SU109311A1 - Installation for the high-speed determination of thermophysical constants by the methods of regular thermal conditions - Google Patents

Installation for the high-speed determination of thermophysical constants by the methods of regular thermal conditions

Info

Publication number
SU109311A1
SU109311A1 SU455618A SU455618A SU109311A1 SU 109311 A1 SU109311 A1 SU 109311A1 SU 455618 A SU455618 A SU 455618A SU 455618 A SU455618 A SU 455618A SU 109311 A1 SU109311 A1 SU 109311A1
Authority
SU
USSR - Soviet Union
Prior art keywords
installation
methods
speed determination
thermal conditions
constants
Prior art date
Application number
SU455618A
Other languages
Russian (ru)
Inventor
Н.И. Фурман
А.Н. Щербань
Original Assignee
Н.И. Фурман
А.Н. Щербань
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Н.И. Фурман, А.Н. Щербань filed Critical Н.И. Фурман
Priority to SU455618A priority Critical patent/SU109311A1/en
Application granted granted Critical
Publication of SU109311A1 publication Critical patent/SU109311A1/en

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

В известных установках дл  скоростного определени  теплофнзнческих констант по методам регул рного теплового режнма примен ютс  высокс чувствнтельные зеркальнь е гал1 ванометры, показанн  которых записываютс  экспериментаторами:In the known installations for the high-speed determination of heat-transfer constants by the methods of the regular thermal regime, high-sensitivity mirroring of gal1 vanometers are used, the recordings of which are recorded by experimenters:

Особенностью описываемой установк  вл етс  применение, зеркального гальванометра, самопишущего милливольтметра, подсоединепного к выходу однокаскадного дифференциального магнитного усилител , к входу которого подключен датчик температурпой разности.A special feature of the installation described is the use of a mirror galvanometer, a recording millivoltmeter connected to the output of a single-stage differential magnetic amplifier, to the input of which the differential temperature sensor is connected.

Такое применение самопищуи1его мпллпвольтметра позволи.ю автоматизировать процесс и повысить точность определени  теплофпзических констант.Such an application of a self-powered mlnpvoltmetra allows you to automate the process and improve the accuracy of the determination of thermal constants.

На чертеже показана схема установки. Установка выполнена в впде калориметра / с мешалкой 2 п термометром 3. В термостатированной жидкой среде 4 располагаетс  испытываемый образец 5 и медно-константанова  термопара 6, выполн юща  ро,1ь датчика-пзмернтел  температурной разности. Возбуждаема  термопарой электродвижуща  снла фиксируетс  самопищущим милливольтметром 7, подсоединенным к термопаре 6 посредством однокаскадного дифференцнального магнитного усилител  8, нолучающего питание от сети через стабилизатор напр жени  5.The drawing shows the installation diagram. The installation was performed in a calorimeter / mixer with a 2 p thermometer 3. In a thermostated liquid medium 4, a test sample 5 and a copper-constantan thermocouple 6 are located, which performs a thermal sensor temperature differential sensor. An electromotive actuated by a thermocouple is fixed by a self-powered millivoltmeter 7 connected to the thermocouple 6 by means of a single-stage differential magnetic amplifier 8, which receives power from the network through a voltage stabilizer 5.

Предмет п з о б р е т с н и  Subject matter

Установка дл  скоростного определени  теилофизичеекнх констант но методам регул рного теплового режима, выполненна  в виде калориметра с термопарой ;; фиксирующим электродвижущую силу устройством , отличающа с  тем, что, с целью автоматизации процесса и новыщони  точности определени  теплофизических констант, в фиксирующем .устройстве применен самопишущий милливольтметр, подсоединенный к датчику-измерителю температурной разности (медно-констан тановой паре) посредством однокаскадного дифференциального магнитного усилител .:An installation for the rapid determination of theilophysical constants using the methods of regular thermal conditions, made in the form of a calorimeter with a thermocouple ;; a fixing electromotive force device, characterized in that, in order to automate the process and improve the accuracy of determining thermophysical constants, the fixing device uses a self-recording millivoltmeter connected to a sensor measuring the temperature difference (copper-copper pair) using a single-stage differential magnetic amplifier. :

SU455618A 1954-03-19 1954-03-19 Installation for the high-speed determination of thermophysical constants by the methods of regular thermal conditions SU109311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU455618A SU109311A1 (en) 1954-03-19 1954-03-19 Installation for the high-speed determination of thermophysical constants by the methods of regular thermal conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU455618A SU109311A1 (en) 1954-03-19 1954-03-19 Installation for the high-speed determination of thermophysical constants by the methods of regular thermal conditions

Publications (1)

Publication Number Publication Date
SU109311A1 true SU109311A1 (en) 1956-11-30

Family

ID=48382353

Family Applications (1)

Application Number Title Priority Date Filing Date
SU455618A SU109311A1 (en) 1954-03-19 1954-03-19 Installation for the high-speed determination of thermophysical constants by the methods of regular thermal conditions

Country Status (1)

Country Link
SU (1) SU109311A1 (en)

Similar Documents

Publication Publication Date Title
GB1498573A (en) Method of and apparatus for non-destructively determining the composition of an unknown material sample
US2759354A (en) Isothermal systems for gas analysis
SU109311A1 (en) Installation for the high-speed determination of thermophysical constants by the methods of regular thermal conditions
GB1099262A (en) Improvements in or relating to calorimeters
US3488584A (en) Method and apparatus for resistivity measurement of flowing high temperature liquid metals
Bohac et al. New planar disc transient method for the measurement of thermal properties of materials
McCONNELL et al. Apparatus for differential thermal analysis
SU149913A1 (en) Method for measuring high temperatures by low temperature sensors
RU154799U1 (en) CALORIMETER FOR DETERMINING SPECIFIC HEAT CAPACITY OF FOOD PRODUCTS
SU932293A1 (en) Differential scanning micro-calorimeter
Savage, MJ, De Jager, JM & Cass Calibration of thermocouple hygrometers using the psychrometric technique
SU440571A1 (en) Device for measuring the coefficient of thermoelectromotive force of materials
SU439745A1 (en) Device for measuring the temperature coefficient of conductivity of solutions
SU446774A1 (en) Noise Thermometer
Freud et al. Method for measuring pressure dependence of thermal conductivity of gases
SU549692A1 (en) Calorimeter
SU116637A1 (en) Method for measuring high temperatures
SU104447A1 (en) Downhole thermometer
SU457136A1 (en) Method for measuring the quality factor of thermoelectric material
SU127843A1 (en) Method for determining thermal diffusivity and thermal conductivity of samples of material
SU148260A1 (en) Device for automatic determination of thermal diffusivity of solids
SU947727A1 (en) Solid body thermal physical property determination method
Rout et al. Coaxial Thermal Probe as a Heat Flux Sensor: An Analytical, Numerical, and Experimental Approach
SU1267241A1 (en) Method of complex determining of thermal physical characteristics of materials
SU717638A1 (en) Device for determining material thermal capacity