TW200411219A - Method for writing a planar waveguide having gratings of different center wavelengths - Google Patents

Method for writing a planar waveguide having gratings of different center wavelengths Download PDF

Info

Publication number
TW200411219A
TW200411219A TW092120115A TW92120115A TW200411219A TW 200411219 A TW200411219 A TW 200411219A TW 092120115 A TW092120115 A TW 092120115A TW 92120115 A TW92120115 A TW 92120115A TW 200411219 A TW200411219 A TW 200411219A
Authority
TW
Taiwan
Prior art keywords
grating
regions
gratings
waveguide
group
Prior art date
Application number
TW092120115A
Other languages
Chinese (zh)
Other versions
TWI243916B (en
Inventor
Anders Grunnet-Jepsen
Alan E Johnson
John N Sweetser
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW200411219A publication Critical patent/TW200411219A/en
Application granted granted Critical
Publication of TWI243916B publication Critical patent/TWI243916B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1347Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion implantation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12078Gallium arsenide or alloys (GaAs, GaAlAs, GaAsP, GaInAs)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12176Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Multiple Bragg gratings are fabricated in a single planar lightwave circuit platform. The gratings have nominally identical grating spacing but different center wavelengths, which are produced using controlled photolithographic processes and/or controlled doping to control the effective refractive index of the gratings. The gratings may be spaced closer together than the height of the UV light pattern used to write the gratings.

Description

200411219 玖、發明說明: 【發明所屬之技術領域】 本發明與波導光柵有關,尤其與用以書寫具有不同中心 波長之波導光柵之方法有關。 【先前技術】 光學通訊系統藉由電磁頻譜中位於可見光或進紅外線區 域之頻率之載波於兩地間發射資訊。有時將此載波稱之為 光學信號、光學載波或光波信號。光纖傳遞各具數個頻道 之光波信號。一頻道係一電磁信號之一特定頻帶,有時稱 之為波長。多重頻道係透過相同光纖共同發射,以利用光 纖所提供之前所未有之容量優點。基本上,各頻遒均擁有 其各自波長,且所有波長之間隔均足以避免重疊。典型以 數十萬計之頻道係以多工器插入,射入光纖中,並為接收 斋處之解多工器分隔之。沿此途徑中,可利用增/減多工器 (ADM)增加或減少頻道,或利用再結合光交換器(〇xc)切換 之。 为波多工(WDM)促進多重頻道於單一光纖中傳播。分波 多工構件利用選頻部件諸如光柵分離個別波長,其在增加 光纖傳輸容量之目標下,得以提供高反射率與高波長選擇 f生 種此類光拇為布拉格光棚(例如在光纖中或在平面型 波導中),其選擇性發射或反射在光纖内傳播之特定波長光 線。 布拉格光柵具有折射率分布,係光纖或平面型波導的一 邵份,其沿光纖長度呈週期性變化。布拉格光柵之中心波 86896 200411219 長分布係由下列方程式決定: λ=2ηΛ (方程式1) 其中λ為中心(或布拉格)波長,η為平均有效折射率,八為光 栅之週期(或光栅間隔)。 簡單週期性光纖布拉格光栅係此技藝中所熟知,且在光 纖布拉格光柵之製造上已有許多不同方法。光纖布拉格裝 置惑一特徵在於,如方程式1所示,為改變中心波長分布, 可改變折射率或光柵間隔。先前技藝技術著眼於改變光栅 間隔,其係藉由用以界定光柵分布之干涉圖案之變化為 之。藉由改變用以將光纖曝光之兩重疊干涉紫外(UV)光間 之内光束角或改變UV光線照射時經過之相位罩而改變干 涉圖案。 但改.交相位罩或内光束角均傾向昂貴、麻煩且耗費人 工,尤以嘗試製造光學通訊系統中之大量濾波及其它應用 之數種不同類型光纖布拉格光柵時為最。例如為製造具相 井中心波長分布之光纖布拉格光柵,需將書寫裝置設定為 相兴波長,目如係藉由置換相位罩為之。為書窝長光纖布 拉格光柵,需將光纖轉換為長程級,以將光感光纖之新部 分曝光於UV光下。類似地,為書寫動態頻移(chirped)寬頻 光纖為基之光柵,一般採用動態頻移罩,並以新的相位罩 供各新動態頻移分布之用。此外,於個別光柵中書窝個別 布拉格光柵,一般需要耗時之多重曝光,以及光纖之延伸 處理,以控制光纖。 【發明内容】 86896 200411219 本發明提供一種於一單一平面型光波電路(PLC)中或上 產生多重光柵之方法,包括: 於一波導中形成具有不同有效折射率之一組區域;及 於一紫外(UV)強度圖案下將該組區域曝光,俾形成一組 光柵,其中該組光柵具有大致相同之光柵間隔,且中心波 長相異。 【實施方式】 本發明之具體實施例指向波導光柵之製造。在下列敘述 中,呈現多種特定細節,諸如特殊處理、材料、裝置等, 俾利對本發明之置具體實施例之通盤了解。但熟悉相關領 域者應知’可於不具特定細師中之,一或多種或具有甘它方 法、部件等之下,施行本發明之具體實施例。在其它例子 中,並未顯示或詳述熟知結構或操作,以免有礙對本發明 之了解。 部分描述將以術語諸如波長、梦、錐狀、光柵、動感頻 移等表之。這些術語係熟悉此技藝者表達其工作内涵予其 它熟悉此技藝者時所通用。 將各種操作依序以多個個別方塊圖描述之,俾對本發明 之具體實施例之了解盡最大之功。但不應因所述順序而將 這些操作視為必要之順序相關或以所示方塊圖之順序施行 操作。 综觀本說明書之"一具體實施例”,係指在本發明之至少 一具體實施例中具有併同該具體實施例描述之一特殊外 型、處理、方塊圖或特徵。故综觀本說明書,在各處之,,在 86896 200411219 一具體實施例中’’乙語,無需均針對相同具體實施例。此 外,可以任何適當方式將特殊外型、結構或特徵併入一或 多個具體實施例中。 圖1係依本發明之一具體實施例之光子裝置1〇〇簡圖。光 子裝置100包含於平面型光波電路(PLC)平台1〇4中或上形 成之單一波導102。波導102包含數個串接之光柵1〇6、1〇8 與 110。 波導102可具圓形圖案(如圖1所示)或其它佈局。波導 可為單一模式波導。或者,波導102可為多重模式波導。 PLC平台104可為利用適當半導體處理設備製造之任何 適當之PLC平台。例如平台1〇2可為矽上矽土平台、鐘就氧 化物(LiNbCb)平台、砷化鎵(GaAs)平台、磷化銦(InP)平台、 絕緣體上矽(SOI)平台、矽氮氧化物(Si0N)平台、聚合物平 台或其它適當之平面型光波電路(PLC)平台。 光柵106、108與110可為光柵間隔(Λ)名義上相同但中心 波長相異之布拉格光柵,此係因各光柵106、1〇8與u〇接雜 有不同濃度及/或類型之摻雜物,故在書窝後之光柵1〇6、 108與110之光柵區之有效折射率相異。波導之光栅區為將 書寫光柵之位置。摻雜物可為任何適當之光敏性材料,諸 如硼(B)、鍺(Ge)及/或磷(P)。此一摻雜區之折射率將視uv "劑量”而變。故若UV光具有週期性變化之強度圖案(如書寫 一光柵時之情況),則在UV曝光後,摻雜區將具有週期性變 化之折射率,藉以形成一光柵。 在另一具體實施例中,可藉由樣本之氫化以及以UV光將 86896 200411219 所選段落預曝光而將折射率局部調變。在氫輸出氣體處理 後,這些段落仍維持光敏性。uv劑量控制平均折射率及所 感應之光敏性。併同下圖3對氫化之一範例做更細部描述。 光栅106、108與110可彼此相鄰(例如間隔12〇可小於用以 書寫光柵106、108與110之UV光強度圖案之高度)。藉由配 置光柵之更為鄰近,在某些具體實施例中,可於一曝光中 書寫光拇。 光柵106、108與110之一或多可較用以書窝光柵之uv光 束長度長。在本發明之一具體實施例中,UV光束長1公分,鲁 而光柵106長2公分。在其它具體實施例中,uv光束及/或光 栅尺寸可相異。 圖2係用以闡釋製造依本發明之一具體實施例之光子裝 置100(圖1)之處理200流程圖。可利用其上具機械可讀取指 令之機械可謂取媒介使處理器施行處理2〇〇。處理2〇〇理當 僅為範例處理,亦可採用其它處理。不應將所述處理2〇〇中 儿、序視為這些知作係必要之順序相關,或以方塊圖所呈現 之順序施行操作。 馨 芩閱圖1與2,利用標準半導體製造技術,施行操作2〇2 以製造PLC平台中或上之相異寬度之波導1〇2。這些技術包 口佈植擴& $鍍、物理氣相沉積、離子輔助沉積、微 影^電管錢鍍、電子束錢鏡、罩化、反應離子姓刻及/或 /、匕热悉此技蟄者周知之半導體製造技術。例如在一具體 她例中’波導1 〇2具有自氧化物諸如珍土形成之核心。 仍參閱圖1與2,施行操作2〇4以摻雜將充作光拇用之波導 86896 -10- 200411219 102之所選區域。例如可於波導上形成暫態罩層,接著將之 圖案化以界定波導中之光栅區。可於沉積頂包覆層前施行 π處理°在某些具體實施例中’可於形成頂包覆層後施行 匕處理俾摻$頂包覆層而非核心層。在此替代具體實施 例中,傳播光線之逐漸消失範圍會受包覆層中書寫之光桃 之影響。或者可將包覆圖案化並蝕刻以界定光罩區,且以 包覆層本身充作摻雜處理之罩。接著選擇性掺雜光樹區(如 下述)。 以具預定濃度或敎成分之—或多種光敏性材料選擇性 摻雜光柵區。在某些具體實施例中,摻雜物包含硼⑻、褚 (Ge)及/㈣(p)。刊用任何騎轉處㈣如離子饰植、 旋上溶液心擴散或其它現行或未來技術摻雜光柵區。 在一具體實施例中,將對應於光柵106之波導1〇2區摻雜 第-預定濃度之鍺,使得光柵1G6具第—折射率與第—中心 波長。類似地,將對應於光柵108之波導1〇2區摻雜第二預 定濃度之鍺,使得光柵108具第二折射率與第二中心波長。 類似地’將㈣於光柵叫之料⑽區轉第三預定濃度 之鍺,使得光柵11G具第三折射率與第三中心波長。在本發 明之-具體實施例中’摻雜物濃度可改變光桃1〇6、1〇請 m之波導區折射率約〇.2%,以偏㈣心波長Q 2%,或在 1 550奈米下之3G奈米。接著可將光栅書窝波導㈤之換雜區 中(圖1),如下述。 復參閱圖1與2,施行搡作2〇6,以波導1〇2橫向方向將波 導102之-或多個摻雜區(對應於光栅1()6、m及/或11〇)曝 86896 -11- 200411219 光於uv光強度圖案下。在一具體實施例中,曝光同時書寫 所有光柵,使得光柵106、1〇8與11〇均具有大致相同之光柵 間隔。在其它具體實施例中,可個別書窝各光柵,或可同 時書寫光柵之任何次集。 在一具體實施例中,可利用適當之Ki:F準分子雷射/相位 罩單元將對應於光柵1〇6、1〇8與110之波導102之摻雜區(圖 1)曝光於所選擇之UV光強度圖案。由於該等區域彼此間摻 雜各異’故所得波導光柵一般將具相異中心波長,即使光 柵間隔大致相同亦然。在一具體實施例中,光柵1〇6具1555 奈米之中心波長;光柵1〇8具1520奈米之中心波長;光柵11〇 具1 5 6 0奈米之中心波長。 例如可配置適當之KrF準分子雷射/相位罩單元,俾輸出 高300微米之UV光強度圖案。在一具體實施例中,配置光 柵106、108與110之波導1〇2區,使得光柵106、1〇8與11〇之 摻雜區所佔總區域之高度低於300微米。所得光子裝置更為 密集’並可於單一曝光中同時書窝三光栅之一部分。此外, 無需以個別曝光(内光束角)之寬頻寬調整將波導光柵調整 至一中心波長。 在本發明之一具體實施例中,一或多個光柵較用以將光 柵曝光之UV光束長度長,光柵之波導區可能摺疊,俾可於 相同曝光中書窝整體光柵。例如在UV光束為1公分之具體 實施例中,光柵可能長2公分,但摺疊為1公分(或更短)份 昼。在此情況下,所得光柵具有光栅分隔之間隙(亦即無書 窝光栅之波導段)。已知此類裝置為取樣或分隔之布拉格光 86896 12- 411219 撕0 光子农置100可為波導遽波器,以補償色散。色散係光波 脈衝〈連績色彩之暫態分離,並因其導致頻帶振幅變化; 導致相心料h或脈衝互疊;導致内符號干擾(1幻)而造 成困擾。在光纖中,由於相異波長以相異速度傳播而發生 色散。在光纖網路中之色散補償重要性隨著位元率之增加 而與日俱增,因為位元(光學脈衝)現間隔較近,且較短脈衝 包含較大跨度之頻寬。 光子裝置100運作時接收多工光波信號,該信號進入波導 102中,並入射於光柵1〇6、1〇8與11〇上。多工光波信號具 有數個本身各具中心波長分布之單一頻道光波信號。依本 發明之一具體實施例,光栅106反射第一波長(例如1535奈 米)並通過其它波長;光柵108反射第二波長(例如1550奈米) 並通過其它波長;光栅110則反射第三波長(例如1565奈米) 並通過其它波長。在另一具體實施例中,各光柵均具一動 感頻移光柵間隔,用以補償以該波長傳播之資料串歷經之 色散。 圖3係依本發明之一具體實施例之光子裝置300簡圖。光 子裝置300包含在一 PLC平台310中或上形成之數個波導波 導 302、3 04、306及 308。波導 302、304、306及 308 分別包 含光柵312、314、316及318。平台310與平台104類似。波 導302、304、306及308可與波導102類似。 光栅312、314、316及3 18可為光栅間隔名義上相同但中 心波長相異之布拉格光柵,由於各光柵312、314、316及318 86896 -13- 200411219 之幾何外型(例如寬、深、高)相異,故這些光柵區之有效折 射率相異。在本發明之一具體實施例中,光柵3 12可為7微 米寬;光柵314可為6微米寬;光柵316可為5微米寬,·及光 柵318可為4微米寬。 在本發明之一具體實施例中,波導3〇2、3〇4、3〇6及3〇8 之一或多段载有氫(上述氫化)。此類氫承載可藉由大小順序 改善波導之光敏性,並改變波導3〇2、304、306及/或308之 一或多段承載段之有效折射率。例如可選擇性佈植氫於對 應於各光柵3 12、314、3 16及3 18之波導302、304、306及308 區中。可經由離子佈植或以氫焰局部拂擦而佈植氫。氫承 載將局邵增加光敏性,並可以類似程度之uv曝光產生相異 折射率。在此具體實施例中,在UV書窝布拉格光柵期間, 波長強度(反射率)及中心波長直接成對。 在本發明之其它具體實施例中,選擇性預曝光或後曝光 波導3〇2、304、3 06及3 08之一或多段於各種程度之均勻UV 輕射下。此舉可用以改變個別波導之平均折射率,並偏移 光栅312、314、3 16及3 18之中心波長。 圖4係用以闡釋依本發明之一具體實施例之波導寬度與 波導中書寫之布拉格光柵之中心波長間關係之圖式代表 4〇〇。圖式代表4〇〇包含代表波導寬度(微米)之”χ,,軸4〇2,以 及代表波長(奈米)之”y”軸404。圖式代表400包含代表於波 導中書寫之布拉格光柵之中心波長隨波導寬度變化而變之 曲線406。注意在圖4中,中心波長隨著波導寬之增而增。 在另一具體實施例中,光柵312、314、3 16及3 18可為光 86896 -14 - 200411219 柵間隔名義上相同但中心波長相異之布拉格光柵,此係因 光栅區中之波導302、304、306及/或308之一或多個之核心 經過摻雜,故這些光栅區之有效折射率相異所致。圖5係用 以闡釋依本發明之具體實施例之波導核心之折射率與波導 中書寫之布拉格光栅之中心波長間關係之圖式代表5 0 0。 圖式代表500包含代表核心折射率之"X”軸502,以及代表 波長(奈米)之”y’’軸504。圖式代表500包含代表於波導中書 寫之布拉格光柵之中心波長隨波導折射率變化而變之曲線 5 06。注意在圖5中,中心波長隨著波導折射率之增而增。 在一具體實施例中,可以依本發明之具體實施例之不同濃 度摻雜物摻雜核心,以改變波導中書寫之光栅之折射率。 在另一具體實施例中,可以依本發明之具體實施例之不同 摻雜物成分(例如I呂、硼、磷)摻雜核心,以改變波導中書寫 之光栅之折射率。 在另一具體實施例中,光柵312、314、316及31 8可為光 柵間隔名義上相同但中心波長相異之布拉格光柵,此係因 光柵區中之波導302、304、306及/或308之包覆具相異有效 折射率所致。例如可利用電漿強化化學氣相沉積(PECVD) 技術於Si基板上長成SiO層。Si基板之名義厚度為15微米。 可於SiO層下之Si基板上沉積下包覆層。可利用摻雜有鍺及 /或硼之Si〇形成核心層,以增加Si〇之折射率。核心層可為 6微米厚。可將部分核心層濕蝕刻,以留下波導3〇2、304、 306及/或30 8之圖案。可利用例如離子佈植摻雜鍺、硼或其 它適當掺雜物於各光柵312、314、316及318之光柵區之波 86896 -15- 200411219 306及/或308之核心層中 。可沉積上包覆層於200411219 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to waveguide gratings, and particularly relates to a method for writing waveguide gratings having different center wavelengths. [Prior art] Optical communication systems transmit information between two places by using a carrier wave in the electromagnetic spectrum that is located in the visible or infrared region. This carrier is sometimes called an optical signal, an optical carrier, or a light wave signal. Optical fiber transmits light wave signals with several channels. A channel is a specific frequency band of an electromagnetic signal, sometimes called a wavelength. Multiple channels are transmitted together through the same fiber to take advantage of unprecedented capacity advantages offered by fiber. Basically, each chirp has its own wavelength, and all wavelengths are spaced enough to avoid overlap. Hundreds of thousands of channels are typically inserted with multiplexers, injected into the optical fiber, and separated by a demultiplexer for reception. Along this path, you can increase or decrease the channel with an increase / decrease multiplexer (ADM), or switch it with a recombination optical switch (0xc). Facilitates the propagation of multiple channels in a single fiber for Wave Multiplexing (WDM). The demultiplexing multiplexing component uses frequency-selective components such as gratings to separate individual wavelengths. With the goal of increasing the transmission capacity of the fiber, it can provide high reflectivity and high wavelength selection. In a planar waveguide), it selectively emits or reflects light of a specific wavelength propagating inside an optical fiber. The Bragg grating has a refractive index profile, which is a component of an optical fiber or a planar waveguide, which varies periodically along the length of the fiber. The center wave of the Bragg grating 86896 200411219 The long distribution is determined by the following equation: λ = 2ηΛ (Equation 1) where λ is the central (or Bragg) wavelength, η is the average effective refractive index, and eight is the period of the grating (or the grating interval). Simple periodic fiber Bragg gratings are well known in the art and many different methods have been used in the manufacture of fiber Bragg gratings. A characteristic of the fiber Bragg device is that, as shown in Equation 1, in order to change the central wavelength distribution, the refractive index or the grating interval can be changed. Prior art techniques focused on changing the grating spacing by changing the interference pattern used to define the grating distribution. The interference pattern is changed by changing the internal beam angle between the two overlapping interference ultraviolet (UV) lights used to expose the optical fiber or changing the phase mask that the UV light passes through. However, changing the phase mask or the angle of the internal beam tends to be expensive, cumbersome, and labor-intensive, especially when trying to manufacture a large number of different types of fiber Bragg gratings for filtering and other applications in optical communication systems. For example, in order to manufacture a fiber Bragg grating with a central wavelength distribution of a phase well, the writing device needs to be set to a phase-enhancing wavelength, for example, by replacing a phase mask. In order to write a long fiber Bragg grating, the fiber needs to be converted to a long range to expose a new part of the optical fiber to UV light. Similarly, to write a grating based on a chirped broadband fiber, a dynamic frequency shift mask is generally used, and a new phase mask is used for each new dynamic frequency shift distribution. In addition, individual Bragg gratings in individual gratings generally require time-consuming multiple exposures and fiber extension processing to control the fiber. [Summary of the Invention] 86896 200411219 The present invention provides a method for generating multiple gratings in or on a single planar lightwave circuit (PLC), comprising: forming a group of regions with different effective refractive indices in a waveguide; and an ultraviolet The group of regions is exposed under a (UV) intensity pattern to form a group of gratings, wherein the groups of gratings have approximately the same grating interval and different center wavelengths. [Embodiment] A specific embodiment of the present invention is directed to the manufacture of a waveguide grating. In the following description, a variety of specific details are presented, such as special treatments, materials, devices, etc., and a thorough understanding of specific embodiments of the present invention will be readily understood. However, those familiar with the related field should know that the specific embodiments of the present invention can be implemented without one or more specific ones, one or more methods or components. In other instances, well-known structures or operations have not been shown or described in detail, so as not to hinder the understanding of the present invention. Some descriptions will be expressed in terms such as wavelength, dream, cone, grating, dynamic frequency shift, etc. These terms are commonly used by those skilled in the art to express the meaning of their work to others who are familiar with the art. Various operations are sequentially described in a plurality of individual block diagrams, and the best understanding of the specific embodiments of the present invention is done. However, these operations should not be considered to be related in the order necessary or performed in the order shown in the block diagrams because of the described order. Looking at "a specific embodiment" of this specification, it means that there is a special appearance, process, block diagram or feature in at least one specific embodiment of the invention and described with that specific embodiment. The description, in various places, in 86896 200411219 a specific embodiment, "B" does not need to refer to the same specific embodiment. In addition, the special appearance, structure or feature may be incorporated into one or more specific embodiments in any suitable manner. In the embodiment, FIG. 1 is a schematic diagram of a photonic device 100 according to a specific embodiment of the present invention. The photonic device 100 includes a single waveguide 102 formed in or on a planar lightwave circuit (PLC) platform 104. The waveguide 102 includes several serially connected gratings 106, 108, and 110. The waveguide 102 may have a circular pattern (as shown in FIG. 1) or other layouts. The waveguide may be a single-mode waveguide. Alternatively, the waveguide 102 may be multiple Mode waveguide. The PLC platform 104 may be any suitable PLC platform manufactured using appropriate semiconductor processing equipment. For example, the platform 102 may be a silicon on silicon platform, a clock on oxide (LiNbCb) platform, or a gallium arsenide (GaAs) platform , Indium phosphide (InP) platform, silicon-on-insulator (SOI) platform, silicon oxynitride (Si0N) platform, polymer platform, or other appropriate planar lightwave circuit (PLC) platform. Gratings 106, 108, and 110 may be The grating spacing (Λ) is nominally the same, but the center wavelength is different. This is because each grating 106, 108, and u are doped with different concentrations and / or types of dopants. The effective refractive indices of the grating regions of gratings 106, 108 and 110 are different. The grating region of the waveguide is where the grating will be written. The dopant may be any suitable photosensitive material, such as boron (B), germanium (Ge ) And / or phosphorus (P). The refractive index of this doped region will vary depending on the UV dose. Therefore, if the UV light has a periodically changing intensity pattern (as is the case when writing a grating), after UV exposure, the doped region will have a periodically changing refractive index to form a grating. In another specific embodiment, the refractive index can be locally adjusted by hydrogenation of the sample and pre-exposure of selected segments of 86896 200411219 with UV light. After the hydrogen output gas treatment, these paragraphs still maintain photosensitivity. The UV dose controls the average refractive index and the photosensitivity sensed. An example of hydrogenation will be described in more detail with FIG. 3 below. The gratings 106, 108, and 110 may be adjacent to each other (e.g., the interval 120 may be smaller than the height of the UV light intensity pattern used to write the gratings 106, 108, and 110). By placing the gratings closer together, in some embodiments, the thumb can be written in one exposure. One or more of the gratings 106, 108, and 110 may be longer than the UV beam length of a book nest grating. In a specific embodiment of the invention, the UV beam is 1 cm long, and the grating 106 is 2 cm long. In other embodiments, the UV beam and / or grid sizes can be different. FIG. 2 is a flowchart illustrating a process 200 for manufacturing a photonic device 100 (FIG. 1) according to a specific embodiment of the present invention. The machine with the mechanically readable instructions can be used to take the medium to make the processor perform processing. The processing of 200 is just an example processing, and other processing may be used. The processes and sequences described in the above description should not be considered as related in the order necessary for these operations, or the operations should be performed in the order presented in the block diagram. Xin read Figures 1 and 2, using standard semiconductor manufacturing technology, perform operation 202 to manufacture waveguides 102 of different widths in or on the PLC platform. These technologies cover the expansion & plating, physical vapor deposition, ion-assisted deposition, lithography, electroplating, electron beam money mirrors, masking, reactive ion engraving and / or, etc. Well-known semiconductor manufacturing technology. For example, in one specific example, the 'waveguide 102' has a core formed from an oxide such as precious earth. Still referring to FIGS. 1 and 2, operation 204 is performed to dope a selected area of the waveguide 86896 -10- 200411219 102 that will be used as a light thumb. For example, a transient cover layer can be formed on the waveguide and then patterned to define a grating region in the waveguide. The π treatment may be performed before the top cladding layer is deposited. In some embodiments, it may be performed after the top cladding layer is formed, and the top cladding layer may be added instead of the core layer. In this alternative embodiment, the gradually disappearing range of the propagating light will be affected by the light peach written in the cover. Alternatively, the cladding can be patterned and etched to define the mask area, and the cladding layer itself can be used as a doping mask. The light tree region (as described below) is then selectively doped. The grating region is selectively doped with one or more photosensitive materials having a predetermined concentration or erbium component. In some embodiments, the dopants include boron hafnium, Chu (Ge), and / ㈣ (p). The journal is doped with gratings using any riding mechanism, such as ion implantation, spin-on-solution diffusion, or other current or future technologies. In a specific embodiment, the waveguide 102 corresponding to the grating 106 is doped with germanium at a predetermined concentration, so that the grating 1G6 has a first refractive index and a first center wavelength. Similarly, the waveguide 102 region corresponding to the grating 108 is doped with a second predetermined concentration of germanium so that the grating 108 has a second refractive index and a second center wavelength. Similarly, the germanium region, which is called the grating, is turned to a third predetermined concentration of germanium, so that the grating 11G has a third refractive index and a third center wavelength. In the specific embodiment of the present invention, the dopant concentration can change the refractive index of the waveguide region of the photo peach 106 and 10 m by about 0.2%, with an off-center wavelength Q 2%, or at 1 550. 3G Nano under Nano. Then the grating book nest waveguide can be replaced in the impurity region (Figure 1), as shown below. Referring again to Figs. 1 and 2, an operation of 206 is performed to expose the waveguide 102-or multiple doped regions (corresponding to the gratings 1 () 6, m, and / or 11) in the transverse direction of the waveguide 102 to 86896. -11- 200411219 Light under UV light intensity pattern. In a specific embodiment, all the gratings are written simultaneously during exposure, so that the gratings 106, 108, and 110 all have approximately the same grating spacing. In other embodiments, each raster may be individually book-slotted, or any sub-set of rasters may be written simultaneously. In a specific embodiment, an appropriate Ki: F excimer laser / phase mask unit can be used to expose the doped regions (FIG. 1) of the waveguide 102 corresponding to the gratings 106, 108, and 110 to the selected UV light intensity pattern. Because these regions are different from each other, the resulting waveguide gratings will generally have different center wavelengths, even if the grating intervals are approximately the same. In a specific embodiment, the grating 10 has a center wavelength of 1555 nanometers; the grating 108 has a center wavelength of 1520 nanometers; and the grating 110 has a center wavelength of 1560 nanometers. For example, an appropriate KrF excimer laser / phase mask unit can be configured to output a UV light intensity pattern with a height of 300 microns. In a specific embodiment, the waveguide 102 regions of the gratings 106, 108, and 110 are configured so that the height of the total area occupied by the doped regions of the gratings 106, 108, and 110 is less than 300 microns. The resulting photonic device is more dense and can simultaneously form part of the three gratings in a single exposure. In addition, there is no need to adjust the waveguide grating to a center wavelength with the wide bandwidth adjustment of the individual exposure (internal beam angle). In a specific embodiment of the present invention, one or more gratings are longer than the UV beam used to expose the grating, and the waveguide region of the grating may be folded, so that the entire grating can be used in the same exposure. For example, in a specific embodiment where the UV beam is 1 cm, the grating may be 2 cm long, but folded into 1 cm (or shorter) portions of daylight. In this case, the resulting grating has a grating-separated gap (that is, a waveguide segment without a book grating). Such devices are known as sampled or separated Bragg light 86896 12- 411219 The photon farm 100 can be a waveguide chirper to compensate for dispersion. Dispersion-based light wave pulses (transient separation of consecutive colors) and cause band amplitude changes; cause h or pulse overlap; lead to internal symbol interference (1 magic) and cause trouble. In an optical fiber, dispersion occurs because different wavelengths travel at different speeds. The importance of dispersion compensation in optical fiber networks increases with the bit rate, because the bit (optical pulse) is now closer, and the shorter pulse contains a larger span of bandwidth. The photonic device 100 receives a multiplexed light wave signal during operation. The signal enters the waveguide 102 and is incident on the gratings 106, 108, and 110. The multiplexed light wave signal has several single-channel light wave signals each having a central wavelength distribution. According to a specific embodiment of the present invention, the grating 106 reflects a first wavelength (for example, 1535 nm) and passes through other wavelengths; the grating 108 reflects a second wavelength (for example, 1550 nm) and passes through other wavelengths; the grating 110 reflects a third wavelength (Eg 1565 nm) and pass through other wavelengths. In another specific embodiment, each grating has a dynamic frequency-shift grating interval to compensate for the dispersion experienced by a data string propagating at that wavelength. FIG. 3 is a schematic diagram of a photonic device 300 according to a specific embodiment of the present invention. The photonic device 300 includes a plurality of waveguide waveguides 302, 304, 306, and 308 formed in or on a PLC platform 310. The waveguides 302, 304, 306, and 308 include gratings 312, 314, 316, and 318, respectively. The platform 310 is similar to the platform 104. The waveguides 302, 304, 306, and 308 may be similar to the waveguide 102. The gratings 312, 314, 316, and 318 can be Bragg gratings with nominally the same grating spacing but different center wavelengths. Because of the geometric appearance of each grating 312, 314, 316, and 318 86896 -13- 200411219 (such as wide, deep, High), so the effective refractive indices of these grating regions differ. In a specific embodiment of the present invention, the grating 312 may be 7 microns wide; the grating 314 may be 6 microns wide; the grating 316 may be 5 microns wide; and the grating 318 may be 4 microns wide. In a specific embodiment of the present invention, one or more sections of the waveguides 302, 304, 306, and 308 are loaded with hydrogen (the above-mentioned hydrogenation). This type of hydrogen loading can improve the photosensitivity of the waveguide by the order of magnitude and change the effective refractive index of one or more load-bearing sections of the waveguide 302, 304, 306, and / or 308. For example, hydrogen can be selectively implanted in the waveguide regions 302, 304, 306, and 308 corresponding to each grating 3 12, 314, 3 16 and 3 18. Hydrogen can be implanted by ion implantation or by local scrubbing with a hydrogen flame. Hydrogen loading will increase the photosensitivity and produce a different refractive index with a similar degree of UV exposure. In this specific embodiment, during the UV book nest Bragg grating, the wavelength intensity (reflectivity) and the center wavelength are directly paired. In other specific embodiments of the present invention, one or more of the selective pre-exposure or post-exposure waveguides 302, 304, 3 06, and 30 08 are irradiated with uniform UV light at various degrees. This can be used to change the average refractive index of individual waveguides and shift the center wavelengths of the gratings 312, 314, 3 16 and 3 18. Fig. 4 is a diagram representing a relationship between a waveguide width and a center wavelength of a Bragg grating written in a waveguide according to a specific embodiment of the present invention. The diagram represents 400 including the "χ", the axis representing the waveguide width (micrometers), and the "y" axis 404 representing the wavelength (nanometers). The diagram represents 400 including the Bragg grating written in the waveguide. A curve 406 of the center wavelength as the waveguide width changes. Note that in FIG. 4, the center wavelength increases as the waveguide width increases. In another embodiment, the gratings 312, 314, 3 16 and 3 18 may be Light 86896 -14-200411219 Bragg gratings with nominally the same grid spacing but different center wavelengths. This is because the cores of one or more of the waveguides 302, 304, 306, and / or 308 in the grating region are doped, so these The effective refractive indices of the grating regions are different. FIG. 5 is a diagram for explaining the relationship between the refractive index of the waveguide core and the center wavelength of the Bragg grating written in the waveguide according to a specific embodiment of the present invention. Schematic representation 500 includes the "X" axis 502 representing the core refractive index, and "y" axis 504 representing the wavelength (nanometer). Schematic representation 500 includes the center wavelength of the Bragg grating written in the waveguide. Refractive index change The change curve 5 06. Note that in FIG. 5, the center wavelength increases with the increase of the refractive index of the waveguide. In a specific embodiment, the core can be doped with different concentrations of dopants according to the specific embodiment of the present invention. In order to change the refractive index of the grating written in the waveguide, in another specific embodiment, the core can be doped according to different dopant components (eg, Lu, Boron, Phosphor) of the specific embodiment of the present invention to change the waveguide. Refractive index of a written grating. In another specific embodiment, the gratings 312, 314, 316, and 318 may be Bragg gratings with nominally the same grating spacing but different center wavelengths. This is because the waveguides 302, 304, 306, and / or 308 coatings have different effective refractive indices. For example, plasma enhanced chemical vapor deposition (PECVD) technology can be used to grow a SiO layer on a Si substrate. The nominal thickness of the Si substrate is 15 microns A cladding layer can be deposited on the Si substrate under the SiO layer. Si0 doped with germanium and / or boron can be used to form a core layer to increase the refractive index of Si0. The core layer can be 6 microns thick. Wet etch part of the core layer to leave waves Patterns of 302, 304, 306, and / or 308. Waves of grating regions of each grating 312, 314, 316, and 318 may be doped with, for example, ion implantation doped germanium, boron, or other appropriate dopants. 86896 -15 -200411219 306 and / or 308 in the core layer. An overcoat layer can be deposited on

包覆層之折射率與下包覆層之折射率 導302 、 304 、 30 核心層上。 15至20微米 類似。 圖6係用以闡釋製造依本發明之具體實施例之光子裝置 300之處理600流程圖。可利用上具機械可讀取指令之機械 可讀取媒介使處理器施行處理600。處理6〇〇理當僅為範例 處理,亦可採用其它處理。不應將所述方塊圖中順序視為 這些挺作係必要之順序相關,或以方塊圖所呈現之順序施 行操作。 利用標準半導體製造技術,施行操作6〇2以製造plc平台 中或上之相異寬度之波導。如前述,這些技術包含離子佈 植、擴散摻雜、蒸鍍、物理氣相沉積、離子輔助沉積、微 影、磁電管濺鍍、電子束濺鍍、罩化、反應離子蝕刻及/或 其它熟悉此技藝者周知之半導體製造技術,在本發明之一 具體實施例中,對應於光栅312、314、3 16與31 8之波導區 之寬度分別為7微米、6微米、5微米與4微米。 施行操作604,將對應於光柵312、314、316及/或3 18之 波導區曝光於所選之UV光強度圖案下。在此具體實施例 中,於波導302、304、306及/或308之縱向軸之橫向方向提 供UV光強度圖案。此曝光將具有所要光柵間隔之光柵書寫 波導302、304、306及/或308區中,供光柵312、314、316 及/或3 18之用。如前述,可利用適當之KrF準分子雷射產生 UV光強度圖案。UV光強度圖案可具300微米高度。在一具 86896 -16- 200411219 體實施例中,波導區所佔區域之寬度(或高度)低於3〇〇微 米。故該曝光可同時書窝所有光柵;個別光柵之任一個; 或同時書寫光栅之任一次集。 依本發明之具體實施例施行之裝置可更為緊密、更易於 製造,且更價廉。例如在一具體實施例中,可以多波長分 Pm多工(WDM)濾波器做為光子裝置3〇〇,其中分別可定址一 或多個光栅312、314、316及318。例如該裝置300可為具有 25千兆赫(GHz)間隔之40頻道串聯之頻道色散補償波導光 柵。故該裝置300長寬可為6與2公分。在具體實施例中,以 動感頻私波導光栅做為該裝置,一受控錐狀折射率可大幅 改善以標準動感頻移相位罩方法產生之光柵所困擾之,,群 延遲漣波π。 圖7係依本發明之一具體實施例之光子裝置7〇〇簡圖。光 子裝置700包含數個於PLC平台75〇中或上形成之波導 702、704、706、708 與 710。各波導 702、704、706、708 與 710均具一光柵 712、714、716、718與 720。波導 702、704、 706、708與 710和波導 302、304、306 與 308類似。平台 750 則與平台104類似。 光柵 712、714、716、71 8與 720和光柵 106、108與 110類 似,其中光栅712、714、716、718與720可為光柵間隔名義 上相同之布拉格光柵。光柵712、714、716、718與720和光 柵312、314、3 16與3 18類似,而其中心波長相異,因光柵 312、314、316與318具相異寬度,俾使波導3〇2、304、306 與308之光柵區具相異折射率。光柵712、714、716、718與 86896 -17- 200411219 720異於光柵312、314、316與3 18處在於光栅712、714、716、 7 18及/或720中之一或多個為錐狀,如參閱光柵72〇所示。 眾所週知,錐狀使得光柵為”動感頻移”(亦即沿光柵長度方 向之非均勻折射率之次集)。該動感頻移可為對稱、非對 稱,增減均可。或者,動感頻移可為線性(例如折射率隨光 柵長度線性變化)。動感頻移可為二次、隨機或分離。 在本發明之一具體實施例,在點730、732、734與736處 之光柵720兔度可分別為7微米、6微米、5微米與4微米。讀 取此處敘述後,熟悉相關技藝者即易了解如何施行各種動❿ 感頻移。 圖8係用以闡釋製造依本發明之具體實施例之光子裝置 700之處理800流程圖。可利用上具機械可讀取指令之機械 可讀取媒介使處理器施行處理80〇。處理8〇〇理當僅為範例 處理,亦可採用其它處理。不應將所述方塊圖中順序視為 這些^作係必要之順序相關,或以方塊圖所呈現之順序施 行操作。 利用I準半導體製造技術,諸如佈植、摻雜、蒸鍍、物 理氣相沉積、離子輔助沉積、微影、磁電管濺鍍、電子束 歲鍍罩化、反應離子蝕刻及/或其它熟悉此技藝者周知之 半導體製造技術,施行操作8〇2以製造pLC平台中或上之錐 狀寬度之波導。在本發明之一具體實施例中,波導7〇2可為 錐狀隔熱。例如波導7〇2在點73〇、7W、734與736處之寬或 高可分別為7微米、6微米、5微米與4微米。在其它具體實 施例中’其它外型或尺寸理當可行。 86896 -18 - 200411219 施行操作804,以波導702、704、706、708與7 10之橫向 方向將對應於光柵712、714、716及/或718之波導區曝光於 所選之UV光強度圖案下。產生強度圖案以於具所要光柵間 隔之光柵712、714、716及/或718之波導702、704、706、 708與710區中分別書寫光柵。該曝光可同時書寫所有光 柵;個別光柵之任一個;或同時書窝光柵之任一次集。在 一具體實施例中,可利用適當之KrF準分子雷射產生UV光 強度圖案。UV光強度圖案可具500微米高度。在一具體實 施例中,對應於光柵712、714、716及/或718之波導區彼此 較500微米近。 圖9係採用依本發明之具體實施例之光子裝置之WDM系 統900之方塊圖。WDM系統900包含一平面型光波電路 (PLC)902,其中或其上具有所形成之波導9〇4 ;在波導9〇4 中或上之光柵910、912及914。這些光柵之形成如後述。系 統900亦包含提供為PLC902所接收之光學信號之光學信號 源920。光柵910、912及914提供跨越WDM系統之多重光學 頻道之色散補償。在通過串聯之光柵91〇、912及914後,光 學信號可傳播至其它光學電路系統(未圖示)。在另一具體實 施例中(未圖示),PLC 902可包含於個別可定址波導中或上 形成之類似光柵,以充作WDM濾波器之用。 可利用硬體、軟體,或軟硬體組合施行本發明之具體實 施例。在利用軟體之施行中,可將軟體儲存於電腦程式產 品(諸如光碟、磁碟、磁片等)或程式儲存裝置(諸如光碟驅 動器、磁碟驅動器、磁片驅動器等)。 86896 -19- 200411219 非欲詳述本發明之圖解具體實施例,或以本發明之具體 貫施例限制所揭精確型式。雖然此處因闡釋之故,描述本 發明i特疋具體實施例與範例,熟悉相關技藝者應知各種 等效改良均屬可能。可於以上詳盡敘述之導引下,改良本 發明之具體實施例。 不應將下列申請專利範圍中使用之術語視為限制本發明 於說明書與中請專利制中所揭特定具體實施例。此外, 非由依所建立之申請專利範圍詮釋之原則之下列申請專利 範圍完全涵括本發明之具體實施例之範圍。 【圖式簡單說明】 在圖式中,類似代表符號一般係表相同、功能類似及/ 或結構等效之構件。圖式中首次出現之構件係 以代表符號 中之最左位數表之。 圖1係依本發明之一具體實施例之光子裝置簡圖。 圖2係用以闡釋製造依本發明之一具體實施例之圖1中之 光子裝置之處理流程圖。 圖3係依本發明之一替代具體實施例之光子裝置簡圖。 圖4係用以闡釋製造依本發明之一具體實施例之圖3中之 光子裝置之方法圖。 圖5係依本發明之另一具體實施例之光子裝置簡圖。 圖6係用以闇釋製造依本發明之具體實施例之圖5中之光 子裝置之方法流程圖。 圖7係依本發明之一具體實施例之光子裝置簡圖。 圖8係用以闊釋製作依本發明之具體實施例之圖7中之光 86896 -20- 200411219 子裝置之處理流程圖。 圖9係用以製作依本發明之具體實施例之光子裝置之系 統之高階方塊圖。 【圖式代表符號說明】 100 光子裝置 102 波導 104 平面型光波電路平台 106 光栅 108 光栅 110 光柵 120 間隔 200 處理 202 操作 204 操作 206 操作 300 光子裝置 302 波導 304 波導 306 波導 308 波導 310 平面型光波電路平台 312 光柵 314 光柵· 316 光柵 86S96 -21 - 200411219 318 光柵 400 圖式代表 402 X軸 404 y軸 406 曲線 500 圖式代表 502 X軸 504 y軸 506 曲線 600 處理 602 操作 604 操作 700 光子裝置 702 波導 704 波導 706 波導 708 波導 710 波導 712 光柵 714 光柵 716 光柵 718 光柵 720 光柵 730 點The refractive index of the cladding layer and the refractive index of the lower cladding layer are guided on the core layer 302, 304, 30. 15 to 20 microns Similar. FIG. 6 is a flowchart illustrating a process 600 for manufacturing a photonic device 300 according to an embodiment of the present invention. The processor 600 may be executed using a mechanically readable medium having mechanically readable instructions. The treatment of 600 should be regarded as an example, and other treatments may be adopted. The sequence in the block diagrams should not be regarded as related in the order necessary for these actions, or the operations should be performed in the order presented in the block diagrams. Using standard semiconductor manufacturing techniques, operation 602 is performed to fabricate waveguides of different widths in or on the plc platform. As mentioned previously, these techniques include ion implantation, diffusion doping, evaporation, physical vapor deposition, ion assisted deposition, lithography, magnetron sputtering, electron beam sputtering, masking, reactive ion etching, and / or other familiarity. The semiconductor manufacturing technology well known to this artist, in a specific embodiment of the present invention, the widths of the waveguide regions corresponding to the gratings 312, 314, 3 16 and 3 18 are 7 μm, 6 μm, 5 μm and 4 μm, respectively. Operation 604 is performed to expose the waveguide regions corresponding to the gratings 312, 314, 316, and / or 3 18 to the selected UV light intensity pattern. In this embodiment, a UV light intensity pattern is provided in the lateral direction of the longitudinal axis of the waveguides 302, 304, 306, and / or 308. This exposure will be in grating writing waveguides 302, 304, 306, and / or 308 with the desired grating spacing for gratings 312, 314, 316, and / or 318. As mentioned above, a suitable KrF excimer laser can be used to generate a UV light intensity pattern. The UV light intensity pattern may have a height of 300 microns. In an 86896-16-200411219 embodiment, the width (or height) of the area occupied by the waveguide region is less than 300 microns. Therefore, the exposure can be all of the gratings at the same time; any one of the individual gratings; or any set of gratings can be written at the same time. The device implemented according to a specific embodiment of the present invention can be more compact, easier to manufacture, and cheaper. For example, in a specific embodiment, a multi-wavelength division Pm multiplex (WDM) filter can be used as the photonic device 300, where one or more gratings 312, 314, 316, and 318 can be addressed, respectively. For example, the device 300 may be a channel dispersion compensating waveguide grating of 40 channels connected in series with 25 gigahertz (GHz) intervals. Therefore, the length and width of the device 300 can be 6 and 2 cm. In a specific embodiment, a motion-frequency private waveguide grating is used as the device, and a controlled cone-shaped refractive index can greatly improve the trouble caused by the grating generated by the standard motion-frequency shifted phase mask method. The group delay ripple is π. FIG. 7 is a simplified diagram of a photonic device 700 according to a specific embodiment of the present invention. The photonic device 700 includes several waveguides 702, 704, 706, 708, and 710 formed in or on the PLC platform 750. Each waveguide 702, 704, 706, 708, and 710 has a grating 712, 714, 716, 718, and 720. Waveguides 702, 704, 706, 708 and 710 and waveguides 302, 304, 306 and 308 are similar. Platform 750 is similar to platform 104. Gratings 712, 714, 716, 71 8 and 720 and gratings 106, 108 and 110 are similar, where gratings 712, 714, 716, 718, and 720 may be Bragg gratings with nominally the same grating spacing. The gratings 712, 714, 716, 718 and 720 are similar to the gratings 312, 314, 3 16 and 3 18, and their center wavelengths are different. Because the gratings 312, 314, 316, and 318 have different widths, the waveguide 3 2 , 304, 306 and 308 have different refractive indices. Gratings 712, 714, 716, 718, and 86896 -17- 200411219 720 differ from gratings 312, 314, 316, and 3 18 in that one or more of the gratings 712, 714, 716, 7 18, and / or 720 are tapered , As shown in raster 72. As we all know, the cone shape makes the grating "dynamic frequency shift" (that is, the second set of non-uniform refractive index along the length of the grating). The dynamic frequency shift can be symmetrical, asymmetric, and can be increased or decreased. Alternatively, the dynamic frequency shift can be linear (for example, the refractive index varies linearly with the grating length). Motion frequency shift can be quadratic, random, or separated. In a specific embodiment of the present invention, the degree of grating 720 at points 730, 732, 734, and 736 may be 7 micrometers, 6 micrometers, 5 micrometers, and 4 micrometers, respectively. After reading the description here, those skilled in the art will easily understand how to perform various dynamic frequency shifts. FIG. 8 is a flowchart illustrating a process 800 for manufacturing a photonic device 700 according to an embodiment of the present invention. A mechanically readable medium with mechanically readable instructions can be used to cause the processor to perform processing 80 times. The processing of 800 is just an example processing, and other processing may be adopted. The order in the block diagrams should not be regarded as related in the order necessary for the operations, or the operations should be performed in the order presented in the block diagrams. Utilize quasi-semiconductor manufacturing techniques such as implantation, doping, evaporation, physical vapor deposition, ion-assisted deposition, lithography, magnetron sputtering, electron beam masking, reactive ion etching, and / or others familiar with this The semiconductor manufacturing technology well known to the artist performs operation 802 to manufacture waveguides with a tapered width in or on the pLC platform. In a specific embodiment of the present invention, the waveguide 702 may be a cone-shaped heat insulation. For example, the width or height of the waveguide 702 at points 730, 7W, 734, and 736 may be 7 microns, 6 microns, 5 microns, and 4 microns, respectively. In other specific embodiments' other shapes or sizes are reasonable. 86896 -18-200411219 Perform operation 804 to expose the waveguide areas corresponding to the gratings 712, 714, 716, and / or 718 in the lateral direction of the waveguides 702, 704, 706, 708, and 7 10 to the selected UV light intensity pattern . An intensity pattern is generated to write the gratings in the waveguides 702, 704, 706, 708, and 710 of the gratings 712, 714, 716, and / or 718 with the desired grating spacing, respectively. This exposure can write all the gratings at the same time; any one of the individual gratings; or any one set of book nest gratings at the same time. In a specific embodiment, a suitable KrF excimer laser can be used to generate a UV light intensity pattern. The UV light intensity pattern may have a height of 500 microns. In a specific embodiment, the waveguide regions corresponding to the gratings 712, 714, 716, and / or 718 are closer to each other than 500 microns. FIG. 9 is a block diagram of a WDM system 900 using a photonic device according to a specific embodiment of the present invention. The WDM system 900 includes a planar lightwave circuit (PLC) 902, which has a waveguide 904 formed thereon or thereon; gratings 910, 912, and 914 in or on the waveguide 904. The formation of these gratings will be described later. The system 900 also includes an optical signal source 920 that provides an optical signal received by the PLC 902. Gratings 910, 912, and 914 provide dispersion compensation across multiple optical channels of a WDM system. After passing through the serial gratings 91, 912, and 914, the optical signal can be transmitted to other optical circuit systems (not shown). In another specific embodiment (not shown), the PLC 902 may be included in or similar to a grating formed in an individually addressable waveguide for use as a WDM filter. Specific embodiments of the invention can be implemented using hardware, software, or a combination of software and hardware. In the implementation of the software, the software may be stored in a computer program product (such as an optical disk, a magnetic disk, a magnetic disk, etc.) or a program storage device (such as an optical disk drive, a magnetic disk drive, a magnetic disk drive, etc.). 86896 -19- 200411219 are not intended to detail the illustrated specific embodiments of the present invention, or to limit the precise form disclosed by the specific embodiments of the present invention. Although for the sake of explanation, specific embodiments and examples of the present invention are described, those skilled in the relevant art should know that various equivalent improvements are possible. The specific embodiments of the present invention can be improved under the guidance of the foregoing detailed description. The terms used in the following patent application scope should not be regarded as limiting the specific embodiments of the invention disclosed in the description and the patent system. In addition, the following patent application scopes, which are not interpreted in accordance with the principles established by the patent application scopes established, fully encompass the scope of specific embodiments of the invention. [Brief description of the drawings] In the drawings, similar representative symbols are generally components with the same table, similar functions, and / or structural equivalents. The first occurrence of a component in the drawing is represented by the leftmost digit in the symbol. FIG. 1 is a schematic diagram of a photonic device according to a specific embodiment of the present invention. FIG. 2 is a flowchart illustrating a process for manufacturing the photonic device in FIG. 1 according to a specific embodiment of the present invention. FIG. 3 is a schematic diagram of a photonic device according to an alternative embodiment of the present invention. FIG. 4 is a diagram illustrating a method of manufacturing the photonic device in FIG. 3 according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a photonic device according to another embodiment of the present invention. FIG. 6 is a flowchart for explaining a method of manufacturing the photonic device in FIG. 5 according to an embodiment of the present invention. FIG. 7 is a schematic diagram of a photonic device according to a specific embodiment of the present invention. FIG. 8 is a process flow diagram of the sub-device 86896-20-20200411219 in FIG. 7 for exaggerating the production of the light in FIG. 7 according to a specific embodiment of the present invention. Fig. 9 is a high-level block diagram of a system for making a photonic device according to a specific embodiment of the present invention. [Illustration of representative symbols of the drawings] 100 photonic device 102 waveguide 104 planar lightwave circuit platform 106 grating 108 grating 110 grating 120 interval 200 processing 202 operation 204 operation 206 operation 300 photonic device 302 waveguide 304 waveguide 306 waveguide 308 waveguide 310 planar lightwave circuit Stage 312 Grating 314 Grating · 316 Grating 86S96 -21-200411219 318 Grating 400 Schematic representation 402 X-axis 404 y-axis 406 Curve 500 Schematic representation 502 X-axis 504 y-axis 506 Curve 600 Processing 602 Operation 604 Operation 700 Photonic device 702 Waveguide 704 waveguide 706 waveguide 708 waveguide 710 waveguide 712 grating 714 grating 716 grating 718 grating 720 grating 730 points

86896 -22- 200411219 732 點 734 點 736 點 800 處理 802 操作 804 操作 900 多波長分隔多工系統 902 平面型光波電路 904 波導 910 光桃 912 光柵 914 光柵 920 光學信號源 86896 -23 -86896 -22- 200411219 732 points 734 points 736 points 800 processing 802 operation 804 operation 900 multi-wavelength division multiplexing system 902 planar lightwave circuit 904 waveguide 910 light peach 912 grating 914 grating 920 optical signal source 86896 -23-

Claims (1)

2〇〇4ll2i9 拾、申請專利範園: 1. 一種於一單一平面型光波電路(PLC)中或上產生多重光 棚之方法’包括。 於一波導中形成具有不同有效折射率之一組區域,·及 於一紫外(UV)強度圖案下將該組區域曝光,俾形成一 組光栅,其中該組光柵具有大致相同之光栅間隔,且中 心波長相異。 2,如申請專利範圍第1項之方法,其中該組區域係同時曝 光。 3. 如申睛專利範圍第1項之方法,其中該組區域具有大致相 同之寬度分布。 4. 如申請專利範圍第3項之方法,其中該組區域之寬度分布 沿該波導之縱向軸而變。 5. 如申請專利範圍第1項之方法,其中該組區域之形成包括 摻雜琢組不同區域,使得該組區域之各區域均具有與該 組區域之其它區域相異之摻雜參數。 6. 如申請專利範圍第5項之方法,其中以一具有一第一濃度 之選擇摻雜物摻雜該組區域之一區域,以及以一具有異 於孩第一濃度之第二濃度之該選擇摻雜物摻雜該組區域 之另一區域。 7·如申請專利範圍第5項之方法,其中該組區域之一區域包 。在▲組區域之另_區域中不具有之掺雜物。 8·如申請專利範圍第5項之方法,其中摻雜該組區域之一區 域之一核心層。 86896 200411219 .如申請專利範圍第5項之方法,其中摻雜該組區域之一區 域之一包覆層。 10. 如申請專利範圍第丨項之方法,其中該組區域之形成包括 以異於該組區域之第二區域之幾何外型形成該組區域之 第一區域。 11. 如申請專利範圍第1〇項之方法,其中該第一區域具有異 異於該第二區域之深度。 12. 如申請專利範圍第10項之方法,其中該第一區域具有異 異於該第二區域之寬度。 13. 如申凊專利範圍第1項之方法,其中該組光柵係動態頻 移。 14. 如申請專利範圍第J項之方法,其中該波導係配置於一圖 案中,使得該組區域之區域間彼此相鄰。 15. 如申請專利範圍第1項之方法,其中該組區域之形成包含 該組區域之選擇部分之氫化。 1 6.如申請專利範圍第1 5項之方法,進一步包括將該選擇部 分氫化前,以光線預曝光該選擇部分。 17·如申請專利範圍第15項之方法,其中利用離子佈植將該 選擇部分氫化。 18. —種以申請專利範圍第1項之處理形成之產品。 19· 一種平面型光波電路(ρ[〇),包括: 一具有一第一中心波長之第一光栅,該第一光柵具有 一第一有效折射率及一光柵間隔分布;及 一具有一第二中心波長之第二光柵,該第二光柵具有 86896 -2- 411219 一異於該第一光柵之第二有效折射率及一大致與該第一 光柵相同之光栅間隔分布。 2〇·如申請專利範圍第19項之PLC,其中該等第-與第二光柵 係同時書窝。 21.如申請專利範圍第19項之PLC,其中該等第一與第二光柵 係於具相異摻雜分布之該PLC之區域中形成。 22·如申請專利範圍第21項之PLC,其中以一具有一第一濃度 又第一摻雜物摻雜該第一光柵之區域,以及以一具有昱 万;忒第一濃度之第二濃度之該第一摻雜物掺雜該第二光 柵之區域。 23. 如申請專利範圍第21項之PLC,其中該第—光栅之區域包 心在。亥弟一光柵'之區域中不具有之接雜物。 24. 如申請專利範圍第19項之PLC,其中該等第一與第二光桃 具有相異幾何外型。 25·如申請專利範圍第19項之PLC,其中該等第一與第二光桃 係動態頻移。 26·如申請專利範圍第19項之plc,其中該等第一與第二光構 構成一單一波導之一傳播路徑之一部份。 27·如申請專利範圍第19項之PLC,其中該等第一與第二光插 分別配置於在該PLC中或上形成之一第一波導與一第二 波導中或上。 28·—種系統,包括: 一光學信號源; 一光波傳播媒介; 86896 200411219 一經由該光學信號媒介耦合至該光學信號源之平面型 光波電路(PLC),其具有: 一具有一第一中心波長之第一光柵,該第一光柵具 有一第一有效折射率及一光柵間隔分布;及 一具有一第二中心波長之第二光柵,該第二光柵具 有一異於該第一光柵'之第二有效折射率。 29. 如申請專利範圍第28項之系統,其中該等第一與第二光 栅係於具有相異摻雜分布之該PLC之區域中形成。 30. 如申請專利範圍第28項之系統,其中該等第一與第二光 栅具有相異幾何外型,使得該等第一與第二折射率相異。 4- 868962004112i9 Pick up and apply for a patent garden: 1. A method of generating multiple light booths in or on a single planar lightwave circuit (PLC) 'includes. Forming a set of regions with different effective refractive indices in a waveguide, and exposing the set of regions under an ultraviolet (UV) intensity pattern to form a set of gratings, wherein the set of gratings have approximately the same grating interval, and The center wavelengths differ. 2. The method according to item 1 of the patent application range, wherein the areas of the group are exposed simultaneously. 3. The method of claim 1 in the patent scope, wherein the groups of regions have approximately the same width distribution. 4. The method of claim 3, wherein the width distribution of the group of regions varies along the longitudinal axis of the waveguide. 5. The method of claim 1 in which the formation of the group of regions includes doping different regions of the group so that each region of the group of regions has different doping parameters from other regions of the group. 6. The method of claim 5, wherein a region of the set of regions is doped with a selective dopant having a first concentration, and a region having a second concentration different from the first concentration of the A selected dopant is used to dope another region of the set of regions. 7. The method of claim 5 in the scope of patent application, wherein one of the group of regions is a regional package. Dopants not present in the other regions of the ▲ group region. 8. The method of claim 5 in which a core layer is doped in one of the regions of the group of regions. 86896 200411219. The method of claim 5 in which a cladding layer is doped in one of the regions of the group. 10. The method according to the scope of claim 1, wherein the forming of the group of regions includes forming the first region of the group of regions with a geometric shape different from the second region of the group of regions. 11. The method of claim 10, wherein the first region has a depth different from that of the second region. 12. The method of claim 10, wherein the first region has a width different from that of the second region. 13. The method of claim 1 in the patent scope, wherein the set of gratings is dynamically frequency-shifted. 14. The method according to item J of the application, wherein the waveguide is arranged in a pattern such that the regions of the group of regions are adjacent to each other. 15. The method of claim 1, wherein the formation of the group of regions includes hydrogenation of a selected portion of the group of regions. 16. The method according to item 15 of the patent application scope, further comprising pre-exposing the selection portion with light before hydrogenating the selection portion. 17. The method according to claim 15 in which the selected portion is hydrogenated by ion implantation. 18. — A product formed by the treatment of item 1 of the scope of patent application. 19. A planar lightwave circuit (ρ [〇), comprising: a first grating having a first central wavelength, the first grating having a first effective refractive index and a grating interval distribution; and a second grating A second grating with a center wavelength, the second grating having a second effective refractive index different from that of the first grating and a grating interval distribution substantially the same as the first grating. 2 0. If a PLC is applied for item 19 of the scope of patent application, wherein the first and second gratings are book nests at the same time. 21. The PLC as claimed in claim 19, wherein the first and second gratings are formed in a region of the PLC with a different doping distribution. 22. PLC as claimed in claim 21, wherein an area of the first grating is doped with a first concentration and a first dopant, and a second concentration with Yuwan; 忒 a first concentration A region of the second grating is doped by the first dopant. 23. For example, the PLC of the scope of application for patent No. 21, wherein the area of the-grating is centered. Inclusions that are not present in the Heidi-Grating area. 24. If the PLC of the 19th scope of the patent application is applied for, the first and second light peaches have different geometric shapes. 25. For a PLC as claimed in item 19 of the patent application, wherein the first and second optical peaches are dynamic frequency shifts. 26. For example, plc in the scope of application for patent No. 19, wherein the first and second optical structures constitute a part of a propagation path of a single waveguide. 27. The PLC as claimed in claim 19, wherein the first and second optical plugs are respectively disposed in or on a first waveguide and a second waveguide formed in or on the PLC. 28 · —A system including: an optical signal source; a light wave propagation medium; 86896 200411219 a planar light wave circuit (PLC) coupled to the optical signal source via the optical signal medium, which has: a having a first center A first grating having a wavelength, the first grating having a first effective refractive index and a grating interval distribution; and a second grating having a second central wavelength, the second grating having a different from the first grating ' Second effective refractive index. 29. The system of claim 28, wherein the first and second optical grids are formed in a region of the PLC with a different doping profile. 30. The system of claim 28, wherein the first and second gratings have different geometric shapes, so that the first and second refractive indices are different. 4- 86896
TW092120115A 2002-07-24 2003-07-23 Method for writing a planar waveguide having gratings of different center wavelengths TWI243916B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/205,089 US7189497B2 (en) 2002-07-24 2002-07-24 Method for writing a planar waveguide having gratings of different center wavelengths

Publications (2)

Publication Number Publication Date
TW200411219A true TW200411219A (en) 2004-07-01
TWI243916B TWI243916B (en) 2005-11-21

Family

ID=30769985

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092120115A TWI243916B (en) 2002-07-24 2003-07-23 Method for writing a planar waveguide having gratings of different center wavelengths

Country Status (7)

Country Link
US (3) US7189497B2 (en)
EP (1) EP1530734A2 (en)
JP (1) JP4215716B2 (en)
CN (1) CN100559219C (en)
AU (1) AU2003247886A1 (en)
TW (1) TWI243916B (en)
WO (1) WO2004010180A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427343B (en) * 2011-01-20 2014-02-21 Univ Nat Central While running a single structure of wavelength multiplexing and light modulation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189497B2 (en) 2002-07-24 2007-03-13 Intel Corporation Method for writing a planar waveguide having gratings of different center wavelengths
US20060002653A1 (en) * 2004-06-30 2006-01-05 Anders Grunnet-Jepsen Apparatus for an optical circuit having a flat wavelength response
US7639911B2 (en) * 2005-12-08 2009-12-29 Electronics And Telecommunications Research Institute Optical device having optical waveguide including organic Bragg grating sheet
US7933478B2 (en) * 2008-02-25 2011-04-26 Enablence Usa Components Inc. Reflective planar lightwave circuit waveguide
US9819435B2 (en) * 2010-08-26 2017-11-14 Cornell University Optical apparatus, method, and applications
CN102998740B (en) * 2012-11-30 2014-04-16 燕山大学 Device and method for simultaneously inscribing multi-wavelength array gratings in ribbon fiber
US20170153391A1 (en) * 2015-11-30 2017-06-01 Google Inc. Photonic chip optical transceivers
CN115097570B (en) * 2022-08-22 2023-04-07 上海羲禾科技有限公司 Waveguide etching method

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3303623A1 (en) * 1983-02-03 1984-08-09 Philips Patentverwaltung Gmbh, 2000 Hamburg OPTICAL PHASE GRID ARRANGEMENT AND SWITCHING DEVICES WITH SUCH AN ARRANGEMENT
US4745607A (en) * 1986-10-08 1988-05-17 American Telephone And Telegraph Company, At&T Bell Laboratories Interlayer directional coupling in antiresonant reflecting optical waveguides
US5064290A (en) * 1987-12-12 1991-11-12 Renishaw Plc Opto-electronic scale-reading apparatus wherein phase-separated secondary orders of diffraction are generated
US5070488A (en) * 1988-06-29 1991-12-03 Atsuko Fukushima Optical integrated circuit and optical apparatus
JP2753118B2 (en) * 1990-06-28 1998-05-18 シャープ株式会社 Optical wavelength converter
GB2265059B (en) * 1992-03-04 1995-07-26 Northern Telecom Ltd Optical regenerators
SE470454B (en) * 1992-08-26 1994-04-11 Ericsson Telefon Ab L M Optical filter device
US5392308A (en) * 1993-01-07 1995-02-21 Sdl, Inc. Semiconductor laser with integral spatial mode filter
GB2280968B (en) * 1993-08-12 1996-07-31 Northern Telecom Ltd Chirped optical fibre filter
JPH08220356A (en) 1995-02-13 1996-08-30 Fujikura Ltd Optical waveguide chirped grating
US5848207A (en) * 1996-08-29 1998-12-08 Hitachi Cable, Ltd. Optical device formed with grating therein, add/drop filter using same, and method of fabricating same
CA2202308C (en) 1996-04-19 2001-05-08 Michihiro Nakai Optical waveguide grating and production method therefor
JP3740741B2 (en) * 1996-06-26 2006-02-01 日産自動車株式会社 Direct cylinder injection spark ignition engine
JPH1090508A (en) * 1996-09-11 1998-04-10 Sumitomo Electric Ind Ltd Diffraction grating forming method and optical waveguide
US5930420A (en) * 1997-08-15 1999-07-27 Lucent Technologies, Inc. Method for producing photo induced grating devices by UV irradiation of heat-activated hydrogenated glass
US6175670B1 (en) * 1998-03-23 2001-01-16 Lucent Technologies, Inc. Planar lightguide circuit having a planar grating
FR2785730B1 (en) * 1998-11-05 2001-10-12 Cit Alcatel SEMICONDUCTOR OPTICAL AMPLIFIER WITH ADJUSTABLE STABILIZED GAIN AND OPTICAL SYSTEM USING SUCH AMPLIFIER
WO2000067054A1 (en) 1999-04-30 2000-11-09 The University Of Sydney Method for creating an optical structure within a photosensitive light transmissive material and of enhancing the photosensitivity of the photosensitive light transmissive material
JP3456927B2 (en) 1999-08-06 2003-10-14 学校法人早稲田大学 Grating and grating forming method and apparatus
US6832023B1 (en) * 2000-05-19 2004-12-14 Georgia Tech Research Corporation Optical fiber gratings with azimuthal refractive index perturbation, method of fabrication, and devices for tuning, attenuating, switching, and modulating optical signals
US6365428B1 (en) * 2000-06-15 2002-04-02 Sandia Corporation Embedded high-contrast distributed grating structures
DE60028366T2 (en) * 2000-07-11 2006-10-12 Corning Incorporated Optical amplifier with adjustable stabilized gain
NO316148B1 (en) 2000-12-15 2003-12-15 Optoplan As Bolgeleder laser source
KR100388485B1 (en) * 2001-05-31 2003-06-25 한국전자통신연구원 Multi-wavelength semiconductor laser array structure and fabricating the same
DE60119353D1 (en) * 2001-11-02 2006-06-08 Aston Photonic Tech Ltd Optical sensor with fiber gratings for two measurands
US6522812B1 (en) * 2001-12-19 2003-02-18 Intel Corporation Method of precision fabrication by light exposure and structure of tunable waveguide bragg grating
US6647032B1 (en) * 2002-01-31 2003-11-11 Intel Corporation Thermally wavelength tunable laser having selectively activated gratings
US6638773B1 (en) * 2002-05-31 2003-10-28 Applied Optoelectronics, Inc. Method for fabricating single-mode DBR laser with improved yield
US7189497B2 (en) 2002-07-24 2007-03-13 Intel Corporation Method for writing a planar waveguide having gratings of different center wavelengths

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427343B (en) * 2011-01-20 2014-02-21 Univ Nat Central While running a single structure of wavelength multiplexing and light modulation

Also Published As

Publication number Publication date
WO2004010180A2 (en) 2004-01-29
AU2003247886A1 (en) 2004-02-09
EP1530734A2 (en) 2005-05-18
CN1685254A (en) 2005-10-19
US7189497B2 (en) 2007-03-13
WO2004010180A3 (en) 2004-04-29
US20050008295A1 (en) 2005-01-13
JP4215716B2 (en) 2009-01-28
CN100559219C (en) 2009-11-11
US20050008977A1 (en) 2005-01-13
US6983091B2 (en) 2006-01-03
JP2005534060A (en) 2005-11-10
US20040018022A1 (en) 2004-01-29
TWI243916B (en) 2005-11-21

Similar Documents

Publication Publication Date Title
US5830622A (en) Optical grating
JPH07301723A (en) Optical multiple-signal dividing device,communication system including device thereof and data communication network in enterprise
WO1997008574A1 (en) Wavelength selective grating assisted optical couplers
US20040008968A1 (en) Photosensitive optical glass
JP3754634B2 (en) Optical fiber grating manufacturing method and apparatus, optical fiber grating
CN110596914B (en) Array waveguide grating with adjustable wavelength and bandwidth and adjusting method thereof
TW200411219A (en) Method for writing a planar waveguide having gratings of different center wavelengths
US6816648B2 (en) Integrated waveguide gratings by ion implantation
KR20040104085A (en) a method of making a wavelength filter
JPH1184152A (en) Method for writing short period reflection bragg diffraction grating using phase mask
US20020027126A1 (en) Fabrication of gratings in planar waveguide devices
KR20010074638A (en) Laser direct writing of planar lightwave circuits
JP3247819B2 (en) Array grating type optical multiplexer / demultiplexer
KR20030029326A (en) Planar lightwave circuit with grating
KR20030083212A (en) Optical waveguide-type filter device for flattening gain and method for manufacturing the same
JP2002341158A (en) Array waveguide grating type optical wavelength multiplexer/demultiplexer
JP2004029600A (en) Optical waveguide and its manufacturing method
JP2000249819A (en) Method and device for production of grating
KR100464552B1 (en) Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity
JPH11109156A (en) Optical waveguide, and its manufacture
JP2002156542A (en) Optical waveguide type diffraction grating element manufacturing hologram, optical waveguide type diffraction grating element manufacturing method, optical waveguide type diffraction grating element, multiplexing/demultiplexing module and optical transmission system
JP2000162453A (en) Manufacture of array waveguide grating
AU678892B2 (en) Optical grating
JP2002311261A (en) Optical waveguide and method for manufacturing the same
JP2001305362A (en) Radiation type optical waveguide filter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees