SU402425A1 - Method of producing fine-dispersed cobalt alloy powder with rare-earth metals - Google Patents
Method of producing fine-dispersed cobalt alloy powder with rare-earth metalsInfo
- Publication number
- SU402425A1 SU402425A1 SU1724500A SU1724500A SU402425A1 SU 402425 A1 SU402425 A1 SU 402425A1 SU 1724500 A SU1724500 A SU 1724500A SU 1724500 A SU1724500 A SU 1724500A SU 402425 A1 SU402425 A1 SU 402425A1
- Authority
- SU
- USSR - Soviet Union
- Prior art keywords
- rare
- earth metals
- alloy powder
- cobalt alloy
- producing fine
- Prior art date
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
1one
Изобретение относитс к производству порошков сплава па основе кобальта дл посто нных магнитов.The invention relates to the production of cobalt-based alloy powders for permanent magnets.
Известен способ получени мелкодисперсных порошков сплава кобальта с редкоземельными металлами электролизом, заключаюпдийс в том, что электролиз осуш,ествл ют из раствора солей компонентов сплава в органической жидкости, например раствора солей в ацетоне или спиртах.A known method for producing finely dispersed powders of a cobalt alloy with rare earth metals by electrolysis, concludes that electrolysis is dried out from a solution of salts of the components of the alloy in an organic liquid, for example a solution of salts in acetone or alcohols.
Предложенный способ отличаетс от известного тем, что, с целью повышени выхода редкоземельных металлов в сплав и упрош,ени технологического процесса, электролиз ведут из раствора солей в органической жидкости , образующей комплексные соединенил с кобальтом, панример в моноэтаноламине.The proposed method differs from the well-known in that, in order to increase the yield of rare-earth metals in the alloy and simplify the technological process, electrolysis is carried out from a solution of salts in the organic liquid, forming a complex combined with cobalt, a panrimer in monoethanolamine.
При осун1,ествле11ии способа процесс электролиза ведут из раствора хлористых солей кобальта и самари с содержанием их соответственно 23 и 10 г/л в 99%-ном моноэтаноламине . Присутствие небольшого количества воды повышает его электропроводность; при этом прочность образующихс аквакомплексов кобальта достаточна, чтобы водород не выдел лс . Процесс осу1дествл ют на неподвижном титановом катоде с использованием кобальтового анода при плотности тока 1,5- 2,0 а/дм, напр женни 30-45 в и темнературе электролита 20-30°С. Способность кобальтаAt the start of the process, the electrolysis process is carried out from a solution of cobalt and samarium chloride salts with a content of 23 and 10 g / l in 99% monoethanolamine, respectively. The presence of a small amount of water increases its electrical conductivity; however, the strength of the cobalt aquacomplexes formed is sufficient so that hydrogen is not released. The process is implemented on a stationary titanium cathode using a cobalt anode at a current density of 1.5-2.0 a / dm, a voltage of 30-45 V and an electrolyte temperature of 20-30 ° C. Cobalt ability
образовывать с моноэтаноламином внутрикомнлексные соединени способствует затруднению разр да ионов кобальта и соответственно сдвигу потенциала разр да в электроотрицательную сторону. Последнее дает возможность получать относительно высокое содержание редкоземельных металлов - самари -в сплаве при относительно низкой плотностн тока.to form intracomplex compounds with monoethanolamine makes it difficult to discharge cobalt ions and, accordingly, to shift the discharge potential in the electronegative direction. The latter makes it possible to obtain a relatively high content of rare-earth metals — samarium — in the alloy at a relatively low current density.
При соблюдении указанного режима получают порошок сплава с содержанием самари в нем 3-5 вес. %; нри плотности тока на катоде 2,5-3 а/дм- содержание самари в сплаве составл ет до 6,5-8 вес. %.If this mode is observed, alloy powder is obtained with the content of samarium in it 3-5 weight. %; At a cathode current density of 2.5-3 A / dm, the content of samarium in the alloy is up to 6.5-8 wt. %
Применение моноэтаноламина в качестве растворител исключает необходимость введени поверхностно-активного вещества, поскольку его диспергируюша способность достаточна дл образовани мелкодисперсного порошка сплава.The use of monoethanolamine as a solvent eliminates the need for the introduction of a surfactant, since its dispersing ability is sufficient to form a fine alloy powder.
Регулирование содержани компонентов в сплаве осуществл ют изменением константы устойчивости комплекса кобальта, плотности тока и температуры электролита.The content of the components in the alloy is controlled by varying the stability constant of the cobalt complex, the current density and the temperature of the electrolyte.
Предмет изобретени Subject invention
1. Способ получени мелкодисперсных порошков сплава кобальта с редкоземельными 30 металлами электролизом из раствора солей1. The method of obtaining fine powders of a cobalt alloy with rare-earth 30 metals by electrolysis from a solution of salts
- 402425- 402425
3434
компонентов сплава в органической жидко-ческой жидкости, образующей комплексныеalloy components in an organic liquid liquid forming complex
сти, отличающийс тем, что, с целью повыше-соединени с кобальтом.characterized in that, for the purpose of higher bonding with cobalt.
ни выхода редкоземельных металлов в спла-2. Способ по п. 1, отличающийс тем, что ве и упрощени технологического процесса,электролиз ведут из раствора солей в моноэлектролиз ведут из раствора солей в органи-5 этаноламине.nor the release of rare earth metals into alloy 2. A method according to claim 1, characterized in that, in order to simplify the technological process, electrolysis is carried out from a salt solution and mono-electrolysis is carried out from a solution of salts in organo-5 ethanolamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU1724500A SU402425A1 (en) | 1971-12-13 | 1971-12-13 | Method of producing fine-dispersed cobalt alloy powder with rare-earth metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU1724500A SU402425A1 (en) | 1971-12-13 | 1971-12-13 | Method of producing fine-dispersed cobalt alloy powder with rare-earth metals |
Publications (1)
Publication Number | Publication Date |
---|---|
SU402425A1 true SU402425A1 (en) | 1973-10-19 |
Family
ID=20496084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU1724500A SU402425A1 (en) | 1971-12-13 | 1971-12-13 | Method of producing fine-dispersed cobalt alloy powder with rare-earth metals |
Country Status (1)
Country | Link |
---|---|
SU (1) | SU402425A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102677124A (en) * | 2012-06-07 | 2012-09-19 | 河北工业大学 | Preparation method of photocatalytic film with energy storage function |
CN110760884A (en) * | 2019-11-06 | 2020-02-07 | 南通冠达粉末冶金有限公司 | Preparation process of powder metallurgy auxiliary material |
-
1971
- 1971-12-13 SU SU1724500A patent/SU402425A1/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102677124A (en) * | 2012-06-07 | 2012-09-19 | 河北工业大学 | Preparation method of photocatalytic film with energy storage function |
CN102677124B (en) * | 2012-06-07 | 2014-09-03 | 河北工业大学 | Preparation method of photocatalytic film with energy storage function |
CN110760884A (en) * | 2019-11-06 | 2020-02-07 | 南通冠达粉末冶金有限公司 | Preparation process of powder metallurgy auxiliary material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nohira et al. | Electrochemical formation of RE-Ni (RE= Pr, Nd, Dy) alloys in molten halides | |
RU2233794C1 (en) | Method of production of cellular graphite and cellular graphite produced by this method | |
SU402425A1 (en) | Method of producing fine-dispersed cobalt alloy powder with rare-earth metals | |
Bouzek et al. | The study of electrochemical preparation of ferrate (VI) using alternating current superimposed on the direct current. Frequency dependence of current yields | |
Baranowski et al. | A galvanostatic and potentiostatic study of the nickel-hydrogen system | |
US3400056A (en) | Electrolytic process for preparing electrochemically active cadmium | |
RU2469111C1 (en) | Method of producing copper powder from copper-containing ammoniate wastes | |
Kasatkin et al. | Kinetics and mechanism of low-temperature electrochemical oxidation at high anode potentials | |
US1466126A (en) | Electrolytic refining or depositing of tin | |
González et al. | Transition between two dendritic growth mechanisms in electrodeposition | |
US3316159A (en) | Process for making a high surface area electrode | |
GB1199038A (en) | Improvements in process for Nickeliding, Cobaltiding and Ironiding Base Metal Compositions | |
US3033908A (en) | Production of lead dioxide | |
SU384940A1 (en) | METHOD OF OBTAINING SMALL-DISPERSED FERROMAGNETIC ALLOYS BASED ON IRON AND COBALT WITH RARE-EARTH METALS | |
GB907264A (en) | Improvements in or relating to electrolytic treatment of metals more particularly aluminium for increasing the effective surface | |
US1252654A (en) | Electrodeposition of metals. | |
SU380742A1 (en) | Method for Simultaneous Production of Manganese and Manganese Dioxide by Electrolysis | |
Nanda et al. | Production of copper powder by electrodeposition with different equilibrium crystal shape | |
US2796394A (en) | Separating and recovering nonferrous alloys from ferrous materials coated therewith | |
JPH0336910B2 (en) | ||
SU406956A1 (en) | METHOD OF OBTAINING LEAD CONTAINING POWDER | |
US2770589A (en) | Electrolytic production of alkali salts | |
SU579346A1 (en) | Method of obtaining hydroxides of transition elements | |
GB1199027A (en) | Improvements in process for Titaniding Base Metals | |
US3453191A (en) | Electrolytic process of making diacetone 2-keto gulonic acid |