SU771185A2 - Method of diffusion siliciding of steel parts - Google Patents
Method of diffusion siliciding of steel parts Download PDFInfo
- Publication number
- SU771185A2 SU771185A2 SU2473946A SU2473946A SU771185A2 SU 771185 A2 SU771185 A2 SU 771185A2 SU 2473946 A SU2473946 A SU 2473946A SU 2473946 A SU2473946 A SU 2473946A SU 771185 A2 SU771185 A2 SU 771185A2
- Authority
- SU
- USSR - Soviet Union
- Prior art keywords
- base
- layer
- diffusion
- products
- samples
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/36—Embedding in a powder mixture, i.e. pack cementation only one element being diffused
- C23C10/44—Siliconising
- C23C10/46—Siliconising of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
Изобретение относится к химикотермической обработке готовых металлических изделий и может быть исполь зовано в различных областях машиностроения для улучшения качеств изде- 5 лий, подвергающихся износу и коррозии.The invention relates to chemothermal processing of finished metal products and can be used in various fields of mechanical engineering to improve the quality of products subjected to wear and corrosion.
По основному авт.св. № 678083 известен способ диффузионного силицирования стальных изделий в.порОш- Ю кообразной смеси при 650-720°С наложением ультразвуковых колебаний [1}.By main auto No. 678083, there is a known method of diffusion silicification of steel products of a porous porous mixture at 650–720 ° С by applying ultrasonic vibrations [1}.
Целью изобретения является повышение интенсификации процесса, улучшение сцепления диффузионного слоя с 15 основой и уменьшение остаточных напряжений в слое.The aim of the invention is to increase the intensification of the process, improving the adhesion of the diffusion layer to the 15th base and reducing residual stresses in the layer.
Для достижения поставленной цели по предлагаемому способу изделия устанавливают по плотной посадке в оправ-20 ку из материала с коэффициентом термического расширения ниже, чем у материала изделия, оставляя открытой обрабатываемую поверхность.To achieve the goal of the proposed method, the products are installed in a tight fit in a frame of 20 from a material with a thermal expansion coefficient lower than that of the material of the product, leaving the surface to be treated open.
В результате выполнения указанных 25 действий при нагревании в процессе химико-термической обработки открытая силицируемая поверхность изделий испытывает напряжения сжатия, возрастающие с увеличением·, .температуры, ббра-30 ' ' эующиеся на ней при этом дислокационные скопления интенсифицируют процесс диффузии. Кремний проникает в основу узкими языками, образуя гребенчатую границу слоя, вследствие чего улучшается сцепление его с основой. Постепенное снятие нагрузки по мере охлаждения способствуечг релаксации остаточных напряжений.As a result of performing the indicated 25 actions during heating during the chemical-thermal treatment, the exposed siliconized surface of the products experiences compression stresses that increase with increasing temperature. Silicon penetrates into the base with narrow tongues, forming a crested boundary of the layer, as a result of which its adhesion to the base is improved. Gradual removal of the load as the cooling promoting h g relaxation of residual stresses.
Пример. Испытания процесса проводят на образцах из стали СтЗ, имеющих цилиндрическую форму, высотой 100 мм и диаметром 20 мм. Испытания проводят в смеси, содержащей (вес.%) 80 ферросилиция, 12 хлористого аммония и 8 окиси алюминия, в негерметичном контейнере при 700°С в течение 4 ч. Ультразвуковые колебания генерируют генератором типа УЗГ-2,5 Ас частотой 20-22 кГц и подают на образцы через преобразователь скорости конической формы. В первом случае колебания подают непосредственно на образцы, а во втором образцы устанавливают по плотной посадке в раму из меди размером 17СХ х170 мм, толщиной 25 мм, имеющую квадратное окно 100x100 мм (в которое и устанавливают 2 образца на расстоя нии 2о мм друг от друга и от стенок окна), и колебания подают на рамку.Example. Testing of the process is carried out on samples of steel STZ having a cylindrical shape, a height of 100 mm and a diameter of 20 mm. The tests are carried out in a mixture containing (wt.%) 80 ferrosilicon, 12 ammonium chloride and 8 alumina, in an unpressurized container at 700 ° C for 4 hours. Ultrasonic vibrations are generated by a generator of the UZG-2.5 A type with a frequency of 20-22 kHz and fed to the samples through a conical shape speed transducer. In the first case, vibrations are fed directly to the samples, and in the second, the samples are mounted tightly in a copper frame measuring 17СХ х170 mm, 25 mm thick, having a square window of 100x100 mm (into which 2 samples are installed at a distance of 2 mm from each other and from the walls of the window), and vibrations are fed into the frame.
Исследование структуры микрошлифов показало, что при обработке по известному способу на образцах* получен силицированный слой толщиной до 0,25 мм, имеющий гладкую границу с основой. При обработке по предложенному способу толщина слоя составляет до 0,25 мм и при этом граница с основой имеет форму гребешка, входящими в основу на глубину до 0,6-0,7 мм. Рентгенограммы обоих типов образцов показывают, что остаточные напряжения во втором случае в 1,2-1,4 раза меньше, чем в первом.The study of the structure of microsections showed that when processing according to the known method on samples * obtained a siliconized layer with a thickness of up to 0.25 mm, having a smooth border with the base. When processing according to the proposed method, the layer thickness is up to 0.25 mm and the border with the base has the shape of a comb, which is included in the base to a depth of 0.6-0.7 mm. X-ray diffraction patterns of both types of samples show that the residual stresses in the second case are 1.2–1.4 times less than in the first.
Предложенный способ позволяет улучшить качество наносимого слоя и увеличить количество обрабатываемых одновременно изделий за счет подачи колебаний на рамку.The proposed method allows to improve the quality of the applied layer and increase the number of products processed simultaneously by supplying vibrations to the frame.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU2473946A SU771185A2 (en) | 1977-04-06 | 1977-04-06 | Method of diffusion siliciding of steel parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU2473946A SU771185A2 (en) | 1977-04-06 | 1977-04-06 | Method of diffusion siliciding of steel parts |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU678083 Addition |
Publications (1)
Publication Number | Publication Date |
---|---|
SU771185A2 true SU771185A2 (en) | 1980-10-15 |
Family
ID=20704108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU2473946A SU771185A2 (en) | 1977-04-06 | 1977-04-06 | Method of diffusion siliciding of steel parts |
Country Status (1)
Country | Link |
---|---|
SU (1) | SU771185A2 (en) |
-
1977
- 1977-04-06 SU SU2473946A patent/SU771185A2/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4537793A (en) | Method for generating hard, wear-proof surface layers on a metallic material | |
SU771185A2 (en) | Method of diffusion siliciding of steel parts | |
Shuji et al. | Study of fatigue crack propagation by X-ray diffraction approach | |
US2920988A (en) | Process for ultrasonic quenching of steel articles | |
SU633929A1 (en) | Method of chemical and heat treatment of metals and alloys | |
SU1425223A1 (en) | Method of hardening articles | |
SU726186A2 (en) | Method of steel article tempering | |
SU1234440A1 (en) | Method of heat treatment of high-carbon alloyed steels | |
SU576351A1 (en) | Method of nitriding steel components | |
SU588259A1 (en) | Method of chemical and heat treatment of components | |
SU956619A1 (en) | Process for chemical and heat treatment of products from iron and its alloys | |
SU870485A1 (en) | Activator for solid-phase carburization | |
SU1548219A1 (en) | Method of thermal strengthening of steel articles | |
RU2025505C1 (en) | Method to treat items of metals and alloys | |
SU661211A2 (en) | Method of determining internal stresses in wood in process of drying | |
SU802395A1 (en) | Method of aluminizing preferably nonmetallic articles | |
JP2002146434A (en) | Heat treating method | |
RU1767886C (en) | Steel pieces hardening method | |
SU806777A1 (en) | Method of thermal treatment of ferrocarbon alloys | |
US996558A (en) | Method of making armor-plate. | |
SU834235A1 (en) | Method of chemical and thermal treatment of metal articles in electrolytes | |
SU808551A1 (en) | Method of diffusion saturation of article surface | |
SU908851A1 (en) | Method for surface heat treatment of products | |
RU2009272C1 (en) | Method for hardening steel products | |
US928412A (en) | Method of treating armor-plates. |