TW200403373A - Drum washing machine - Google Patents

Drum washing machine Download PDF

Info

Publication number
TW200403373A
TW200403373A TW092105801A TW92105801A TW200403373A TW 200403373 A TW200403373 A TW 200403373A TW 092105801 A TW092105801 A TW 092105801A TW 92105801 A TW92105801 A TW 92105801A TW 200403373 A TW200403373 A TW 200403373A
Authority
TW
Taiwan
Prior art keywords
drum
rotation speed
motor
rotation
balance
Prior art date
Application number
TW092105801A
Other languages
Chinese (zh)
Other versions
TWI278547B (en
Inventor
Yoji Okazaki
Tsuyoshi Hosoito
Shinichiro Kawabata
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of TW200403373A publication Critical patent/TW200403373A/en
Application granted granted Critical
Publication of TWI278547B publication Critical patent/TWI278547B/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/40Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of centrifugal separation of water from the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/24Spin speed; Drum movements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Imbalance; Noise level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/52Changing sequence of operational steps; Carrying out additional operational steps; Modifying operational steps, e.g. by extending duration of steps
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/54Changing between normal operation mode and special operation modes, e.g. service mode, component cleaning mode or stand-by mode
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/62Stopping or disabling machine operation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/48Preventing or reducing imbalance or noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The invented drum washing machine can increase the balancing adjustment effect during the balancing adjustment operation. A motor 14 for driving the drum is controlled by a microcomputer 54. The microcomputer 54 uses the rotation speed on the inner periphery of the drum where washing clothes adhere to and the rotation speed of the washing clothes falling towards the inner periphery of the drum to gradually reduce the rotation speed of the drum, in order to achieve a function of balancing adjustment operation means for controlling the rotation speed of the motor 14. Meanwhile, during a gradual reduction of the rotation speed of the drum, a correct balancing determination means is used to determine the correct balancing of the washing clothes. Furthermore, the microcomputer 54 can control the reduction on the variation of the rotation of the drum 1 under operation.

Description

200403373 (1) 玖、發明說明 【發明所屬的技術領域】 本發明是有關具備在洗衣物黏貼滾筒(d rii m )內周圍 面的滾筒轉數與洗衣物從滾筒內周圍面落下的轉數之間, 朝著滾筒轉數減少方向或增加方向緩緩變化的平衡( balance )調節運轉的滾筒式洗衣機。 〔發明所欲解決之課題〕 以往,滾筒式洗衣機中,脫水運轉的時,進行平衡調 節運轉使滾筒內的洗衣物使不致在不平衡(unbalance ) 的狀態下脫水運轉。即,說明平衡調節運轉如下,如第 12圖、第13圖表示,控制馬達(motor)形成使洗衣物 1 〇 2黏貼在滾筒1 〇 1的內周圍面的轉速N a,並以馬達控制 從該轉速N a依序降低至使洗衣物的一部份或全部從滾筒 內面剝離(掉落)的轉速Nb爲止。 此時,作用於洗衣物1 〇 2的離心力是以Ri爲洗衣物 1 02的轉動半徑,以ω作爲轉速的角速度,並以Ri · ω 2 表示。該離心力與重力g相等或較大時,形成洗衣物1〇2 黏貼滾筒1 01內周圍面的狀態(參閱第12 ( a )圖)。減 小上述滾筒1 0 1的角速度時(馬達的轉數減小時),較位 於滾筒內周圍面側的洗衣物(轉動半徑Ri 1 )短的接近滾 筒中心的洗衣物群C k轉動半徑Ri2 ),隨著角速度的降 低首先落下(參閱第〗2(b)圖)。即,由於不平衡爲要 因落下的洗衣物群C,可藉此消除不平衡而獲得正確的平 -6 - (2) (2)200403373 衡。此外’使滾筒1 0 1的轉速到達洗衣物黏貼的轉速時可 能已構成平衡正確狀態。 【先前技術】 以往,在該不平衡調節運轉之後,如第1 3圖表示在 滾筒101的轉動上升後,預定期間Ta中測定滾筒ι〇1轉 速的變動以判定是否爲實際正確的平衡(或不平衡)。並 且’一但判疋爲正確平衡時,在其狀態下使轉動上升,而 一旦判定爲不平衡時,則再次進行平衡調節運轉及平衡正 確判定。 但是,使用轉動驅動滾筒1 01的無刷D C馬達( brushless DC motor),其無刷DC馬達是廣爲採用反相( inverter )電路驅動的方式。並且,對應馬達的驅動條件 控制力矩(t 〇 r q u e )時,可增減馬達的外加電壓。 第1 4圖是表示滾筒式洗衣機用的馬達控制系的一構 成例。控制系例如以微電腦(m i c r 〇 c 〇 m p u t e r )等所構成 ’具備PI控制部201'洗衣模式(pattern)輸出控制部 202、UVW變換部203、初始模式輸出部204、PWM形成 部205及位置剪側部206等作爲功能組件(function block )。 利用P W Μ形成部2 0 5所輸出各相的p w Μ信號是從 驅動馬達2 0 7的反相電路2 0 8輸出。並且,馬達2 0 7組裝 有進行轉子的位置檢測用的霍爾感測器(Hall sensor) 2 0 9 ’霍爾感測器2 0 9是進行三相中兩相(u、V )量的位 (3) (3)200403373 置檢測將位置檢測信號輸出至位置檢測部2 0 6。 PI控制部20 1是根據進行洗衣機運轉控制的控制部 (未圖示)所輸出的脫水運轉時的目標速度指令ω ref, 及位置檢測部2 0 6所輸出馬達2 0 7的檢測速度ω,PI控 制馬達2 0 7的轉速,將p w Μ信號的工作(d u t y )指令與 相位指令輸出UVW變換部203。又,洗衣模式輸出部202 是以PI控制部1取代洗衣運轉時的工作指令與相位指令 輸出UVW變換部。 UVW變換部3是將PI控制部201或洗衣模式輸出部 2 02所輸出的指令變換爲u、V、W各相的電壓指令輸出 至PWM形成部205。並且,初始模式輸出部204使馬達 2 07從停止狀態啓動時例如以UVW變換部2 03取代120 度導電模式而輸出反相電路208。 但是,以上的習知方法中會有以下的問題。即馬達 2 07的轉速予產生力矩成比例,但是以上述構成外加電壓 進行控制時產生力矩不與電壓成比例,因此目標速度指令 ω ref語馬達207的檢測速度ω容易誤差而形成控制不穩 定(轉速變動)。另外,反饋(feedback )控制週期爲數 百微秒,因此會使得速度控制速度遲緩。 基於以上的問題,上述平衡調節運轉中,滾筒1 〇 1的 轉速,即依序降低馬達207轉數的場合,如第9圖的特性 線J (兩點虛線)表示,整體轉速雖然依序降低,但是馬 達207的轉數會產生變動,滾筒101面內通過作用在洗衣 物的離心力R i · ω 2與重力g接近的角速度範圍ω 0的時 (4) (4)200403373 間範圍T 1較短。因此,縮短了上述平衡調節作用的發揮 時間,會有降低平衡調節效果的問題。 本發明是有鑑於上述問題所硏創而成,其目的是提供 可利用平衡調節運轉提升平衡調節效果的滾筒式洗衣機。 【發明內容】 〔解決課題用的手段〕 申請專利範圍第1項的發明,其特徵爲,具備:大致 水平軸轉動的滾筒; 轉動該滾筒的馬達; 從上述滾筒內的洗衣物黏貼在滾筒內周圍面的滾筒轉 速以至從滾筒內周圍面落下的轉速,進行上述馬達的轉速 控制使滾筒轉速漸減的平衡調節運轉手段;及, 利用該平衡調節運轉手段所進行的滾筒式轉速漸減中 ’判定洗衣物正確平衡的正確平衡判定手段, 上述平衡調節運轉手段是控制使滾筒轉速漸減運轉在 滾筒1轉動中的轉動變動減少。 該申請專利範圍第1項的發明中,控制使滾筒的轉速 漸減運轉在滾筒1轉動中的轉動變動減少,因此滾筒的轉 速變化大致形成線性,可以使滾筒的轉速通過滾筒內面作 用在洗衣物的離心力與重力接近之轉速範圍的時間範圍增 長’藉此增長上述平衡調節作用可發揮的時間,提升平衡 調節效果。 申請專利範圍第2項的發明,取代申請專利範圍第1 (5) (5)200403373 項的平衡調節手段,其特徵爲,具有:設置朝著上述滾筒 的洗衣物黏貼滾筒內周圍面的滾筒轉速,使滾筒轉速漸增 而進行上述馬達轉速控制的平衡調節運轉手段。 該申請專利範圍第2項的發明中,控制使滾筒的轉速 漸增運轉在滾筒1轉動中的轉動變動減少,因此滾筒的轉 速變化大致形成線性,可以使滚筒的轉速通過滾筒內面作 用在洗衣物的離心力與重力接近之轉速範圍的時間範圍增 長’藉此增長上述平衡調節作用可發揮的時間,提升平衡 調節效果。尤其該申請專利範圍第2項的發明可依序提昇 滾筒的轉速,可容易轉移至提升轉速的脫水行程。 其中’以一預定期間(從洗衣物黏貼滾筒內周圍面的 轉速以至洗衣物落下的轉速爲止或者其相反期間)進行平 衡調節運轉後進行正確平衡判定時可預測問題。亦即,平 衡調節運轉中,雖可從上述預定期間中預測行程正確平衡 處,但是其正確平衡的隨後一旦繼續滾筒的轉動時,可能 會使得正確平衡狀態再次崩潰。此時,必須要再次進行平 衡調節運轉。因此,以順利(smooth )轉移至脫水行程不 致失衡爲考量。 隨後的申請專利範圍第3項的發明中,設置平衡調節 運轉手段在滾筒轉速變中判定洗衣物正確平衡的正確平衡 判定手段,一旦判定正確平衡時開始脫水行程,因此形成 正確平衡時可就其狀態轉移至脫水行程,在保持正確平衡 狀態下進行脫水。 此時,也可以馬達中流動電流形成的變動幅度小時判 -10 - (6) (6)200403373 定爲正確平衡構成正確平衡判定手段(申請專利範圍第4 項的發明)。如上述,與檢測馬達的轉速以其轉動變動判 定正確平衡的方式比較,可提升正確平衡判定精度。即, 滾筒的不平衡狀態雖同時會影響滾筒轉數的變動以至於馬 達轉速的變動,但是也會直接影響連結馬達負載力矩的強 馬達電流。因此,以馬達內流動電流的變動幅度小而判定 正確平衡時可提升正確平衡判定精度。 又,平衡調節運轉手段可藉著馬達的向量(vector ) 控制進行馬達的轉速控制(申請專利範圍第5項的發明) 。該申請專利範圍第5項中,以馬達的向量控制進行馬達 的轉速控制,藉此與q軸電流成比例可以直接控制馬達的 力矩,因此,可以較以往馬達的轉速控制更提升其反應性 ,不致使平衡調節運轉的馬達轉速的變更產生變動而可線 性進行,實現滾筒1次轉動中轉動變動的減少。 此時,可以其向量控制的Q軸電流的小變動幅度作爲 判定正確平衡判定手段爲正確平衡(申請專利範圍第6項 的發明),藉此使判定要素形成對應馬達的負載力矩的q 軸電流,因此可精度良好地判定平衡狀態與正確平衡狀態 【實施方式】 針對本發明第1實施例參閱第1圖至第9圖說明如下 。首先,表示滾筒式洗衣機整體構成的第2圖中’形成滾 筒式洗衣機外殻的外箱1的前面部上,中央部設有門扉2 -11 - (7) 200403373 ,上部設有具備多數個開關(s w i t c h )或顯示部(圖中皆 未顯示)的操作面板3。其中門扉2是作爲形成外箱1的 前面部中央的洗衣物出入口 4的開關之用。200403373 (1) 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to the number of rotations of a drum provided with an inner peripheral surface of a laundry sticking drum (driim) and the number of revolutions of laundry falling from the inner peripheral surface of the drum. At the same time, the rotating drum type washing machine is adjusted in a balance in which the number of rotations of the drum decreases or increases gradually. [Problems to be Solved by the Invention] Conventionally, in a drum-type washing machine, during a dehydration operation, a balance adjustment operation is performed so that laundry in the drum is not dehydrated in an unbalanced state. That is, the balance adjustment operation is explained as follows. As shown in FIG. 12 and FIG. 13, a motor is controlled to form a rotation speed Na that causes the laundry 1 〇 2 to adhere to the inner peripheral surface of the drum 1 〇 1, and is controlled by the motor. The rotation speed Na is sequentially reduced to the rotation speed Nb at which part or all of the laundry is peeled (dropped) from the inner surface of the drum. At this time, the centrifugal force acting on the laundry 102 is represented by Ri as the rotational radius of the laundry 102, angular speed ω as the rotational speed, and Ri · ω2. When the centrifugal force is equal to or greater than the gravity g, the laundry 10 is stuck to the inner peripheral surface of the drum 101 (see FIG. 12 (a)). When the angular velocity of the above-mentioned drum 101 is reduced (when the number of rotations of the motor is reduced), the laundry group C k that is shorter than the laundry (rotation radius Ri 1) located on the inner peripheral side of the drum is closer to the rotation center of the drum C k rotation radius Ri 2) As the angular velocity decreases, it first falls (see figure 2 (b)). That is, since the imbalance is caused by the falling laundry group C, it is possible to eliminate the imbalance and obtain a correct balance. -6-(2) (2) 200403373. In addition, when the rotation speed of the drum 101 reaches the rotation speed of the laundry sticking, the balance may be correct. [Prior art] In the past, after this unbalance adjustment operation, as shown in FIG. 13, after the rotation of the drum 101 has risen, the fluctuation of the rotation speed of the drum ι1 is measured in a predetermined period Ta to determine whether it is actually correct balance (or unbalanced). And, when it is judged that the balance is correct, the rotation is raised in its state, and once it is judged that it is unbalanced, the balance adjustment operation and the balance are correctly judged. However, using a brushless DC motor (brushless DC motor) that rotationally drives the drum 101, the brushless DC motor is widely driven by an inverter circuit. In addition, when the torque (t 〇 r q u e) is controlled according to the driving conditions of the motor, the applied voltage of the motor can be increased or decreased. Fig. 14 shows a configuration example of a motor control system for a drum type washing machine. The control system is constituted by, for example, a microcomputer (micr 〇c 〇mputer), and the like is provided with a PI control unit 201, a laundry pattern output control unit 202, a UVW conversion unit 203, an initial mode output unit 204, a PWM forming unit 205, and a position cutter. The side portion 206 and the like function as a function block. The p w M signal of each phase output by the P W M forming section 205 is output from the inverter circuit 208 of the drive motor 207. In addition, a Hall sensor 2 0 9 for detecting the position of the rotor is assembled in the motor 207. The Hall sensor 2 0 9 performs two-phase (u, V) measurement in three phases. Bit (3) (3) 200403373 Set detection outputs the position detection signal to the position detection section 206. The PI control unit 201 is based on the target speed command ω ref during the spin-drying operation output from the control unit (not shown) that controls the operation of the washing machine, and the detection speed ω of the motor 2 0 7 output by the position detection unit 2 06. The PI controls the rotation speed of the motor 207, and outputs a duty command and a phase command of the pw M signal to the UVW conversion unit 203. The washing mode output unit 202 is a PIW control unit 1 that replaces the work command and phase command output UVW conversion unit during the washing operation. The UVW conversion unit 3 converts a command output from the PI control unit 201 or the laundry mode output unit 202 into a voltage command for each of u, V, and W phases and outputs it to the PWM forming unit 205. In addition, the initial mode output unit 204 outputs the inverter circuit 208 when the motor 20 07 is started from a stopped state, for example, by replacing the 120-degree conduction mode with the UVW conversion unit 20 03. However, the above conventional methods have the following problems. That is, the speed of the motor 2 07 is proportional to the generated torque, but the torque generated is not proportional to the voltage when the voltage is controlled by the above configuration. Therefore, the target speed command ω ref is easily detected by the motor 207 and the control is unstable ( Speed change). In addition, the feedback control cycle is hundreds of microseconds, which will slow down the speed control. Based on the above problems, in the above-mentioned balance adjustment operation, when the rotation speed of the drum 〇1 is sequentially reduced, that is, when the number of rotations of the motor 207 is sequentially reduced, as shown by the characteristic line J (two dotted lines) in FIG. However, the number of revolutions of the motor 207 varies. When the centrifugal force R i · ω 2 on the laundry 101 and the gravity g are close to the angular velocity range ω 0 within the plane of the drum 101 (4) (4) 200403373 range T 1 is more than short. Therefore, shortening the period of time for which the above-mentioned balance adjustment effect is exerted may reduce the balance adjustment effect. The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a drum type washing machine that can improve a balance adjustment effect by using a balance adjustment operation. [Summary of the Invention] [Means for Solving the Problem] The invention according to claim 1 in the scope of patent application includes a drum that rotates on a substantially horizontal axis; a motor that rotates the drum; and the laundry from the drum is adhered to the drum. A balance adjustment operation means for performing the rotation speed control of the motor to gradually reduce the rotation speed of the drum by the rotation speed of the peripheral surface and the rotation speed falling from the inner surface of the drum; Means for determining the correct balance of the correct balance of objects, the above-mentioned means for adjusting the balance is to reduce the rotation variation during the rotation of the drum 1 when the rotation speed of the drum is gradually reduced. In the invention of the first item of the scope of the patent application, the rotation of the drum is controlled to gradually reduce the rotation variation during the rotation of the drum 1. Therefore, the rotation speed of the drum is approximately linear, and the rotation speed of the drum can be applied to the laundry through the inner surface of the drum The increase in the time range of the speed range where the centrifugal force and the gravity are close 'will increase the time that the above-mentioned balance adjustment effect can be exerted and improve the balance adjustment effect. The invention with the scope of the patent application No. 2 replaces the balance adjustment means of the scope of the patent application No. 1 (5) (5) 200403373, and is characterized in that: a drum rotating speed is provided for the laundry to be adhered to the inner peripheral surface of the drum toward the drum In order to gradually increase the rotation speed of the drum, the balance adjustment operation means for performing the above-mentioned motor rotation speed control is performed. In the second invention of the scope of patent application, the control makes the rotation speed of the drum increase gradually and the rotation variation during the rotation of the drum 1 is reduced. Therefore, the rotation speed change of the drum is approximately linear, and the rotation speed of the drum can be applied to the laundry through the inner surface of the drum. The time range of the rotation speed range where the centrifugal force of the object is close to that of gravity increases, thereby increasing the time that the above-mentioned balance adjustment effect can be exerted, and improving the balance adjustment effect. In particular, the invention in item 2 of the patent application can sequentially increase the rotation speed of the drum, and can be easily transferred to a dehydration stroke with an increased rotation speed. Among them, the problem can be predicted when the balance is adjusted for a predetermined period (from the rotation speed of the laundry to the inner peripheral surface of the drum to the rotation speed of the laundry falling or the opposite period), and the correct balance judgment is performed after the balance adjustment operation. That is, during the balance adjustment operation, although the stroke is correctly balanced from the above-mentioned predetermined period, once the correct balance is subsequently continued, the correct balance state may collapse again. In this case, the balance adjustment operation must be performed again. Therefore, consider smooth (smooth) transfer to the dehydration stroke without imbalance. In the subsequent invention of the third scope of the patent application, the balance adjustment operation means is provided for correct balance determination means for determining the correct balance of the laundry during the change of the drum rotation speed. Once the correct balance is determined, the dehydration stroke is started, so it can be used when the correct balance is formed. The state shifts to the dehydration stroke, and dehydration is performed while maintaining the correct balance. At this time, it can also be judged that the fluctuation range caused by the flowing current in the motor is small. -10-(6) (6) 200403373 It is determined as the correct balance to constitute the correct balance judgment method (invention No. 4 in the scope of patent application). As described above, it is possible to improve the accuracy of the correct balance judgment compared with the method of determining the correct balance of the rotation speed of the detection motor by its rotation variation. That is, although the unbalanced state of the drum also affects the change in the number of revolutions of the drum and thus the speed of the motor, it also directly affects the strong motor current that connects the load torque of the motor. Therefore, the accuracy of the correct balance determination can be improved when the correct balance is determined with a small fluctuation range of the current flowing in the motor. In addition, the balance adjustment operation means can control the rotation speed of the motor through the vector control of the motor (the invention in claim 5 of the patent application range). In the fifth item of the scope of the patent application, the vector control of the motor is used to control the rotation speed of the motor, so that the torque of the motor can be directly controlled in proportion to the q-axis current. Therefore, the responsiveness of the motor can be improved more than the conventional speed control of the motor. It can be performed linearly without changing the rotation speed of the motor during the balance adjustment operation, and the rotation fluctuation can be reduced during one rotation of the drum. At this time, the small fluctuation range of the Q-axis current controlled by the vector can be used to determine the correct balance. The determination means is the correct balance (the invention in the sixth aspect of the patent application), so that the determination element forms the q-axis current corresponding to the load torque of the motor Therefore, the balanced state and the correct balanced state can be determined with high accuracy. [Embodiment] The first embodiment of the present invention will be described with reference to FIGS. 1 to 9 as follows. First, in the second figure showing the overall configuration of the drum type washing machine, 'the front part of the outer case 1 forming the outer shell of the drum type washing machine is provided with a door hinge 2 -11-(7) 200403373 at the center and a plurality of switches provided at the upper part. (Switch) or the operation panel 3 of the display (not shown in the figure). The door lintel 2 is used as a switch for forming the laundry entrance 4 in the center of the front portion of the outer box 1.

外箱1的內部配設有呈圓筒形的水槽5。該水槽5其 軸向是形成朝著前後方向(第2圖爲左右方向)的橫軸狀 ,並且配置形成前方上傾的傾斜狀,以彈性支撐裝置6彈 性支撐著。水槽5的內部配設有與水槽5同軸的呈圓筒形 的滾筒7。該滾筒7除了洗衣之外,並具有以共用的槽作 爲脫水及乾燥的功能,胴部的大致全區域形成多數個小孔 8 (第3圖僅顯示一部份),並在胴部的內周圍面設置複 數個緩衝部(buffle ) 9 (第3圖僅顯示一部份)。A cylindrical water tank 5 is arranged inside the outer box 1. The water tank 5 has a horizontal axis formed in the front-rear direction (left-right direction in FIG. 2) in the axial direction, and is arranged in an inclined shape inclined forward, and is elastically supported by the elastic supporting device 6. Inside the water tank 5, a cylindrical drum 7 coaxial with the water tank 5 is arranged. In addition to washing, the drum 7 has a common tank for dehydration and drying functions. A plurality of small holes 8 are formed in almost the entire area of the crotch (only a part is shown in Fig. 3), and is located in the crotch. A plurality of buffles 9 are provided on the surrounding surface (only a part is shown in FIG. 3).

水槽5及滾筒7在前面部分別具有洗衣物出入用的開 口部1 0、1 1,其中水槽5的開口部1 〇是利用波紋管1 2 水密性連接上述洗衣物出入口 4,滾筒7的開口部1 1是 鄰接其水槽5的開口部1 0。滾筒7的開口部1 1的周圍部 設有平衡圈(balance ring) 13。 上述水槽5的背面部配設有轉動驅動滾筒7的馬達 14。該馬達14此時爲外轉子型(outer rotor type)的DC 無刷馬達(DC brushless motor),其定子(stator) 15 是 安裝在設於水槽5背部中央部的軸承箱(housing) 16的 外圍部。轉子(rotor ) 1 7配置從外側覆蓋定子1 5,使安 裝在中心部的轉軸1 8藉著轉軸]'9可自由轉動地支撐在上 述軸承箱1 6。從軸承箱1 6突出的轉軸1 8前端部連結在 滾筒7的背部中央部上。因此,此時一旦轉動馬達1 4的 -12- (8) (8)200403373 轉子1 7時,形成與該等轉子1 7形成·一體的滾筒7轉動的 構成。 水槽5的下面部設有儲水部20,該儲水部20的內部 配設洗衣水加熱用的加熱器(heater ) 21,儲水部20的後 部經排水閥22連接有排水管(drain hose ) 23。 水槽5的上部設有熱風產生裝置24,水槽5的背部 設置熱交換器25。其中熱風產生裝置24爲配設在外箱( case) 26內的熱風用加熱器27;配設在外殻(casing) 28 內的風扇(fan ) 29 ;及,藉著皮帶傳動機構(belt transmission system) 30轉動驅動該風扇29的風扇馬達 (fan motor) 31所構成,形成外箱26與外殼28互相連 通。又,外箱26的前部連接有導管32,該導管32的前 端部形成突出水槽5內的前部,鄰接滾筒7的開口部1 2 〇 其中,利用熱風用加熱器27與風扇29產生熱風,其 熱風是通過導管3 2供給滾筒7內。供給滾筒7內的熱風 在將滾筒7內的洗衣物加熱的同時奪去水分,排出熱交換 器25側。 上述熱交換器25上部是與上述外殼28內連通,下部 是與水槽5內連通。該熱交換器25是藉著水從上部注入 而流下,將通過內部的空氣中的水蒸氣冷卻凝結而除濕的 水冷式。通過該熱交換器2 5的空氣可再次回到熱風產生 裝置24,進行熱風再循環。 第1圖是表示滾筒式洗衣機控制系的構成方塊圖( .13- (9) (9)200403373 block diagram)。並且,第1圖中,(α'々)是表示正 交變換三相無刷馬達(tri-phase brushless motor) 14各相 的電機角120度間隔的三相(UVW )座標系的正交座標系 ’ (d、q )是隨著無刷馬達1 4的轉子1 7的轉動而轉動的 2次磁束的座標系。 賦予減法器2 5以目標速度指令ω r e f作爲被減算値而 以估計器(E s t i m a t 〇 r ) 3 4所檢測之構成無刷馬達1 4的轉 速的檢測速度ω爲減算値。目標速度指令ω ref是藉著控 制洗衣機1 1運轉整體的控制用微電腦54輸出。並且,減 法器2 5的減算結果可賦予速度PI控制部(速度控制手段 )35 〇 速度PI控制部35是根據目標速度指令ω ref與檢測 速度ω的差分量進行 PI控制,產生 q軸電流指令値 Iqref與d軸電流指令値Idref作爲被減算値而輸出減法器 3 6、3 7。此外,洗滌或淸洗運轉時的 d軸電流指令値 Idref設定爲預定値。以α石/dq變換部38所輸出的q軸 電流値Iq,d軸電流値Id作爲減算値分別賦予減法器3 6 、3 7,減算結果分別賦予電流p!控制部3 9 q、3 9 d。並且 ’上述q軸電流値Iq同時賦予控制用微電腦5 4。 電流PI控制部39q、39d是根據q軸電流指令値 Iqref與d軸電流指令値Idref的差分量進行PI控制,產 生q軸電壓指令値Vq與d軸電壓指令値Vd輸出dq/ α /3變換部40。dq/ α Α變換部40中賦予估計器34所檢測 的無刷馬達1 4的2次磁束的轉動相位角(轉子位置角) -14- (10) (10)200403373 θ ’形成根據其轉動相位角g將電壓指令値Vd、Vq變換 爲電壓指令値V α、V 3。 dq/ α /3變換部4〇輸出的電壓指令値Vfl、可賦予 a /3 /UVW變換部4i。α点/uvw變換部41是將電壓指 令値V α、V f變換爲三相的電壓指令値Vll、Vv、Vw輸出 。電壓指令値Vu、Vv、Vw賦予切換開關42u、42v、42w 一側的各固定接點,另一側的固定接點可賦予初始模式輸 出部43輸出的起動用電壓指令値vus、Vvs、Vws。並且 ,切換開關42u、42v、42w的各可動接點是連接在PMW 形成部44的輸入端子上。The sink 5 and the drum 7 respectively have openings 10 and 11 for loading and unloading laundry in the front portion. The opening 10 of the sink 5 is connected to the laundry inlet and outlet 4 with a bellows 12 in a watertight manner, and the opening of the drum 7 The portion 11 is an opening portion 10 adjacent to the water tank 5. A balance ring 13 is provided around the opening 11 of the drum 7. A motor 14 for rotationally driving the drum 7 is disposed on the back surface of the water tank 5. The motor 14 is now an outer rotor type DC brushless motor, and a stator 15 of the motor 14 is mounted on the periphery of a housing 16 provided at the center of the back of the water tank 5 unit. The rotor 17 is arranged to cover the stator 15 from the outside, so that the rotating shaft 18 mounted on the central portion is supported by the bearing housing 16 rotatably through the rotating shaft] '9. A front end portion of the rotating shaft 18 protruding from the bearing housing 16 is connected to a central portion of the back of the drum 7. Therefore, at this time, once the -12- (8) (8) 200403373 rotor 17 of the motor 14 is rotated, a structure in which the drum 7 formed and integrated with the rotor 17 is rotated is formed. The lower part of the water tank 5 is provided with a water storage part 20, and a heater 21 for heating washing water is arranged inside the water storage part 20. A drain hose (drain hose) is connected to the rear part of the water storage part 20 through a drain valve 22. ) twenty three. A hot air generating device 24 is provided on the upper part of the water tank 5, and a heat exchanger 25 is provided on the back of the water tank 5. The hot-air generating device 24 is a hot-air heater 27 arranged in a case 26; a fan 29 arranged in a casing 28; and, by means of a belt transmission system 30 is constituted by a fan motor 31 that rotationally drives the fan 29 so that the outer case 26 and the outer case 28 communicate with each other. A duct 32 is connected to the front of the outer box 26, and the front end of the duct 32 forms a front part protruding from the water tank 5 and is adjacent to the opening 12 of the drum 7. Among them, the hot air heater 27 and the fan 29 generate hot air. The hot air is supplied into the drum 7 through the duct 32. The hot air supplied to the drum 7 removes moisture while heating the laundry in the drum 7, and is discharged to the heat exchanger 25 side. The upper part of the heat exchanger (25) communicates with the inside of the casing (28), and the lower part communicates with the inside of the water tank (5). This heat exchanger 25 is a water-cooled type that is poured by water from above and flows down, and the water vapor in the air inside is cooled and condensed to dehumidify. The air passing through the heat exchanger 25 can be returned to the hot-air generating device 24 again for hot-air recirculation. Fig. 1 is a block diagram showing a control system of a drum type washing machine (.13- (9) (9) 200403373 block diagram). In the first figure, (α'々) is an orthogonal coordinate of a three-phase (UVW) coordinate system representing a quadrature-phase three-phase brushless motor with fourteen-phase motor angles of 120 degrees. The system '(d, q) is a coordinate system of the secondary magnetic flux that rotates with the rotation of the rotor 17 of the brushless motor 14. The subtractor 25 is given a target speed command ω r e f as the subtraction 値 and a detection speed ω of the rotation speed of the brushless motor 14 detected by the estimator (E s t i m a t ο) 3 4 is a subtraction 値. The target speed command ω ref is output from a control microcomputer 54 that controls the overall operation of the washing machine 11. In addition, the subtraction result of the subtractor 25 can be given to the speed PI control unit (speed control means) 35. The speed PI control unit 35 performs PI control based on the difference between the target speed command ω ref and the detection speed ω, and generates a q-axis current command.値 Iqref and d-axis current command 値 Idref are subtracted 输出 and output to the subtractors 36, 37. In addition, the d-axis current command ref Idref during the washing or rinsing operation is set to a predetermined 値. The q-axis currents 値 Iq and d-axis currents 値 Id output by the α stone / dq conversion unit 38 are used as subtractions and are given to the subtractors 3 6 and 37, respectively. The results of the subtraction are given to the currents p! Control unit 3 9 q and 3 9 d. In addition, the aforementioned q-axis current 値 Iq is simultaneously supplied to the control microcomputer 54. The current PI control units 39q and 39d perform PI control based on the difference between the q-axis current command 値 Iqref and the d-axis current command 値 Idref to generate a q-axis voltage command 値 Vq and d-axis voltage command 値 Vd output dq / α / 3 conversion Department 40. The rotation phase angle (rotor position angle) of the secondary magnetic flux imparted to the brushless motor 1 4 detected by the estimator 34 in the dq / α Α conversion unit 40 -14- (10) (10) 200403373 θ 'formed according to its rotation phase The angle g converts the voltage commands 値 Vd and Vq into voltage commands 値 V α and V 3. The voltage command 値 Vfl outputted from the dq / α / 3 conversion unit 40 can be given to the a / 3 / UVW conversion unit 4i. The α point / uvw conversion unit 41 converts the voltage commands 値 V α and V f into three-phase voltage commands 値 Vll, Vv, and Vw and outputs. The voltage commands 値 Vu, Vv, Vw are given to the fixed contacts on one side of the switch 42u, 42v, 42w, and the fixed contacts on the other side can be given to the starting voltage command 値 vus, Vvs, Vws output by the initial mode output section 43 . The movable contacts of the changeover switches 42u, 42v, and 42w are connected to the input terminals of the PMW forming section 44.

PWM形成部 44是根據電壓指令値 Vus、Vvs、Vws 將調幅16kHz的載波(短峰波)的各相PWM信號Vup ( +,-) 、Vvp(+5·) 、Vwp(+5-)輸出反相電路 45〇PWM 信號Vup〜Vwp是例如對於馬達14的各相捲線以對應正弦 波的電壓振幅的脈寬(pulse-width)信號輸出導通正弦波 形的電流。 反相電路45實際上是三相橋接6個IGBT (開關元件 )4 6所構成,下臂(1 〇 w e r a r m )側U、V相的I G B T 4 6的 射極(emitter )是分別經電流檢測用的分路電阻(shunt resistor )(電流檢測手段)4 7 ( U、V )接地(G r o u n d ) 。又,兩者的共同連接點是藉未圖示的放大·偏壓(bias )電路連接在A/D變換部4 9。並且,分路電阻4 7的電阻 値爲0 . 1 Ω左右。 放大·偏壓電路是含運算放大器(operational -15- (11) 200403373 amplifier)所構成,放大分路電阻47的端子電壓的 施以(例如,0〜+5V )偏壓使其放大信號的輸出範圍 於正側。此外,關於w相的電流可根據u、V相的電 行間接推定。又,反相電路45外加對10 0V交流電 以倍電壓全波整流後約2 8 0V的直流電壓。 A/D變換部4 9是將放大·偏壓電路的輸出信號 變換後的電流數據I u、I v輸出至U V W / α /3變換部 UVW/ α /3變換部52可推定來自電流數據In、Ιν的 電流數據Iw,根據(1 )式將三相電流數據Iu、iv、 換爲直角座標系的雙軸電流數據I α、I /3。 〔數1〕 cos (0) c o s (2 7t/3) cos * (4^/3)" I β l — sin (〇) s i n (2 tt/3) si n 〖(4tt/3) • · · (1) 並且’將雙軸電流數據I α、I yg輸出至a /5 /dq 部38。 α石/dq變換部38在向量控制時以估計器34 mThe PWM forming unit 44 outputs the PWM signals Vup (+,-), Vvp (+ 5 ·), and Vwp (+ 5-) of each phase of the 16-kHz carrier wave (short peak wave) according to the voltage commands 値 Vus, Vvs, and Vws. The inverter circuits 45 PWM signals Vup to Vwp are currents that turn on a sine waveform with a pulse-width signal corresponding to the voltage amplitude of the sine wave for each phase winding of the motor 14. The inverter circuit 45 is actually a three-phase bridge 6 IGBTs (switching elements) 46. The emitters of the U and V-phase IGBTs 4 and 6 of the lower arm (100werarm) side are respectively used for current detection. Shunt resistor (current detection means) 4 7 (U, V) ground (G round). A common connection point between the two is a non-illustrated amplifier / bias circuit connected to the A / D conversion unit 49. The resistance 値 of the shunt resistance 47 is about 0.1 Ω. The amplification and bias circuit is composed of an operational amplifier (operational -15- (11) 200403373 amplifier). The terminal voltage of the amplification shunt resistor 47 is biased (for example, 0 to + 5V) to amplify the signal. The output range is on the positive side. The w-phase current can be estimated indirectly from the u- and V-phase currents. In addition, the inverter circuit 45 applies a DC voltage of about 280 V after full-wave rectification of 100 V AC power at a voltage doubler. The A / D conversion section 49 is to output the current data I u, I v converted from the output signal of the amplification and bias circuit to the UVW / α / 3 conversion section. The UVW / α / 3 conversion section 52 can estimate the current data. In the current data Iw of In and Iv, the three-phase current data Iu and iv are replaced with the biaxial current data I α and I / 3 of the rectangular coordinate system according to the formula (1). [Number 1] cos (0) cos (2 7t / 3) cos * (4 ^ / 3) " I β l — sin (〇) sin (2 tt / 3) si n 〖(4tt / 3) • · (1) And 'output the biaxial current data I α, I yg to the a / 5 / dq unit 38. The α / dq transform unit 38 uses an estimator 34 m in vector control.

達14的轉子位置角0,根據(2 )將雙軸電流數據I $變換成轉動座標系(d5q )上的d軸電流値Id,q 流値Iq。 同時 收束 ,流進 ,源施 A/D 52 〇 W相 Iw變 變換 得馬 ϊ 、] 軸電 -16- …(2) (12)200403373 〔數2〕When the rotor position angle 0 reaches 14, the biaxial current data I $ is transformed into the d-axis current 値 Id, q flow 値 Iq on the rotating coordinate system (d5q) according to (2). Converge at the same time, flow in, source A / D 52 〇 W-phase Iw transformation transforms to 马], 轴] -16-… (2) (12) 200403373 [Number 2]

c o s 0 一 s i η 0 sinO ’ I α一 c o s 0 並且,形成將d軸電流値Id,q軸電流値iq例如以 每128 μ秒如上述輸出至估計器34及減法器36、37。 估計器3 4根據d軸電流値I d,q軸電流値I q推定轉 子1 7位置角0即轉速ω,輸出各部。其中,馬達1 *在啓 動時藉著初始模式輸出部43進行直流勵磁使轉子1 7的轉 動位置初始化後,外加啓動模式進行強制整流。根據該啓 動模式的外加產生的強制整流中,明顯的可確實推定位置 角Θ。並且,a /3 /dq變換部3 8在向量控制開始的瞬間前 以初始模式輸出部4 3所獲得的位置角0 in it作爲初始値 ,運算電流値Id、Iq輸出。 向量控制的開始以後,啓動估計器3 4推定轉子1 7位 置角0及轉速ω。此時,估計器34 —旦設定輸出α万/dq 變換部3 8的轉子位置角θ η時,估計器34 —旦根據電流 値Id、Iq藉著向量運算推定轉子位置角θ η·1時,根據推 定其一週期前轉子位置角0 η-2的關係而可推定轉子位置 角θ η 〇 此外,以上的構成中,除了反相電路45的構成主要 是具有以DSP( Digital Signal Processer,力矩調節手段 )5 3的軟體佳以實現的功能。並且,速度PI控制部3 5 的速度控制週期(回饋控制週期)例如設定形成1 2 8微秒 (數米厘秒)。又,對於D S P 5 3開始進行向量控制賦予 (13) (13)200403373 目標速度指令ω ref可藉著控制用微電腦54進行。 另外,本實施例中,啓動馬達1 4時,如後述在向量 控制開始前暫時進行PI控制。因此,雖未具體圖示,但 是並排具備第14圖表示構成的PI控制部201、UVW變換 部2 0 3,實際上針對以UV W變換部2 0 3輸出的電壓指令 Vn、Vv、Vw同樣形成可以切換開關42u、42v、42w部分 切換而輸出P WM形成部44。 其次,參閱第3圖至第9圖說明本實施力的作用如下 。第3圖是槪略表示「脫水」全行程的流程圖(fl 〇wchart ),又,第4圖示關於馬達控制的流程圖,皆可利用控制 用微電腦54加以實行。控制用微電腦54具有作爲平衡調 節運轉手段及正確平衡判定手段的功能。控制用微電腦 54在進行脫水運轉之前,如第3圖步驟(step ) S1顯示 將馬達1 4的轉速(角速度)提升至上側基準速度Na爲止 。此一上側基準速度N a是使洗衣物黏貼在滾筒7內周圍 面的速度,但是在40rpm以上。例如設定爲75rpm。此一 轉速控制及後述的轉速控制中,如第4圖的流程圖表示, 進行上述的啓動處理(步驟1 )。即切換切換開關 42υ〜42w使初始模式輸出部43連接PWM形成部44,藉 初始模式輸出部4 3進行直流勵磁,使轉子1 7的轉動位置 初始化後賦予電壓指令値Vii〜Vw至反相電路45使馬達 1 4強制整流(步驟2 )。如此即可開始轉動:馬達1 4使轉 速上升。 接著控制用微電腦54例如藉著以初始模式輸出部43 (14) (14) 200403373 所賦予的檢測信號判斷馬達1 4的轉數到達20rpm時(步 驟T3, 「YES」)時,將切換開關42u〜42w切換成可與 a /3 /UVW變換部41與PWM形成埠44連接,同時開始 目標速度指令ω 1· e f的輸出,進行與以往相同構成的電壓 控制(PI控制)(步驟T 4 )。即,由於在轉速較低的領 域中,高精度進行向量控制困難。 其次’控制用微電腦5 4參照估計器3 4所賦予的轉速 ω判斷馬達1 4的轉速到達4 0 r p m時(步驟τ 5,「Y E S」 )時,開始向量控制(步驟T 6 )。隨後,運轉停止的指 示爲止繼續運轉(步驟T7 )。 第3圖的步驟S 1中,馬達1 4的轉速一旦上升至上側 基準速度N a爲止時,移至步驟S 2,實行轉速漸減運轉。 這是由於時間T0之間下降至下側基準速度Nb,即以( Na-Nb ) /Tk的減速依序使轉速下降。該下側基準速度Nb 是設定例如5 5 rpm的洗衣物從滾筒7內周圍面落下的轉速 。但是在4〇rpm以上。因此,該轉速漸減運轉是藉著向量 控制馬達1 4進行,其轉動控制是將a / d q變換部3 8的 q軸電流値的輸出以1 2 8 //秒的時間間隔進行,及滾筒7 的1轉動(7 5〜5 5 rpm、1轉動〇 · 8〜1 · 0 9秒)中以1 2 8 //秒 的時序(timming )進行轉速控制。藉此,控制減少滾筒 7的1轉動中的轉動變動。 步驟S 3是每1 2 8 // s 3 c讀入q軸電流(q軸電流値I q )。此時,q軸電流是如第5圖所示的波形。其次在步驟 S 4進行q軸電流變動幅度檢測處理。此一處理首先將所 -19 - (15) (15)200403373 檢測的q軸電流(參閱第5圖)以數位濾波器(digital filter)功能的低通濾波器(low pass filter)切割(cut) 成高頻量,並且以預定分隔率分隔檢測數(參閱第6 ( a )圖),將此平方運算(參閱第6 ( b )圖),並以低通 濾波器更切割高頻量(參閱第6 ( c )圖),藉此檢測q 軸電流的變動幅度Η。 其次的步驟S 5中,判斷變動幅度Η是否小於預定的 基準値Hk,小時則移至步驟S 7判定爲正確平衡狀態,並 移至步驟S7立即實行脫水轉動控制。亦即,提升馬達1 4 的轉速至預定的脫水轉速N d。隨後,移至步驟S 8脫水完 成條件是否與預先設定的條件一致,例如判斷從第7圖的 時間11脫水轉動控制實行時間是否已經過預先設定的時 間,一旦判斷以經過時(第7圖的時間t e ),移至步驟 S 9停止馬達1 4完成脫水轉動控制。 此外’上述步驟S 5中,變動値η大於基準値H k時 移至步驟S 1 0 ’判斷現在的轉速(第7圖的期間Tk中的 轉速)是否在下測轉速Nb以下,在該値以上時回到步驟 S 2繼續轉速漸減運轉。該値以下時停止馬達1 *的運轉, 再次移至步驟S 1。即再度進行平衡調節運轉(參閱第8 圖)。 根據以上的本實施例,藉著向量控制馬達1 4進行轉 速漸減選轉,以滾筒7的1轉動(〇 . 8秒〜〗· 〇 9 ·秒)中的 U8微秒(數m秒)的時間進行向量控制的轉動控制。藉 此,控制使滾筒7的】轉動中的較少轉動變動。其結果, -20- (16) 200403373 如第9圖的特性線Η所示,滾筒7的轉速變化幾乎形成 直線,使滾筒7的轉速在滾筒7內面通過作用於洗衣物的 離心力與重力接近的轉速範圍的時間範圍Τ2增長,藉此 可增長上述平衡調節作用的發揮時間,提升平衡調節效果.. 〇 另外,根據本實施例,可判定平衡調節運轉的轉速變 更中洗衣物的正確平衡,判定此一正確平衡時開始脫水行 程’形成正確平衡時在其狀態下移至脫水行程,可在保持 著正確平衡狀態下進行脫水。 並且’針對正確平衡判定的進行,由於是以形成小的 向量控制的q軸電流的變動幅度判定正確平衡,判定元件 是對應馬達1 4的負載力矩的q軸電流,可精度良好地判 定不平衡狀態與正確平衡狀態。 此外,針對正確平衡的判定也可以流動馬達中小的電 流(馬達電流)變動幅度判定正確平衡的構成。如上述, 與檢測馬達的轉速以其轉速變動比較判定正確平衡的方式 比較,可提升正確平衡判定精度。 又’平衡調節運轉的馬達1 4的轉速控制是藉著馬達 的向量控制進行,因此以馬達1 4的向量控制進行馬達j 4 的轉速控制,可實現滾筒1 8的1轉動中轉動變動的減少 〇 第10圖及第11圖是表示本發明的第2實施例,該第 2實施例中,具有朝著滾筒7內洗衣物黏貼該滾筒7內周 圍面的上側基準速度N a,使滾筒轉速漸增(最大期間 733 -21- (17)200403373co s 0 to s i η 0 sinO ′ I α to co s 0 and the d-axis current 値 Id and q-axis current 値 iq are output to the estimator 34 and the subtractors 36 and 37, for example, every 128 μs as described above. The estimator 34 estimates the rotor 17 position angle 0, that is, the rotation speed ω, from the d-axis current 値 I d and the q-axis current 値 I q, and outputs each component. Among them, the motor 1 * initializes the rotation position of the rotor 17 by DC excitation through the initial mode output section 43 at the time of starting, and then starts the forced rectification in addition to the starting mode. According to the forced rectification generated by the addition of this starting mode, it is obvious that the position angle Θ can be reliably estimated. In addition, the a / 3 / 3dq conversion unit 38 uses the position angle 0 in it obtained by the initial mode output unit 43 as the initial value 瞬间 before the moment when the vector control starts, and outputs the calculation currents 値 Id and Iq. After the start of the vector control, the estimator 34 estimates the rotor 17 position angle 0 and the rotation speed ω. At this time, when the estimator 34 sets the rotor position angle θ η of the output α 10,000 / dq conversion unit 38, the estimator 34 determines the rotor position angle θ η · 1 through vector calculation based on the currents 値 Id and Iq. The rotor position angle θ η can be estimated based on the relationship between the estimated rotor position angle 0 η-2 in one cycle. In addition, in the above configuration, except for the configuration of the inverting circuit 45, the DSP (Digital Signal Processer, torque) Adjustment means) 5 3 software to achieve the function. In addition, the speed control period (feedback control period) of the speed PI control unit 3 5 is set to, for example, 1 2 8 microseconds (several meters centiseconds). In addition, vector control is given to D S P 5 3 (13) (13) 200403373 The target speed command ω ref can be performed by the control microcomputer 54. In this embodiment, when the motor 14 is started, PI control is temporarily performed before the vector control is started, as described later. Therefore, although not shown in detail, the PI control unit 201 and the UVW conversion unit 203 shown in FIG. 14 are arranged side by side. Actually, the voltage commands Vn, Vv, and Vw output by the UV W conversion unit 203 are the same. The switchable parts 42u, 42v, and 42w are formed to be partially switched to output the PWM forming part 44. Next, referring to FIGS. 3 to 9, the effect of this implementation force is as follows. Fig. 3 is a flowchart (fl owchart) showing the entire stroke of "dehydration", and Fig. 4 is a flowchart of motor control, which can be executed by the control microcomputer 54. The control microcomputer 54 has a function as a means for balancing adjustment operation and a means for determining correct balance. Before performing the dehydration operation, the control microcomputer 54 raises the rotation speed (angular speed) of the motor 14 to the upper reference speed Na as shown in step S1 in FIG. 3. This upper reference speed Na is a speed at which the laundry adheres to the inner peripheral surface of the drum 7, but it is 40 rpm or more. For example, it is set to 75 rpm. In this rotation speed control and the rotation speed control described later, as shown in the flowchart of FIG. 4, the above-mentioned start-up processing is performed (step 1). That is, the changeover switches 42υ ~ 42w are switched, and the initial mode output section 43 is connected to the PWM forming section 44. The initial mode output section 43 is used for DC excitation to initialize the rotational position of the rotor 17 and give a voltage command 电压 Vii ~ Vw to the reverse phase The circuit 45 forcibly commutates the motor 14 (step 2). This starts the rotation: the motor 14 increases the speed. Next, the control microcomputer 54 determines, for example, when the number of revolutions of the motor 14 reaches 20 rpm based on the detection signal given by the initial mode output section 43 (14) (14) 200403373 (step T3, "YES"), and then switches the switch 42u ~ 42w is switched so that it can be connected to the a / 3/3 / UVW conversion unit 41 and the PWM forming port 44 to start the output of the target speed command ω 1 · ef at the same time, and perform voltage control (PI control) with the same structure as before (step T 4) . That is, it is difficult to perform vector control with high accuracy in a region where the rotation speed is low. Next, the control microcomputer 54 refers to the rotation speed ω provided by the estimator 34 to determine that when the rotation speed of the motor 14 reaches 40 r p m (step τ 5, "Y ES"), vector control is started (step T6). Subsequently, the operation is continued until the operation is stopped (step T7). In step S1 of FIG. 3, when the rotation speed of the motor 14 is increased to the upper reference speed Na, the process proceeds to step S2, and the rotation speed is gradually reduced. This is because the time drops to the lower reference speed Nb between times T0, that is, the rotation speed is decreased in order with the deceleration of (Na-Nb) / Tk. The lower reference speed Nb is a rotation speed at which, for example, 5 5 rpm of laundry is dropped from the inner peripheral surface of the drum 7. But above 40rpm. Therefore, the rotation speed decreasing operation is performed by the vector control motor 14, and the rotation control is performed by outputting the q-axis current 値 of the a / dq conversion section 38 at a time interval of 1 2 8 // seconds, and the drum 7 The rotation speed control is performed at a timing of 1 2 8 // seconds (7 5 to 5 5 rpm, 1 rotation 0.8 to 1.09 seconds). Thereby, the control reduces the rotation fluctuation during one rotation of the drum 7. Step S 3 reads the q-axis current (q-axis current 値 I q) every 1 2 8 // s 3 c. At this time, the q-axis current has a waveform as shown in FIG. 5. Next, in step S4, a q-axis current fluctuation amplitude detection process is performed. This process first cuts the q-axis current detected by -19-(15) (15) 200403373 (see Figure 5) with a low pass filter with a digital filter function. Into a high-frequency amount, and separate the number of detections with a predetermined separation rate (see Figure 6 (a)), perform this square operation (see Figure 6 (b)), and cut the high-frequency amount with a low-pass filter (see Fig. 6 (c)), so as to detect the fluctuation range Η of the q-axis current. In the next step S5, it is judged whether the fluctuation range 小于 is smaller than a predetermined reference 値 Hk, and if it is small, it moves to step S7 to determine the correct balance state, and moves to step S7 to immediately perform the dehydration rotation control. That is, the rotation speed of the motor 1 4 is increased to a predetermined dehydration rotation speed N d. Then, go to step S8. Whether the dehydration completion conditions are consistent with the preset conditions, for example, determine whether the dehydration rotation control execution time has elapsed from the time shown in FIG. 7 once. Time te), move to step S9 to stop the motor 14 to complete the spin-drying rotation control. In addition, 'in step S5, when the change 値 η is greater than the reference 値 Hk, the process moves to step S1 0' to determine whether the current rotation speed (the rotation speed in the period Tk in FIG. 7) is below the measured rotation speed Nb, At that time, the process returns to step S2 and the rotation speed gradually decreases. When this time is below, the operation of the motor 1 * is stopped, and the process proceeds to step S1 again. The balance adjustment operation is performed again (see Figure 8). According to the present embodiment described above, the rotation speed is gradually reduced and selected by the vector control motor 14 and U8 microseconds (several m seconds) of 1 rotation (0.8 seconds to 〖· 〇9 · seconds) of the drum 7 are selected. Time for vector control rotation control. Thereby, the control makes less rotation variation in the rotation of the drum 7. As a result, -20- (16) 200403373 As shown in the characteristic line Η in FIG. 9, the rotation speed of the drum 7 changes almost linearly, so that the rotation speed of the drum 7 approaches the gravity on the inner surface of the drum 7 by the centrifugal force acting on the laundry. The time range T2 of the rotation speed range is increased, thereby increasing the display time of the balance adjustment effect and improving the balance adjustment effect. In addition, according to this embodiment, it is possible to determine the correct balance of the laundry during the rotation speed change of the balance adjustment operation. It is judged that the dehydration stroke is started when the correct balance is formed. When the correct balance is formed, the dehydration stroke is moved in its state, and the dehydration can be performed while maintaining the correct balance. And 'for the determination of correct balance, since the correct balance is determined based on the fluctuation range of the q-axis current forming a small vector control, the determination element is the q-axis current corresponding to the load torque of the motor 14, and the imbalance can be accurately determined. State and correct balance. In addition, the determination of the correct balance may be configured to determine the correct balance by flowing a small current (motor current) fluctuation range in the motor. As described above, the accuracy of determining the correct balance can be improved compared with the method of judging the correct balance by detecting the rotation speed of the motor and comparing its rotation speed variation. In addition, the speed control of the motor 14 in a balanced adjustment operation is performed by the vector control of the motor. Therefore, the speed control of the motor j 4 is controlled by the vector control of the motor 14 to reduce the rotation variation during 1 rotation of the drum 18 〇Figures 10 and 11 show a second embodiment of the present invention. In the second embodiment, the upper reference speed Na that adheres the inner peripheral surface of the drum 7 toward the laundry in the drum 7 is set to rotate the drum. Gradually increasing (maximum period 733 -21- (17) 200403373

Tkl ) 大期 的轉 下側 洗衣 圖的 Tkl 速漸 的轉 動變 重力 調節 局滚 也可 〔發 調節 【圖 構成 ,隨後朝著下側基準速度Nb,使滾筒轉速漸減(最 間Tk )等特徵。並且在該轉速漸增運轉中,滾筒7 速從40rpm開始進行向量控制,並且多數的場合,從 基準速度Nb到達上側基準速度Na的期間,可調節 物的平衡,以控制用微電腦54判定此一平衡(第1 0 時間t2 )。並移至隨後的脫水運轉。另外,此一期間 與其次的期間Tk2中判定平衡調節時,可再次實行轉 增運轉(或者轉速漸減運轉)(參閱第1 1圖)。 根據該第2實施例,藉馬達7的向量控制進行滾筒7 速漸增運轉時,可控制使滾筒7的1轉動中較少的轉 動,可以使通過滾筒7內面作用於洗衣物的離心力與 接近之轉速範圍的時間範圍增長,藉此增長上述平衡 作用的發揮時間,提升平衡調節效果。尤其可依序提 筒的轉速,可容易轉移至提升轉速的脫水行程。並且 以不需轉速漸增運轉後的轉速漸減運轉。 明效果〕 本發明是如以上的說明,可提升平衡調節運轉的平衡 效果。 式簡單說明】 第1圆爲本發明的第1實施例,表示控制系的導電性 的功能方塊圖。 第2圖爲滾筒式洗衣機的縱剖側視圖。Tkl) In the long term, the Tkl speed of the lower laundry picture can be changed gradually. Gravity adjustment can also be used to adjust the local roll. . In this increasing rotation speed, the vector control of the drum 7 is started from 40 rpm. In most cases, the balance between the adjustable objects is adjusted from the reference speed Nb to the upper reference speed Na, and the control microcomputer 54 determines this. Balance (10th time t2). And move to the subsequent dehydration operation. In addition, when the balance adjustment is determined in this period and the next period Tk2, the increase operation (or the rotation speed decreasing operation) can be performed again (see FIG. 11). According to this second embodiment, when the drum 7 is gradually increased in speed by the vector control of the motor 7, the rotation of the drum 7 can be controlled to be smaller, and the centrifugal force acting on the laundry through the inner surface of the drum 7 can be controlled. The time range of the approaching speed range is increased, thereby increasing the play time of the above-mentioned balance effect and improving the balance adjustment effect. In particular, the rotation speed of the drum can be sequentially raised, and it can be easily transferred to the dehydration stroke for increasing the rotation speed. In addition, the rotation speed is gradually reduced after the rotation speed is not increased. Bright effect] As described above, the present invention can improve the balance effect of the balance adjustment operation. Brief description of the formula] The first circle is the first embodiment of the present invention, and is a functional block diagram showing the conductivity of the control system. Fig. 2 is a longitudinal sectional side view of the drum-type washing machine.

-22 - (18) (18)200403373 第3圖是表示控制內容的流程圖。 第4圖是表示轉速上升時的控制內容的流程圖。 第5圖是表示q軸電流的變動波形圖。 第6 ( a )圖是間隔q軸電流的抽樣(s a m p 1 i n g ).數的 波形圖、第6 ( b )圖爲平方運算的波形圖、第6 ( c )圖 是施以低通濾波器的波形圖。 第7圖是表示轉速變化的一例圖。 第8圖是表示轉速變化的其他例圖。 第9圖是表示滾筒的轉速變動圖。 第10圖是表示本發明第2實施例與第8圖相當的圖 第11圖爲第9圖的相當圖。 第1 2圖是表示習知的平衡調節狀態圖。 第1 3圖是表示滾筒轉速變化的狀態圖。 第14圖爲第1圖的相當圖。-22-(18) (18) 200403373 Fig. 3 is a flowchart showing the control contents. FIG. 4 is a flowchart showing the content of control when the rotation speed is increased. FIG. 5 is a waveform chart showing a variation of the q-axis current. Figure 6 (a) is the sampling of the interval q-axis current (samp 1 ing). The waveform of the number, Figure 6 (b) is the waveform of the square operation, and Figure 6 (c) is a low-pass filter. Waveform diagram. FIG. 7 is a diagram showing an example of changes in the rotation speed. Fig. 8 is a diagram showing another example of changes in the rotation speed. Fig. 9 is a graph showing the rotation speed variation of the drum. Fig. 10 is a diagram showing a second embodiment corresponding to Fig. 8 in a second embodiment of the present invention. Fig. 11 is a diagram corresponding to Fig. 9. Fig. 12 is a diagram showing a conventional balance adjustment state. Fig. 13 is a state diagram showing changes in the rotation speed of the drum. Fig. 14 is a diagram corresponding to Fig. 1.

〔符號說明〕 7 :滾筒 1 4 :馬達 38 : a /3 /dq變換部 4 5 :反相電路 4 7 :分路電阻 、 53 : DSP、54 :控制用微電腦(平衡調節運轉手段、 正確平衡判定手段) -23-[Description of Symbols] 7: Drum 1 4: Motor 38: a / 3 / dq conversion unit 4 5: Inverting circuit 4 7: Shunt resistor, 53: DSP, 54: Control microcomputer (balance adjustment operation means, correct balance Judging means) -23-

Claims (1)

(1) (1)200403373 拾、申請專利範圍 1· 一種滾筒式洗衣機,其特徵爲,具備:大致以水 平軸轉動的滾筒; 轉動該滾筒的馬達;及, 從上述滾筒內的洗衣物黏貼在滾筒內周圍面的滾筒轉 速以至從滾筒內周圍面落下的轉速,進行上述馬邃的轉速 控制使滾筒轉速漸減的平衡調節運轉手段, 上述平衡調節運轉手段是控制使滾筒轉速漸減運轉於 滾筒1轉動中的轉動變動減少。 2 · —種滾筒式洗衣機,其特徵爲,具備:大致以水 平軸轉動的滾筒; 轉動該滾筒的馬達;及, 進行上述馬達的轉速控制使滾筒轉速漸增至上述滾筒 內的洗衣物黏貼滾筒內周圍面的轉速的平衡調節運轉手段 該平衡調節運轉手段是控制使滾筒轉速漸增運轉在滾 筒1轉動中的轉動變動減少。 3 .如申請專利範圍第1項或第2項記載的滾筒洗衣 機,其中,設置平衡調節運轉手段在滾筒轉速變中可判定 洗衣物正確平衡的正確平衡判定手段,一旦判定正確平衡 時即開始脫水行程。 4 ·如申請專利範圍第3項記載的滾筒洗衣機,其中 ,正確平衡判定手段是以馬達中流動電流形成的變動幅度 小時判定爲正確平衡。 -24 - (2) 200403373 5 .如申請專利範圍第1 i自访μ 。一 単G圍弟1項或弟2項記載的滾筒洗衣 機,其中,平衡調節運轉手段I 埋特于to XE藉者馬達的向量控制進行 馬達的轉速控制。 6 .如申請專利範圍第3項記載的滾筒洗衣機,其中, 平衡調節運轉手段藉著馬達的向量控制進行馬達的轉速控 制,並且正確平衡判定手段是以其向量控制的Q軸電流的 小變動幅度判定正確平衡。 25-(1) (1) 200403373 Patent application scope 1. A drum-type washing machine, comprising: a drum that rotates approximately on a horizontal axis; a motor that rotates the drum; and the laundry stuck to the drum The rotation speed of the inner peripheral surface of the drum and the rotation speed falling from the inner peripheral surface of the drum are balanced adjustment operation means for gradually reducing the rotation speed of the drum by the above-mentioned stable speed control. The change in rotation during rotation is reduced. 2. A drum-type washing machine, comprising: a drum that rotates approximately on a horizontal axis; a motor for rotating the drum; and controlling the rotation speed of the motor to gradually increase the drum rotation speed to the laundry sticking drum in the drum Balance adjustment operation means for the rotation speed of the inner peripheral surface This balance adjustment operation means controls the rotation fluctuation of the drum 1 to be gradually increased while the rotation of the drum 1 is reduced. 3. The drum washing machine described in item 1 or 2 of the scope of patent application, wherein the balance adjustment operation means is provided with a correct balance determination means that can determine the correct balance of the laundry during the change of the drum rotation speed. Once the correct balance is determined, the dehydration starts. stroke. 4 · The drum washing machine described in item 3 of the scope of patent application, wherein the correct balance determination means determines the correct balance based on the small fluctuation range of the current flowing in the motor. -24-(2) 200403373 5. If the scope of patent application is the 1st self-visit μ. The drum washing machine described in item 1 or item 2 of G. The balance adjustment operation means I is embedded in the vector control of the to XE motor to control the rotation speed of the motor. 6. The drum washing machine according to item 3 of the scope of patent application, wherein the balance adjustment operation means controls the rotation speed of the motor by the vector control of the motor, and the correct balance determination means uses the small fluctuation range of the Q-axis current controlled by the vector. Determine the correct balance. 25-
TW092105801A 2002-07-22 2003-03-17 Drum washing machine TWI278547B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212788A JP4194312B2 (en) 2002-07-22 2002-07-22 Drum washing machine

Publications (2)

Publication Number Publication Date
TW200403373A true TW200403373A (en) 2004-03-01
TWI278547B TWI278547B (en) 2007-04-11

Family

ID=30767818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092105801A TWI278547B (en) 2002-07-22 2003-03-17 Drum washing machine

Country Status (7)

Country Link
EP (1) EP1548169B1 (en)
JP (1) JP4194312B2 (en)
KR (1) KR100690118B1 (en)
CN (1) CN1671907B (en)
DE (1) DE60331566D1 (en)
TW (1) TWI278547B (en)
WO (1) WO2004009899A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3962668B2 (en) 2002-09-24 2007-08-22 株式会社東芝 Drum washing machine
JP4358649B2 (en) * 2004-02-20 2009-11-04 パナソニック株式会社 Drum washing machine
JP4308089B2 (en) 2004-06-04 2009-08-05 三洋電機株式会社 Drum washing machine
KR101041907B1 (en) 2004-06-24 2011-06-15 주식회사 대우일렉트로닉스 Method for washing machine's balance dehydration
FI20045389A (en) * 2004-10-14 2006-04-15 Abb Oy Assembly and method for determining unbalance of rotating drum
KR101114340B1 (en) * 2005-05-23 2012-02-15 엘지전자 주식회사 Spin control method of drum type washer
KR101203567B1 (en) * 2005-12-06 2012-11-21 엘지전자 주식회사 Spin control method of wash machine
JP4402123B2 (en) * 2007-02-14 2010-01-20 パナソニック株式会社 Drum type washer / dryer
JP4402122B2 (en) * 2007-02-14 2010-01-20 パナソニック株式会社 Drum washing machine
JP4100576B1 (en) * 2007-02-14 2008-06-11 松下電器産業株式会社 Drum washing machine
JP4840309B2 (en) * 2007-09-25 2011-12-21 パナソニック株式会社 Drum washing machine
JP4840308B2 (en) * 2007-09-25 2011-12-21 パナソニック株式会社 Drum washing machine
DE602007011950D1 (en) * 2007-11-22 2011-02-24 Electrolux Home Prod Corp Electric household appliance
JP4906770B2 (en) * 2008-03-31 2012-03-28 日立アプライアンス株式会社 Drum washing machine
JP5176662B2 (en) * 2008-04-09 2013-04-03 パナソニック株式会社 Drum washing machine
KR100977576B1 (en) 2008-05-23 2010-08-23 엘지전자 주식회사 Washing machine and method for controlling washing machine
KR101028089B1 (en) 2008-05-23 2011-04-08 엘지전자 주식회사 Washing machine and method for controlling washing machine
KR101028087B1 (en) 2008-05-23 2011-04-08 엘지전자 주식회사 Washing machine and method for controlling washing machine
KR100977574B1 (en) 2008-05-23 2010-08-23 엘지전자 주식회사 Washing machine and method for controlling washing machine
KR101028086B1 (en) 2008-05-23 2011-04-08 엘지전자 주식회사 Washing machine and method for controlling washing machine
KR100977575B1 (en) 2008-05-23 2010-08-23 엘지전자 주식회사 Washing machine and method for controlling washing machine
DE102009001271A1 (en) * 2009-03-02 2010-09-09 BSH Bosch und Siemens Hausgeräte GmbH Method for determining the loading and / or the imbalance of a laundry drum of a washing machine and corresponding circuit arrangement
KR102088827B1 (en) * 2013-07-18 2020-03-13 엘지전자 주식회사 Washing machine and Controlling method for the same
KR101594368B1 (en) * 2013-09-03 2016-02-16 엘지전자 주식회사 Laundry Treating Apparatus and Control Method for the same
KR102203430B1 (en) * 2014-01-22 2021-01-14 엘지전자 주식회사 Washing machine and Control method of the same
CN106757986A (en) * 2017-02-07 2017-05-31 南京乐金熊猫电器有限公司 A kind of method and dewatering to the uneven perception of washing tube undergarment
JP6964431B2 (en) * 2017-04-19 2021-11-10 日立グローバルライフソリューションズ株式会社 Drum type washing machine and drum type washer / dryer
CN111118813B (en) * 2018-10-15 2022-02-01 广东威灵电机制造有限公司 Position control method, control device, drum washing machine and storage medium
US11234360B2 (en) 2019-02-01 2022-02-01 Cnh Industrial Canada, Ltd. Drive and sensing system for agricultural agitator
CN110241554B (en) * 2019-07-12 2021-04-27 四川虹美智能科技有限公司 Dewatering method and impeller washing machine
CN114164608B (en) * 2021-12-13 2022-09-30 珠海格力电器股份有限公司 Washing machine dehydration method, device, storage medium and washing machine
WO2023111968A1 (en) * 2021-12-16 2023-06-22 Fisher & Paykel Appliances Limited Improvements relating to laundry apparatus and/or their control

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4738114B1 (en) * 1968-03-11 1972-09-26
JP2789572B2 (en) * 1990-08-28 1998-08-20 株式会社東芝 Dehydrator
JPH08122192A (en) * 1994-10-21 1996-05-17 Mitsubishi Electric Corp Equipment and method for detecting state of load of induction motor
ES2141855T3 (en) * 1995-03-11 2000-04-01 Whirlpool Europ METHOD AND ARRANGEMENT TO GET A BALANCE OF LOAD IN WASHING MACHINES.
JP3143355B2 (en) * 1995-03-28 2001-03-07 三洋電機株式会社 Centrifugal dehydrator
US6163912A (en) * 1997-09-22 2000-12-26 Matsushita Electric Industrial Co., Ltd. Washing machine
DE19748366C2 (en) * 1997-11-03 2003-08-21 Aeg Hausgeraete Gmbh Process for measuring laundry imbalance in washing machines
IT1305553B1 (en) * 1998-11-10 2001-05-09 Electrolux Zanussi Elettrodome METHOD FOR CHECKING THE UNBALANCING OF THE LOAD IN A WASHING MACHINE
JP2001046780A (en) * 1999-08-10 2001-02-20 Hitachi Ltd Electric washing machine
JP2001310097A (en) * 2000-04-28 2001-11-06 Yaskawa Electric Corp Method for detecting abnormal vibration of inverter driven automatic washing machine and inverter driven automatic washing machine having function to implement this method
US6715175B2 (en) * 2000-06-26 2004-04-06 Whirlpool Corporation Load unbalanced prediction method and apparatus in an appliance
TW584688B (en) * 2001-06-06 2004-04-21 Toshiba Corp Washing machine

Also Published As

Publication number Publication date
DE60331566D1 (en) 2010-04-15
WO2004009899A1 (en) 2004-01-29
JP4194312B2 (en) 2008-12-10
CN1671907A (en) 2005-09-21
CN1671907B (en) 2010-06-23
KR20050027121A (en) 2005-03-17
JP2004049631A (en) 2004-02-19
TWI278547B (en) 2007-04-11
EP1548169A1 (en) 2005-06-29
EP1548169B1 (en) 2010-03-03
EP1548169A4 (en) 2006-08-16
KR100690118B1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
TW200403373A (en) Drum washing machine
JP3962668B2 (en) Drum washing machine
JP3977762B2 (en) Drum washing machine
US7150167B2 (en) Control device for brushless motor and washing machine having the device
JP6184236B2 (en) Motor drive device and washing machine
JP2004242430A (en) Vector control inverter arrangement and washing machine
JP2007050114A (en) Washing machine
JP4406176B2 (en) Washing machine
JP2006141123A (en) Dynamo-electric machine controller, dynamo-electric machine controlling method and washing machine
JP5238174B2 (en) Motor control device and washing machine
JP4488708B2 (en) Rotating machine control device and washing machine
JP4406180B2 (en) Washing and drying machine
JP2005204968A (en) Drum type washing machine
JP5860657B2 (en) Brushless motor control device and washing machine having the same
JP2007089775A (en) Washing machine
JP5508758B2 (en) Washing machine
JP2005006676A (en) Washing machine
JP5508760B2 (en) Washing machine
KR101451429B1 (en) Motor, washing machine comprising the motor and method of controlling the washing machine
JP4179924B2 (en) Drum washing machine
JP2022126029A (en) washing machine
KR101470628B1 (en) Motor, washing machine comprising the motor and method of controlling the washing machine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees