JPH0336910B2 - - Google Patents

Info

Publication number
JPH0336910B2
JPH0336910B2 JP61012565A JP1256586A JPH0336910B2 JP H0336910 B2 JPH0336910 B2 JP H0336910B2 JP 61012565 A JP61012565 A JP 61012565A JP 1256586 A JP1256586 A JP 1256586A JP H0336910 B2 JPH0336910 B2 JP H0336910B2
Authority
JP
Japan
Prior art keywords
gas
electrolysis
emd
electrolytic
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61012565A
Other languages
Japanese (ja)
Other versions
JPS62170492A (en
Inventor
Masayuki Yoshio
Hideyuki Noguchi
Shigehiro Iwanaga
Hidenori Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP61012565A priority Critical patent/JPS62170492A/en
Publication of JPS62170492A publication Critical patent/JPS62170492A/en
Publication of JPH0336910B2 publication Critical patent/JPH0336910B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解二酸マンガンの製造法に関するも
ので、特に乾電池特性の優れた電解二酸化マンガ
ンの製造法に関するものである。 〔従来の技術〕 周知の如く電解二酸化マンガン(以下EMDと
いう)は、硫酸マンガン−硫酸溶液を電解液とし
て電解製造するものであるが、その結晶形態はγ
−MnO2であることが知られている。 また、EMDの電解製造法として電解液にマン
ガン酸化物を懸濁させて電解する方法、所謂スラ
リー法も知られている(特公昭57−10187号公報、
同57−42711号公報、同58−46548号公報、同59−
1793号公報、同59−5672号公報及び同59−33544
号公報参照)。 前記公知のスラリー法は何れも本願出願人の提
案に係るものであり、γ−MnO2のEMDを能率
的、かつ、経済的に生産する方法である。 しかし、陽極にチタニウム電極を用いて電解す
る場合、電解によつて生ずる発生期の酸素によつ
てチタニウム電極表面が酸化されて所謂不動態化
を生じて電解電圧が上昇し、電力消費量が多くな
るとか、長期間の電解が不可能になる等の欠点が
ある。 〔本発明が解決しようとする問題点〕 本発明は、スラリー法による電解に於ける陽極
の不動態化を防止し、長期間連続して安定な操作
ができ、しかも従来のEMDに比較して乾電池特
性の優れたEMDを製造する方法を提供すること
にある。 〔問題点を解決するための手段〕 本発明は、硫酸マンガン−硫酸溶液にマンガン
酸化物を懸濁させてEMDを製造するに当り、電
解槽内にN2、O2、H2又はアセチレン(C2H2)等
のガスを導入しつゝ電解する方法である。 〔作用、効果〕 本発明は以上の如き構成のものからなり、陽極
にチタニウム電極、陰極に黒鉛板を使用する。ま
た、N2ガス等の導入は電解槽底部から電極板間
に均一に導入する。この場合電解槽に導入するガ
スは、窒素ガスのほかO2、H2又はC2H2等のガス
を使用できる。 第1図はスラリー法における電解時間と陽極電
位との関係を示したものである。尚、陽極電位は
硫酸第一水銀に照合させて測定したものである。
また、この場合の電解条件は、陽極にチタニウム
電極(50×20×1mm)、陰極に黒鉛を使用し、電
解液量は2、その組成は1M−MnSO4、0.4M
−H2SO4であり、マンガン酸化物は市販EMD(粒
径4.5μm)を0.2g/(電解液)懸濁させたも
のを使用し、電流密度15mA/cm2、電解浴温度95
±1℃に保持する。 また、ガス導入量は、電解液2に対し30〜40
ml/分で導入する。 第1図から明らかなように、N2ガスを導入し
つゝ電解した場合及びN2ガスなしの場合の何れ
も電解初期には陽極電位の変化が見られるが、電
解後期には何れも一定である。しかもN2ガスを
導入した場合には陽極電位は低電位出安定してい
る。 このことからN2ガスを導入した場合には陽極
のチタニウム電極の不動態化が防止でき、従つて
高電流で、かつ低い電圧で長期間安定操業が可能
である。 第2図はN2ガスを導入したスラリー法におけ
る懸濁マンガン酸化物の量に対する電解時間と陽
極電位との関係を示したものであるが、懸濁マン
ガン酸化物の量が0.025g/では陽極の不動態
化を生じており、0.05g/以上では量の増加に
つれて陽極電位は低下するのが認められる。ま
た、O2、H2又はC2H2ガス導入の場合においても
同様の現象が認められるが、ガスなしの場合には
0.05g/でも陽極の不動態化が進行する。 以上のように電解時にN2ガス等を導入すれば
陽極の不動態化が防止できるという著効がある
が、特筆すべきことは、本発明はさらに結晶の改
善された新たなγ−MnO2が得られるということ
である。 第3図は電解時にN2ガス等の各種ガスを導入
した場合と、ガスなしの場合とに得られたEMD
のX線回析図である。尚、この場合の電解条件は
第1図の場合と全く同様である。 第3図から明らかなように、スラリー法で懸濁
されたγ−MnO2と全く同様な位置、即ち、110、
021、121及び221面の4つの主なピークが認めら
れる。これらのうち、電解槽にガスを導入したも
のは、ガスナなしに比較して110面におけるピー
クが著るしく増加しており、さらに2θ8〜9゜と15
〜16゜に新しいブロードなピークが認められる。
2θ8〜9゜と15〜16゜は夫々010及び100面に一致して
おり、また、110面におけるピークの強さは、N2
>O2>H2>C2H2の順に減少している。 第4図は第3図によつて得られたEMDのうち
ガスなしの場合と、O2、N2等を導入しつゝ電解
した場合の110面のピーク強度と分極との関係を
示したものであるが、ガスなしの場合の分極に対
し、O2又はN2を導入して得られたEMDは分極が
ほゞ半分に減少しているのが認められる。 前述第3図及び第4図の結果からガスを導入し
て電解する場合には、110面の発達したγ−
MnO2が得られ、また010及び100面のピークの出
現から従来電解によつて得られるγ−MnO2に比
較して結晶子が大きく結晶性の良好なγ−MnO2
が得られることを示している。事実第4図に示す
ように結晶子が大きくなる結果、MnO2層におけ
るプロトンの拡散がスムーズとなり、従つて従来
のγ−MnO2より遥かに分極の小さいものが得ら
れることを示している。 以上の如く本発明はEMDの電解に当り、電解
層にN2等のガスを導入することによつて陽極の
不動態化が防止でき、従つて長期間連続的に安定
操業を達成することができるという効果がある。 また、本発明は従来のEMDに比較してさらに
結晶性の改善されたEMDを得ることができ、従
つて乾電池特性に優れたEMDを提供することが
でき、工業上稗益する処大なるものがある。 〔実施例〕 以下本発明の具体的構成を実施例によつて説明
する。 実施例 装置は、加温装置を設けた内容積10の電解槽
に陽極としてチタニウム板、陰極として黒鉛板を
それぞれ交互に懸吊せしめ、電解槽の底部にはガ
ス導入管を設けたものを使用した。電解液は硫酸
マンガンの水溶液にマンガン酸化物の粉末を懸濁
させた懸濁液を用いた。前記マンガン酸化物は市
販のEMD(γ−MnO2、平均粒径4.5μm)を用い
た。 前記懸濁液を前記電解槽に注入しながら電解す
るに際して、電解槽中の電解液の組成は1M−
MnSO4、0.4M−H2SO4となるように調製し、マ
ンガン酸化物は0.05〜0.4g/となるように加
えた。 電解は、電解浴の温度を95±1℃に保ち、ガス
吹込み速度を200ml/minとし、電流密度15〜20
mA/cm2の範囲内で行つた。これらの電解条件は
第1表に示した通りである。 20時間電解した後、EMDが電着した陽極板を
取り出して水で洗浄し、110℃で2時間乾燥後、
陽極板から剥離した。 次に得られたEMDを粉砕して放電特性を測定
し、第1表に合わせて示した。 更に比較例として、ガス通気を行わないスラリ
ー法電解による結果を第1表に示したが、ガス通
気を行うことによつて、高電流密度で操業できる
こと、また製造されるEMDの放電特性も良好で
あることがわかつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing electrolytic manganese dioxide, and particularly to a method for producing electrolytic manganese dioxide having excellent dry battery characteristics. [Prior Art] As is well known, electrolytic manganese dioxide (hereinafter referred to as EMD) is produced electrolytically using a manganese sulfate-sulfuric acid solution as an electrolyte, and its crystal form is γ.
−MnO 2 is known. In addition, as an electrolytic manufacturing method for EMD, a method in which manganese oxide is suspended in an electrolytic solution and electrolyzed, the so-called slurry method, is also known (Japanese Patent Publication No. 57-10187,
Publication No. 57-42711, Publication No. 58-46548, Publication No. 59-
Publication No. 1793, Publication No. 59-5672 and Publication No. 59-33544
(see publication). The above-mentioned known slurry methods are all proposed by the applicant and are methods for efficiently and economically producing EMD of γ-MnO 2 . However, when electrolysis is performed using a titanium electrode as the anode, the surface of the titanium electrode is oxidized by the nascent oxygen generated during electrolysis, resulting in so-called passivation, which increases the electrolysis voltage and increases power consumption. However, there are disadvantages such as the fact that electrolysis becomes impossible for a long period of time. [Problems to be solved by the present invention] The present invention prevents passivation of the anode during electrolysis using the slurry method, allows stable operation over a long period of time, and is more efficient than conventional EMD. The object of the present invention is to provide a method for manufacturing an EMD with excellent dry battery characteristics. [Means for Solving the Problems] The present invention provides for producing EMD by suspending manganese oxide in a manganese sulfate-sulfuric acid solution, when N 2 , O 2 , H 2 or acetylene ( This is a method of electrolyzing while introducing a gas such as C 2 H 2 ). [Operations and Effects] The present invention is constructed as described above, and uses a titanium electrode as the anode and a graphite plate as the cathode. Furthermore, N 2 gas, etc., is introduced uniformly between the electrode plates from the bottom of the electrolytic cell. In this case, gases such as O 2 , H 2 or C 2 H 2 can be used in addition to nitrogen gas as the gas introduced into the electrolytic cell. FIG. 1 shows the relationship between electrolysis time and anode potential in the slurry method. The anode potential was measured against mercurous sulfate.
In addition, the electrolytic conditions in this case are a titanium electrode (50 x 20 x 1 mm) for the anode, graphite for the cathode, the amount of electrolyte is 2, and its composition is 1M-MnSO 4 , 0.4M
-H 2 SO 4 , and the manganese oxide used was a commercially available EMD (particle size 4.5 μm) suspended in 0.2 g/(electrolyte), current density 15 mA/cm 2 , electrolytic bath temperature 95
Maintain at ±1℃. In addition, the amount of gas introduced is 30 to 40 per electrolyte 2.
Introduce at ml/min. As is clear from Figure 1, changes in anode potential can be seen in the early stages of electrolysis in both cases of electrolysis with and without N 2 gas introduced, but in both cases it remains constant in the latter stages of electrolysis. It is. Furthermore, when N 2 gas is introduced, the anode potential remains low and stable. From this, when N 2 gas is introduced, passivation of the titanium electrode of the anode can be prevented, and stable operation for a long period of time is possible at high current and low voltage. Figure 2 shows the relationship between electrolysis time and anode potential with respect to the amount of suspended manganese oxide in the slurry method using N 2 gas. It is observed that the anode potential decreases as the amount increases above 0.05 g/g. In addition, a similar phenomenon is observed when O 2 , H 2 or C 2 H 2 gas is introduced, but when no gas is introduced,
Passivation of the anode progresses even at 0.05g/. As mentioned above, the introduction of N 2 gas or the like during electrolysis has the remarkable effect of preventing passivation of the anode, but what should be noted is that the present invention also uses a new γ-MnO 2 with improved crystallization. is obtained. Figure 3 shows the EMD obtained when various gases such as N2 gas were introduced during electrolysis and when no gas was introduced.
It is an X-ray diffraction diagram of. Incidentally, the electrolytic conditions in this case are exactly the same as in the case of FIG. As is clear from FIG. 3, the positions of γ-MnO 2 suspended by the slurry method are exactly the same, namely 110,
Four main peaks are observed: 021, 121 and 221 planes. Among these, in the case where gas was introduced into the electrolytic cell, the peak at the 110 plane significantly increased compared to the case without gas, and the peak at 2θ8~9° and 15
A new broad peak is observed at ~16°.
2θ8~9° and 15~16° correspond to the 010 and 100 planes, respectively, and the intensity of the peak at the 110 plane is similar to that of N 2
It decreases in the order of >O 2 >H 2 >C 2 H 2 . Figure 4 shows the relationship between the peak intensity of the 110 plane and polarization in the case of EMD obtained in Figure 3 without gas and in the case of electrolysis with introduction of O 2 , N 2 , etc. However, it is observed that the polarization in the EMD obtained by introducing O 2 or N 2 is reduced by about half compared to the polarization in the case without gas. From the results shown in Figures 3 and 4 above, when electrolyzing by introducing gas, γ-
MnO 2 was obtained, and from the appearance of peaks on the 010 and 100 planes, it was found that γ-MnO 2 had larger crystallites and better crystallinity than γ-MnO 2 obtained by conventional electrolysis.
This shows that it is possible to obtain In fact, as shown in FIG. 4, as the crystallites become larger, the diffusion of protons in the MnO 2 layer becomes smoother, and it is therefore possible to obtain a material with much smaller polarization than the conventional γ-MnO 2 layer. As described above, the present invention can prevent passivation of the anode by introducing gas such as N 2 into the electrolytic layer during EMD electrolysis, and therefore can achieve continuous stable operation for a long period of time. There is an effect that it can be done. In addition, the present invention can provide an EMD with improved crystallinity compared to conventional EMD, and therefore can provide an EMD with excellent dry battery characteristics, which is a great industrial advantage. There is. [Example] The specific structure of the present invention will be explained below by referring to an example. Example The device used was an electrolytic cell with an internal volume of 10 equipped with a heating device, in which titanium plates as anodes and graphite plates as cathodes were suspended alternately, and a gas introduction pipe was provided at the bottom of the electrolytic cell. did. The electrolyte used was a suspension of manganese oxide powder suspended in an aqueous solution of manganese sulfate. As the manganese oxide, commercially available EMD (γ-MnO 2 , average particle size 4.5 μm) was used. When electrolyzing the suspension while injecting it into the electrolytic cell, the composition of the electrolytic solution in the electrolytic cell is 1M-
MnSO 4 was prepared to be 0.4M-H 2 SO 4 , and manganese oxide was added in an amount of 0.05 to 0.4 g/. For electrolysis, the temperature of the electrolytic bath was kept at 95±1℃, the gas blowing rate was 200ml/min, and the current density was 15 to 20℃.
It was carried out within the range of mA/cm 2 . These electrolytic conditions are as shown in Table 1. After electrolyzing for 20 hours, the anode plate with EMD electrodeposited was taken out, washed with water, dried at 110℃ for 2 hours, and then
It peeled off from the anode plate. Next, the obtained EMD was crushed and the discharge characteristics were measured and shown in Table 1. Furthermore, as a comparative example, Table 1 shows the results of slurry method electrolysis without gas aeration, which shows that by gas aeration, it is possible to operate at a high current density, and the discharge characteristics of the manufactured EMD are also good. It turns out that it is. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスラリー法においてN2ガスを導入し
た場合とガスなしの場合の電解時間と陽極電位と
の関係図、第2図はスラリー法における懸濁マン
ガン酸化物の量の変化に対する電解時間と陽極電
位との関係図、第3図は電解時にガスを導入した
場合及びガスなしの場合における生成EMDのX
線回析図、第4図は110面のピーク強度に対する
分極との関係図である。
Figure 1 shows the relationship between electrolysis time and anode potential when N2 gas is introduced and when no gas is introduced in the slurry method, and Figure 2 shows the relationship between electrolysis time and anode potential as a function of the amount of suspended manganese oxide in the slurry method. Figure 3 shows the relationship between the anode potential and the EMD generated when gas is introduced during electrolysis and when no gas is introduced.
The line diffraction diagram, FIG. 4, is a diagram showing the relationship between the peak intensity of the 110 plane and the polarization.

Claims (1)

【特許請求の範囲】[Claims] 1 硫酸マンガン−硫酸溶液に、マンガン酸化物
を懸濁させて電解二酸化マンガンを製造するに当
り、電解槽内にN2、O2、H2又はアセチレン等の
ガスを導入しつゝ電解することを特徴とする電解
二酸化マンガンの製造法。
1 Manganese sulfate - When manufacturing electrolytic manganese dioxide by suspending manganese oxide in a sulfuric acid solution, electrolysis is performed while introducing a gas such as N 2 , O 2 , H 2 or acetylene into the electrolytic cell. A method for producing electrolytic manganese dioxide, characterized by:
JP61012565A 1986-01-23 1986-01-23 Production of electrolytic manganese dioxide Granted JPS62170492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012565A JPS62170492A (en) 1986-01-23 1986-01-23 Production of electrolytic manganese dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012565A JPS62170492A (en) 1986-01-23 1986-01-23 Production of electrolytic manganese dioxide

Publications (2)

Publication Number Publication Date
JPS62170492A JPS62170492A (en) 1987-07-27
JPH0336910B2 true JPH0336910B2 (en) 1991-06-03

Family

ID=11808872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012565A Granted JPS62170492A (en) 1986-01-23 1986-01-23 Production of electrolytic manganese dioxide

Country Status (1)

Country Link
JP (1) JPS62170492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184504A (en) * 2011-02-18 2012-09-27 Tosoh Corp Electrolytic manganese dioxide and method for producing the same, and method for producing lithium-manganese complex oxide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899246B2 (en) * 2001-03-23 2012-03-21 東ソー株式会社 Electrolytic manganese dioxide powder and method for producing the same
JP4867859B2 (en) * 2007-08-29 2012-02-01 株式会社デンソー Pressure sensor hose
CN102605382B (en) * 2011-12-19 2014-10-29 浙江师范大学 Method for preparing high-purity nanometer titanium dioxide by electrolyzing titanium trichloride
CN103643275B (en) * 2013-12-16 2016-01-06 电子科技大学 A kind of method preparing titanium oxide ceramics coating at lead alloy surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184504A (en) * 2011-02-18 2012-09-27 Tosoh Corp Electrolytic manganese dioxide and method for producing the same, and method for producing lithium-manganese complex oxide

Also Published As

Publication number Publication date
JPS62170492A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
US3915837A (en) Anode and method of production thereof
US2273798A (en) Electrolytic process
US3855084A (en) Method of producing a coated anode
US4313804A (en) Process for preparing ceric sulphate
JPH0336910B2 (en)
US3329594A (en) Electrolytic production of alkali metal chlorates
US5156933A (en) Method of manufacturing manganese dioxide
EP0013415B1 (en) Fabrication of nickel electrodes for alkaline batteries
JPH02213487A (en) Manufacture of electrolytic manganese dioxide
US4048027A (en) Process for producing electrolytic MnO2 from molten manganese nitrate hexahydrate
US4948484A (en) Process for producing improved electrolytic manganese dioxide
CA1295967C (en) Process to manufacture glyoxylic acid by electrochemical reduction of oxalic acid
JPS6326389A (en) Production of electrolytic manganese dioxide
US3033908A (en) Production of lead dioxide
JPH0257693A (en) Production of electrolytic manganese dioxide
US4595466A (en) Metal electrolysis using a low temperature bath
JP3029889B2 (en) Manganese dioxide for lithium secondary battery and method for producing the same
JPS62270788A (en) Production of electrolytic manganese dioxide
JPH06150914A (en) Manganese dioxide for lithium battery and manufacture thereof
JPS60138085A (en) Manufacture of electrolytic manganese dioxide
JPS6338590A (en) Production of electrolytic manganese dioxide
JP2707340B2 (en) Manufacturing method of electrolytic manganese dioxide
JPS6244586A (en) Production of electrolyzed manganese dioxide for battery
JPH0549757B2 (en)
CN115663170A (en) Modified electrolytic manganese dioxide, preparation method thereof and alkaline manganese battery