JP2020002412A - Manufacturing method of steel - Google Patents

Manufacturing method of steel Download PDF

Info

Publication number
JP2020002412A
JP2020002412A JP2018121392A JP2018121392A JP2020002412A JP 2020002412 A JP2020002412 A JP 2020002412A JP 2018121392 A JP2018121392 A JP 2018121392A JP 2018121392 A JP2018121392 A JP 2018121392A JP 2020002412 A JP2020002412 A JP 2020002412A
Authority
JP
Japan
Prior art keywords
steel
molten steel
deoxidation
amount
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018121392A
Other languages
Japanese (ja)
Other versions
JP7087727B2 (en
Inventor
溝口 利明
Toshiaki Mizoguchi
利明 溝口
隼 武川
Hayato Takekawa
隼 武川
信太郎 大賀
Shintaro Oga
信太郎 大賀
英典 栗本
Hidenori Kurimoto
英典 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018121392A priority Critical patent/JP7087727B2/en
Publication of JP2020002412A publication Critical patent/JP2020002412A/en
Application granted granted Critical
Publication of JP7087727B2 publication Critical patent/JP7087727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

To provide a manufacturing method of steel reducing generation of inclusion defect due to alumina cluster, and manufacturing a steel while suppressing nozzle jamming during continuous casting without using a large amount f slag modifier.SOLUTION: There is provided a manufacturing method of a steel for manufacturing a killed steel by deoxidizing a tapped molten steel by Al or the like after tapping an un-deoxidized molten steel ingot by a converter into a ladle, in which an alloy for adjusting components containing oxygen is input into a molten steel with molten oxygen amount during or after tapping into the ladle and before deoxidization by Al or the like of 50 ppm or more as well as into the molten steel after deoxidization by Al or the like, (carried oxygen amount before deoxidization/carried oxygen amount after oxidization) is 2 or more, carried oxygen amount after deoxidization is 10 ppm or less, total of carried oxygen amount before deoxidization and carried oxygen amount after deoxidization is 15 ppm or more, one or more kind of REM is added to the molten steel which is deoxidized by Al or the like and then into which the alloy for adjusting components is input, and the molten steel to which the REM is added is stirred over time at 2.0 to 10 times of uniform mixing time.SELECTED DRAWING: Figure 5

Description

本発明は、鋼の製造方法に関する。   The present invention relates to a method for producing steel.

鋼板等の鋼材は、通常、転炉等の一次精錬炉により大気圧下で脱炭精錬を行われた未脱酸の溶鋼を取鍋に出鋼した後、脱炭精錬により増加した溶鋼中の酸素を、例えばRH真空脱ガス装置でAlまたはAl−Siにより脱酸するAlキルド鋼またはAl−Siキルド鋼として、製造されている。   Steel materials such as steel plates are usually produced in a ladle with undeoxidized molten steel that has been decarburized and refined under atmospheric pressure by a primary refining furnace such as a converter, and then increased in the molten steel by decarburization refining. It is manufactured as Al-killed steel or Al-Si-killed steel in which oxygen is deoxidized by, for example, Al or Al-Si in an RH vacuum degasser.

脱酸時に不可避的に生成するアルミナは、硬質であり、凝集してクラスター化し易く、数100μm以上の大きさの介在物として鋼中に残留する。このため、溶鋼からのアルミナの除去が不十分であると、連続鋳造時にタンディッシュの浸漬ノズルでノズル孔内付着によるノズル詰まりを生じる。   Alumina inevitably generated during deoxidation is hard, easily aggregated and clustered, and remains in the steel as inclusions having a size of several hundred μm or more. For this reason, if alumina is not sufficiently removed from the molten steel, nozzle clogging due to adhesion in the nozzle hole occurs in the tundish immersion nozzle during continuous casting.

また、アルミナが最終製品である鋼材に残存すると、例えば、薄板では熱間圧延または冷間圧延でのスリバー疵(線状疵)、構造用厚板では材質不良、耐摩耗用厚板では低温靭性の低下、油井用鋼管では溶接部のUST欠陥といった、アルミナクラスターに起因した介在物欠陥が発生する。   Also, if alumina remains in the steel product as the final product, for example, sliver flaws (linear flaws) in hot rolling or cold rolling for thin sheets, poor material quality for structural thick plates, and low-temperature toughness for wear-resistant thick plates Inclusion defects due to alumina clusters, such as a decrease in the diameter of the steel pipe for oil wells and UST defects in the welded portions, occur.

例えば、引張強度が340MPa級の塗装焼付け硬化型鋼板用の極低炭素鋼(以下、「340BH/HiMn−SULC」という)の溶製においても、アルミナクラスターに起因した介在物欠陥が問題になる。   For example, even in the production of an ultra-low carbon steel (hereinafter, referred to as "340BH / HiMn-SULC") for a paint bake hardening type steel sheet having a tensile strength of 340 MPa, inclusion defects caused by alumina clusters become a problem.

340BH/HiMn−SULCは、Mn含有量が0.60質量%程度と高Mnの化学組成を有する。このため、製鋼工程においてMnの供給源となる金属Mn(以下、「MeMn」と記載し、同様に、後述の濃度調整用合金における「金属」を「Me」と記載する。)を溶鋼に投入して、溶鋼のMn濃度を高める必要がある。   340BH / HiMn-SULC has a high Mn chemical composition with a Mn content of about 0.60% by mass. For this reason, metal Mn (hereinafter, referred to as “MeMn”, and similarly, “metal” in a later-described concentration adjusting alloy is described as “Me”) serving as a supply source of Mn in the steelmaking process is put into molten steel. Therefore, it is necessary to increase the Mn concentration of the molten steel.

一方、溶鋼に添加されたMnは酸化されてMnOを生成して浮上分離し易いため、Mnの投入歩留まりは低下し易い。このため、MeMnは、これまで、転炉で溶製された未脱酸の溶鋼を取鍋に出鋼し、RH真空脱ガス装置を用いてAlまたはAl−Siにより脱酸した後に、溶鋼に投入されていた。   On the other hand, Mn added to the molten steel is oxidized to generate MnO and easily floats and separates, so that the yield of Mn input tends to decrease. For this reason, MeMn has previously produced undeoxidized molten steel melted in a converter into a ladle, deoxidized with Al or Al-Si using an RH vacuum degasser, and then converted into molten steel. Had been thrown.

340BH/HiMn−SULCの溶製においても、連続鋳造時にタンディッシュの浸漬ノズルでノズル孔内付着によるノズル詰まりや、冷間圧延でのスリバー疵といった介在物欠陥が頻発しており、塗装焼付け硬化型鋼板の生産性や品質が低下していた。   In the production of 340BH / HiMn-SULC, inclusion defects such as nozzle clogging and sliver flaws during cold rolling occur frequently in the tundish immersion nozzle during continuous casting, and the paint bake hardening type. The productivity and quality of the steel sheet were reduced.

本発明者らは、特許文献1により、AlまたはAl−Si脱酸した溶鋼中に、Ce、La、PrおよびNdの1種類以上の希土類金属を添加することにより、質量%で、C:0.0005〜1.5%、Si:0.005〜1.2%、Mn:0.05〜3.0%、P:0.001〜0.1%、S:0.0001〜0.05%、Al:0.005〜1.5%、残部がFeである鋼組成を有し、全希土類元素が0.1ppm以上10ppm未満であり、かつ固溶希土類元素が1ppm未満である、アルミナクラスターが少ない鋼材を開示した。   According to Patent Document 1, the present inventors add one or more rare earth metals of Ce, La, Pr, and Nd to Al or Al-Si deoxidized molten steel, so that C: 0 0.0005 to 1.5%, Si: 0.005 to 1.2%, Mn: 0.05 to 3.0%, P: 0.001 to 0.1%, S: 0.0001 to 0.05 %, Al: 0.005 to 1.5%, balance being Fe, having a steel composition in which the total rare earth element is 0.1 ppm or more and less than 10 ppm, and the solid solution rare earth element is less than 1 ppm, an alumina cluster. Has disclosed few steel materials.

特許文献1により開示された鋼材は、介在物欠陥の原因となる粗大なアルミナクラスターの生成を、溶鋼中およびAr気泡の表面で防止し、自動車用や家電用の薄板のスリバー疵、構造用厚板の材質不良、耐摩耗用厚板の低温靭性の低下、油井管用鋼管の溶接部のUST欠陥といった介在物欠陥を大幅に抑制することができる。   The steel material disclosed in Patent Document 1 prevents the formation of coarse alumina clusters that cause inclusion defects, in molten steel and on the surface of Ar bubbles, sliver flaws on thin plates for automobiles and home appliances, and thicknesses for structures. Inclusion defects such as poor material quality of the plate, lowering of the low-temperature toughness of the wear-resistant thick plate, and UST defects in the welded portion of the steel pipe for oil country tubular goods can be significantly suppressed.

また、Al脱酸またはAl-Si脱酸した溶鋼を取鍋に出鋼したとき、溶鋼表面のスラグに含まれるFeO,MgO等の低級酸化物によって溶鋼中のAlが再酸化され、アルミナが生成される。その結果、鋼の清浄性が悪化し、鋼の靭性や表面品位の低下、連続鋳造時のノズル詰まりなどが発生する。   Also, when the molten steel subjected to Al deoxidation or Al-Si deoxidization is tapped into a ladle, Al in the molten steel is reoxidized by lower oxides such as FeO and MgO contained in the slag on the surface of the molten steel, and alumina is formed. Is done. As a result, the cleanliness of the steel deteriorates, the toughness and surface quality of the steel deteriorate, and nozzle clogging during continuous casting occurs.

そこで、従来から特許文献2〜5に開示されるように、取鍋のスラグ上にスラグ改質材を添加することにより、スラグ中の低級酸化物を還元あるいは希釈し、溶鋼中のAlの再酸化を抑制する方法が用いられている。特許文献2〜5には、スラグ改質材として、Al、Si、Ti、Ca、Mg、Zr、MgO、CaO−Al等が開示されている。 Therefore, as disclosed in Patent Documents 2 to 5, a lower oxide in the slag is reduced or diluted by adding a slag modifier to the slag of the ladle, and the Al in the molten steel is recycled. A method of suppressing oxidation has been used. Patent Document 2 to 5, as a slag modifier, Al, Si, Ti, Ca , Mg, Zr, MgO, etc. CaO-Al 2 O 3 is disclosed.

特開2005−2425号公報JP 2005-2425 A 特開2003−3209号公報JP-A-2003-3209 特開2001−234229号公報JP 2001-234229 A 特開2001−254118号公報JP 2001-254118 A 特開平6−10025号公報JP-A-6-10025

特許文献1により開示された発明によれば、確かに、アルミナクラスターが少ない鋼材を提供できる。   According to the invention disclosed in Patent Document 1, it is possible to provide a steel material with few alumina clusters.

近年、アルミナクラスターによる介在物欠陥を低減することへの要請は、鋼材の需要家の生産性向上のための無欠陥指向や加工特性の向上の要求の高まりにより、従来に増して一段と高まっており、アルミナクラスターによる介在物欠陥をより一層低減することが強く求められている。   In recent years, the demand for reducing inclusion defects due to alumina clusters has increased even more than before due to the growing demand for defect-free orientation and improved processing characteristics for steel users to improve productivity. There is a strong demand for further reducing inclusion defects due to alumina clusters.

このため、製鋼工程での溶鋼の徹底的な清浄化や、鋳片の重手入れ化といった様々な対策が行われてはいるものの、アルミナクラスターによる介在物欠陥を、現在要求される程度まで十分に低減できていない。   For this reason, although various measures such as thorough cleaning of molten steel in the steelmaking process and heavy maintenance of cast slabs have been taken, inclusion defects due to alumina clusters have been sufficiently reduced to the extent currently required. Not reduced.

また、特許文献2〜5により開示されたスラグ改質材の還元力は不足しており、スラグの改質のために多量の添加を必要とする。また、溶鋼の清浄性を悪化させるのは主としてスラグが溶鋼と接する溶鋼側の界面であるから、スラグの上面からスラグ改質材を投入する場合には大量の投入が必要となる。このように、従来の改質法では、スラグ改質材の多量添加に伴う製造コストの上昇が避けられなかった。   Moreover, the reducing power of the slag modifier disclosed in Patent Documents 2 to 5 is insufficient, and a large amount of addition is required for slag reforming. In addition, since the cleanliness of molten steel deteriorates mainly at the interface between the molten steel and the slag in contact with the molten steel, a large amount of slag is required when the slag modifying material is introduced from the upper surface of the slag. As described above, in the conventional reforming method, an increase in the production cost due to the addition of a large amount of the slag reforming material cannot be avoided.

本発明は、従来の技術が有するこの課題に鑑みてなされたものであり、アルミナクラスターによる介在物欠陥を、現在要求される程度まで十分に低減するとともに、多量のスラグ改質材を用いることなく、鋼の清浄性、靭性さらには表面品位の向上と、連続鋳造時のノズル詰まりの抑制を図りながら、鋼を製造する方法を提供することを目的とする。   The present invention has been made in view of this problem of the prior art, and sufficiently reduces inclusion defects due to alumina clusters to the extent currently required, without using a large amount of slag modifier. It is an object of the present invention to provide a method of manufacturing steel while improving the cleanliness and toughness of steel, and further improving the surface quality and suppressing nozzle clogging during continuous casting.

本発明者らが特許文献1により開示したように、低融点酸化物であるFeOは、Alにより脱酸された平衡状態の溶鋼中には本来存在しない。しかし、1600℃程度の溶鋼(O濃度:6〜8ppm程度)の一部に、O濃度が0.2質量%程度の溶鋼が非平衡に存在すると、Alと液体のFeOが同時に生成し、液体のFeOがAl同士の間にバインダーとして介在することにより、アルミナクラスターが発生する。 As disclosed by the present inventors in Patent Document 1, FeO, which is a low melting point oxide, is not originally present in molten steel in an equilibrium state deoxidized by Al. However, when the molten steel having an O concentration of about 0.2% by mass exists in a part of the molten steel at about 1600 ° C. (O concentration: about 6 to 8 ppm), Al 2 O 3 and liquid FeO are simultaneously generated. Alumina clusters are generated when liquid FeO is interposed between Al 2 O 3 as a binder.

本発明者らは、このアルミナクラスターの発生機構に基づき、アルミナクラスターの発生防止手段を鋭意検討した結果、以下に列記の知見(A)〜(F)が得られた。   The present inventors have intensively studied means for preventing alumina cluster generation based on this alumina cluster generation mechanism, and as a result, the following findings (A) to (F) were obtained.

(A)340BH/HiMn−SULCの製鋼工程でMn濃度の調整のためにAlまたはAl−Si脱酸後に投入されるMeMnは、例えば0.5質量%程度と極微量ではあるものの、Oを含有する。Oを含有するMeMnが溶鋼に持ち込む全O量は例えば15ppm以上になる。   (A) MeMn introduced after deoxidation of Al or Al-Si for adjusting the Mn concentration in the steelmaking process of 340BH / HiMn-SULC contains O although it is a trace amount, for example, about 0.5% by mass. I do. The total amount of O brought into the molten steel by MeMn containing O is, for example, 15 ppm or more.

このため、従来のようにAlまたはAl−Si脱酸後にMeMnを投入すると、MeMnからの持込みOにより、溶鋼は局所的に酸素汚染され、これにより、液体状態のFeOがAlと同時に生成し、生成したFeOがAl同士のバインダーになってアルミナクラスターが発生する。 For this reason, when MeMn is introduced after Al or Al-Si deoxidation as in the prior art, the molten steel is locally oxygen-contaminated by O brought in from MeMn, whereby FeO in a liquid state is simultaneously removed with Al 2 O 3. The generated FeO becomes a binder between Al 2 O 3 and alumina clusters are generated.

(B)340BH/HiMn−SULCのように、MeMnの投入量が多い鋼種、すなわち持込み酸素量が15ppm以上と多い鋼種では、MeMnを、従来のようにAlまたはAl−Si脱酸後の溶鋼に投入するのではなくて、AlまたはAl−Si脱酸前の溶存酸素量が50ppm以上である溶鋼に投入するとともに、AlまたはAl−Si脱酸後の溶鋼に投入する。これにより、液体状態のFeOがAlと同時に生成することを阻止してアルミナクラスターの生成を抑制できるため、アルミナクラスターによる介在物欠陥を低減できる。 (B) In a steel type such as 340BH / HiMn-SULC, in which the amount of MeMn is large, that is, a steel type in which the amount of oxygen brought in is as high as 15 ppm or more, MeMn is added to the molten steel after Al or Al-Si deoxidation as in the past. Instead of charging, Al is introduced into molten steel having a dissolved oxygen amount of 50 ppm or more before deoxidation of Al or Al-Si, and is injected into molten steel after deoxidation of Al or Al-Si. Thereby, the formation of alumina clusters can be suppressed by preventing the formation of FeO in the liquid state simultaneously with Al 2 O 3, so that inclusion defects due to alumina clusters can be reduced.

(C)脱酸後持込み酸素量を10ppm以下にすることにより、アルミナクラスターによる介在物欠陥を低減できる。   (C) Inclusion defects due to alumina clusters can be reduced by reducing the amount of oxygen brought in after deoxidation to 10 ppm or less.

(D)AlまたはAl−Siによる脱酸前に投入されるMeMnから溶鋼に持ち込まれる脱酸前持込み酸素量と、AlまたはAl−Siによる脱酸後に投入されるMeMnから溶鋼に持ち込まれる脱酸後持込み酸素量との比率(脱酸前持込み酸素量/脱酸後持込み酸素量)を2以上に高めることにより、アルミナクラスターによる介在物欠陥を低減できる。   (D) Deoxygenation carried into molten steel from MeMn introduced before deoxidation by Al or Al-Si, and deoxidation brought into molten steel from MeMn introduced after deoxidation by Al or Al-Si introduced into molten steel. Inclusion defects due to alumina clusters can be reduced by increasing the ratio to the amount of oxygen carried after (oxygen amount before deoxidation / oxygen amount after deoxidation) to 2 or more.

(E)AlまたはAl−Si脱酸前にMeMnを投入することにより、Mnの投入歩留まりは若干低下するものの、アルミナクラスターによる介在物欠陥を、現在要求される品質レベルまで十分に低減できるため、最終製品である鋼材の生産性や品質を顕著に向上でき、鋼材の製造コストを大幅に抑制することが可能になる。   (E) By introducing MeMn before deoxidation of Al or Al-Si, although the yield of Mn is slightly reduced, inclusion defects due to alumina clusters can be sufficiently reduced to the currently required quality level. The productivity and quality of the steel product as the final product can be significantly improved, and the production cost of the steel material can be significantly reduced.

(F)溶鋼の成分調整用合金としては、MeMn以外に、MeTi、MeCu、MeNi、FeMn、FeP、FeTi、FeS、FeSi、FeCr、FeMo、FeB、FeNb等があり、これらの成分調整用合金もOを含有する。このため、これらの成分調整用合金を、上記B項に記載したようにAlまたはAl−Si脱酸の前後に投入することにより、アルミナクラスターの発生を防ぐことができる。   (F) In addition to MeMn, alloys for adjusting the composition of molten steel include MeTi, MeCu, MeNi, FeMn, FeP, FeTi, FeS, FeSi, FeCr, FeMo, FeB, FeNb, and the like. Contains O. Therefore, by introducing these component adjusting alloys before and after Al or Al-Si deoxidation as described in the above section B, the generation of alumina clusters can be prevented.

本発明は、これらの知見(A)〜(F)に基づくものであり、以下に列記の通りである。
(1)転炉で溶製された未脱酸の溶鋼を取鍋に出鋼した後、出鋼された溶鋼を、AlまたはAl−Siにより脱酸し、Alキルド鋼またはAl−Siキルド鋼を製造する方法であって、
酸素を含有する成分調整用合金を、前記取鍋への出鋼中または出鋼後であって、前記Alまたは前記Al−Siによる脱酸の前の溶存酸素量が50ppm以上の溶鋼に投入するとともに前記Alまたは前記Al−Siによる脱酸の後の溶鋼に投入し、
前記Alまたは前記Al−Siによる脱酸の前に投入される成分調整用合金から溶鋼に持ち込まれる脱酸前持込み酸素量(ppm)と、前記Alまたは前記Al−Siによる脱酸の後に投入される成分調整用合金から溶鋼に持ち込まれる脱酸後持込み酸素量(ppm)との比率(脱酸前持込み酸素量/脱酸後持込み酸素量)を2以上とし、
前記脱酸後持込み酸素量を10ppm以下とし、
脱酸前持込み酸素量と脱酸後持込み酸素量の合計を15ppm以上とするとともに、
前記AlまたはAl−Siにより脱酸され、その後に前記成分調整用合金を投入された溶鋼に、1種以上のREMを添加し、前記REMが添加された溶鋼を、均一混合時間の2.0〜10倍の時間にわたり攪拌する、鋼の製造方法。
The present invention is based on these findings (A) to (F), and is as listed below.
(1) After the undeoxidized molten steel produced in the converter is tapped into a ladle, the tapped molten steel is deoxidized with Al or Al-Si, and Al-killed steel or Al-Si-killed steel is produced. A method of manufacturing
The oxygen-containing component adjusting alloy is introduced into molten steel having a dissolved oxygen amount of 50 ppm or more during or after tapping into the ladle and before deoxidation by the Al or the Al-Si. Together with the Al or the Al-Si into the molten steel after deoxidation,
The amount of oxygen (ppm) carried before deoxidation brought into the molten steel from the component adjusting alloy introduced before the deoxidation by Al or the Al-Si, and the oxygen introduced after deoxidation by the Al or Al-Si. The ratio of the amount of oxygen brought in after deoxidation (ppm) brought into the molten steel from the component adjusting alloy to the molten steel (the amount of oxygen brought in before deoxidation / the amount of oxygen brought in after deoxidation) is 2 or more,
The amount of oxygen brought in after the deoxidation is 10 ppm or less,
The total amount of oxygen brought in before and after deoxidation should be 15 ppm or more,
One or more REMs are added to the molten steel that has been deoxidized by the Al or Al-Si and then the alloy for component adjustment is added, and the molten steel to which the REMs are added is mixed for a uniform mixing time of 2.0%. A method for producing steel in which stirring is performed for 10 to 10 times.

(2)前記成分調整用合金は、MeMn、MeTi、MeCu、MeNi、FeMn、FeP、FeTi、FeS、FeSi、FeCr、FeMo、FeB、およびFeNbから選択される1種以上である、上記(1)に記載の鋼の製造方法。   (2) The component adjusting alloy is at least one selected from MeMn, MeTi, MeCu, MeNi, FeMn, FeP, FeTi, FeS, FeSi, FeCr, FeMo, FeB, and FeNb. 3. The method for producing steel according to item 1.

(3)前記Alキルド鋼または前記Al−Siキルド鋼の化学組成が、質量%で、
C:0.0005〜1.5%、
Si:0.005〜1.2%、
Mn:0.05〜3.0%、
P:0.001〜0.2%、
S:0.0001〜0.05%、
T.Al:0.005〜1.5%、
Cu:0〜1.5%、
Ni:0〜10.0%、
Cr:0〜10.0%、
Mo:0〜1.5%、
Nb:0〜0.1%、
V:0〜0.3%、
Ti:0〜0.25%、
B:0〜0.005%、
REM:0.1〜20ppm、
T.O:5〜50ppm、
残部がFeおよび不純物である、上記(1)または(2)に記載の鋼の製造方法。
(3) The chemical composition of the Al-killed steel or the Al-Si-killed steel is represented by mass%,
C: 0.0005 to 1.5%,
Si: 0.005 to 1.2%,
Mn: 0.05-3.0%,
P: 0.001-0.2%,
S: 0.0001-0.05%,
T. Al: 0.005 to 1.5%,
Cu: 0 to 1.5%,
Ni: 0 to 10.0%,
Cr: 0 to 10.0%,
Mo: 0 to 1.5%,
Nb: 0 to 0.1%,
V: 0 to 0.3%,
Ti: 0 to 0.25%,
B: 0 to 0.005%,
REM: 0.1-20 ppm,
T. O: 5 to 50 ppm,
The method for producing steel according to the above (1) or (2), wherein the balance is Fe and impurities.

(4)前記Alキルド鋼または前記Al−Siキルド鋼の前記化学組成が、質量%で、
Cu:0.1〜1.5%、
Ni:0.1〜10.0%、
Cr:0.1〜10.0%、および
Mo:0.05〜1.5%、
から選択される1種以上を含有する、上記(3)に記載の鋼の製造方法。
(4) The chemical composition of the Al-killed steel or the Al-Si-killed steel is represented by mass%
Cu: 0.1-1.5%,
Ni: 0.1 to 10.0%,
Cr: 0.1 to 10.0%, and Mo: 0.05 to 1.5%,
The method for producing steel according to the above (3), comprising at least one selected from the group consisting of:

(5)前記Alキルド鋼または前記Al−Siキルド鋼の前記化学組成が、質量%で、
Nb:0.005〜0.1%、
V:0.005〜0.3%、および
Ti:0.001〜0.25%、
から選択される1種以上を含有する、上記(3)または(4)に記載の鋼の製造方法。
(5) The chemical composition of the Al-killed steel or the Al-Si-killed steel is represented by mass%,
Nb: 0.005 to 0.1%,
V: 0.005 to 0.3%, and Ti: 0.001 to 0.25%,
The method for producing steel according to the above (3) or (4), comprising at least one selected from the group consisting of:

(6)前記Alキルド鋼または前記Al−Siキルド鋼の前記化学組成が、質量%で、
B:0.0005〜0.005%、
を含有する、上記(3)〜(5)のいずれかに記載の鋼の製造方法。
(6) The chemical composition of the Al-killed steel or the Al-Si-killed steel is represented by mass%
B: 0.0005 to 0.005%,
The method for producing steel according to any one of the above (3) to (5), comprising:

(7)溶鋼中に添加されたSをトレーサーとして、前記トレーサーが平衡濃度の±5%に達した時間を前記均一混合時間とする、上記(1)〜(6)のいずれかに記載の鋼の製造方法。   (7) The steel according to any one of (1) to (6), wherein the time when the tracer reaches ± 5% of the equilibrium concentration is defined as the uniform mixing time, using S added to the molten steel as a tracer. Manufacturing method.

(8)前記溶鋼の攪拌を、CAS法、RH真空脱ガス法、ボトムバブリングのいずれかの方法によって行う、上記(1)〜(7)のいずれかに記載の鋼の製造方法。   (8) The method for producing steel according to any one of (1) to (7), wherein the stirring of the molten steel is performed by any one of a CAS method, an RH vacuum degassing method, and bottom bubbling.

本発明により、酸素を含有する成分調整用合金をAlまたはAl−Si脱酸後の溶鋼に投入することに起因した、Alおよび液体のFeOの同時発生、およびアルミナクラスターの発生を防ぐことができ、これにより、アルミナクラスターに起因した介在物欠陥の発生を、現在要求される程度まで十分に低減しながら、溶鋼を製造できるようになる。 Prevented by the present invention, the component adjustment for alloys containing oxygen due to put into the molten steel after the Al or Al-Si deoxidation, Al 2 O 3 and concurrent liquid FeO, and the occurrence of alumina cluster This makes it possible to produce molten steel while sufficiently reducing the occurrence of inclusion defects due to alumina clusters to the extent currently required.

また、本発明によれば、Alよりもはるかに強力な脱酸力を有するREMを溶鋼中に添加し、均一混合時間τの2.0〜10倍の時間にわたり攪拌を行うことにより、REMとスラグの接触性を高め、スラグの溶鋼側界面を優先して改質することができる。このため、従来のような大量のスラグ改質材を用いることなく、低コストでスラグを改質することができ、鋼の清浄性、靭性および表面品位の向上や、連続鋳造時のノズル詰まりの抑制などを図ることができる。   Further, according to the present invention, REM having a much stronger deoxidizing power than Al is added to the molten steel, and stirring is performed for 2.0 to 10 times the uniform mixing time τ, whereby REM and The contact property of the slag can be enhanced, and the interface of the slag on the molten steel side can be preferentially reformed. For this reason, slag can be reformed at low cost without using a large amount of slag modifier as in the past, improving the cleanliness, toughness and surface quality of steel, and reducing nozzle clogging during continuous casting. Suppression can be achieved.

図1は、本発明によりAl脱酸またはAl-Si脱酸された溶鋼にREMを添加する状況を示す説明図である。FIG. 1 is an explanatory diagram showing a situation in which REM is added to molten steel subjected to Al deoxidation or Al-Si deoxidation according to the present invention. 図2は、攪拌時間によるスラグ酸化度の変化を示すグラフである。FIG. 2 is a graph showing a change in the degree of slag oxidation with stirring time. 図3は、脱酸元素濃度とスラグ酸化度指数との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the deoxidizing element concentration and the slag oxidation degree index. 図4は、図3のグラフの原点付近を拡大して示すグラフである。FIG. 4 is a graph showing the vicinity of the origin of the graph of FIG. 3 in an enlarged manner. 図5は、実施例における脱酸前持込み酸素量と脱酸後持込み酸素量との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the amount of oxygen carried before deoxidation and the amount of oxygen carried after deoxidation in the example.

本発明を説明する。以降の説明において化学組成または濃度に関する「%」は特に断りがない限り「質量%」を意味する。   The present invention will be described. In the following description, “%” relating to chemical composition or concentration means “% by mass” unless otherwise specified.

1.本発明の概要
本発明では、基本的に、転炉で溶製された未脱酸の溶鋼を取鍋に出鋼した後、出鋼された溶鋼を、AlまたはAl−Siにより脱酸することによってAlキルド鋼またはAl−Siキルド鋼を製造する。
1. Outline of the present invention In the present invention, basically, after undeoxidized molten steel produced in a converter is tapped into a ladle, the tapped molten steel is deoxidized with Al or Al-Si. Produces Al-killed steel or Al-Si-killed steel.

この際、酸素を含有する成分調整用合金を、取鍋への出鋼中または出鋼後であって、AlまたはAl−Siによる脱酸の前の溶存酸素量が50ppm以上の溶鋼に投入するとともにAlまたはAl−Siによる脱酸の後の溶鋼に投入する。なお、溶鋼の溶存酸素量は、500ppm以下であることが好ましい。   At this time, the oxygen-containing component adjusting alloy is introduced into molten steel having a dissolved oxygen amount of 50 ppm or more during or after tapping into a ladle and before deoxidation by Al or Al-Si. Together with the molten steel after deoxidation by Al or Al-Si. It is preferable that the amount of dissolved oxygen in the molten steel is 500 ppm or less.

さらに、AlまたはAl−Siにより脱酸され、かつその後に成分調整用合金を投入した後に、1種以上のREM(希土類元素)を添加する。そして、REMを添加した溶鋼を、均一混合時間τの2.0〜10倍の時間にわたり攪拌することにより、REMにより取鍋内スラグを還元する。   Further, after being deoxidized by Al or Al-Si, and then charged with a component adjusting alloy, one or more REMs (rare earth elements) are added. Then, the slag in the ladle is reduced by the REM by stirring the molten steel to which the REM is added for 2.0 to 10 times the uniform mixing time τ.

ここで、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称である。これらの17元素のうちの1種以上を鋼材に含有することができ、REM含有量は、これらの元素の合計含有量を意味する。   Here, REM is a collective term for 17 elements of Y and Sc combined with 15 elements of lanthanoid. One or more of these 17 elements can be contained in the steel material, and the REM content means the total content of these elements.

本発明では、成分調整用合金とREMは、例えば、以下に示す投入順序で溶鋼に投入される。
(i)転炉 未脱酸溶鋼(成分調整用合金、REMのいずれも未投入)
(ii)転炉またはRH真空脱ガス装置(脱酸前成分調整用合金投入)
(iii)RH真空脱ガス装置(AlまたはAl−Si脱酸→脱酸後成分調整用合金投入→REM合金投入
In the present invention, the component adjusting alloy and the REM are charged into molten steel in the following charging order, for example.
(I) Converter Non-deoxidized molten steel (All alloys for component adjustment and REM are not charged)
(Ii) Converter or RH vacuum degassing equipment (injecting alloy for component adjustment before deoxidation)
(Iii) RH vacuum degassing device (Al or Al-Si deoxidation → Input of alloy for component adjustment after deoxidation → Input of REM alloy

これにより、アルミナクラスターに起因した介在物欠陥の発生を、現在要求される程度まで十分に低減しながら、溶鋼を製造できるようになる。   This makes it possible to produce molten steel while sufficiently reducing the occurrence of inclusion defects due to alumina clusters to the extent currently required.

さらに、REMとスラグの接触性を高め、スラグの溶鋼側界面を優先して改質できるため、大量のスラグ改質材を用いることなく、低コストでスラグを改質できる。   Further, since the contact between the REM and the slag can be enhanced and the interface of the slag on the molten steel side can be preferentially reformed, the slag can be reformed at low cost without using a large amount of slag reforming material.

このため、本発明により、鋼の清浄性、靭性さらには表面品位の向上と、連続鋳造時のノズル詰まりの抑制を図ることができる。   Therefore, according to the present invention, it is possible to improve the cleanliness and toughness of the steel, as well as the surface quality, and to suppress nozzle clogging during continuous casting.

2.成分調整用合金
本発明では、取鍋への出鋼中または出鋼後であって、かつAlまたはAl−Siによる脱酸前および脱酸後に、酸素を含有する成分調整用合金を溶鋼に投入する。酸素を含有する成分調整用合金の溶鋼への投入タイミングを、従来のAlまたはAl−Siによる脱酸後だけではなく、取鍋への出鋼中または出鋼後であってAlまたはAl−Siによる脱酸前および脱酸後に変更する。
2. In the present invention, during or after tapping into a ladle, and before and after deoxidation by Al or Al-Si, a component-adjusting alloy containing oxygen is added to molten steel. I do. The injection timing of the oxygen-containing component adjusting alloy into molten steel is determined not only after deoxidation by conventional Al or Al-Si, but also during or after tapping into a ladle. Before and after deoxidation.

本発明では、AlまたはAl−Siによる脱酸前に投入される成分調整用合金から、溶存酸素量が50ppm以上の溶鋼に持ち込まれる脱酸前持込み酸素量(ppm)と、AlまたはAl−Siによる脱酸後に投入される成分調整用合金から溶鋼に持ち込まれる脱酸後持込み酸素量(ppm)との比率(脱酸前持込み酸素量/脱酸後持込み酸素量)を2以上にする。また、前記比率は、好ましくは、2.5以上、130以下である。   In the present invention, from the alloy for component adjustment introduced before deoxidation by Al or Al-Si, the amount of oxygen (ppm) carried before deoxidation brought into the molten steel having a dissolved oxygen amount of 50 ppm or more; The ratio (the amount of oxygen carried before deoxidation / the amount of oxygen carried after deoxidation) with respect to the amount of oxygen carried after deoxidation (ppm) carried into the molten steel from the alloy for component adjustment introduced after the deoxidation is set to 2 or more. Further, the ratio is preferably 2.5 or more and 130 or less.

なお、持込み酸素量(脱酸前持込み酸素量、脱酸後持込み酸素量)は、各成分調整用合金からの持込み酸素量(質量ppm)を、成分調整用合金投入量(kg)×当該成分調整用合金中酸素濃度(%)/100/溶鋼量(kg)×10により求め、全ての成分調整用合金からの持込み酸素量を合計して求めることができる。さらに、本発明では、脱酸後持込み酸素量を10ppm以下にし、好ましくは、0.2ppm以上、5ppm以下である。 The amount of oxygen brought in (the amount of oxygen brought in before deoxidation and the amount of oxygen brought in after deoxidation) is calculated by dividing the amount of oxygen brought in from each alloy for component adjustment (mass ppm) by the input amount of alloy for component adjustment (kg) x the relevant component It can be obtained from oxygen concentration (%) in adjustment alloy / 100 / amount of molten steel (kg) × 10 6 , and can be obtained by summing up the amount of oxygen brought in from all the component adjustment alloys. Further, in the present invention, the amount of oxygen brought in after deoxidation is set to 10 ppm or less, preferably 0.2 ppm or more and 5 ppm or less.

これにより、Alおよび液体のFeOが溶鋼中で同時に発生することを防止でき、アルミナクラスターの発生を防ぐことができる。このため、アルミナクラスターによる介在物欠陥を、現在要求される品質レベルまで十分に低減しながら、溶鋼を製造することができる。 Thereby, it is possible to prevent Al 2 O 3 and liquid FeO from being simultaneously generated in the molten steel, and to prevent generation of alumina clusters. Therefore, molten steel can be produced while sufficiently reducing inclusion defects due to alumina clusters to the currently required quality level.

本発明では、脱酸前持込み酸素量と脱酸後持込み酸素量との合計が15ppm以上とする。脱酸前持込み酸素量と脱酸後持込み酸素量との合計の持込み酸素量が15ppm未満であると、Alおよび液体のFeOが少量しか発生せず、酸素を含有する成分調整用合金を溶鋼に投入することの弊害が発生しないからである。なお、合計の持込み酸素量は、好ましくは、170ppm以下である。 In the present invention, the total of the amount of oxygen brought in before deoxidation and the amount of oxygen brought in after deoxidation is 15 ppm or more. When the total amount of oxygen brought in before the deoxidation and the amount of oxygen brought in after the deoxidation is less than 15 ppm, only a small amount of Al 2 O 3 and liquid FeO is generated, and the oxygen-containing component adjusting alloy is used. This is because there is no adverse effect caused by charging the molten steel into the molten steel. The total amount of oxygen carried is preferably 170 ppm or less.

成分調整用合金の溶鋼への投入タイミングは、取鍋への出鋼中または出鋼後であって、かつAlまたはAl−Siによる脱酸前および脱酸後であれば、特に制限されない。しかし、AlまたはAl−Siによる脱酸よりできるだけ前のタイミング、例えば取鍋への出鋼直後に投入すれば、AlまたはAl−Siによる脱酸前に一旦生成した液体FeOを確実に溶鋼中に溶解できるために、好ましい。   The timing of charging the component adjusting alloy to molten steel is not particularly limited as long as it is during or after tapping into the ladle and before and after deoxidation with Al or Al-Si. However, if it is charged as soon as possible before deoxidation by Al or Al-Si, for example, immediately after tapping into a ladle, liquid FeO once formed before deoxidation by Al or Al-Si is surely introduced into molten steel. It is preferable because it can be dissolved.

酸素を含有する成分調整用合金としては、MeMn、MeTi、MeCu、MeNi、FeMn、FeP、FeTi、FeS、FeSi、FeCr、FeMo、FeBおよびFeNbから選択される1種以上の組み合わせが例示される。   Examples of the alloy for adjusting components containing oxygen include one or more combinations selected from MeMn, MeTi, MeCu, MeNi, FeMn, FeP, FeTi, FeS, FeSi, FeCr, FeMo, FeB and FeNb.

各成分調整用合金の酸素濃度としては、MeMn:0.5%程度、MeTi:0.2%程度、MeCu:0.04%程度、MeNi:0.002%程度、FeMn:0.4%程度、FeP:1.5%程度、FeTi:1.3%程度、FeS:6.5%程度、FeSi:0.4%程度、FeCr:0.1%程度、FeMo0.01%程度、FeB:0.4%程度、FeNb:0.03%程度が例示される。   As the oxygen concentration of each component adjusting alloy, MeMn: about 0.5%, MeTi: about 0.2%, MeCu: about 0.04%, MeNi: about 0.002%, FeMn: about 0.4% , FeP: about 1.5%, FeTi: about 1.3%, FeS: about 6.5%, FeSi: about 0.4%, FeCr: about 0.1%, FeMo: about 0.01%, FeB: 0 About 0.4% and about 0.03% of FeNb.

3.REM
図1は、本発明によりAl脱酸またはAl−Si脱酸された溶鋼2にREM3を添加する状況を示す説明図である。
3. REM
FIG. 1 is an explanatory diagram showing a situation in which REM 3 is added to molten steel 2 that has been Al deoxidized or Al—Si deoxidized according to the present invention.

図1に示すように、本発明では、溶鋼鍋1中のAl脱酸またはAl−Si脱酸された溶鋼2に、成分調整用合金が投入された後に、1種以上のREM3が添加され、スラグ4の改質が行われる。なお、本発明におけるREMとは、上述したように、ランタノイドの15元素にYおよびScを合わせた17元素の総称を意味する。   As shown in FIG. 1, in the present invention, one or more REMs 3 are added to the Al-deoxidized or Al-Si-deoxidized molten steel 2 in the molten steel ladle 1 after the alloy for component adjustment is added, The slag 4 is reformed. As described above, REM in the present invention means a general term for 17 elements in which Y and Sc are combined with 15 elements of lanthanoid.

本実施形態では、溶鋼鍋1中の溶鋼2はRH真空脱ガス装置5により攪拌処理されている。しかし、溶鋼2の攪拌方法は図1に示すRH真空脱ガス装置5の他に、CAS(成分微調整設備)、BB(ボトムバブリング)などの手段を用いることができる。これらを用いることにより添加した合金の均一撹拌が可能になる。   In the present embodiment, the molten steel 2 in the molten steel ladle 1 is agitated by the RH vacuum degassing device 5. However, as a method of stirring the molten steel 2, in addition to the RH vacuum degassing device 5 shown in FIG. 1, means such as CAS (component fine adjustment equipment) and BB (bottom bubbling) can be used. By using these, uniform stirring of the added alloy becomes possible.

溶鋼2中に通常の合金成分を添加した場合には、均一混合時間τに相当する時間だけ攪拌を行うのが普通である。この均一混合時間τは、溶鋼中に添加した、通常はS、場合によってはCu等をトレーサーとして、トレーサーの濃度が平衡濃度の±5%に達した時間として定義される。   When a normal alloy component is added to the molten steel 2, it is usual to perform stirring for a time corresponding to the uniform mixing time τ. The uniform mixing time τ is defined as the time when the concentration of the tracer reaches ± 5% of the equilibrium concentration when the tracer concentration is added to the molten steel, usually with S as the tracer in some cases.

しかし、本発明では、REM3を溶鋼2中に均一分散させることが目的ではないので、添加した後の攪拌時間は、均一混合時間τの2.0〜10倍の時間とする。Sをトレーサーとする理由は、Sは通常FeS合金として投入され、密度が溶鋼と同程度であるため、密度差による浮上や沈降の影響がなく、より正確に均一混合時間を推定できるからである。   However, in the present invention, since the purpose is not to uniformly disperse the REM 3 in the molten steel 2, the stirring time after the addition is 2.0 to 10 times the uniform mixing time τ. The reason why S is used as a tracer is that S is usually introduced as an FeS alloy and has a density similar to that of molten steel, so that there is no influence of floating or sedimentation due to a difference in density, and a uniform mixing time can be estimated more accurately. .

このように、REM3の添加後に長時間の攪拌を行うことにより、REM3は溶鋼2の表面のスラグ4と接触し、3MO+2R→R+3Mの反応式(ただしM:Fe,Mn、R:各REM元素)に従って、スラグ4中のFeOやMnOを還元し、スラグ4を改質する。 Thus, by performing a prolonged agitation after addition of REM3, REM3 is in contact with the slag 4 of the surface of the molten steel 2, 3MO + 2R → R 2 O 3 + 3M reaction scheme (where M: Fe, Mn, R: According to each REM element), the slag 4 is reformed by reducing FeO and MnO in the slag 4.

このように、溶鋼2中に添加したREM3によってスラグ4の改質を行わせるために、均一混合時間τの2.0倍以上の時間にわたり攪拌を継続する。   In this way, in order to modify the slag 4 by the REM 3 added to the molten steel 2, the stirring is continued for 2.0 times or more of the uniform mixing time τ.

図2は、攪拌時間によるスラグ酸化度の変化を示すグラフである。図2のグラフに示すように、攪拌時間が均一混合時間τの2.0〜10倍の範囲でスラグ酸化度が最も低下することが分る。攪拌時間が長過ぎると、溶鋼2の温度の低下が著しくなるだけでなく、溶鋼鍋1などの耐火物の溶損も生じ易いために製造コストが嵩む。   FIG. 2 is a graph showing a change in the degree of slag oxidation with stirring time. As shown in the graph of FIG. 2, it can be seen that the degree of slag oxidation decreases most when the stirring time is 2.0 to 10 times the uniform mixing time τ. If the stirring time is too long, not only does the temperature of the molten steel 2 drop significantly, but also the refractory such as the molten steel pot 1 is liable to be damaged, thereby increasing the production cost.

ここで、図3は、脱酸元素濃度とスラグ酸化度指数との関係を示すグラフであり、図4は、図3のグラフの原点付近を拡大して示すグラフである。   Here, FIG. 3 is a graph showing the relationship between the deoxidizing element concentration and the slag oxidation degree index, and FIG. 4 is a graph showing the vicinity of the origin of the graph of FIG. 3 in an enlarged manner.

溶鋼の脱酸元素としてはAlが一般的である。しかし、図3,4のグラフに示すように、REM(図3および4中ではCe)はAlに比較して非常に微量で優れた脱酸効果を示す。図3,4のグラフの縦軸はスラグ酸化度指数であり、スラグ中のFeO、MnO等の低級酸化物の濃度を指数化して示す。   Al is generally used as a deoxidizing element for molten steel. However, as shown in the graphs of FIGS. 3 and 4, REM (Ce in FIGS. 3 and 4) shows an excellent deoxidizing effect in a very small amount as compared with Al. The vertical axis of the graphs of FIGS. 3 and 4 is the slag oxidation degree index, which indicates the concentration of lower oxides such as FeO and MnO in the slag as an index.

すなわち、溶鋼中のスラグ酸化度指数を例えば6にするには、脱酸元素としてAlを用いる場合には図3のグラフに示すようにAl濃度を500ppmにする必要があるが、脱酸元素としてREMの一種であるCeを用いる場合には図4のグラフに示すようにCe濃度を3ppmにすればよく、添加量を非常に低減できる。このため、本発明では、脱酸元素であるREM3の添加量を、従来に比較して極微量にできる。   That is, in order to set the slag oxidation degree index in molten steel to, for example, 6, when Al is used as the deoxidizing element, the Al concentration needs to be 500 ppm as shown in the graph of FIG. When Ce, which is a kind of REM, is used, the Ce concentration may be set to 3 ppm as shown in the graph of FIG. 4, and the amount of addition can be greatly reduced. Therefore, in the present invention, the amount of REM3, which is a deoxidizing element, can be reduced to a very small amount as compared with the conventional case.

また、本発明によれば、従来のようにスラグ4の上面からスラグ改質材を投入するのではなく、溶鋼2との接触によりスラグ改質が行われる。このため、鋼の性状に影響を与えるスラグ4の溶鋼側界面を優先して改質できる。この点からもスラグ改質材の過剰投入が不要になる。   Further, according to the present invention, the slag reforming is performed by contact with the molten steel 2, instead of introducing the slag reforming material from the upper surface of the slag 4 as in the related art. Therefore, it is possible to preferentially modify the interface of the slag 4 on the molten steel side which affects the properties of the steel. From this point, too much slag reforming material is not required.

4.本発明により製造されるAlキルド鋼またはAl−Siキルド鋼の化学組成
本発明により製造されるAlキルド鋼またはAl−Siキルド鋼の化学組成は、C:0.0005〜1.5%、Si:0.005〜1.2%、Mn:0.05〜3.0%、P:0.001〜0.2%、S:0.0001〜0.05%、T.Al:0.005〜1.5%、Cu:0〜1.5%、Ni:0〜10.0%、Cr:0〜10.0%、Mo:0〜1.5%、Nb:0〜0.1%、V:0〜0.3%、Ti:0〜0.25%、B:0〜0.005%、REM:0.1〜20ppm、T.O:5〜50ppm、残部がFeおよび不純物である化学組成を有する炭素鋼または合金鋼であることが好ましい。鋼に必要な加工を加えることにより、薄板、厚板、鋼管、形鋼、棒鋼等へ適用できる。この範囲が好ましい理由は以下の通りである。
4. Chemical composition of Al-killed steel or Al-Si-killed steel manufactured according to the present invention The chemical composition of Al-killed steel or Al-Si-killed steel manufactured according to the present invention is C: 0.0005 to 1.5%, Si : 0.005 to 1.2%, Mn: 0.05 to 3.0%, P: 0.001 to 0.2%, S: 0.0001 to 0.05%, T.P. Al: 0.005 to 1.5%, Cu: 0 to 1.5%, Ni: 0 to 10.0%, Cr: 0 to 10.0%, Mo: 0 to 1.5%, Nb: 0 0.1%, V: 0 to 0.3%, Ti: 0 to 0.25%, B: 0 to 0.005%, REM: 0.1 to 20 ppm, T.O. O: 5 to 50 ppm, the balance is preferably carbon steel or alloy steel having a chemical composition of Fe and impurities. By applying necessary processing to steel, it can be applied to thin plates, thick plates, steel pipes, shaped steels, steel bars, and the like. The reason why this range is preferable is as follows.

C:0.0005〜1.5%
Cは、鋼の強度を最も安定して向上させる基本的な元素である。C含有量は、鋼の強度または硬度の確保のためには好ましくは0.0005%以上である。しかし、C含有量が1.5%を超えると鋼の靭性が損なわれる。このため、C含有量は、所望する材料の強度に応じて好ましくは0.0005〜1.5%の範囲で調整する。
C: 0.0005 to 1.5%
C is a basic element that most stably improves the strength of steel. The C content is preferably 0.0005% or more for securing the strength or hardness of the steel. However, if the C content exceeds 1.5%, the toughness of the steel is impaired. Therefore, the C content is preferably adjusted in the range of 0.0005 to 1.5% according to the desired strength of the material.

Si:0.005〜1.2%
Si含有量が0.005%未満であると、溶銑予備処理を行う必要が生じ、精錬に大きな負担をかけ経済性が損なわれる。一方、Si含有量が1.2%を超えると、メッキ不良が発生し、鋼の表面性状や耐食性が劣化する。このため、Si含有量は好ましくは0.005〜1.2%である。
Si: 0.005 to 1.2%
If the Si content is less than 0.005%, it becomes necessary to perform hot metal pretreatment, which imposes a heavy burden on refining and impairs economic efficiency. On the other hand, if the Si content exceeds 1.2%, plating failure occurs, and the surface properties and corrosion resistance of the steel deteriorate. For this reason, the Si content is preferably 0.005 to 1.2%.

Mn:0.05〜3.0%
Mn含有量が0.05%未満であると、精錬時間が長くなって経済性が損なわれる。一方、Mn含有量が3.0%を超えると、鋼の加工性が大きく劣化する。このため、Mn含有量は、好ましくは0.05〜3.0%である。
Mn: 0.05-3.0%
When the Mn content is less than 0.05%, the refining time is prolonged, and the economic efficiency is impaired. On the other hand, if the Mn content exceeds 3.0%, the workability of the steel is greatly deteriorated. Therefore, the Mn content is preferably 0.05 to 3.0%.

P:0.001〜0.2%
P含有量が0.001%未満であると、溶銑予備処理の時間およびコストが増加し経済性が損なわれる。一方、P含有量が0.2%を超えると、鋼の加工性が大きく劣化する。このため、P含有量は好ましくは0.001〜0.2%である。
P: 0.001 to 0.2%
If the P content is less than 0.001%, the time and cost of hot metal pretreatment increase, and economic efficiency is impaired. On the other hand, if the P content exceeds 0.2%, the workability of the steel is significantly deteriorated. For this reason, the P content is preferably 0.001 to 0.2%.

S:0.0001〜0.05%
S含有量が0.0001%未満であると、溶銑予備処理の時間およびコストがかかり経済性が損なわれる。一方、S含有量が0.05%を超えると、鋼の加工性および耐食性が大きく劣化する。このため、S含有量は好ましくは0.0001〜0.05%である。
S: 0.0001-0.05%
If the S content is less than 0.0001%, the time and cost for hot metal pretreatment are increased, and the economy is impaired. On the other hand, if the S content exceeds 0.05%, the workability and corrosion resistance of steel are significantly deteriorated. For this reason, the S content is preferably 0.0001 to 0.05%.

T.Al:0.005〜1.5%
Alは、材質に影響する固溶Al(sol.Al)量と、介在物であるAlに由来するAl(insol.Al)量の合計量である溶鋼中の全Al量T.Al=sol.Al+insol.Alを意味する。
T. Al: 0.005 to 1.5%
Al is the total amount of Al in the molten steel, which is the total amount of solid solution Al (sol. Al) affecting the material and the amount of Al (insol. Al) derived from Al 2 O 3 as inclusions. Al = sol. Al + insol. It means Al.

T.Al量が0.005%未満であると、AlNとしてNをトラップして固溶Nを減少させることができない。一方、T.Al量が1.5%を超えると、鋼の表面性状と加工性が劣化する。このため、T.Al量は好ましくは0.005〜1.5%である。   T. If the Al amount is less than 0.005%, N cannot be trapped as AlN to reduce solid solution N. On the other hand, T. If the Al content exceeds 1.5%, the surface properties and workability of the steel deteriorate. For this reason, T. The amount of Al is preferably 0.005 to 1.5%.

上記の例示鋼では、これらの必須元素の他にそれぞれの用途に応じて、任意元素として、(i)Cu、Ni、CrおよびMoから選択される1種以上、(ii)Nb、VおよびTiから選択される1種以上、および(iii)B、を含有してもよい。   In the above exemplified steels, in addition to these essential elements, depending on the intended use, (i) one or more elements selected from Cu, Ni, Cr and Mo, and (ii) Nb, V and Ti And (iii) B.

Cu:0〜1.5%、Ni:0〜10.0%、Cr:0〜10.0%、およびMo:0〜1.5%から選択される1種以上
Cu、Ni、Cr、Moは、いずれも、鋼の焼入れ性を向上させる元素であり、前記元素から選択される1種以上を必要に応じて含有させてもよい。
One or more selected from Cu: 0 to 1.5%, Ni: 0 to 10.0%, Cr: 0 to 10.0%, and Mo: 0 to 1.5% Cu, Ni, Cr, Mo Are elements that improve the hardenability of steel, and one or more elements selected from the above elements may be contained as necessary.

しかし、CuおよびMoは1.5%を超えて、NiおよびCrは10.0%を超えて、それぞれ含有すると、鋼の靭性および加工性が損なわれる。このため、好ましくはCu:1.5%以下、Ni:10.0%以下、Cr:10.0%以下、Mo:1.5%以下である。   However, if Cu and Mo exceed 1.5% and Ni and Cr exceed 10.0%, respectively, the toughness and workability of the steel are impaired. Therefore, Cu is preferably 1.5% or less, Ni is 10.0% or less, Cr is 10.0% or less, and Mo is 1.5% or less.

鋼の焼入れ性の向上効果を確実に得るためには、Cu含有量、Ni含有量およびCr含有量は、それぞれ好ましくは0.1%以上であり、また、Mo含有量は好ましくは0.05%以上である。   In order to reliably obtain the effect of improving the hardenability of steel, the Cu content, the Ni content and the Cr content are each preferably 0.1% or more, and the Mo content is preferably 0.05% or more. % Or more.

Nb:0〜0.1%、V:0〜0.3%、およびTi:0〜0.25%から選択される1種以上
Nb、V、Tiは、いずれも、析出強化により鋼の強度を向上させる元素であり、必要に応じて1種以上を含有させてもよい。
One or more types selected from Nb: 0 to 0.1%, V: 0 to 0.3%, and Ti: 0 to 0.25% All of Nb, V, and Ti are steel strengths due to precipitation strengthening. And may contain one or more kinds as necessary.

しかし、Nbは0.1%を超えて、Vは0.3%を超えて、Tiは0.25%を超えて、それぞれ含有すると、鋼の靭性が損なわれる。このため、好ましくはNb:0.1%以下、V:0.3%以下、Ti:0.25%以下である。鋼の強度を向上する効果を確実に得るためには、Nb含有量およびV含有量はそれぞれ好ましくは0.005%以上であり、Ti含有量は好ましくは0.001%以上である。   However, if Nb exceeds 0.1%, V exceeds 0.3%, and Ti exceeds 0.25%, the toughness of the steel is impaired. Therefore, Nb: preferably 0.1% or less, V: 0.3% or less, and Ti: 0.25% or less. In order to surely obtain the effect of improving the strength of steel, the Nb content and the V content are each preferably 0.005% or more, and the Ti content is preferably 0.001% or more.

B:0〜0.005%
Bは、鋼の焼入れ性を向上させ、鋼の強度を高める元素である。このため、必要に応じて含有させてもよい。しかし、B含有量が0.005%を超えると、Bの析出物が増加し、靭性を損なうおそれがある。このため、B含有量は好ましくは0.005%以下である。鋼の焼入れ性の向上効果を確実に得るためには、B含有量はより好ましくは0.0005%以上である。
B: 0 to 0.005%
B is an element that improves the hardenability of the steel and increases the strength of the steel. For this reason, you may make it contain as needed. However, when the B content exceeds 0.005%, the precipitates of B increase, and the toughness may be impaired. Therefore, the B content is preferably 0.005% or less. In order to reliably obtain the effect of improving the hardenability of steel, the B content is more preferably 0.0005% or more.

REM:0.1〜20ppm
REM含有量が0.1ppm未満であると、アルミナ粒子のクラスター化の防止効果が得られないためであり、一方、REM含有量が20ppm超であると、REM酸化物とAlの複合酸化物からなる粗大クラスターが生成する恐れがあること、また、スラグとの反応によって複合酸化物が多量に生成するため、溶鋼清浄性が悪化し、タンディッシュの浸漬ノズルを閉塞させる可能性があるためである。このため、REM含有量は好ましくは0.1〜20ppmとする。REM含有量は15ppm以下であるのがより好ましい。
REM: 0.1-20 ppm
If the REM content is less than 0.1 ppm, the effect of preventing the clustering of alumina particles cannot be obtained, while if the REM content is more than 20 ppm, the composite of REM oxide and Al 2 O 3 There is a risk that coarse clusters composed of oxides may be generated, and a large amount of complex oxides may be generated by reaction with slag, which may deteriorate the cleanliness of molten steel and block the tundish immersion nozzle. That's why. For this reason, the REM content is preferably set to 0.1 to 20 ppm. More preferably, the REM content is 15 ppm or less.

T.O:5〜50ppm
本発明では、O含有量について材質に影響する固溶O(sol.O)量と、介在物に存在するO(insol.O)量の合計量である、O量をT.O(Total.O)として規定する。Alキルド鋼またはAl−Siキルド鋼のT.Oが5ppm未満では二次精錬、例えばRHでの処理時間が大幅に増大するため、コストがかかり経済性も損ねる。一方、T.Oが50ppm超であるとアルミナ粒子の衝突頻度が増加するため、クラスターが粗大化する場合があるためである。また、アルミナの改質に必要なREMの添加量が増大するため、コストがかかり経済性も損ねる。このため、T.Oは好ましくは5〜50ppmとする。
T. O: 5 to 50 ppm
In the present invention, the O content, which is the total amount of the solid solution O (sol. O) that affects the material with respect to the O content and the O (insol. O (Total.O). T. of Al killed steel or Al-Si killed steel When O is less than 5 ppm, the processing time in secondary refining, for example, in RH, is significantly increased, so that cost is increased and economy is impaired. On the other hand, T. If O is more than 50 ppm, the frequency of collision of the alumina particles increases, and the clusters may become coarse. Further, since the amount of REM required for reforming alumina increases, the cost increases and the economy is impaired. For this reason, T. O is preferably 5 to 50 ppm.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

270トンの転炉で溶製された未脱酸の溶鋼を、取鍋に出鋼した後、出鋼された溶鋼を、RH真空脱ガス装置においてAlまたはAl−Siにより脱酸することによってAlキルド鋼またはAl−Siキルド鋼を溶製した。   After undeoxidized molten steel melted in a 270 ton converter is tapped into a ladle, the tapped molten steel is deoxidized with Al or Al-Si in an RH vacuum degassing apparatus to remove Al. Killed steel or Al-Si killed steel was produced.

この際、取鍋への出鋼中または出鋼後であって、かつAlまたはAl−Siによる脱酸前の溶存酸素量を有する溶鋼、および脱酸後の溶鋼に、酸素を含有する成分調整用合金を投入した。表1に投入した成分調整用合金の合金濃度および酸素濃度を示す。   At this time, the molten steel having a dissolved oxygen amount during or after tapping into the ladle and before the deoxidation by Al or Al-Si, and the molten steel after deoxidation, to adjust the composition containing oxygen. Alloys were put in. Table 1 shows the alloy concentration and the oxygen concentration of the component adjusting alloys charged.

Figure 2020002412
Figure 2020002412

表2〜4に、合金投入条件(溶存酸素量,投入タイミング(未脱酸時の出鋼開始からの経過時間))、投入合金種(脱酸前、脱酸後)、持込み酸素量(脱酸前持込み酸素量、脱酸後持込み酸素量)、比率(脱酸前持込み酸素量/脱酸後持込み酸素量)、脱酸前持込み酸素量と脱酸後持込み酸素量との合計)を示す。また、図5に、脱酸前持込み酸素量と脱酸後持込み酸素量との関係をグラフで示す。   Tables 2 to 4 show alloy input conditions (dissolved oxygen amount, input timing (elapsed time from start of tapping when not deoxidized)), input alloy type (before and after deoxidation), and carried-in oxygen amount (deoxidized amount). Shows the amount of oxygen brought in before acid, the amount of oxygen brought in after deoxidation), the ratio (the amount of oxygen brought in before deoxidation / the amount of oxygen brought in after deoxidation), and the sum of the amount of oxygen brought in before deoxidation and the amount of oxygen brought in after deoxidation. . FIG. 5 is a graph showing the relationship between the amount of oxygen brought in before deoxidation and the amount of oxygen brought in after deoxidation.

Figure 2020002412
Figure 2020002412

Figure 2020002412
Figure 2020002412

Figure 2020002412
Figure 2020002412

表2〜4における「合金投入条件」は、脱酸前と脱酸後の比較で持ち込み酸素量が多い合金の投入条件を示す。   The “alloy loading conditions” in Tables 2 to 4 show the loading conditions of alloys with a large amount of oxygen brought in before and after deoxidation.

なお、持込み酸素量(脱酸前持込み酸素量、脱酸後持込み酸素量)は、各成分調整用合金からの持込み酸素量(質量ppm)を、成分調整用合金投入量(kg)×当該成分調整用合金中酸素濃度(%)/100/溶鋼量(kg)×10により求め、全ての成分調整用合金からの持込み酸素量を合計して求めた。 The amount of oxygen brought in (the amount of oxygen brought in before deoxidation and the amount of oxygen brought in after deoxidation) is calculated by dividing the amount of oxygen brought in from each alloy for component adjustment (mass ppm) by the input amount of alloy for component adjustment (kg) x the relevant component The oxygen content in the alloy for adjustment (%) / 100 / the amount of molten steel (kg) × 10 6 was obtained, and the total amount of oxygen brought in from all the alloys for component adjustment was obtained.

また、図1に示した溶鋼鍋1内のAlまたはAl−Si脱酸した1600℃の極低炭素鋼の溶鋼に成分調整用合金を投入した後に、表5〜7に示す添加量でREM合金またはAl(REM合金は40%Fe−30%Si−15%Ce−9%La−4.5%Nd−1.5%Pr、AlはショットAlで92%Al−2%Si−1.5%Fe−2%Zn)を添加し、RH真空脱ガス装置により攪拌した。表5〜7に「REM/Al投入後の撹拌時間/均一混合時間τ」を併せて示す。なお、上記の「REM/Al」は「REM合金またはAl」を意味する。   Further, after the alloy for component adjustment was introduced into the molten steel of 1600 ° C. ultra-low carbon steel deoxidized at Al or Al-Si in the molten steel pot 1 shown in FIG. Or Al (REM alloy is 40% Fe-30% Si-15% Ce-9% La-4.5% Nd-1.5% Pr, Al is shot Al and 92% Al-2% Si-1.5 % Fe-2% Zn) and stirred with a RH vacuum degasser. Tables 5 to 7 also show "REM / stirring time after Al introduction / uniform mixing time [tau]". The above “REM / Al” means “REM alloy or Al”.

溶製されたAlまたはAl−Siキルド鋼の溶鋼を垂直曲げ型連続鋳造機により連続鋳造し、連続鋳造鋳片を製造した。その後、連続鋳造鋳片に、(a)熱間圧延および酸洗を行って、表5〜7に示す化学組成を有する厚板を製造し、(b)熱間圧延、酸洗および冷間圧延を行って、表5〜7に示す化学組成を有する薄板を製造し、または(c)熱間圧延および酸洗を行って製造した厚板を素材として、表5〜7に示す化学組成を有する溶接鋼管を製造した。熱間圧延後の板厚は2〜100mmとし、冷間圧延後の板厚は0.2〜1.8mmとした。   The molten steel of the smelted Al or Al-Si killed steel was continuously cast by a vertical bending type continuous casting machine to produce a continuously cast slab. Thereafter, the continuous cast slab is subjected to (a) hot rolling and pickling to produce a thick plate having a chemical composition shown in Tables 5 to 7, and (b) hot rolling, pickling and cold rolling. To produce a thin plate having the chemical composition shown in Tables 5 to 7, or (c) using a thick plate produced by performing hot rolling and pickling as a material and having a chemical composition shown in Tables 5 to 7 Welded steel pipe was manufactured. The thickness after hot rolling was 2 to 100 mm, and the thickness after cold rolling was 0.2 to 1.8 mm.

表5〜7における「鋼の成分」の欄におけるREMは、各REM元素の合計含有量を示す。表5〜7における「濃度/平衡濃度×100%」は、濃度/平均濃度の絶対値×100(%)を示す。さらに、表5〜7における「T−Fe+MnO」は、溶鋼界面スラグ中のFeOおよびMnOの合計濃度を示す。   REM in the column of “Components of steel” in Tables 5 to 7 indicates the total content of each REM element. “Concentration / equilibrium concentration × 100%” in Tables 5 to 7 indicates the absolute value of the concentration / average concentration × 100 (%). Further, "T-Fe + MnO" in Tables 5 to 7 indicates the total concentration of FeO and MnO in the molten steel interface slag.

鋳片から採取したサンプルの最大クラスター径、クラスター個数、欠陥発生率およびノズル閉塞状況等を、表5〜7に示す。   Tables 5 to 7 show the maximum cluster diameter, the number of clusters, the defect occurrence rate, the state of nozzle clogging, and the like of the sample collected from the slab.

Figure 2020002412
Figure 2020002412

Figure 2020002412
Figure 2020002412

Figure 2020002412
Figure 2020002412

表5〜7における「最大クラスター径」は、質量1kgの鋳片からスライム電極抽出(最小メッシュ20μmを使用)した介在物を実体顕微鏡で写真撮影(40倍)し、写真撮影した介在物の長径と短径の平均値を全ての介在物で求めてその平均値の最大値を最大介在物径とすることにより、測定した。   The “maximum cluster diameter” in Tables 5 to 7 means that the inclusions extracted from a slab having a mass of 1 kg (using a minimum mesh of 20 μm) were photographed with a stereoscopic microscope (× 40) and the major diameter of the photographed inclusions And the average value of the minor axis was determined for all the inclusions, and the maximum value of the average value was determined as the maximum inclusion diameter.

表5〜7における「クラスター個数」は、質量1kgのスライム電極抽出(最小メッシュ20μmを使用)した介在物であり、光学顕微鏡(100倍)で観察した20μm以上の全ての介在物個数を1kg単位個数に換算することにより、測定した。   The “number of clusters” in Tables 5 to 7 is inclusions extracted with a mass of 1 kg of slime electrode (using a minimum mesh of 20 μm), and the number of all inclusions having a size of 20 μm or more observed by an optical microscope (× 100) is represented by 1 kg. It was measured by converting to the number.

表5〜7における「欠陥発生率」は、薄板の場合には、板表面でのスリバー疵発生率(=スリバー疵総長/コイル長×100,%)であり、厚板の場合には、製品板でのUST欠陥発生率あるいはセパレーション発生率(=欠陥発生板数/検査総板数×100,%)であり、鋼管の場合には、油井管溶接部でのUST欠陥発生率(=欠陥発生管数/検査総管数×100,%)である。   The “defect generation rate” in Tables 5 to 7 is the sliver flaw generation rate on the plate surface (= sliver flaw total length / coil length × 100,%) in the case of a thin plate, and the product in the case of a thick plate. This is the UST defect occurrence rate or separation occurrence rate (= number of defective sheets / total number of inspected sheets × 100,%) in steel plates. In the case of steel pipes, the UST defect occurrence rate (= defect occurrence Number of tubes / total number of tubes x 100,%).

厚板の場合には、シャルピー試験後の破面観察でセパレーションの発生の有無を確認した。なお、表5〜7における厚板材の欠陥発生率では、欠陥がUST欠陥のときにはUSTと記載し、セパレーション欠陥のときにはSPRと記載した。   In the case of a thick plate, the presence or absence of separation was confirmed by fracture observation after the Charpy test. In addition, in the defect occurrence rate of the thick plate material in Tables 5 to 7, when the defect is a UST defect, it is described as UST, and when it is a separation defect, it is described as SPR.

表5〜7における衝撃吸収エネルギーは、−20℃での圧延方向における幅が10mmのVノッチシャルピー衝撃試験値であり、試験片5本の平均値である。表5〜7における「衝撃吸収エネルギー」は、−20℃での圧延方向におけるVノッチシャルピー衝撃試験値であり、試験片5本の平均値である。   The impact absorption energy in Tables 5 to 7 is a V-notch Charpy impact test value having a width of 10 mm in the rolling direction at −20 ° C., and is an average value of five test pieces. “Impact absorption energy” in Tables 5 to 7 is a V-notch Charpy impact test value in the rolling direction at −20 ° C., and is an average value of five test pieces.

表5〜7における「板厚方向絞り値」は、室温における製品板の板厚方向絞り値(=引張り試験後の破断部分の断面積/試験前の試験片断面積×100,%)である。
さらに、ノズル閉塞状況は、鋳造後に浸漬ノズルの内壁における介在物の付着厚みを測定することにより、円周方向10点の平均値からノズル閉塞状況を、○:付着厚さ1mm未満、△:付着厚さ1〜3mm、×:付着厚さ3mm超、とレベル分けした。
The “thickness value in the thickness direction” in Tables 5 to 7 is the thickness value in the thickness direction of the product sheet at room temperature (= cross-sectional area of fractured portion after tensile test / cross-sectional area of test specimen before test × 100,%).
Further, the nozzle clogging state was determined by measuring the thickness of the inclusions on the inner wall of the immersion nozzle after casting, and the nozzle clogging state was determined from the average value at 10 points in the circumferential direction. Thickness 1 to 3 mm, ×: adhering thickness more than 3 mm, were classified into levels.

表5におけるNo.A1〜A31は、本発明の範囲を全て満足する本発明例であり、表6におけるNo.B1〜B16は、比率(脱酸前持込み酸素量/脱酸後持込み酸素量)が本発明の範囲を満足しない比較例であり、表7におけるNo.C1、C3〜C5、C7、C9、C11、C13〜C14は、REM/Al投入後の撹拌時間/均一混合時間τが本発明の範囲を満足しない比較例、それ以外は、REM/Al投入後の撹拌時間/均一混合時間τは満足するがREM添加をしなかった比較例である。   No. 5 in Table 5. A1 to A31 are examples of the present invention satisfying all the scope of the present invention. B1 to B16 are comparative examples in which the ratio (the amount of oxygen carried in before deoxidation / the amount of oxygen carried in after deoxidation) does not satisfy the range of the present invention. C1, C3 to C5, C7, C9, C11, and C13 to C14 are comparative examples in which the stirring time / homogeneous mixing time τ after charging REM / Al does not satisfy the range of the present invention, and otherwise, after charging REM / Al. Is a comparative example in which the stirring time / uniform mixing time τ was satisfied but no REM was added.

表5〜7に示すように、本発明例によれば、酸素を含有する成分調整用合金をAl脱酸後のAlまたはAl−Si脱酸鋼に投入することに起因した、Alおよび液体のFeOの同時発生、およびアルミナクラスターの発生を防ぐことができ、これにより、アルミナクラスターに起因した介在物欠陥の発生を、現在要求される程度まで十分に低減しながら、溶鋼を製造でき、最終製品である鋼材における粗大アルミナクラスターに起因する表面疵や内部欠陥を低減できる。 As shown in Tables 5 to 7, according to the examples of the present invention, Al 2 O 3 caused by introducing an oxygen-containing component adjusting alloy into Al or Al—Si deoxidized steel after Al deoxidation. And the simultaneous generation of liquid FeO and the generation of alumina clusters, thereby making it possible to produce molten steel while sufficiently reducing the occurrence of inclusion defects caused by alumina clusters to the extent required today. In addition, surface flaws and internal defects due to coarse alumina clusters in the steel product as a final product can be reduced.

1 溶鋼鍋
2 溶鋼
3 REM
4 スラグ
5 RH真空脱ガス装置
1 Molten steel pot 2 Molten steel 3 REM
4 Slag 5 RH vacuum degassing device

Claims (8)

転炉で溶製された未脱酸の溶鋼を取鍋に出鋼した後、出鋼された溶鋼を、AlまたはAl−Siにより脱酸し、Alキルド鋼またはAl−Siキルド鋼を製造する方法であって、
酸素を含有する成分調整用合金を、前記取鍋への出鋼中または出鋼後であって、前記Alまたは前記Al−Siによる脱酸の前の溶存酸素量が50ppm以上の溶鋼に投入するとともに前記Alまたは前記Al−Siによる脱酸の後の溶鋼に投入し、
前記Alまたは前記Al−Siによる脱酸の前に投入される成分調整用合金から溶鋼に持ち込まれる脱酸前持込み酸素量(ppm)と、前記Alまたは前記Al−Siによる脱酸の後に投入される成分調整用合金から溶鋼に持ち込まれる脱酸後持込み酸素量(ppm)との比率(脱酸前持込み酸素量/脱酸後持込み酸素量)を2以上とし、
前記脱酸後持込み酸素量を10ppm以下とし、
脱酸前持込み酸素量と脱酸後持込み酸素量の合計を15ppm以上とするとともに、
前記AlまたはAl−Siにより脱酸され、その後に前記成分調整用合金を投入された溶鋼に、1種以上のREMを添加し、前記REMが添加された溶鋼を、均一混合時間の2.0〜10倍の時間にわたり攪拌する、鋼の製造方法。
After the undeoxidized molten steel melted in the converter is tapped into a ladle, the tapped molten steel is deoxidized with Al or Al-Si to produce Al-killed steel or Al-Si-killed steel. The method,
The oxygen-containing component adjusting alloy is introduced into molten steel having a dissolved oxygen amount of 50 ppm or more during or after tapping into the ladle and before deoxidation by the Al or the Al-Si. Together with the Al or the Al-Si into the molten steel after deoxidation,
The amount of oxygen (ppm) carried before deoxidation brought into the molten steel from the component adjusting alloy introduced before the deoxidation by Al or the Al-Si, and the oxygen introduced after deoxidation by the Al or Al-Si. The ratio of the amount of oxygen brought in after deoxidation (ppm) brought into the molten steel from the component adjusting alloy to the molten steel (the amount of oxygen brought in before deoxidation / the amount of oxygen brought in after deoxidation) is 2 or more,
The amount of oxygen brought in after the deoxidation is 10 ppm or less,
The total amount of oxygen brought in before and after deoxidation should be 15 ppm or more,
One or more REMs are added to the molten steel that has been deoxidized by the Al or Al-Si and then the alloy for component adjustment is added, and the molten steel to which the REMs are added is mixed for a uniform mixing time of 2.0%. A method for producing steel in which stirring is performed for 10 to 10 times.
前記成分調整用合金は、MeMn、MeTi、MeCu、MeNi、FeMn、FeP、FeTi、FeS、FeSi、FeCr、FeMo、FeB、およびFeNbから選択される1種以上である、請求項1に記載の鋼の製造方法。   The steel according to claim 1, wherein the component adjusting alloy is at least one selected from MeMn, MeTi, MeCu, MeNi, FeMn, FeP, FeTi, FeS, FeSi, FeCr, FeMo, FeB, and FeNb. Manufacturing method. 前記Alキルド鋼または前記Al−Siキルド鋼の化学組成が、質量%で、
C:0.0005〜1.5%、
Si:0.005〜1.2%、
Mn:0.05〜3.0%、
P:0.001〜0.2%、
S:0.0001〜0.05%、
T.Al:0.005〜1.5%、
Cu:0〜1.5%、
Ni:0〜10.0%、
Cr:0〜10.0%、
Mo:0〜1.5%、
Nb:0〜0.1%、
V:0〜0.3%、
Ti:0〜0.25%、
B:0〜0.005%、
REM:0.1〜20ppm、
T.O:5〜50ppm、
残部がFeおよび不純物である、請求項1または2に記載の鋼の製造方法。
The chemical composition of the Al-killed steel or the Al-Si-killed steel is, in mass%,
C: 0.0005 to 1.5%,
Si: 0.005 to 1.2%,
Mn: 0.05-3.0%,
P: 0.001-0.2%,
S: 0.0001-0.05%,
T. Al: 0.005 to 1.5%,
Cu: 0 to 1.5%,
Ni: 0 to 10.0%,
Cr: 0 to 10.0%,
Mo: 0 to 1.5%,
Nb: 0 to 0.1%,
V: 0 to 0.3%,
Ti: 0 to 0.25%,
B: 0 to 0.005%,
REM: 0.1-20 ppm,
T. O: 5 to 50 ppm,
The method for producing steel according to claim 1 or 2, wherein the balance is Fe and impurities.
前記Alキルド鋼または前記Al−Siキルド鋼の前記化学組成が、質量%で、
Cu:0.1〜1.5%、
Ni:0.1〜10.0%、
Cr:0.1〜10.0%、および
Mo:0.05〜1.5%、
から選択される1種以上を含有する、請求項3に記載の鋼の製造方法。
The chemical composition of the Al-killed steel or the Al-Si-killed steel is, in mass%,
Cu: 0.1-1.5%,
Ni: 0.1 to 10.0%,
Cr: 0.1 to 10.0%, and Mo: 0.05 to 1.5%,
The method for producing steel according to claim 3, comprising one or more kinds selected from the group consisting of:
前記Alキルド鋼または前記Al−Siキルド鋼の前記化学組成が、質量%で、
Nb:0.005〜0.1%、
V:0.005〜0.3%、および
Ti:0.001〜0.25%、
から選択される1種以上を含有する、請求項3または4に記載の鋼の製造方法。
The chemical composition of the Al-killed steel or the Al-Si-killed steel is, in mass%,
Nb: 0.005 to 0.1%,
V: 0.005 to 0.3%, and Ti: 0.001 to 0.25%,
The method for producing steel according to claim 3, comprising at least one selected from the group consisting of:
前記Alキルド鋼または前記Al−Siキルド鋼の前記化学組成が、質量%で、
B:0.0005〜0.005%、
を含有する、請求項3〜5のいずれかに記載の鋼の製造方法。
The chemical composition of the Al-killed steel or the Al-Si-killed steel is, in mass%,
B: 0.0005 to 0.005%,
The method for producing steel according to any one of claims 3 to 5, comprising:
溶鋼中に添加されたSをトレーサーとして、前記トレーサーが平衡濃度の±5%に達した時間を前記均一混合時間とする、請求項1〜6のいずれかに記載の鋼の製造方法。   The method for producing steel according to any one of claims 1 to 6, wherein S added to the molten steel is used as a tracer, and a time when the tracer reaches ± 5% of the equilibrium concentration is defined as the uniform mixing time. 前記溶鋼の攪拌を、CAS法、RH真空脱ガス法、ボトムバブリングのいずれかの方法によって行う、請求項1〜7のいずれかに記載の鋼の製造方法。   The method for producing steel according to any one of claims 1 to 7, wherein the stirring of the molten steel is performed by any one of a CAS method, an RH vacuum degassing method, and bottom bubbling.
JP2018121392A 2018-06-26 2018-06-26 Steel manufacturing method Active JP7087727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018121392A JP7087727B2 (en) 2018-06-26 2018-06-26 Steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018121392A JP7087727B2 (en) 2018-06-26 2018-06-26 Steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2020002412A true JP2020002412A (en) 2020-01-09
JP7087727B2 JP7087727B2 (en) 2022-06-21

Family

ID=69098892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018121392A Active JP7087727B2 (en) 2018-06-26 2018-06-26 Steel manufacturing method

Country Status (1)

Country Link
JP (1) JP7087727B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969376A (en) * 2021-11-01 2022-01-25 新疆八一钢铁股份有限公司 Preparation method of wire rod for suspension cable steel wire
CN114990425A (en) * 2022-01-11 2022-09-02 长沙中金智能装备有限公司 Cutter for crushing scrap steel and preparation and repair method thereof
CN115181910A (en) * 2022-07-28 2022-10-14 西王金属科技有限公司 Steel for axle of urban railway locomotive in cold zone and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002421A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Method for producing steel material with little alumina cluster
JP2005089776A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for reforming slag in ladle
JP2006192439A (en) * 2005-01-11 2006-07-27 Nippon Steel Corp Method for preventing clogging of nozzle in continuous casting for steel
JP2009167463A (en) * 2008-01-16 2009-07-30 Jfe Steel Corp METHOD FOR PRODUCING Mn-CONTAINING EXTRA-LOW-CARBON STEEL
JP2014109056A (en) * 2012-11-30 2014-06-12 Nippon Steel & Sumitomo Metal High strength steel sheet excellent in extension flange property and bendability, method for smelting molten steel for the steel sheet
JP2018034189A (en) * 2016-08-31 2018-03-08 新日鐵住金株式会社 Sulfur-added steel continuous casting nozzle block preventing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002421A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Method for producing steel material with little alumina cluster
JP2005089776A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for reforming slag in ladle
JP2006192439A (en) * 2005-01-11 2006-07-27 Nippon Steel Corp Method for preventing clogging of nozzle in continuous casting for steel
JP2009167463A (en) * 2008-01-16 2009-07-30 Jfe Steel Corp METHOD FOR PRODUCING Mn-CONTAINING EXTRA-LOW-CARBON STEEL
JP2014109056A (en) * 2012-11-30 2014-06-12 Nippon Steel & Sumitomo Metal High strength steel sheet excellent in extension flange property and bendability, method for smelting molten steel for the steel sheet
JP2018034189A (en) * 2016-08-31 2018-03-08 新日鐵住金株式会社 Sulfur-added steel continuous casting nozzle block preventing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969376A (en) * 2021-11-01 2022-01-25 新疆八一钢铁股份有限公司 Preparation method of wire rod for suspension cable steel wire
CN114990425A (en) * 2022-01-11 2022-09-02 长沙中金智能装备有限公司 Cutter for crushing scrap steel and preparation and repair method thereof
CN115181910A (en) * 2022-07-28 2022-10-14 西王金属科技有限公司 Steel for axle of urban railway locomotive in cold zone and preparation method thereof

Also Published As

Publication number Publication date
JP7087727B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP5950306B2 (en) Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
US7776162B2 (en) Steels with few alumina clusters
JP2010043323A (en) Hot rolled steel sheet for hot press, method for producing the same, and method for producing hot pressed steel sheet member
JP7087727B2 (en) Steel manufacturing method
JP7119642B2 (en) steel manufacturing method
JP7087725B2 (en) Steel manufacturing method
US20230077707A1 (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP7087728B2 (en) Steel manufacturing method
JP7087724B2 (en) Steel manufacturing method
JP7119641B2 (en) steel manufacturing method
JP7087723B2 (en) Steel manufacturing method
JP7087726B2 (en) Steel manufacturing method
CN115667563B (en) Precipitation hardening martensitic stainless steel sheet excellent in fatigue resistance
JP6958736B2 (en) Steel manufacturing method
JP4385991B2 (en) Clean steel and manufacturing method thereof
JP7256381B2 (en) Manufacturing method of killed steel
JPH04259352A (en) Steel excellent in hydrogen-induced cracking resistance and its manufacture
CN115029645B (en) Wire rod for pressure container and preparation method
CN116171334B (en) Precipitation hardening martensitic stainless steel having excellent fatigue resistance
JP2006097110A (en) Steel sheet and slab superior in surface quality and inner quality, and manufacturing method therefor
JP4153615B2 (en) Steel for sheet metal having excellent workability and deoxidation method thereof
CN118028713A (en) Low-temperature spherical tank steel and production method thereof
JP2023010179A (en) Method for producing thin sheet clean steel
JPS61194150A (en) Highly corrosion-resisting steel plate and refining method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7087727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151