SU966567A1 - Mixing cell for conducting flow-through measurements of electronic paramagnetic resonance of liquid samples - Google Patents

Mixing cell for conducting flow-through measurements of electronic paramagnetic resonance of liquid samples Download PDF

Info

Publication number
SU966567A1
SU966567A1 SU813229853A SU3229853A SU966567A1 SU 966567 A1 SU966567 A1 SU 966567A1 SU 813229853 A SU813229853 A SU 813229853A SU 3229853 A SU3229853 A SU 3229853A SU 966567 A1 SU966567 A1 SU 966567A1
Authority
SU
USSR - Soviet Union
Prior art keywords
measurements
liquid samples
paramagnetic resonance
mixing cell
conducting flow
Prior art date
Application number
SU813229853A
Other languages
Russian (ru)
Inventor
Юрий Викторович Богачев
Диамар Петрович Волнягин
Валерий Залманович Драпкин
Анатолий Степанович Сердюк
Original Assignee
Ленинградский Ордена Ленина Электротехнический Институт Им.В.И.Ульянова (Ленина)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ленинградский Ордена Ленина Электротехнический Институт Им.В.И.Ульянова (Ленина) filed Critical Ленинградский Ордена Ленина Электротехнический Институт Им.В.И.Ульянова (Ленина)
Priority to SU813229853A priority Critical patent/SU966567A1/en
Application granted granted Critical
Publication of SU966567A1 publication Critical patent/SU966567A1/en

Links

Description

вании короткоживущих парамагнитных продуктов реакции, т. е. врем  между началом реакции и измерением ЭПР (мертвое врем ) будет большим. Чтобы досгагнуть уменьшени  последнего, необходимо увеличить скорость потока смеси, что требует большое количество реагентов и  вл етс  серьезным ограничением при работе с редкими биомолекулами или с ферментативными реакци ми. Кроме того, дл  проведени  измерений ЭПР химических и биохимических реакций при различных температурах, необходимо термостатировать всю систему целиком, что вызовет значительный расход теплоносител  или помешать в термостат только смесительную камеру, а измерительную трубку тщательно теплоизолировать по всей ее длине. В последнем случае из-за большой прот женности измерительной трубки будеIn the case of short-lived paramagnetic reaction products, i.e., the time between the start of the reaction and the EPR (dead time) measurement will be large. In order to achieve a decrease in the latter, it is necessary to increase the flow rate of the mixture, which requires a large amount of reagents and is a serious limitation when working with rare biomolecules or with enzymatic reactions. In addition, in order to measure EPR chemical and biochemical reactions at different temperatures, it is necessary to thermostat the entire system, which will cause a significant flow of heat carrier or prevent only the mixing chamber in the thermostat, and the measuring tube should be carefully insulated along its entire length. In the latter case, due to the large length of the measuring tube,

создаватьс  градиент температур по длине трубки, т. е. точность температурных измерений ЭПР будет невысока.create a temperature gradient along the length of the tube, i.e. the accuracy of the temperature measurements of the EPR will be low.

Цель изобретени  - уменьшение габаритов  чейки и повьпиение точности изме- 25 рений путем улучшени  перемешивани  измер емой жидкости и сокращени  времени между началом реакции и измерением. Поставленна  цель достигаетс  тем, что в известную смесительную  чейку дл  проведени  проточных измерений электрон- ного парамагнитного резонанса жидких образцов , состо щую из смесительной камеры , в верхней части квторой находитс  пробка с отверсти ми дл  подачи реагентов и инертного газа, измерительной трубки и мешалки, помещенной в смесительную камеру, дополнительно введена воронка, причем раструб воронки прикреплен внутри смесительной камеры в нижней ее части к внутренней стенке смесительной камеры в нескольких точках с зазором, ножка воронки расположена коаксиально в измерительной трубке, нижн   часть измерительной трубки запа на, а верхн   часть соединена непосредственно с дном смесительной камеры. Раструб воронки, укрепленный в нескол ких точках к стенкам смесительной камеры , имеет такую форму, чтобы между стен ками воронки и смесительной камеры существовал зазор, необходимый дл  проте- каниУ1 жидкости. В смесительной камере помещаетс  также мещалка, крыльчатка которой находитс  над раструбом воронки, а ось мешалки проходит через пробку, закрывающую сверху смесительную камеру.:The purpose of the invention is to reduce the dimensions of the cell and to increase the accuracy of measurements by improving the mixing of the measured liquid and reducing the time between the start of the reaction and the measurement. This goal is achieved by the fact that in a well-known mixing cell for conducting flow measurements of the electron paramagnetic resonance of liquid samples, consisting of a mixing chamber, in the upper part of the second is a tube with reagent holes and an inert gas, measuring tube and stirrer placed a funnel is additionally inserted into the mixing chamber, and the funnel socket is attached inside the mixing chamber in its lower part to the inner wall of the mixing chamber at several points with a gap m funnel stem located coaxially in the measuring tube, the lower part of the measuring tube is sealed in, and the upper part is connected directly with the bottom of the mixing chamber. The funnel socket, fastened at several points to the walls of the mixing chamber, has such a shape that there is a gap between the walls of the funnel and the mixing chamber, which is necessary for the flow of liquid. A mixer is also placed in the mixing chamber, the impeller of which is located above the funnel mouth, and the axis of the agitator passes through the stopper covering the top of the mixing chamber .:

Claims (2)

1. Пул Ч. ТехникаЭПР-спектроскопии. М., Мир, 197О.1. Poole Ch. Technique EPR spectroscopy. M., Mir, 197O. 2.AdemaE. H.e-baee.Pec-iraw.cbew. 1961, V. 8О. p. 171 (прототип).2.AdemaE. H.e-baee.Pec-iraw.cbew. 1961, V. 8O. p. 171 (prototype). ff
SU813229853A 1981-01-05 1981-01-05 Mixing cell for conducting flow-through measurements of electronic paramagnetic resonance of liquid samples SU966567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU813229853A SU966567A1 (en) 1981-01-05 1981-01-05 Mixing cell for conducting flow-through measurements of electronic paramagnetic resonance of liquid samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU813229853A SU966567A1 (en) 1981-01-05 1981-01-05 Mixing cell for conducting flow-through measurements of electronic paramagnetic resonance of liquid samples

Publications (1)

Publication Number Publication Date
SU966567A1 true SU966567A1 (en) 1982-10-15

Family

ID=20936411

Family Applications (1)

Application Number Title Priority Date Filing Date
SU813229853A SU966567A1 (en) 1981-01-05 1981-01-05 Mixing cell for conducting flow-through measurements of electronic paramagnetic resonance of liquid samples

Country Status (1)

Country Link
SU (1) SU966567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769601A (en) * 1985-08-22 1988-09-06 Amoco Corporation Method of and apparatus for determining cement strength and extent of setting with a pulsed nuclear magnetic resonance spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769601A (en) * 1985-08-22 1988-09-06 Amoco Corporation Method of and apparatus for determining cement strength and extent of setting with a pulsed nuclear magnetic resonance spectrometer

Similar Documents

Publication Publication Date Title
JPS5473094A (en) Automatic chemical analytical apparatus
SU966567A1 (en) Mixing cell for conducting flow-through measurements of electronic paramagnetic resonance of liquid samples
JPS55129756A (en) Measurement method of catechol compound and its metabolite and its measuring unit
JPS57149950A (en) Method for determination of hydrogen peroxide
CN208568435U (en) A kind of limestone sample Quick digestion device
GB1499643A (en) Sample testing apparatus and method
LeBlanc Polarographic Determination of N, N´-Ethylenediglycine and Nitrilotriacetic Acid in (Ethylenedinitrilo)-tetracetic Acid
US3436190A (en) Device for the determination of the concentration of a chemical compound in a liquid
CN209961727U (en) Detection apparatus for on-line measuring ammonia nitrogen
ES469792A1 (en) Apparatus for the preparation of a fluid for examination in optical analytic instruments
Yamamoto et al. Method for calibration of nuclear magnetic resonance standard samples for measuring temperature
US3773469A (en) Method and apparatus for determining the amount of certain components in a substance, such as inorganic carbon and the like
US4957707A (en) Thermal hazard evaluation
JPS57207851A (en) Method and apparatus for continuous measurement of silica in water
JPS56132566A (en) Thermostat photometrical apparatus
SU1155927A1 (en) Device for measuring concentration of gas
JPS5560855A (en) Method of automatic chemical analysis
JP7461025B2 (en) Completely closed cell type mercury analyzer and completely closed cell type mercury analysis method
CN220438083U (en) Reaction vessel
RU2053507C1 (en) Method of determination of total content of organic substances in water and device for its implementation
CN212646384U (en) Portable carbonate content tester
SU851229A1 (en) Method of determination of physical chemical process kinetics in continuous flow microcalorimeter
Bardenheuer et al. Development of a Probe for Simultaneous Temperature Measurement and Sampling in Upright Converters
US3709616A (en) Measuring vessel for photometric analysis of a liquid, in which gas bubbles are developed
JPH0114931Y2 (en)