SU269182A1 - STEEL REDUCTION METHOD - Google Patents
STEEL REDUCTION METHODInfo
- Publication number
- SU269182A1 SU269182A1 SU1325095A SU1325095A SU269182A1 SU 269182 A1 SU269182 A1 SU 269182A1 SU 1325095 A SU1325095 A SU 1325095A SU 1325095 A SU1325095 A SU 1325095A SU 269182 A1 SU269182 A1 SU 269182A1
- Authority
- SU
- USSR - Soviet Union
- Prior art keywords
- reduction method
- steel
- steel reduction
- ferrovanadium
- ferromanganese
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title description 7
- 239000010959 steel Substances 0.000 title description 7
- 229910000616 Ferromanganese Inorganic materials 0.000 description 8
- 229910000628 Ferrovanadium Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000720 Silicomanganese Inorganic materials 0.000 description 1
- VIVHEMVDHMDMOC-UHFFFAOYSA-N iron;manganese;methane;phosphane;silicon Chemical compound C.[Si].P.[Mn].[Fe] VIVHEMVDHMDMOC-UHFFFAOYSA-N 0.000 description 1
Description
Известен способ раскислени малоуглеродистой стали в ковше ферромарганцем, феррованадием и силикомарганцем. Ферромарганец и феррованадий ввод т в металл соответственно в количествах 1,37 и 1,43 кг/г; 1,98 и 2,5 кг/г; 2,7 и 1,43 ка/г. Общее количество раскислителей составл ет 10-12 кг/т.There is a known method of deoxidizing low carbon steel in a ladle with ferromanganese, ferrovanadium and silicomanganese. Ferromanganese and ferrovanadium are introduced into the metal in amounts of 1.37 and 1.43 kg / g, respectively; 1.98 and 2.5 kg / g; 2.7 and 1.43 ka / g. The total amount of deoxidizers is 10-12 kg / ton.
Описываемый способ раскислени стали в ковше феррованадием и ферромарганцем состоит в том, что ферромарганец и феррованадий ввод т в металл одновременно в количестве 6-8 кг/г при отношении марганца к ванадию 2,8-3,8.The described method of deoxidizing steel in a ladle with ferrovanadium and ferromanganese is that ferromanganese and ferrovanadium are introduced into the metal simultaneously in an amount of 6-8 kg / g with a manganese-to-vanadium ratio of 2.8-3.8.
Это повышает качество стали.This improves the quality of the steel.
Наилучшим количественным сочетанием феррованади и электропечного ферромарганца при раскислении в ковше стали вл етс применение 1,5-2,3 кг/г феррованади и 3,5- 5 кг/г ферромарганца. Такое сочетание ферросплавов приводит к более полному удалению из стали неметаллических включений, увеличению выхода годного и повышению качества поверхности холоднокатаных листов.The best quantitative combination of ferrovanadium and electric furnace ferromanganese for deoxidation in a steel ladle is the use of 1.5-2.3 kg / g of ferrovanadium and 3.5-5 kg / g of ferromanganese. This combination of ferroalloys leads to a more complete removal of non-metallic inclusions from steel, an increase in the yield of good and an increase in the quality of the surface of cold-rolled sheets.
Предмет изобретени Subject invention
Способ раскислени стали в ковше ферромарганцем и феррованадием, отличающийс тем, что, с целью повышени качества стали, ферромарганец и феррованадий ввод т в металл одновременно в количестве 6-8 кг/г при отношении марганца к ванадию 2,8-3,8.The method of deoxidizing steel in the ladle with ferromanganese and ferrovanadium, characterized in that, in order to improve the quality of steel, ferromanganese and ferrovanadium are introduced into the metal simultaneously in an amount of 6-8 kg / g with a manganese-to-vanadium ratio of 2.8-3.8.
Publications (1)
Publication Number | Publication Date |
---|---|
SU269182A1 true SU269182A1 (en) |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112626302B (en) | Smelting method of high-cleanliness microalloyed high-strength steel | |
US6780258B2 (en) | Austenitic stainless steel less susceptible to cracking during forming and a manufacturing method thereof | |
CN110016618B (en) | High-silicon-content welding steel and preparation method thereof | |
JP2020002412A (en) | Manufacturing method of steel | |
SU269182A1 (en) | STEEL REDUCTION METHOD | |
RU2334796C1 (en) | Method of steel production | |
JP3156523B2 (en) | Method of manufacturing steel for hydrogen-induced cracking | |
RU2382086C1 (en) | Manufacturing method of boron steel | |
SU1235981A1 (en) | Low-alloy steel | |
SU1068526A1 (en) | Alloy for alloying and reducing steel | |
SU1125282A1 (en) | Steel | |
RU2127322C1 (en) | Method of microalloying of low-carbon steel | |
JP3190807B2 (en) | Method for producing corrosion resistant ERW steel pipe with excellent low temperature toughness | |
JPH05302112A (en) | Method for smelting sheet steel by magnesium | |
CN115369330B (en) | 90-kilogram gas shielded welding wire with high welding performance and preparation method thereof | |
SU359281A1 (en) | Method of deoxidation of medium-alloyed steel | |
SU577249A1 (en) | Alloy for deoxidizing and alloying steel | |
RU2243269C1 (en) | Method of melting low-carbon titanium-containing steel | |
SU1705390A1 (en) | Alloying additive for steel | |
RU2123539C1 (en) | Low-carbon alloyed steel for cold-drawn welding wire | |
SU1677080A1 (en) | Method of melting corrosion-resistant steels | |
SU899666A1 (en) | Method for producing carbon steel | |
SU985114A1 (en) | Alloy for deoxidizing and alloying steel | |
RU2679375C1 (en) | Method of production of low-carbon steel with improved corrosion stability | |
RU1772171C (en) | Method for deoxidation and microalloying of low-alloyed low-carbon steel |