SU658455A1 - Device for measuring thermophysical properties of pulverulent materials in vacuum - Google Patents

Device for measuring thermophysical properties of pulverulent materials in vacuum

Info

Publication number
SU658455A1
SU658455A1 SU772517107A SU2517107A SU658455A1 SU 658455 A1 SU658455 A1 SU 658455A1 SU 772517107 A SU772517107 A SU 772517107A SU 2517107 A SU2517107 A SU 2517107A SU 658455 A1 SU658455 A1 SU 658455A1
Authority
SU
USSR - Soviet Union
Prior art keywords
vacuum
thermophysical properties
pulverulent materials
materials
measuring thermophysical
Prior art date
Application number
SU772517107A
Other languages
Russian (ru)
Inventor
Борис Давидович Маранц
Анатолий Иванович Воробьев
Original Assignee
Предприятие П/Я А-7354
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Предприятие П/Я А-7354 filed Critical Предприятие П/Я А-7354
Priority to SU772517107A priority Critical patent/SU658455A1/en
Application granted granted Critical
Publication of SU658455A1 publication Critical patent/SU658455A1/en

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

1one

Изобретение относитс  к области измерений , а именно, к области измерени  тешюфизических свойств материалов.The invention relates to the field of measurement, namely, to the field of measuring the cushioning properties of materials.

Дл  измерени  теплофизических свойств материалов , таких как температуропроводность или теплопроводность известны устройства, включающие в себ  блок нагрева и блок охлаждени , которые обеспечивают прохождение теплового потока между ними через образец исследуемого материала 1 .To measure the thermophysical properties of materials, such as thermal diffusivity or thermal conductivity, devices are known, including a heating unit and a cooling unit, which allow the heat flow between them to pass through a sample of the material under study 1.

В случае испытани  в вакууме дисперсных материалов , например порошков и других сыпучих материалов, более удобным  вл етс  устройство, содержащее герметичную камеру, нагреватель, две оболочки, предназначенные дл  ограничени  пространства, заполн емого исследуемым материалом , измерители температуры 2 .In the case of testing dispersed materials in vacuum, for example, powders and other bulk materials, it is more convenient to have a device containing a sealed chamber, a heater, two shells designed to limit the space filled by the material under study, temperature meters 2.

Недостатком известных устройств  вл етс  погрешность вследствие наличи  градиента давлени  вдоль сло  испытуемого материала. Из-за разного давлени  остаточных газов в различных участках пробы измен ютс  и услови  теплопередачи , результаты испытаний остаютс  неопределенными .A disadvantage of the known devices is the error due to the presence of a pressure gradient along the layer of the test material. Due to the different pressure of the residual gases in different parts of the sample, the heat transfer conditions change and the test results remain uncertain.

В случае испытани  порошка со срединм диаметром частиц 115 мкм при размещении испытуемого материала между коаксиальными цилиндрическими оболочками высотой 160 мм, диаметрами пор дка 60 мм, при откачке воздуха из порошка через верхний торец засыпки при давлении на верхнем торце 5-10 мм рт. ст. под нижним торцом оно составл ло 1 - 2 мм рт, ст.In the case of testing a powder with a median particle diameter of 115 µm when placing the test material between coaxial cylindrical shells 160 mm high, diameters of about 60 mm, when air is pumped out of the powder through the upper end of the filling at a pressure at the upper end 5-10 mm Hg Art. under the lower end, it was 1–2 mm Hg, Art.

Цель изобретени  - повысить точность за счет устранени  градиента давлени  вдоль сло  испытуемого материала.The purpose of the invention is to improve accuracy by eliminating the pressure gradient along the layer of the test material.

Это достигаетс  тем, что, по крайней мере одна из упом нутых оболочек выполнена из газопроницаемого материала.This is achieved in that at least one of the said shells is made of a gas-permeable material.

Taicoe техническое решение Практически полностью устран ет продольные градиенты давлений Незначительный перепад давлени  может возникнуть лишь по толщине дисперсного сло .Taicoe technical solution Almost completely eliminates longitudinal pressure gradients. A slight pressure drop can occur only through the thickness of the dispersed layer.

На чертеже схематично показано устройство.The drawing schematically shows the device.

В водоохлаждаемой герметичной камере 1 на теплоизолирующей подставке 2 внутри экрана 3 смонтирован нагреватель 4, а внутри него оболочки 5 и 6. Между оболочками размещаетс  объект исследовани  7. Измерител ми температуры  вл ютс  термопары 8 и 9. Оболочка 6 выполнена из газопроницаемого материала (фольги, полученной из прессованного порошка меди или железа).In the water-cooled sealed chamber 1 on the heat-insulating stand 2 inside the screen 3 is mounted a heater 4, and inside it are shells 5 and 6. The object under study 7 is placed between the shells. The temperature meters are thermocouples 8 and 9. Sheath 6 obtained from extruded copper or iron powder).

Использование устройстеа позвол ет существенно повысить точность измерений коэффициента температуропроводности дисперсных материалов , например, в режиме монотонного нагрева, и особенно материалов, выдел ющих при нагреве значительное количество газообразных продуктов.The use of the device allows us to significantly improve the accuracy of measurements of the thermal diffusivity of dispersed materials, for example, in the monotonic heating mode, and especially materials emitting a significant amount of gaseous products during heating.

Claims (2)

1.Васильева Л.Л. и Танаева G. А. Теппофизические свойства пористых материалов. Минск,1.Vasilyeva L.L. and Tanaeva G. A. Thermophysical properties of porous materials. Minsk, 1971.1971. 2.Харламов А. Г. Инженерно-физический журнал , 1965, т. 9, № I. с. 48-53.2. Kharlamov A. G. Engineering Physics Magazine, 1965, Vol. 9, No. I. p. 48-53. лl J ЛJl
SU772517107A 1977-08-09 1977-08-09 Device for measuring thermophysical properties of pulverulent materials in vacuum SU658455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU772517107A SU658455A1 (en) 1977-08-09 1977-08-09 Device for measuring thermophysical properties of pulverulent materials in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU772517107A SU658455A1 (en) 1977-08-09 1977-08-09 Device for measuring thermophysical properties of pulverulent materials in vacuum

Publications (1)

Publication Number Publication Date
SU658455A1 true SU658455A1 (en) 1979-04-25

Family

ID=20721937

Family Applications (1)

Application Number Title Priority Date Filing Date
SU772517107A SU658455A1 (en) 1977-08-09 1977-08-09 Device for measuring thermophysical properties of pulverulent materials in vacuum

Country Status (1)

Country Link
SU (1) SU658455A1 (en)

Similar Documents

Publication Publication Date Title
US3456490A (en) Differential thermal analysis
CN109540960A (en) A kind of device and method for measurement of species specific heat capacity and latent heat of phase change
JPH06207913A (en) Calorimeter for measuring time/temperature of thermosetting synthetic resin
Ambrose The vapour pressures and critical temperatures of acetylene and carbon dioxide
US2475138A (en) Device for measuring thermal conductivity
Kay Vapor pressures and saturated liquid and vapor densities of cyclopentane, methylcyclopentane, ethylcyclopentane and methylcyclohexane
SU658455A1 (en) Device for measuring thermophysical properties of pulverulent materials in vacuum
Mogollon et al. Modified sealed-tube method for the determination of critical temperature
Quadri et al. Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols
Murata et al. Construction and testing of a sublimation calorimetric system using a Calvet microcalorimeter
Morrison et al. The measurement of the thermal properties of gases and vapours adsorbed on solid surfaces
Goodkin et al. Calorimetric Assembly for the Measurement of Heats of Fusion of Inorganic Compounds
Stoukatch et al. Thermal conductivity characterization of an in-house formulated thermal insulating xerogel-epoxy composite adhesive for electronics applications
SU779870A1 (en) Device for measuring heat conductance
Cooper Precision Measurements of the Enthalpy of KBr and KI at High Temperatures
RU2162596C2 (en) Method measuring density
Freud et al. Method for measuring pressure dependence of thermal conductivity of gases
SU626619A1 (en) Device for differential thermal analysis at high temperatures
Tsvetkov Use of the regular regime for the investigation of the thermal conductivity of liquid freons
SU1384955A1 (en) Apparatus for determining sample volume
SU443293A1 (en) Device for complex determination of thermophysical properties of materials with high thermal conductivity
SU640188A1 (en) Method of measuring foamed material linear expansion coefficient
Le Parlouer Selection of an optimum calorimetry method for measuring specific heat of ceramics at high temperature
Greene-Kelly et al. A micro-calorimeter for clay mineral studies
Stow et al. Adiabatic Calorimeter