TARIFNAME Seralar için iklimlendirme sistemi Teknik Alan Bulus, sartlandirilmis ortamlar olan seralarda kullanilan iklimlendirme sistemi ile Bulus özellikle, sera havasinin dis ortam havasina göre sicaklik ve/veya neminin kontrol edilerek seradaki bitki çesidine göre sera havasinin ihtiyaç dogrultusunda istenilen sicaklik ve/veya nem degerine otomatik olarak getirilmesini ve buna bagli olarak sera veriminin arttirilmasini saglayan iklimlendirme sistemi ile ilgilidir. Teknigin Bilinen Durumu Bitkinin, topraktaki nem eksikligine en duyarli oldugu dönemler çimlenme ve çikis olmak üzere dikimi izleyen ilk gelisme dönemleridir. Topraktaki nem eksikligi, dikim sonrasinda tutma oraninin çok düsük olmasina, çiçeklenme ve meyve olusumu dönemlerinde asiri çiçek ve meyve dökülmesine sebebiyet vermektedir. Vejetatif dönemde asiri nem eksikligi olmasi halinde bitki iyi gelisememektedir. Ancak bu dönemde belirli oranda nem eksikligi de kök gelisimini artirmaktadir. Her dönemde uzun süren toprak nem eksikligi, verimi olumsuz yönde etkilemektedir. Seralardaki havanin nemi, yetistirilen bitki türüne, seranin sicakligina, isiklandirma yogunluguna ve özümleme hizina bagli olarak degismektedir. Nemin çok düsük olmasi, bitkinin büyümesini ve gelisimini geriletmektedir. Serada bitki yetistiriciliginde karsilasilan sorunlarin basinda, özellikle bitki yapraklarinin üzerinde su birikmesi ve buna bagli olarak verimi ve kaliteyi olumsuz etkileyen mantar enfeksiyonlarinin hizla artisi gelmektedir. Yaprak yüzeylerinin üzerinde nem birikmesi, sera havasinin yüksek bagil nemi nedeniyle bitkinin yeterli transpirasyon yapamamasindan, yaprak yüzey sicakliginin havanin çiglenme sicakligindan daha düsük olmasindan ve sera örtüsü iç yüzeyinde olusan nemin bitkilerin üzerine damlamasindan kaynaklanmaktadir. Bitki yeterli transpirasyon yapamadigi için topraktan ihtiyaci olan suyu da emmemektedir. Bu da bitkinin büyümesini olumsuz etkilemektedir. Seranin içindeki ilik ve nemli hava daha soguk olan örtünün iç yüzeyi ile diger yapi unsurlarinin yüzeylerine degdiginde, eger bu yüzeylerin sicakligi, havanin çiglenme sicakligindan daha azsa, havadaki su buhari, yüzey üzerinde yogusur. Bitki yapraklarinda yogusmanin önlenmesi için en etkili yol sera ikliminin buhar basinci açigi ölçüsüne göre düzenlenmesidir. Bu nedenle yaprak yüzeyindeki suyun buharlasma basinci ile havanin kismi buhar basinci arasindaki fark olan buhar basinci açiginin (VPD- vapour pressure deficit) , bitkilerin sagligi açisindan O,2-0,3 kPa" dan daha fazla olmasi gerekmektedir. Bu deger bitki çesidine ve mevsimine göre degisiklikler gösterebilmektedir. Literatürde yapilan arastirmada teknigin bilinen durumuna bir 'örnek olarak TR nemlendirme sistemine iliskindir. Söz konusu nemlendirme sistemi temel olarak, seranin tasiyici iskeletinin çevresine geçirilen çift katli yapida sisme naylon, seranin içine giren havanin yol aldigi karanlik odanin izolasyonunu saglayan beyaz naylon, karanlik odaya giren hava akimini sogutmak üzere hava sogutucu perdeye su püskürten nozullar, nozullar ile su püskürtülen hava akiminin sogutulmasina yardim eden hava sogutucu perde, seranin sulanmasi esnasinda ortaya çikan fazla suyu toplayan su toplama kanali, su toplama kanali ile toplanan suyu depolayip sisteme veren su depolama havuzu, bitkilere verilecek suyu kireçten arindiran su yumusatma cihazi, nemlendirme sistemini kontrol ve kumanda eden iklim kontrol cihazi, yagmur suyunu toplayarak saf su elde eden yagmur suyu toplama sistemi, toplanan yagmur sularinin ihtiyaç halinde kullanilmasini saglayan yagmur suyu depolama sisteminden olusmaktadir. Söz konusu sistem yekpare yapida bir sistem olmayip, seradaki sicak havanin su püskürtülerek sogutulmasi saglanmaktadir. Dolayisiyla su püskürtme islemi ile seranin ihtiyaci olan soguk havanin ve nem degerinin yeterli düzeyde saglanmasi mümkün olmamaktadir. Sonuç olarak yukaridaki problemlerin varligi ve mevcut çözümlerin yetersizligi, ilgili teknik alanda bir gelistirme yapmayi zorunlu kilmistir. Bulusun Amaci Mevcut bulus yukarida bahsedilen dezavantajlari ortadan kaldiran ve ilgili teknik alana yeni avantajlar getiren seralar için iklimlendirme sistemi ile ilgilidir. Bulusun ana amaci, sera havasinin dis ortam havasina göre sicaklik ve/veya neminin kontrol edilerek seradaki bitki çesidine göre sera havasinin ihtiyaç dogrultusunda istenilen sicaklik vei'veya nem degerine otomatik olarak getirilmesini saglamaktir. Bulusun amaci, seradan bayat, nemce zengin ve/veya sicak havanin alinarak ihtiyaç dogrultusunda farkli çalisma modlari ile bitki çesidine uygun olarak iklimlendirilerek sera içerisine gönderilmesini saglamaktir. Bulusun bir diger amaci, iklimlendirilen havanin sera içerisine sera sirkülasyon fanlari ile homojen olarak verimli sekilde dagitilmasini saglamaktir. Bulusun bir diger amacii otomasyon sistemi vasitasiyla seranin ihtiyaç durumuna göre eser miktarda dis havanin içeriye alinmasini veya sistemde dolasan havanin disariya tahliye edilmesini saglamaktir. Bulusun bir diger amaci, sera içerisinde dogru ve verimli iklimlendirmenin yekpare bir sistem ile gerçeklestirilmesini saglamaktir. Bulusun bir diger amaci, sera içerisinde özel algoritmaya sahip otomasyon sistemi vasitasiyla bitkilerin yasayabilecegi en verimli ortamin olusmasini saglamaktir. Bulusun bir diger amaci, otomasyon sisteminin algoritmasi vasitasiyla seradaki diger iklimlendirme sistemlerinin (sera sirkülasyon fanlari, nemlendirme sistemi, sera egzost fanlari vb.) kontrolünü saglamaktir. Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve bu sekillere atiflar yapilmak suretiyle yazilan detayli açiklama sayesinde daha net olarak anlasilacaktir. Bu nedenle degerlendirmenin de bu sekiller ve detayli açiklama göz önüne alinarak yapilmasi gerekmektedir. Bulusun Anlasilmasina Yardimci Olacak Sekiller Sekil 1: Bulus konusu iklimlendirme sisteminin temsili görünümüdür. Parça Referanslarinin Açiklanmasi . Sera havasi emis agzi . Egzoz havasi fani . Egzoz havasi atis damperi 40. Silika jel emdirilmis desikant tambur 50. Brülör 60. Yanma karisim odasi 61. Ozel alev odasi 70. Rejenerasyon havasi giris agzi 80. Duman sandigi 90. Rejenerasyon egzoz havasi çikis agzi 100. Kompresör 105. DX batarya 110. Damla tutucu 120. Taze hava emis damperi-1 130. Taze hava emis damperi-2 140. Karisim havasi damperi 150. Kondenser 160. Kondenser fani 170. Iklimlendirilmis hava üfleme fani 180. Iklimlendirilmis hava çikis agzi 190. Otomasyon sistemi 200. Kanal tipi sicaklik nem sensörü 210. Radyasyon kalkanli sicaklik nem sensörü 220. Basinç transmitteri 230. Genlesme valfi 240. Likit tutucu 250. Kurutucu Bulusun Detayli Açiklamasi Bu detayli açiklamada, bulus konusu iklimlendirme sisteminin tercih edilen alternatifleri, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Sekil 1'de bulusa konu iklimlendirme sisteminin temsili görünümü verilmistir. Buna göre iklimlendirme sistemi en temel halinde; sera havasinin sera havasi emis agzindan (10) iklimlendirme sistemine giris yapmasini ve hava çikis agzindan (180) seraya gönderilmesini saglayan iklimlendirilmis hava üfleme fani (170), sera havasini disariya tahliye eden egzoz havasi fani (20), sera havasinin dis ortam havasina göre çok yüksek sicaklik ve/veya neme sahip olmasi durumunda sera havasini dogrudan disari atan egzoz havasi atis damperi (30), seradaki bitki çesidine göre sera havasinin ihtiyaç dogrultusunda istenilen nem degerine getirilmesini saglamak üzere iklimlendirme sistemine giris yapan sera havasinin ihtiva ettigi nemi emerek üzerinde toplayan silika jel emdirilmis desikant tambur (40), silika jel emdirilmis desikant tambur (40) ile emilen nemli havayi iklimlendirme sistemi içerisinde olusturulan yanma karisim odasi (60) içerisindeki özel alev odasinda (61) isitarak kurutan brülör (50), silika jel emdirilmis desikant tambur (40) ile emilen nemli havanin brülör (50) vasitasiyla isitilmasi esnasinda ihtiyaç durumuna göre dis ortamdan temiz havanin yanma karisim odasina (60) beslenmesini saglayan rejenerasyon havasi giris agzi (70), yanma karisim odasinda (60) isitma ile olusan sicak gazin toplandigi duman sandigi (80), duman sandiginda (80) toplanan havanin atmosfere atilmasini saglayan rejenerasyon egzoz havasi çikis agzi (90), seradaki bitki çesidine göre sera havasinin ihtiyaç dogrultusunda istenilen sicaklik ve/veya nem degerine getirilmesini saglamak üzere iklimlendirme sistemine giris yapan sera havasinin dis ortam havasindan daha sicak olmasi durumunda veya silika jel emdirilmis desikant tambur (40) ile emilen nemli havanin brülör (50) ile isitilmasi sirasinda havanin yüksek sicakliklara çikmasi durumunda havanin sogutulmasini ve nem oraninin düsürülmesini saglayan kompresör (100), kompresör (100) vasitasiyla sogutucu akiskan kullanarak evaporatörden alinan isinin sogutucu akiskana yüklenerek atmosfere atilmasini saglayan DX batarya (105), kompresörün (100) çalismasi esnasinda yogusan havadaki suyu tutan damla tutucu (110), kompresörün (100) çalismasi esnasinda gerekli olan taze havanin dis ortamdan iklimlendirme sistemine beslenmesini saglayan taze hava emis damperi-1 (120), sadece silika jel emdirilmis desikant tambur (40) veya silika jel emdirilmis desikant tambur (40) ile kompresör (100) birlikte çalistiginda gerekli olan taze havanin dis ortamdan iklimlendirme sistemine beslenmesini saglayan taze hava emis damperi-2 (130), sadece silika jel emdirilmis desikant tambur (40) veya silika jel emdirilmis desikant tambur (40) ile kompresör (100) birlikte çalistiginda açilip kapanan karisim havasi damperi (140), kompresörün (100) çalismasi esnasinda yüksek sicakliklarda kompresörü (100) sogutan kondenser (150), kompresörün (100) çalismasi esnasinda sicak gazi atmosfere atan kondenser fani (160), sera havasinin dis ortam havasina göre sicaklik ve/veya nemini kontrol eden ve seradaki bitki çesidine göre sera havasinin ihtiyaç dogrultusunda istenilen sicaklik ve/veya nem degerine otomatik olarak getirilmesini saglamak üzere sadece silika jel emdirilmis desikant tambur (40) veya sadece kompresör (100) veya silika jel emdirilmis desikant tambur (40) ile kompresör'L'in (100) birlikte çalismasina karar vererek sera havasini en iyi iklim kosullarina getiren otomasyon sistemi (190) içermektedir. Bulusa konu iklimlendirme sisteminin çalisma rejimini kumanda eden otomasyon sistemi (190), sera içerisinde bulunan sensörler vasitasiyla sera havasinin dis ortam havasina göre sicaklik vei'veya nemini kontrol etmektedir. Söz konusu otomasyon sistemi (190), seradaki bitki çesidine göre uygun sicaklik ve nem degerlerini içeren verilere sahip olup, sera havasinin sicaklik ve/veya nemini kontrol ederek sahip oldugu veriler vasitasiyla iklimlendirme sisteminin çalisma moduna karar vermekte ve sera havasinin ihtiyaç dogrultusunda istenilen sicaklik vei'veya nem degerine otomatik olarak getirilmesini saglamaktadir. Bu dogrultuda iklimlendirme sisteminde sadece silika jel emdirilmis desikant tambur (40) veya sadece kompresör (100) veya silika jel emdirilmis desikant tambur (40) ile kompresör (100) birlikte çalisabilmektedir. Otomasyon sistemi ( göre yönetilmektedir. Iklimlendirme sistemi, bitki yapragi 'üzerindeki buhar basinci ile sera içi buhar basinci farkini bir algoritma ile otomasyon sisteminde (190) hesaplanmasi vasitasiyla ne zaman nem almasi gerektiginin otomatik olarak belirlenmesi saglanmaktadir. Sera havasinin, iklimlendirme sistemi girisine konumlandirilan sera havasi emis agzindan (10) iklimlendirilmis hava üfleme fani (170) vasitasiyla iklimlendirme sistemine giris yapmasi ve hava çikis agzindan (180) seraya gönderilmesi saglanmistir. Sera havasinin dis ortam havasina göre çok yüksek sicaklik ve/veya neme sahip olmasi durumunda, iklimlendirme sistemi Üzerinde bulunan egzoz havasi atis damperi (30) vasitasiyla sera havasinin dogrudan disari atilmasi saglanmistir. Iklimlendirme sisteminin içerisinde yer alan silika jel emdirilmis desikant tambur (40), sera havasinin istenilen nem degerine getirilmesini saglamak 'üzere otomasyon sisteminin (90) belirledigi ihtiyaç dogrultusunda devreye girerek, iklimlendirme sistemine giris yapan sera havasinin ihtiva ettigi nemi emerek 'üzerinde toplamaktadir. Silika jel emdirilmis desikant tambur (40) ile emilen havadaki nem, iklimlendirme sistemi içerisinde olusturulan yanma karisim odasi (60) içerisindeki özel alev odasinda (61) brülör (50) vasitasiyla isitilmakta ve nemli hava kurutulmaktadir. Bu esnada ihtiyaç durumuna göre yanma karisim odasi (60) 'üzerinde yer alan rejenerasyon havasi giris agzi (70) vasitasiyla dis ortamdan temiz havanin yanma karisim odasina (60) beslenmesi saglanmaktadir. Brülör (50), otomasyon sistemi (190) tarafindan yönetilmekte birlikte desikant tamburdan (40) geçen havanin özgül nemi otomasyon sistemi (190) tarafindan sürekli hesaplanmaktadir. Bu hesaplama brülör'un (50) ilk çalismasi ile baslayip sürekli artan sicakliklarda takip edilmektedir. Sinirlanan max. 160 derece sicakliga ulasildiginda otomasyon sistemi (190) ile dis hava kosullarinin da etkisiyle en verimli sicaklik tespit edilerek sistemin ilk durmaya kadar sabit bu sicaklikta çalismasi saglanmaktadir. Senaryo degisimi ve iklim kosullarinin saglanmasi sebebiyle sistemde durma gerçeklestikten sonra ilk çalisma ile sürekli bu senaryo tekrar etmektedir. Brülör (50), yüksek sicakliklara dayanikli yanma karisim odasi (60) ve özel alev odasina (61) sahiptir. Brülör (50) burada ortalama 500 derecelerde yanmaktadir. Bunun sebebi rejenerasyon havasi için istenilen max. 160 derece havayi sabit ve hizli bir sekilde sürekli saglamaktir. Yanma karisim odasinin (60) ön kisminda türb'ulansi saglamak için özel açi ile ayarlanmis kanatçiklar yer almaktadir. Ayrica sistem içine emilen taze havanin iyi karisim saglayabilmesi için yanma karsim odasinin (60) dairesel yan yüzeyinden de sicaklik çikisi için delikler olusturulmustur. Desikant tambur (40) havasi giris agzi (70) yeterli debiyi saglayacak yapiya sahiptir. Yanma karisim odasinda (60) isitma ile olusan sicak gaz, duman sandiginda (80) toplanmakta ve duman sandiginda (80) toplanan hava, duman sandigi (80) 'üzerinde yer alan rejenerasyon egzoz havasi çikis agzindan (90) atmosfere atilmaktadir. Duman sandigi (80) yanma sirasinda açiga çikan zehirli gazlarin sistem içerisine sizmasini engelleyen yalitima sahiptir. Silika jel emdirilmis desikant tambur (40) ile emilen nemli havanin brülör (50) ile isitilmasi sirasinda havanin yüksek sicakliklara çikmasi durumunda veya otomasyon sisteminin (90) belirledigi ihtiyaç dogrultusunda iklimlendirme sistemine giris yapan sera havasinin dis ortam havasindan daha sicak olmasi durumunda seradaki bitki çesidine göre sera havasinin istenilen sicaklik velveya nem degerine getirilmesini saglamak 'üzere iklimlendirme sistemi içerisinde yer alan kompresör (100) devreye girmektedir. Kompresör (100) iklimlendirme sisteminin ihtiyaç durumuna göre tek basina çalisabildigi gibi silika jel emdirilmis desikant tambur (40) ile birlikte de çalisabilmektedir. Kompresörün (100) çalismasi esnasinda yogusan havadaki su, damla tutucu (1 10) vasitasiyla tutulmaktadir. Kompresörün (100) çalismasi esnasinda gerekli olan taze havanin dis ortamdan iklimlendirme sistemine beslenmesi için iklimlendirme sisteminde silika jel emdirilmis desikant tamburun (40) bir tarafinda kompresörün (100) bulundugu alana taze hava emis damperi-1 (120) yerlestirilmistir. Kompresörün (100) çalismasi esnasinda yüksek sicakliklarda kompresörün (100) sogutulmasi için iklimlendirme sistemi üzerinde kondenser (150) ve kompresörün (100) çalismasi esnasinda sicak gazin atmosfere atilmasi için iklimlendirme sistemi üzerinde kondenser fani (160) bulunmaktadir. Sadece silika jel emdirilmis desikant tambur (40) veya silika jel emdirilmis desikant tambur (40) ile kompresör (100) birlikte çalistiginda gerekli olan taze havanin dis ortamdan iklimlendirme sistemine beslenmesi için silika jel emdirilmis desikant tamburun (40) iklimlendirme sistemi giris tarafina taze hava emis damperi-2 (130) yerlestirilmistir. Iklimlendirme sisteminde otomasyon sisteminin (190) belirledigi çalisma moduna göre sadece silika jel emdirilmis desikant tambur (40) veya sadece kompresör (100) veya silika jel emdirilmis desikant tambur (40) ile kompresörün (100) birlikte çalismasi ile elde edilen iklimlendirilmis hava, iklimlendirme sisteminin çikisinda bulunan iklimlendirilmis hava çikis agzindan (180) seraya iklimlendirilmis hava üfleme fani (170) vasitasiyla gönderilmektedir. Bu islem, seradaki sera sirkülasyon fanlari üzerinden gerçeklestirilmekte ve iklimlendirilmis havanin sera içerisine homojen sekilde dagitilmasi saglanmaktadir. Otomasyon sistemi (190), uzaktan baglanti ile yönetilebilmektedir. Iklimlendirme sistemi içerisinden sera havasinin geçisinde en verimli otomasyonun yönetilmesi için kanal tipi sicaklik nem sensörü (200) vasitasiyla havanin sicaklik ve bagil nem bilgisi otomasyon sistemine (190) verilmektedir. Kanal tipi sicaklik nem sensöründen (200) gelen bilgilerle otomasyon sisteminde (190) sürekli özgül nem hesabi yapilarak iklimlendirme sistemi yönetilmektedir. Radyasyon kalkanli sicaklik nem sensörü (210), dis ortam ve sera içi sicaklik ve bagil nemi ölçmek için kullanilmaktadir. Radyasyon kalkanli sicaklik nem sensörü (210), günesin zararli isinlarindan ve dis ortam olumsuzluklarindan etkilenmemesi için radyasyon kalkanli özelligine sahip olup, ölçülen degerlerde %99 dogruluk saglamaktadir. Iklimlendirme sisteminin VPD hesaplamasi da sera içerisindeki bu radyasyon kalkanli sicaklik nem sensöründen (210) gelen bilgilerle ve daha önce termal kamera ile yapilan deneyler sonucu çikarilan özel algoritma formül ile saglanmaktadir. Basinç transmitterleri (220), sogutma sistemi Içerisinde gaz basinç degerlerini okumaktadir. Basinç transmitterleri (220) ile iklimlendirme sisteminde kullanilan gaz cinsine göre buhar fazinda olan yerdeki basinca karsilik gelen ve ayni zamanda gazin göre iklimlendirme sistemi içerisindeki kompresörün (100) en verimli nem alma ve sogutma için evaporasyon sicakliklarini otomatik olarak belirlemesi saglanmaktadir. Ayrica DX bataryada (105) sogutma yapilmasi sirasinda gaza geçen yuksek sicakligin kompresör (100) vasitasiyla sikistirilarak kondenserden (150) dis ortama atilmasi için gerekli olan kondenser fanlarin (160) kaç adetinin ve ne zaman ne kadar çalismasi gerektigini ölçülen basinca karsilik gelen sicaklik ile belirlemektedir. Genlesme valti (230), DX batarya (105) öncesinde yer alir. Kondenserden (50) gelen sogutkan gazin püskürti'ilerek DX bataryaya (105) gönderilmesini saglamaktadir. Bu islem sayesinde sogutma saglanmaktadir. Likit tutucu (240), kompresöre (100) sogutkan gaz emilirken kompresörun (100) çalismasini bozan likit seviyesindeki gazin emilmemesi için önceden tutulmasini saglayan likit tutucu tanktir. Ozellikle 1 bar altinda çalismalarda sogutkan gaz likit seviyesine geçebilmektedir. Buna engel olmak için likit tutucu (240) kullanilmaktadir. Kurutucu (250), iklimlendirme sistemi içerisinde çok az miktarda da olsa nem bulunmasi halinde nemi tutarak iklimlendirme sisteminin çalisma veriminin bozulmasini engellemektedir. Kurutucu (250), iklimlendirme sistemi içerisinde yer alan sogutma tesisatinin içerisindeki sogutkanda bulunan (sera havasindan farkli olan) nemi ve tesisat içerisinde önceden var olan nemi tutarak sadece sogutma modunun verimli çalismasina katkida bulunmaktadir. Bulusa konu iklimlendirme sisteminin çalisma prensibi su sekildedir; Seradaki bitki çesidine göre uygun sicaklik ve nem degerlerini içeren verilere sahip otomasyon sistemi (90), sera içerisinde bulunan sensörler vasitasiyla sera havasinin dis ortam havasina göre sicaklik velveya nemini kontrol eder ve sera havasinin ihtiyaç dogrultusunda istenilen sicaklik ve/veya nem degerine otomatik olarak getirilmesini saglamak üzere iklimlendirme sisteminin çalisma moduna karar verir. Otomasyon sisteminin (190) kompresör (100) ile sadece sogutma modunda çalismasi durumunda' Kompresör (100) ve kondenser fanlari (160) açiktir. Karisim havasi damperi (140), dis ortam sicakligi iç ortam sicakligindan küçükse kapali, dis ortam sicakligi iç ortam sicakligindan büyük veya esitse açiktir. Egzoz havasi atis damperi (30), dis ortam sicakligi iç ortam sicakligindan küçükse açik, dis ortam sicakligi iç ortam sicakligindan büyük veya esitse kapalidir. Taze hava emis damperi-2 (130) kapalidir. Taze hava emis damperi-1 (120) ise dis ortam sicakligi iç ortam sicakligindan küçükse açik, dis ortam sicakligi iç ortamdan büyük veya esitse kapalidir. Silika jel emdirilmis desikant tambur (40), brülör (50) ve duman sandigi (90) kapalidir. Sera havasinin sera havasi emis agzindan (10) iklimlendirme sistemine giris yapmasini ve hava çikis agzindan (180) seraya gönderilmesini saglayan iklimlendirilmis hava üfleme fani (170), dis ortam sicakligi iç ortam sicakligindan küçük ise açik, dis ortam sicakligi dis ortam sicakligindan büyük veya esitse kapalidir. Seradaki hava sirkülasyon fanlari, iklimlendirilmis hava üfleme fani (170) açik oldugu sürece açiktir. Otomasyon sisteminin (190) sadece silika iel emdirilmis desikant tambur (40) modunda çalismasi durumunda; Kompresör (100), kondenser fanlari (160) kapalidir. Silika jel emdirilmis desikant tambur (40) ve brülör (50) açiktir. Brülör (50) çalistigi sürece duman sandigi (90) açiktir. Sera havasinin sera havasi emis agzindan (10) iklimlendirme sistemine giris yapmasini ve hava çikis agzindan (180) seraya gönderilmesini saglayan iklimlendirilmis hava üfleme fani (170), dis ortam nemi iç ortam neminden küçük ise açik, dis ortam nemi dis ortam neminden büyük veya esitse kapalidir. Taze hava emis damperi-2 (130) dis ortam nemi iç ortamdan küçük ise açik, dis ortam nemi iç ortam neminden büyük veya esitse kapalidir. Karisim havasi damperi (140), dis ortam nemi iç ortam neminden küçükse kapali, dis ortam nemi iç ortam neminden büyük veya esitse açiktir. Egzoz havasi atis damperi (30), dis ortam nemi iç ortam neminden küçükse açik, dis ortam nemi iç ortam neminden büyük veya esitse kapalidir. Taze hava emis damperi- 1 (120) kapalidir. Seradaki hava sirkülasyon fanlari, iklimlendirilmis hava üfleme fani (170) açik oldugu sürece açiktir. Otomasyon sisteminin (190) silika ieI emdirilmis desikant tambur (40) ve kompresör (100) modunda çalismasi durumunda; Kompresör (100) ve kondenser fanlari (160) açiktir. Silika jel emdirilmis desikant tambur (40) ve brülör (50) açiktir. Brülör (50) çalistigi sürece duman sandigi (90) açiktir. Sera havasinin sera havasi emis agzindan (10) iklimlendirme sistemine giris yapmasini ve hava çikis agzindan (180) seraya gönderilmesini saglayan iklimlendirilmis hava üfleme fani (170) ise dis ortam sicakligi iç ortam sicakligindan küçük ise açik, dis ortam sicakligi dis ortam sicakligindan büyük veya esitse kapalidir. Seradaki hava sirkülasyon fanlari, iklimlendirilmis hava üfleme fani (170) açik oldugu sürece açiktir. Taze hava emis damperi-2 (130) dis ortam sicakligi iç ortam sicakligindan küçükse açik, dis ortam sicakligi dis ortam sicakligindan büyük veya esitse kapalidir. Taze hava emis damperi-1 (120) ise kapalidir. Karisim havasi damperi (140), dis ortam sicakligi iç ortam sicakligindan küçükse kapali, dis ortam sicakligi iç ortam sicakligindan büyük veya esitse açiktir. Egzoz havasi atis damperi (30), dis ortam sicakligi iç ortam sicakligindan küçükse açik, dis ortam sicakligi iç ortam sicakligindan büyük veya esitse kapalidir. Seradaki hava sirkülasyon fanlari, iklimlendirilmis hava 'üfleme fani (170) açik oldugu sürece açiktir. TR TR TR TR TR TR DESCRIPTION Air conditioning system for greenhouses Technical Field The invention is an air conditioning system used in greenhouses, which are conditioned environments. In particular, the invention is used to control the temperature and/or humidity of the greenhouse air compared to the outdoor air, automatically adjusting the greenhouse air to the desired temperature and/or humidity value in line with the needs according to the type of plants in the greenhouse. It is related to the air conditioning system that enables the greenhouse to be brought into the greenhouse and therefore increases the greenhouse efficiency. State of the Art The periods when the plant is most sensitive to moisture deficiency in the soil are the first development periods following planting, including germination and emergence. Lack of moisture in the soil causes very low retention rate after planting and excessive flower and fruit shedding during flowering and fruit formation periods. If there is excessive moisture deficiency during the vegetative period, the plant cannot grow well. However, a certain amount of moisture deficiency during this period also increases root development. Prolonged soil moisture deficiency in every period negatively affects productivity. The humidity of the air in greenhouses varies depending on the type of plant grown, the temperature of the greenhouse, lighting intensity and assimilation rate. Too low humidity retards the growth and development of the plant. The main problems encountered in growing plants in greenhouses are the accumulation of water, especially on plant leaves, and the rapid increase in fungal infections that negatively affect yield and quality. Moisture accumulation on the leaf surfaces is caused by the plant's inability to transcribe adequately due to the high relative humidity of the greenhouse air, the leaf surface temperature being lower than the dew temperature of the air, and the moisture formed on the inner surface of the greenhouse cover dripping onto the plants. Since the plant cannot make adequate transpiration, it does not absorb the water it needs from the soil. This negatively affects the growth of the plant. When the warm and humid air inside the greenhouse touches the inner surface of the cooler cover and the surfaces of other building elements, if the temperature of these surfaces is less than the dew point temperature of the air, the water vapor in the air condenses on the surface. The most effective way to prevent condensation on plant leaves is to regulate the greenhouse climate according to the vapor pressure gap. For this reason, the vapor pressure deficit (VPD), which is the difference between the evaporation pressure of water on the leaf surface and the partial vapor pressure of the air, must be more than 0.2-0.3 kPa for the health of the plants. This value depends on the plant type and season. As an example of the known state of the technique in the research conducted in the literature, the humidification system in question is basically a double-layered inflatable nylon placed around the carrier frame of the greenhouse, white nylon that provides insulation of the dark room through which the air entering the greenhouse travels. Nozzles that spray water on the air cooling curtain to cool the air flow entering the dark room, air cooling curtain that helps cool the air flow sprayed with water by the nozzles, water collection channel that collects the excess water generated during the irrigation of the greenhouse, water storage that stores the water collected with the water collection channel and gives it to the system. It consists of a pool, a water softening device that purifies the water to be given to plants from lime, a climate control device that controls and commands the humidification system, a rainwater collection system that collects rainwater and obtains pure water, and a rainwater storage system that allows the collected rainwater to be used when needed. The system in question is not a monolithic system, and the hot air in the greenhouse is cooled by spraying water. Therefore, it is not possible to provide the cold air and humidity required by the greenhouse at an adequate level by spraying water. As a result, the existence of the above problems and the inadequacy of existing solutions necessitated a development in the relevant technical field. Purpose of the Invention The present invention relates to the air conditioning system for greenhouses that eliminates the disadvantages mentioned above and brings new advantages to the relevant technical field. The main purpose of the invention is to control the temperature and/or humidity of the greenhouse air compared to the outdoor air and to ensure that the greenhouse air is automatically brought to the desired temperature and/or humidity value according to the type of plants in the greenhouse. The purpose of the invention is to ensure that stale, moisture-rich and/or hot air is taken from the greenhouse and sent into the greenhouse by conditioning it in accordance with the plant type with different operating modes in line with the need. Another purpose of the invention is to ensure that the conditioned air is distributed homogeneously and efficiently within the greenhouse with greenhouse circulation fans. Another purpose of the invention is to ensure that a trace amount of outside air is taken in or the air circulating in the system is evacuated to the outside, depending on the need of the greenhouse, through the automation system. Another purpose of the invention is to ensure accurate and efficient air conditioning in the greenhouse with a monolithic system. Another aim of the invention is to create the most efficient environment in which plants can live, through an automation system with a special algorithm in the greenhouse. Another purpose of the invention is to provide control of other air conditioning systems in the greenhouse (greenhouse circulation fans, humidification system, greenhouse exhaust fans, etc.) through the algorithm of the automation system. The structural and characteristic features and all the advantages of the invention will be understood more clearly thanks to the figures given below and the detailed explanation written by making references to these figures. For this reason, the evaluation should be made taking these figures and detailed explanation into consideration. Figures to Help Understand the Invention Figure 1: Representative view of the air conditioning system that is the subject of the invention. Explanation of Part References. Greenhouse air intake port. Exhaust air fan. Exhaust air discharge damper 40. Silica gel impregnated desiccant drum 50. Burner 60. Combustion mixing chamber 61. Special flame chamber 70. Regeneration air inlet 80. Smoke chest 90. Regeneration exhaust air outlet 100. Compressor 105. DX battery 110. Droplet catcher 120. Fresh air suction damper-1 130. Fresh air suction damper-2 140. Mixed air damper 150. Condenser 160. Condenser fan 170. Conditioned air blowing fan 180. Conditioned air outlet 190. Automation system 200. Duct type temperature humidity sensor 210. Temperature humidity sensor with radiation shield 220. Pressure transmitter 230. Expansion valve 240. Liquid holder 250. Dryer Detailed Description of the Invention In this detailed description, the preferred alternatives of the air conditioning system of the invention are discussed only for a better understanding of the subject and without any limitation. It is explained in a way that does not create any impact. Figure 1 shows a representative view of the air conditioning system subject to the invention. Accordingly, the air conditioning system in its most basic form; Conditioned air blowing fan (170), which allows the greenhouse air to enter the air conditioning system through the greenhouse air intake port (10) and sent to the greenhouse through the air outlet port (180), exhaust air fan (20), which discharges the greenhouse air to the outside, and Exhaust air discharge damper (30), which throws the greenhouse air directly out in case of high temperature and/or humidity, silica gel that absorbs and collects the moisture contained in the greenhouse air entering the air conditioning system to ensure that the greenhouse air is brought to the desired humidity value in line with the need according to the type of plants in the greenhouse. impregnated desiccant drum (40), silica gel impregnated desiccant drum (40), and a burner (50) that dries the absorbed humid air by heating it in the special flame chamber (61) within the combustion mixing chamber (60) created within the air conditioning system, silica gel impregnated desiccant drum (40). While the humid air absorbed by the ) is heated by the burner (50), the regeneration air inlet port (70) ensures that clean air from the external environment is fed to the combustion mixing chamber (60) depending on the need, and the smoke chest (70) where the hot gas formed by heating in the combustion mixing chamber (60) is collected. 80), the regeneration exhaust air outlet (90), which allows the air collected in the smoke chest (80) to be discharged to the atmosphere, and the greenhouse air entering the air conditioning system to be cooler than the outdoor air in order to ensure that the greenhouse air is brought to the desired temperature and/or humidity value as needed, depending on the type of plants in the greenhouse. The compressor (100), which provides cooling of the air and reducing the humidity rate in case it is hot or when the air reaches high temperatures during the heating of the humid air sucked by the silica gel impregnated desiccant drum (40) with the burner (50), is taken from the evaporator using the refrigerant via the compressor (100). DX battery (105), which ensures that the heat is loaded into the refrigerant and discharged to the atmosphere; drip catcher (110), which retains the water in the condensed air during the operation of the compressor (100); fresh air suction damper, which ensures that the fresh air required during the operation of the compressor (100) is fed to the air conditioning system from the external environment. 1 (120), fresh air intake damper-2 (130), which ensures that the necessary fresh air is fed to the air conditioning system from the external environment only when the silica gel impregnated desiccant drum (40) or the silica gel impregnated desiccant drum (40) and the compressor (100) work together. The mixing air damper (140), which opens and closes only when the silica gel impregnated desiccant drum (40) or the silica gel impregnated desiccant drum (40) and the compressor (100) work together, the condenser (150) that cools the compressor (100) at high temperatures during the operation of the compressor (100). ), the condenser fan (160), which throws the hot gas into the atmosphere during the operation of the compressor (100), controls the temperature and/or humidity of the greenhouse air compared to the outdoor air and automatically brings the greenhouse air to the desired temperature and/or humidity value according to the type of plants in the greenhouse. Automation system (190) that brings the greenhouse air to the best climatic conditions by deciding whether only the silica gel impregnated desiccant drum (40) or only the compressor (100) or the silica gel impregnated desiccant drum (40) and the compressor (100) work together to ensure ) contains. The automation system (190), which controls the operating regime of the air conditioning system subject to the invention, controls the temperature and humidity of the greenhouse air relative to the outdoor air through sensors located in the greenhouse. The automation system (190) in question has data containing the appropriate temperature and humidity values according to the plant type in the greenhouse, and by controlling the temperature and/or humidity of the greenhouse air, it decides the operating mode of the air conditioning system through the data it has and determines the desired temperature and humidity of the greenhouse air in line with the need. or humidity value automatically. In this regard, only the silica gel impregnated desiccant drum (40) or only the compressor (100) or the silica gel impregnated desiccant drum (40) and the compressor (100) can work together in the air conditioning system. It is managed according to the automation system (). The air conditioning system automatically determines when it needs to be dehumidified by calculating the difference between the vapor pressure on the plant leaf and the vapor pressure inside the greenhouse with an algorithm in the automation system (190). The greenhouse air is positioned at the entrance of the air conditioning system. Conditioned air enters the air conditioning system from the intake port (10) through the blower fan (170) and is sent to the greenhouse through the air outlet port (180). In case the greenhouse air has a very high temperature and/or humidity compared to the outdoor air, the exhaust on the air conditioning system. The greenhouse air is directly discharged to the outside via the air discharge damper (30). The silica gel impregnated desiccant drum (40) inside the air conditioning system is activated in line with the need determined by the automation system (90) to ensure that the greenhouse air is brought to the desired humidity value. It absorbs the moisture contained in the entering greenhouse air and collects it on itself. The moisture in the air absorbed by the silica gel impregnated desiccant drum (40) is heated by the burner (50) in the special flame chamber (61) within the combustion mixing chamber (60) created within the air conditioning system, and the moist air is dried. Meanwhile, depending on the need, clean air from the external environment is fed to the combustion mixing chamber (60) through the regeneration air inlet port (70) located on the combustion mixing chamber (60). The burner (50) is managed by the automation system (190), and the specific humidity of the air passing through the desiccant drum (40) is constantly calculated by the automation system (190). This calculation starts with the first operation of the burner (50) and is followed at constantly increasing temperatures. Angry max. When the temperature of 160 degrees is reached, the most efficient temperature is determined by the automation system (190), with the influence of external weather conditions, and the system is ensured to operate at this constant temperature until the first stop. After the system is stopped due to the scenario change and the climatic conditions being met, this scenario is constantly repeated with the first study. The burner (50) has a combustion mixing chamber (60) and a special flame chamber (61) that are resistant to high temperatures. The burner (50) burns at an average temperature of 500 degrees. The reason for this is the maximum required for regeneration air. It is to provide 160 degree air continuously and quickly. There are fins adjusted at a special angle to provide turbulence at the front of the combustion mixing chamber (60). In addition, holes have been created on the circular side surface of the combustion mixing chamber (60) for temperature exit in order to ensure good mixing of the fresh air sucked into the system. The air inlet port (70) of the desiccant drum (40) has a structure that will provide sufficient flow rate. The hot gas formed by heating in the combustion mixing chamber (60) is collected in the smoke chest (80) and the air collected in the smoke chest (80) is discharged to the atmosphere through the regeneration exhaust air outlet (90) located on the smoke chest (80). The smoke chest (80) has insulation that prevents the toxic gases released during combustion from leaking into the system. In case the air reaches high temperatures during the heating of the humid air absorbed by the silica gel impregnated desiccant drum (40) with the burner (50), or if the greenhouse air entering the air conditioning system is warmer than the outdoor air in line with the need determined by the automation system (90), depending on the plant type in the greenhouse. The compressor (100) within the air conditioning system is activated to ensure that the greenhouse air is brought to the desired temperature and humidity value. The compressor (100) can work alone, depending on the need of the air conditioning system, or it can work together with the desiccant drum (40) impregnated with silica gel. The water in the condensed air during the operation of the compressor (100) is retained by the drop catcher (1 10). In order to feed the fresh air required during the operation of the compressor (100) from the external environment to the air conditioning system, a fresh air intake damper-1 (120) is placed in the area where the compressor (100) is located, on one side of the silica gel impregnated desiccant drum (40) in the air conditioning system. There is a condenser (150) on the air conditioning system to cool the compressor (100) at high temperatures during the operation of the compressor (100) and a condenser fan (160) on the air conditioning system to discharge the hot gas into the atmosphere during the operation of the compressor (100). Only when the silica gel impregnated desiccant drum (40) or the silica gel impregnated desiccant drum (40) and the compressor (100) work together, fresh air is sucked into the air conditioning system inlet side of the silica gel impregnated desiccant drum (40) in order to feed the necessary fresh air from the external environment to the air conditioning system. damper-2 (130) is placed. In the air conditioning system, depending on the operating mode determined by the automation system (190), the conditioned air obtained by working together with only the silica gel impregnated desiccant drum (40) or only the compressor (100) or the silica gel impregnated desiccant drum (40) and the compressor (100) is used in the air conditioning system. The conditioned air at the outlet is sent to the greenhouse from the outlet port (180) via the conditioned air blowing fan (170). This process is carried out through greenhouse circulation fans in the greenhouse and the conditioned air is distributed homogeneously throughout the greenhouse. The automation system (190) can be managed via remote connection. In order to manage the most efficient automation in the passage of greenhouse air through the air conditioning system, the temperature and relative humidity information of the air is given to the automation system (190) through the duct type temperature humidity sensor (200). The air conditioning system is managed by constantly calculating specific humidity in the automation system (190) with the information coming from the duct type temperature humidity sensor (200). The temperature humidity sensor (210) with radiation shielding is used to measure the temperature and relative humidity outside and inside the greenhouse. The temperature humidity sensor (210) with radiation shielding has a radiation shielding feature to prevent it from being affected by the harmful rays of the sun and the negativities of the external environment, and provides 99% accuracy in the measured values. VPD calculation of the air conditioning system is provided with the information coming from this radiation shielded temperature humidity sensor (210) in the greenhouse and a special algorithm formula derived from previous experiments with a thermal camera. Pressure transmitters (220) read gas pressure values within the cooling system. With pressure transmitters (220), it is ensured that the compressor (100) in the air conditioning system automatically determines the evaporation temperatures for the most efficient dehumidification and cooling, corresponding to the pressure in the vapor phase depending on the type of gas used in the air conditioning system. In addition, the temperature corresponding to the measured pressure determines how many and when the condenser fans (160) required to work, and how long, are required to compress the high temperature passing into the gas during cooling in the DX battery (105) through the compressor (100) and discharge it from the condenser (150) to the outside environment. . Expansion valve (230) is located before the DX battery (105). It ensures that the refrigerant gas coming from the condenser (50) is sprayed and sent to the DX battery (105). Thanks to this process, cooling is provided. The liquid holder (240) is the liquid holder tank that ensures that the gas at the liquid level, which disrupts the operation of the compressor (100), is kept in advance while the refrigerant gas is being sucked into the compressor (100). Especially in operations below 1 bar, the refrigerant gas can pass into liquid level. To prevent this, a liquid holder (240) is used. The dryer (250) prevents the deterioration of the operating efficiency of the air conditioning system by retaining the moisture in case there is even a small amount of moisture in the air conditioning system. The dryer (250) only contributes to the efficient operation of the cooling mode by keeping the moisture in the refrigerant (which is different from the greenhouse air) in the cooling installation within the air conditioning system and the pre-existing humidity in the installation. The working principle of the air conditioning system subject to the invention is as follows; The automation system (90), which has data containing appropriate temperature and humidity values according to the plant type in the greenhouse, controls the temperature and/or humidity of the greenhouse air relative to the outdoor air through sensors located in the greenhouse and ensures that the greenhouse air is automatically brought to the desired temperature and/or humidity value as needed. It decides the operating mode of the air conditioning system. If the automation system (190) operates only in cooling mode with the compressor (100), the compressor (100) and condenser fans (160) are on. Mixed air damper (140) is closed if the outdoor temperature is lower than the indoor temperature, and open if the outdoor temperature is greater than or equal to the indoor temperature. The exhaust air discharge damper (30) is open if the outdoor temperature is lower than the indoor temperature, and closed if the outdoor temperature is greater than or equal to the indoor temperature. Fresh air intake damper-2 (130) is closed. Fresh air intake damper-1 (120) is open if the outdoor temperature is lower than the indoor temperature, and closed if the outdoor temperature is greater than or equal to the indoor temperature. The silica gel impregnated desiccant drum (40), burner (50) and smoke chest (90) are closed. The conditioned air blowing fan (170), which allows the greenhouse air to enter the air conditioning system through the greenhouse air intake port (10) and to be sent to the greenhouse through the air outlet port (180), is open if the outdoor temperature is less than the indoor temperature, and open if the outdoor temperature is greater than or equal to the outdoor temperature. is closed. Air circulation fans in the greenhouse are on as long as the conditioned air blower fan (170) is on. In case the automation system (190) operates only in silica impregnated desiccant drum (40) mode; The compressor (100) and condenser fans (160) are off. The desiccant drum (40) impregnated with silica gel and the burner (50) are open. As long as the burner (50) is operating, the smoke chest (90) is open. The conditioned air blower fan (170), which allows the greenhouse air to enter the air conditioning system through the greenhouse air intake port (10) and to be sent to the greenhouse through the air outlet port (180), is open if the outdoor humidity is less than the indoor humidity, and is open if the outdoor humidity is greater than or equal to the outdoor humidity. is closed. Fresh air intake damper-2 (130) is open if the outdoor humidity is lower than the indoor humidity, and is closed if the outdoor humidity is greater than or equal to the indoor humidity. The mixed air damper (140) is closed if the outdoor humidity is lower than the indoor humidity, and is open if the outdoor humidity is greater than or equal to the indoor humidity. The exhaust air discharge damper (30) is open if the outdoor humidity is lower than the indoor humidity, and is closed if the outdoor humidity is greater than or equal to the indoor humidity. Fresh air intake damper - 1 (120) is closed. Air circulation fans in the greenhouse are on as long as the conditioned air blower fan (170) is on. In case the automation system (190) operates in silica impregnated desiccant drum (40) and compressor (100) mode; Compressor (100) and condenser fans (160) are on. The desiccant drum (40) impregnated with silica gel and the burner (50) are open. As long as the burner (50) is operating, the smoke chest (90) is open. The conditioned air blowing fan (170), which allows the greenhouse air to enter the air conditioning system through the greenhouse air intake port (10) and to be sent to the greenhouse through the air outlet port (180), is open if the outdoor temperature is less than the indoor temperature, and open if the outdoor temperature is greater than or equal to the outdoor temperature. is closed. Air circulation fans in the greenhouse are on as long as the conditioned air blower fan (170) is on. Fresh air intake damper-2 (130) is open if the outdoor temperature is lower than the indoor temperature, and closed if the outdoor temperature is greater than or equal to the outdoor temperature. Fresh air intake damper-1 (120) is closed. Mixed air damper (140) is closed if the outdoor temperature is lower than the indoor temperature, and open if the outdoor temperature is greater than or equal to the indoor temperature. The exhaust air discharge damper (30) is open if the outdoor temperature is lower than the indoor temperature, and closed if the outdoor temperature is greater than or equal to the indoor temperature. Air circulation fans in the greenhouse are on as long as the conditioned air' blower fan (170) is on.TR TR TR TR TR TR