SU638815A1 - Method of separation in vortex pipe - Google Patents

Method of separation in vortex pipe

Info

Publication number
SU638815A1
SU638815A1 SU772512673A SU2512672A SU638815A1 SU 638815 A1 SU638815 A1 SU 638815A1 SU 772512673 A SU772512673 A SU 772512673A SU 2512672 A SU2512672 A SU 2512672A SU 638815 A1 SU638815 A1 SU 638815A1
Authority
SU
USSR - Soviet Union
Prior art keywords
separation
vortex pipe
separation chamber
vortex tube
air
Prior art date
Application number
SU772512673A
Other languages
Russian (ru)
Inventor
Валентин Григорьевич Воронин
Сергей Васильевич Иванов
Александр Дмитриевич Суслов
Юрий Владимирович Чижиков
Original Assignee
Предприятие П/Я А-1665
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Предприятие П/Я А-1665 filed Critical Предприятие П/Я А-1665
Priority to SU772512673A priority Critical patent/SU638815A1/en
Application granted granted Critical
Publication of SU638815A1 publication Critical patent/SU638815A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Изобретение относитс  к холодильной технике , а точнее к способам разделени  воздуха в вихревой трубе. Известны способы разделени  воздуха в вихревой трубе, имеющей сопловой ввод и камеру энергетического разделени , путем предварительного охлаждени  воздуха, последующей подачи одной его части в сопловой ввод дл  образовани  холодного и нагре того потоков, а второй части - в камеру энергетического разделени  со стороны выхода нагретого потока 1). Однако этими способами нельз  получать в холодном потоке чистый азот, а в нагретом - чистый кислород. Дл  получени  в холодном потоке чистого азота а в нагретом - чистого кислорода в процессе предварительного охлаждени  воздух довод т до влажного состо ни  и после его разделени  из второй части отдел ют полученную жидкость, переохлаждают последнюю холодным потоком до температуры , на 2-5°С превышающей температуру этого же потока, и в камеру энергетического разделени  подают эту переохлажденную жидкость, а оставшийс  после отделени  жндкостн осушенный воздух смешивают с первой частью перед ее подачей в сопловой ввод. На фиг. 1 показана установка дл  осуществлени  предлагаемого способа (переохлажденна  жидкость подаетс  в камеру энергетического разделени  по оси вихревой трубы); на фиг. 2 - то же, но переохлажден на  жидкость подаетс  в камеру энергетического разделени  тангенциально; на фиг. 3 показана та же установка в положении, когда жидкость переохлаждаетс  холодным потоком внутри камеры энергетического разделени , после чего подаетс  по оси вихревой трубы. Предлагаемый способ осуществл етс  следующим образом. Охлажденный до влажного состо ни  воздух раздел ют на две частн, одну из которых подают по линии 1 в отделитель 2 жидкости , а вторую - в сопловой ввод 3 вихревой трубы дл  образовани  в камере 4 энергетического разделени  холодного и подогретого потоков. Холодный поток, содержащий чистый азот, направл ют через диафрагму 5 и теплообменник 6 к потребителю. а подогретый поток, содержащий чистый кислород, через патрубок 7 такжг напраThe invention relates to refrigeration, and more specifically to methods for separating air in a vortex tube. Methods are known for separating air in a vortex tube having a nozzle entry and an energy separation chamber by pre-cooling the air, then feeding one part of it into the nozzle input to form cold and heated flows, and the second part entering the energy separation chamber from the exit side of the heated flow one). However, these methods cannot produce pure nitrogen in a cold stream, and pure oxygen in a heated stream. To obtain pure nitrogen in the cold stream and pure oxygen in the pre-cooling process, the air is brought to the wet state and, after its separation, the resulting liquid is separated from the second part, supercooled the latter with a cold stream to a temperature 2-5 ° C higher than the temperature of the same flow, and this supercooled liquid is supplied to the energy separation chamber, and the dried air remaining after separation is mixed with the first part before it is fed to the nozzle entry. FIG. Figure 1 shows an installation for carrying out the proposed method (the supercooled liquid is supplied to the energy separation chamber along the axis of the vortex tube); in fig. 2 - the same, but supercooled liquid is supplied tangentially into the energy separation chamber; in fig. Figure 3 shows the same installation in the position where the liquid is supercooled with a cold stream inside the energy separation chamber, after which it is fed along the axis of the vortex tube. The proposed method is carried out as follows. The air cooled to the wet state is divided into two parts, one of which is fed through line 1 to the liquid separator 2, and the second to the nozzle inlet 3 of the vortex tube to form cold and heated flows in the chamber 4. A cold stream containing pure nitrogen is directed through diaphragm 5 and heat exchanger 6 to the consumer. and the preheated stream containing pure oxygen through pipe 7 is also directed to

SU772512673A 1977-08-02 1977-08-02 Method of separation in vortex pipe SU638815A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU772512673A SU638815A1 (en) 1977-08-02 1977-08-02 Method of separation in vortex pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU772512673A SU638815A1 (en) 1977-08-02 1977-08-02 Method of separation in vortex pipe

Publications (1)

Publication Number Publication Date
SU638815A1 true SU638815A1 (en) 1978-12-27

Family

ID=20720088

Family Applications (1)

Application Number Title Priority Date Filing Date
SU772512673A SU638815A1 (en) 1977-08-02 1977-08-02 Method of separation in vortex pipe

Country Status (1)

Country Link
SU (1) SU638815A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982001242A1 (en) * 1980-09-25 1982-04-15 A Suslov Method and installation for obtaining nitrogen and oxygen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982001242A1 (en) * 1980-09-25 1982-04-15 A Suslov Method and installation for obtaining nitrogen and oxygen
US4531371A (en) * 1980-09-25 1985-07-30 Voronin Grigory I Process and apparatus for producing nitrogen and oxygen

Similar Documents

Publication Publication Date Title
GB1311249A (en) Process for separating carbon dioxide and hydrogen
JPS625268B2 (en)
SU638815A1 (en) Method of separation in vortex pipe
US2861431A (en) Expanding gas in a plurality of vortex tubes
US4298359A (en) Centrifugal separator having heat transfer means
US3170007A (en) Apparatus for cleaning dust-laden gases
SU721644A1 (en) Vortex-type energy separator
GB1212088A (en) Method of, and a discontinuously operating sublimation condenser for the recovery by desublimation of a reaction product from a gas-vapour mixture
SU1150040A1 (en) Apparatus for cleaning gas
SU1559200A1 (en) Method of conditioning mine air
SU806999A1 (en) Vortex pipe
JPS52147355A (en) Direct fired absorption type high temperature
SU1620787A1 (en) System of optimized control of second-order objects
US3645513A (en) Method and device for thermically treating fine-grained materials suspended in a hot gas stream
SU1611366A1 (en) Sublimation-desublimation still
SU517756A1 (en) Vortex power separator and how it works
SU769232A1 (en) Vortex tube operating method
SU802739A1 (en) Vortex pipe
SU1002745A1 (en) Heating radiatorcontact-type water heater
US2870611A (en) Process for cooling a gas
JPS55102452A (en) High temperature gas treatment device
JPS57187151A (en) Cooler for continuously cast ingot
SU542897A1 (en) Installation for low-temperature processing of natural gas
SU1364354A2 (en) Method of desublimination of products of organic synthesis
SU1250778A2 (en) Arrangement for thermochemical treatment of finely disintegrated mineral raw material