TW200412203A - Matching box, vacuum device using the same, and vacuum processing method - Google Patents

Matching box, vacuum device using the same, and vacuum processing method Download PDF

Info

Publication number
TW200412203A
TW200412203A TW092125097A TW92125097A TW200412203A TW 200412203 A TW200412203 A TW 200412203A TW 092125097 A TW092125097 A TW 092125097A TW 92125097 A TW92125097 A TW 92125097A TW 200412203 A TW200412203 A TW 200412203A
Authority
TW
Taiwan
Prior art keywords
control
winding
vacuum
plasma
variable inductance
Prior art date
Application number
TW092125097A
Other languages
Chinese (zh)
Other versions
TWI281839B (en
Inventor
Yoshikuni Horishita
Taro Yajima
Minoru Akaishi
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of TW200412203A publication Critical patent/TW200412203A/en
Application granted granted Critical
Publication of TWI281839B publication Critical patent/TWI281839B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale

Abstract

The object of the present invention is to provide a vacuum device which easily regenerates plasma. To achieve the object, in a matching box 2 used for the inventive vacuum device 1, impedance can be changed by changing values of inductances of variable inductance elements 31 and 35. Since the inductance values of the variable inductance elements 31 and 35 can be controlled by controlling a capacity of DC power source, a matching operation is performed at high speed.

Description

200412203 (1) 玖、發明說明 【發明所屬之技術領域】 本發明是關於一種真空裝置,尤其是使用離子槍的真 空裝置。 【先前技術】 在使用離子槍的成膜處理,有將以離子源所生成的電 漿,相撞於靶材,而由靶材面所飛散的濺鍍粒子來進行膜 形成的離子束濺鍍法,或是以電子槍蒸發薄膜材料,並利 用離子槍來輔助成膜的離子輔助蒸鍍法等作爲代表性的成 膜手法。又,離子槍是不僅成膜處理,也使用在具有離子 束來進行鈾刻的離子束蝕刻法。 利用於此種處理的離子槍,藉由在其內部發生電漿的 方法有代表性的三種類方式。此種爲施加交流電力來發生 電漿的RF離子槍方式,發生依熱燈絲的電漿的燈絲方式 ,將直流電力施加於空心陰極的空心陰極方式等的代表性 離子槍的實現方式。 此種中,作爲RF離子槍方式的很大的優點,使用氧 氣體,有可長時間處理絕緣物,尤其是必須爲通信用的光 學用濾波器等的成膜裝置或蒸鍍裝置者。例如,在通信用 的窄頻帶濾波器,爲了層積100層以上Si〇2與Ta2〇5的膜 ,其成膜時間是會達數十時間以上。使用於此種情形的 R G離子槍是可進彳了長時間穩定的放電爲一極重要的性能 (2) (2)200412203 以離子束濺鍍的例子表示使用RF離子槍的裝置的槪 要。 第5圖的記號1 01是使用RF離子槍的習知技術的成膜 裝置的一例子,具有真空槽Π 1。 在真空槽1 1 1的壁面,設有RF離子槍1 12,及電子發 生源113 ; RF離子槍112是經由匹配器102連接於電源119 〇 在真空槽1 1 1內配置有靶材1 1 5,真空排氣真空槽1 1 1 內,起動電源1 1 9,經由匹配器1 02將離子生成用電力供於 RF離子槍1 12,則在RF離子槍112內部生成離子。 又,起動電子發生源1 1 3,一面從電子發生源1 1 3放出 電子,一面從RF離子槍放出離子束1 2 1,則離子束.12 1中 的陽離子被電子中和,使得中性粒子照射在耙材1 1 5,從 靶材1 1 5,構成靶材1 1 5的粒子飛出成爲濺鍍粒子1 2 3。 成膜對象的基板1 1 7是平行地配置於靶材1 1 5,當濺鍍 粒子123附著於基板1 17,則在基板1 17表面形成有薄膜 〇 如上述的RF離子槍1 12是在離子被生成時,及離子穩 定地放出時,使得其內部的阻抗會大變化。 如第6圖所示地,習知技術的匹配器1 02,是具有可變 電容器1 3 4、1 3 5 ;電源1 1 9側的輸入端子1 3 1是藉由可變電 容器1 3 5被接地,而且藉由其他可變電容器1 3 4與線圈1 3 3 的串聯連接電路連接於RF離子槍1 12側輸出端子132。 依據此種構成,變更可變電容器134、135的電容値, (3) (3)200412203 就可變更匹配器102的阻抗。 然而,可變電容器134、35是移動構成電容器的電極 ,來變更電極間距離,以變更電容値。所以在RF離子槍 1 12內的阻抗,欲匹配匹配器102的阻抗的時間上,需要數 百ms至數秒鐘的缺點問題。 習知在使用RF離子槍1 1 2的成膜裝置1 0 1中,阻抗的 匹配速度並不被重視,惟在最近,如在通信用的窄頻帶濾 波器的成膜處理,須層積1 0 0 層以上薄膜之故,因而需 要數十時間的連續成膜,又,其膜厚精度逐漸被要求在約 ±0.001%以上。 在此種情形,若由電極的污垢等而發生電弧放電等, 停止交流放電,則在該機械式可變電容器方式的匹配器 1 02,僅在再起動使得匹配器施以匹配所需的時間也需要 數秒鐘以上,因此,若再起動RF離子槍1 12,也藉由停止 數秒鐘以上的薄膜而成爲不良品。 亦即,數十小時的精密成膜製造作業,僅一次的數秒 鐘的放電中斷而失敗的極大缺點問題。 習知技術有日本特開平9- 1 6 1 704,日本特開平9-92199 ,特開 2000-165175 。 【發明內容】 本發明是用以解決上述習知技術的不方便而創作者, 其目的是在於提供一種高速地進行阻抗控制的匹配器,及 使用該匹配器,再生成電漿所需的時間較短的真空裝置。 -7- (4) (4)200412203 又,其他目的是在於提供一種將再生成電漿成爲容易的真 空處理方法。 爲了解決上述課題,申請專利範圍第1項所述的發明 ,一種匹配器,屬於連接於電漿發生裝置,變更從交流電 源所輸入的交流電力的相位,並輸出至上述電漿發生裝置 的匹配器,其特徵爲:上述匹配器是具有可變電感元件; 上述可變電感元件是具有:決定該可變電感元件的阻抗主 繞組,及與上述主繞組互相地磁性結合的控制繞組;具有 上述主繞組的阻抗以流在上述控制繞組的直流電流的大小 來控制所構成的電感元件。 本發明是如上述地構成,匹配器所具有的可變電感元 件的阻抗可電氣式地控制所構成。因此,與機械式控制相 比較,可將匹配器的阻抗快速地變更之故,因而再生成電 漿所需的時間極短。 又’再生成電漿之際,從電子發生源所放出的電子被 吸進離子化室內之故,因而電子成爲再生成電漿的種子, 使得再生成電漿變成容易。 【實施方式】 第1圖是表示本發明的一例的真空裝置,具有真空糟 11°在真空槽11的壁面設有電漿發生裝置12,及電子發生 源1 3 ;在真空槽1丨的外部配設有交流電源〗9 ;及直流電壓 源29 〇 將電漿發生裝置12及匹配器2的內部表示於第2圖。 (5) (5)200412203 匹配器2是具有:輸入端子5 1,接地端子5 9,接地側 輸出端子52以及高電壓側輸出端子53。 匹配器2的接地端子5 4是被接地;接地側輸出端子5 2 是藉由匹配器2的下述內部電路被連接於接地端子5 4。 匹配器2的輸入端子5 1是藉由遮蔽線被連接於交流電 源1 9,當交流電力從交流電源1 9被輸出,則藉由內部電路 來控制大小與相位,從高電壓側輸出端子5 3被輸出。 該真空裝置1的電駿發生裝置12是RF離子槍,具有離 子化室4 1。在離子化室4 1的周圍,捲有線圈4 2,在線圈4 2 的一端,是被連接於匹配器2的高電壓側輸出端子5 3,而 另一端是被連接於接地側輸出端子52。接地側輸出端子52 是藉由匹配器2內的下述第四電容器37被連接於接地電位 〇 因此,當交流電壓從高電壓側輸出端子5 3被輸出,則 交流電流流在線圈,而在離子化室4 1內形成有交流磁場。 在電漿發生裝置1 2與電子發生源1 3,分別連接有氣體 供給系統26、27,而在真空槽1 1連接有真空排氣系統14 〇 將成膜對象的基板1 6配置在真空槽1 1內,而藉由真 空排氣系統1 4真空排氣真空槽1 1內一直到所定壓力。又, 事先真空排氣真空槽Π內,一面維持真空狀態一面將基板 17搬進真空槽1 1內。 之後,在離子化室41內導入氣體,並在離子化室41內 部形成交流磁場,則被導入的氣體被電漿化。第2圖的記 (6) (6)200412203 號43是表示該電漿,藉由導入氣體的電離所生成的正離子 包括在電漿42中。 在離子化室4 1的開口附近,從離子化室4 1側朝放出口 4 9依序配置有第一至第三的電極45、46、47。 第一、第二電極45、46是分別被連接於直流電源29, 構成能施加所期望的極性及所期望的大小的電壓。在這裏 第一、第二電極45、46,分別施加如+1 .5KV,-1KV的電 壓。該電壓是並不一定被限定於該値者。 第三電極47是被連接於真空槽11,構成成爲與真空槽 1 1相同接地電位(0V )。 在第一至第三電極4 5〜4 7,分別形成有多數孔,包括 於電漿43中的正離子,經孔進入第一電極45與第二電極46 之間,則正離子是藉由第一、第二電極45、46所形成的電 場朝第二電極4 6方向被加速,藉由第三電極4 7被聚束之後 ,從放出口 4 9被放出至真空槽1 1內。 記號20是表示被放出至真空槽1 1內的正離子的流動( 正離子流)。該正離子流2 〇是朝靶材1 5方向飛行。 這時,在電子發生源1 3 ’從氣體供給系統27導入有電 離用氣體,來電離被導入在電子發生源13內的電離氣體^ 並朝正離子流2 0照射所生成的電子’則正離子是藉由電子 被中和。記號2 2是表示電子發生源1 3所放出的電子。 藉由該中和來生成中性粒子’當照射在靶材1 5 ’則薄 膜成長開始於基板1 7表面。 離子化室4 1內的電漿4 3在生成前與生成之後’會使線 (7) (7)200412203 圈4 2與離子化室41所構成的電氣式電路的阻抗發生變化。 因此,當形成有電漿4 3,則變更匹配器2內的阻抗,而必 須匹配阻抗。 以下,說明匹配器2的構成與阻抗的匹配方法。 匹配器2是具有:第一、第二可變電感元件31、35, 及第一、第二、第三、第四電容器32、36、34、37。 第一可變電感元件31及第一電容器32是被串聯連接, 而匹配器2的輸入端子5 1及高電壓側輸出端子5 3是藉由該 串聯連接電路被連接。 第二可變電感元件35及第二電容器36是被串聯連接, 在該串聯連接電路並聯連接有第三電容器34以構成接地電 路33 ;輸入端子51是藉由串聯連接電路被連接於高電醫側 輸出端子5 3,而且藉由接地電路3 3被連接於接地端子。 因此,當第一可變電感元件31的電感値變更,則輸入 端子5 1與高電壓側輸出端子5 3之間的阻抗會變更,而當第 二可變電感元件3 5的電感値變更,則輸入端子5 1與接地端 子5 4之間的阻抗會變更。 第3 (a)圖是表示第一、第二可變電感元件31、35的 內部構成的電路圖;記號6 8、6 9是連接於其他元件或電路 所用的端子。 第一、第二可變電感元件31、35是具有主繞組61及控 制繞組62及鐵心63。 主繞組6 1與控制繞組6 2是經由鐵心6 3互相地被磁性結 合。亦即,在控制繞組6 2流著電流’ 通貫通鐵心6 3的內 -11 - (8) (8)200412203 部,則該磁通是構成也能貫通主繞組6 1。 在控制繞組62,連接有控制電源65,構成成爲從控制 電源65所輸出的電流流在控制繞組62。控制繞組65是被連 接於控制電路66,構成隨著從控制電路66所輸入的信號, 能變更輸出於控制繞組62的直流電流大小。 在第一、第二的可變電感元件3 1、3 5的控制繞組62, 分別連接有其他的控制電源65,藉由各控制電源65,在第 一、第二可變電感元件31、3 5的控制繞組62,構成能供給 鲁 不相同大小的電源。若能將所期望大小的電流供給於第一 、第二可變電感元件3 1、35,則控制電源65是一台也可以 〇 第3 ( b )圖是表示主繞組6 1 0勺磁場強度與磁通密度的 關係圖表。 言己號Ρ、Q、R是圖表上的點;點Ρ是流在控制繞組62 的電流爲零的情形;點Q是流在控制繞組62的電流較小的 情形;點R是電流大於點Q的情形。 # 各點Ρ、Q、R的主繞組6 1的電感大小是比例於各點Ρ 、Q、R的圖表傾斜之故,因而電感的大小是點Ρ>點Q>點 R。如此地,主繞組61的電感値是在控制繞組62流著大電 流則變小,相反地將所流的電流變小則變大。 因此,變更流在控制繞組6 2的直流電流的大小,就可 控制主繞組6 1的電感大小。個別地控制流在第一、第二可 變電感元件3 1、3 5的控制繞組62的直流電流大小,就可不 依賴馬達等的機械式手段,隨著離子化室4 1的內部狀態, -12- (9) 200412203 可將控制繞組2的阻抗電氣式地變更成所期望數値。 具體而言,在離子化室41生成電漿43之際,必需較大 投入電力之故,因而增大第二可變電感元件3 5的電感値, 使得較大電壓能施加於線圈42。 另一方面,一旦形成有電漿43之後,減小第二可變電 感元件35的電感値,爲了穩定地維持電漿43,將電壓大小 作成最適當値。 這時候,控制電路66測定交流電源19所輸出的電壓與 電流相位,變更流在控制繞組62的電流大小,移位流在主 繞組6 1的電流相位或電壓相位,能使得流在線圈4 2的電流 相位與施加的電壓相位的相差成爲零地,變更第一可變電 ^ 感元件3 1的電感値,就可使所投入的電力有效率地被使用 在電漿形成。 一旦生成有電漿之後,則有消滅離子化室4 1內的電漿 4 3,並中斷薄膜成長的情形。 在本發明中,控制電路66測定流在線圈42的電流,由 該電流的測定値檢測到電漿4 3消滅,則將第一、第二可變 電感元件3 1、3 5恢復到電漿生成前的阻抗之同時,在第一 電極45維持正電壓的狀態下,將第二電極46的電壓從負電 壓變更成零V以上且低於第一電極45的電壓。 在該狀態下從電子發生源1 3放出電子,則電子是被拉 近第二電極46,進入離子化室41的內部。在離子化室41內 存有電子,則離子化室4 1內是成容易產生放電的狀態之故 ,因而施加有交流電壓,就容易地再生電漿。 -13- (10) 200412203 在本發明中,從電漿4 3的消滅至再生之期間的電 止時間是1 〇 〇 s以下’不會影響到膜厚精度。 又,以層積100層的薄膜而形成膜厚5 000A的層 的情形作爲例子,則每一層成爲5 0 A的厚度。將1 〇 的膜厚精度作成± 〇 · 〇〇 1 %以下,則各層的膜厚相同, 層的容許膜厚誤差是成爲〇.5 A以下。 若成膜速度爲每秒〇·1 A,則欲成膜5000 A,以 計算需要1 3.9小時,僅停止5秒鐘會達到容許膜厚誤 0.5 A。因此停止時間是5秒鐘成爲上限。 實際上,被要求的膜厚是各層不相等,爲了要滿 種各樣的處理要求,相信不是在該10倍以上的短停止 並不實用。又,若停止次數容許數次以上,則如本案 ,停止時間無法在l〇〇ms以下,則不實用。 以上所述,電漿發生裝置12爲RF離子槍的情形, 整體真空裝置爲濺鍍裝置,惟本發明的真空裝置是並 限定於此者。例如,第4圖的記號5是蝕刻裝置,在真 51內配置有電漿生成源60。 該電漿生成源60是藉由第一、第二對向電極53、 構成,該第一、第二對向電極53、54中,第一對向電 是經由上述匹配器2被連接於交流電源1 9,而第二對 極54是被連接於接地電位。 從交流電源1 9輸出,在匹配器2進行匹配的交流 施加於第一、第二對向電極5 3、54間,則形成有電漿 構成藉由該電漿58來蝕刻基板。 漿停 積膜 0 層 每一 單純 差的 足各 時間 發明 作爲 不被 空橹 54所 極53 向電 電壓 58, (11) (11)200412203 控制匹配器2的阻抗是如上所述地電氣式地變更第一 、第二可變電感元件3 1、3 6的電感値進行。 (發明的效果) 在習知即使有一次中斷放電時,即將處理作爲失敗者 ’可作成成功處理,例如可減少在製造窄頻帶濾波器時的 數十小時內的成膜失敗次數。 【圖式簡單說明】 第1圖是表示本發明的真空裝置的槪略圖。 第2圖是表示本發明的電漿發生裝置與匹配器的詳細 圖。 第3 ( a )圖是表示可變電感元件的內部電路圖。 第3 ( b )圖是表示用以說明可變電感元件的動作原理 的圖表。 第4圖表示本發明的真空裝置的其他例的槪略圖。 _ 第5圖表示習知技術的真空裝置的例子的槪略圖。 第6圖表示習知技術的匹配器的內部電路圖。 【符號說明】 1、5 真空裝置 2 匹配器 11 真空槽 13 電子發生源 - 15- (12)200412203 19 交流電源 31、35 可變電感元件200412203 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a vacuum device, especially a vacuum device using an ion gun. [Prior art] In the film formation process using an ion gun, there is an ion beam sputtering method in which a plasma generated by an ion source collides with a target and sputtering particles scattered from the target surface are used to form a film. As a representative film-forming method, an ion-assisted vapor deposition method in which an electron gun is used to evaporate a thin film material and an ion gun is used to assist the film formation is used. In addition, the ion gun is not only a film forming process, but also an ion beam etching method for performing uranium etching with an ion beam. The ion gun used for such a process is typically three types of methods in which a plasma is generated in the ion gun. This is a typical ion gun implementation method such as an RF ion gun method in which an alternating current power is used to generate a plasma, a filament method in which a plasma is generated depending on a heating filament, and a direct current power is applied to a hollow cathode. In this case, as a great advantage of the RF ion gun method, the use of oxygen gas has the advantage of being able to process insulators for a long time, and in particular, it is necessary to be a film forming device or a vapor deposition device such as an optical filter for communication. For example, in a narrow-band filter for communication, in order to laminate more than 100 layers of SiO 2 and Ta 205 films, the film formation time will be tens of times or more. The RG ion gun used in this case is a very important performance that can stably discharge for a long time. (2) (2) 200412203 The example of the ion beam sputtering device is used to show the essentials of the device using the RF ion gun. Reference numeral 101 in Fig. 5 is an example of a conventional film-forming apparatus using an RF ion gun, and includes a vacuum chamber Π1. An RF ion gun 1 12 and an electron generating source 113 are provided on the wall surface of the vacuum tank 1 1 1. The RF ion gun 112 is connected to a power source 119 via a matching device 102. A target 1 1 is arranged in the vacuum tank 1 1 1. 5. In the vacuum exhaust vacuum tank 1 1 1, the start-up power supply 1 1 9 is supplied to the RF ion gun 1 12 through the matching device 102, and ions are generated inside the RF ion gun 112. In addition, while starting the electron generating source 1 1 3, while emitting electrons from the electron generating source 1 1 3, while emitting an ion beam 1 2 1 from the RF ion gun, the cations in the ion beam .12 1 are neutralized by the electrons, making it neutral. The particles are irradiated to the rake material 1 1 5, and the particles constituting the target material 1 1 5 fly out from the target material 1 1 5 to become sputtered particles 1 2 3. The substrates 1 1 7 to be film-formed are arranged in parallel to the target 1 1 5. When the sputtering particles 123 are attached to the substrate 1 17, a thin film is formed on the surface of the substrate 1 17. When ions are generated and when ions are stably released, the internal impedance changes greatly. As shown in FIG. 6, the matching device 1 02 of the conventional technology has variable capacitors 1 3 4 and 1 3 5; the input terminal 1 3 1 of the power supply 1 1 9 side is provided by the variable capacitor 1 3 5 It is grounded, and is connected to the RF ion gun 1 12 side output terminal 132 via a series connection circuit of another variable capacitor 1 3 4 and a coil 1 3 3. According to this configuration, the capacitance 値 of the variable capacitors 134 and 135 can be changed, and the impedance of the matcher 102 can be changed by (3) (3) 200412203. However, the variable capacitors 134 and 35 move the electrodes constituting the capacitor to change the distance between the electrodes to change the capacitance 値. Therefore, it takes hundreds of milliseconds to several seconds for the impedance in the RF ion gun 112 to match the impedance of the matcher 102. It is known that in the film forming apparatus 1 01 using the RF ion gun 1 12, the impedance matching speed is not valued. However, recently, if the film forming process of a narrow-band filter for communication is used, it is necessary to laminate 1 Because of the thin film of more than 0 layers, continuous film formation is required for tens of time, and the accuracy of the film thickness is gradually required to be about ± 0.001% or more. In this case, if an arc discharge or the like occurs due to electrode dirt or the like, and the AC discharge is stopped, the matching time of the mechanical variable capacitor type matcher 102 is only restarted for the time required for the matcher to match. It also takes several seconds or more. Therefore, if the RF ion gun 112 is restarted, it will become a defective product by stopping the film for several seconds or more. That is, a problem of a great disadvantage in that a precise film-forming manufacturing operation of several tens of hours is interrupted and discharged only for a few seconds. Known techniques include Japanese Unexamined Patent Publication No. 9- 1 6 1 704, Japanese Unexamined Patent Publication No. 9-92199, and Japanese Unexamined Patent Publication 2000-165175. [Summary of the Invention] The present invention is a creator to solve the inconvenience of the above-mentioned conventional technology, and the purpose thereof is to provide a matching device that performs impedance control at high speed, and the time required to generate a plasma using the matching device. Shorter vacuum unit. -7- (4) (4) 200412203 Another object is to provide a vacuum treatment method that makes it easy to regenerate plasma. In order to solve the above-mentioned problem, the invention described in the first scope of the patent application, a matching device, is a matching device connected to a plasma generating device, changing the phase of AC power input from an AC power source, and outputting the matching to the plasma generating device The device is characterized in that the matching device has a variable inductance element; the variable inductance element has a main winding that determines the impedance of the variable inductance element and a control winding that is magnetically coupled to the main winding. ; The inductance having the main winding is controlled by the magnitude of the direct current flowing in the control winding. The present invention is configured as described above, and the impedance of the variable inductance element included in the matching device can be controlled electrically. Therefore, compared with the mechanical control, the impedance of the matcher can be changed quickly, so the time required to regenerate the plasma is extremely short. When the plasma is regenerated, the electrons emitted from the electron generating source are absorbed into the ionization chamber, so the electrons become the seeds of the regenerated plasma, making it easier to regenerate the plasma. [Embodiment] Fig. 1 shows a vacuum device according to an example of the present invention. A vacuum generator 11 is provided on the wall surface of a vacuum tank 11 and a plasma generating device 12 and an electron generating source 1 3 are provided outside the vacuum tank 1 丨. An AC power source 9 and a DC voltage source 29 are provided. The interior of the plasma generating device 12 and the matching device 2 are shown in FIG. 2. (5) (5) 200412203 The matching device 2 includes an input terminal 51, a ground terminal 59, a ground-side output terminal 52, and a high-voltage-side output terminal 53. The ground terminal 54 of the matching device 2 is grounded; the ground-side output terminal 5 2 is connected to the ground terminal 54 by an internal circuit of the matching device 2 described below. The input terminal 51 of the matching device 2 is connected to the AC power source 19 through a shielded wire. When AC power is output from the AC power source 19, the size and phase are controlled by an internal circuit, and the terminal 5 is output from the high voltage side. 3 is output. The electric generator 12 of the vacuum device 1 is an RF ion gun and includes an ionization chamber 41. A coil 4 2 is wound around the ionization chamber 41. One end of the coil 4 2 is a high-voltage-side output terminal 5 3 connected to the matcher 2, and the other end is connected to a ground-side output terminal 52. . The ground-side output terminal 52 is connected to the ground potential through a fourth capacitor 37 described below in the matcher 2. Therefore, when an AC voltage is output from the high-voltage-side output terminal 53, an AC current flows in the coil, and the An AC magnetic field is formed in the ionization chamber 41. A gas supply system 26 and 27 are connected to the plasma generator 12 and an electron generation source 13 respectively, and a vacuum exhaust system 14 is connected to the vacuum tank 11 1. The substrate 16 to be deposited is placed in the vacuum tank. 1 1 and the vacuum exhaust system 1 4 evacuates the interior of the vacuum tank 11 to a predetermined pressure. In addition, the substrate 17 is evacuated into the vacuum tank 11 in advance while being evacuated in the vacuum tank Π in advance. Thereafter, a gas is introduced into the ionization chamber 41 and an AC magnetic field is formed inside the ionization chamber 41, and the introduced gas is plasmatized. Note (6) (6) 200412203 No. 43 in FIG. 2 shows that the plasma, and the positive ions generated by ionization of the introduced gas are included in the plasma 42. Near the opening of the ionization chamber 41, first to third electrodes 45, 46, and 47 are sequentially arranged from the ionization chamber 41 to the discharge port 49. The first and second electrodes 45 and 46 are connected to a DC power supply 29, respectively, and constitute voltages having a desired polarity and a desired magnitude. Here, the first and second electrodes 45 and 46 are respectively applied with voltages such as + 1.5KV and -1KV. This voltage is not necessarily limited to that person. The third electrode 47 is connected to the vacuum tank 11 and is configured to have the same ground potential (0V) as the vacuum tank 11. A plurality of holes are formed in the first to third electrodes 4 5 to 4 7, and positive ions included in the plasma 43 enter between the first electrode 45 and the second electrode 46 through the holes. The electric fields formed by the first and second electrodes 45 and 46 are accelerated in the direction of the second electrode 46, and after being bundled by the third electrode 47, they are discharged into the vacuum tank 11 from the discharge port 49. Symbol 20 indicates a flow (positive ion flow) of positive ions released into the vacuum chamber 11. This positive ion current 20 is flying toward the target 15. At this time, an ionizing gas is introduced from the gas supply system 27 to the electron generating source 1 3 ', and the ionized gas introduced into the electron generating source 13 is ionized and the generated electrons are irradiated toward the positive ion current 20'. It is neutralized by electrons. The symbol 22 indicates an electron emitted from the electron generating source 13. Neutralization is used to generate neutral particles'. When the target 15 is irradiated, the film growth starts on the surface of the substrate 17. Before and after the plasma 4 3 in the ionization chamber 41 1 ′, the impedance of the electric circuit formed by the line (7) (7) 200412203 and the ionization chamber 41 is changed. Therefore, when the plasma 43 is formed, the impedance in the matching device 2 is changed, and the impedance must be matched. Hereinafter, the configuration of the matcher 2 and the matching method of the impedance will be described. The matcher 2 includes first and second variable inductance elements 31 and 35, and first, second, third, and fourth capacitors 32, 36, 34, and 37. The first variable inductance element 31 and the first capacitor 32 are connected in series, and the input terminal 51 and the high-voltage-side output terminal 53 of the matcher 2 are connected through the series connection circuit. The second variable inductance element 35 and the second capacitor 36 are connected in series. A third capacitor 34 is connected in parallel to the series connection circuit to form a ground circuit 33. The input terminal 51 is connected to the high-voltage circuit through the series connection circuit. The medical-side output terminal 5 3 is connected to the ground terminal via a ground circuit 33. Therefore, when the inductance 値 of the first variable inductance element 31 is changed, the impedance between the input terminal 51 and the high-voltage-side output terminal 53 is changed, and when the inductance 第二 of the second variable inductance element 35 is changed When changing, the impedance between input terminal 51 and ground terminal 54 will change. Fig. 3 (a) is a circuit diagram showing the internal structure of the first and second variable inductance elements 31 and 35; symbols 6 8 and 6 9 are terminals for connecting to other elements or circuits. The first and second variable inductance elements 31 and 35 include a main winding 61, a control winding 62, and an iron core 63. The main winding 61 and the control winding 62 are magnetically coupled to each other via an iron core 63. That is, in the control winding 62, a current is passed through the core 6 3, and this magnetic flux is configured to pass through the main winding 61 as well. A control power source 65 is connected to the control winding 62 so that a current output from the control power source 65 flows in the control winding 62. The control winding 65 is connected to the control circuit 66, and is configured to change the magnitude of the DC current output to the control winding 62 in accordance with a signal input from the control circuit 66. The control windings 62 of the first and second variable inductance elements 31, 35 are respectively connected with other control power sources 65, and the first and second variable inductance elements 31 are connected by the control power sources 65, respectively. The control windings 62 and 3 constitute a power source capable of supplying different sizes. If a current of a desired magnitude can be supplied to the first and second variable inductance elements 3 1, 35, the control power source 65 may be one. Fig. 3 (b) shows the magnetic field of the main winding 6 10 Graph of intensity versus magnetic flux density. Speech marks P, Q, R are points on the chart; point P is the case where the current flowing in the control winding 62 is zero; point Q is the case where the current flowing in the control winding 62 is small; point R is the current greater than the point The situation of Q. # The inductance of the main winding 61 at each point P, Q, and R is inclined because the graph is proportional to each point P, Q, and R. Therefore, the size of the inductance is point P > point Q > point R. In this way, the inductance 主 of the main winding 61 becomes smaller when a large current flows in the control winding 62, and conversely, the smaller the current flowing becomes larger. Therefore, changing the magnitude of the DC current flowing in the control winding 62 can control the inductance of the main winding 61. By individually controlling the magnitude of the DC current flowing in the control windings 62 of the first and second variable inductance elements 31, 35, it is possible to follow the internal state of the ionization chamber 41 without relying on mechanical means such as a motor. -12- (9) 200412203 The impedance of the control winding 2 can be electrically changed to a desired value. Specifically, when the plasma 43 is generated in the ionization chamber 41, it is necessary to input a large amount of electric power, so that the inductance 第二 of the second variable inductance element 35 is increased so that a large voltage can be applied to the coil 42. On the other hand, once the plasma 43 is formed, the inductance 値 of the second variable inductance element 35 is reduced. In order to maintain the plasma 43 stably, the magnitude of the voltage is optimized. At this time, the control circuit 66 measures the voltage and current phases output from the AC power source 19, changes the magnitude of the current flowing in the control winding 62, and shifts the current phase or voltage phase flowing in the main winding 61 to enable the current flowing in the coil 4 2 The phase difference between the current phase and the applied voltage phase becomes zero ground. Changing the inductance 第一 of the first variable inductance element 31 allows the input power to be efficiently used in the plasma formation. Once the plasma is generated, the plasma 4 3 in the ionization chamber 41 may be destroyed and the film growth may be interrupted. In the present invention, the control circuit 66 measures the current flowing in the coil 42. When the measurement of the current detects that the plasma 4 3 disappears, the first and second variable inductance elements 3 1 and 3 5 are restored to the current. While the impedance before the slurry is being generated, while the first electrode 45 maintains a positive voltage, the voltage of the second electrode 46 is changed from a negative voltage to a voltage higher than zero V and lower than the voltage of the first electrode 45. In this state, electrons are emitted from the electron generating source 13, and the electrons are drawn close to the second electrode 46 and enter the ionization chamber 41. When electrons are stored in the ionization chamber 41, the ionization chamber 41 is in a state where a discharge is easily generated. Therefore, when an AC voltage is applied, the plasma can be easily regenerated. -13- (10) 200412203 In the present invention, the stop time from the destruction of the plasma 43 to the regeneration is 100 s or less', which does not affect the film thickness accuracy. In the case where a 100-layer thin film is laminated to form a layer having a thickness of 5,000 A as an example, each layer has a thickness of 50 A. When the film thickness accuracy of 1 〇 is made ± 〇 · 〇 1% or less, the film thickness of each layer is the same, and the allowable film thickness error of the layer is 0.5 A or less. If the film-forming speed is 0.1 A per second, it will take 1 3.9 hours to calculate a film thickness of 5000 A, and the allowable film thickness error of 0.5 A will be reached after only 5 seconds of stopping. Therefore, a stop time of 5 seconds becomes the upper limit. Actually, the required film thicknesses are not equal for each layer. In order to satisfy various processing requirements, it is believed that it is not practical to make a short stop more than 10 times. In addition, if the number of stoppages is allowed to be several times or more, as in this case, the stoppage time cannot be less than 100ms, which is not practical. As described above, in the case where the plasma generating device 12 is an RF ion gun, the entire vacuum device is a sputtering device, but the vacuum device of the present invention is not limited to this. For example, symbol 5 in FIG. 4 is an etching device, and a plasma generating source 60 is disposed in the true electrode 51. The plasma generating source 60 is constituted by first and second counter electrodes 53, and the first and second counter electrodes 53 and 54 are connected to an alternating current via the matching device 2 described above. The power source 19 and the second pair of poles 54 are connected to a ground potential. The output from the AC power source 19 and the matching AC performed by the matcher 2 are applied between the first and second counter electrodes 5 3 and 54 to form a plasma. The substrate 58 is etched by the plasma 58. Each layer of the pulp stopper film has a simple difference at each time. It is invented as an electrode 54 that is not directed by the air. The voltage is 58. (11) (11) 200412203 The impedance of the control matcher 2 is electrically grounded as described above. The change of the inductance of the first and second variable inductance elements 3 1 and 36 is performed. (Effects of the Invention) It is known that even if the discharge is interrupted once, the processing will be performed as a failure ', and the successful processing can be performed, for example, the number of film formation failures within tens of hours when manufacturing a narrow-band filter can be reduced. [Brief Description of the Drawings] Fig. 1 is a schematic view showing a vacuum device according to the present invention. Fig. 2 is a detailed view showing a plasma generator and a matching device according to the present invention. Fig. 3 (a) is an internal circuit diagram showing a variable inductance element. Fig. 3 (b) is a graph illustrating the operation principle of the variable inductance element. Fig. 4 is a schematic view showing another example of the vacuum device of the present invention. _ Fig. 5 is a schematic diagram showing an example of a conventional vacuum device. Fig. 6 shows an internal circuit diagram of a matching device of the conventional technique. [Symbol description] 1, 5 Vacuum device 2 Matching device 11 Vacuum tank 13 Electron generating source-15- (12) 200412203 19 AC power source 31, 35 Variable inductance element

-16--16-

Claims (1)

(1) (1)200412203 拾、申請專利範圍 1 . 一種匹配器,屬於連接於電漿發生裝置,變更從 交流電源所輸入的交流電力的相位,並輸出至上述電漿發 生裝置的匹配器,其特徵爲: 上述匹配器是具有可變電感元件; 上述可變電感元件是具有:決定該可變電感元件的阻 抗的主繞組,及與上述主繞組互相地磁性結合的控制繞組 ;具有上述主繞組的阻抗以流在上述控制繞組的直流電流 · 的大小來控制所構成的電感元件。 2 · —種匹配器,屬於具有連接於控制繞組的高電壓 側輸出端子,及連接貧交流電源的輸入端子;變更輸入於《 上述輸入端子的交流電力的相位,並從上述高電壓側輸出. 端子輸出的匹配器,其特徵爲: 上述匹配器是具有第一可變電感元件; 上述第一可變電感元件是具有:連接於上述輸入端子 與上述高電壓側輸出端子的第一主繞組,及 · 與上述第一主繞組互相地磁性結合的第一控制繞組; 上述第一主繞組的阻抗,以流在上述第一控制繞組的 直流電流的大小來控制。 3 ·如申g靑專利軔圍弟2項所述的匹配器,其中,上述 匹配器是具有第一控制電源;上述第—控制繞組是構成電 流從上述第一控制電源流動者。 4 ·如申請專利範圍第3項所述的匹配器,其中,在上 述第一控制電源連接有第一控制電路,構成藉由從上述第 -17- (2) (2)200412203 一控制電路所輸入的信號能變更輸出於上述第一控制繞組 的電流大小。 5 · —種匹配器’屬於具有連接於控制繞組的高電壓 側輸出端子,及連接於交流電源的輸入端子,及連接於接 地電位的接地側輸出端子;變更輸入於上述輸入端子的交 流電力的相位,並從上述高電壓側輸出端子輸出的匹配器 ,其特徵爲: 上述匹配器是具有第二可變電感元件; 上述第二可變電感元件是具有:連接於上述輸入端子 與上述接地側輸出端子的第二主繞組,及 與上述第二主繞組互相地磁性結合的第二控制繞組叶 上述第二主繞組的阻抗,以流在上述第二控制繞組的 直流電流的大小來控制。 6 ·如申請專利範圍第5項所述的匹配器,其中,上述 匹配窃是具有弟一控制電源;上述第一控制繞組是構成電 流從上述第二控制電源流動者。 7 ·如申請專利範圍第6項所述的匹配器,其中,在上 述第二控制電源連接有第二控制電路,構成藉由從上述第 二控制電路所輸入的信號能變更輸出於上述第二控制繞組 的電流大小。 8 · —種匹配器,屬於具有連接於控制繞組的高電壓 側輸出端子,及連接於交流電源的輸入端子,及連接於接 地電位的接地側輸出端子;變更輸入於上述輸入端子的交 流電力的相位,並從上述高電壓側輸出端子輸出的申請專 -18- (3) (3)200412203 利範圍第2項所述的匹配器,其特徵爲: 上述匹配器是具有第二可變電感元件; 上述第二可變電感元件是具有:連接於上述輸入端子 與上述接地側輸出端子的第二主繞組,及 與上述第二主繞組互相地磁性結合的第二控制繞組; 上述第二主繞組的阻抗,以流在上述第二控制繞組的 直流電流的大小來控制。 9. 一種真空裝置,屬於具有真空槽,及交流電源, 馨 及匹配器,及電漿發生裝置;上述電漿發生裝置是經由上 述匹配器連接於上述交流電源,藉由上述交流電源所輸出 的交流電壓來生成電漿,並真空處理,配置於上述真空槽內 的處理對象物的真空裝置,其特徵爲: 上述匹配器是具有可電氣式地控制阻抗的可變電感元 件; 上述交流電源與上述匹配器之間是藉由上述可變電感 元件相連接。 φ 1 〇 ·如申請專利範圍第9項所述的真空裝置,其中, 上述可變電感元件是具有:決定該可變電感元件的阻抗的 主繞組,及與上述主繞組互相地磁性結合的控制繞組;具 有上述主繞組的阻抗以流在上述控制繞組的直流電流的大 小來控制所構成的電感元件。 1 1 .如申請專利範圍第9項所述的真空裝置,其中, 上述電漿發生裝置是具有:離子化室,及捲於上述離子化 室的周圍的線圈,及位於上述離子化室的開口的第一電極 -19- (4) (4)200412203 ,及配置於比上述第一電極距上離子化室較遠位置的第二 電極;以流在上述線圈的交流電流所形成的交流磁場電漿 化被供給於上述離子化室內的氣體,藉由上述第一、第二 電極拉出上述電槳中的陽離子,並放出在上述真空槽內的 離子槍。 1 2 ·如申請專利範圍第1 1項所述的真空裝置,其中, 具有放出電子的電子發生源;構成當消滅上述電漿,而再 生成電漿時,將上述第二電極的電位作爲上述真空槽的電 位以上的電位,並將從上述電子發生源所放出的電子拉進 上述離子化室內。 1 3 ·—種真空處理方法,屬於在導入離子化室內的氣 體施加交流磁場使之電漿化,在配置於上述離子化室的'開 口附近的第一電極施加正電壓,並在位於比上述第一電極 距上述離子化室較遠位置的第二電極施加負電壓;藉由上 述第一、第二電極所形成的電場拉出上述電漿中的正離子 而放出在真空槽內之同時,將電子從電子發生源放出在上 述真空槽內,在上述正離子的流動照射上述電子使之中性 化,照射在配置於上述真空槽內的照射對象物的真空處理 方法,其特徵爲: 當消滅上述電漿,而再生成電漿時,將上述第二電極 的電位作爲上述真空槽的電位以上的電位,並將從上述電 子發生源所放出的電子拉進上述離子化室內。 -20-(1) (1) 200412203 Scope of patent application 1. A matching device is a matching device connected to a plasma generating device, changing the phase of AC power input from an AC power source, and outputting to the above-mentioned plasma generating device. It is characterized in that: the above-mentioned matcher has a variable inductance element; the above-mentioned variable inductance element has: a main winding that determines the impedance of the variable inductance element, and a control winding magnetically combined with the main winding; The inductance having the main winding is controlled by the amount of DC current flowing in the control winding. 2 · — A type of matcher, which has a high-voltage-side output terminal connected to the control winding, and an input terminal that is connected to a lean AC power source; changes the phase of the AC power input to the above input terminal and outputs it from the high-voltage side. The terminal output matching device is characterized in that: the matching device is provided with a first variable inductance element; the first variable inductance element is provided with a first main body connected to the input terminal and the high-voltage-side output terminal; The winding and the first control winding magnetically combined with the first main winding; the impedance of the first main winding is controlled by the magnitude of the DC current flowing in the first control winding. 3. The matching device according to the second item of the patent application, the matching device, wherein the matching device has a first control power source; and the first-control winding is a current flowing from the first control power source. 4 · The matcher according to item 3 of the scope of patent application, wherein a first control circuit is connected to the first control power supply, and is constituted by a control circuit from the above-mentioned -17- (2) (2) 200412203 The input signal can change the magnitude of the current output to the first control winding. 5 · —A kind of matcher 'belongs to a high-voltage-side output terminal connected to a control winding, an input terminal connected to an AC power source, and a ground-side output terminal connected to a ground potential; A phase-matching device outputted from the high-voltage-side output terminal is characterized in that: the matching device has a second variable inductance element; and the second variable inductance element has: connected to the input terminal and the above-mentioned The second main winding of the ground-side output terminal, and the second control winding magnetically coupled to the second main winding, and the impedance of the second main winding is controlled by the direct current flowing in the second control winding. . 6. The matching device according to item 5 of the scope of patent application, wherein the matching control device has a control power source; the first control winding is a current constituting a current flowing from the second control power source. 7. The matcher according to item 6 of the scope of patent application, wherein a second control circuit is connected to the second control power supply, and the output can be changed and output to the second by a signal input from the second control circuit. Control the amount of current in the winding. 8 · — A matching device, which belongs to a high-voltage-side output terminal connected to a control winding, an input terminal connected to an AC power source, and a ground-side output terminal connected to a ground potential; Phase, and output from the above-mentioned high-voltage-side output terminal. (3) (3) 200412203 The matcher according to the second range of the invention, characterized in that the matcher has a second variable inductance The second variable inductance element includes a second main winding connected to the input terminal and the ground-side output terminal, and a second control winding magnetically coupled to the second main winding; and the second The impedance of the main winding is controlled by the magnitude of the DC current flowing in the second control winding. 9. A vacuum device, comprising a vacuum tank, an AC power source, a matching device, and a plasma generating device; the plasma generating device is connected to the AC power source through the matching device, and is output by the AC power source. A vacuum device for generating a plasma using an AC voltage and vacuum processing the vacuum object, the vacuum device is disposed in the vacuum tank, and is characterized in that: the matching device is a variable inductance element that can electrically control impedance; the AC power source; It is connected to the matching device through the variable inductance element. φ 1 0. The vacuum device according to item 9 of the scope of patent application, wherein the variable inductance element includes a main winding that determines the impedance of the variable inductance element, and is magnetically coupled to the main winding. The control winding has the impedance of the main winding and controls the inductance element formed by the direct current flowing in the control winding. 1 1. The vacuum device according to item 9 of the scope of patent application, wherein the plasma generating device includes an ionization chamber, a coil wound around the ionization chamber, and an opening located in the ionization chamber. The first electrode-19- (4) (4) 200412203 and the second electrode disposed farther from the upper ionization chamber than the first electrode; an AC magnetic field formed by an AC current flowing in the coil The gas supplied to the ionization chamber is slurried, the cations in the electric paddle are pulled out by the first and second electrodes, and the ion gun in the vacuum tank is discharged. 1 2 The vacuum device according to item 11 of the scope of patent application, wherein the vacuum device has an electron generating source that emits electrons; when the plasma is destroyed and the plasma is regenerated, the potential of the second electrode is taken as the above A potential equal to or higher than the potential of the vacuum chamber, and draws electrons emitted from the electron generating source into the ionization chamber. 1 3 · A vacuum processing method, which involves applying an alternating magnetic field to a plasma introduced into a gas introduced into an ionization chamber, applying a positive voltage to a first electrode disposed near an opening of the ionization chamber, and A negative voltage is applied to the second electrode at a distance from the first electrode to the ionization chamber; while the positive ions in the plasma are pulled out by the electric field formed by the first and second electrodes and released in the vacuum tank, A vacuum treatment method for releasing electrons from an electron generation source into the vacuum chamber, irradiating the electrons with the flow of the positive ions to neutralize the electrons, and irradiating the irradiation target disposed in the vacuum chamber is characterized in that: When the plasma is destroyed and the plasma is regenerated, the potential of the second electrode is set to a potential equal to or higher than the potential of the vacuum chamber, and electrons emitted from the electron generating source are drawn into the ionization chamber. -20-
TW092125097A 2002-09-10 2003-09-10 Matching box, vacuum device using the same, and vacuum processing method TWI281839B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002264182A JP4439169B2 (en) 2002-09-10 2002-09-10 Vacuum processing method and vacuum apparatus

Publications (2)

Publication Number Publication Date
TW200412203A true TW200412203A (en) 2004-07-01
TWI281839B TWI281839B (en) 2007-05-21

Family

ID=31884748

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092125097A TWI281839B (en) 2002-09-10 2003-09-10 Matching box, vacuum device using the same, and vacuum processing method

Country Status (6)

Country Link
US (1) US7204921B2 (en)
EP (1) EP1398819B1 (en)
JP (1) JP4439169B2 (en)
KR (1) KR101009306B1 (en)
CN (1) CN100379893C (en)
TW (1) TWI281839B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050050337A1 (en) * 2003-08-29 2005-03-03 Trend Micro Incorporated, A Japanese Corporation Anti-virus security policy enforcement
JP4858975B2 (en) * 2004-10-01 2012-01-18 Hoya株式会社 Vitreous surgery contact lenses
CN100362619C (en) * 2005-08-05 2008-01-16 中微半导体设备(上海)有限公司 RF matching coupling network for vacuum reaction chamber and its configuration method
JP4794242B2 (en) * 2005-08-30 2011-10-19 富士通株式会社 Control method, control program, and control apparatus
JP4925132B2 (en) * 2007-09-13 2012-04-25 公立大学法人首都大学東京 Charged particle emission device and ion engine
CN101500369B (en) * 2008-01-30 2011-06-15 北京北方微电子基地设备工艺研究中心有限责任公司 Inductor coupling coil and inductor coupling plasma generation apparatus
JP5582823B2 (en) * 2010-02-26 2014-09-03 東京エレクトロン株式会社 Automatic alignment apparatus and plasma processing apparatus
JP5702968B2 (en) * 2010-08-11 2015-04-15 東京エレクトロン株式会社 Plasma processing apparatus and plasma control method
JP5946580B1 (en) * 2015-12-25 2016-07-06 株式会社京三製作所 Impedance matching device
CN106683970A (en) * 2016-11-28 2017-05-17 中国电子科技集团公司第四十八研究所 Sparking-prevention direct current ion source

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238481A (en) * 1984-05-14 1985-11-27 Sumitomo Electric Ind Ltd Multilayered coated hard metal
JPH0711072B2 (en) * 1986-04-04 1995-02-08 株式会社日立製作所 Ion source device
US5392018A (en) * 1991-06-27 1995-02-21 Applied Materials, Inc. Electronically tuned matching networks using adjustable inductance elements and resonant tank circuits
US5308461A (en) * 1992-01-14 1994-05-03 Honeywell Inc. Method to deposit multilayer films
JPH06124682A (en) * 1992-10-08 1994-05-06 Nissin Electric Co Ltd Ion-implantation device
JPH0992199A (en) 1995-09-27 1997-04-04 Nissin Electric Co Ltd Ion beam generation method and device thereof
JP3116794B2 (en) 1995-12-01 2000-12-11 日新電機株式会社 High frequency ion source
US5793162A (en) * 1995-12-29 1998-08-11 Lam Research Corporation Apparatus for controlling matching network of a vacuum plasma processor and memory for same
US6252354B1 (en) * 1996-11-04 2001-06-26 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
GB9622127D0 (en) * 1996-10-24 1996-12-18 Nordiko Ltd Ion gun
US5982101A (en) * 1997-06-27 1999-11-09 Veeco Instruments, Inc. Charged-particle source, control system, and process using gating to extract the ion beam
US6254738B1 (en) * 1998-03-31 2001-07-03 Applied Materials, Inc. Use of variable impedance having rotating core to control coil sputter distribution
JP2000165175A (en) * 1998-11-27 2000-06-16 Kyosan Electric Mfg Co Ltd Impedance matching device
JP3948857B2 (en) * 1999-07-14 2007-07-25 株式会社荏原製作所 Beam source
GB9922110D0 (en) * 1999-09-17 1999-11-17 Nordiko Ltd Ion beam vacuum sputtering apparatus and method
JP2001262355A (en) * 2000-03-16 2001-09-26 Applied Materials Inc Plasma, cvd system, and method for detecting its malfunction

Also Published As

Publication number Publication date
EP1398819A2 (en) 2004-03-17
JP2004104493A (en) 2004-04-02
TWI281839B (en) 2007-05-21
KR20040023540A (en) 2004-03-18
US7204921B2 (en) 2007-04-17
JP4439169B2 (en) 2010-03-24
EP1398819B1 (en) 2016-11-09
KR101009306B1 (en) 2011-01-18
CN1495283A (en) 2004-05-12
US20040139916A1 (en) 2004-07-22
EP1398819A3 (en) 2010-01-13
CN100379893C (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP3912993B2 (en) Neutral particle beam processing equipment
US20040108469A1 (en) Beam processing apparatus
WO2016203585A1 (en) Film forming method and film forming device
TWI281839B (en) Matching box, vacuum device using the same, and vacuum processing method
JP2004281232A (en) Beam source and beam treatment device
JP2007529632A (en) Pulsed magnetron sputtering deposition with preionization.
US11651937B2 (en) Method of low-temperature plasma generation, method of an electrically conductive or ferromagnetic tube coating using pulsed plasma and corresponding devices
US10900117B2 (en) Plasma corridor for high volume PE-CVD processing
JP4042817B2 (en) Neutral particle beam processing equipment
JP4073173B2 (en) Neutral particle beam processing equipment
JP2003073814A (en) Film forming apparatus
JP5209482B2 (en) Oxidation method
JP4413042B2 (en) Plasma generator and vacuum apparatus using the same
JP2006253190A (en) Neutral particle beam processing apparatus and method of neutralizing charge
JPS61177728A (en) Apparatus for irradiation with low-energy ionized particle
JP2008108745A (en) Neutral particle beam treatment device
JPS62259443A (en) Method and apparatus for etching
JPH0221296B2 (en)
JP6801483B2 (en) Plasma generator and plasma generation method
JP2002060931A (en) Winding type vacuum film deposition apparatus, and manufacturing method of deposition film using the same
CZ33342U1 (en) Device for generating high frequency plasma discharge with electron cyclotron wave resonance
JP2019019368A (en) Plasma cvd apparatus, method for manufacturing magnetic recording medium and film deposition method
CZ2018555A3 (en) Method of generating a high-frequency plasma discharge with electron cyclotron wave resonance, the apparatus for this method and the use of this discharge
JP2008007850A (en) Sputtering apparatus
JPH0480368A (en) Plasma treatment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees