TW200407358A - Cage-type silsesquioxanes resin cotaining functional group and manufacture method thereof - Google Patents

Cage-type silsesquioxanes resin cotaining functional group and manufacture method thereof Download PDF

Info

Publication number
TW200407358A
TW200407358A TW092125710A TW92125710A TW200407358A TW 200407358 A TW200407358 A TW 200407358A TW 092125710 A TW092125710 A TW 092125710A TW 92125710 A TW92125710 A TW 92125710A TW 200407358 A TW200407358 A TW 200407358A
Authority
TW
Taiwan
Prior art keywords
resin
cage
type
group
reaction
Prior art date
Application number
TW092125710A
Other languages
Chinese (zh)
Other versions
TWI338701B (en
Inventor
Takashi Saito
Masayoshi Isozaki
Hideki Ando
Original Assignee
Nippon Steel Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co filed Critical Nippon Steel Chemical Co
Publication of TW200407358A publication Critical patent/TW200407358A/en
Application granted granted Critical
Publication of TWI338701B publication Critical patent/TWI338701B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

The present invention provides the manufacture method of cage-type silsesquioxanes resin comprising all Si atoms with reactive organic functional groups. Such cage-type silsesquioxanes resin is compatible to (meth)acrylic resin and epoxy resin, and is widely used as the raw material of free radical polymerized resin composition. Under the existence of basic catalyst, silicon compound of formula RSiX3 (wherein, R is the organic functional groups with (meth)acryloyl group, glycidyl group or vinyl group, X is hydrolysis group) proceed the hydrolysis reaction with resulting partial condense, and then under the existence of basic catalyst to re-condense the hydrolytic product to give cage-type silsesquioxanes resin with formula of [RsiO3/2]n (wherein, R is the organic functional group as described above, n is 8, 10, 12 or 14).

Description

200407358 玖、發明說明 【發明所屬之技術領域】 本發明係關於籠型倍半矽氧烷類樹脂及其製造方法, 詳言之,係關於具有矽原子全部由具有(甲基)丙烯醯基、 縮水甘油基、或乙稀基之有機官能基所構成反應性官能基 的籠型倍半矽氧烷類樹脂之製造方法 【先前技術】 通式[RSl〇3/2]n所不之倍半矽氧烷樹脂,大致可區分為: 籠型、梯型、!規型三種的聚有機倍半矽氧烷 P〇ly〇rgan〇SilseSqui〇xane)。其中,籠型倍半矽氧烷樹脂乃 分子構造明確,且具剛直骨架。此外,因為分子構造已被 控制,因此藉由使用為聚合物的建構基礎(buildi^ block),便可施行分子構造的控制,而若可進行構造控制 的活,便可期待出現完全不同的物性。換句話說,即便同 為通式[RSi〇3/2]n所示,但是隨著倍半矽氧烷樹脂的分子構 造之不同,在物性上亦可能產生頗大差異。 倍半石夕氧垸化合物之合成法已知有如以將苯基三氯矽 k加水么角午’然後再採用K0H進行平衡化反應的方法 aAmXhem.S〇C,82,6194-6 1 9551960)為代表的多數種方 法。在籠型倍半矽氧烷樹脂之合成法中,具反應性官能基 的籠型倍半矽氧烷樹脂之合成法,在 Zh.Obshch.Khim· 1 5 52- 1 5 5 5.49· 1 997(非專利文獻!)中便有 揭示具乙烯基的合成法。此外,在曰本專利特開平丨]-2964〇 號公報(專利文獻1)中亦有揭示具環氧丙基之倍半矽氧燒 6 31503] 200407358 的製造方法等。 但是,即便參考日本專利特開平〗^29640號公報所揭 不之製造方法,施行具有(曱基)丙烯基之倍半矽氧烷樹脂 :合成,將頗難充分執行分子量分佈與構造的控制,導致 無法有好收率的製造出如籠型構造般的分子構造明確之倍 半矽氧烷樹脂。 【專利文獻1】曰本專利特開號公報 【非專利文獻1】Zh.0bshch.Khim 1552_ 1 555·49川⑺ 【發明内容】 个银的在於解決習知缺點,提供一種分子量分 2及分子構造經控制之具有(甲基)丙烯酿基、縮水甘油 基、或乙稀基的籠型倍半石夕氧垸樹脂。此外 收率製造上述籠型倍半彻樹脂的方法。 本發明者等為解決上述課題,經深入探討 利用特枝應料便可解決 χ 換句話說,本發明係籠型”二:…發明。 將下述通糾) 彳。切歧樹狀f造方法, rs]x3 ⑴ (二:〜==基“縮…基、㈣基 物,在有機極性溶劑與驗性催化劑二 解反應而產生部分縮合,將所獲得加水分二=加:分 非極性溶劑與鹼性催化, 生成物,再於 依此製造方法所獲彳 =:二彳:再縮合者。 夕氧蜕樹脂,最好為下 3]5031 7 200407358 述通式(2) [RSi〇3/2]n 彳 2) (其中,R係具有(曱基)丙稀酿基、縮水甘油臭 中任一者的有機官能基,n係' 8,10, i或乙烯基 通式(1)中,R最好為下、十、3 4 4 4)所示者。此外, ; 取对马下述通式(3)、 [化1】 v j200407358 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a cage-type silsesquioxane-based resin and a method for producing the same. Method for producing a cage-type silsesquioxane resin having a reactive functional group composed of a glycidyl group or an organic functional group of an ethylene group [prior art] The general formula [RSl03 / 2] n is half that Siloxane resins can be roughly divided into: cage type, ladder type,! There are three types of polyorganosilsesquioxanes (Polygansil SilSquixane). Among them, the cage-type silsesquioxane resin has a clear molecular structure and a rigid skeleton. In addition, because the molecular structure has been controlled, by using the polymer's buildi ^ block as a basis for the control of molecular structure, if you can perform the activity of structural control, you can expect completely different physical properties. . In other words, even if they are both represented by the general formula [RSi〇3 / 2] n, there may be considerable differences in physical properties depending on the molecular structure of the silsesquioxane resin. The method for synthesizing oxystilbene compounds is known as the method in which phenyltrichlorosilane k is added to water, and then equilibrated with KOH. AAmXhem. Soc, 82, 6194-6 1 9551960) Most methods are represented. In the synthesis method of cage-type silsesquioxane resin, the synthesis method of cage-type silsesquioxane resin with reactive functional group is in Zh. Obshch. Khim · 1 5 52- 1 5 5 5.49 · 1 997 (Non-patent literature!) There are disclosed synthetic methods with vinyl groups. In addition, Japanese Patent Laid-Open Publication No. Hei-2] 964 (Patent Document 1) also discloses a method for producing a silsesquioxane with epoxypropyl group 6 31503] 200407358. However, even with reference to the manufacturing method disclosed in Japanese Patent Laid-Open No. ^ 29640, it is difficult to fully control the molecular weight distribution and structure by implementing a sesquisiloxane resin with (fluorenyl) propenyl: synthesis, As a result, it is not possible to produce a silsesquioxane resin with a clear molecular structure like a cage structure. [Patent Document 1] Japanese Patent Laid-Open Publication [Non-Patent Document 1] Zh. 0bshch. Khim 1552_ 1 555 · 49 Kawasaki [Summary of the Invention] The purpose of silver is to solve the conventional shortcomings, and to provide a molecular weight 2 and a molecule Construct a controlled cage type sesquioxane resin with (meth) acrylic, glycidyl, or ethylene. In addition, a method for producing the above cage type silsesquioxane resin in a yield. In order to solve the above-mentioned problems, the present inventors can solve the problem through in-depth use of special branch materials. In other words, the present invention is a cage-type "two: ... invention. The following general correction) 彳. Method, rs] x3 ⑴ (II: ~ == radical "condensation ... radical, fluorene radical, partial condensation in organic polar solvent and experimental catalyst decomposition reaction, the obtained water content is two = addition: non-polar Solvents and basic catalysis, the product is then obtained according to this manufacturing method 彳 =: two 彳: recondensed. Xioxidation resin, preferably the following 3] 5031 7 200407358 general formula (2) [RSi〇 3/2] n 彳 2) (wherein R is an organic functional group having any of a (fluorenyl) acryl group and a glycidol odor, n is' 8, 10, i or vinyl formula (1 ), R is preferably the following, ten, 3 4 4 4). In addition, take the following general formula (3), [Chemical Formula 1] v j

(3) (4) 的整數,R】係氫原子或甲基)所示有機 (其中,m係1至 官能基者。 再者,上述加水分解生成物的數八b 500至7000範圍者。 :刀子量最好為 型及無規型倍半石夕氧燒的混合物,千=物係籠型、梯 型倍半秒氧她曰、係從上(;、…所獲得的蘢 及】4中選擇3種u 飞(2)所不,《為8,】0,]2 種以上的籠型倍半矽氯产 日 «為8,1 〇, 1 2及〗4沾斤 兀对月日此3物,最妤 烧的财/〇以上者的龍型倍半石夕氧燒總量,為總倍半石夕氣 再者本發明係具有官能基的籠型倍半石夕氧貌樹脂, s 315031 200407358 在混合物中,上述通式(2)所干裳 '、说I倍半矽氧烷樹脂之佔有 比率,在50wt〇/〇以上的具右官处 令 匕*山冰 ^ 、有S月匕基之籠型倍半矽氧烷樹 月曰。其中,说型倍半石夕氧纟纟 乳^树脂的分子量分佈(Mw/Mn), 最好在1·03至1.10範圍内者。 【實施方式】 以下,具體說明本發明 之實施形態 〇 此外在以下次明中,通式⑺所示籠型倍半矽氧烷樹 脂中,將η = 8的化合物稱為Τδ,將η=ι〇的化合物稱為 Τ10,將n=i2的化合物稱為丁12,將^14的化合物稱為 Τ 1 4。本發明的籠型倍半矽氧烷樹脂係通式(2)所示籠型倍 半矽氧烷樹脂、或者含有以其為主成分的樹脂,可含有η 數不同之成分等其他成分。此外,當稱為「蘢塑倍半矽氧 烧樹脂」之時,可解釋為包含寡聚物在内的涵義。 丁 1〇、Τ12及Τ14的構造式,分別如下述式(6)、 (7)、(8)及(9)所示。另外,在下述式(6)至(9)中,R係指具 有(曱基)丙烯醯基、縮水甘油基、或乙烯基中任/者的有 機官能基。 315031 200407358 【化2】(3) An integer of (4), where R] is a hydrogen atom or a methyl group, and organic (wherein m is 1 to a functional group. In addition, the hydrolyzed product is in the range of several b to 500 to 7000. : The amount of the knife is best to be a mixture of type and random type sesquioxane oxyfiring. Thousands = material cage type, ladder type half-second oxygen, and from above (;, ...) Choose 3 kinds of u fly (2) No, "is 8," 0,] 2 or more cage-type silsesquioxane production date «is 8,1 〇, 1 2 and〗 4 The total amount of the three-type sesquigenous oxygen sintered dragon with the most scorched property / 0 or more is the total amount of sesquisian gas. In addition, the present invention is a cage-type sesquis oxygen resin with functional groups. S 315031 200407358 In the mixture, the proportion of the dry skirt of the general formula (2), said that the occupation ratio of the semi-siloxane resin is more than 50wt 〇 / 〇 with the right official order * mountain ice ^, there is The cage-type silsesquioxane tree of the moon is said. Among them, the molecular weight distribution (Mw / Mn) of the type of sesquioxane milk resin is preferably in the range of 1.03 to 1.10. [Embodiment] Hereinafter, it will be specifically described. Embodiments of the invention. In the following description, in the cage silsesquioxane resin represented by the general formula ⑺, a compound with η = 8 is referred to as Tδ, a compound with η = ι〇 is referred to as T10, and n The compound of = i2 is called Ding 12 and the compound of ^ 14 is called T 1 4. The cage silsesquioxane resin of the present invention is a cage silsesquioxane resin represented by the general formula (2), or contains The resin containing the main component may contain other components such as a component having a different η number. In addition, when it is referred to as a "plastic-silsesquioxane resin," it can be interpreted to mean oligomers. The structural formulas of 10, T12, and T14 are respectively represented by the following formulas (6), (7), (8), and (9). In addition, in the following formulae (6) to (9), R means having (Fluorenyl) An organic functional group of any of acrylfluorenyl, glycidyl, or vinyl. 315031 200407358 [Chem. 2]

RSi-Ο——SiR 〇/| /1 / ο / οRSi-Ο——SiR 〇 / | / 1 / ο / ο

RSi——Ο——SiR I (6)RSi——〇——SiR I (6)

I RSi-O——SiR 〇 / 〇/ /〇 1/I RSi-O——SiR 〇 / 〇 / / 〇 1 /

RSi-O——SiR 【化3】 v『oosi rQA'o cj—ocRSi-O——SiR [Chemical 3] v 『oosi rQA'o cj—oc

Rs PSIoIsiR 〇 a ,ΟΓ/ IRiR είΊο丨si, 【化4】Rs PSIoIsiR 〇 a, 〇Γ / IRiR είΊο 丨 si, [Chem. 4]

.d ,Si—Q.d, Si-Q

【化5】 10 3]5031 200407358[Chem. 5] 10 3] 5031 200407358

依知、本發明的話,便可獲得以上述T 8、Τ1 0、T1 2及 Τ14中之任一者、或二者以上、最好為3個或4個的混合 物為主成分,且最好含5 Owt%以上的倍半石夕氧烧樹脂。 尤其是當有機官能基R為具有(曱基)丙烯醯基、或縮水 甘油基的有機官能基之情況時,由T8、T10、及T12所構 成说型倍半矽氧烷樹脂總計,佔總體的5 Owt%以上,最好 佔70wt%以上。此情況下,可設定成T8在2〇至4〇wt〇/〇、 T10在40至5〇wt%、以及T12在5至20wt%的範圍内。 再者’當有機官能基屬於具有乙烯基之官能基的情況 時,由T10、T12、及T14所構成籠型倍半矽氧烷樹脂總 計,佔總體的50wt%以上,最好佔70wt%以上。此情況下, 可設定成T10在1〇至40wt%、T12在20至60wt%、及T14 在5至20wt%的範圍内。 其他成分乃主要為η數不同之除Τ8、Τ1〇、τΐ2及T14 以外的化合物、籠型以外的化合物等。 Τ8、Τ10、丁12及Τ14的分子量分布(利用Gpc測量法 進行測量)可在1.00至].01範圍内。本發明的籠型倍半石夕 31503] 11 200407358 氧烷樹脂之分子量分佈(Mw/Mn),係在1;1以下,最好在 1·〇3至1.10範圍内。分子量範圍係數平均分子量為_至 25〇〇,最好1000至20Ό0的範圍内。 再者’若附加從含上述了8 S Tl4的樹脂中,分離出 TS至Ti4中之;I種的操作的話’亦可獲得由丁8至丁Μ中 1 Ϊ種所構成倍半矽氧烷樹脂以及經分離出其中】種的户According to the knowledge, according to the present invention, any one of the above T 8, T1 0, T1 2 and T14, or a mixture of two or more, preferably three or four, can be obtained, and the best Contains more than 5 Owt% of sesquiterite oxyfiring resin. Especially when the organic functional group R is an organic functional group having a (fluorenyl) acrylfluorenyl group or a glycidyl group, the total amount of the silsesquioxane resin composed of T8, T10, and T12 accounts for the total 5 Owt% or more, preferably 70wt% or more. In this case, T8 can be set to 20 to 40 wt%, T10 can be set to 40 to 50 wt%, and T12 can be set to a range of 5 to 20 wt%. Furthermore, when the organic functional group is a functional group having a vinyl group, the total amount of cage silsesquioxane resin composed of T10, T12, and T14 accounts for more than 50% by weight, and preferably more than 70% by weight. . In this case, it is possible to set T10 in the range of 10 to 40 wt%, T12 in the range of 20 to 60 wt%, and T14 in the range of 5 to 20 wt%. The other components are mainly compounds other than T8, T10, τΐ2, and T14, and compounds other than cage type, which have different η numbers. The molecular weight distributions of T8, T10, D12, and T14 (measured by Gpc measurement) can range from 1.00 to] .01. The cage-type sesquiside of the present invention 31503] 11 200407358 The molecular weight distribution (Mw / Mn) of the oxane resin is below 1; 1, preferably within the range of 1.03 to 1.10. The molecular weight range coefficient has an average molecular weight in the range of _ to 2500, preferably in the range of 1,000 to 20Ό0. Furthermore, if TS to Ti4 is separated from the resin containing 8 S Tl4 as described above, the operation of type I is also performed, and a silsesquioxane composed of 1 to 8 of butyl 8 to butyl M may also be obtained. Resin and households

::夕购脂。依此所分離出的倍半嫩樹 J 於本發明的倍半矽氧烷樹脂中。 本發明的倍半石夕氧焼之製造方法中,首 所不石夕化合物,在有機極性溶劑與驗 Υ 1 行加水分解反應。通式⑴中,尺係具有⑽=在下施 鈿水甘油基、或乙烯基的有機官能美:“基、 或縮水甘油基可直接鍵結 (:)丙烯酿基、 擇等f基、或其他二價基的介入。1取好存在燒偉或苯 最好之有機官能基R係通式 R】係Η或甲基,m係不。在通式(3)中, 則玎如-, 右例不較佳的R夕目 例…-甲基丙稀酿氧基丙 ,具體例, 基、3-丙烯醯氧基丙基。 丙烯醯氧基甲 L式(1)中,X係加水分解 乙醯氧基等,最好為院氧 :可舉例如:燒執基、 氧基、正A 从乳基可舉例如:甲 。異丙乳基、正、異及 q基、乙 為反應性較高的甲氧基。丁平'基等。其中最好 通式(1)所示矽化合物中,若 可舉例如:甲基丙烯醯氧基曱基—:土化合物的話,則 乙爾燒、甲基丙稀酿 3】5〇3] 12 200407358 氛基甲基三甲氧基矽烷、3_甲基丙稀酿氧基丙基 石夕烧、”基摩氧基丙基三乙氧基石夕垸、3_丙締“ 基丙基三甲氧基石”完、3-環氧丙氧基丙基三甲氧基石夕垸: 3-環氧丙氧基丙基三乙氧基矽烷、乙烯基三甲氧基矽:、 乙稀基三乙氧基石”完…’最好採用可輕易取得原:的 3 -曱基丙~醯氧基丙基三曱氧基石夕烷。 加水分解反應中所採用的鹼性催化劑,可例示如:氨氧 化鉀、氫氧化鈉、氫氧化鉋等鹼金屬氫氧化物、或氫氧化 四曱銨、氫氧化四乙銨、氫氧化四丁銨、氫氧化苄基三甲 銨、氫氧化苄基三乙銨等氫氧化銨鹽。該等之中,就從催 化劑,活性較高的觀點而言,最好採用氫氧化四曱銨。鹼 性催化劑,通常以水溶液狀態使用。 關於加水分解反應條件中,反應溫度最好為〇至6〇 °C,尤以20至4(TC為佳。若反應溫度低於〇。〇的話,反應 速度將變慢,且加水分解性基將依未反應狀態存在,其結 果導致耗費較長的反應時間;反之,若高於6 〇它的話,因 為反應速度過於快速’而進行複雜的縮合反應,結果便促 進加水分解生成物的高分子量化。另外,反應時間最好在 2小時以上。若反應時間低於2小時的話,將無法充分的 進行加水分解反應,造成加水性分解性基依未反應狀態殘 存的狀態。 加水分解反應雖必須要有水的存在,但是此可由驗性 催化劑的水溶液中供應,亦可採另外添加水的方式。水量 係在足以對加水分解性基進行加水分解的足夠量,最好低 】3 15031 200407358 於理論量的1 0 5 Ί c • ·5倍量。此外,加水分解時最好γ 有機溶劑,有機溶劑可採用如:曱醇、乙醇、2·丙醇等醇=、 或其他極性溶劑。最好為對水具溶解性之碳數1至6 、、及S子一、’尤以採用丙醇為佳。若採用非極性溶劑的話: 反應糸統將無法均自,加水分解反應將無法充分地進行, 而玟存著未反應的烷氧基,因此不宜。 ★力火刀解反應結束後,便將水或含水反應溶劑進行分 離。水或含水反應溶劑的分離乃可採用減壓蒸發等手段。 為將水分、其他雜f充分地去除,可採用添加非極性溶 使溶解加水分解反應生成物,再將此溶液利用食鹽水等二 行洗淨,然後再利用無水硫酸鎂等乾燥劑進行乾燥等的方 法。若將非極性溶劑利用蒸發等方法進行分離的話,雖可 回收加水分解反應生成物,但是若可將非極性溶劑使用為 下一反應中之非極性溶劑的話,便不需要對其進行分離。 在本發明的加水分解反應中,將隨加水分解而產生加 水分解物的縮合反應"遺加水分解物的縮合反應所產生的 加水分解生成物’通常為數平均分子量5〇〇至7〇〇〇的無色 黏性液體。加水分解生成物乃隨反應條件而有所不同,而 其數平均分子量係在則至3剛的樹脂(或募聚物),通式 ⑴所示力分解性基X的大部分(最好幾乎全部)被取代為 〇H基,且此〇H基的大部分最好95%以上被縮合。 關於加水分解生成物的構造,有複數種的籠型、梯型、 無規型的倍半石夕氧;):完,儘營iq ^ 丨口干7年LU S払用有關籠型構造的化合物, 完全籠型構造的比率亦較少’主要為籠型其中部分開啟的 315031 14 200407358 不完全籠型構造。所以,在本發明中,將經加水分解而所 獲得加水分解生成物’更於驗性催化劑之存在下,籍由在 有機溶劑中進行加熱,使矽氧烷鍵結產生縮合(稱「再縮 合」),而選擇性的製造籠型構造的倍半矽氧烷。 在將水或含水反應溶液予以分離之後,再於非極性溶 劑與鹼性催化劑之存在下,進行再縮合反應。 相關再縮合反應的反應條件中,最好反應溫度在1〇〇 至20(TC範圍内,尤以11〇至14〇t:為佳。此外,若反應溫 度過低的話,無法獲得使進行再縮合反應的足夠驅動力, 而無去進行反應。反之,若反應溫度過高的話,因為反應 性有機官能基將有引發自我聚合反應的可能性,因此便需 要抑制反應/JJZL度、或添加聚合抑制劑等添加劑。反應時間 取好為2至1 2小時。有機溶劑的使用量僅要可溶解加水分 解反應生成物的足夠量便可,鹼性催化劑使用量係為加水 刀解反應生成物的〇·;[至j 〇wt〇/〇範圍内。 口非極性,谷劑係僅要對水無(或幾乎無)溶解性的話便 可,取好為烴系溶劑。相關的烴系溶劑有如·甲苯、苯、二 甲苯等沸點較低的非極性溶劑。其中最好採用甲苯。 I丨生催化釗可採用在加水分解反應中所使用的鹼性催 ^可舉例如.氫氧化鉀、氫氧化鈉、氫氧化铯等鹼金屬 氫氧化/勿:或氫氧化四甲銨、氫氧化四乙銨、氫氧化四丁 :、氫氧化苄基三曱銨、氫氧化;基三乙銨等氫氧化銨鹽。 最子為對四基銨等非極性溶劑為可溶性的催化劑。 再者,再縮合中所採用的加水分解生成物,雖最好採 315031 ]5 200407358:: Xi purchase fat. The silsesquien tree J thus separated is in the silsesquioxane resin of the present invention. In the method for producing sesquioxetane in the present invention, the first compound that does not contain stone is hydrolyzed in an organic polar solvent and test solution. In the general formula ⑴, the ruler is an organic functional beauty with ⑽ = water glyceryl group or vinyl group: "group, or glycidyl group can be directly bonded to (:) acryl group, optional f group, or other The intervention of a divalent group. 1 Take the organic functional group which is the best organic or benzene. R is the general formula R] is Η or methyl, m is not. In the general formula (3), then 玎 such as-, right Examples are not good examples ...-methyl propylene dilute oxypropyl, specific examples, propyl, 3-propenyloxypropyl. Propylene methoxymethyl L Formula (1), X is hydrolyzed Acetyloxy, etc., is preferably oxygen: for example, fired, oxy, or A. From milk, for example: A. isopropyllactyl, n-, iso-, and q-groups, and B are reactive Higher methoxy group. Butyl group, etc. Among them, among the silicon compounds represented by the general formula (1), if it can be, for example, methacryl ethoxy fluorenyl group: terephthalic compound, acetol , Methyl propylene 3] 5〇3] 12 200407358 aryl methyltrimethoxysilane, 3-methyl propyl oxypropyl stone yaki, "kimopropyl propyl triethoxy stone yaki , 3_propyl allyl Cornerstone "End, 3-glycidoxypropyltrimethoxystone: 3-glycidoxypropyltriethoxysilane, vinyltrimethoxysilicon :, ethylenetriethoxylate" Finish ... 'It is best to use the 3-, 3-propyl propyl ~ methoxy propyl trimethoxy oxalate that can be easily obtained. The basic catalyst used in the hydrolytic reaction can be exemplified by potassium ammonium oxide, hydrogen Alkali metal hydroxides such as sodium oxide and hydroxide, or ammonium hydroxides such as tetraammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, and benzyltriethylammonium hydroxide Among these, from the viewpoint of high activity of the catalyst, tetraammonium hydroxide is preferably used. Basic catalysts are generally used in the form of an aqueous solution. Among hydrolytic reaction conditions, the reaction temperature is preferably 〇 to 60 ° C, especially 20 to 4 (TC is preferred. If the reaction temperature is lower than 0.0, the reaction rate will be slower, and the hydrolyzable group will exist in an unreacted state, which results in a relatively high cost. Long reaction time; conversely, if it is higher than 60, it is because the reaction If the reaction time is too fast, a complicated condensation reaction is performed, and as a result, the molecular weight of the hydrolyzed product is promoted. In addition, the reaction time is preferably more than 2 hours. If the reaction time is less than 2 hours, the hydrodecomposition cannot be performed sufficiently. The reaction causes the hydrolyzable hydrolyzable group to remain in an unreacted state. Although the hydrolyzation reaction requires the presence of water, it can be supplied from an aqueous solution of a test catalyst, or it can be added separately. The amount of water depends on Sufficient amount sufficient for hydrolytic decomposition of hydrolyzable groups, preferably low] 3 15031 200407358 1 0 5 Ί c • · 5 times the theoretical amount. In addition, γ organic solvent is the best when hydrolyzing. Organic solvents can be used. For example: alcohols such as methanol, ethanol, 2 · propanol, or other polar solvents. The carbon number 1 to 6 having solubility in water is preferred, and S-one, '' is particularly preferably propanol. If a non-polar solvent is used: The reaction system will not be homogeneous, and the hydrolytic reaction will not proceed sufficiently, and unreacted alkoxy groups are stored, so it is not suitable. ★ After the reaction of Lihuo knife is completed, water or water-containing reaction solvent is separated. Water or aqueous reaction solvents can be separated by means of evaporation under reduced pressure. In order to fully remove water and other impurities, non-polar solvents can be added to dissolve the hydrolyzed reaction product, and then the solution is washed with brine and other two lines, and then dried with a desiccant such as anhydrous magnesium sulfate. Methods. If the non-polar solvent is separated by evaporation or the like, the hydrolyzed reaction product can be recovered, but if the non-polar solvent can be used as the non-polar solvent in the next reaction, it is not necessary to separate it. In the hydrolytic reaction of the present invention, the hydrolytic decomposition product 'produced by the hydrolytic decomposition reaction " the hydrolytic decomposition reaction " is usually a number average molecular weight of 500 to 7000. Colorless viscous liquid. The hydrolyzed product varies depending on the reaction conditions, and the number average molecular weight of the resin (or agglomerates) ranges from 3 to 3. Most of the force-decomposable group X (preferably almost All) are substituted with OH groups, and most of these OH groups are preferably 95% or more condensed. Regarding the structure of the hydrolyzed product, there are multiple types of cage type, ladder type, and random type of sesquioxane;): End, do the best iq ^ 丨 7 years of dry mouth LU S The ratio of the compound and the complete cage structure is also less. It is mainly the 315031 14 200407358 incomplete cage structure with the cage partially opened. Therefore, in the present invention, the hydrolyzed product obtained through the hydrolytic decomposition is more condensed by heating in an organic solvent in the presence of a test catalyst (called "recondensation") by heating in an organic solvent. "), And selective production of cage-type silsesquioxane. After the water or the aqueous reaction solution is separated, a recondensation reaction is performed in the presence of a non-polar solvent and a basic catalyst. Among the reaction conditions for the related recondensation reaction, the reaction temperature is preferably in the range of 100 to 20 ° C, and more preferably in the range of 110 to 14 t. In addition, if the reaction temperature is too low, it is impossible to obtain a re- Sufficient driving force for the condensation reaction without carrying out the reaction. Conversely, if the reaction temperature is too high, the reactive organic functional group may initiate a self-polymerization reaction, so it is necessary to suppress the reaction / JJZL degree, or add polymerization Additives such as inhibitors. The reaction time should be 2 to 12 hours. The amount of organic solvent used should only be sufficient to dissolve the hydrolytic reaction product. The amount of basic catalyst used is that of the hydrolytic reaction product. 〇 ·; [in the range of j 〇wt〇 / 〇. Oral non-polar, cereals only need to have no (or almost no) solubility in water, it is good to be a hydrocarbon solvent. Related hydrocarbon solvents are as follows · Toluene, benzene, xylene, and other non-polar solvents with low boiling points. Among them, toluene is preferred. I. Biocatalytic catalysts can use basic catalysts used in the hydrolytic reaction. For example, potassium hydroxide, hydrogen Sodium oxide , Alkali metal hydroxides such as cesium hydroxide / do not: or tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutyl hydroxide :, benzyltriammonium hydroxide, hydroxide; ammonium hydroxide such as triethylammonium hydroxide The salt is the most soluble catalyst for non-polar solvents such as tetraylammonium. Moreover, the hydrodecomposition product used in the recondensation is preferably 315031] 5 200407358

用經水洗、脫水並濃縮過的物質,但是即便未施行水洗、 脫水者仍可使用。此反應之際,水雖可存在,但是亦可不 需要積極的添加,僅要從鹼性催化劑溶液中所帶入水分程 度的話便可。此外,當加水分解生成物的加水分解並未充 刀地進^了之情況時’雖在對殘存的加水分解性基施行加水 分解方面,需要在必要理論量以上的水分,但是通常均將 充分地進行加水分解反應。Washed, dehydrated and concentrated materials can be used, even if they are not washed and dehydrated. In this reaction, although water may be present, it does not need to be actively added, and it is only necessary to bring in the degree of moisture from the alkaline catalyst solution. In addition, when the hydrolytic decomposition of the hydrolyzed product does not advance sufficiently, although the hydrolytic decomposition of the remaining hydrolysable bases requires more than the necessary theoretical amount of water, it is usually sufficient. The hydrolysis reaction is carried out on the ground.

丹雒兮反應後,對催 獲得倍半矽氧烷混合物。 依本發明所獲得的倍半石夕氧统樹脂 :::應條件、加水分解生成物的狀態而有所不= 構以成为乃通式(6)至(9)所示複數 一 體的W以上。Τδ至T14 1 ” +石夕年飞院,佔絲 ,吾R為3-曱基丙烯醯氧基丙 工 混合物放置於2(TC以下,丁…”月柄’利用將石夕福 【發明之效果】T T8便可依針狀結晶析出而分離。 1q π龍尘借半矽毚 高收率的製造經構造"的〜“方法的話, 傅仏彳工制的龍型倍半 倍半嫩乃因為衫原子全部具 二:獲得 ^甲基)丙烤酸隨、及環氧樹脂等具相溶^基,= :合’可廣泛的使㈠光聚合性樹脂&成物了任思 错由在光聚合性樹脂M成物中採用籠型、Ά。此 蹲加樹脂的交聯密度,亦可 :乳垸, 性、熱安定性、耐藥性、機械物性汁硬化樹脂的 315031 16 200407358 【實施例】 以下’利用實施例更具體的說明本發明。 實方fe <歹1j 1 在具備攪拌機、點滴漏斗、溫度計的反應容器中,裝 /名;=1 j的2 丙醇(I p a ) 1 2 0 m 1、與驗性催化劑的5 %氫氧化四After the reaction, the silsesquioxane mixture was obtained. The sesquiterite oxygen resin obtained according to the present invention ::: depends on the conditions and the state of the hydrolyzed product = it is structured to be W or more that is a plurality of integrals represented by the general formulae (6) to (9) . Τδ to T14 1 ”+ Shi Xi Nian Fei Yuan, Champagne, R is a 3-fluorenyl propylene alkoxy propionate mixture placed at 2 (TC, D ..." Yue handle 'use will be Shi Xifu [Invented by Effect] T T8 can be separated and separated by needle-like crystals. 1q π Long dust is manufactured by semi-silicon cylindrical high-yield through the structure "" method, the dragon-type made by Fu Yigong is half and half tender It is because all the shirt atoms have two: to obtain ^ methyl) acrylic acid, and epoxy resin and other compatible ^ groups, =: can be widely used to make photopolymerizable resin & The photopolymerizable resin M is made of cage-shaped, osmium. The cross-linking density of the resin can also be: milk pudding, sex, heat stability, chemical resistance, mechanical properties, and juice hardening resin 315031 16 200407358 [Examples] The present invention will be described in more detail with reference to the following examples. The actual formula < 歹 1j 1 is placed in a reaction vessel equipped with a stirrer, a drip funnel, and a thermometer; pa) 1 2 0 m 1, with 5% hydroxide

甲敍水溶液(丁ΜΑΗ水溶液)9.4g。在點滴漏斗中裝入IPA 45ml、與%曱基丙烯醯氧基丙基三曱氧基矽烷(MTMS:東 雷•陶康尼克·矽膠公司製、Sz-6300)38.07g,然後一邊 授掉反應容器,一邊在室溫下將MTMS的IPA溶液,於30 分鐘内進行點滴。待MTMS點滴結束後,在未加熱情況下 進订攪拌2小時。經攪拌2小時後,將溶劑在減壓下去除 =劑,再利用曱笨250ml進行溶解。將反應溶液利用飽和 β i水施饤水洗,直到變為中性為止,然後再利用無水硫 _、美進行脫水。將無水硫酸鎮進行過濾,經濃縮而獲得加 火刀解生成物(倍半;s夕氧燒)25 8g、收率94%。此倍半石夕氧 浼係可溶於各種有機溶劑中的無色黏性液體。 測量此倍半矽氧烷的GPC,結果如第!圖所示。從第 ]圖中,倍半矽氧烷的分子量分佈與存在比率,乃如表】 進行計算。此階段的加水分解生成物之分子量分佈(Mw/Mn) 為 1.2 6 〇 〜N〜組々竹1我方雕俊的買重分析(L| MS)’結果如第2圖所示。由第2圖中觀測到下述⑽與(1 所不籠之其中部分開啟的不完全籠型構造t T9(〇H) 丁] 1(〇H),以及完全€型構造的T8、T10、T12上附著銨^ 315031 17 200407358 子的分子離子。下述式中,R係3 -曱基丙烯醯氧基丙基。 【化7】Formazan aqueous solution (aqueous solution of DMAA) 9.4g. A drip funnel was charged with 45 ml of IPA, and 38.07 g of %% propylene propyl oxypropyltrimethoxysilane (MTMS: manufactured by Toray Taconic Silicone Co., Ltd., Sz-6300), and the reaction was then taught In a container, the IPA solution of MTMS was dripped within 30 minutes at room temperature. After the MTMS dripping was completed, the mixture was stirred for 2 hours without heating. After stirring for 2 hours, the solvent was removed under reduced pressure, and the solution was dissolved in 250 ml of benzene. The reaction solution was washed with saturated β i water and washed with water until it became neutral, and then dehydrated with anhydrous sulfur and beauty. Anhydrous sulfuric acid was filtered and concentrated to obtain 25 8 g of pyrolysis solution (half time; sacrifice), yield 94%. This sesquioxide is a colorless, viscous liquid that can be dissolved in various organic solvents. The GPC of this silsesquioxane was measured, and the results were as good as the first! As shown. From the figure], the molecular weight distribution and the presence ratio of silsesquioxane are calculated as shown in Table]. The molecular weight distribution (Mw / Mn) of the hydrolyzed product at this stage is 1.2 6 〇 ~ N ~ buy weight analysis (L | MS) 'of the group 々 竹 1, and the results are shown in FIG. 2. From the second figure, the following ⑽ and (1 partially incomplete cage structure partially opened t T9 (〇H) 丁] 1 (〇H), and T8, T10, The molecular ion of ammonium ^ 315031 17 200407358 is attached to T12. In the following formula, R is a 3-fluorenylpropenyloxypropyl group. [Chem. 7]

【化8】 I 〇\ RSi^ O 'SiRl\ I /| 卜 〇·/?? RSirRSi- O O\l RSi-[化 8] I 〇 \ RSi ^ O 'SiRl \ I / | BU 〇 · / ?? RSirRSi- O O \ l RSi-

〇——SiR SiR OH• 、0、I (10)〇——SiR SiR OH •, 0, I (10)

OO

.SiR ·〇- •r -cr (ll) 經測量1 H-NMR的結果,觀測到源自曱基丙烯醯氧基 丙基的較寬信號。此外,並未觀測到源自曱氧基的信號 (3 · 5 8 p p m)。將-C = C Η 2與-〇-C Η 2 -之積分比進行比較,結果 為1.999:2.002。由此可確認到並未對曱基丙烯醯氧基丙基 之雙鍵引發反應。尤以上結果確認到尖峰1、尖峰2及尖 峰3係倍半矽氧烷構造為無規化合物(R型)或梯型化合物 (L型)。尖峰4則確認為籠型或部分開啟之籠型構造化合 物(C型)。若從GPC與LC-MS的結果進行計算的話,從 GPC計算出化合物(C型)係由Τ8、Τ10、丁] 2、及不完全籠 18 31503] 200407358 型T90H、T110H所構成,且總量為24 6%,若配合lc· MS的結果,T8、T10、T12、T90H、T110H的存在量便計 算如表1所示。 其次,在具備攪拌機、具小嘴接口分水蒸餾接受管 (Dean-Stark)、冷卻管的反應容器中,裝入上述所獲得倍半 矽氧烷20.65g、曱苯82m卜及1〇〇/〇TMAH水溶液3 〇g,並 逐漸加熱而將水予以餾除。更加熱至13〇r,使甲苯在迴 流溫度下進行再縮合反應。此時的反應溶液溫度係i 〇8 °C。曱苯迴流後再經2小時攪拌之後,便結束反應。將反 應溶液利用飽和食鹽水施行水洗,直到變為中性為止,然 後再利用無水硫酸鎂進行脫水。將無水硫酸鎂進行過濾, 經濃縮而獲得標的物之籠型倍半矽氧烷(混合物HS.Dg。 所獲付龍型倍半矽氧烷係可溶於各種有機溶劑中的無色黏 性液體。 ...... 測量再縮合反應後之反應物的Gpc,結果如第3圖所 不。從第3圖中,發現到Mn2〇18(尖峰5)、Mni57〇(尖峰 6胃)、Μηΐ3δ7(尖峰7)、及Mnll92(尖峰8)。各尖峰的分子 置、分子量分佈、及存在量’如纟1所示。再縮合反應後 之反應物的分子量分佈(Mw/Mn)為1.04。 再者,施行高速液體層析儀分離後的質量分析,結果 如弟4圖所示。從第4圖確認到丁8、丁1〇、τΐ2上附有銨 離子的分子離子。 八由Μ上結果,尖峰5之倍半矽氧烷構造為無規或梯型 一 大钵6可鑑定為Τ]2,尖峰7可銀定為丁]〇5尖 3】503] 19 200407358 峰8可鍍定為τ8。 將上述在再縮合後的籠型倍半矽氧烷混合物,放置於 20 C以下’而析出針狀結晶。針狀結晶經過濾後為5.89g。 此外對針狀結晶施行GPC測量,結果僅檢測出尖峰8, 可確e忍此結晶為丁8。經測量的結果,觀測到源自 甲基丙稀酸氧基丙基的信號,乃再縮合前係較寬的信號, 分離為尖銳的信號。由此可推斷產生對象性優異的化合物 ❿(即,具籠型構造的化合物)。另外,並未觀測到源自曱氧 基的彳5號(3'58pPm)。將_C = CH2與-〇-CH厂之積分比進行比 較,結果為1.999:1.984。再縮合反應前後的GPC整理如 表1所示。 【表1】 再縮合前 再縮合後 Μη(面積%) 尖峰(Mw/Mn)型 4291 (32.7%) 1(1.07) 無規•梯型 2018(6.3%) 5(1.00) 無規·梯型 Μη(面積%) 央峰(Mw/Mn)型 2826(19.6%) 2(1.00) _ 無規·梯型 1 570(9%) 6(1.00) (T12)籠型 Μ η (面積%) 尖峰(Mw/Mn)型 2 1 87(23.1 %) 3(1.0) 無規·梯型 1 3 87(47.5%) 7(1.00) (T10)籠型 Μ η (面積%) 尖峰(Mw/Mn)型 1483(24.6%) 4 籠型(含不完全在内) 1 192(37.2%) 8(1.00) (T8)籠型 由表1中得知,再縮合反應前,尖峰丨、尖峰2及尖 峰3的倍半矽氧烷構造係無規或梯型,且佔總體的75.4% ; 相對於此,再縮合反應後,該等尖峰消失,尖峰6、尖峰7 及大奪8的I半矽氧烷構造為明確的籠型,且佔總體的 315031 20 200407358 93.7% 無規、 貫施例 如同貫施例1,以下述裝埴|/-此丄 八+ 、忒”里轭仃倍半矽氧烷組成物 勺口成。將IPA 40m卜5%TMAH水、、六、户0。.SiR · 〇- • r -cr (ll) As a result of 1 H-NMR measurement, a broad signal derived from fluorenylpropenyloxypropyl was observed. In addition, no signal derived from fluorenyl group was observed (3.58 p p m). Comparing the integral ratio of -C = C Η 2 and -〇-C Η 2-, the result was 1.999: 2.002. From this, it was confirmed that the reaction was not initiated to the double bond of fluorenylpropenyloxypropyl. In particular, the above results confirmed that the spike 1, spike 2, and spike 3 series silsesquioxane structures are random compounds (R type) or ladder compounds (L type). Spike 4 was identified as a cage-type or partially open cage-type compound (type C). If calculated from the results of GPC and LC-MS, the compound (C type) calculated from GPC is composed of T8, T10, D] 2, and incomplete cage 18 31503] 200407358 type T90H, T110H, and the total amount It is 24 6%. If the results of lc · MS are combined, the amounts of T8, T10, T12, T90H, and T110H are calculated as shown in Table 1. Next, a reaction vessel equipped with a stirrer, a Dean-Stark with a small mouth connection, and a cooling pipe was charged with 20.65 g of the silsesquioxane obtained above, 82 m of toluene, and 100 / 〇TMAH aqueous solution 30g, and gradually heated to distill off the water. The temperature was further increased to 130 r, and toluene was subjected to a recondensation reaction at a reflux temperature. The temperature of the reaction solution at this time was 108 ° C. After the toluene was refluxed for another 2 hours, the reaction was completed. The reaction solution was washed with saturated saline until it became neutral, and then dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered and concentrated to obtain the target cage-type silsesquioxane (mixture HS.Dg.) The obtained Fulong-type silsesquioxane is a colorless viscous liquid that can be dissolved in various organic solvents. ...... Measure the Gpc of the reactants after the recondensation reaction, the results are not shown in Figure 3. From Figure 3, Mn2O18 (spike 5), Mni570 (spike 6 stomach), Mηΐ3δ7 (spike 7) and Mnll92 (spike 8). The molecular position, molecular weight distribution, and presence of each spike are shown in Figure 1. The molecular weight distribution (Mw / Mn) of the reactants after the re-condensation reaction was 1.04. In addition, the mass analysis after high-speed liquid chromatography was performed, and the results are shown in Figure 4. From Figure 4, it was confirmed that the molecular ions of ammonium ions were attached to Ding 8, Ding 10, and τΐ2. As a result, the structure of the sesquisiloxane of the spike 5 was random or the stepped large bowl 6 could be identified as T] 2, and the spike 7 could be silvered as D] 〇5 尖 3] 503] 19 200407358 Peak 8 could be plated It is τ8. The cage-type silsesquioxane mixture after recondensing is placed at 20 C or lower to precipitate needle-like crystals. Needle-like crystals pass through After that, it was 5.89 g. In addition, GPC measurement was performed on the needle-like crystals, and only the peak 8 was detected. It can be confirmed that this crystal is Ding 8. According to the measurement results, it was observed that the The signal is a broad signal before recondensation, and it is separated into a sharp signal. It can be inferred that the compound ❿ (ie, a compound with a cage structure) having excellent objectivity can be inferred. In addition, no osmium-derived oxygen was observed. Base 彳 5 (3'58pPm). Comparing the integral ratio of _C = CH2 and -〇-CH factory, the result is 1.999: 1.984. The GPC finishing before and after the condensation reaction is shown in Table 1. [Table 1 】 Before re-condensation Mn (area%) Spike (Mw / Mn) type 4291 (32.7%) 1 (1.07) random • ladder 2018 (6.3%) 5 (1.00) random • ladder Mn (area %) Central peak (Mw / Mn) type 2826 (19.6%) 2 (1.00) _ random · ladder type 1 570 (9%) 6 (1.00) (T12) cage Μ η (area%) spike (Mw / Mn) type 2 1 87 (23.1%) 3 (1.0) random · ladder type 1 3 87 (47.5%) 7 (1.00) (T10) cage type M η (area%) spike (Mw / Mn) type 1483 ( 24.6%) 4 Cage type (including incomplete) 1 192 (37.2%) 8 (1.00) (T 8) The cage type is known from Table 1. Before the recondensation reaction, the silsesquioxane structure of the peaks 丨, 2 and 3 was random or ladder-shaped, and accounted for 75.4% of the total; After the condensation reaction, the spikes disappeared. The I-siloxanes of spikes 6, 7, and Da 8 were structured as clear cages, and accounted for 315031 20 200407358 93.7% random, consistent examples, such as consistent examples 1. Scoop the mouth of the sesquisiloxane composition with the following contents | / -this 丄 八 +, 忒 ". Put IPA 40m in 5% TMAH water, six, household 0.

〇 . . K,合液 2.2g、及 MTMS .g ’在點滴後,於室溫(20至25 0Γ , u ν 私為、、 、主C、加水分解反應時將 合成。 3 二、下進行授拌2小時後,於減堡中潑除PA ,再利用甲 ^ 3〇ml進行溶解。如同實施例丨般的施行再縮合反應, 後付倍半%氧烧混合物5 65g、收率92%。此籠型倍半石夕 乳院混合物的GPC測量結果,如第5圖所示。從第 异各尖峰的分子量Mn、分子量分布—"Μη、型及存在量 的結果,如表2中所示。實施例2中省略施行倍半矽氧烷 -·且成物的水洗步驟,即便未施行水洗步驟,雖籠型的構造 比率有減少,但是確認到可進行籠型倍半矽氧烷混合物的 在具備攪拌機、點滴漏斗、溫度計的反應容器中,裝 入/谷劑的IPA 200ml、與鹼性催化劑的5%TMAH水溶液 15·Μ。在點滴漏斗中裝入IPA 30ml、與3_環氧丙氧基丙 基二甲氧基矽烷60.3 8g,然後一邊攪拌反應容器,一邊在 室溫下將3_環氧丙氧基丙基三曱氧基矽烷的IPA溶液,於 6〇分鐘内進行點滴。待點滴結束後,在未加熱情況下進行 搜拌6小時。經攪拌6小時後,將溶劑在減壓下去除IPA, 再利用曱苯200ml進行溶解。 2] 315031 200407358〇. .K, 2.2g of liquid mixture, and MTMS .g 'After instillation, it will be synthesized at room temperature (20 to 25 0 Γ, u ν 为, 为, main C, hydrolytic reaction). 3 Second, proceed After 2 hours of incubation, the PA was poured out in the fort, and then dissolved with 30 ml of solution. The recondensation reaction was performed as in Example 丨, and the post-half 5% oxygen-burned mixture was 5 65 g, and the yield was 92%. The GPC measurement results of this cage-type sesquitarum breast milk compound are shown in Figure 5. From the molecular weights Mn, molecular weight distribution of the different peaks— " Μη, the type, and the results, as shown in Table 2. As shown in Example 2. The step of washing the product with silsesquioxane was omitted in Example 2. Even if the step of washing with water was not performed, although the cage structure ratio was reduced, it was confirmed that cage silsesquioxane can be used. In a reaction vessel equipped with a stirrer, a drip funnel, and a thermometer, 200 ml of IPA / cereal was charged, and 15% of a 5% TMAH aqueous solution with an alkaline catalyst. 30 ml of IPA was charged into a drip funnel, and 60.3 8 g of oxypropoxypropyldimethoxysilane, and while stirring the reaction vessel, At room temperature, the IPA solution of 3-glycidoxypropyltrimethoxysilane was dripped in 60 minutes. After the drip was finished, the mixture was searched without heating for 6 hours. After stirring for 6 hours , IPA was removed from the solvent under reduced pressure, and 200 ml of toluene was used for dissolution. 2] 315031 200407358

如同實施例1般的施行再縮合反應,獲得倍半矽氧燒 混合物。此籠型倍半矽氧烷混合物的GPC測量結果,如第 6圖所示,測量LC-MS的結果,如第7圖所示。從第6圖 與第7圖計算各尖峰的分子量、分子量分佈Mw/Mn、A recondensation reaction was performed as in Example 1 to obtain a silsesquioxane mixture. The GPC measurement results of this cage-type silsesquioxane mixture are shown in FIG. 6 and the LC-MS measurement results are shown in FIG. 7. Calculate the molecular weight, molecular weight distribution Mw / Mn,

型及存在量的結果,如表2中所示。由以上結果,尖峰9 與尖峰1 0係倍半矽氧烷構造之無規或梯狀的化合物,且可 鑑疋到尖峰11為丁 12,尖峄12為T1〇,尖峰13為T8。換 句話說,確認到實施例3可進行具有官能基R為縮水甘油 基的籠型倍半矽氧烷混合物之合成。 貫施例4 在具備攪拌機、點滴漏斗、溫度計的反應容器中,裝 入♦劑的IPA 120ml、與鹼性催化劑的5%TMAH水溶液 在點滴漏斗中裳入IpA 3〇ml、與乙稀基三甲氧基石夕 炫]〇.2g’然後-邊授拌反應容器,—邊在代下將乙稀基 三甲氧基矽烷的IPA溶液,於6〇分鐘内進行點滴。待點 滴結束後’逐漸回復至室溫,在未加熱情況下進行授掉、 J 7 、二极拌6小時後,將溶劑在減壓下去除IpA,再利 用曱本2 0 0 m 1進行溶解。 ”人如同貝施例1般的施行再縮合反應,獲得倍半 石夕氧烧混合物。此省!刮4立主々$ 處尘乜牛矽乳烷混合物的GPC與 的測量結果,如第8圖盥第Q m y斤Ω 弟9圖所不。從第8圖與第9 計算各尖峰的分子量M 分 Θ η 刀子$分佈Mw/Mn、型及存在 量的結果,如表2中所+ , 斤不。由以上結果,尖峰Μ、15及 1 6之倍半石夕氧烷構造為盔 、、兄4梯狀的化合物,且可鑑定到 31503] 22 200407358 尖峰17為T14,尖峰18為T12,尖峰19為T10。換句話 說,確認到實施例4可進行具有官能基R為乙烯基的籠型 倍半矽氧烷混合物之合成。 比較例1 在具備攪拌機、點滴漏斗 入溶劑的IPA 1 60ml、與5%TMAH水溶液6.5g。在點滴漏 斗中裝入IPA 18m卜與MTMS 27.54g,然後一邊攪拌反應 容器,一邊在室溫下將MTMS的IPA溶液,於30分鐘内 進行點滴。待MTMS點滴結束後,於室溫下攪拌2小時。 經攪拌2小時後再加熱至95它。在IpA迴流條件下,再攪 拌4小時。在減壓下餾除溶劑,再利用甲苯377mi進行溶 角午。將經甲苯溶解的反應溶液利用飽和食鹽水施行水洗, =到又為中性為止,然後再利用無水硫酸鎂進行脫水。將 …、拎瓜§欠鎂進行過濾,濃縮之反應溶液在飽和食鹽水中 洗至呈中性,涵_脸 再將無水;W 鎂加以脫水。去除過濾之無 石Λ酸錢,、奠β — 礙、,、侣而獲得加水分解生成物(倍半矽 k ) 1 9 · 5 9 g。所媒| 厅&侍倍半矽氧烷係可溶於各種有機溶劑中的 無色點性液體。 第丨〇。化^矽氧烷的GPC測量結果,如第1 0圖所示。從 人驾开圖句'知’無法獲得實施例1中所觀看到的相同波形, 己龍型以外的雜暂^ 類的極性溶,。奥句話說,比較例1顯示在如ΪΡΑ之 半妙氧烧的;二下,並未進行再縮合反應。此外,此倍 卞里/刀佈(Mw/Mn)為1】5。 315031 200407358 在異備攪拌機、點滴漏斗、溫度計的反應容器中,裝 入溶劑的曱笨50ml、與5%ΤΜΑΗ水溶液3.0g。在點滴漏 斗中裝入由曱苯l〇ml與MTMS 12.64g所構成的溶液,然 後一邊攪拌反應容器,一邊在室溫下將MTMS的曱苯溶 液,於1 〇分鐘内進行點滴。待點滴結束後,於室溫下攪拌 2小時。經攪:拌2小時後再加熱至1 3 5 °C。在甲苯迴流(溶 液溫度1 〇 8 °C )溫度下,再攪拌4小時。將反應溶液利用飽 和食鹽水施行水洗,直到變為中性為止,然後再利用無水 硫酸錢進行脫水。將無水硫酸鎂進行過濾,濃縮之反應溶 液在飽和食鹽水中水洗至呈中性,再將無水硫酸鎂加以脫 水。去除過濾之無水硫酸鎂,濃縮而獲得加水分解生成物 l〇.78g。所獲得倍半矽氧烷矽組成物的Gpc測量結果,如 第11圖所示。從第η圖中觀測到原料的MTMs尖學。換 句話說,比較例2顯示反應系統並未形成均句狀綠,若將 非極性有機溶劑的甲笨採用於加水分解反應㈣,將無法 充分的進行加水分解反應,頗難進行縮人。 表2中整理實施例1,2,3及*、比妒如〗aThe results of type and presence are shown in Table 2. From the above results, spike 9 and spike 10 are random or ladder-like compounds of silsesquioxane structure, and it can be seen that spike 11 is D12, spike 12 is T10, and spike 13 is T8. In other words, it was confirmed that Example 3 was capable of synthesizing a cage-type silsesquioxane mixture having a functional group R being a glycidyl group. Example 4 In a reaction vessel equipped with a stirrer, a drip funnel, and a thermometer, 120 ml of IPA, 5% TMAH aqueous solution with an alkaline catalyst, and 30 ml of IpA were added to the drip funnel. Oxygen Shixuan] 0.2g 'Then, while stirring the reaction vessel, the IPA solution of ethylenetrimethoxysilane was dripped within 60 minutes while substituting. After the drip is finished, gradually return to room temperature, and teach it without heating. After mixing for 7 hours with J 7 and dipole, remove the solvent under reduced pressure to remove IpA, and then dissolve it with transcript 2 0 0 m 1 . "People perform the recondensation reaction as in Example 1 to obtain a sesquioxane oxy-fired mixture. This saves! GPC and the measurement results of the dust yak siloxane mixture, as shown in Figure 8 The figure Q is shown in Figure 9 and Figure 9. Figure 8 and Figure 9 calculate the molecular weight M of each peak Θ η knife $ distribution Mw / Mn, shape and existence results, as shown in Table 2 +, No. From the above results, the peaks M, 15 and 16 are sesquioxane structured as helmets, and brothers 4 ladder-like compounds, and can be identified 31503] 22 200407358 Peak 17 is T14, peak 18 is T12 The peak 19 is T10. In other words, it was confirmed that the cage type silsesquioxane mixture having a functional group R is a vinyl group can be synthesized in Example 4. Comparative Example 1 IPA 1 equipped with a stirrer and a drip funnel 60ml and 6.5g of 5% TMAH aqueous solution. Put 18m IPA and 27.54g of MTMS in a dropping funnel, and then stir the reaction vessel, while dropping the IPA solution of MTMS at room temperature, drip in 30 minutes. Wait for MTMS After dripping, stir at room temperature for 2 hours. After stirring for 2 hours, heat to 95 ° C. IpA was refluxed for another 4 hours. The solvent was distilled off under reduced pressure, and then dissolved in toluene at 377mi. The toluene-dissolved reaction solution was washed with saturated brine, until it became neutral again, and then Anhydrous magnesium sulfate is used for dehydration. Filtration of…, dehydrated magnesium is filtered, and the concentrated reaction solution is washed in saturated saline until it is neutral, and then the face is dehydrated; W is dehydrated. Remove the filtered stone Λ acid, β, β, hinder, and get the hydrolyzed product (silsesquik k) 1 9 · 5 9 g. The medium | Department & A colorless pointy liquid in a solvent. The measurement results of GPC of chemical siloxanes are shown in Fig. 10. From the figure of a person driving the word "know", the same as seen in Example 1 cannot be obtained. Waveform, polar dissolving of heterogeneous compounds other than citron type. In other words, Comparative Example 1 is shown as a semi-aerobic burner such as ΪΡΑ; twice, no recondensation reaction is performed. In addition, this time / Knife cloth (Mw / Mn) is 1] 5. 315031 200407358 The reaction vessel of the funnel and the thermometer was charged with 50 ml of solvent and 3.0 g of a 5% TMA aqueous solution. A drip funnel was charged with a solution consisting of 10 ml of toluene and 12.64 g of MTMS, and then the reaction vessel was stirred. At the same time, the toluene solution of MTMS was dripped in 10 minutes at room temperature. After the drip was finished, stirred at room temperature for 2 hours. Stirring: Stir for 2 hours and then heat to 1 35 ° C. Under toluene reflux (solution temperature 108 ° C), it was stirred for another 4 hours. The reaction solution was washed with saturated saline until it became neutral, and then dehydrated with anhydrous sulfuric acid. The anhydrous magnesium sulfate was filtered, and the concentrated reaction solution was washed with water in a saturated sodium chloride solution until neutral, and then the anhydrous magnesium sulfate was dehydrated. The filtered anhydrous magnesium sulfate was removed and concentrated to obtain 10.78 g of a hydrolyzed product. The Gpc measurement results of the obtained silsesquioxane silicon composition are shown in Fig. 11. The sharpness of MTMs of raw materials is observed from the n-th graph. In other words, Comparative Example 2 shows that the reaction system does not form a uniform green sentence. If methylbenzyl, which is a non-polar organic solvent, is used in the hydrolytic reaction, the hydrolytic reaction cannot be sufficiently performed, and it is difficult to shrink. Examples 1, 2, 3, and * are summarized in Table 2;

季乂例1與2的GPC 測量結果。表2中3-MAP係指3·曱 T基丙烯醯氧基丙其, -GOP係指3_環氧丙烷基丙基。此外, 土 . L知指梯型,R儀 才曰…、規裂,C係指含不完全的籠型。丁 I孓丁8至丁 14係籠型。 315031 24 200407358 【表2】GPC results of quarters 1 and 2 In Table 2, 3-MAP means 3 · 曱 T-propenyloxypropoxy, and -GOP means 3-glycidylpropyl. In addition, the soil L is known as the ladder type, the R instrument is said ..., the rule is cracked, and C is the incomplete cage type. Ding I 孓 Ding 8 to Ding 14 are cage types. 315031 24 200407358 [Table 2]

實施例1 實施例2 實施例3 實施例4 比較例1 比較例2 官能基 加水分解反應 溶劑 再縮合反應 IPA IPA IPA IPA IPA 甲苯 溶劑 曱苯 曱苯 曱苯 曱苯 IPA 曱苯 Mn ; Mn/Mw (面積%) 2717 ; 1.01 (3.8%) L · R 3216 ; 1.02 (9.4%) L · R 3081 ; 1.04 (12.3%) L · R 2873 (10.4%) L · R 2399 (8.5%) Μη ; Mn/Mw (面積%) 型 2018 ; 1.00 (6.3%) L · R 1994 ; 1.00 (15%) L · R 2370 ; 1.00 (18.2%) L · R 2156 ; 1.00 (9.5%) L · R 2086 (20.6%) L · R Μη ; Mn/Mw (面積%) 型 1558 ; 1.00 (18.1%) L · R Μη ; Mn/Mw (面積%) 型 1570 ; 1.00 (9%) T12 1538 ; 1.00 (9.5%) 丁 12 1839 ; 1.00 (14.2%) T12 977 ; 1.00 (6.9%) T14 1568 (50.8%) Μη ; Mn/Mw (面積%) 型 1387 ; 1.00 (47.5%) T10 1351 ; 1.00 (45.5%) T100 1633 ; 1.00 (38.2%) 丁]0 795 ; 1.00 (31.5%) T12 1341 (69%) C Μη ; Mn/Mw (面積%) 型 1192 ; 1.00 (37.2%) T8 1159 ; L00 (26.2%) T8 1396 ; 1.00 (20.0%) T8 637 ; 1.00 (21.7%) T10 Μη ; Mn/Mw (面積%) 型 547 (40.7%) MTMSExample 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Functional Group Hydrolysis Reaction Solvent Recondensation IPA IPA IPA IPA IPA Toluene Solvent Benzene Benzene Benzene Benzene Benzene IPA Benzene Mn Mn / Mw (Area%) 2717; 1.01 (3.8%) L · R 3216; 1.02 (9.4%) L · R 3081; 1.04 (12.3%) L · R 2873 (10.4%) L · R 2399 (8.5%) Mn; Mn / Mw (area%) type 2018; 1.00 (6.3%) L · R 1994; 1.00 (15%) L · R 2370; 1.00 (18.2%) L · R 2156; 1.00 (9.5%) L · R 2086 (20.6 %) L · R Μη; Mn / Mw (area%) type 1558; 1.00 (18.1%) L · R Μη; Mn / Mw (area%) type 1570; 1.00 (9%) T12 1538; 1.00 (9.5%) Ding 12 1839; 1.00 (14.2%) T12 977; 1.00 (6.9%) T14 1568 (50.8%) Mn; Mn / Mw (area%) type 1387; 1.00 (47.5%) T10 1351; 1.00 (45.5%) T100 1633 ; 1.00 (38.2%) D] 0 795; 1.00 (31.5%) T12 1341 (69%) C Mn; Mn / Mw (area%) type 1192; 1.00 (37.2%) T8 1159; L00 (26.2%) T8 1396 ; 1.00 (20.0%) T8 637; 1.00 (21.7%) T10 Μ η; Mn / Mw (area%) type 547 (40.7%) MTMS

[圖式簡單說明】[Schematic description]

第1圖係實施例1的加水分解生成物之GPC 第2圖係實施例1的加水分解生成物之LC-MS 第3圖係實施例1的再縮合反應生成物之GPC 第4圖係實施例1的再縮合反應生成物之LC-MS 第5圖係實施例2的再縮合反應生成物之GPC 25 315031 200407358Figure 1 shows the GPC of the hydrolyzed product of Example 1 Figure 2 shows the LC-MS of the hydrolyzed product of Example 1 Figure 3 shows the GPC of the recondensation reaction product of Example 1 Figure 4 shows the implementation LC-MS of the recondensation reaction product of Example 1 Figure 5 shows the GPC of the recondensation reaction product of Example 2 25 315031 200407358

第6圖係實施例3的再縮合反應生成物之GPC 第7圖係實施例3的再縮合反應生成物之LC-MS 第8圖係實施例4的再縮合反應生成物之GPC 第9圖係實施例4的再縮合反應生成物之LC-MS 第10圖係比較例1的GPC 第12圖係比較例2的GPCFig. 6 is the GPC of the recondensation reaction product of Example 3 Fig. 7 is the LC-MS of the recondensation reaction product of Example 3 Fig. 8 is the GPC of the recondensation reaction product of Example 4 Fig. 9 LC-MS of the recondensation reaction product of Example 4 FIG. 10 shows the GPC of Comparative Example 1 FIG. 12 shows the GPC of Comparative Example 2

26 31503126 315031

Claims (1)

200407358 拾、申請專利範圍: 種▲型倍半矽氧烷樹 通式(1) U日之衣仏方法,其特徵係將下述 RSiX3 ⑴ (其中’ R係具有(甲其p ^ 基中杯一本 土 細醯基、縮水甘油基、或乙烯 化八物才的有機官能基’Χ纟加水分解性基)所示石夕 口,在有機極性溶劑與驗性催化劑之存在下 :水:解:應而產生部分縮合,將所獲得加J解Γ成 物’再於非極性溶劑盥 生成 合者。 生似化劑之存在下,進行再縮 2.如申請專利範圍第1項之驾剂* 本 、施孓仑+矽氧烷樹脂之製迭 其中,籠型倍半石夕氧院樹脂係下述通式⑺ [RSi〇3/2]n (9) (其中’R係具有(甲某、$ 百(甲暴)丙:%醯基、縮水甘油基、 基中任一者的有機官能基, … % Q上由士主垂 ^ 5】〇,】2或14)所示。 3·如申&專利範圍第!或2項之 ^ ^ ^ , 、施孓仑半矽氧烷樹脂之 造方法,其中,通式(1) 又衣 【化Π “下述通式(3)、(4)、(5) 3】5〇3】 27 200407358 Ri200407358 Scope of patent application: ▲ type silsesquioxane tree general formula (1) U-day clothing method, which is characterized by the following RSiX3 ⑴ (wherein 'R series has (A its p ^ base medium cup) A native hydrazone, glycidyl, or ethylenically functional organic functional group 'X' hydrolyzable group) Shi Xikou, in the presence of organic polar solvents and test catalysts: water: solution: Partial condensation will occur, and the obtained solution will be re-condensed in a non-polar solvent. Re-condensation in the presence of a biochemical agent 2. If the application of the first scope of the patent application * This product is made of Shi Zhilun + Siloxane resin. Among them, the cage type sesquisite resin is based on the following general formula: [RSi〇3 / 2] n (9) (where 'R is , Hundred (methyl violent) C:% fluorenyl, glycidyl, organic functional group of any one of the groups,…% Q is shown by the master Zhu ^ 5] 0,] 2 or 14). 3 · As claimed in the & patent scope! Or 2 of ^ ^ ^,, the production method of Shi Zhelun semi-siloxane resin, wherein the general formula (1) and clothing [化 Π " General formula (3), (4), (5) 3]] 27 200407358 Ri 5〇3 CH2=CH—— (5) (其中’ m係1至3的整數,R】係氫原子或甲基)所有 機官能基。 4 · 一種籠型倍半矽氧烷樹脂之製造方法,其特徵係將T述 通式(1) RSiX3 ⑴ (其中’ R係具有(曱基)丙烯醯基、縮水甘油基、或乙娣 基中任一者的有機官能基,X係加水分解性基)所示矽 6物在有機極性溶劑與鹼性催化劑之存在下,進行 加水分解反應而產生部分縮合,獲得數平均分子量500 的加水分解生成物,接著將所獲得加水=解生 ,再於非極性溶劑與鹼性 縮合者。 ]之存在下,進行再 5·如申請專利範圍f 4項之籠型 方法,其中,加水分解生成物係籠型、:燒樹脂之製造 倍切氧貌的混合物,經再縮合而所獲r :及無規型之 少元樹脂,係下述通式(2) 又于邊型倍半矽氧 31503] 28 200407358 [Κύ 1 U3/2. (其中’ R係具有(曱基)丙烯醯基、縮水甘油基、或乙烯 基中任-者的有機官能基,n係8,i〇,i2 < M)所示,且 從η為MCMUU中選擇3種以上的籠型倍切氧 烧樹脂混合物,而η為8 1 〇 1 〇芬]4从々々不丨 η〜丨112及14的龍型倍半矽氧烷 總置,係佔總倍半矽氧烷的5〇wt%以上。 6. 一種具有官能基之蘢型倍半矽氧烷樹脂,係且有官 ㈣型倍半錢㈣脂,且混合物中,下述通式 不月I型倍半碎氧;):完樹脂所佔比率,在以上, [RSi〇3/2]n ⑺ (其中,R係具有(甲其、 有(甲基)丙烯醯基、縮水甘油基、或乙烯 基中任一者白勺有麟 么匕 令械s月匕基,11L係8,1〇5l2或M)。 如申請專利範圍第5垣 — 員之具有g旎基之籠型倍半矽氣 烧樹脂,其中,||开〗位、上 _ °半矽氧烧樹脂之平均分子量分佈 (MW/Mn)係在U3至L10之範圍。 315031 29CH2 = CH—— (5) (wherein 'm is an integer from 1 to 3, and R] is a hydrogen atom or a methyl group; all organic functional groups. 4 · A method for producing a cage-type silsesquioxane resin, which is characterized in that the general formula (1) RSiX3 其中 (wherein 'R' has (fluorenyl) acrylfluorenyl, glycidyl, or ethynyl Either the organic functional group, X-based hydrolyzable group) The silicon 6 compound shown in the presence of an organic polar solvent and a basic catalyst undergoes a hydrolytic reaction to cause partial condensation, and obtains a hydrolyzation having a number average molecular weight of 500. The product is then obtained by adding water = decomposing, and then condensing with a non-polar solvent and basic. In the presence of], the cage method is performed according to item 5 of the scope of patent application f 4, wherein the hydrolytic decomposition product is a cage-type: a mixture of birefringent oxygen produced by burning resin and obtained by re-condensation. : And random type of oligomeric resin, which is the following general formula (2) and side-type silsesquioxane 31503] 28 200407358 [Κύ 1 U3 / 2. (Wherein 'R is a (fluorenyl) propenyl) group , Glycidyl, or any of the organic functional groups of vinyl, as shown in n-series 8, i0, i2 < M), and three or more cage-type bifurcated oxygen fired resins are selected from η is MCMUU mixtures thereof, and η is 81 billion Finnish 〇1] 4 from 々 々 not η~ Shu Shu dragon 14 and 112 sesquicarbonate silicon siloxane total set, based 5〇wt% or more of the total siloxane of silicon sesquicarbonate. 6. A fluorene type silsesquioxane resin with a functional group, which is a fluorene type sesquigan grease, and in the mixture, the following formula is not I type sesquigenated oxygen;): End resin In the above, [RSi〇3 / 2] n ⑺ (wherein R is (meth) acryl, (meth) acrylfluorenyl, glycidyl, or vinyl) Dagger tool s, dagger base, 11L series 8, 1052 or M). For example, the fifth scope of the scope of patent application-members of the cage type sesquisilicon firing resin with g 旎 group, where || The average molecular weight distribution (MW / Mn) of upper and lower semi-silica resin is in the range of U3 to L10. 315031 29
TW092125710A 2002-09-30 2003-09-18 Cage-type silsesquioxanes resin cotaining functional group and manufacture method thereof TWI338701B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285387 2002-09-30

Publications (2)

Publication Number Publication Date
TW200407358A true TW200407358A (en) 2004-05-16
TWI338701B TWI338701B (en) 2011-03-11

Family

ID=34260180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092125710A TWI338701B (en) 2002-09-30 2003-09-18 Cage-type silsesquioxanes resin cotaining functional group and manufacture method thereof

Country Status (3)

Country Link
KR (1) KR101013824B1 (en)
CN (1) CN100348645C (en)
TW (1) TWI338701B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577691B (en) * 2012-11-19 2017-04-11 新日鐵住金化學股份有限公司 Cage-like silsesquioxane compound, curable resin composition and resin cured article using the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076443B2 (en) 1999-08-04 2011-12-13 Hybrid Plastics, Inc. Preparation of polyhedral oligomeric silsesquioxane silanols and siloxides functionalized with olefinic groups
JP4409397B2 (en) * 2004-09-27 2010-02-03 新日鐵化学株式会社 Silicone resin composition and molded body
CN1320035C (en) * 2005-06-03 2007-06-06 哈尔滨工业大学 Method for grafting modifying silicone resin
CN1320181C (en) * 2005-08-24 2007-06-06 哈尔滨工业大学 Modification method of interface between carbon fiber and non-polar resin
CN100439576C (en) * 2005-08-24 2008-12-03 哈尔滨工业大学 Carbon fiber modifying coating and its preparation method
CN100344636C (en) * 2005-12-13 2007-10-24 浙江大学 Synthesis method for substituting sesquialter siloxane by non-functional alkyl
KR100756676B1 (en) * 2006-11-23 2007-09-07 제일모직주식회사 Silicone bead, method for preparing the same, and thermoplastic resin composition using the same
KR101909156B1 (en) * 2012-12-10 2018-10-17 동우 화인켐 주식회사 Curable resin composition
AU2014226853A1 (en) * 2013-03-04 2015-08-27 Tokuyama Corporation Photochromic curable composition
CN103214509B (en) * 2013-03-25 2016-03-16 中科院广州化学有限公司 Cubic eight-methacryloyloxsilsesquioxane silsesquioxane crystal and preparation method thereof
CN104086587B (en) * 2014-06-18 2017-02-15 中国兵器工业集团第五三研究所 Preparation method for cage-type dec(glycidyl silsesquioxane)
CN106008981B (en) * 2016-06-08 2019-04-02 中国船舶重工集团公司第七二五研究所 The preparation method of one specific admixture silsesquioxane resins
CN109298596A (en) * 2018-08-17 2019-02-01 西陇科学股份有限公司 A kind of alkali-soluble OC negative photoresist of resisting high-temperature yellowing
CN110423531A (en) * 2019-06-19 2019-11-08 施雪丽 Environment-friendly water-based paint of one kind and preparation method thereof
CN110563755B (en) * 2019-09-10 2022-07-05 哈尔滨工业大学 Synthesis method of polymethacryloxy POSS
CN110540649B (en) * 2019-10-16 2022-02-08 哈尔滨工业大学 Purification method of polyhedral oligomeric silsesquioxane
CN113354817B (en) * 2021-06-10 2023-10-03 山东硅科新材料有限公司 Method for preparing double-cage POSS (polyhedral oligomeric silsesquioxanes) by solvothermal method
CN113461945B (en) * 2021-07-06 2022-09-13 北京理工大学 Cage-shaped silsesquioxane containing vinyl and 3- (2, 3-epoxypropoxy) propyl simultaneously and preparation and application thereof
CN114058248A (en) * 2021-12-03 2022-02-18 国网甘肃省电力公司电力科学研究院 Epoxy resin anticorrosive paint and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572073B2 (en) * 1987-09-18 1997-01-16 富士通株式会社 Pattern forming material
FR2656617A1 (en) * 1989-12-28 1991-07-05 Thomson Csf PROCESS FOR THE SYNTHESIS OF POLYSILSESQUIOXANES AND APPLICATIONS OF THE PRODUCTS CONTAINED
CN1058730C (en) * 1994-01-21 2000-11-22 中国科学院化学研究所 High-regularity ladder polyhydric sesquisiloxane and its copolymer and preparing method thereof
WO2001010871A1 (en) * 1999-08-04 2001-02-15 Hybrid Plastics Process for the formation of polyhedral oligomeric silsesquioxanes
JP2002363414A (en) 2001-06-12 2002-12-18 Asahi Kasei Corp Basket-like silsesquioxane-containing composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577691B (en) * 2012-11-19 2017-04-11 新日鐵住金化學股份有限公司 Cage-like silsesquioxane compound, curable resin composition and resin cured article using the same

Also Published As

Publication number Publication date
KR20040029277A (en) 2004-04-06
CN1504494A (en) 2004-06-16
CN100348645C (en) 2007-11-14
TWI338701B (en) 2011-03-11
KR101013824B1 (en) 2011-02-14

Similar Documents

Publication Publication Date Title
TW200407358A (en) Cage-type silsesquioxanes resin cotaining functional group and manufacture method thereof
JP4755824B2 (en) Organohydrogen silicon compound
US7053167B2 (en) Silsesquioxane derivative having functional group
CN100457803C (en) Fluoric alkoxyl propyl methyl silicone oil and its prepn process
JPH0562129B2 (en)
US20130345318A1 (en) Silicone polyethers and preparation thereof from polyethers bearing methylidene groups
US7569652B2 (en) Synthesis and characterization of novel cyclosiloxanes and their self- and co-condensation with silanol-terminated polydimethylsiloxane
CN106749385B (en) A kind of siliceous glycidol ether of cashew nut phenolic group and preparation method thereof
WO2019033982A1 (en) Oxetane compound and preparation method therefor
US9193910B1 (en) Liquid crystal compound, liquid crystal composition and methods for preparing the same, liquid crystal display panel
WO2004014924A1 (en) Silicon compound
CN109867590A (en) With improve cure kinetics preparation stablize and can the vinyl of thermal polymerization, amino or oligomeric phenoxy group benzocyclobutene monomer method
TW201211114A (en) Modified siloxane polymer composition, encapsulant obtained from the modified siloxane polymer composition, and electronic device including the encapsulant
KR101757092B1 (en) Amine-terminated, substantially linear siloxane compound and epoxy products made with the same
CN104140535A (en) Phenyl-containing MQ silicon resin and preparation method thereof
CN101636433B (en) Cage-cleavable siloxane resin having functional group and method for production thereof
RU2422472C1 (en) Polyphenyldimethyl siloxane binding substances and synthesis method thereof
CN104327105B (en) The synthesis of carborane benzoxazine resins and curing
Tüzün et al. Fatty acid-derived α, ω-bis-benzoxazines through hydrosilylation; curing and thermoset properties
TW201425398A (en) Siloxane compound and curable composition and cured body comprising same
CN106832297A (en) The linear copolymer of a kind of main chain containing DDSQ and ODOPN structures and its preparation method and application
KR101719585B1 (en) Method for producing organopolysiolxanes
WO2013120355A1 (en) Synthesis method for phenyl organosilicon copolymer with uniformly distributed phenyl units
Kandpal et al. Studies on the synthesis and reaction of silicone oxirane dendrimer and their thermal and rheological properties
TW201245286A (en) Silicone resin with improved barrier properties

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent