2 )丙烯聚合 在實施例1中,除使用上記(1 )所得之固體觸媒成 份以外,與實施例1同樣地進行丙烯的聚合,並評價之。 結果如表1所示。 實施例2 (1)固體觸媒成份之製造 將內容積爲0.5L之附有攪拌器之三口燒瓶,以氮氣 取代後,加入80ml之脫水處理過之辛烷、i6g之實施例1 的(Π所調製之二乙氧基鎂,然後加熱至40 X:,再加入 2.4ml之四氯化矽,攪拌20分鐘後,更進一步地添加 1.8ml之之正丁基丙二酸二乙酯。升溫該溶液至65。<:,接 著再滴入77ml之四氯化鈦,並於內溫爲125。(:下,攪拌 此溶液2小時’進行接觸操作’其後,使用脫水辛烷充份 洗淨。然後,加入122ml之四氯化鈦,於內溫爲125。〇 下’攪拌2小時,再度進行接觸操作後,以脫水辛烷充份 洗淨’即可獲得固體觸媒成份。 (2 )丙烯聚合 在貫施例1中,除使用上記(1 )所得之固體觸媒成 份以外’與實施例丨同樣地進行丙烯的聚合,並評價之。 -54- (50) (50)200413421 結果如袠1所示。 實施例3 (1 )固體觸媒成份之製造 於實施例1中,除使用環己基異丁基二甲氧基矽烷取 代環己基甲基二甲氧基矽烷以外,以同於實施例丨的方法 來製造固體觸媒成份。 (2 )丙烯聚合 在實施例1中,除使用上記(1)所得之固體觸媒成 份以外’與實施例i同樣地進行丙烯的聚合,並評價之。 結果如表1所示。 比較例2 (1)固體觸媒成份之製造 於實施例1中,除使用環戊基丙二酸二丁酯取代正丁 基丙二酸二乙酯以外,以同於實施例i的方法來製造固體 觸媒成份。 (2 )丙烯聚合 在實施例1中,除使用上記(1)所得之固體觸媒成 份以外’與實施例1同樣地進行丙烯的聚合,並評價之。 結果如表1所示。 -55- (51) 200413421 表1 觸媒活性 聚合物件狀 型態 (kg/pp/g-Ti) [V ] [mmmm] 化合物⑼平 聚合物平均 聚合物粗 聚合物微 (dl/g) (%) 均粒徑(um) 粒徑(μπι) 分量(%) 分量(%) 實施例1 278 0.96 92.9 59 1030 0.1 7.6 實施例2 252 0.98 93.4 62 1100 0.3 3.6 實施例3 293 0.98 94.3 58 1060 0.3 6.1 比較例1 192 0.95 93 25 260 0.1 85 比較例2 216 1.02 93.5 61 1090 0.3 8.9Si (OR15) tX4- (K) In the general formula (K), X represents a halogen atom. Among them, a chlorine atom and a bromine atom are preferred, and a chlorine atom is particularly preferred. R15 is a hydrocarbon group, which may be a saturated group or an unsaturated group, and may be a linear one or a branched one or a cyclic one. In addition, although it may contain different elements such as sulfur, nitrogen, oxygen, silicon, and phosphorus, However, a hydrocarbon group having 1 to 10 carbon atoms is preferably an alkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, an aralkyl group, or the like. When R15 is plural, it may be the same or different from each other. Specific examples of R15 include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, decyl, allyl, butyl Alkenyl, cyclopentyl, cyclohexyl, cyclohexenyl, phenyl, tolyl, benzyl, phenethyl and the like. t is an integer from 0 to 4. Specific examples of the titanium compound represented by the general formula (IX) include, for example, silicon tetrachloride, methoxytrichlorosilane, dimethoxydichlorosilane, trimethoxy-41 · (37) (37) 200413421 chlorosilane , Ethoxytrichlorosilane, diethoxydichlorosilane, triethoxychlorosilane, propoxytrichlorosilane, dipropoxydichlorosilane, and tripropoxychlorosilane. Among them, silicon tetrachloride is suitable. These halogen-containing silicon compounds may be used singly or in combination of two or more kinds. The molar ratio of the silicon compound / magnesium compound to the silicon compound of component (d) to be used as desired is usually 0.01 or more, preferably 0.1 or more. If the molar ratio is less than 0.01, there may be a problem that the effect of improving catalytic activity or stereoregularity cannot be fully exerted, or that the amount of fine powder in the produced polymer becomes large. In the production of the solid catalyst component [A], in addition to the compound (c), other electron donors may be used. Examples of such an electron donor include electron-donating compounds (C), alcohols, and organic acids described later. [B] Organoaluminum compound The same as the organoaluminum compound used in the catalyst for olefin polymerization. [C] The electron donating compound is the same as the electron donating compound used in the catalyst for olefin polymerization. 2. Modulation of the solid catalyst component The preparation of the solid catalyst component [A] makes the above (a) titanium compound, (b) A magnesium compound, (c) an electron donor, and a corresponding required (d) silicon compound. -42 · (38) (38) 200413421 The known methods include those disclosed in JP-A Sho 5 3 — 43 094, JP-A Sho 55 — 135102, JP-A Sho 55 — 135103, and JP-A Sho 56 — 18606. Methods etc. For example, (1) in the presence of an electron donor and a corresponding pulverization aid used as desired, the magnesium compound or a compound of the magnesium compound and the electron donor may be pulverized, and then the magnesium compound may be pulverized with the titanium compound. A method of reaction; (2) a method of reacting a liquid material of a magnesium compound having no reducing energy with a liquid titanium compound in the presence of an electron donor, and then precipitating a solid titanium composite; (3) a method of making titanium A method of reacting a compound with the former (1) or (2); (4) Further, a method of reacting an electron donor and a titanium compound with the former (1) or (2); (5) in In the presence of an electron donor, a titanium compound, and a corresponding pulverization aid, etc., a method of pulverizing a magnesium compound or a compound between the magnesium compound and the electron donor, and then treating it with a halogen or a halogen compound, etc. modulation. Furthermore, methods described in JP-A-Sho 56-166205, JP-A-Sho 57-63309, JP-A-Sho 57-190004, JP-A-Sho 57-300407, and JP-A-Sho 58-47003 other than these methods can also be used. To modulate the [A] solid catalyst component described above. Here, the amount of the titanium compound (b) used above is usually 0.5 to 100 mol, and preferably 1 to 50 mol relative to 1 mol of the magnesium compound (a). The amount of the electron donor (c) described above is generally 0.01 to 10 mol, preferably 0.05 to 1.0 mol, relative to 1 mol of the magnesium compound (c). Further, silicon tetrachloride may be added as a halide. -43- (39) 200413421 In addition, the titanium compound can be used as a catalyst carrier by contacting the titanium compound more than twice. The above contact catalyst components can also be inactive solvents such as hydrocarbons. Active solvents can be reporters. The solid product may be stored in an inert solvent such as a hydrocarbon. Furthermore, the contacting of the compounds (a) to (d) described above is carried out at 120 to 150 ° C, preferably at 125 to 140 ° C. When the contact temperature is outside the above range, the catalyst activity or the effect of stereoregularity cannot be improved. In addition, the contact force is preferably from minutes to 24 hours, and from 10 minutes to 6 hours. Although it varies depending on the type of the solvent and the contact temperature, it usually ranges from 0 to 5Mpa (Gauge), J (Gauge). Better. In the contact operation, it is preferable to perform stirring in terms of contact efficiency. There is no particular restriction on the order of this contact. For example, it can be contacted in the presence of an inactive solvent such as a hydrocarbon, or it can also be contacted by diluting each component in advance. Examples of such inertness include n-pentane, isopentane, n-hexane, n-heptane, and octane aliphatic hydrocarbons; aromatic mixtures of benzene, toluene, ethylbenzene, and xylene. In addition, the contact with the titanium compound is performed more than twice, and the role as a catalyst carrier can be fully exerted. When contacting the operating medium, the solvent is 5,000 ml or less relative to 1 mol of the halogen-containing titanium compound, and the solid obtained by the magnesium compound is preferably washed with 10 to 10,000 mi as appropriate. This is not in the dry state. The full temperature range of the reaction system is fully exerted. The pressure range at this time has been changed. 均匀 0 ~ 1 Mpa uniformity, and each component is firstly a solvent such as hydrocarbons, such as hydrocarbons such as decane, or these, which are commonly used in magnesium compounds. If the ratio (40) 200413421 is out of the above range, the uniformity or effectiveness of the contact will deteriorate. The solid catalyst component obtained by the above contact is preferably washed at 0 to 150 ° C, especially at 120 to 140 ° C in an inactive solvent. If the cleaning temperature exceeds the above range, the effect of improving catalyst activity or regularity cannot be fully exerted. Examples of the inactive solvent include aliphatic hydrocarbons such as octane and decane, alicyclic hydrocarbons such as methylcyclohexane and ethylcyclohexane, aromatic hydrocarbons such as xylene, and tetrachloroethyl. Halogenated hydrocarbons such as alkanes and chlorofluorocarbons or mixtures of these. Among them, aliphatic is preferred. The cleaning method and pressure are the same as the catalyst for olefin polymerization. 3. Manufacturing method of propylene-ethylene copolymer The manufacturing method of the propylene-ethylene random copolymer of the present invention is to make ethylene and ethylene in the presence of a catalyst. Method for copolymerizing propylene. The method for producing a propylene-ethylene block copolymer according to the present invention includes a process of polymerizing propylene to form a polypropylene component, and a process of polymerizing ethylene and propylene to form an ethylene / propylene copolymer component, and forming the component in polypropylene. In at least one of the production process and the ethylene / propylene copolymer component formation process, the method described in the previous catalyst is used. It is best to use the remembered catalyst in both processes. There is no particular limitation on the amount of catalyst component used. The solid catalyst component [A] is converted into titanium atoms and the reaction volume per 1L is usually in the range of 0.00005 to 1 ml. The aluminum / titanium of the organoaluminum compound [B] The original ratio is usually in the range of 1 to 1,000, preferably 10 to 500. In this case, if the V / · fluorene content of the olefin-containing species before the hydrocarbons is low, the catalytic activity will be insufficient if the ratio of the protons (41) (41) 200413421 exceeds the above range. In addition, the electron donating compound [C] such as an organosilicon compound, and the mole ratio of the electron donating compound [C] / organoaluminum compound [B] are usually used in an amount ranging from 0.001 to 5.0, especially 0.01. ~ 1.0 is better. When the molar ratio exceeds the above range, sufficient catalyst activity cannot be obtained. In addition, the catalyst used in the polymerization may be prepared by preliminary polymerization in an olefin. The α-olefin is preferably an α-olefin represented by the general formula (VI). R10-CH = CH2… (VI) In the general formula (VI), R1G is a hydrogen atom or a hydrocarbon group, which may be a saturated group or an unsaturated group, and may be a linear or branched or cyclic group. For example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 3-methyl-1-pentene, 4-methyl -1-pentene, vinyl cyclohexane, etc. These olefins may be used alone or in combination of two or more kinds. Among the above olefins, ethylene and propylene are particularly preferred. In addition, diene such as butadiene and other various olefins may be used. In the propylene-ethylene copolymerization in the present invention, if necessary, the preliminary polymerization of olefins may be performed before the present polymerization. At this time, the solid catalyst component [A], the organoaluminum compound [B], and the electron donating compound [C] are mixed at a certain ratio, respectively, and the olefin is usually 1 to 1 〇 (Temperature in the TC range (42) (42) 200413421 'can be used for preliminary polymerization at a pressure of normal pressure to about 5Mpa (Gauge) (polymerization time is 1 minute to 10 hours, and 10 minutes to 5 hours Compared with the solid catalyst component, the amount of preliminary polymerization is usually 0 to 1000% by weight, preferably 1.0 to 500% by weight, and the best amount of polymerization is 1.0 to 200% by weight. If the amount of preliminary polymerization exceeds the above range, Then it will not be able to obtain sufficient catalyst activity, if it is too low, the fine powder will increase. Secondly, propylene-ethylene copolymerization (random or embedded In the present invention, in addition to ethylene and propylene, a small amount of α-olefin may be used as required. As the olefin, the aforementioned ^ -olefin may be mentioned. Furthermore, butyl may be used. Diene, such as diene, and various other olefins. The polymerization method in the manufacturing method is not particularly limited, and any solution polymerization, slurry polymerization, gas phase polymerization, and bulk polymerization are suitable for use. Furthermore, as the polymerization method, any batch polymerization or continuous polymerization can be used. In addition, two-stage polymerization or multi-stage polymerization under different conditions is also suitable for use. In the production of propylene-ethylene block copolymers, whether it is batch polymerization or continuous polymerization, generally, first, the propylene separate polymerization part is firstly performed. Then, the copolymerization part is performed. For example, in the case of continuous production, hydrogen gas and a catalyst of a molecular weight modifier are supplied to a raw material propylene gas in a former polymerization tank, and the polymerization amount is controlled during the polymerization time to produce a propylene alone polymerization part. Then move it to the polymerization tank at the later stage, and further add ethylene gas, hydrogen gas and the corresponding catalyst to the copolymer -47-(43) (43) 200413421 propylene gas to obtain the copolymerization part, and then obtain Block copolymers. In the production of the copolymerization part of the present invention, although ethyl acetate can be used alone, it can also be used as needed. The ❹-olefin represented by the general formula (W) in the foregoing description. Furthermore, according to need, diene such as butadiene and other various olefins may be used. Production of the propylene-ethylene copolymer of the present invention The polymerization conditions in the method are the same as those of the above-mentioned olefin polymerization. The φ molecular weight can be adjusted by adding a chain transfer agent, especially hydrogen. It is also possible to adjust inert gas such as nitrogen. Also, ethylene content Pressure, so that the unit content of ethylene in the copolymer becomes as desired, and is adjusted by the amount of ethylene supplied. In addition, the catalyst component in the present invention is [A], [B], and [C], After mixing and contacting at a certain ratio, ethylene and propylene can be introduced for polymerization immediately, or after contacting, it can be matured after about 0.2 to 3 hours, and then ethylene and propylene are introduced for polymerization. The catalyst component can be supplied after being suspended by an inactive solvent or an olefin. The post-polymerization treatment is the same as the olefin polymerization described above. 4. · propylene-ethylene random copolymer The propylene-ethylene random copolymer of the present invention is a polymer obtained by the above-mentioned production method. The ethylene content 'obtained by 13C-NMR is usually 0.1 to 10.0% by weight, and preferably 0.5 to 7.0% by weight. If it is higher than this range, the amount of soluble fraction of the temperature increase method will be increased, and -48- (44) (44) 200413421 will be increased, and the lumpiness will be deteriorated. If it is too low, it will show a state in which its heat sealability cannot be reduced. In addition, the molecular weight distribution (Mw / Mn) measured by gel permeation chromatography is usually 3.5 to 5_0, and preferably 3.5 to 4.5. If the molecular weight distribution (Mw / Mn) is wider than this range, the agglomeration will be deteriorated. Narrower will deteriorate the formability. Furthermore, the melt flow rate (MFR) measured at 23 0 ° C and 2.16 kg based on JIS-K7210 is usually 0.01 to 100 g / 10 minutes, and 0.1 to 500 g / 10 Divided into the best, the best is! ~; [〇〇g / 10minutes. If the MFR is larger than this range, impact resistance will be reduced, and if it is too small, it will be difficult to form. The polymerization activity is preferably 350 kg / g-Ti or more, more preferably 500 kg / g-Ti or more, and most preferably 700 kg / g-Ti or more. 5. · propylene-ethylene block copolymer The propylene-ethylene block copolymer of the present invention has a melt flow rate (MFR) measured at 230 ° C and 2.16 kg based on JIS-K7210. · 1 to 5 00 g / 10 minutes, preferably 0.1 to 100 g / 10 minutes, and the most preferable is 10 to 20 g / 10 minutes. If the MFR is larger than this range, impact properties will be reduced, and if it is too small, it will be difficult to form. The molecular weight distribution (Mw / Mn) measured by gel permeation chromatography is usually 3.5 to 5.0, and preferably 3.5 to 4.5. If Mw / Mn is too small, the fluidity will decrease and the formability will be deteriorated. If it is too large, the low-molecular-weight component increases, and the transparency tends to decrease -49- (45) (45) 200413421. The amount of the propylene-ethylene block copolymer of the present invention is preferably from 5 to 50% by weight based on the amount of the soluble component (also referred to as the non-crystalline portion) at 25 t. If it is larger than this range, the rigidity decreases, and if it is too small, the impact resistance tends to decrease. The ethylene content of the amorphous portion is preferably 15 to 50 mol%. If it exceeds this range, the dispersibility of rubber will be deteriorated, and in this case, physical properties such as rigidity and impact resistance will be lowered accordingly. The propylene-ethylene block copolymer of the present invention preferably has a flexural modulus of 800 MPa (Gauge) or more, and more preferably 100 MPa (Gauge) or more. At room temperature, Izod impact strength is preferably above 7 kJ / m2. The low-temperature Izod impact strength is preferably 4 kJ / m2 or more, and more preferably 6 kJ / m2 or more. Next, the present invention is specifically illustrated by examples, but the present invention is not limited to the examples described below. [Example of olefin polymerization] A method for evaluating physical properties is as follows. (1) Catalyst activity: After the solid catalyst component obtained from the production is sufficiently dried, it is accurately weighed and then fully deashed with 3N sulfuric acid. After that, the insoluble matter was filtered, phosphoric acid as a decolorizing agent was added to the filtrate, and then 3% hydrogen peroxide water was added to make the solution color. FT-IR was used to measure the absorbance of this color-developing solution at 42 Onm to determine the Ti concentration, and the amount of Ti carrier in the solid catalyst component was calculated. Then calculate the catalytic activity of lg titanium based on this Ti support amount of -50 · (46) 200413421. (2) [7?]: Using a clutch type automatic viscometer (share company) in naphthalene full solvent at 1 35 ° C · (3) [mmmm]: I2C-NMR of 1,2,4-trichlorobenzene and heavy benzene (manufactured by Nippon Denshi Co., Ltd. under 130 ° C, the signal is quantified based on the complete decoupling of protons. In addition, the so-called [mmmm ] Refers to A, Macromolecules, Vol. 6, page 925 (refers to the isotactic fraction in the polypropylene subunit obtained from the 13C-NMR spectrum. In addition, the peak of the 13C-NMR spectrum A · Z ambe 11 i is equal to Ma cr 〇m ο 1 ecu 1 es, proposed by (1 97 5). (4) Magnesium compound containing alkoxy group (ii) Magnesium compound containing alkoxy group (ii) suspended in carbon The average particle diameter of hydrogen is measured by the light transmission method. The measured value is expressed on a logarithmic regular paper, and the particle diameter is 50%. (5) Particle form (average micro component) of polyolefin powder: Yuzisuo will be used The number of measured particle size distributions is on the regular accuracy paper, and the 50% particle diameter is calculated as the particle size, and the powder with 2,830 // m or more is used as the coarse fraction. Company's VMR — 053 F. The compound was mixed in a 90:10 mixed solution, using: LA — 5 0 0), using the measured Zambelli of the methyl group equal to 1 973), the pentad in the sub-chain was determined The legal system complies with the average particle diameter of Volume 8, page 68 7: In the compound, the particle diameter distribution is used as the average particle diameter, the coarse component, and the graph is shown as the average particle diameter. Use 2 5 0 // m and use the powder under (47) (47) 200413421 as the differential to find these quantities. [Embodiment] Example 1 (1) Production of magnesium compound containing alkoxy group After fully replacing a glass reactor with a stirrer with an internal volume of approximately 6 L by nitrogen, approximately 2430 g of ethanol and 160 g (6.6 mol) were charged. Ear) of metal magnesium and a 15g (0.12g atom) stele, while stirring and reacting under circulating conditions and heating until hydrogen no longer occurs in the system ', diethoxymagnesium can be obtained. (2) Manufacture of solid catalyst components After replacing the three-necked flask with a stirrer with a volume of 0.5L by nitrogen, 80 ml of dehydrated octane and 16 g of (1) diethoxylate were added. The base magnesium is then heated to 40 ° C, 77 ml of titanium tetrachloride is added dropwise, the temperature is raised to 90 ° C, and 2.8 ml of diethyl n-butylmalonate is added. The solution was stirred for 2 hours at an internal temperature of 1 2 5 ° C, followed by contact operation, and then thoroughly washed with dehydrated octane. Then, 122 ml of titanium tetrachloride was added, and the mixture was stirred at an internal temperature of 125 ° C for 2 hours. After the contact operation was performed again, it was thoroughly washed with dehydrated octane to obtain a solid catalyst component. (3) Propylene polymerization The stainless steel sterilization kettle with a stirrer with an internal volume of 1 L was fully dried and then replaced with nitrogen. At room temperature, 400 ml of dehydrated heptane was added. Then, 2.0 mmole of triethylaluminum, (48) (48) 200413421 0.2 5 mmole of cyclohexylmethyldimethoxysilane, and 0.0025 mmole of titanium atom (2) were used to produce a solid contact. Add hydrogen to O.OMPaG, then introduce propylene, increase the temperature to 8 (TC, 0.8MPaG), and polymerize for 1 hour. Then lower the temperature, remove the pressure, take out the contents, and put 2L of The catalyst was deactivated in methanol. The propylene polymer was filtered and vacuum dried to obtain a propylene polymer. The obtained propylene polymer was measured for its inherent viscosity and stereoregularity. The results are shown in Table 1. Comparative Example 1 (1) Solid Production of catalyst ingredients In a 500-mL three-necked flask with a stirrer after replacing with nitrogen, 13.3 g of magnesium chloride (anhydrous), 70 ml of guiyuan, and 65.5 ml (0.42 mole) of 2-B Hexanol was heated and reacted at 130 ° C for 2 hours to form a homogeneous solution. Then, 3.12 g of phthalic anhydride was added to the solution, and the mixture was stirred and mixed at 130 ° C for another 1 hour. The anhydride is dissolved in the homogeneous solution described above. After cooling to room temperature, the entire homogeneous solution was dropped into 373 ml of titanium tetrachloride stored at -20 ° C over 1 hour. After dropping, the temperature of the obtained homogeneous solution was raised to n over 4 hours. (TC, to 11 ° C, add 2.3 ml of diethyl n-butylmalonate, and then stir for 2 hours while maintaining 1 10 t. After the 2 hour reaction is over, filter while hot and take The solid part was suspended again with 2 75 ml of titanium tetrachloride, and then heated again at -53 · (49) (49) 200413421 1 1 0 ° C for 2 hours. The reaction was completed After that, it was filtered again while hot, and the solid portion was collected and washed with decane and hexane at 110 ° C. This washing was performed until no titanium compound was detected in the washing liquid to obtain a solid catalyst component. (2) Polymerization of propylene In Example 1, except that the solid catalyst component obtained in the above (1) was used, propylene was polymerized in the same manner as in Example 1 and evaluated. The results are shown in Table 1. Examples 2 (1) Manufacture of solid catalyst components. A three-necked flask with a stirrer with an internal volume of 0.5 L was filled with nitrogen. After substituting, add 80 ml of dehydrated octane and i6 g of the diethoxy magnesium prepared in Example 1, and then heat to 40 X :, add 2.4 ml of silicon tetrachloride, and stir for 20 minutes. Then, 1.8 ml of diethyl n-butyl malonate was further added. The solution was heated to 65. <: Then, 77 ml of titanium tetrachloride was added dropwise, and the internal temperature was 125. (: Then, the solution was stirred for 2 hours, and 'contact operation was performed'. After that, it was thoroughly washed with dehydrated octane. Then, 122 ml of titanium tetrachloride was added at an internal temperature of 125. 〇 Stir for 2 hours, and then perform the contact operation again, and wash thoroughly with dehydrated octane to obtain a solid catalyst component. (2) Polymerization of propylene In Example 1, except that the solid catalyst component obtained in the above (1) was used, propylene was polymerized in the same manner as in Example 丨 and evaluated. -54- (50) (50) 200413421 The results are shown in 袠 1. Example 3 (1) Production of solid catalyst component In Example 1, the same method as in Example 丨 was used except that cyclohexyl isobutyldimethoxysilane was used instead of cyclohexylmethyldimethoxysilane. To make solid catalyst ingredients. (2) Polymerization of propylene In Example 1, propylene was polymerized in the same manner as in Example i except that the solid catalyst component obtained in the above (1) was used, and evaluated. The results are shown in Table 1. Comparative Example 2 (1) Production of solid catalyst component In Example 1, except that dibutyl cyclopentylmalonate was used instead of diethyl n-butylmalonate, the same method as in Example i was used. Manufacture of solid catalyst ingredients. (2) Polymerization of propylene In Example 1, propylene was polymerized in the same manner as in Example 1 except that the solid catalyst component obtained in the above (1) was used, and evaluated. The results are shown in Table 1. -55- (51) 200413421 Table 1 Catalyst-shaped active polymer parts (kg / pp / g-Ti) [V] [mmmm] Compounds Flat polymer Average polymer Crude polymer micro (dl / g) ( %) Average particle size (um) Particle size (μπι) Component (%) Component (%) Example 1 278 0.96 92.9 59 1030 0.1 7.6 Example 2 252 0.98 93.4 62 1100 0.3 3.6 Example 3 293 0.98 94.3 58 1060 0.3 6.1 Comparative Example 1 192 0.95 93 25 260 0.1 85 Comparative Example 2 216 1.02 93.5 61 1090 0.3 8.9

[丙烯一乙烯無規共聚物的實施例] 物性的評價方法如下所述。 (1 ) U ]的測定 使用(股份公司)離合社的 VMR — 05 3型自動黏度 計,於萘滿溶劑中,在1 3 5 °C下進行測定。[Example of a propylene-ethylene random copolymer] A method for evaluating physical properties is as follows. (1) Measurement of U] Using the VMR-05 Model 3 automatic viscometer (Kyoto Corporation) in naphthalene solvent at 1 3 5 ° C.

(2 ) Mw/Mn的測定 在以下的裝置及條件下測定。(2) Measurement of Mw / Mn It was measured under the following apparatus and conditions.

G P C (凝膠滲透色譜法)測定裝置 营柱 ·昭和電工製 ShodexUT806L 紅外線檢測器 :液體色譜儀用IR檢測器 紅外線檢測flowcell : KBr cell (光路長1 mm ) 溶劑 :鄰二氯苯G P C (Gel Permeation Chromatography) Measuring Device Yingzhu · Showa Denko ShodexUT806L Infrared Detector: IR Detector for Liquid Chromatograph Infrared Detection Flowcell: KBr cell (Optical Path Length 1 mm) Solvent: o-dichlorobenzene

測定溫度 :1 3 5 °C 流速 :1 ·0 ml/分 •56- (52) (52)200413421 樣品濃度 :2mg/ml 注入量 :2//1 紅外線吸收波長 :3.42 # m (3 )昇溫分別法的〇艺可溶成分量即溶出曲線頂點 溫度 就藉聚合所得的聚丙烯而言,可藉由昇溫游離分離法 來求得。樣品調製係於常溫下秤重75mg的聚合物並其添 加於10ml的鄰二氯苯中,在135〜15〇°c的條件下攪拌1 小時使其溶解。於135°C的條件下將0.5ml的樣品溶液注 入管柱內後,以10°C /hr慢慢地降溫至0。(:爲止,使聚合 物結晶化於充塡劑表面。此時,以沒被結晶化而殘留的聚 合物之量作爲0 °c可溶成份量。 (4)藉由13C—nMR之乙烯含有量的測定 乙燃單位含有量可藉由下記的方法來求得。亦即,針 對樣品進行下記所示的13C 一 NMR的測定,係藉由次式, 從其光譜的35〜2lppm[四甲基矽烷(TMS)化學位移基 準]τίΐ域的7根峰強度來算出乙嫌(E)、丙稀(P)的 triad連續分率(莫耳% )。 f eep = [K ( T" ) /Τ]χ100 f ΡΡΕ = [κ ( δ ) /Τ]χ100 f εεε = [Κ ( S, 5 ) /4Τ+ Κ ( Ss 6 ) /2Τ]χ100 f ρρρ = [Κ ( ) /Τ]χ1〇〇 -57- (53)200413421Measuring temperature: 1 3 5 ° C Flow rate: 1.0 ml / min. 56- (52) (52) 200413421 Sample concentration: 2mg / ml Injection volume: 2/1/1 Infrared absorption wavelength: 3.42 # m (3) Heating The amount of soluble components in the separate method, that is, the apex temperature of the dissolution curve, can be obtained by the temperature-free separation method for polypropylene obtained by polymerization. The sample was prepared by weighing 75 mg of polymer at room temperature and adding it to 10 ml of o-dichlorobenzene, and stirring at 135 to 15 ° C for 1 hour to dissolve it. After injecting 0.5ml of the sample solution into the column at 135 ° C, slowly cool down to 0 at 10 ° C / hr. (: So far, the polymer is crystallized on the surface of the filler. At this time, the amount of the polymer that has not been crystallized but remains is 0 ° c soluble content. (4) 13C-nMR ethylene content Measurement of Amount The content of ethane-flame unit can be obtained by the following method. That is, the 13C-NMR measurement shown below is performed on the sample, and the spectrum is 35 ~ 2lppm [Tetramethyl Base shift of the basic silane (TMS) chemical [7] peaks in the τίΐ region to calculate the triad continuous fraction (mol%) of ethylene (E) and acrylic (P). F eep = [K (T ") / Τ] χ100 f ΡΡΕ = [κ (δ) / Τ] χ100 f εεε = [Κ (S, 5) / 4T + Κ (Ss 6) / 2Τ] χ100 f ρρρ = [Κ () / Τ) χ1〇〇 -57- (53) 200413421

f PEE = [K ( r ) /T]xl00 f pep = [K(S/s^) /T]xlOO 然而,顯示 τ = κ(τ〇〇 + κ ( τβ δ ) +f PEE = [K (r) / T] xl00 f pep = [K (S / s ^) / T] xlOO However, it shows that τ = κ (τ〇〇 + κ (τβ δ) +

K(Sr<5) /4T + K ( s δ . ) /2 + K ( ) + K ( r ) + K ()。在此例如fEPE表示EPEtriad連續分率(莫耳 % ) ,K(T55)表示歸屬於Τη之峰的積分強度。K (Sr < 5) / 4T + K (s δ.) / 2 + K () + K (r) + K (). Here, for example, fEPE represents the continuous fraction of EPEtriad (mol%), and K (T55) represents the integrated intensity of the peak attributed to Tη.

其次,乙烯單位含有量(重量% )可使用上記triad 連續分率,藉由次式來計算。 乙烯單位含有量(重量% ) = 28[3 f EEE+ 2 ( f pee + [ερε) + f ppE+f pep]x1〇〇/[28〔 3 f eee+2 ( f pee + f EPe) + f PPE+f PEP〕+ 42〔 3 f ppp+2 (f ppE+f PEP) +fEPE+fpEE〕] 〈13C — NMR 測定〉Second, the ethylene unit content (% by weight) can be calculated by the following formula using the triad continuous fraction described above. Ethylene unit content (% by weight) = 28 [3 f EEE + 2 (f pee + [ερε) + f ppE + f pep] x1〇〇 / [28 〔3 f eee + 2 (f pee + f EPe) + f PPE + f PEP] + 42 [3 f ppp + 2 (f ppE + f PEP) + fEPE + fpEE]] <13C — NMR measurement>

採取220mg的樣品放入NMR樣品管,再添加3ml的 1 ’ 2,4 —三氯苯/重苯之混合溶液(容量比90/10 )後, 蓋上管蓋,於1 3 0 °C下使混合樣品均一地溶解,然後在下 列所示的條件下進行13 C - NMR測定。 裝置 脈衝寬度 脈衝重複時間 光譜寬度 測定溫度 積算次數 日本電子(株)製JNM — EX4 0 0 9 // S ( 45° ) 4秒Take 220mg of the sample into the NMR sample tube, and add 3ml of 1 '2,4-trichlorobenzene / heavybenzene mixed solution (capacity ratio 90/10), then cover the tube cap at 130 ° C The mixed sample was uniformly dissolved, and then 13 C-NMR measurement was performed under the conditions shown below. Device Pulse width Pulse repetition time Spectral width Measured temperature Accumulated times JNM made by Japan Electronics Co., Ltd. — EX4 0 0 9 // S (45 °) 4 seconds

20000Hz 1 3 0°C 1000〜10000 次 -58- (54) (54)200413421 實施例4 (1)固體觸媒成份之製造 以氮氣充分地置換內容積約6L之附有攪拌機的玻璃 製反應器後,投入約2430g之乙醇、160g之金屬鎂及16g 之碘,一邊攪拌一邊於環流條件及加熱下反應至系統內不 再發生氫爲止,即可獲得固體狀鎂化合物(二乙氧基 鎂)。 其次,將16g的二乙氧基鎂投入已被氮氣置換之內容 積爲0.5L附有攪拌器之三口燒瓶。更者,加入80ml之脫 水處理過之辛烷。然後加熱至4(TC,再加入2.4ml之四氯 化矽,攪拌20分鐘後,更進一步地添加2.7ml之之正丁 基丙二酸二乙酯。升溫該溶液至80 °C,接著使用滴下漏 斗再滴入77ml之四氯化鈦。然後使內溫爲125 °C來接觸 反應2小時。 其後,停止攪拌使固體沈澱,並取出上淸液。然後, 加入100ml的脫水辛烷,邊攪拌一邊昇溫至125t,保持 1小時後,停止攪拌使固體沈澱,並取出上淸液。重複此 洗淨操作7次。更者,加入122ml之四氯化鈦,使內溫爲 125°C來接觸反應2小時。其次,以125t的脫水辛烷重 複6次洗淨,即可獲得固體觸媒成份。 (2 )聚合方法 將內容積爲1L之附有攪拌器之不銹鋼製殺菌釜充份 乾燥後,以氮氣取代後,加入3 8 0ml之脫水處理過的庚烷 (55) (55)200413421 於內部,一邊攪拌一邊昇溫至80 °C。將丙烯、乙烯、氫 調製成流量比(Ι/m in)爲 9.90: 0.10: 0.814並導入系 內,同時排出系外,使系內的壓力保持於 MPa (Gauge )。充分氮氣置換觸媒供給管後,加入20ml之脫 水處理過的庚院、0.6mmole之三乙基銘、0.075mmole之 二環戊基二甲氧基矽烷(DCPDMS )、以鈦原子換算爲 0.0015mmole之上記的聚合觸媒成份,然後以氫氣壓入系 內。一邊邊保持溫度 80°C,系內壓力 〇.4MPa(Gauge) 一邊進行聚合1小時。以甲醇停止反應後,於甲醇中取出 內容物,真空乾燥,即可得到丙烯-乙烯共聚物。所得結 果如表2 - 1所示。 實施例5 除將丙烯流量變更爲9.83(1/min)、乙烯流量變更 爲0.17 ( Ι/min)、氯流量變更爲〇·720 ( i/min)外,其 餘皆以同於實施例4之方法進行。結果如表2 - 1所示。 實施例6 除將丙嫌流量變更爲 9.69( Ι/min)、乙儲流量變更 爲0.31 ( Ι/min)、氫流量變更爲〇 · 8 1 〇 (丨/min )外,其 餘皆以同於實施例4之方法進行。結果如袠2 — 1所示。 實施例7 除將固體觸媒成分調製時所使用的電子供予體由 -60- (56) (56)200413421 2.7ml的正丁基丙二酸二乙酯變更爲3.1ml的二甲基丙二 酸二丁酯外,其餘皆以同於實施例4之方法進行。結果如 表2 - 1所示。 實施例8 除將所用觸媒變更爲實施例7所調製者外,其餘皆以 同於實施例5之方法進彳了。結果如表2 - 1所示。 實施例9 除將固體觸媒成分調製時所使用的電子供予體由 2.7ml的正丁基丙二酸二乙酯變更爲3.6ml的環戊基丙二 酸二丁酯外,其餘皆以同於實施例4之方法進行。結果如 表2 - 1所示。 實施例1 〇 除將所用觸媒變更爲實施例9所調製者外,其餘胃&amp; 同於實施例5之方法進行。結果如表2- 1所示。 -61 ^ (57) (57)200413421 表2— 1 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例l〇 固體觸媒 成分 電子供予體 com.A com.A com.A com.B com.B com.C com.C 反應溫度 °c 125 125 125 125 125 125 125 洗淨溫度 °c 125 125 125 125 125 125 125 聚合條件 聚合時間 分 60 60 60 60 60 60 60 聚合溫度 °c 80 80 80 80 80 80 80 丙烯流量 1/min 9.90 9.83 9.69 9.90 9.83 9.90 9.83 乙烯流量 1/min 0.10 0.17 0.31 0.10 0.17 0.10 0.17 氫流量 1/min 0.814 0.720 0.810 0.814 0.720 0.814 0.720 全壓 MPa 0.4 0.4 0.4 0.4 0.4 0.4 0.4 觸媒 mmol 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 TEA mmol 0.6 0.6 0.6 0.6 0.6 0.6 0.6 矽化合物 種類 DCP DCP DCP DCP DCP DCP DCP 矽化合物 mmol 0.075 0.075 0.075 0.075 0.075 0.075 0.075 聚合結果 聚合活性 kg/g-Ti 480 740 1160 520 790 500 770 乙烯含有量 NMR 1.2 2.6 4.4 1.1 2.2 1.2 2.3 [V] dl/g 1.68 1.71 1.61 1.69 1.76 1.76 1.76 Mw/Mn 4.42 4.56 4.38 4.38 4.61 4.38 4.63 〇°C可溶成分量 Wt% 0.80 0.92 1.44 0.79 0.89 0.80 0.90 com.A 丁基丙二酸二乙酯 com.B 二甲基丙二酸二丁酯 com.C 環戊基丙二酸二丁酯 -62- (58) (58)200413421 DCP 二環戊基二甲氧基矽烷 TEA 三乙基鋁 實施例1 1 除將固體觸媒成分調製時所使用的電子供予體由 2.7ml的正丁基丙二酸二乙酯變更爲3.2mi的環丁烷一 -二羧酸二丁酯外,其餘皆以同於實施例4之方法進行。 所得結果如表2 - 2所示。 實施例1 2 除將所用觸媒變更爲實施例11所調製者外,其餘皆 以同於實施例5之方法進行。結果如表2 _ 2所示。 實施例1 3 除將聚合時所使用的矽烷化合物由環戊基二甲氧基矽 烷(DCPDMS)變更爲環己基異丁基二甲氧基矽烷外,其 餘皆以同於實施例5之方法進行。所得結果如表2 - 2所 示0 實施例1 4 (1)固體觸媒成份之製造 於以氮氣取代後之內容積爲5 00mL之附有攪拌器之 三口燒瓶中’投入13.3g之氯化鎂(無水物)、7〇ml之癸 烷及65.5ml(0.42mole)之2 —乙基己醇’於130°C下進 -63- (59) (59)200413421 行加熱反應2小時,成爲均勻溶液。之後,於該溶液中加 入3.12g之苯二酸酸酐,於130 °C下再進行攪拌混合1小 時,將苯二酸酸酐溶解於上述之均勻溶液。 如此所得之均勻溶液,冷卻至室溫後,以1小時時間 全量滴入於3 7 3 ml之保存於一 2 0 °C之四氯化鈦。滴下後, 將所得之均勻溶液之溫度,以4小時時間升溫至1 1 0 t, 至1 10°C時,加入3.4ml之正丁基丙二酸二乙酯,其後— 邊保持1 1 〇 °C,邊攪拌2小時。 2小時之反應終了後,趁熱過濾,採取固體部份,將 該固體部份,以275ml之四氯化鈦再度懸濁後,再次於 1 1 0 °C下,進行加熱反應2小時。 反應終了後,再次趁熱過濾,採取固體部份,使用 1 1 0 °C之癸烷及己烷洗淨。該洗淨係進行至洗淨液中未檢 出欽化合物爲止’而得固體觸媒成份。 (2 )聚合方法 以同於實施例4之聚合方法進行聚合。結果如表2 一 2所示。 實施例1 5 (1 )預備聚合 於以氮氣取代後之內容積爲1 L之附有攪拌器之三口 燒瓶中,投入4 8 g之實施例4所用的固體觸媒。 更者加入400ml之脫水處理過的庚烷。加熱至1〇 °C ’再添加2.7ml之三乙基鋁、2.0ml之二環戊基二甲氧 -64 - (60) (60)200413421 基矽烷。在其中於常溫下使丙烯氣體流通4小時來進行反 應。其後,使用脫水的庚烷充分地洗淨固體成分,即可獲 得預備聚合量41%的預備聚合觸媒。 (2 )聚合 以同於實施例4之方法進行。結果如表2 — 2所示。 比較例3 除將固體觸媒成分調製時所使用的電子供予體由正丁 基丙二酸二乙酯變更爲二異丁基丙二酸二乙酯外,其餘皆 以同於實施例4之方法進行固體觸媒的調製。其次,以表 2 — 2所示的條件進行聚合。結果如表2 一 2所示。 比較例4 除將固體觸媒成分調製時所使用的電子供予體由正丁 基丙二酸二乙酯變更爲二異丁基丙二酸二乙酯外,其餘皆 以同於實施例〗4之方法進行固體觸媒的調製。其次,以 表2— 2所示的條件進行聚合。結果如表2_2所示。 -65- (61) (61)200413421 表2— 2 實施例 11 實施例 12 實施例 13 實施例 14 實施例 15 比較 例3 比較 例4 固體觸媒 成分 電子供予體 com.E com.E com.A com.A com.A com.D com.D 反應溫度 °C 125 125 125 110 125 125 110 洗淨溫度 °C 125 125 125 110 125 125 110 聚合條件 聚合時間 分 60 60 60 60 60 60 60 聚合溫度 °c 80 80 80 80 80 80 80 丙烯流量 1/min 9.90 9.83 9.83 9.90 9.90 9.78 9.78 乙烯流量 1/min 0.10 0.17 0.17 0.10 0.10 0.22 0.22 氣流量 1/min 0.814 0.720 0.720 0.814 0.814 0.090 0.090 全壓 MPa 0.4 0.4 0.4 0.4 0.4 0.4 0.4 觸媒 mmol 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 TEA mmol 0.6 0.6 0.6 0.6 0.6 0.6 0.6 矽化合物 種類 DCP DCP CHB DCP DCP DCP DCP 矽化合物 mmol 0.075 0.075 0.075 0.075 0.075 0.075 0.075 聚合結果 聚合活性 kg/g-Ti 510 760 710 370 390 320 260 乙嫌含有量 NMR 1.1 2.3 2.6 1.2 1.2 1.6 1.7 [V] dl/g 1.75 1.72 1.65 1.70 1.71 1.60 1.61 Mw/Mn 4.40 4.58 4.40 4.47 4.41 4.46 4.42 (TC可溶成分量 Wt% 0.98 0.90 0.98 0.81 0.82 1.10 1.20 com.A 丁基丙二酸二乙酯 com.D 二異丁基丙二酯二乙酯 -66- (62) 200413421 c 〇 m . E 二環丁基-l DCP 二環戊基二 CHB 環己基異丁 TEA 三乙基鋁 ’ 1-二羧酸二丁基酯 甲氧基矽烷 基二甲氧基矽烷 由上記表2 — 1、2 - 2可知,與比較例3、4相比,實 施例4〜1 5將使聚合活性變高。 又,〇 °C可溶成份量爲非結晶性的聚合物,其雖隨丙 嫌一乙烯無規共聚物中的乙烯含有量之增加而增加,然而 若將實施例5、8、1〇與比較例3、4相比較,前者儘管乙 烯含有量多,但0°C可溶成份量變少。 [丙烯-乙烯嵌段共聚物的實施例] 物性的評價方法如下所述。 (1 ) MFR的測定 以JIS — K7210爲基準,於23 0°C、2.16kg下測定。 (2 )常溫二甲苯可溶成份量的測定 常溫(25 °C)二甲苯可溶成分及不溶成分可藉由如下 的方法來求得。 (D精秤5 ±0.05g的樣品放入1 000ml的茄子型燒瓶, 更進一步地添加1 ±0.05 g的BHT (防氧化劑)後,投入 轉子及700±10 ml的對二甲苯。 0其次將冷卻器裝設於茄子型燒瓶中,一邊使轉子轉 動’ 一邊在140±5t:的油浴中加熱燒瓶120±30分鐘,使 -67- (63) (63)200413421 樣品溶解於對二甲苯中。 ◎將燒瓶的內容物注入1000ml的燒杯後,一邊以攪 拌子攪拌燒杯內的溶液,一邊放冷(8小時以上)至室溫 (25〇C )後,以金屬網濾取析出物。 0更進一步地以濾紙過濾濾液後,將此濾液注入含有 2000±1〇〇 ml甲醇之3000 ml的燒瓶中,在室溫(251 ) 下以攪拌子攪拌此溶液,並放置2小時以上。 其次以金屬網濾取析出物後,風乾5小時後,於 100±5t下使用真空乾燥機乾燥240〜270分鐘,即可回 收25 °C二甲苯可溶成分。 @另一方面,再度以上記Ο及@的方法爲基準,將上 記G中以金屬網濾取的析出物溶解於對二甲苯後,趁熱快 速地將其移至含有2000 ±100 ml甲醇之3 000 ml的燒瓶 中’以攪拌子攪拌2小時以上後,於室溫(251 )下放置 一晚。 G其次以金屬網濾取析出物後,風乾5小時後,於 100±5°C下使用真空乾燥機乾燥240〜270分鐘,即可回 收25°C二甲苯不溶成分。 另一方面,相對於25 °C二甲苯之可溶成分的含有量 (w ),若將樣品重量設定爲A g、前記◎中所回收的可溶 成分之重量設定爲Cg,則20000Hz 1 3 0 ° C 1000 ~ 10000 times -58- (54) (54) 200413421 Example 4 (1) Production of solid catalyst components A nitrogen-filled glass reactor equipped with a stirrer is used to sufficiently replace the internal volume of about 6L. Then, put about 2430g of ethanol, 160g of magnesium metal and 16g of iodine, and stir while reacting under circulating conditions and heating until no more hydrogen is generated in the system to obtain a solid magnesium compound (diethoxy magnesium) . Next, 16 g of diethoxymagnesium was put into a three-necked flask equipped with a stirrer having an internal volume of 0.5 L which had been replaced by nitrogen. Furthermore, 80 ml of dehydrated octane was added. Then it was heated to 4 ° C, 2.4 ml of silicon tetrachloride was added, and after stirring for 20 minutes, 2.7 ml of diethyl n-butylmalonate was further added. The solution was heated to 80 ° C, and then used. The dropping funnel was further dropped into 77 ml of titanium tetrachloride. Then, the internal temperature was 125 ° C to contact the reaction for 2 hours. Thereafter, the stirring was stopped to precipitate the solid, and the supernatant was removed. Then, 100 ml of dehydrated octane was added, The temperature was raised to 125t while stirring. After holding for 1 hour, the stirring was stopped to precipitate the solid, and the supernatant was removed. The washing operation was repeated 7 times. Furthermore, 122 ml of titanium tetrachloride was added to make the internal temperature 125 ° C Come in contact with the reaction for 2 hours. Second, repeat the washing with 125t of dehydrated octane for 6 times to obtain the solid catalyst component. (2) Polymerization method: The content is 1L and the stainless steel sterilization kettle with a stirrer is sufficient. After drying and replacing with nitrogen, 380 ml of dehydrated heptane (55) (55) 200413421 was added to the inside, and the temperature was raised to 80 ° C while stirring. The propylene, ethylene and hydrogen were adjusted to a flow ratio (I / m in) is 9.90: 0.10: 0.814 and introduced into the system, and discharged at the same time Outside the system, keep the pressure in the system at MPa (Gauge). After replacing the catalyst supply tube with sufficient nitrogen, add 20 ml of dehydrated Geng Yuan, 0.6 mmole of triethylamine, 0.075 mmole of dicyclopentyl di A methoxysilane (DCPDMS), a polymerization catalyst component described in terms of titanium atom of 0.0015mmole, and then pressurized into the system with hydrogen. The temperature was maintained at 80 ° C and the internal pressure was 0.4MPa (Gauge). Polymerization was performed for 1 hour. After stopping the reaction with methanol, the content was taken out in methanol and vacuum dried to obtain a propylene-ethylene copolymer. The results are shown in Table 2-1. Example 5 Except changing the propylene flow rate to 9.83 ( 1 / min), the ethylene flow rate was changed to 0.17 (1 / min), and the chlorine flow rate was changed to 0.720 (i / min), and the rest were performed in the same manner as in Example 4. The results are shown in Table 2-1. Example 6 Except that the C-flow rate was changed to 9.69 (Ι / min), the B-flow rate was changed to 0.31 (Ι / min), and the hydrogen flow rate was changed to 0.81 〇 (丨 / min). Performed in the method of Example 4. The results are shown in Figure 2-1. Example 7 Except solid catalyst The electron donor used in the partial preparation was changed from -60- (56) (56) 200413421 2.7ml of diethyl n-butylmalonate to 3.1ml of dimethylmalonate, the rest All were performed in the same manner as in Example 4. The results are shown in Table 2-1. Example 8 Except that the catalyst used was changed to that prepared in Example 7, the rest were performed in the same manner as in Example 5. Already. The results are shown in Table 2-1. Example 9 Except that the electron donor used in the preparation of the solid catalyst component was changed from 2.7 ml of diethyl n-butylmalonate to 3.6 ml of dibutyl cyclopentylmalonate, the rest were all The same method as in Example 4 was performed. The results are shown in Table 2-1. Example 1 Except that the catalyst used was changed to the one prepared in Example 9, the stomach &amp; was performed in the same manner as in Example 5. The results are shown in Table 2-1. -61 ^ (57) (57) 200413421 Table 2-1 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Solid catalyst component electron donor com.A com.A com.A com.B com.B com.C com.C Reaction temperature ° c 125 125 125 125 125 125 125 Washing temperature ° c 125 125 125 125 125 125 125 Polymerization conditions Polymerization time minutes 60 60 60 60 60 60 60 Polymerization temperature ° c 80 80 80 80 80 80 80 Propylene flow rate 1 / min 9.90 9.83 9.69 9.90 9.83 9.90 9.83 Ethylene flow rate 1 / min 0.10 0.17 0.31 0.10 0.17 0.10 0.17 Hydrogen flow rate 1 / min 0.814 0.720 0.810 0.814 0.720 0.814 0.720 Full pressure MPa 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Catalyst mmol 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 TEA mmol 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Silicon compound type DCP DCP DCP DCP DCP DCP DCP DCP DCP Silicon compound mmol 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 Polymerization polymerization activity kg / g-Ti 480 740 1160 520 790 500 770 ethylene content NMR 1.2 2.6 4.4 1.1 2.2 1.2 2.3 [V] dl / g 1.68 1.71 1.61 1.69 1.76 1.76 1.76 Mw / Mn 4.42 4.56 4.38 4.38 4.6 1 4.38 4.63 0 ° C Soluble content Wt% 0.80 0.92 1.44 0.79 0.89 0.80 0.90 com.A Diethyl butylmalonate com.B Dibutyl dimethylmalonate com.C Cyclopentylmalonate Dibutyl acid-62- (58) (58) 200413421 DCP dicyclopentyldimethoxysilane TEA triethylaluminum Example 1 1 Except for the electron donor used for the preparation of the solid catalyst component, 2.7 Except that ml of diethyl n-butylmalonate was changed to 3.2 mi of cyclobutane mono-dicarboxylic acid dibutyl, the rest were performed in the same manner as in Example 4. The results obtained are shown in Table 2-2. Example 1 2 The same procedure as in Example 5 was performed except that the catalyst used was changed to the one prepared in Example 11. The results are shown in Table 2_2. Example 1 3 Except that the silane compound used in the polymerization was changed from cyclopentyldimethoxysilane (DCPDMS) to cyclohexylisobutyldimethoxysilane, the rest were performed in the same manner as in Example 5. . The obtained results are shown in Table 2-2. Example 1 4 (1) Production of solid catalyst components In a three-necked flask with a stirrer with an internal volume of 5,000 mL and substituted with nitrogen, 13.3 g of magnesium chloride ( Anhydrous), 70ml of decane and 65.5ml (0.42mole) of 2-ethylhexanol 'at 130 ° C -63- (59) (59) 200413421 heating reaction for 2 hours to become a homogeneous solution . Thereafter, 3.12 g of phthalic anhydride was added to the solution, and the mixture was stirred and mixed at 130 ° C for 1 hour, and then the phthalic anhydride was dissolved in the above uniform solution. After the homogeneous solution thus obtained was cooled to room temperature, the entire amount was dropped into 373 ml of titanium tetrachloride stored at -20 ° C over 1 hour. After dropping, the temperature of the obtained homogeneous solution was raised to 110 t over 4 hours, and to 110 ° C, 3.4 ml of diethyl n-butylmalonate was added, and then-while maintaining 1 1 0 ° C, while stirring for 2 hours. After the completion of the reaction for 2 hours, the hot portion was filtered, and the solid portion was collected. The solid portion was suspended again with 275 ml of titanium tetrachloride, and then heated at 110 ° C for 2 hours. After the reaction was completed, the solution was filtered while still hot. The solid portion was collected and washed with decane and hexane at 110 ° C. This washing is performed until no Chin compound is detected in the washing liquid 'to obtain a solid catalyst component. (2) Polymerization method Polymerization was performed by the same polymerization method as in Example 4. The results are shown in Table 2-2. Example 15 (1) Preliminary polymerization In a three-necked flask equipped with a stirrer with an internal volume of 1 L after the replacement with nitrogen, 4 8 g of the solid catalyst used in Example 4 was charged. Furthermore, 400 ml of dehydrated heptane was added. Heat to 10 ° C 'and add 2.7 ml of triethylaluminum and 2.0 ml of dicyclopentyldimethoxy-64-(60) (60) 200413421 silane. The reaction was carried out by circulating propylene gas at room temperature for 4 hours. Thereafter, the solid content was sufficiently washed with dehydrated heptane to obtain a preliminary polymerization catalyst having a preliminary polymerization amount of 41%. (2) Polymerization was carried out in the same manner as in Example 4. The results are shown in Table 2-2. Comparative Example 3 Same as Example 4 except that the electron donor used in the preparation of the solid catalyst component was changed from diethyl n-butylmalonate to diethyl diisobutylmalonate This method performs the modulation of the solid catalyst. Next, polymerization was performed under the conditions shown in Table 2-2. The results are shown in Table 2-2. Comparative Example 4 Except that the electron donor used in the preparation of the solid catalyst component was changed from diethyl n-butylmalonate to diethyl diisobutylmalonate, the rest were the same as in the Examples Method 4 performs the modulation of the solid catalyst. Next, polymerization was performed under the conditions shown in Table 2-2. The results are shown in Table 2_2. -65- (61) (61) 200413421 Table 2-2 Example 11 Example 12 Example 13 Example 14 Example 15 Comparative Example 3 Comparative Example 4 Solid catalyst component electron donor com.E com.E com .A com.A com.A com.D com.D Reaction temperature ° C 125 125 125 110 125 125 110 Washing temperature ° C 125 125 125 110 125 125 110 Polymerization conditions Polymerization time minutes 60 60 60 60 60 60 60 Polymerization Temperature ° c 80 80 80 80 80 80 80 propylene flow rate 1 / min 9.90 9.83 9.83 9.90 9.90 9.78 9.78 ethylene flow rate 1 / min 0.10 0.17 0.17 0.10 0.10 0.22 0.22 air flow rate 1 / min 0.814 0.720 0.720 0.814 0.814 0.090 0.090 full pressure MPa 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Catalyst mmol 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 TEA mmol 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Silicon compound type DCP DCP CHB DCP DCP DCP DCP DCP Silicon compound mmol 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 Polymerization polymerization activity kg / g-Ti 510 760 710 370 390 320 260 Ethylene content NMR 1.1 2.3 2.6 1.2 1.2 1.6 1.7 [V] dl / g 1.75 1.72 1.65 1.70 1.71 1.60 1.61 Mw / Mn 4.40 4.58 4.40 4 .47 4.41 4.46 4.42 (TC soluble content Wt% 0.98 0.90 0.98 0.81 0.82 1.10 1.20 com.A diethyl butyl malonate com.D diisobutyl propylene diester-66- (62) 200413421 c 〇m. E Dicyclobutyl-1 DCP Dicyclopentyl di CHB Cyclohexyl isobutyl TEA Triethylaluminum 1-dicarboxylic acid dibutyl methoxysilyldimethoxysilane Table 2 — 1, 2-2 shows that compared with Comparative Examples 3 and 4, Examples 4 to 15 increase the polymerization activity. In addition, although the polymer having a soluble content of 0 ° C is non-crystalline, it increases with the increase of the ethylene content in the ethylene-propylene random copolymer. However, if Examples 5, 8, 10 and Compared with Comparative Examples 3 and 4, although the former contains a large amount of ethylene, the amount of soluble components at 0 ° C decreases. [Example of a propylene-ethylene block copolymer] A method for evaluating physical properties is as follows. (1) MFR measurement Based on JIS-K7210, measured at 23 ° C and 2.16 kg. (2) Measurement of the amount of xylene soluble components at room temperature The xylene soluble components and insoluble components at room temperature (25 ° C) can be determined by the following method. (D fine scale 5 ± 0.05g sample is put into a 1000ml eggplant-type flask. After adding 1 ± 0.05 g of BHT (antioxidant), put the rotor and 700 ± 10 ml of para-xylene. 0Next The cooler is installed in an eggplant-type flask, and while rotating the rotor, the flask is heated in a 140 ± 5t: oil bath for 120 ± 30 minutes to dissolve the -67- (63) (63) 200413421 sample in para-xylene ◎ After pouring the contents of the flask into a 1000 ml beaker, while stirring the solution in the beaker with a stir bar, let it cool (more than 8 hours) to room temperature (25 ° C), and then filter out the precipitate with a metal mesh. After further filtering the filtrate with filter paper, the filtrate was poured into a 3000 ml flask containing 2000 ± 100 ml of methanol, and the solution was stirred with a stirrer at room temperature (251), and left for more than 2 hours. After extracting the precipitate by a metal mesh filter, air-drying for 5 hours, and then drying it at 100 ± 5t using a vacuum dryer for 240 to 270 minutes, 25 ° C xylene solubles can be recovered. @On the other hand, write the above again. The method of @ is used as a reference, and the precipitation in the above G is filtered by a metal mesh. After dissolving in para-xylene, quickly transfer it to a 3,000 ml flask containing 2000 ± 100 ml of methanol while stirring with a stirrer for more than 2 hours, and then leave it at room temperature (251) overnight. G Next, the precipitate was collected by metal mesh filtration, air-dried for 5 hours, and then dried at 100 ± 5 ° C using a vacuum dryer for 240 to 270 minutes to recover xylene insoluble content at 25 ° C. On the other hand, relative to 25 ° C xylene soluble content (w), if the sample weight is set to A g, the weight of the soluble component recovered in the above ◎ is set to Cg, then

w (重量 % ) = 100xC/A 又不溶成分的含有量以(100 - w)重量%來表示。 (3 )耐衝擊強度的測定 -68- (64) (64)200413421 以JIS - K7110爲基準,使用在射出成形下所製造出 的試驗紙來測定於23 0 °C、- 30°C下之附有凹槽的艾佐德 衝擊強度。 (4 )彎曲彈性率的測定 以JIS - K7210爲基準,測定彎曲彈性率。 有關[/?]的測定、Mw/Mn的測定、藉由常溫(25°C ) 二甲苯可溶成份的13C — NMR之乙烯含有量的測定上,與 丙烯一乙烯無規共聚物的實施例相同。 鲁 實施例1 6 (1)固體觸媒成份之製造 以氮氣充分地置換內容積約6L之附有攪拌機的玻璃 製反應器後,投入約243 0g含水量l〇〇ppm之乙醇、160g 之金屬鎂及1 6g之碘,一邊攪拌一邊於環流條件及加熱下 反應至系統內不再發生氫爲止,即可獲得固體狀鎂化合物 (二乙氧基鎂)。 籲 其次,將16g的二乙氧基鎂投入已被氮氣置換之內容 積爲0.5L附有攪拌器之三口燒瓶。更者,加入80ml之脫 水處理過之辛烷。然後加熱至40 °C,再加入2.4ml之四氯 化矽,攪拌20分鐘後,更進一步地添加2.7ml之之正丁 基丙二酸二乙酯。升溫該溶液至80°C,接著使用滴下漏 斗再滴入77ml之四氯化鈦。然後使內溫爲125t來接觸 反應2小時。 其後,停止攪拌使固體沈澱,並取出上淸液。然後, -69- (65) (65)200413421 加入100ml的脫水辛烷,邊攪拌一邊昇溫至125 °C,保持 1小時後,停止攪拌使固體沈澱,並取出上淸液。重複此 洗淨操作7次。更者,加入122ml之四氯化鈦,使內溫爲 1 2 5 °C來接觸反應2小時。其次,以1 2 5 t的脫水辛烷重 複6次洗淨,即可獲得固體觸媒成份。 (2 )聚合方法 以氮氣體充分乾燥,其次將被丙烯氣體所置換之內容 積爲5L之附有攪拌裝置之不銹鋼製殺菌釜保持於7(TC, 再以丙烯氣體昇壓至0.0 5 MPa ( Gauge )。於此狀態下加 入氫氣至 0.4 8 MPa ( Gauge ),更者以丙烯氣體緩慢地昇 壓至 2.8MPa ( Gauge ) 〇 其次,將被氫氣體所置換之6 0ml的觸媒投入管中各 自採取20ml之庚院、4.0mmole之三乙基銘、lmmole之 二環戊基二甲氧基矽烷、以鈦原子換算爲〇.〇2mmole之固 體觸媒成份後,投入殺菌釜,使全壓成爲2.8MPa (Gauge)般地注入丙烯,聚合60分鐘。 其後,脫壓至外氣壓爲止,一旦真空脫氣,其次以 4·7: 5·3的莫耳比之比例加入乙烯氣體/丙烯氣體至1 MPa (Gauge),在 70°C、1 MPa ( Gauge)下保持 20 分鐘來 進行丙烯一乙烯共聚合。其後,脫壓至外氣壓、降溫至常 溫爲止後,打開殺菌签,回收生成的聚合物粉末。在所得 的嵌段聚丙嫌粉末中添加lOOOppm作爲中和劑之硬脂酸 鈣(日本油脂(股份有限公司)製)、:I500ppm之DHT -4 A (協和化學(股份有限公司)製)、75 Oppm作爲防氧 (66) (66)200413421 化劑之P—EPQ (庫拉力安藤(股份有限公司)製)、 1 5 00ppm 之 irganockslOO (千葉· Special T Chemicals (股份有限公司)製)、2〇〇〇Ppm作爲結晶核劑之 PTBBA— Al(大日本墨水化學工業(股份有限公司) 製),充分混合後,於20mm單軸混煉擠壓機中溶融混煉 造拉來製成顆粒。使用顆粒的一部份來進行所定的構造解 析’然後再使用殘留的顆粒射出成形來製成試驗片,並測 定其物性。 實施例1 7 除將第二段的共聚合時間設爲40分鐘外,其餘皆以 同於實施例1 6之方法進行。結果如表3 - 1所示。 實施例1 8 除將第一段的共聚合時間設爲40分鐘外,其餘皆以 同於實施例1 6之方法進行。結果如表3 - 1所示。 實施例1 9 除將第二段之的乙烯一丙烯的莫耳比設爲2.7: 7.3、 共聚合時間設爲60分鐘外,其餘皆以同於實施例16之方 法進行。結果如表3 - 1所示。 實施例20 除將固體觸媒成分調製時所使用的電子供予體由 -71 - (67) (67)200413421 2.7ml的正丁基丙二酸二乙酯變更爲3.1mi的二甲基丙二 酸二丁酯外,其餘皆以同於實施例17之方法進行。結果 如表3 - 1所示。 實施例2 1 除將所用觸媒變更爲實施例20所調製者外,其餘皆 以同於實施例1 7之方法進行。結果如表3 一 1所示。 • 實施例22 除將固體觸媒成分調製時所使用的電子供予體由 2.7ml的正丁基丙二酸二乙酯變更爲3.6ml的環戊基丙二 酸二丁酯外,其餘皆以同於實施例1 6之方法進行。結果 如表3 — 1所示。 實施例23 除將所用觸媒變更爲實施例22所調製者外,其餘皆 · 以同於實施例1 7之方法進行。結果如表3 - 1所示。 -72- (68) 200413421 表3-1 實施例 實施例 實施例 實施例 實施例 實施例 實施例 實施 16 17 18 19 20 21 22 例23 固體觸 電子供予體 com.A com.A com.A com.A com.B com.B com.C com.C 媒成分 反應溫度 °C 125 125 125 125 125 125 125 125 洗淨溫度 °C 125 125 125 125 125 125 125 125 第一段 聚合時間 分 60 60 30 60 60 60 60 60 聚合溫度 °C 70 70 70 70 70 70 70 70 氫氣壓 MPa 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 全壓 MPa 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 觸媒 mmol 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 TEA mmol 4 4 4 4 4 4 4 4 矽素化合物 種類 DCP DCP DCP DCP DCP DCP DCP DCP 矽素化合物 mmol 1 1 1 1 1 1 1 1 第二段 聚合時間 分 20 40 40 60 20 40 20 40 聚合溫度 °C 70 70 70 70 70 70 70 70 C2: C3 莫耳比 4.7: 5.3 4.7: 5.3 4.7: 5.3 2.7: 7.3 4.7: 5.3 4.7: 5.3 4.7: 5.3 4.7: 5.3 全壓 MPa 1 1 1 1 1 1 1 1 聚合結 MFR g/l〇 16.5 15.8 16.0 15.3 16.2 14.8 16.0 15.3 果 分 [V] dl/g 1.52 1.50 1.50 1.52 1.49 1.50 1.52 1.50 Mw/Mn 4.38 4.19 4.43 4.33 4.47 4.56 4.37 4.26 非晶部 w t % 17.6 21.8 32.5 20.8 18.0 20.9 17.8 20.8 乙烯含有量 mol% 40.2 42.0 40.5 25.1 41.5 40.9 41.7 42.0 彎曲彈性率 MPa 1360 1100 870 1100 1330 1090 1400 1080 常溫Izod kJ/m2 7.3 14.6 66.5 21.5 7.6 15.2 7.3 14.8 低溫Izod kJ/m2 4.2 6.7 20.6 6.6 4.4 6.5 4.4 6.3w (% by weight) = 100xC / A The content of insoluble components is expressed as (100-w)% by weight. (3) Measurement of impact strength -68- (64) (64) 200413421 Based on JIS-K7110, using test paper manufactured under injection molding to measure the temperature at 23 0 ° C, -30 ° C Notched Izod impact strength. (4) Measurement of flexural modulus The flexural modulus was measured based on JIS-K7210. Examples related to the measurement of [/?], The measurement of Mw / Mn, and the 13C-NMR ethylene content of xylene soluble components at room temperature (25 ° C), examples of propylene-ethylene random copolymers the same. Example 1 6 (1) Production of solid catalyst components After fully replacing a glass reactor with a stirrer with an internal volume of about 6 L by nitrogen, about 2430 g of ethanol with a water content of 100 ppm and 160 g of metal were introduced. Magnesium and 16 g of iodine can be reacted under the conditions of circulation and heating under the condition of stirring until hydrogen is no longer generated in the system, and a solid magnesium compound (diethoxy magnesium) can be obtained. Call Next, put 16 g of diethoxymagnesium into a three-necked flask equipped with a stirrer whose internal volume has been replaced with nitrogen of 0.5 L. Furthermore, 80 ml of dehydrated octane was added. Then, it was heated to 40 ° C, 2.4 ml of silicon tetrachloride was added, and after stirring for 20 minutes, 2.7 ml of diethyl n-butylmalonate was further added. The solution was warmed to 80 ° C, and then 77 ml of titanium tetrachloride was added dropwise using a dropping funnel. Then, the internal temperature was set to 125 t to perform a contact reaction for 2 hours. Thereafter, the stirring was stopped to precipitate a solid, and the supernatant liquid was taken out. Then, -69- (65) (65) 200413421 was added with 100 ml of dehydrated octane, and the temperature was raised to 125 ° C while stirring. After maintaining for 1 hour, the stirring was stopped to precipitate a solid, and the supernatant liquid was taken out. Repeat this washing operation 7 times. Furthermore, 122 ml of titanium tetrachloride was added so that the internal temperature was 1 2 5 ° C and the reaction was carried out for 2 hours. Secondly, washing was repeated 6 times with 1 2 5 t of dehydrated octane to obtain a solid catalyst component. (2) The polymerization method is sufficiently dried with nitrogen gas, and then a stainless steel sterilization kettle with a stirring device with an internal volume of 5 L replaced by propylene gas is maintained at 7 (TC, and then the pressure is increased to 0.0 5 MPa with propylene gas ( Gauge). In this state, add hydrogen to 0.4 8 MPa (Gauge), or slowly increase the pressure to 2.8 MPa (Gauge) with propylene gas. Second, put 60 ml of catalyst replaced by hydrogen gas into the tube. After taking 20ml of Gengyuan, 4.0mmole of triethylamine, 1mmole of dicyclopentyldimethoxysilane, and a solid catalyst component of 0.02mmole in terms of titanium atom, put them into a sterilization kettle to make the full pressure Propylene was injected at a rate of 2.8 MPa (Gauge) and polymerized for 60 minutes. Thereafter, it was depressurized to outside pressure, and once it was vacuum degassed, ethylene gas / propylene was added at a molar ratio of 4 · 7: 5 · 3. Gas to 1 MPa (Gauge), hold at 70 ° C, 1 MPa (Gauge) for 20 minutes to carry out propylene-ethylene copolymerization. After that, depressurize to outside air pressure and reduce the temperature to normal temperature, open the sterilizer and recover The resulting polymer powder. In the resulting block polypropylene powder Add 1000 ppm calcium stearate (manufactured by Nippon Oil & Fats Co., Ltd.) as a neutralizer, DHT-4 A (manufactured by Kyowa Chemical Co., Ltd.) at I500 ppm, and 75 Oppm as an antioxidant (66) (66) 200413421 P-EPQ (manufactured by Kurari Ando (Co., Ltd.)), 1,500 ppm irganocks100 (made by Chiba Special T Chemicals (Co., Ltd.)), 2000 Ppm as crystallization nucleating agent PTBBA—Al (manufactured by Dainippon Ink Chemical Industry Co., Ltd.), after being fully mixed, melted and kneaded in a 20mm uniaxial kneading extruder to form pellets. Part of the pellets are used for The predetermined structure was analyzed, and then the remaining pellets were injection-molded to make a test piece, and its physical properties were measured. Example 1 7 Except that the copolymerization time in the second stage was set to 40 minutes, the rest were the same as in the example. The method of 16 was performed. The results are shown in Table 3-1. Example 18 The method of Example 16 was performed except that the copolymerization time of the first stage was set to 40 minutes. The results were shown in Table 16. 3-1. Example 1 9 Divide The molar ratio of ethylene to propylene in the second stage was set to 2.7: 7.3, and the copolymerization time was set to 60 minutes, and the rest were performed in the same manner as in Example 16. The results are shown in Table 3-1. Examples 20 In addition to changing the electron donor used in the preparation of the solid catalyst component from -71-(67) (67) 200413421 2.7ml of diethyl n-butylmalonate to 3.1mi of dimethylmalonate Except for dibutyl ester, the rest were carried out in the same manner as in Example 17. The results are shown in Table 3-1. Example 2 1 Except that the catalyst used was changed to that prepared in Example 20, the rest were performed in the same manner as in Example 17. The results are shown in Table 3-1. • Example 22 Except that the electron donor used in the preparation of the solid catalyst component was changed from 2.7 ml of diethyl n-butylmalonate to 3.6 ml of dibutyl cyclopentylmalonate It was carried out in the same manner as in Example 16. The results are shown in Table 3-1. Example 23 The procedure was the same as in Example 17 except that the catalyst used was changed to the one prepared in Example 22. The results are shown in Table 3-1. -72- (68) 200413421 Table 3-1 Examples Example Examples Example Examples Example Implementation 16 17 18 19 20 21 22 Example 23 Solid Electron Donor com.A com.A com.A com .A com.B com.B com.C com.C Reaction temperature of medium component ° C 125 125 125 125 125 125 125 125 Washing temperature ° C 125 125 125 125 125 125 125 125 The first polymerization time is 60 60 30 60 60 60 60 60 Polymerization temperature ° C 70 70 70 70 70 70 70 70 Hydrogen pressure MPa 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 Full pressure MPa 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 Catalyst mmol 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 TEA mmol 4 4 4 4 4 4 4 4 Silicon compound type DCP DCP DCP DCP DCP DCP DCP DCP DCP Silicon compound mmol 1 1 1 1 1 1 1 1 Second polymerization time minutes 20 40 40 60 20 40 20 40 Polymerization temperature ° C 70 70 70 70 70 70 70 70 C2: C3 Molar ratio 4.7: 5.3 4.7: 5.3 4.7: 5.3 2.7: 7.3 4.7: 5.3 4.7: 5.3 4.7: 5.3 4.7: 5.3 Full pressure MPa 1 1 1 1 1 1 1 1 Convergence MFR g / l〇16.5 15.8 16.0 15.3 16.2 14.8 16.0 15.3 [V] dl / g 1.52 1.50 1.50 1.52 1.49 1.50 1.52 1.50 Mw / Mn 4.38 4.19 4.43 4.33 4.47 4.56 4.37 4.26 Amorphous weight% 17.6 21.8 32.5 20.8 18.0 20.9 17.8 20.8 mol% of ethylene content 40.2 42.0 40.5 25.1 41.5 40.9 41.7 42.0 Flexural modulus MPa 1360 1100 870 1100 1330 1090 1400 1080 Normal temperature Izod kJ / m2 7.3 14.6 66.5 21.5 7.6 15.2 7.3 14.8 Low temperature Izod kJ / m2 4.2 6.7 20.6 6.6 4.4 6.5 4.4 6.3

c o m . A 丁基丙二酸二乙酯 -73- (69) (69)200413421 c 〇 m . B 二甲基丙二酸二丁酯 c 〇 m . C 環戊基丙二酸二丁酯 DCP 二環戊基二甲氧基矽烷 TEA 三乙基鋁 實施例24 除將固體觸媒成分調製時所使用的電子供予體由 2.7ml的正丁基丙二酸二乙酯變更爲3.2ml的環丁烷—1,1 -二羧酸二丁酯外,其餘皆以同於實施例16之方法進 行。所得結果如表3 - 2所示。 實施例2 5 除將所用觸媒變更爲實施例24所調製者外,其餘皆 以同於實施例1 7之方法進行。結果如表3 - 2所示。 實施例26 除將聚合時所使用的矽烷化合物由環戊基二甲氧基矽 烷(DCPDMS)變更爲環己基異丁基二甲氧基矽烷外,其 餘皆以同於實施例1 6之方法進行。所得結果如表3 - 2所 示0 實施例2 7 (1)固體觸媒成份之製造 於以氮氣取代後之內容積爲500mL之附有攪拌器之 •74- (70) (70)200413421 三口燒瓶中,投入13.3g之氯化鎂(無水物)、70ml之癸 烷及65.5ml(0.42mole)之2 —乙基己醇’於130°C下進 行加熱反應2小時,成爲均勻溶液。之後’於該溶液中加 入3 . 1 2 g之苯二酸酸酐,於1 3 0 °C下再進行攪拌混合1小 時,將苯二酸酸酐溶解於上述之均勻溶液。 如此所得之均勻溶液,冷卻至室溫後,以1小時時間 全量滴入於373 ml之保存於—20 °C之四氯化鈦。滴下後, 將所得之均勻溶液之溫度,以4小時時間升溫至1 1 〇 °C, 至1 l〇°C時,加入3.4ml之正丁基丙二酸二乙酯,其後一 邊保持1 1 〇 °C,邊攪拌2小時。 2小時之反應終了後,趁熱過濾,採取固體部份,將 該固體部份,以275ml之四氯化鈦再度懸濁後,再次於 1 1 0 °C下,進行加熱反應2小時。 反應終了後,再次趁熱過濾,採取固體部份,使用 1 1 0 °C之癸烷及己烷洗淨。該洗淨係進行至洗淨液中未檢 出鈦化合物爲止,而得固體觸媒成份。 (2 )聚合方法 以同於實施例17之聚合方法進行聚合。結果如表3 一 2所示。 實施例2 8 (1 )預備聚合 於以氮氣取代後之內容積爲1L之附有攪拌器之三口 燒瓶中,投入4 8 g之實施例1 6所用的固體觸媒。 (71) (71)200413421 更者加入400ml之脫水處理過的庚烷。加熱至1〇 °C,再添加2· 7ml之三乙基鋁、2.0ml之二環戊基二甲氧 基矽烷。在其中於常溫下使丙烯氣體流通4小時來進行反 應。其後,使用脫水的庚烷充分地洗淨固體成分,即可獲 得預備聚合量40%的預備聚合觸媒。 (2 )聚合 以同於實施例1 6之方法進行。結果如表3 一 2所示。 比較例5 除將固體觸媒成分調製時所使用的電子供予體由正丁 基丙二酸二乙酯變更爲二異丁基丙二酸二乙酯,並將第二 段之的乙稀一丙嫌的旲耳比設爲5.0: 5.0外,其餘皆以 同於實施例1 7之方法進行。結果如表3 - 2所示。 比較例6 除將固體觸媒成分調製時所使用的電子供予體由正丁 基丙一酸一乙酯變更爲一異丁基两二酸二乙醋,並將第二 段之的乙稀一丙嫌的旲耳比設爲5·〇: 5.0外,其餘皆以 同於實施例27之方法進行。結果如表3 一 2所示。 -76- (72)200413421 表3 — 2 實施例 24 實施例 25 實施例 26 實施例 n 實施例 28 比較 例5 比較 例6 固體觸 媒成分 電子供予體 com.E com.E com.A com.A com.A com.D com.D 反應溫度 °C 125 125 125 110 125 125 110 洗淨溫度 °C 125 125 125 110 125 125 110 第一段 聚合時間 分 60 60 60 60 60 60 60 聚合溫度 °C 70 70 70 70 70 70 70 氫氣壓 MPa 0.48 0.48 0.48 0.48 0.48 0.48 0.48 全壓 MPa 2.8 2.8 2.8 2.8 2.8 2.8 2.8 觸媒 mmol 0.02 0.02 0.02 0.02 0.02 0.02 0.02 TEA mmol 4 4 4 4 4 4 4 矽素化合物 種類 DCP DCP CHB DCP DCP DCP DCP 矽素化合物 mmol 1 1 1 1 1 1 1 第二段 聚合時間 分 20 40 20 40 20 40 40 聚合溫度 °C 70 70 70 70 70 70 70 C2: C3 莫耳比 4.7: 5.3 4.7: 5.3 4.7: 5.3 4.7:5.3 4.7: 5.3 5.0: 5.0 5.0: 5.0 全壓 MPa 1 1 1 1 1 1 1 聚合結 果 MFR g/l〇 分 16.0 15.3 17.0 16.0 16.1 25.4 24.7 [V] dl/g 1.51 1.50 1.42 1.45 1.51 1.18 1.19 Mw/Mn 4.35 4.25 4.27 4.48 4.46 4.24 4.28 非晶部 w t % 17.6 20.6 17.5 20.9 17.7 20.5 21.0 乙烯含有量 mol% 41.8 42.0 40.0 41.5 40.7 40.5 41.2 彎曲彈性率 MPa 1300 1070 1300 1090 1350 980 990 常溫Izod kJ/m2 7.3 14.7 7.2 14.4 7.4 6.7 6.5 低溫Izod kJ/m2 4.4 6.3 4.2 6.5 4.3 5.7 5.8 -77- (73)200413421com. A butyl malonate-73- (69) (69) 200413421 c om. B dimethyl malonate c om. C cyclopentyl malonate DCP Dicyclopentyldimethoxysilane TEA triethylaluminum Example 24 Except changing the electron donor used when preparing the solid catalyst component from 2.7 ml of diethyl n-butylmalonate to 3.2 ml of Except for cyclobutane-1,1-dicarboxylic acid dibutyl ester, the rest were carried out in the same manner as in Example 16. The results are shown in Table 3-2. Example 2 5 The same procedure as in Example 17 was performed except that the catalyst used was changed to the one prepared in Example 24. The results are shown in Table 3-2. Example 26 The same procedure as in Example 16 was performed except that the silane compound used in the polymerization was changed from cyclopentyldimethoxysilane (DCPDMS) to cyclohexylisobutyldimethoxysilane. . The obtained results are shown in Table 3-2. Example 2 7 (1) Manufacture of solid catalyst components After the nitrogen volume is replaced, the volume is 500mL. • 74- (70) (70) 200413421 Three ports Into a flask, 13.3 g of magnesium chloride (anhydrous), 70 ml of decane, and 65.5 ml (0.42 mole) of 2-ethylhexanol 'were heated and reacted at 130 ° C for 2 hours to obtain a homogeneous solution. After that, 3.12 g of phthalic anhydride was added to the solution, and the mixture was stirred and mixed at 130 ° C for 1 hour, and then the phthalic anhydride was dissolved in the above uniform solution. The homogeneous solution thus obtained was cooled to room temperature, and then dropped into 373 ml of titanium tetrachloride stored at -20 ° C over a period of 1 hour. After dropping, the temperature of the obtained homogeneous solution was raised to 110 ° C over 4 hours, and when the temperature reached 110 ° C, 3.4 ml of diethyl n-butylmalonate was added, and then maintained at 1 10 ° C, stirring for 2 hours. After the completion of the reaction for 2 hours, the hot portion was filtered, and the solid portion was collected. The solid portion was suspended again with 275 ml of titanium tetrachloride, and then heated at 110 ° C for 2 hours. After the reaction was completed, the solution was filtered while still hot. The solid portion was collected and washed with decane and hexane at 110 ° C. This cleaning is performed until no titanium compound is detected in the cleaning solution, and a solid catalyst component is obtained. (2) Polymerization method Polymerization was performed by the same polymerization method as in Example 17. The results are shown in Tables 3 and 2. Example 2 8 (1) Preliminary polymerization In a three-necked flask equipped with a stirrer with an internal volume of 1 L after nitrogen substitution, 4 8 g of the solid catalyst used in Example 16 was charged. (71) (71) 200413421 Furthermore, 400 ml of dehydrated heptane is added. Heat to 10 ° C, and add 2.7 ml of triethylaluminum and 2.0 ml of dicyclopentyldimethoxysilane. The reaction was carried out by circulating propylene gas at room temperature for 4 hours. Thereafter, the solid content was sufficiently washed with dehydrated heptane to obtain a preliminary polymerization catalyst having a preliminary polymerization amount of 40%. (2) Polymerization was carried out in the same manner as in Example 16. The results are shown in Tables 3 and 2. Comparative Example 5 Except for changing the electron donor used in the preparation of the solid catalyst component from diethyl n-butylmalonate to diethyl diisobutylmalonate, and changing the ethylene in the second stage Except that the ratio of ear to ear is 5.0: 5.0, the rest are performed in the same manner as in Example 17. The results are shown in Table 3-2. Comparative Example 6 Except for changing the electron donor used in the preparation of the solid catalyst component from n-butylmalonic acid monoethyl ester to monoisobutyldiac diacetate, and changing the ethylene in the second stage Except that the ear to ear ratio was set to 5.0: 5.0, the rest were performed in the same manner as in Example 27. The results are shown in Tables 3 and 2. -76- (72) 200413421 Table 3-2 Example 24 Example 25 Example 26 Example n Example 28 Comparative Example 5 Comparative Example 6 Solid catalyst component electron donor com.E com.E com.A com .A com.A com.D com.D Reaction temperature ° C 125 125 125 110 125 125 110 Washing temperature ° C 125 125 125 110 125 125 110 The first polymerization time is 60 60 60 60 60 60 60 Polymerization temperature ° C 70 70 70 70 70 70 70 Hydrogen pressure MPa 0.48 0.48 0.48 0.48 0.48 0.48 0.48 Full pressure MPa 2.8 2.8 2.8 2.8 2.8 2.8 2.8 Catalyst mmol 0.02 0.02 0.02 0.02 0.02 0.02 0.02 TEA mmol 4 4 4 4 4 4 4 Silicon compound Type DCP DCP CHB DCP DCP DCP DCP DCP Silicon compound mmol 1 1 1 1 1 1 1 Second polymerization time 20 40 20 40 20 40 40 Polymerization temperature ° C 70 70 70 70 70 70 70 C2: C3 Molar ratio 4.7 : 5.3 4.7: 5.3 4.7: 5.3 4.7: 5.3 4.7: 5.3 5.0: 5.0 5.0: 5.0 Full pressure MPa 1 1 1 1 1 1 1 Polymerization result MFR g / l0 points 16.0 15.3 17.0 16.0 16.1 25.4 24.7 [V] dl / g 1.51 1.50 1.42 1.45 1.51 1.18 1.19 Mw / Mn 4.35 4.25 4.27 4.48 4.46 4.24 4.28 Non Part weight% 17.6 20.6 17.5 20.9 17.7 20.5 21.0 Ethylene content mol% 41.8 42.0 40.0 41.5 40.7 40.5 41.2 Flexural modulus MPa 1300 1070 1300 1090 1350 980 990 Normal temperature Izod kJ / m2 7.3 14.7 7.2 14.4 7.4 6.7 6.5 Low temperature Izod kJ / m2 4.4 6.3 4.2 6.5 4.3 5.7 5.8 -77- (73) 200413421

c o m . A c o m . D c om . E DCP CHB TEA 丁基丙二酸二乙酯 二異丁基丙二酯二乙酯 二環丁基-1,1-羧酸二丁基酯 二環戊基二甲氧基矽烷 環己基異丁基二甲氧基矽烷 三乙基鋁 產業上利用性 依據本發明,提供可得到聚合活性高、立體規則性及 @末S態優異之烯烴聚合物之聚合烯烴用觸媒及烯烴聚合 物之製造方法。 依據本發明,可提供新型丙烯一乙烯共聚合用觸媒以 及丙嫌-乙烯共聚物之製造方法。 依據本發明,可提供乙烯含有量高、低分子量非晶成 分少之丙烯-乙烯無規共聚物。 依據本發明,可提供具有優秀剛性、耐衝擊性等之物 性平衡的丙烯一乙烯嵌段共聚物。 【圖式簡單說明】 Μ 1係表示本發明之聚合烯烴用觸媒及烯烴聚合物之 製造方法之模式圖。 圖2係表示本發明之丙烯一乙烯共聚合用觸媒及丙烯 一乙烯共聚物的製造方法之模式圖。 -78-com. A com. D com. E DCP CHB TEA Butyl malonate Dimethoxysilane cyclohexyl isobutyldimethoxysilane triethylaluminum Industrial applicability According to the present invention, a polymerized olefin can be obtained which can obtain an olefin polymer with high polymerization activity, stereoregularity and excellent @end S state. Catalyst and olefin polymer manufacturing method. According to the present invention, a novel catalyst for propylene-ethylene copolymerization and a method for producing a propylene-ethylene copolymer can be provided. According to the present invention, a propylene-ethylene random copolymer having a high ethylene content and a low amount of low molecular weight amorphous components can be provided. According to the present invention, it is possible to provide a propylene-ethylene block copolymer having a balance of physical properties such as excellent rigidity and impact resistance. [Brief description of the drawings] M 1 is a schematic diagram showing a method for producing a catalyst for polymerizing olefins and an olefin polymer according to the present invention. Fig. 2 is a schematic view showing a method for producing a propylene-ethylene copolymerization catalyst and a propylene-ethylene copolymer according to the present invention. -78-

Claims (1)

200413421 Π) 拾、申請專利範圍 1· 一種聚合烯烴用固體觸媒成份,其特徵爲,使下 述化合物(i) 、 (ii)及(iV)或下述化合物 (i ) ' ( i i ) 、( i 1 i )及(i V )反應所得者。 (i )含有鹵素之鈦化合物 4 (i i )金屬鎂、醇類及相對於1莫耳之上述金屬鎂 之含有O.OOOlg原子以上之鹵素原子之鹵素及/含有鹵素 之化合物反應所得之含有烷氧基之鎂化合物 參 (i i i )含有鹵素之矽化合物 (i V)以下述之一般式(〗)所表示之電子供予性 化合物 R1 (I)200413421 Π) Patent application scope 1. A solid catalyst component for polymerizing olefins, characterized in that the following compounds (i), (ii) and (iV) or the following compounds (i) '(ii), (I 1 i) and (i V) reaction. (i) Halogen-containing titanium compound 4 (ii) Metal magnesium, alcohols, and halogens containing halogen atoms of at least 1,000 lg atoms with respect to 1 mol of the above-mentioned metal magnesium, and / Oxygen-containing magnesium compound (iii) Halogen-containing silicon compound (i V) is an electron donating compound R1 (I) represented by the following general formula () R2—〇—C——C——C—0—R3 II I II ο I 〇 Η [一般式(I)中,R1爲碳數1以上的直鏈狀或支 鏈狀的烷基,R2至R3爲互相獨立,碳數1〜20的直鏈狀 或支鏈狀的烷基]。 2. 如申請專利範圍第1項之聚合烯烴用固體觸媒成 份,其中,前記化合物(i i )的鹵素爲碘。 3. 如申請專利範圍第1項之聚合烯烴用固體觸媒成 份,其中,前記化合物(i i )之含鹵素化合物爲氯化 鎂。 -79· (2) (2)200413421 4·如申請專利範圍第1項之聚合烯烴用固體觸媒成 份’其中,前述含鹵素之矽化合物(i i i)爲四氯化 砂。 5 .如申請專利範圍第1項之聚合烯烴用固體觸媒成 份’其中,前述電子供予性化合物(1 V )爲正丁基丙二 酸二乙酯。 6 ·如申請專利範圍第1項之聚合烯烴用固體觸媒成 份’其中,使前述之化合物(i ) 、( i i ) 、( i V ) 反應時’使前述含鹵素的鈦化合物(i )以及前述含烷氧 基的鎂化合物(i i )接觸後,再與前述電子供予性化合 物(i V )接觸。 7* 一種聚合烯烴用觸媒,其特徵爲,含有下述成份 [A]及[B]或下述成份[A]、[B]及[C], [A ]如申請專利範圍第1項之固體觸媒成份 [B] 有機鋁化合物 [C] 電子供予性化合物。 8* 一種烯烴聚合物的製造方法,其特徵爲,使用如 申請專利範圍第7項的觸媒來聚合烯烴。 9. 一種丙烯-乙烯共聚合用固體觸媒成份,其特徵 爲,使下述化合物(a) 、 ( b ) 、 (c)或下述化合物 (a ) 、( b ) 、( c ) 、( d )反應所得者, (a )鎂化合物 (b )鈦化合物化合物 (c ) 一般式(Π )所表示之電子供予性化合物 -80- (3) 200413421 R4 (Π) &amp; r2—〇—C—C—C 一 0—R3 R5 [一般式(Π)中,R4爲碳數1〜2 0直鏈狀、支鏈狀或環狀 的烷基,R5爲Η或碳數1〜2的烷基,R4及R5亦可爲相互 結合而形成環,R2及R3可相同亦可相異而爲碳數1〜20 直鏈狀或支鏈狀的烷基] (d )砂化合物。 10.如申請專利範圍第9項之丙烯一乙烯共聚合用固 體觸媒成份,其中,前述固體觸媒成分係在前述化合物 (b )的存在下,於120〜15(TC下,使前記化合物(a) 及(c ),或前記化合物(a ) 、( c )及(d )接觸後,再 於100〜150 °C下藉由不活性溶劑來洗淨所獲得之固體觸 媒成份。 1 1 ·如申請專利範圍第9項之丙烯-乙烯共聚合用固 體觸媒成份,其中,前記鎂化合物(a )係金屬鎂、醇類 及相對於1莫耳之上述金屬鎂之含有0·0 00 lg原子以上之 鹵素原子之鹵素及/含有鹵素之化合物反應所得之含有院 氧基之鎂化合物。 12·如申請專利範圍第9項之丙烯一乙烯共聚合用固 體觸媒成份,其中,在前記一般式(Π)中,R4爲碳數 1〜20直鏈狀、支鏈狀或環狀的烷基,R5爲η或碳數1〜2 的烷基。 -81 - (4) (4)200413421 1 3 ·如申請專利範圍第9項之丙烯-乙烯無規用固體 觸媒成份,其中,前記電子供予性化合物(c )爲正丁基 丙二酸二乙酯。 14·如申請專利範圍第9項之丙烯一乙烯無規用固體 觸媒成份,其中,前記電子供予性化合物(c )爲環丁烷 —1,1 一二羧酸二丁酯。 15· —種丙烯-乙烯共聚合用觸媒,其特徵爲,含有 下述成份[A]及[B]或下述成份[A]、[B]及[C], [A] 如申請專利範圍第9項之固體觸媒成份 [B] 有機鋁化合物 [C] 電子供予性化合物。 16·如申請專利範圍第9項之丙烯-乙烯共聚合用觸 媒,其中,前記觸媒係在[A]、[B]及[C]的存在下與α-烯 烴類接觸所得,預備聚合量0.1〜100重量%之預備聚合 觸媒。 17. —種丙烯-乙烯無規共聚物的製造方法,其特徵 爲使用如申請專利範圍第1 6項的觸媒來無規共聚合丙烯 與乙烯者。 18· —種丙烯-乙烯無規共聚物,其特徵爲藉由如申 請專利範圍第1 7項的製造方法所獲得者。 19·如申請專利範圍第18項之丙烯-乙烯無規共聚 物,其中’乙烯含有量爲〇·1重量%以上4重量%以下, 〇°C可溶成份量爲1.0重量%以下。 20.如申請專利範圍第18項之丙烯-乙烯無規共聚 -82 - (5) (5)200413421 物,其中,乙烯含有量多於4重量%爲5重量%以下,〇 °C可溶成份量多於1.0重量%爲2·〇重量%以下。 21. —種丙烯-乙烯嵌段共聚物的製造方法,其特徵 爲包含使丙烯聚合來形成聚丙烯成分之製程,以及使乙烯 與丙烯聚合來形成乙烯/丙烯共聚物成分之製程者,在前 記聚丙烯成分形成製程與前記乙烯/丙烯共聚物成分形成 製程裡至少一種製程中,使用如申請專利範圍第1 5項的 觸媒。 22. —種丙烯-乙烯嵌段共聚物,其特徵爲藉由如申 請專利範圍第21項的製造方法所獲得者。 23·如申請專利範圍第22項之丙嫌一乙烯嵌段共聚 物,其中,MFR爲10〜20g/l〇分。 •83-R2—〇—C——C——C—0—R3 II I II ο I 〇Η [In the general formula (I), R1 is a linear or branched alkyl group having 1 or more carbon atoms, and R2 to R3 is a linear or branched alkyl group having 1 to 20 carbon atoms independently of each other]. 2. The solid catalyst component for polymerized olefins according to item 1 of the patent application scope, wherein the halogen of the aforementioned compound (i i) is iodine. 3. For example, the solid catalyst component for polymerized olefins in the scope of patent application, wherein the halogen-containing compound of the aforementioned compound (i i) is magnesium chloride. -79 · (2) (2) 200413421 4 · As in the solid catalyst component for polymerized olefins in the scope of application for item 1 ', wherein the aforementioned halogen-containing silicon compound (i i i) is sand tetrachloride. 5. The solid catalyst component for polymerized olefins according to item 1 of the application, wherein the aforementioned electron donating compound (1 V) is diethyl n-butylmalonate. 6. If the solid catalyst component for polymerized olefins according to item 1 of the patent application 'wherein the aforementioned compounds (i), (ii), (iV) are reacted', the aforementioned halogen-containing titanium compounds (i) and After the aforementioned alkoxy-containing magnesium compound (ii) is contacted, it is then contacted with the aforementioned electron-donating compound (i V). 7 * A catalyst for polymerizing olefins, which is characterized in that it contains the following components [A] and [B] or the following components [A], [B] and [C], [A] as described in item 1 of the scope of patent application Solid catalyst component [B] Organoaluminum compound [C] Electron donating compound. 8 * A method for producing an olefin polymer, characterized in that a catalyst such as item 7 of the patent application is used to polymerize an olefin. 9. A solid catalyst component for propylene-ethylene copolymerization, characterized in that the following compounds (a), (b), (c) or the following compounds (a), (b), (c), ( d) the reaction result, (a) a magnesium compound (b) a titanium compound compound (c) an electron-donating compound represented by the general formula (Π) -80- (3) 200413421 R4 (Π) &amp; r2—〇— C—C—C—0—R3 R5 [In the general formula (Π), R4 is a linear, branched or cyclic alkyl group having 1 to 2 carbon atoms, and R5 is fluorene or 1 to 2 carbon atoms Alkyl groups, R4 and R5 may be bonded to each other to form a ring, and R2 and R3 may be the same or different, and may be a linear or branched alkyl group having 1 to 20 carbon atoms] (d) a sand compound. 10. The solid catalyst component for propylene-ethylene copolymerization according to item 9 of the scope of the patent application, wherein the solid catalyst component is in the presence of the aforementioned compound (b) at 120 to 15 (TC, the previously mentioned compound is used). (A) and (c), or the aforementioned compounds (a), (c) and (d) are contacted, and then the obtained solid catalyst component is washed with an inactive solvent at 100 to 150 ° C. 1 1. The solid catalyst component for propylene-ethylene copolymerization according to item 9 of the scope of the patent application, wherein the magnesium compound (a) described above is a metal magnesium, an alcohol, and the above-mentioned metal magnesium contains 1 · 0 A magnesium compound containing an oxy group obtained by reacting a halogen atom having a halogen atom of more than 00 lg atoms and / or a halogen-containing compound. 12. As a solid catalyst component for propylene-ethylene copolymerization, such as in item 9 of the patent application scope, In the general formula (Π), R4 is a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, and R5 is an η or alkyl group having 1 to 2 carbon atoms. -81-(4) (4 ) 200413421 1 3 · If the propylene-ethylene random solid catalyst component for item 9 of the patent application scope, The former electron-donating compound (c) is diethyl n-butylmalonate. 14. The propylene-ethylene random solid catalyst component according to item 9 of the patent application scope, among which the aforementioned electron-donating compound (C) is cyclobutane-1,1 dibutyl dicarboxylic acid. 15 · —A catalyst for propylene-ethylene copolymerization, characterized in that it contains the following components [A] and [B] or the following Ingredients [A], [B], and [C], [A] For example, the solid catalyst component [B] Organoaluminum compound [C] Electron donating compound in item 9 of the scope of patent application. The catalyst for propylene-ethylene copolymerization according to item 9, wherein the former catalyst is obtained by contacting α-olefins in the presence of [A], [B], and [C], and the preliminary polymerization amount is 0.1 to 100% by weight. Preparative polymerization catalyst. 17. A method for producing a propylene-ethylene random copolymer, which is characterized in that a catalyst such as item 16 in the scope of patent application is used to randomly copolymerize propylene and ethylene. 18 · —propylene -An ethylene random copolymer, characterized by being obtained by a manufacturing method as described in item 17 of the scope of patent application. The propylene-ethylene random copolymer in the range of item 18, wherein the content of ethylene is from 0.1% by weight to 4% by weight, and the content of soluble component at 0 ° C is 1.0% by weight or less. The propylene-ethylene random copolymer of 18 items -82-(5) (5) 200413421, wherein the ethylene content is more than 4% by weight and the content is less than 5% by weight, and the content of soluble components at 0 ° C is more than 1.0% by weight. 2.0% by weight or less. 21. A method for producing a propylene-ethylene block copolymer, comprising a process of polymerizing propylene to form a polypropylene component, and polymerizing ethylene and propylene to form an ethylene / propylene copolymer. In the component manufacturing process, a catalyst such as item 15 of the scope of patent application is used in at least one of the foregoing polypropylene component forming process and the foregoing ethylene / propylene copolymer component forming process. 22. A propylene-ethylene block copolymer characterized by being obtained by a manufacturing method as claimed in claim 21 of the patent scope. 23. The propylene glycol monoblock copolymer according to item 22 of the application, wherein the MFR is 10 to 20 g / 10 minutes. • 83-
TW92101712A 2003-01-27 2003-01-27 Catalysts for polymerizing olefins and process for producing olefin polymer TW200413421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92101712A TW200413421A (en) 2003-01-27 2003-01-27 Catalysts for polymerizing olefins and process for producing olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92101712A TW200413421A (en) 2003-01-27 2003-01-27 Catalysts for polymerizing olefins and process for producing olefin polymer

Publications (1)

Publication Number Publication Date
TW200413421A true TW200413421A (en) 2004-08-01

Family

ID=52340557

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92101712A TW200413421A (en) 2003-01-27 2003-01-27 Catalysts for polymerizing olefins and process for producing olefin polymer

Country Status (1)

Country Link
TW (1) TW200413421A (en)

Similar Documents

Publication Publication Date Title
KR101171128B1 (en) Magnesium compound, catalyst for olefin polymerization and method for producing olefin polymer
TWI605067B (en) Method for producing solid catalyst component for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
TWI593713B (en) Solid catalyst component for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
WO2004020480A1 (en) Solid catalyst component for olefin polymerization and catalyst
WO2012060361A1 (en) Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and olefin polymers
JPWO2006013876A1 (en) Magnesium compound, solid catalyst component, olefin polymerization catalyst, and process for producing olefin polymer
KR101088945B1 (en) Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for producing olefin polymer
WO2004065429A1 (en) Catalysts for polymerizing oelfins and process for producing olefin polymer
JP5058400B2 (en) Propylene-based block copolymer production method and propylene-based block copolymer
JP4240870B2 (en) Propylene-ethylene random copolymer and method for producing the same
WO2008066200A1 (en) Catalyst component for olefin polymerization, and catalyst and method for producing olefin polymer using the same
TW200413421A (en) Catalysts for polymerizing olefins and process for producing olefin polymer
JP4841361B2 (en) Olefin polymerization catalyst component, catalyst, and process for producing olefin polymer using the same
JPH07309913A (en) Polypropylene
JP4079686B2 (en) Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
JP2006298818A (en) Ethoxy-containing magnesium compound, solid catalytic component, olefin polymerization catalyst and preparation method of polyolefin
JPH11269218A (en) Solid catalytic component for olefin polymer preparation, catalyst for olefin polymer preparation and preparation of olefin polymer
JP4018893B2 (en) Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
JP4879931B2 (en) Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
JP4993968B2 (en) Olefin polymerization catalyst component, catalyst, and process for producing olefin polymer using the same
JP4199894B2 (en) Propylene-ethylene random copolymer production method and propylene-ethylene random copolymer
JP3954830B2 (en) Propylene-ethylene block copolymer and method for producing the same
KR20010051108A (en) Catalyst for olefin polymerization, process for producing olefin polymer, and olefin polymer
JP2003327615A (en) Solid catalyst component for olefin polymerization, olefin polymerization catalyst and method for manufacturing olefin polymer
JP4223738B2 (en) Magnesium compound, solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing polyolefin