SK9649Y1 - Hydrogel based on crosslinked hydroxyphenyl derivative of hyaluronic acid - Google Patents

Hydrogel based on crosslinked hydroxyphenyl derivative of hyaluronic acid Download PDF

Info

Publication number
SK9649Y1
SK9649Y1 SK50027-2022U SK500272022U SK9649Y1 SK 9649 Y1 SK9649 Y1 SK 9649Y1 SK 500272022 U SK500272022 U SK 500272022U SK 9649 Y1 SK9649 Y1 SK 9649Y1
Authority
SK
Slovakia
Prior art keywords
solution
derivative
hydrogel
chs
hydrogels
Prior art date
Application number
SK50027-2022U
Other languages
Slovak (sk)
Other versions
SK500272022U1 (en
Inventor
Ing. Toropitsyn Evgeniy
PharmDr. Pravda Martin, PhD.
Ing. Kovářová Lenka
Ing. Bystroňová Julie
doc. RNDr. CSc. Velebný Vladimír
Original Assignee
Contipro A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contipro A.S. filed Critical Contipro A.S.
Publication of SK500272022U1 publication Critical patent/SK500272022U1/en
Publication of SK9649Y1 publication Critical patent/SK9649Y1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)

Abstract

Hydrogel based on a crosslinked hydroxyphenyl derivative of hyaluronic acid containing molecules of a hydroxyphenyl derivative of hyaluronic acid, HA-TA, or its pharmaceutically acceptable salt of a general formula (I) where n is in the range 2-7500 and where R1 is H+ or ion of alkali salt or salt of alkali earth metal and R2 is OH or tyramine substituent of general formula (II): whereas within one molecule of the hydroxyphenyl derivative of hyaluronic acid or its pharmaceutically acceptable salt of the general formula (I) is at least one R2 tyramine substituent of the general formula (II) and whereas at least two tyramine substituents of the general formula (II) are connected through covalent bond in any ortho position of phenyl groups, and it further contains chondroitin sulfate or its pharmaceutically acceptable salt selected from the group comprising alkali salt or salt or alkali earth metal.

Description

Oblasť technikyThe field of technology

Technické riešenie sa týka hydrogélu na báze zosieťovaného hydroxyfenylového derivátu kyseliny hyalurónovej v zmesi s chondroitín sulfátom so zlepšenou mierou degradácie.The technical solution concerns a hydrogel based on a cross-linked hydroxyphenyl derivative of hyaluronic acid mixed with chondroitin sulfate with an improved degradation rate.

Doterajší stav technikyCurrent state of the art

Kyselina hyalurónová (tiež hyaluronan, HA) je polysacharid zo skupiny glykozaminoglykánov, ktorý sa skladá z disacharidických jednotiek zložených z kyseliny D-glukurónovej a N-acetyl-D-glukozamínu. Ide o polysacharid, ktorý je ľahko rozpustný vo vodnom prostredí, kde v závislosti od molekulovej hmotnosti a koncentrácie vytvára viskózne roztoky až viskoelastické hydrogély. HA je prirodzenou zložkou medzibunkovej hmoty tkanív. Väzbou na špecifické povrchové bunkové receptory je molekula hyaluronanu schopná interagovať s bunkami vo svojom okolí a regulovať ich metabolické procesy (Xu, Jha a kol. 2012). Z týchto dôvodov sú materiály obsahujúce hyaluronan, prípadne jeho deriváty často využívané na výrobu prípravkov používaných v biomedicínskych aplikáciách. Hydrogély na báze hyaluronanu v organizme podstupujú prirodzenú degradáciu pôsobením špecifických enzýmov (hyaluronidáz), prípadne pôsobením reaktívnych foriem kyslíka (ROS), vďaka čomu dochádza po ich implantácii do organizmu k ich postupnému vstrebaniu (Stern, Kogan a kol. 2007).Hyaluronic acid (also hyaluronan, HA) is a polysaccharide from the group of glycosaminoglycans, which consists of disaccharide units composed of D-glucuronic acid and N-acetyl-D-glucosamine. It is a polysaccharide that is easily soluble in water, where, depending on the molecular weight and concentration, it forms viscous solutions to viscoelastic hydrogels. HA is a natural component of the intercellular mass of tissues. By binding to specific cell surface receptors, the hyaluronan molecule is able to interact with cells in its surroundings and regulate their metabolic processes (Xu, Jha et al. 2012). For these reasons, materials containing hyaluronan or its derivatives are often used for the production of preparations used in biomedical applications. Hyaluronan-based hydrogels undergo natural degradation in the body by the action of specific enzymes (hyaluronidase), or by the action of reactive oxygen species (ROS), which results in their gradual absorption after implantation in the body (Stern, Kogan et al. 2007).

Na dosiahnutie mechanicky odolnejších materiálov a z dôvodu spomalenia ich biodegradácie bol vyvinutý rad typov hydrogélov obsahujúcich kovalentne zosietený hyaluronan. Takéto hydrogély sú využívané ako materiály na viskosuplementáciu synoviálnej tekutiny, augmentáciu mäkkých tkanív, slúžia ako podporné štruktúry na kultiváciu a implantáciu buniek a pod. (Tognana, Borrione a kol. 2007, Buck Ii, Alam a kol. 2009, Li, Raitcheva a kol. 2012, Salwowska, Bebenek a kol. 2016).A range of types of hydrogels containing covalently cross-linked hyaluronan was developed to achieve mechanically more resistant materials and to slow down their biodegradation. Such hydrogels are used as materials for viscosupplementation of synovial fluid, augmentation of soft tissues, serve as supporting structures for cell cultivation and implantation, etc. (Tognana, Borrione et al. 2007, Buck Ii, Alam et al. 2009, Li, Raitcheva et al. 2012, Salwowska, Bebenek et al. 2016).

V minulosti boli taktiež vyvinuté rôzne typy derivátov hyaluronanu, ktoré sú schopné podstupovať prechod sol-gel za fyziologických podmienok in situ (Burdick and Prestwich 2011, Prestwich 2011). Na tieto účely je možné využiť napr. fenolické deriváty hyaluronanu. Calabro a kol. (Calabro, Akst a kol. 2008, Lee, Chung a kol. 2008, Kurisawa, Lee a kol. 2009) opisujú v spisoch EP1587945B1 a EP1773943B1 postup prípravy fenolických derivátov hyaluronanu reakciou karboxylov prítomných v štruktúre D-glukurónovej kyseliny hyaluronanu s aminoalkyl-derivátmi fenolu, napr. tyramínom. Produktom tejto reakcie sú amidy hyaluronanu (Darr a Calabro 2009).In the past, various types of hyaluronan derivatives were also developed, which are able to undergo the sol-gel transition under physiological conditions in situ (Burdick and Prestwich 2011, Prestwich 2011). For these purposes it is possible to use e.g. phenolic derivatives of hyaluronan. Calabro et al. (Calabro, Akst et al. 2008, Lee, Chung et al. 2008, Kurisawa, Lee et al. 2009) describe in EP1587945B1 and EP1773943B1 a procedure for the preparation of phenolic derivatives of hyaluronan by the reaction of carboxyls present in the D-glucuronic acid structure of hyaluronan with aminoalkyl derivatives phenol, e.g. tyramine. The product of this reaction is hyaluronan amides (Darr and Calabro 2009).

Zosietenie fenolických derivátov hyaluronanu môže byť iniciované prídavkom peroxidázy (napr. chrenovej peroxidázy) a zriedeného roztoku peroxidu vodíka. Chrenová peroxidáza (Horseradish peroxidase, HRP, E.C.1.11.1.7) je v súčasnej dobe využívaná ako katalyzátor organických a biotransformačných reakcií (Akkara, Senecal a kol. 1991, Higashimura a Kobayashi 2002, Ghan, Shutava a kol. 2004, Shutava, Zheng a kol. 2004, Veitch 2004). Hydrogély na báze hydroxyfenylových derivátov hyaluronanu môžu byť využívané ako injekčne aplikovateľné matrice na riadené uvoľňovanie biologicky aktívnych látok alebo ako materiály vhodné na kultiváciu a implantáciu buniek (Kurisawa, Lee a kol. 2010). Wolfová a kol. opisujú v spise CZ303879 konjugát hyaluronanu a tyramínu obsahujúci alifatický linker vložený medzi reťazec polyméru a tyramín. Prítomnosť alifatického linkera umožňuje vyššiu efektivitu sieťovacej reakcie a dodáva sieti vyššiu elasticitu.Cross-linking of phenolic derivatives of hyaluronan can be initiated by the addition of a peroxidase (e.g. horseradish peroxidase) and a dilute solution of hydrogen peroxide. Horseradish peroxidase (HRP, E.C.1.11.1.7) is currently used as a catalyst for organic and biotransformation reactions (Akkara, Senecal et al. 1991, Higashimura and Kobayashi 2002, Ghan, Shutava et al. 2004, Shutava, Zheng et al. coll. 2004, Veitch 2004). Hydrogels based on hydroxyphenyl derivatives of hyaluronan can be used as injectable matrices for the controlled release of biologically active substances or as materials suitable for cell cultivation and implantation (Kurisawa, Lee et al. 2010). Wolfová et al. describe in CZ303879 a conjugate of hyaluronan and tyramine containing an aliphatic linker inserted between the polymer chain and tyramine. The presence of an aliphatic linker enables a higher efficiency of the cross-linking reaction and gives the network higher elasticity.

Chondroitín sulfát (ChS) je ďalším zástupcom glykozaminoglykánov, ktorý je často využívaný na prípravu materiálov určených na využitie v liečbe degeneratívnych chorôb, napr. osteoartrózy (OA). Reťazec ChS je tvorený disacharidickými jednotkami zloženými z N-acetylgalaktozamínu (GalNAc) a kyseliny idurónovej (IdoA). Disacharidické jednotky ChS môžu byť sulfatované v polohe 4 a 6 GalNAc a prípadne aj v polohe 2 IdoA. Chondroitín sulfát je lineárny, sulfatovaný a negatívne nabitý glykozaminoglykán zložený z opakujúcich sa monomérnych jednotiek N-acetyl-D-galaktozamínu a kyseliny D-glukurónovej navzájom prepojených β(1^3) a β(1^4) O-glykozidickými väzbami (pozri štruktúrny vzorec chondroitín sulfátu).Chondroitin sulfate (ChS) is another representative of glycosaminoglycans, which is often used for the preparation of materials intended for use in the treatment of degenerative diseases, e.g. osteoarthritis (OA). The ChS chain is formed by disaccharide units composed of N-acetylgalactosamine (GalNAc) and iduronic acid (IdoA). ChS disaccharide units can be sulfated in positions 4 and 6 of GalNAc and possibly also in position 2 of IdoA. Chondroitin sulfate is a linear, sulfated and negatively charged glycosaminoglycan composed of repeating monomeric units of N-acetyl-D-galactosamine and D-glucuronic acid interconnected by β(1^3) and β(1^4) O-glycosidic bonds (see structural chondroitin sulfate formula).

kdewhere

R1 je H alebo Na,R 1 is H or Na,

R2 je H, O-SO2-OH alebo O-SO2-Ona.R 2 is H, O-SO 2 -OH or O-SO 2 -Ona.

SK 9649 Υ1SK 9649 Υ1

Zdrojom chondroitín sulfátu sú živočíšne spojivové tkanivá, kde sa viaže na proteíny a tvorí tak súčasť proteoglykánov. Sulfatácia chondroitínu sa uskutočňuje pomocou sulfotransferáz v rôznych polohách a rôznom zastúpení. Jedinečný vzorec sulfatácie jednotlivých polôh v polymérnom reťazci kóduje špecifickú biologickú aktivitu chondroitín sulfátu. Ten je dôležitým stavebným blokom chrupky v kĺboch, ktorým dodáva odolnosť v tlaku a obnovuje rovnováhu v zložení kĺbového maziva (Baeurle S. A., Kiselev M. G., Makarova E. S., Nogovitsin E. A. 2009. Polymér 50: 1805). Chondroitín sulfát sa spoločne s glukozamínom používa ako výživový doplnok na liečenie alebo tiež na prevenciu vzniku osteoartritídy u ľudí (napr. Flextor®, Advance Nutraceutics, Ltd.) alebo zvierat (napr. Gelorendog®, Contipro Pharma, Ltd.). Z farmaceutického hľadiska sa chondroitín sulfát považuje za liečivo s oneskoreným nástupom účinku tlmenia bolesti pri degeneratívnom ochorení kĺbov (Aubry-Rozier B. 2012. Revue Médicale Suisse 14: 571).The source of chondroitin sulfate is animal connective tissues, where it binds to proteins and thus forms part of proteoglycans. Sulfation of chondroitin is carried out by means of sulfotransferases in different positions and in different representation. The unique pattern of sulfation of individual positions in the polymer chain encodes the specific biological activity of chondroitin sulfate. The latter is an important building block of the cartilage in the joints, which provides pressure resistance and restores the balance in the composition of the joint lubricant (Baeurle SA, Kiselev MG, Makarova ES, Nogovitsin EA 2009. Polymer 50: 1805). Chondroitin sulfate is used together with glucosamine as a nutritional supplement for the treatment or prevention of osteoarthritis in humans (e.g. Flextor®, Advance Nutraceutics, Ltd.) or animals (e.g. Geloren dog ®, Contipro Pharma, Ltd.). From a pharmaceutical point of view, chondroitin sulfate is considered a drug with a delayed onset of pain relief in degenerative joint disease (Aubry-Rozier B. 2012. Revue Médicale Suisse 14: 571).

In vitro a in vivo štúdie ukázali, že ChS inhibuje účinok hyaluronidáz. Inhibičný účinok ChS na enzýmy je spôsobený tvorbou elektrostatických (iónových) interakcií. Tiež bolo preukázané, že ChS je schopný zachycovať ROS, a tým chrániť pred degradáciou zložky extracelulárnej matrice (Balí, Cousse a kol. 2001, Xiong and Jin 2007).In vitro and in vivo studies have shown that ChS inhibits the action of hyaluronidases. The inhibitory effect of ChS on enzymes is caused by the formation of electrostatic (ionic) interactions. It has also been demonstrated that ChS is able to trap ROS and thereby protect against degradation of extracellular matrix components (Balí, Cousse et al. 2001, Xiong and Jin 2007).

Využitie kombinácie hyaluronanu a chondroitín sulfátu na prípravu prostriedku na ochranu ľudských alebo živočíšnych buniek a tkanív pred traumatizáciou opisuje dokument EP0136782 (1983). Podobne dokument US6051560 (1992) opisuje využitie zmesi hyaluronanu a chondroitín sulfátu ako viskosuplementačných materiálov počas oftalmologických zákrokov. Patent WO030417024 opisuje viskóznu kompozíciu obsahujúcu terapeuticky účinné množstvo zmesi ChS a HA na výrobu liekov určených na liečbu kĺbov ľudí s poškodením chrupky spôsobeným chondromaláciou alebo OA stupňa I a II, ktorá využíva intraartikulárne podanie zmesi. V patentovej literatúre sa taktiež nájdu dokumenty, ktoré opisujú prostriedok na parenterálne podanie vhodný na prevenciu a liečbu poškodenia kĺbovej chrupky u ľudí alebo zvierat, ktorý sa skladá z terapeuticky účinného množstva chondroitín sulfátu, hyaluronanu a glukozamínu (WO2004034980, 2002). Dokument EP2219595 opisuje formuláciu na báze polysacharidov, najmä glykozaminoglykánov, a ich zmesi s flavonoidmi, ktorá tvorí hydrogély s predĺženým časom biodegradácie. Uvedený dokument opisuje aj hydrogél obsahujúci hyaluronan, derivát hyaluronanu zosietený butándiol 1,4-diglycidyléterom a ChS, ktorý vykazuje zvýšenú odolnosť proti degradácii pôsobením enzýmu hyaluronidázy.EP0136782 (1983) describes the use of a combination of hyaluronan and chondroitin sulfate for the preparation of an agent for the protection of human or animal cells and tissues against trauma. Similarly, document US6051560 (1992) describes the use of a mixture of hyaluronan and chondroitin sulfate as viscosupplementation materials during ophthalmological procedures. Patent WO030417024 describes a viscous composition containing a therapeutically effective amount of a mixture of ChS and HA for the manufacture of medicaments for the treatment of joints in people with cartilage damage caused by chondromalacia or grade I and II OA, which uses intra-articular administration of the mixture. In the patent literature, there are also documents that describe a preparation for parenteral administration suitable for the prevention and treatment of articular cartilage damage in humans or animals, which consists of a therapeutically effective amount of chondroitin sulfate, hyaluronan and glucosamine (WO2004034980, 2002). Document EP2219595 describes a formulation based on polysaccharides, especially glycosaminoglycans, and their mixture with flavonoids, which forms hydrogels with extended biodegradation time. The mentioned document also describes a hydrogel containing hyaluronan, a derivative of hyaluronan cross-linked with butanediol 1,4-diglycidyl ether and ChS, which shows increased resistance to degradation by the action of the hyaluronidase enzyme.

Podstata technického riešeniaThe essence of the technical solution

Technické riešenie sa týka hydrogélu na báze zosieťovaného hydroxyfenylového derivátu kyseliny hyalurónovej, ktorého podstatou je, že obsahuje molekuly hydroxyfenylového derivátu hyalurónovej kyseliny (HA-TA) alebo jeho farmaceutický prijateľnú soľ podľa všeobecného vzorca (I)The technical solution relates to a hydrogel based on a cross-linked hydroxyphenyl derivative of hyaluronic acid, the essence of which is that it contains molecules of a hydroxyphenyl derivative of hyaluronic acid (HA-TA) or its pharmaceutically acceptable salt according to the general formula (I)

____________________________________________0), kde n je v rozmedzí 2 až 7 500 a kde R1 je H+alebo ión alkalickej soli alebo soli alkalických zemín a R2 je OH alebo týra mínový substituent podľa všeobecného vzorca (II):____________________________________________0), where n is in the range of 2 to 7,500 and where R 1 is H + or an ion of an alkaline salt or an alkaline earth salt and R 2 is OH or a tyramin substituent according to the general formula (II):

pričom v rámci jednej molekuly hydroxyfenylového derivátu hyalurónovej kyseliny alebo jeho farmaceutický prijateľnej soli podľa všeobecného vzorca (I) aspoň jeden R2 je tyramínový substituent podľa všeobecného vzorca (II) a pričom aspoň dva tyramínové substituenty podľa všeobecného vzorca (II) sú spojené prostredníctvom kovalentnej väzby v ktorejkoľvek ortopolohe fenylových skupín, a ďalej obsahujewhereas within one molecule of the hydroxyphenyl derivative of hyaluronic acid or its pharmaceutically acceptable salt according to the general formula (I) at least one R 2 is a tyramine substituent according to the general formula (II) and while at least two tyramine substituents according to the general formula (II) are connected via a covalent bond in any orthoposition of the phenyl groups, and further contains

SK 9649 Υ1 chondroitín sulfát alebo jeho farmaceutický prijateľnú soľ vybranú zo skupiny obsahujúcej alkalické soli alebo soli alkalických zemín.SK 9649 Υ1 chondroitin sulfate or a pharmaceutically acceptable salt thereof selected from the group consisting of alkaline salts or alkaline earth salts.

Alkalické soli alebo soli alkalických zemín hydroxyfenylového derivátu hyalurónovej kyseliny podľa všeobecného vzorca (I) alebo chondroitín sulfátu sú výhodne vybrané zo skupiny obsahujúcej Na+, K+, Ca2+, Mg2+.Alkaline salts or alkaline earth salts of the hydroxyphenyl derivative of hyaluronic acid according to general formula (I) or chondroitin sulfate are preferably selected from the group containing Na + , K + , Ca 2+ , Mg 2+ .

Koncentrácia chondroitín sulfátu alebo jeho farmaceutický prijateľnej soli je v rozsahu 0,5 až 50 mg/ml hydrogélu podľa technického riešenia, výhodne v koncentrácii 1 až 20 mg/ml, výhodnejšie 5 mg/ml.The concentration of chondroitin sulfate or its pharmaceutically acceptable salt is in the range of 0.5 to 50 mg/ml hydrogel according to the technical solution, preferably in a concentration of 1 to 20 mg/ml, more preferably 5 mg/ml.

Obsah zosieťovaného hydroxyfenylového derivátu hyaluronanu je v rozsahu 5 až 30 mg/ml, výhodne 10 mg/ml hydrogélu podľa technického riešenia.The content of the cross-linked hydroxyphenyl derivative of hyaluronan is in the range of 5 to 30 mg/ml, preferably 10 mg/ml of the hydrogel according to the technical solution.

Podľa ďalšieho výhodného uskutočnenia technického riešenia hydrogél ďalej obsahuje kyselinu hyalurónovú alebo jej farmaceutický prijateľnú soľ v koncentrácii 1 až 20 mg/ml, výhodne 5 až 10 mg/ml, výhodnejšie 5 mg/ml hydrogélu podľa technického riešenia.According to another advantageous embodiment of the technical solution, the hydrogel further contains hyaluronic acid or its pharmaceutically acceptable salt in a concentration of 1 to 20 mg/ml, preferably 5 to 10 mg/ml, more preferably 5 mg/ml of the hydrogel according to the technical solution.

Kovalentná väzba môže byť v rámci jednej molekuly derivátu kyseliny hyalurónovej podľa všeobecného vzorca (I) v ktorejkoľvek ortopolohefenylových skupín aspoň dvoch tyramínových substituentov všeobecného vzorca (II), ktoré sa v tejto molekule nachádzajú. Ide o takzvané intramolekulárne zosieťovanie. Tiež môže byť kovalentná väzba v ktorejkoľvek ortopolohe fenylových skupín aspoň dvoch tyramínových substituentov všeobecného vzorca (II), ktoré sa nachádzajú v rôznych molekulách derivátu kyseliny hyalurónovej podľa všeobecného vzorca (I). To predstavuje navzájom prepojenú sieť medzi molekulami derivátu HA.The covalent bond can be within one molecule of the hyaluronic acid derivative according to the general formula (I) in any of the orthopolophenyl groups of at least two tyramine substituents of the general formula (II) that are found in this molecule. This is the so-called intramolecular cross-linking. Also, the covalent bond can be in any orthoposition of the phenyl groups of at least two tyramine substituents of the general formula (II), which are found in different molecules of the hyaluronic acid derivative according to the general formula (I). This represents an interconnected network between molecules of the HA derivative.

Príklad kovalentne zosieteného hydroxyfenylového derivátu hyaluronanu (crossHA-TA) je schematicky ukázaný, pozri vzorec (III):An example of a covalently cross-linked hydroxyphenyl derivative of hyaluronan (crossHA-TA) is shown schematically, see formula (III):

Takéto hydrogély podľa technického riešenia vykazujú zvýšenú odolnosť proti biodegradačným pochodom vznikajúcim pôsobením hydrolytických enzýmov a reaktívnych foriem kyslíka.According to the technical solution, such hydrogels show increased resistance against biodegradation processes arising from the action of hydrolytic enzymes and reactive oxygen species.

Podľa výhodného uskutočnenia je hmotnostne stredná molárna hmotnosť (Mw) hydroxyfenylového derivátu hyaluronanu podľa všeobecného vzorca (I) v rozsahu 5 x 104 až 1,5 x 106 g.moľ1, výhodne 2,5 x 105 až 1 x 106 g.moľ1, výhodnejšie 8 x 105g.moľ1. PI je v rozsahu 1 až 3.According to a preferred embodiment, the weight average molar mass (Mw) of the hydroxyphenyl derivative of hyaluronan according to the general formula (I) is in the range of 5 x 10 4 to 1.5 x 10 6 g.mol 1 , preferably 2.5 x 10 5 to 1 x 10 6 g.mol 1 , preferably 8 x 10 5 g.mol 1 . PI is in the range of 1 to 3.

Podľa ďalšieho uskutočnenia technického riešenia je stupeň substitúcie (DS) hydroxyfenylového derivátu hyaluronanu všeobecného vzorca (I) v rozsahu 0,5 až 10 %, výhodne 1 až 4 %, výhodnejšie 1 %.According to another embodiment of the technical solution, the degree of substitution (DS) of the hydroxyphenyl hyaluronan derivative of general formula (I) is in the range of 0.5 to 10%, preferably 1 to 4%, more preferably 1%.

Podľa ďalšieho výhodného uskutočnenia je Mw chondroitín sulfátu v rozsahu 5 x 103 až 95 x 103 g.moľ1, ďalej výhodne 10 x 103 až 40 x 103 g.moľ1.According to another preferred embodiment, the Mw of chondroitin sulfate is in the range of 5 x 10 3 to 95 x 10 3 g.mol 1 , further preferably 10 x 10 3 to 40 x 10 3 g.mol 1 .

Podľa výhodného uskutočnenia hydrogél obsahuje hyaluronan (HA) alebo jeho farmaceutický prijateľnú soľ s Mw v rozsahu 5 x 104 až 2,5 x 106 g.moľ1, výhodne 1,5 x 106 až 2,5 x 106 g.moľ1, výhodnejšie 2,0 x 106 g.moľ1.According to a preferred embodiment, the hydrogel contains hyaluronan (HA) or its pharmaceutically acceptable salt with a Mw in the range of 5 x 10 4 to 2.5 x 10 6 g.mol 1 , preferably 1.5 x 10 6 to 2.5 x 10 6 g. mol 1 , preferably 2.0 x 10 6 g.mol 1 .

Takéto hydrogély podľa technického riešenia môžu byť použité v kozmetike, medicíne a regeneratívnej medicíne, najmä na prípravu materiálov na regeneráciu tkaniva, augmentáciu tkaniva, prípravu scaffoldov pre tkanivové inžinierstvo, ako matrica na riadené uvoľňovanie biologicky aktívnych látok a liečiv a viskosuplementáciu synoviálnej tekutiny.Such hydrogels according to the technical solution can be used in cosmetics, medicine and regenerative medicine, especially for the preparation of materials for tissue regeneration, tissue augmentation, preparation of scaffolds for tissue engineering, as a matrix for controlled release of biologically active substances and drugs and viscosupplementation of synovial fluid.

Prehľad obrázkov na výkresochOverview of images on drawings

Obr. 1: Porovnanie rýchlosti degradácie roztokov HA s prídavkom ChS pomocou ROSfig. 1: Comparison of the rate of degradation of ChS-supplemented HA solutions by ROS

Obr. 2: Porovnanie rýchlosti degradácie materiálov pomocou ROSfig. 2: Comparison of the rate of degradation of materials by ROS

Obr. 3: Kumulatívna degradácia hydrogélu [%] BTH 30 U/mgfig. 3: Cumulative hydrogel degradation [%] BTH 30 U/mg

Príklady uskutočneniaImplementation examples

DS = stupeň substitúcie = 100 % * molárne množstvo modifikovaných disacharidických jednotiek hyaluronanu/molárne množstvo všetkých disacharadických jednotiek derivátu hyaluronanu. Stupeň substitúcie bol stanovený pomocou 1H NMR spektroskopiou.DS = degree of substitution = 100% * molar amount of modified hyaluronan disaccharide units/molar amount of all hyaluronan derivative disaccharide units. The degree of substitution was determined by 1H NMR spectroscopy.

Hmotnostne stredná molárna hmotnosť (Mw) a index polydisperzity (PI) boli stanovené metódou SEC-MALLS.The weight average molar mass (Mw) and the polydispersity index (PI) were determined by the SEC-MALLS method.

Infračervené spektrá pripravených derivátov boli získané metódou FT-IR.The infrared spectra of the prepared derivatives were obtained by the FT-IR method.

Bol použitý chondroitín sulfát vo farmaceutickej kvalite na injekčné podanie od Bioiberica, ES.Pharmaceutical grade chondroitin sulfate for injection from Bioiberica, ES was used.

Príklad 1Example 1

Syntéza tyramínovaného derivátu HA (HA-TA)Synthesis of the tyramine derivative of HA (HA-TA)

Syntéza 6-amino-N -[2(4hydroxyfenyl)etyl]hexánamiduSynthesis of 6-amino-N-[2(4hydroxyphenyl)ethyl]hexanamide

6-[(terc-Butoxykarbonyl)amino]hexanová kyselina (1,00 g, 4,3 mmol) bola rozpustená v 50 ml tetrahydrofuránu (THF). K roztoku kyseliny bol pridaný 1,1'-karbodiimidazol (0,70 g, 4,3 mmol). Zmes bola zahrievaná na 50 °C počas šesťdesiatich minút. Potom bola reakčná nádoba premytá inertným plynom. K reakčnej zmesi bol pridaný tyramín (0,59 g, 4,3 mmol). Zmes bola ďalej zahrievaná ďalšie 2 hodiny. Potom bol destiláciou za zníženého tlaku odstránený THF. Odparok bol rozpustený v 50 ml etylacetátu. Roztok bol premytý 150 ml čistenej vody (rozdelené do troch dielov). Organická vrstva bola vysušená nad molekulovým sitom. Etylacetát bol odstránený destiláciou za zníženého tlaku. Odparok bol rozpustený v 50 ml MeOH a k roztoku boli pridané 2 ml trifluóroctovej kyseliny (TFA). Roztok bol zahrievaný 6 hodín pod spätným chladičom. Rozpúšťadlo bolo odstránené destiláciou za zníženého tlaku. Odparok bol rozpustený v 50 ml etylacetátu. Roztok bol premytý 150 ml čistenej vody (rozdelené do troch dielov). Organická vrstva bola vysušená nad molekulovým sitom. Etylacetát bol odstránený destiláciou za zníženého tlaku.6-[(tert-Butoxycarbonyl)amino]hexanoic acid (1.00 g, 4.3 mmol) was dissolved in 50 mL of tetrahydrofuran (THF). 1,1'-carbodiimidazole (0.70 g, 4.3 mmol) was added to the acid solution. The mixture was heated to 50°C for sixty minutes. Then the reaction vessel was flushed with an inert gas. Tyramine (0.59 g, 4.3 mmol) was added to the reaction mixture. The mixture was further heated for another 2 hours. THF was then removed by distillation under reduced pressure. The residue was dissolved in 50 ml of ethyl acetate. The solution was washed with 150 ml of purified water (divided into three parts). The organic layer was dried over a molecular sieve. Ethyl acetate was removed by distillation under reduced pressure. The residue was dissolved in 50 mL of MeOH and 2 mL of trifluoroacetic acid (TFA) was added to the solution. The solution was heated under reflux for 6 hours. The solvent was removed by distillation under reduced pressure. The residue was dissolved in 50 ml of ethyl acetate. The solution was washed with 150 ml of purified water (divided into three parts). The organic layer was dried over a molecular sieve. Ethyl acetate was removed by distillation under reduced pressure.

m = 0,75 g (70 % teórie)m = 0.75 g (70% of theory)

1H NMR (D2O, ppm) δ: 1,17 (m, 2 H, Y-CH2- hexánovej kyseliny); 1,48(m, 2 H, β- CH2- hexánovej kyseliny); 1,58 (m, 2 H, δ-CH2- hexánovej kyseliny); 2,17 (t, 2 H, - CH2-CO-); 2,73 (m, 2 H, -CH2-Ph); 2,91 (m, 2 H, -CH2-NH2); 3,42 (m, 2 H, -CH2- NH-CO-); 6,83 (d, 2 H, arom); 7,13 (d, 2 H, arom).1H NMR (D2O, ppm) δ: 1.17 (m, 2H, Y-CH2-hexanoic acid); 1.48(m, 2 H, β-CH2-hexanoic acid); 1.58 (m, 2 H, δ-CH2-hexanoic acid); 2.17 (t, 2 H, - CH 2 -CO-); 2.73 (m, 2H, -CH 2 -Ph); 2.91 (m, 2H, -CH 2 -NH 2 ); 3.42 (m, 2H, -CH2-NH-CO-); 6.83 (d, 2H, arom); 7.13 (d, 2H, arom).

13C NMR(D2O, ppm) δ: 24 (γ-C- hexánovej kyseliny); 26 (δ-C- hexánovej kyseliny); 33 (β-C- hexánovej kyseliny); 35 (-C-CO-); 39 (-C-NH2); 40 (C-Ph); 63 (-C-NH-CO- ); 115 (C3 arom); 126 (C1 arom); 130 (C2 arom.); 153 (C4 arom.); 176 (-CO-). 13 C NMR(D2O, ppm) δ: 24 (γ-C-hexanoic acid); 26 (δ-C-hexanoic acid); 33 (β-C-hexanoic acid); 35 (-C-CO-); 39 (-C-NH 2 ); 40 (C-Ph); 63 (-C-NH-CO-); 115 (C3 arom); 126 (C1 arom); 130 (C2 arom.); 153 (C4 arom.); 176 (-CO-).

Príprava aldehydického derivátu (HA-CHO)Preparation of aldehyde derivative (HA-CHO)

Hylauronan (10,00 g, Mw. = 2 x 106 g.mol-1) bol rozpustený v 750 ml 2,5 % (w/w) roztoku Na2HPO4 . 12 H2O. Roztok bol vychladený na 5 °C. K vzniknutému roztoku bolo pridaných 2,60 g NaBr a 0,05 g 4-acetamido-2,2,6,6-tetrametylpiperidín-1- oxylu. Po dôkladnej homogenizácii roztoku boli k reakčnej zmesi pridané 3 ml roztoku NaClO (10 - 15 % dostupného O2). Reakcia pokračovala za stáleho miešania 15 min. Reakcia bola ukončená prídavkom 100 ml 40 % roztoku propán-2-olu. Produkt bol prečistený ultrafiltráciou a izolovaný precipitáciou propán-2-olom.Hylauronan (10.00 g, M w . = 2 x 10 6 g.mol -1 ) was dissolved in 750 ml of a 2.5% (w/w) Na2HPO4 solution. 12 H2O. The solution was cooled to 5 °C. 2.60 g of NaBr and 0.05 g of 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl were added to the resulting solution. After thorough homogenization of the solution, 3 ml of NaClO solution (10-15% available O2) was added to the reaction mixture. The reaction continued with constant stirring for 15 min. The reaction was terminated by the addition of 100 ml of a 40% propan-2-ol solution. The product was purified by ultrafiltration and isolated by precipitation with propan-2-ol.

IČ (KBr): 3417, 2886, 2152, 1659, 1620, 1550, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm'1. 1H NMR (D2O) δ: 2,01 (s, 3 H, CH3-), 3,37 - 3,93 (m, skelet hyaluronanu), 4,46 (s, 1H, anomér), 4,54 (s, 1H anomér, -O-CH(OH)-), 5,27 (geminálny glykol -CH- (OH)2).ID (KBr): 3417, 2886, 2152, 1659, 1620, 1550, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm' 1 . 1H NMR (D2O) δ: 2.01 (s, 3H, CH3-), 3.37-3.93 (m, hyaluronan backbone), 4.46 (s, 1H, anomer), 4.54 (s , 1H anomer, -O-CH(OH)-), 5.27 (geminal glycol -CH- (OH)2).

a) Príprava tyramínovaného derivátu HA s C6 spacerom (Mw = 3 x 105 g.mol-1, DS = 2 %)a) Preparation of tyraminated HA derivative with C 6 spacer (Mw = 3 x 10 5 g.mol -1 , DS = 2%)

Aldehydický derivát HA (= 3 x 105 g.mol-1, DS = 9 %) (5,00 g) bol rozpustený v 500 ml demineralizovanej vody. Pomocou kyseliny octovej bolo pH roztoku upravené na 3. K roztoku HA-CHO bol pridaný 6-amino-N -[2-(4- hydroxyfenyl)etyl]hexánamid (medziprodukt (I)) (1,25 g, 5 mmol). Zmes bola miešaná 2 hodiny pri laboratórnej teplote. Potom bol do reakčnej zmesi pridaný komplex pikolín-boran (0,270 g, 2,5 mmol). Zmes bola miešaná ďalších 12 hodín pri laboratórnej teplote. Produkt bol prečistený ultrafiltráciou a izolovaný z retentátu precipitáciou propán-2-olom. Precipitát bol zbavený vlhkosti a zvyškového propán-2-olu sušením v teplovzdušnej sušiarni (40 °C , 3 dni).The aldehyde derivative HA (= 3 x 10 5 g.mol -1 , DS = 9%) (5.00 g) was dissolved in 500 ml of demineralized water. Using acetic acid, the pH of the solution was adjusted to 3. 6-amino-N-[2-(4-hydroxyphenyl)ethyl]hexanamide (intermediate (I)) (1.25 g, 5 mmol) was added to the HA-CHO solution. The mixture was stirred for 2 hours at room temperature. Picoline-borane complex (0.270 g, 2.5 mmol) was then added to the reaction mixture. The mixture was stirred for another 12 hours at room temperature. The product was purified by ultrafiltration and isolated from the retentate by precipitation with propan-2-ol. The precipitate was freed of moisture and residual propan-2-ol by drying in a hot air oven (40 °C, 3 days).

IČ (KBr): 3425, 2893, 2148, 1660, 1620, 1549, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm'1. 1H NMR (D2O) δ: 1,25 (t, 2 H, y-CH2- aminohexánovej kyseliny), 1,48 (m, 2 H, δ- CH2- aminohexánovej kyseliny) 1,51 (m, 2 H, P-CH2-aminohexánovej kyseliny), 2,01 (s, 3 H, CH3-), 2,65 (m, 2H, Ph-CH2-), 2,73 (m, 2H, ε-CH2aminohexánovej kyseliny), 3,37 - 3,93 (m, skelet hyaluronanu), 4,46 (s, 1H, anomér), 4,54 (s, 1H anomér., -O-CH(OH)-), 6,59 (d, 2H, arom.), 7,01 (d, 2H. arom).ID (KBr): 3425, 2893, 2148, 1660, 1620, 1549, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm' 1 . 1H NMR (D2O) δ: 1.25 (t, 2H, γ-CH2- aminohexanoic acid), 1.48 (m, 2H, δ- CH2- aminohexanoic acid) 1.51 (m, 2H, P -CH2-aminohexanoic acid), 2.01 (s, 3 H, CH3-), 2.65 (m, 2H, Ph-CH2-), 2.73 (m, 2H, ε-CH2 aminohexanoic acid), 3, 37 - 3.93 (m, hyaluronan skeleton), 4.46 (s, 1H, anomer), 4.54 (s, 1H anomer., -O-CH(OH)-), 6.59 (d, 2H , arom.), 7.01 (d, 2H. arom.).

SEC MALLS: Mw = 2,78 x 105 g.moľ1 SEC MALLS: Mw = 2.78 x 10 5 g.mol 1

DS (1H NMR): 2,1 %DS (1H NMR): 2.1%

b) Príprava tyramínovaného derivátu HA s C6 spacerom (Mw = 8 x 105 g.moľ1, DS = 1 %)b) Preparation of tyraminated HA derivative with C6 spacer (Mw = 8 x 10 5 g.mol 1 , DS = 1%)

Aldehydický derivát HA (Mw = 8 x 105 g.moľ1, DS = 5 %) (5,00 g) bol rozpustený v 500 ml demineralizovanej vody. Pomocou kyseliny octovej bolo pH roztoku upravené na 3. K roztoku HA-CHO bol pridaný 6-amino- N -[2-(4- hydroxyfenyl)etyl]hexánamid (medziprodukt (I)) (0,625 g, 2,5 mmol). Zmes bola miešaná 2 hodiny pri laboratórnej teplote. Potom bol do reakčnej zmesi pridaný komplex pikolín-boran (0,270 g, 2,5 mmol). Zmes bola miešaná ďalších 12 hodín pri laboratórnej teplote. Produkt bol prečistený ultrafiltráciou a izolovaný z retentátu precipitáciou propán-2-olom. Precipitát bol zbavený vlhkosti a zvyškového propán-2-olu sušením v teplovzdušnej sušiarni (40 °C, 3 dni).The aldehyde derivative HA (Mw = 8 x 10 5 g.mol 1 , DS = 5%) (5.00 g) was dissolved in 500 ml of demineralized water. Using acetic acid, the pH of the solution was adjusted to 3. 6-amino-N-[2-(4-hydroxyphenyl)ethyl]hexanamide (intermediate (I)) (0.625 g, 2.5 mmol) was added to the HA-CHO solution. The mixture was stirred for 2 hours at room temperature. Picoline-borane complex (0.270 g, 2.5 mmol) was then added to the reaction mixture. The mixture was stirred for another 12 hours at room temperature. The product was purified by ultrafiltration and isolated from the retentate by precipitation with propan-2-ol. The precipitate was freed from moisture and residual propan-2-ol by drying in a hot air oven (40 °C, 3 days).

IČ (KBr): 3425, 2893, 2148, 1660, 1620, 1549, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm-1.ID (KBr): 3425, 2893, 2148, 1660, 1620, 1549, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm -1 .

1H NMR (D2O) δ: 1,25 (t, 2 H, y-CH2- aminohexánovej kyseliny), 1,48 (m, 2 H, δ- CH2- aminohexánovej kyseliny), 1,51 (m, 2 H, e-CH2- aminohexánovej kyseliny), 2,01 (s, 3 H, CH3-), 2,65 (m, 2H, Ph-CH2-), 2,73 (m, 2H, ε-CH2aminohexánovej kyseliny), 3,37 - 3,93 (m, skelet hyaluronanu), 4,46 (s, 1H, anomér), 4,54 (s, 1H anomér., -O-CH(OH)-), 6,59 (d, 2H, arom.), 7,01 (d, 2H. arom).1H NMR (D2O) δ: 1.25 (t, 2H, γ-CH2- aminohexanoic acid), 1.48 (m, 2H, δ- CH2- aminohexanoic acid), 1.51 (m, 2H, e-CH2- aminohexanoic acid), 2.01 (s, 3 H, CH3-), 2.65 (m, 2H, Ph-CH2-), 2.73 (m, 2H, ε-CH2 aminohexanoic acid), 3 .37 - 3.93 (m, hyaluronan skeleton), 4.46 (s, 1H, anomer), 4.54 (s, 1H anomer., -O-CH(OH)-), 6.59 (d, 2H, arom.), 7.01 (d, 2H, arom.).

SEC MALLS: Mw = 8,09 x 105 g.moľ1 SEC MALLS: Mw = 8.09 x 10 5 g.mol 1

DS (1H NMR): 1,1 %DS (1H NMR): 1.1%

c) Príprava tyramínovaného derivátu HA s C6 spacerom (Mw = 1,5 x 106 g.mol-1, DS = 0,5 %)c) Preparation of tyraminated HA derivative with C6 spacer (Mw = 1.5 x 10 6 g.mol -1 , DS = 0.5%)

Aldehydický derivát HA (Mw = 1,5 x 106 g.moľ1, DS = 0,5 %) (5,00 g) bol rozpustený v 500 ml demineralizovanej vody. Pomocou kyseliny octovej bolo pH roztoku upravené na 3. K roztoku HA-CHO bol pridaný 6-amino-N -[2-(4- hydroxyfenyl)etyl]hexán-amid (medziprodukt (I)) (0,625 g, 2,5 mmol). Zmes bola miešaná 2 hodiny pri laboratórnej teplote. Potom bol do reakčnej zmesi pridaný komplex pikolín-boran (0,270 g, 2,5 mmol). Zmes bola miešaná ďalších 12 hodín pri laboratórnej teplote. Produkt bol prečistený ultrafiltráciu a izolovaný z retentátu precipitáciou propán-2-olom. Precipitát bol zbavený vlhkosti a zvyškového propán- 2-olu sušením v teplovzdušnej sušiarni (40 oC , 3 dni).The aldehyde derivative of HA (Mw = 1.5 x 10 6 g.mol 1 , DS = 0.5%) (5.00 g) was dissolved in 500 ml of demineralized water. Using acetic acid, the pH of the solution was adjusted to 3. 6-amino-N-[2-(4-hydroxyphenyl)ethyl]hexane-amide (intermediate (I)) (0.625 g, 2.5 mmol) was added to the HA-CHO solution ). The mixture was stirred for 2 hours at room temperature. Picoline-borane complex (0.270 g, 2.5 mmol) was then added to the reaction mixture. The mixture was stirred for another 12 hours at room temperature. The product was purified by ultrafiltration and isolated from the retentate by precipitation with propan-2-ol. The precipitate was freed of moisture and residual propan-2-ol by drying in a hot air oven (40 o C, 3 days).

IČ (KBr): 3425, 2893, 2148, 1660, 1620, 1549, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm’1. 1H NMR (D2O) δ: 1,25 (t, 2 H, y-CH2- aminohexánovej kyseliny), 1,48 (m, 2 H, δ- CH2- aminohexánovej kyseliny)1,51 (m, 2 H, β -CH2- aminohexánovej kyseliny), 2,01 (s, 3 H, CH3-), 2,65 (m, 2H, Ph-CH2-), 2,73 (m, 2H, ε-CH2- aminohexánovej kyseliny), 3,37 - 3,93 (m, skelet hyaluronanu), 4,46 (s, 1H, anomér), 4,54 (s, 1H anomér., -O-CH(OH)-), 6,59 (d, 2H, arom.), 7,01 (d, 2H. arom.).ID (KBr): 3425, 2893, 2148, 1660, 1620, 1549, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm' 1 . 1H NMR (D2O) δ: 1.25 (t, 2 H, γ-CH2- aminohexanoic acid), 1.48 (m, 2 H, δ- CH2- aminohexanoic acid) 1.51 (m, 2 H, β -CH2- aminohexanoic acid), 2.01 (s, 3 H, CH3-), 2.65 (m, 2H, Ph-CH2-), 2.73 (m, 2H, ε-CH2- aminohexanoic acid), 3.37 - 3.93 (m, hyaluronan skeleton), 4.46 (s, 1H, anomer), 4.54 (s, 1H anomer., -O-CH(OH)-), 6.59 (d , 2H, arom.), 7.01 (d, 2H, arom.).

SEC MALLS: Mw = 1,5 x 106 g.moľ1 SEC MALLS: Mw = 1.5 x 10 6 g.mol 1

DS (1H NMR): 0,5 %DS (1H NMR): 0.5%

d) Príprava tyramínovaného derivátu HA s C6 spacerem (Mw = 5 x 104 g.moľ1, DS = 10 %)d) Preparation of tyraminated HA derivative with C6 spacer (Mw = 5 x 10 4 g.mol 1 , DS = 10%)

Aldehydický derivát HA (Mw = 5 x 104 g.mol-1, DS = 10 %) (5,00 g) bol rozpustený v 500 ml demineralizovanej vody. Pomocou kyseliny octovej bolo pH roztoku upravené na 3. K roztoku HA-CHO bol pridaný 6-amino-N -[2-(4-hydroxy- fenyl)etyl]hexanamid (medziprodukt (I)) (0,625 g, 2,5 mmol). Zmes bola miešaná 2 hodiny pri laboratórnej teplote. Potom bol do reakčnej zmesi pridaný komplex pikolín-boran (0,270 g, 2,5 mmol). Zmes bola miešaná ďalších 12 hodín pri laboratórnej teplote. Produkt bol prečistený ultrafiltráciou a izolovaný z retentátu precipitáciou propán-2-olom. Precipitát bol zbavený vlhkosti a zvyškového propán- 2-olu sušením v teplovzdušnej sušiarni (40 °C, 3 dni).The aldehyde derivative of HA (Mw = 5 x 10 4 g.mol -1 , DS = 10%) (5.00 g) was dissolved in 500 ml of demineralized water. Using acetic acid, the pH of the solution was adjusted to 3. 6-amino-N-[2-(4-hydroxy-phenyl)ethyl]hexanamide (intermediate (I)) (0.625 g, 2.5 mmol) was added to the HA-CHO solution ). The mixture was stirred for 2 hours at room temperature. Picoline-borane complex (0.270 g, 2.5 mmol) was then added to the reaction mixture. The mixture was stirred for another 12 hours at room temperature. The product was purified by ultrafiltration and isolated from the retentate by precipitation with propan-2-ol. The precipitate was freed of moisture and residual propan-2-ol by drying in a hot air oven (40 °C, 3 days).

IČ (KBr): 3425, 2893, 2148, 1660, 1620, 1549, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm-1.ID (KBr): 3425, 2893, 2148, 1660, 1620, 1549, 1412, 1378, 1323, 1236, 1204, 1154, 1078, 1038, 945, 893 cm -1 .

1H NMR (D2O) δ: 1,25 (t, 2 H, y-CH2- aminohexánovej kyseliny), 1,48 (m, 2 H, δ- CH2- aminohexánovej kyseliny), 1,51 (m, 2 H, e-CH2- aminohexánovej kyseliny), 2,01 (s, 3 H, CH3-), 2,65 (m, 2H, Ph-CH2-), 2,73 (m, 2H, ε-CH2-aminohexánovej kyseliny), 3,37 - 3,93 (m, skelet hyaluronanu), 4,46 (s, 1H, anomér), 4,54 (s, 1H anomér., -O-CH(OH)-), 6,59 (d, 2H, arom.), 7,01 (d, 2H, arom.).1H NMR (D 2 O) δ: 1.25 (t, 2 H, y-CH 2 - aminohexanoic acid), 1.48 (m, 2 H, δ- CH 2 - aminohexanoic acid), 1.51 (m , 2 H, e-CH2- of aminohexanoic acid), 2.01 (s, 3 H, CH3-), 2.65 (m, 2H, Ph-CH2-), 2.73 (m, 2H, ε-CH2 -aminohexanoic acid), 3.37 - 3.93 (m, hyaluronan skeleton), 4.46 (s, 1H, anomer), 4.54 (s, 1H anomer., -O-CH(OH)-), 6.59 (d, 2H, arom.), 7.01 (d, 2H, arom.).

SEC MALLS: Mw = 5 x 104 g.mol’1 SEC MALLS: Mw = 5 x 10 4 g.mol' 1

DS (1H NMR): 10 %DS (1H NMR): 10%

Príklad 2Example 2

Príprava hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 20 mg/mlPreparation of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 20 mg/ml

Hydrogély boli pripravené zmiešaním dvoch prekurzorových roztokov A a B, na ich prípravu bol použitý vodný roztok NaCl (9 g/l). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 2,78 x 105 g.mol-1 a DS 2,1 %. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 1).Hydrogels were prepared by mixing two precursor solutions A and B, for their preparation an aqueous solution of NaCl (9 g/l) was used. The hydroxyphenyl derivative HA-TA with Mw = 2.78 x 10 5 g.mol -1 and DS 2.1% was used for the preparation of precursor solutions. The composition of the solutions is shown in the following table (Table 1).

Tabuľka 1 Zloženie prekurzorových roztokov na prípravu hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 20 mg/mlTable 1 Composition of precursor solutions for the preparation of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 20 mg/ml

Roztok A Solution A Roztok B Solution B HRP........... HRP........... ... 0,48 U/ml ... 0.48 U/ml H2O2....... H2O2...... 2,0 mmol/l 2.0 mmol/l HA-TA........ HA-TA........ .... 20 mg/ml .... 20 mg/ml HA-TA.... HA-TA.... 20 mg/ml 20 mg/ml NaCl........... NaCl........... .... 9 g/l .... 9 g/l NaCl....... NaCl 9 g/l 9 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 boli pripravené hydrogély s finálnym zložením, uvedeným v nasledujúcej tabuľke (tabuľka 2), kde crossHA-TA je kovalentne zosieteným hydroxyfenylovým derivátom hyaluronanu.By mixing solution A and solution B in a 1:1 ratio, hydrogels were prepared with the final composition shown in the following table (table 2), where crossHA-TA is a covalently cross-linked hydroxyphenyl derivative of hyaluronan.

Tabuľka 2 Finálne zloženie hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 20 mg/mlTable 2 Final composition of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 20 mg/ml

Zloženie hydrogélov Composition of hydrogels HRP.................. HRP................... ......0,24 U/ml ......0.24 U/ml crossHA-TA...... crossHA-TA...... .......20 mg/ml .......20 mg/ml NaCl................. NaCl................... ......9 g/l ......9 g/l

Príklad 3Example 3

Príprava hydrogélov, obsahujúcich ChS s koncentráciou 0,5 mg/mlPreparation of hydrogels containing ChS with a concentration of 0.5 mg/ml

Hydrogély boli pripravené zmiešaním dvoch prekurzorových roztokov A a B, na prípravu ktorých bol použitý vodný roztok NaCl (9 g/l). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 2,78 x 105 g.mol-1 a DS 2,1 % a ChS s Mw = 10 x 103 - 40 x 103 g.mol-1. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 3).Hydrogels were prepared by mixing two precursor solutions A and B, for the preparation of which an aqueous solution of NaCl (9 g/l) was used. The hydroxyphenyl derivative HA-TA with Mw = 2.78 x 10 5 g.mol -1 and DS 2.1% and ChS with Mw = 10 x 10 3 - 40 x 10 3 g.mol -1 were used for the preparation of precursor solutions. . The composition of the solutions is shown in the following table (Table 3).

Tabuľka 3 Zloženie prekurzorových roztokov na prípravu hydrogélov obsahujúce ChS s koncentráciou 0,5 mg/mlTable 3 Composition of precursor solutions for the preparation of hydrogels containing ChS with a concentration of 0.5 mg/ml

Roztok A Solution A RoztokB SolutionB HRP........0,48 U/ml HRP........0.48 U/ml H2O2......... H2O2......... .....2,0 mmol/l .....2.0 mmol/l HA-TA....20 mg/ml HA-TA....20 mg/ml HA-TA...... HA-TA...... ....20 mg/ml ....20 mg/ml ChS........0,5 mg/ml ChS........0.5 mg/ml ChS.......... ChS.......... ....0,5 mg/ml ....0.5 mg/ml NaCl.......9 g/l NaCl.......9 g/l NaCl......... NaCl......... ...9 g/l ...9 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 boli pripravené hydrogély s finálnym zložením, uvedeným v nasledujúcej tabuľke (tabuľka 4), kde crossHA-TA je kovalentne zosieteným hydroxyfenylovým derivátom hyaluronanu.By mixing solution A and solution B in a 1:1 ratio, hydrogels were prepared with the final composition shown in the following table (table 4), where crossHA-TA is a covalently cross-linked hydroxyphenyl derivative of hyaluronan.

Tabuľka 4 Finálne zloženie hydrogélov obsahujúce ChS s koncentráciou 0,5 mg/mlTable 4 Final composition of hydrogels containing ChS with a concentration of 0.5 mg/ml

Zloženie hydrogélov Composition of hydrogels HRP................ HRP................ .....0,24 U/ml .....0.24 U/ml crossHA-TA.... crossHA-TA.... .....20 mg/ml .....20 mg/ml ChS................ ChS................ ....0,5 mg/ml ....0.5 mg/ml NaCl............... NaCl............... ....9 g/l ....9 g/l

Príklad 4Example 4

Príprava hydrogélov, obsahujúcich ChS s koncentráciou 3,3 mg/mlPreparation of hydrogels containing ChS with a concentration of 3.3 mg/ml

Hydrogély boli pripravené zmiešaním dvoch prekurzorových roztokov Aa B, na prípravu ktorých bol použitý vodný roztok NaCl (9 g/l). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 2,78 x 105 g.mol-1 a DS 2,1 % a ChS s Mw = 10 x 103 - 40 x 103 g.mol-1. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 5).Hydrogels were prepared by mixing two precursor solutions A and B, for the preparation of which an aqueous solution of NaCl (9 g/l) was used. The hydroxyphenyl derivative HA-TA with Mw = 2.78 x 10 5 g.mol -1 and DS 2.1% and ChS with Mw = 10 x 10 3 - 40 x 10 3 g.mol -1 were used for the preparation of precursor solutions. . The composition of the solutions is shown in the following table (Table 5).

Tabuľka 5 Zloženie prekurzorových roztokov na prípravu hydrogélov obsahujúce ChS s koncentráciou 3,3 mg/mlTable 5 Composition of precursor solutions for the preparation of hydrogels containing ChS with a concentration of 3.3 mg/ml

Roztok A Solution A Roztok B Solution B HRP.................. HRP................... ...........0,48 U/ml ...........0.48 U/ml H2O2................. H2O2................. ...........2,0 mmol/l ...........2.0 mmol/l HA-TA.............. HA-TA.............. ...........20 mg/ml ...........20 mg/ml HA-TA............... HA-TA............... ...........20 mg/ml ...........20 mg/ml ChS................... ChS................... ...........3,3 mg/ml ...........3.3 mg/ml ChS................... ChS................... ...........3,3 mg/ml ...........3.3 mg/ml NaCl................. NaCl................... ..........9 g/l ..........9 g/l NaCl................. NaCl................... ...........9 g/l ...........9 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 boli pripravené hydrogély s finálnym zložením, uvedeným v nasledujúcej tabuľke (tabuľka 6), kde crossHA-TA je kovalentne zosieteným hydroxyfenylovým derivátom hyaluronanu.By mixing solution A and solution B in a 1:1 ratio, hydrogels were prepared with the final composition shown in the following table (table 6), where crossHA-TA is a covalently cross-linked hydroxyphenyl derivative of hyaluronan.

Tabuľka 6 Finálne zloženie hydrogélov obsahujúce ChS s koncentráciou 3,3 mg/mlTable 6 Final composition of hydrogels containing ChS with a concentration of 3.3 mg/ml

Zloženie hydrogélov Composition of hydrogels HRP.................. HRP................... .......0,24 U/ml .......0.24 U/ml crossHA-TA....... crossHA-TA....... ........20 mg/ml ........20 mg/ml ChS................... ChS................... ......3,3 mg/ml ......3.3 mg/ml NaCl.................. NaCl................... .......9 g/l .......9 g/l

Príklad 5Example 5

Príprava hydrogélov, obsahujúcich ChS s koncentráciou 10 mg/mlPreparation of hydrogels containing ChS with a concentration of 10 mg/ml

Hydrogély boli pripravené zmiešaním dvoch prekurzorových roztokov A a B, na prípravu ktorých bol použitý vodný roztok NaCl (9 g/l). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 2,78 x 105 g.mol-1 a DS 2,1 % a ChS s Mw = 10 x 103 - 40 x 103 g.mol-1. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 7).Hydrogels were prepared by mixing two precursor solutions A and B, for the preparation of which an aqueous solution of NaCl (9 g/l) was used. The hydroxyphenyl derivative HA-TA with Mw = 2.78 x 10 5 g.mol -1 and DS 2.1% and ChS with Mw = 10 x 10 3 - 40 x 10 3 g.mol -1 were used for the preparation of precursor solutions. . The composition of the solutions is shown in the following table (table 7).

Tabuľka 7 Zloženie prekurzorových roztokov na prípravu hydrogélov obsahujúce ChS s koncentráciou 10 mg/mlTable 7 Composition of precursor solutions for the preparation of hydrogels containing ChS with a concentration of 10 mg/ml

Roztok A Solution A Roztok B Solution B HRP.................. HRP................... ..........0,48 U/ml ..........0.48 U/ml H2O2................... H2O2................... .............2,0 mmol/l .............2.0 mmol/l HA-TA.............. HA-TA.............. ...........20 mg/ml ...........20 mg/ml HA-TA................ HA-TA................ ............20 mg/ml ............20 mg/ml ChS................... ChS................... ...........10 mg/ml ...........10 mg/ml ChS.................... ChS................... ............10 mg/ml ............10 mg/ml NaCl................. NaCl................... ..........9 g/l ..........9 g/l NaCl................... NaCl................... ............9 g/l ............9 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 boli pripravené hydrogély s finálnym zložením, uvedeným v nasledujúcej tabuľke (tabuľka 8), kde crossHA-TA je kovalentne zosieteným hydroxyfenylovým derivátom hyaluronanu.By mixing solution A and solution B in a ratio of 1:1, hydrogels were prepared with the final composition shown in the following table (Table 8), where crossHA-TA is a covalently cross-linked hydroxyphenyl derivative of hyaluronan.

Tabuľka 8 Finálne zloženie hydrogélov obsahujúce ChS s koncentráciou 10 mg/mlTable 8 Final composition of hydrogels containing ChS with a concentration of 10 mg/ml

Zloženie hydrogélov Composition of hydrogels HRP............................. HRP................................... ...0,24 U/ml ...0.24 U/ml crossHA-TA................. crossHA-TA................. .....20 mg/ml .....20 mg/ml ChS.............................. ChS................................... ....10 mg/ml ....10 mg/ml NaCl............................ NaCl................................ ...9 g/l ...9 g/l

Príklad 6Example 6

Príprava hydrogélov, obsahujúcich ChS s koncentráciou 50 mg/mlPreparation of hydrogels containing ChS with a concentration of 50 mg/ml

Hydrogély boli pripravené zmiešaním dvoch prekurzorových roztokov Aa B, na prípravu ktorých bol použitý vodný roztok NaCl (9 g/l). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 2,78 x 105 g.mol-1 a DS 2,1 % a ChS s Mw = 10 x 103 - 40 x 103 g.mol'1. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 9).Hydrogels were prepared by mixing two precursor solutions A and B, for the preparation of which an aqueous solution of NaCl (9 g/l) was used. Hydroxyphenyl derivative HA-TA with Mw = 2.78 x 10 5 g.mol -1 and DS 2.1% and ChS with Mw = 10 x 10 3 - 40 x 10 3 g.mol' 1 were used for the preparation of precursor solutions. . The composition of the solutions is shown in the following table (table 9).

Tabuľka 9 Zloženie prekurzorových roztokov na prípravu hydrogélov obsahujúce ChS s koncentráciou 50 mg/mlTable 9 Composition of precursor solutions for the preparation of hydrogels containing ChS with a concentration of 50 mg/ml

Roztok A Solution A Roztok B Solution B HRP.................. HRP................... ...........0,48 U/ml ...........0.48 U/ml H2O2.................. H2O2................... ............2,0 mmol/l ............2.0 mmol/l HA-TA.............. HA-TA.............. ..........20 mg/ml ..........20 mg/ml HA-TA............... HA-TA............... ...........20 mg/ml ...........20 mg/ml ChS.................. ChS................... ..........50 mg/ml ..........50 mg/ml ChS................... ChS................... ............50 mg/ml ............50 mg/ml NaCl................. NaCl................... ...........9 g/l ...........9 g/l NaCl.................. NaCl................... ............9 g/l ............9 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 boli pripravené hydrogély s finálnym zložením, uvedeným v nasledujúcej tabuľke (tabuľka 10), kde crossHA-TA je kovalentne zosieteným hydroxyfenylovým derivátom hyaluronanu.By mixing solution A and solution B in a ratio of 1:1, hydrogels were prepared with the final composition shown in the following table (table 10), where crossHA-TA is a covalently cross-linked hydroxyphenyl derivative of hyaluronan.

Tabuľka 10 Finálne zloženie hydrogélov obsahujúce ChS s koncentráciou 50 mg/mlTable 10 Final composition of hydrogels containing ChS with a concentration of 50 mg/ml

Zloženie hydrogélov Composition of hydrogels HRP................ HRP................ ....0,24 U/ml ....0.24 U/ml crossHA-TA.... crossHA-TA.... .........20 mg/ml .........20 mg/ml ChS................. ChS................... ......50 mg/ml ......50 mg/ml NaCl............... NaCl............... .....9 g/l .....9 g/l

Príklad 7Example 7

Príprava hydrogélov, obsahujúcich HA s koncentráciou 5 mg/mlPreparation of hydrogels containing HA with a concentration of 5 mg/ml

Príprava hydrogélov, obsahujúcich nezosietenú kyselinu hyalurónovú zahŕňala 3 základné kroky:The preparation of hydrogels containing non-cross-linked hyaluronic acid included 3 basic steps:

1. Príprava hydrogélu obsahujúceho zosietený derivát crossHA-TA1. Preparation of a hydrogel containing cross-linked crossHA-TA derivative

Hydrogél obsahujúci zosietený derivát crossHA-TA bol pripravený zmiešaním dvoch prekurzorových roztokov A a B, ktoré boli pripravené rozpustením jednotlivých zložiek vo fosfátom pufrovanom fyziologickom roztoku (PBS). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 8,09 x 105 g.mol-1 a DS 1,1 %. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 11).The hydrogel containing the cross-linked crossHA-TA derivative was prepared by mixing two precursor solutions A and B, which were prepared by dissolving the individual components in phosphate-buffered saline (PBS). The hydroxyphenyl derivative HA-TA with Mw = 8.09 x 105 g.mol-1 and DS 1.1% was used for the preparation of precursor solutions. The composition of the solutions is shown in the following table (table 11).

Tabuľka 11 Zloženie prekurzorových roztokov na prípravu zosieteného derivátu crossHA-TATable 11 Composition of precursor solutions for the preparation of the cross-linked crossHA-TA derivative

Roztok A Solution A Roztok B Solution B HRP........................... HRP................................... ........12,8 mU/ml ........12.8 mU/ml H2O2......................... H2O2........................ .......0,6 mmol/l .......0.6 mmol/l HA-TA....................... HA-TA........................ ........20 mg/ml ........20 mg/ml HA-TA....................... HA-TA........................ ........20 mg/ml ........20 mg/ml NaCl.......................... NaCl................................ ........8 g/l ........8 g/l NaCl......................... NaCl........................ ........8 g/l ........8 g/l KCl............................ KCl............................ ........0,2 g/l ........0.2 g/l KCl............................ KCl............................ ........0,2 g/l ........0.2 g/l Na2HPO4.12H2O........ Na2HPO4.12H2O........ ........2,85 g/l ........2.85 g/l Na2HPO4.12H2O....... Na2HPO4.12H2O....... ........2,85 g/l ........2.85 g/l KH2PO4...................... KH2PO4................... ........0,2 g/l ........0.2 g/l KH2PO4..................... KH2PO4................... ........0,2 g/l ........0.2 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 bol pripravený hydrogél so zložením uvedenom v nasledujúcej tabuľke (tabuľka 12).By mixing solution A and solution B in a 1:1 ratio, a hydrogel was prepared with the composition shown in the following table (table 12).

Tabuľka 12 Zloženie zosieteného derivátu crossHA-TATable 12 Composition of the cross-linked crossHA-TA derivative

Zloženie zosieteného derivátu crossHA-TA Composition of the cross-linked crossHA-TA derivative HRP........................... HRP................................... ........0,24 U/ml ........0.24 U/ml crossHA-TA............... crossHA-TA............... ..........20 mg/ml ..........20 mg/ml NaCl.......................... NaCl................................ ..........8 g/l ..........8 g/l KCl............................ KCl............................ .........0,2 g/l .........0.2 g/l Na2HPO4.12H2O........ Na2HPO4.12H2O........ .............2,85 g/l .............2.85 g/l KH2PO4..................... KH2PO4................... .........0,2 g/l .........0.2 g/l

2. Príprava roztoku hyaluronanu2. Preparation of hyaluronan solution

Roztok HA s koncentráciou 5 mg/ml bol pripravený rozpustením natívneho hyaluronanu s Mw 1,91 x 106 g.mol-1 v PBS.A HA solution with a concentration of 5 mg/ml was prepared by dissolving native hyaluronan with a Mw of 1.91 x 10 6 g.mol -1 in PBS.

3. Homogenizácia hydrogélu a roztoku hyaluronanu3. Homogenization of hydrogel and hyaluronan solution

Finálny hydrogél bol pripravený zmiešaním zosieteného derivátu crossHA-TA a roztoku HA v pomere 1 : 1 s následnou homogenizáciou zmesi. Finálne zloženie materiálu je uvedené v nasledujúcej tabuľke (tabuľka 13).The final hydrogel was prepared by mixing cross-linked crossHA-TA derivative and HA solution in a ratio of 1:1 with subsequent homogenization of the mixture. The final composition of the material is shown in the following table (table 13).

Tabuľka 13 Finálne zloženie hydrogélu, obsahujúce HA s koncentráciou 5 mg/mlTable 13 Final composition of the hydrogel, containing HA with a concentration of 5 mg/ml

Finálne zloženie Final composition HRP.................... HRP................... .0,12 U/ml .0.12 U/ml crossHA-TA........ crossHA-TA........ .....10 mg/ml .....10 mg/ml HA...................... HA................... ..5 mg/ml ..5 mg/ml NaCl................... NaCl................... ..8 g/l ..8 g/l KCl...................... KCl................... ..0,2 g/l ..0.2 g/l Na2HPO4.12H2O. Na2HPO4.12H2O. .....2,85 g/l .....2.85 g/l KH2PO4............... KH2PO4............... .0,2 g/l .0.2 g/l

Príklad 8Example 8

Príprava hydrogélov, obsahujúcich HA s koncentráciou 20 mg/mlPreparation of hydrogels containing HA with a concentration of 20 mg/ml

Príprava hydrogélov, obsahujúcich nezosietenú kyselinu hyalurónovú zahŕňala 3 základné kroky:The preparation of hydrogels containing non-cross-linked hyaluronic acid included 3 basic steps:

1. Príprava hydrogélu obsahujúceho zosietený derivát crossHA-TA1. Preparation of a hydrogel containing cross-linked crossHA-TA derivative

Hydrogél obsahujúci zosietený derivát crossHA-TA bol pripravený zmiešaním dvoch prekurzorových roztokov A a B, ktoré boli pripravené rozpustením jednotlivých zložiek vo fosfátom pufrovanom fyziologickom roztoku (PBS). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 8,09 x 105 g.mol-1 a DS 1,1 %. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 14).The hydrogel containing the cross-linked crossHA-TA derivative was prepared by mixing two precursor solutions A and B, which were prepared by dissolving the individual components in phosphate-buffered saline (PBS). The hydroxyphenyl derivative HA-TA with Mw = 8.09 x 10 5 g.mol -1 and DS 1.1% was used for the preparation of precursor solutions. The composition of the solutions is shown in the following table (table 14).

Tabuľka 14 Zloženie prekurzorových roztokov na prípravu zosieteného derivátu crossHA-TATable 14 Composition of precursor solutions for the preparation of the cross-linked crossHA-TA derivative

Roztok A Solution A Roztok B Solution B HRP........................... HRP................................... .........12,8 mU/ml .........12.8 mU/ml H2O2......................... H2O2........................ ........0,6 mmol/l ........0.6 mmol/l HA-TA....................... HA-TA........................ ...........20 mg/ml ...........20 mg/ml HA-TA....................... HA-TA........................ .........20 mg/ml .........20 mg/ml NaCl.......................... NaCl................................ .........8 g/l .........8 g/l NaCl.......................... NaCl................................ .........8 g/l .........8 g/l KCl............................ KCl............................ ........0,2 g/l ........0.2 g/l KCl............................ KCl............................ .......0,2 g/l .......0.2 g/l Na2HPO4.12H2O........ Na2HPO4.12H2O........ ...........2,85 g/l ...........2.85 g/l Na2HPO4.12H2O....... Na2HPO4.12H2O....... ...........2,85 g/l ...........2.85 g/l KH2PO4...................... KH2PO4................... ........0,2 g/l ........0.2 g/l KH2PO4..................... KH2PO4................... ........ 0,2 g/l ........ 0.2 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 bol pripravený hydrogél so zložením uvedenom v nasledujúcej tabuľke (tabuľka 15).By mixing solution A and solution B in a 1:1 ratio, a hydrogel was prepared with the composition shown in the following table (table 15).

Tabuľka 15 Zloženie zosieteného derivátu crossHA-TATable 15 Composition of the cross-linked crossHA-TA derivative

Zloženie zosieteného derivátu crossHA-TA Composition of the cross-linked crossHA-TA derivative HRP...................... HRP................... .....0,24 U/ml .....0.24 U/ml crossHA-TA........... crossHA-TA.......... .......20 mg/ml .......20 mg/ml NaCl...................... NaCl................... .....8 g/l .....8 g/l KCl........................ KCl........................ ...0,2 g/l ...0.2 g/l Na2HPO4.12H2O... Na2HPO4.12H2O... ........2,85 g/l ........2.85 g/l KH2PO4................. KH2PO4................... .....0,2 g/l .....0.2 g/l

2. Príprava roztoku hyaluronanu2. Preparation of hyaluronan solution

Roztok HA s koncentráciou 40 mg/ml bol pripravený rozpustením natívneho hyaluronanu s Mw 1,91 x 106 g.mol-1 vo fosfátovom pufri (PBS).A HA solution with a concentration of 40 mg/ml was prepared by dissolving native hyaluronan with Mw 1.91 x 10 6 g.mol -1 in phosphate buffer (PBS).

3. Homogenizácia hydrogélu a roztoku hyaluronanu3. Homogenization of hydrogel and hyaluronan solution

Finálny hydrogél bol pripravený zmiešaním zosieteného derivátu crossHA-TA a roztoku HA v pomere 1 : 1 s následnou homogenizáciou zmesi. Finálne zloženie materiálu je uvedené v nasledujúcej tabuľke (tabuľka 16).The final hydrogel was prepared by mixing cross-linked crossHA-TA derivative and HA solution in a ratio of 1:1 with subsequent homogenization of the mixture. The final composition of the material is shown in the following table (table 16).

Tabuľka 16 Finálne zloženie hydrogélu, obsahujúce HA s koncentráciou 20 mg/mlTable 16 Final composition of the hydrogel, containing HA with a concentration of 20 mg/ml

Finálne zloženie Final composition HRP....................... HRP................... .....0,12 U/ml .....0.12 U/ml crossHA-TA............ crossHA-TA............ ........10 mg/ml ........10 mg/ml HA......................... HA................... .....20 mg/ml .....20 mg/ml NaCl....................... NaCl...................... .....8 g/l .....8 g/l KCl......................... KCl.......................... ....0,2 g/l ....0.2 g/l Na2HPO4.12H2O.... Na2HPO4.12H2O.... .......2,85 g/l .......2.85 g/l KH2PO4.................. KH2PO4................... .....0,2 g/l .....0.2 g/l

Príklad 9Example 9

Príprava hydrogélov, obsahujúcich HA s koncentráciou 5 mg/ml a ChS s koncentráciou 5 mg/mlPreparation of hydrogels containing HA with a concentration of 5 mg/ml and ChS with a concentration of 5 mg/ml

Príprava hydrogélov, obsahujúcich nezosietenú kyselinu hyalurónovú a chondroitín sulfát zahŕňala 3 základné kroky:The preparation of hydrogels containing non-cross-linked hyaluronic acid and chondroitin sulfate included 3 basic steps:

1. Príprava hydrogélu obsahujúceho zosietený derivát crossHA-TA1. Preparation of a hydrogel containing cross-linked crossHA-TA derivative

Hydrogél obsahujúci zosietený derivát crossHA-TA bol pripravený zmiešaním dvoch prekurzorových roztokov A a B, ktoré boli pripravené rozpustením jednotlivých zložiek vo fosfátom pufrovanom fyziologickom roztoku (PBS). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 8,09 x 105 g.mol-1 a DS 1,1 %. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 17).The hydrogel containing the cross-linked crossHA-TA derivative was prepared by mixing two precursor solutions A and B, which were prepared by dissolving the individual components in phosphate-buffered saline (PBS). The hydroxyphenyl derivative HA-TA with Mw = 8.09 x 10 5 g.mol -1 and DS 1.1% was used for the preparation of precursor solutions. The composition of the solutions is shown in the following table (table 17).

Tabuľka 17 Zloženie prekurzorových roztokov na prípravu zosieteného derivátu crossHA-TATable 17 Composition of precursor solutions for the preparation of the cross-linked crossHA-TA derivative

Roztok A Solution A Roztok B Solution B HRP........................... HRP................................... ...........12,8 mU/ml ...........12.8 mU/ml H2O2........................ H2O2........................ .........0,6 mmol/l .........0.6 mmol/l HA-TA....................... HA-TA........................ .............20 mg/ml .............20 mg/ml HA-TA..................... HA-TA..................... .........20 mg/ml .........20 mg/ml NaCl.......................... NaCl................................ ...........8 g/l ...........8 g/l NaCl........................ NaCl........................ .........8 g/l .........8 g/l KCl............................ KCl............................ ........0,2 g/l ........0.2 g/l KCl.......................... KCl.......................... ......0,2 g/l ......0.2 g/l Na2HPO4.12H2O........ Na2HPO4.12H2O........ .............2,85 g/l .............2.85 g/l Na2HPO4.12H2O...... Na2HPO4.12H2O...... ............2,85 g/l ............2.85 g/l KH2PO4...................... KH2PO4................... ...........0,2 g/l ...........0.2 g/l KH2PO4.................... KH2PO4................... .......0,2 g/l .......0.2 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 bol pripravený hydrogél so zložením uvedenom v nasledujúcej tabuľke (tabuľka 18).By mixing solution A and solution B in a ratio of 1:1, a hydrogel was prepared with the composition shown in the following table (table 18).

Tabuľka 18 Zloženie zosieteného derivátu crossHA-TATable 18 Composition of the cross-linked crossHA-TA derivative

Zloženie zosieteného Cross-linked composition derivátu crossHA-TA crossHA-TA derivative HRP........................... HRP................................... ...........0,24 U/ml ...........0.24 U/ml crossHA-TA................ crossHA-TA................ ..............20 mg/ml ..............20 mg/ml NaCl........................... NaCl................................ ............8 g/l ............8 g/l KCl............................. KCl............................ ..........0,2 g/l ..........0.2 g/l Na2HPO4.12H2O........ Na2HPO4.12H2O........ ...............2,85 g/l ...............2.85 g/l KH2PO4...................... KH2PO4................... ..........0,2 g/l ..........0.2 g/l

2. Príprava roztoku s obsahom hyaluronanu a chondroitín sulfátu2. Preparation of a solution containing hyaluronan and chondroitin sulfate

Roztok HA s koncentráciou 10 mg/ml a ChS s koncentráciou 10 mg/ml bol pripravený rozpustením natívneho hyaluronanu s Mw 1,91 x 106 g.mol-1 a chondroitín sulfátu ChS s Mw = 10 x 103 - 40 x 103 g.mol-1 vo fosfátovom pufri (PBS).A solution of HA with a concentration of 10 mg/ml and ChS with a concentration of 10 mg/ml was prepared by dissolving native hyaluronan with Mw 1.91 x 10 6 g.mol -1 and chondroitin sulfate ChS with Mw = 10 x 10 3 - 40 x 10 3 g.mol -1 in phosphate buffer (PBS).

3. Homogenizácia hydrogélu a roztoku s obsahom hyaluronanu a chondroitín sulfátu3. Homogenization of hydrogel and solution containing hyaluronan and chondroitin sulfate

Finálny hydrogél bol pripravený zmiešaním zosieteného derivátu crossHA-TA a roztoku HA a ChS v pomere 1 : 1 s následnou homogenizáciou zmesi. Finálne zloženie materiálu je uvedené v nasledujúcej tabuľke (tabuľka 19).The final hydrogel was prepared by mixing the cross-linked crossHA-TA derivative and a solution of HA and ChS in a ratio of 1:1 with subsequent homogenization of the mixture. The final composition of the material is shown in the following table (Table 19).

Tabuľka 19 Finálne zloženie hydrogélu, HA s koncentráciou 5 mg/ml a ChS s koncentráciou 5 mg/mlTable 19 Final composition of the hydrogel, HA with a concentration of 5 mg/ml and ChS with a concentration of 5 mg/ml

Finálne zloženie Final composition HRP...................... HRP................... .....0,12 U/ml .....0.12 U/ml crossHA-TA........... crossHA-TA.......... .........10 mg/ml .........10 mg/ml HA........................ HA........................ .....5 mg/ml .....5 mg/ml ChS....................... ChS................... .......5 mg/ml .......5 mg/ml NaCl...................... NaCl................... ......8 g/l ......8 g/l KCl........................ KCl........................ ...0,2 g/l ...0.2 g/l Na2HPO4.12H2O.... Na2HPO4.12H2O.... .........2,85 g/l .........2.85 g/l KH2PO4................. KH2PO4................... ......0,2 g/l ......0.2 g/l

Príklad 10Example 10

Príprava hydrogélov, obsahujúcich HA s koncentráciou 5 mg/ml a ChS s koncentráciou 10 mg/mlPreparation of hydrogels containing HA with a concentration of 5 mg/ml and ChS with a concentration of 10 mg/ml

Príprava hydrogélov, obsahujúcich nezosietenú kyselinu hyalurónovú a chondroitín sulfát zahŕňala 3 základné kroky:The preparation of hydrogels containing non-cross-linked hyaluronic acid and chondroitin sulfate included 3 basic steps:

1. Príprava hydrogélu obsahujúceho zosietený derivát crossHA-TA1. Preparation of a hydrogel containing cross-linked crossHA-TA derivative

Hydrogél obsahujúci zosietený derivát crossHA-TA bol pripravený zmiešaním dvoch prekurzorových roztokov A a B, ktoré boli pripravené rozpustením jednotlivých zložiek vo fosfátom pufrovanom fyziologickom roztoku (PBS). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 8,09 x 105 g.mol-1 a DS 1,1 %. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 20).The hydrogel containing the cross-linked crossHA-TA derivative was prepared by mixing two precursor solutions A and B, which were prepared by dissolving the individual components in phosphate-buffered saline (PBS). The hydroxyphenyl derivative HA-TA with Mw = 8.09 x 10 5 g.mol -1 and DS 1.1% was used for the preparation of precursor solutions. The composition of the solutions is shown in the following table (table 20).

Tabuľka 20 Zloženie prekurzorových roztokov na prípravu zosieteného derivátu crossHA-TATable 20 Composition of precursor solutions for the preparation of the cross-linked crossHA-TA derivative

Roztok A HRP...................................12,8 mU/ml HA-TA...............................20 mg/ml NaCl..................................8 g/l KCl...................................0,2 g/l Na2HPO4.12H20....................2,85 g/l KH2PO4.............................0,2 g/l Solution A HRP...................................12.8 mU/ml HA-TA...............................20 mg/ml NaCl...................................8 g/l KCl...................................0.2 g/l Na2HPO4.12H20...................2.85 g/l KH2PO4............................0.2 g/l Roztok B H2O2.................................0,6 mmol/l HA-TA..............................20 mg/ml NaCl.................................8 g/l KCl..................................0,2 g/l Na2HPO4.12H20...................2,85 g/l KH2PO4............................0,2 g/l Solution B H2O2...................................0.6 mmol/l HA-TA...............................20 mg/ml NaCl...................................8 g/l KCl...................................0.2 g/l Na2HPO4.12H20...................2.85 g/l KH2PO4............................0.2 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 bol pripravený hydrogél so zložením uvedenom v nasledujúcej tabuľke (tabuľka 21).By mixing solution A and solution B in a 1:1 ratio, a hydrogel was prepared with the composition shown in the following table (table 21).

Tabuľka 21 Zloženie zosieteného derivátu crossHA-TATable 21 Composition of the cross-linked crossHA-TA derivative

Zloženie zosieteného derivátu crossHA-TA Composition of the cross-linked crossHA-TA derivative HRP............................. HRP................................... ...........0,24 U/ml ...........0.24 U/ml crossHA-TA................. crossHA-TA................. ..............20 mg/ml ..............20 mg/ml NaCl............................ NaCl................................ ............8 g/l ............8 g/l KCl............................... KCl................................... ..........0,2 g/l ..........0.2 g/l Na2HPO4.12H2O.......... Na2HPO4.12H2O.......... ..............2,85 g/l ..............2.85 g/l KH2PO4........................ KH2PO4........................ ..........0,2 g/l ..........0.2 g/l

2. Príprava roztoku s obsahom hyaluronanu a chondroitín sulfátu2. Preparation of a solution containing hyaluronan and chondroitin sulfate

Roztok HA s koncentráciou 10 mg/ml a ChS s koncentráciou 20 mg/ml bol pripravený rozpustením natívneho hyaluronanu s Mw 1,91 x 106 g.mol-1 a chondroitín sulfátu s Mw = 10 x 103 - 40 x 103 g.mol-1 vo fosfátovom pufri (PBS).A solution of HA with a concentration of 10 mg/ml and ChS with a concentration of 20 mg/ml was prepared by dissolving native hyaluronan with Mw 1.91 x 10 6 g.mol -1 and chondroitin sulfate with Mw = 10 x 10 3 - 40 x 10 3 g .mol -1 in phosphate buffer (PBS).

3. Homogenizácia hydrogélu a roztoku s obsahom hyaluronanu a chondroitín sulfátu3. Homogenization of hydrogel and solution containing hyaluronan and chondroitin sulfate

Finálny hydrogél bol pripravený zmiešaním zosieteného derivátu crossHA-TA a roztoku HA a ChS v pomere 1 : 1 s následnou homogenizáciou zmesi. Finálne zloženie materiálu je uvedené v nasledujúcej tabuľke (tabuľka 22).The final hydrogel was prepared by mixing the cross-linked crossHA-TA derivative and a solution of HA and ChS in a ratio of 1:1 with subsequent homogenization of the mixture. The final composition of the material is shown in the following table (table 22).

Tabuľka 22 Finálne zloženie hydrogélu, HA s koncentráciou 5 mg/ml a ChS s koncentráciou 10 mg/mlTable 22 Final composition of the hydrogel, HA with a concentration of 5 mg/ml and ChS with a concentration of 10 mg/ml

Finálne zloženie Final composition HRP............................ HRP................................... ...........0,12 U/ml ...........0.12 U/ml crossHA-TA................ crossHA-TA................ ..............10 mg/ml ..............10 mg/ml HA.............................. HA................................... ............5 mg/ml ............5 mg/ml ChS............................. ChS............................... ..............10 mg/ml ..............10 mg/ml NaCl........................... NaCl................................ ...........8 g/l ...........8 g/l KCl.............................. KCl................................... .........0,2 g/l .........0.2 g/l Na2HPO4.12H2O......... Na2HPO4.12H2O......... ............2,85 g/l ............2.85 g/l KH2PO4....................... KH2PO4................... ..........0,2 g/l ..........0.2 g/l

Príklad 11Example 11

Príprava hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 5 mg/mlPreparation of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 5 mg/ml

Hydrogély boli pripravené zmiešaním dvoch prekurzorových roztokov A a B, na prípravu ktorých bol použitý vodný roztok NaCl (9 g/l). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 1,5 x 106 g.mol-1 a DS 0,5 %. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 23).Hydrogels were prepared by mixing two precursor solutions A and B, for the preparation of which an aqueous solution of NaCl (9 g/l) was used. The hydroxyphenyl derivative HA-TA with Mw = 1.5 x 10 6 g.mol -1 and DS 0.5% was used for the preparation of precursor solutions. The composition of the solutions is shown in the following table (table 23).

Tabuľka 23 Zloženie prekurzorových roztokov na prípravu hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 5 mg/mlTable 23 Composition of precursor solutions for the preparation of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 5 mg/ml

Roztok A Solution A Roztok B Solution B HRP.............................0,12 U/ml HA-TA.........................5 mg/ml NaCl............................9 g/l HRP............................0.12 U/ml HA-TA.........................5 mg/ml NaCl...................9 g/l H2O2.................................0,5 mmol/l HA-TA...............................5 mg/ml NaCl..................................9 g/l H2O2...................................0.5 mmol/l HA-TA...............................5 mg/ml NaCl...................................9 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 boli pripravené hydrogély s finálnym zložením, uvedeným v nasledujúcej tabuľke (tabuľka 24), kde crossHA-TA je kovalentne zosieteným hydroxyfenylovým derivátom hyaluronanu.By mixing solution A and solution B in a ratio of 1:1, hydrogels were prepared with the final composition shown in the following table (table 24), where crossHA-TA is a covalently cross-linked hydroxyphenyl derivative of hyaluronan.

Tabuľka 24 Finálne zloženie hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 5 mg/mlTable 24 Final composition of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 5 mg/ml

Zloženie hydrogélov Composition of hydrogels HRP............................... HRP................................... .....0,06 U/ml .....0.06 U/ml crossHA-TA................... crossHA-TA................... .....5 mg/ml .....5 mg/ml NaCl.............................. NaCl................................... .....9 g/l .....9 g/l

Príklad 12Example 12

Príprava hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 30 mg/mlPreparation of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 30 mg/ml

Hydrogély boli pripravené zmiešaním dvoch prekurzorových roztokov Aa B, na prípravu ktorých bol použitý vodný roztok NaCl (9 g/l). Na prípravu prekurzorových roztokov bol použitý hydroxyfenylový derivát HA-TA s Mw = 5 x 104 g.mol-1 a DS 10 %. Zloženie roztokov je uvedené v nasledujúcej tabuľke (tabuľka 25).Hydrogels were prepared by mixing two precursor solutions A and B, for the preparation of which an aqueous solution of NaCl (9 g/l) was used. The hydroxyphenyl derivative HA-TA with Mw = 5 x 10 4 g.mol -1 and DS 10% was used for the preparation of precursor solutions. The composition of the solutions is shown in the following table (table 25).

Tabuľka 25 Zloženie prekurzorových roztokov na prípravu hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 30 mg/mlTable 25 Composition of precursor solutions for the preparation of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 30 mg/ml

Roztok A Solution A Roztok B Solution B HRP..................... HRP..................... .............1,2 U/ml .............1.2 U/ml H2O2................... H2O2................... .............5 mmol/l .............5 mmol/l HA-TA.................. HA-TA................... ..............30 mg/ml ..............30 mg/ml HA-TA................. HA-TA................. .............30 mg/ml .............30 mg/ml NaCl.................... NaCl................... ...............9 g/l ...............9 g/l NaCl.................... NaCl................... ...............9 g/l ...............9 g/l

Zmiešaním roztoku A a roztoku B v pomere 1 : 1 boli pripravené hydrogély s finálnym zložením, uvedeným v nasledujúcej tabuľke (tabuľka 26), kde crossHA-TA je kovalentne zosieteným hydroxyfenylovým derivátom hyaluronanu.By mixing solution A and solution B in a ratio of 1:1, hydrogels were prepared with the final composition shown in the following table (table 26), where crossHA-TA is a covalently cross-linked hydroxyphenyl derivative of hyaluronan.

Tabuľka 26 Finálne zloženie hydrogélov na báze hydroxyfenylového derivátu HA-TA s koncentráciou 30 mg/mlTable 26 Final composition of hydrogels based on the hydroxyphenyl derivative HA-TA with a concentration of 30 mg/ml

Zloženie hydrogélov Composition of hydrogels HRP.............................. HRP................................... ....0,6 U/ml ....0.6 U/ml crossHA-TA.................. crossHA-TA................... ....30 mg/ml ....30 mg/ml NaCl............................. NaCl................................... .....9 g/l .....9 g/l

Príklad 13Example 13

Degradácia roztokov HA s prídavkom ChS pomocou ROSDegradation of ChS-supplemented HA solutions by ROS

Na porovnanie rýchlosti degradácie roztokov HA s ChS pôsobením ROS boli pripravené roztoky hyaluronanu vo fosfátovom pufri (PBS) s rôznou koncentráciou ChS. Na prípravu roztokov bola použitá kyselina hyalurónová s Mw 1,91 x 106 g.mol-1 a ChS s Mw = 10 x 103 - 40 x 103 g.mol-1. Roztok A obsahoval 20 mg/ml HA, roztok B 20 mg/ml HA a 0,5 mg/ml ChS, roztok C 20 mg/ml HA a 1 mg/ml ChS, roztok D 20 mg/ml HA a 3 mg/ml ChS, roztok E 20 mg/ml HA a 5 mg/ml ChS, roztok F 20 mg/ml HA a 20 mg/ml ChS.To compare the rate of degradation of HA solutions with ChS by ROS, solutions of hyaluronan in phosphate buffer (PBS) with different concentrations of ChS were prepared. Hyaluronic acid with Mw 1.91 x 106 g.mol -1 and ChS with Mw = 10 x 10 3 - 40 x 10 3 g.mol -1 were used to prepare the solutions. Solution A contained 20 mg/ml HA, solution B 20 mg/ml HA and 0.5 mg/ml ChS, solution C 20 mg/ml HA and 1 mg/ml ChS, solution D 20 mg/ml HA and 3 mg/ ml ChS, solution E 20 mg/ml HA and 5 mg/ml ChS, solution F 20 mg/ml HA and 20 mg/ml ChS.

Uskutočnenie experimentu degradácieConducting a degradation experiment

Rýchlosť degradácie bola vyjadrená ako percentuálny pokles viskozity roztokov pri šmykovej rýchlosti 0,1 s-1 oproti počiatočnej hodnote. Meranie poklesu viskozity sa uskutočňovalo na reometri Kinexus Malvern v konfigurácii cone-plate. Bol použitý kužeľ s priemerom 40 mm s vrcholovým uhlom 1°. Degradácia materiálu prebiehala v 10 ml striekačkách, kde do 9 ml materiálu bolo pridaných 0,5 ml roztoku CuSO4 s koncentráciou 0,25 mmol/l a následne 0,5 ml roztoku H2O2 s koncentráciou 2,5 mmol/l. Počas prebiehajúcej degradácie hydrogélov boli vo vopred daných časových intervaloch odoberané vzorky materiálu, pri ktorých bola nameraná viskozita pri teplote 25 °C a šmykovej rýchlosti 0,1 s-1. Celkový čas degradácie bol 3 h.The rate of degradation was expressed as a percentage decrease in the viscosity of the solutions at a shear rate of 0.1 s -1 compared to the initial value. Viscosity drop measurements were performed on a Kinexus Malvern rheometer in a cone-plate configuration. A cone with a diameter of 40 mm with an apex angle of 1° was used. Degradation of the material took place in 10 ml syringes, where 0.5 ml of a CuSO 4 solution with a concentration of 0.25 mmol/l was added to 9 ml of the material, followed by 0.5 ml of a H2O2 solution with a concentration of 2.5 mmol/l. During the ongoing degradation of the hydrogels, material samples were taken at predetermined time intervals, in which the viscosity was measured at a temperature of 25 °C and a shear rate of 0.1 s -1 . The total degradation time was 3 h.

Obr. 1 znázorňuje degradáciu reťazcov hyaluronanu, ktorá je vyjadrená percentuálnym poklesom viskozity roztokov v čase. Z obr. 1 je vidieť vplyv koncentrácie ChS na rýchlosť degradácie hyaluronanu. So zvyšujúcou sa koncentráciou ChS klesá rýchlosť degradácie HA pôsobením ROS. Viskozita roztoku A, ktorý neobsahoval ChS, po 3 hodinách poklesla o 97 % oproti počiatočnej hodnote pred degradáciou, roztoku B (s prídavkom 0,5 mg/ml ChS) už o 89 %, roztoku C, do ktorého bolo pridaných 1 mg/ml ChS o 84 %, roztoku D (20 mg/ml HA + 3 mg/ml ChS) o 46 %, roztoku E (20 mg/ml HA + 5 mg/ml ChS) o 25 % a roztoku F (20 mg/ml HA + 20 mg/ml ChS) len o 8 %.fig. 1 shows the degradation of hyaluronan chains, which is expressed by the percentage decrease in the viscosity of the solutions over time. From fig. 1 shows the effect of ChS concentration on the rate of hyaluronan degradation. As the concentration of ChS increases, the rate of degradation of HA by ROS decreases. The viscosity of solution A, which did not contain ChS, decreased by 97% after 3 hours compared to the initial value before degradation, of solution B (with the addition of 0.5 mg/ml ChS) by 89%, of solution C, to which 1 mg/ml was added ChS by 84%, solution D (20 mg/ml HA + 3 mg/ml ChS) by 46%, solution E (20 mg/ml HA + 5 mg/ml ChS) by 25% and solution F (20 mg/ml HA + 20 mg/ml ChS) by only 8%.

Príklad 14Example 14

Degradácia hydrogélov na báze zosieteného derivátu crossHA-TA pôsobením ROSDegradation of hydrogels based on the cross-linked crossHA-TA derivative by the action of ROS

Na porovnanie rýchlosti degradácie hydrogélov pôsobením ROS boli pripravené 3 typy materiálov. Materiál A je roztok HA s koncentráciou 20 mg/ml, ktorý bol pripravený rozpustením HA s Mw 1,91 x 106 g.mol-1 v PBS.To compare the rate of degradation of hydrogels by ROS, 3 types of materials were prepared. Material A is a HA solution with a concentration of 20 mg/ml, which was prepared by dissolving HA with a Mw of 1.91 x 10 6 g.mol -1 in PBS.

Materiál B je zmes zosieteného derivátu crossHA-TA a nezosietenej HA, ktorý bol pripravený podľa príkladu 7.Material B is a mixture of a cross-linked derivative of crossHA-TA and non-cross-linked HA, which was prepared according to Example 7.

Materiály C a D sa skladali z nezosietenej HA, CHS a crossHA-TA a boli pripravené podľa príkladov 9 a 10.Materials C and D consisted of non-crosslinked HA, CHS and crossHA-TA and were prepared according to Examples 9 and 10.

Rýchlosť degradácie bola vyjadrená ako percentuálny pokles viskozity materiálov pri šmykovej rýchlosti 0,1 s-1 oproti počiatočnej hodnote. Meranie poklesu viskozity sa uskutočňovalo na reometri Kinexus Malvern v konfigurácii cone-plate. Bol použitý kužeľ s priemerom 40 mm s vrcholovým uhlom 1°. Degradácia materiálu prebiehala v 10 ml striekačkách, kde do 9 ml materiálu bolo pridaných 0,5 ml roztoku CuSO4 s koncentráciou 0,25 mmol/l a následne 0,5 ml roztoku H2O2 s koncentráciou 2,5 mmol/l. Po určitých časoch degradácie sa odoberali vzorky, pri ktorých bola nameraná viskozita pri teplote 25 °C a šmykovej rýchlosti 0,1 s-1. Celkový čas degradácie bol 3 h. Z obr. 2 je zrejmé, že prítomnosť ChS v pripravených hydrogéloch (C - 5 mg/ml ChS; D - 10 mg/ml ChS) zvyšuje ich odolnosť proti pôsobeniu ROS.The rate of degradation was expressed as a percentage decrease in the viscosity of the materials at a shear rate of 0.1 s -1 compared to the initial value. Viscosity drop measurements were performed on a Kinexus Malvern rheometer in a cone-plate configuration. A cone with a diameter of 40 mm with an apex angle of 1° was used. Degradation of the material took place in 10 ml syringes, where 0.5 ml of CuSO4 solution with a concentration of 0.25 mmol/l was added to 9 ml of the material, followed by 0.5 ml of H 2 O 2 solution with a concentration of 2.5 mmol/l. After certain degradation times, samples were taken, in which the viscosity was measured at a temperature of 25 °C and a shear rate of 0.1 s -1 . The total degradation time was 3 h. From fig. 2, it is clear that the presence of ChS in the prepared hydrogels (C - 5 mg/ml ChS; D - 10 mg/ml ChS) increases their resistance against the action of ROS.

Príklad 15Example 15

Enzymatická degradácia hydrogélov na báze zosieteného derivátu crossHA-TAEnzymatic degradation of hydrogels based on cross-linked derivative crossHA-TA

Na zistenie vplyvu prítomnosti ChS na rýchlosť degradácie hydrogélov na báze crossHA-TA pôsobením bovinnej testikulárnej hyaluronidázy boli pripravené 3 typy hydrogélov:To determine the effect of the presence of ChS on the degradation rate of hydrogels based on crossHA-TA by the action of bovine testicular hyaluronidase, 3 types of hydrogels were prepared:

A - hydrogély bez prídavku chondroitín sulfátu, ktoré boli pripravené podľa postupu v príklade 2,A - hydrogels without the addition of chondroitin sulfate, which were prepared according to the procedure in example 2,

B - hydrogély s prídavkom ChS s koncentráciou 3,3 mg/ml, ktoré boli pripravené podľa postupu v príklade 4,B - hydrogels with the addition of ChS with a concentration of 3.3 mg/ml, which were prepared according to the procedure in example 4,

C - hydrogély s prídavkom ChS s koncentráciou 10 mg/ml, ktoré boli pripravené podľa postupu v príklade 5.C - hydrogels with the addition of ChS with a concentration of 10 mg/ml, which were prepared according to the procedure in example 5.

Rýchlosť degradácie bola vyjadrená ako nárast koncentrácie produktov degradácie, spôsobenej BTH, vyjadrený v percentách.The degradation rate was expressed as the increase in the concentration of degradation products caused by BTH, expressed as a percentage.

Hydrogély boli ponorené do degradačného média (roztok hyaluronidázy BTH s aktivitou 30 U/mg v roztoku hovädzieho sérového albumínu (BSA) s koncentráciou 0,1 mg/ml v 0,01 mol/l octanovom pufri (OP) pH 5,3). Degradácia hydrogélov prebiehala v inkubátore pri 37 °C za súčasného miešania. Po určitých časových intervaloch sa odoberali vzorky degradačného média s produktmi degradácie hydrogélov. Koncentrácia disacharidických jednotiek HA v degradačnom médiu bola stanovená spektrofotometricky ako koncentrácia N -acetylglukozamínu. Obr. 3 znázorňuje nárast koncentrácie degradačných produktov hydrogélov v médiu v čase. Z obr. je zrejmé, že prítomnosť ChS v hydrogéloch na báze crossHA-TA vedie k zníženiu rýchlosti degradácie materiálov pôsobením hyaluronidázy.The hydrogels were immersed in the degradation medium (a solution of hyaluronidase BTH with an activity of 30 U/mg in a solution of bovine serum albumin (BSA) at a concentration of 0.1 mg/ml in 0.01 mol/l acetate buffer (OP) pH 5.3). Degradation of hydrogels took place in an incubator at 37 °C with simultaneous mixing. After certain time intervals, samples of the degradation medium with hydrogel degradation products were taken. The concentration of HA disaccharide units in the degradation medium was determined spectrophotometrically as the concentration of N -acetylglucosamine. fig. 3 shows the increase in the concentration of hydrogel degradation products in the medium over time. From fig. it is clear that the presence of ChS in hydrogels based on crossHA-TA leads to a decrease in the rate of degradation of the materials by the action of hyaluronidase.

Odkazy:Links:

Aubry-Rozier B. 2012. Revue Médicale Suisse 14: 571Aubry-Rozier B. 2012. Revue Médicale Suisse 14: 571

Akkara, J. A., K. J. Senecal a D. L. Kaplan (1991). Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane. Journal of Polymer Science Part A: Polymer Chemistry 29(11): 1561-1574. Bali, J.-P., H. Cousse a E. Neuzil (2001). Biochemical basis of the pharmacologic action of chondroitín sulfates on the osteoarticular system. Seminars in Arthritis and Rheumatism 31(1): 58-68.Akkara, J.A., K.J. Senecal, and D.L. Kaplan (1991). Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane. Journal of Polymer Science Part A: Polymer Chemistry 29(11): 1561-1574. Bali, J.-P., H. Cousse and E. Neuzil (2001). Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system. Seminars in Arthritis and Rheumatism 31(1): 58-68.

Baeurle S. A., Kiselev M. G., Makarova E. S., Nogovitsin E. A. 2009. Polymer 50: 1805Baeurle S.A., Kiselev M.G., Makarova E.S., Nogovitsin E.A. 2009. Polymer 50: 1805

Buck Ii, D. W., M. Alam a J. Y. S. Kim (2009). Injectable fillers for facial rejuvenation: a review. Journal of Plastic, Reconstructive & Aesthetic Surgery 62(1): 11-18.Buck Ii, D.W., M. Alam, and J.Y.S. Kim (2009). Injectable fillers for facial rejuvenation: a review. Journal of Plastic, Reconstructive & Aesthetic Surgery 62(1): 11-18.

Burdick, J. A. a G. D. Prestwich (2011). Hyaluronic Acid Hydrogéls for Biomedical Applications. Advanced Materials 23(12): H41-H56.Burdick, J.A. and G.D. Prestwich (2011). Hyaluronic Acid Hydrogels for Biomedical Applications. Advanced Materials 23(12): H41-H56.

Calabro, A., L. Akst, D. Alam, J. Chan, A. B. Darr, K. Fukamachi, R. A. Gross, D. Haynes, K. Kamohara, D. P. Knott, H. Lewis, A. Melamud, A. Miniaci a M. Strome (2008). Hydroxyphenyl cross-linked macromolecular network and applications thereof. United States, The Cleveland Clinic Foundation (Cleveland, OH, US).Calabro, A., L. Akst, D. Alam, J. Chan, A. B. Darr, K. Fukamachi, R. A. Gross, D. Haynes, K. Kamohara, D. P. Knott, H. Lewis, A. Melamud, A. Miniaci, and M. Strome (2008). Hydroxyphenyl cross-linked macromolecular network and applications thereof. United States, The Cleveland Clinic Foundation (Cleveland, OH, US).

Darr, A. a A. Calabro (2009). Synthesis and characterization of tyramine-based hyaluronan hydrogels. Journal of Materials Science: Materials in Medicíne 20(1): 33-44.Darr, A. and A. Calabro (2009). Synthesis and characterization of tyramine-based hyaluronan hydrogels. Journal of Materials Science: Materials in Medicine 20(1): 33-44.

Ghan, R., T. Shutava, A. Patel, V. T. John a Y. Lvov (2004). Enzyme-Catalyzed Polymerization of Phenols within Polyelectrolyte Microcapsules. Macromolecules 37(12): 4519-4524.Ghan, R., T. Shutava, A. Patel, V. T. John and Y. Lvov (2004). Enzyme-Catalyzed Polymerization of Phenols within Polyelectrolyte Microcapsules. Macromolecules 37(12): 4519-4524.

Higashimura, H. a S. Kobayashi (2002). Oxidative Polymerization, John Wiley & Sons, Inc.Higashimura, H. and S. Kobayashi (2002). Oxidative Polymerization, John Wiley & Sons, Inc.

Kurisawa, M., F. Lee a J. E. Chung (2009). Formation of Hydrogél in the Presence of Peroxidase and Low Concentration of Hydrogen PeroxideKurisawa, M., F. Lee and J.E. Chung (2009). Formation of Hydrogel in the Presence of Peroxidase and Low Concentration of Hydrogen Peroxide

Kurisawa, M., F. Lee, L.-S. Wang a J. E. Chung (2010). Injectable enzymatically crosslinked hydrogél system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. Journal of Materials Chemistry 20(26): 5371-5375.Kurisawa, M., F. Lee, L.-S. Wang and J.E. Chung (2010). Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. Journal of Materials Chemistry 20(26): 5371-5375.

Lee, F., J. E. Chung a M. Kurisawa (2008). An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogél system with independent tuning of mechanical strength and gelation rate. Soft Matter 4: 880-887. Li, P., D. Raitcheva, M. Hawes, N. Moran, X. Yu, F. Wang a G. L. Matthews (2012). Hylan G-F 20 maintains cartilage integrity and decreases osteophyte formation in osteoarthritis through both anabolic and anticatabolic mechanisms. Osteoarthritis and Cartilage 20(11): 1336-1346.Lee, F., J.E. Chung and M. Kurisawa (2008). An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 4: 880-887. Li, P., D. Raitcheva, M. Hawes, N. Moran, X. Yu, F. Wang, and G. L. Matthews (2012). Hylan G-F 20 maintains cartilage integrity and decreases osteophyte formation in osteoarthritis through both anabolic and anticatabolic mechanisms. Osteoarthritis and Cartilage 20(11): 1336-1346.

Prestwich, G. D. (2011). Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 155(2): 193-199.Prestwich, G.D. (2011). Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 155(2): 193-199.

Salwowska, N. M., A. Bebenek, D. A. Žgdfo a D. L. Wcisfo-Dziadecka (2016). Physiochemical properties and application of hyaluronic acid: a systematic review. Journal of Cosmetic Dermatology 15(4): 520-526.Salwowska, N.M., A. Bebenek, D.A. Žgdfo, and D.L. Wcisfo-Dziadecka (2016). Physiochemical properties and application of hyaluronic acid: a systematic review. Journal of Cosmetic Dermatology 15(4): 520-526.

Shutava, T., Z. Zheng, V. John a Y. Lvov (2004). Microcapsule modification with peroxidase-catalyzed phenol polymerization. Biomacromolecules 5(3): 914-921.Shutava, T., Z. Zheng, V. John and Y. Lvov (2004). Microcapsule modification with peroxidase-catalyzed phenol polymerization. Biomacromolecules 5(3): 914-921.

Stern, R., G. Kogan, M. J. Jedrzejas a L. Šoltés (2007). The many ways to cleave hyaluronan. Biotechnology advances 25(6): 537-557.Stern, R., G. Kogan, M.J. Jedrzejas and L. Šoltés (2007). The many ways to cleave hyaluronan. Biotechnology advances 25(6): 537-557.

Tognana, E., A. Borrione, C. De Luca a A. Pavesio (2007). Hyalograft C: hyaluronan-based scaffolds in tissueengineered cartilage. Cells Tissues Organs 186(2): 97-103.Tognana, E., A. Borrione, C. De Luca and A. Pavesio (2007). Hyalograft C: hyaluronan-based scaffolds in tissueengineered cartilage. Cells Tissues Organs 186(2): 97-103.

Veitch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3): 249-259.Veitch, N.C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3): 249-259.

Volpi, N. (2019). Chondroitín Sulfate Safety and Quality. Molecules (Basel, Switzerland) 24(8): 1447.Volpi, N. (2019). Chondroitin Sulfate Safety and Quality. Molecules (Basel, Switzerland) 24(8): 1447.

Xiong, S.-L. a Z.-Y. Jin (2007). THE FREE RADICAL-SCAVENGING PROPERTY OF CHONDROITÍN SULFATE FROM PIG LARYNGEAL CARTILAGE IN VITRO. Journal of Food Biochemistry 31(1): 28-44.Xiong, S.-L. and Z.-Y. Yin (2007). THE FREE RADICAL-SCAVENGING PROPERTIES OF CHONDROITÍN SULFATE FROM PIG LARYNGEAL CARTILAGE IN VITRO. Journal of Food Biochemistry 31(1): 28-44.

Xu, X., A. K. Jha, D. A. Harrington, M. C. Farach-Carson a X. Jia (2012). Hyaluronic Acid-Based Hydrogéls: from a Natural Polysaccharide to Complex Networks. Soft matter 8(12): 3280-3294.Xu, X., A. K. Jha, D. A. Harrington, M. C. Farach-Carson, and X. Jia (2012). Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks. Soft matter 8(12): 3280-3294.

Claims (5)

NÁROKY NA OCHRANUCLAIMS FOR PROTECTION 1. Hydrogél na báze zosieťovaného hydroxyfenylového derivátu kyseliny hyalurónovej, vyznačujúci sa tým, že obsahuje molekuly hydroxyfenylového derivátu hyalurónovej kyseliny (HA-TA) alebo jeho farmaceutický prijateľnú soľ podľa všeobecného vzorca (I)1. A hydrogel based on a cross-linked hydroxyphenyl derivative of hyaluronic acid, characterized by the fact that it contains molecules of a hydroxyphenyl derivative of hyaluronic acid (HA-TA) or its pharmaceutically acceptable salt according to the general formula (I) (I), kde n je v rozmedzí 2 až 7 500 a kde R1 je H+ alebo ión alkalickej soli alebo soli alkalických zemín a R2 je OH alebo tyramínový substituent podľa všeobecného vzorca (II):(I), where n is in the range of 2 to 7,500 and where R 1 is H + or an ion of an alkaline salt or an alkaline earth salt and R 2 is OH or a tyramine substituent according to the general formula (II): pričom v rámci jednej molekuly hydroxyfenylového derivátu hyalurónovej kyseliny alebo jeho farmaceutický prijateľnej soli podľa všeobecného vzorca (I) je aspoň jeden R2 tyramínový substituent podľa všeobecného vzorca (II) a pričom aspoň dva tyramínové substituenty podľa všeobecného vzorca (II) sú spojené prostredníctvom kovalentnej väzby v ktorejkoľvek ortopolohe fenylových skupín, a ďalej obsahuje chondroitín sulfát alebo jeho farmaceutický prijateľnú soľ vybranú zo skupiny obsahujúcej alkalické soli alebo soli alkalických zemín.wherein within one molecule of the hydroxyphenyl derivative of hyaluronic acid or its pharmaceutically acceptable salt according to the general formula (I) there is at least one R 2 tyramine substituent according to the general formula (II) and while at least two tyramine substituents according to the general formula (II) are connected via a covalent bond in any ortho position of the phenyl groups, and further comprises chondroitin sulfate or a pharmaceutically acceptable salt thereof selected from the group consisting of alkali salts or alkaline earth salts. 2. Hydrogél podľa nároku 1, vyznačujúci sa tým, že alkalické soli alebo soli alkalických zemín sú vybrané zo skupiny obsahujúcej Na+, K+, Ca2+, Mg2+.2. Hydrogel according to claim 1, characterized in that the alkaline salts or alkaline earth salts are selected from the group containing Na + , K + , Ca 2+ , Mg 2+ . 3. Hydrogél podľa nároku 1 alebo nároku 2, vyznačujúci sa tým, že koncentrácia chondroitín sulfátu alebo jeho farmaceutický prijateľnej soli je v rozsahu 0,5 až 50 mg/ml hydrogélu, výhodne v koncentrácii 1 až 20 mg/ml, výhodnejšie 5 mg/ml.3. Hydrogel according to claim 1 or claim 2, characterized in that the concentration of chondroitin sulfate or its pharmaceutically acceptable salt is in the range of 0.5 to 50 mg/ml hydrogel, preferably in a concentration of 1 to 20 mg/ml, more preferably 5 mg/ Jr. 4. Hydrogél podľa ktoréhokoľvek z nárokov 1 až 3, vyznačujúci sa tým, že obsah zosieťovaného hydroxyfenylového derivátu hyaluronanu je v rozsahu 5 až 30 mg/ml, výhodne 10 mg/ml hydrogélu.4. Hydrogel according to any one of claims 1 to 3, characterized in that the content of the cross-linked hydroxyphenyl derivative of hyaluronan is in the range of 5 to 30 mg/ml, preferably 10 mg/ml of the hydrogel. 5. Hydrogél podľa ktoréhokoľvek z nárokov 1 až 4, vyznačujúci sa tým, že ďalej obsahuje kyselinu hyalurónovú alebo jej farmaceutický prijateľnú soľ v koncentrácii 1 až 20 mg/ml hydrogélu, výhodne 5 až 10 mg/ml, výhodnejšie 5 mg/ml hydrogélu.5. Hydrogel according to any one of claims 1 to 4, characterized in that it further contains hyaluronic acid or its pharmaceutically acceptable salt in a concentration of 1 to 20 mg/ml hydrogel, preferably 5 to 10 mg/ml, more preferably 5 mg/ml hydrogel.
SK50027-2022U 2019-09-06 2020-09-03 Hydrogel based on crosslinked hydroxyphenyl derivative of hyaluronic acid SK9649Y1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CZ2019-36602U CZ33324U1 (en) 2019-09-06 2019-09-06 Hydrogel based on a cross-linked hydroxyphenyl derivative of hyaluronic acid
CZPUV2019-36602 2019-09-06

Publications (2)

Publication Number Publication Date
SK500272022U1 SK500272022U1 (en) 2022-07-27
SK9649Y1 true SK9649Y1 (en) 2022-11-24

Family

ID=68384244

Family Applications (1)

Application Number Title Priority Date Filing Date
SK50027-2022U SK9649Y1 (en) 2019-09-06 2020-09-03 Hydrogel based on crosslinked hydroxyphenyl derivative of hyaluronic acid

Country Status (6)

Country Link
AT (1) AT18104U1 (en)
CZ (1) CZ33324U1 (en)
DE (1) DE212020000715U1 (en)
FR (1) FR3104945B3 (en)
SK (1) SK9649Y1 (en)
WO (1) WO2021043349A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2020263A3 (en) * 2020-05-12 2021-10-27 Contipro A.S. Gel-forming solutions for preparing a hydrogel based on a covalently cross-linked hydroxyphenyl derivative of hyaluronan for preventing postoperative complications related to the formation of a colorectal anastomosis and its use

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU555747B2 (en) 1983-08-09 1986-10-09 Cilco Inc. Chondroitin sulfate and sodium hyaluronate composition
US6051560A (en) 1986-06-26 2000-04-18 Nestle S.A. Chrondroitin sulfate/sodium hyaluronate composition
DE10156617A1 (en) 2001-11-17 2003-05-28 Biosphings Ag Preparation of pure stereoisomers of tricyclo [5.2.1.0 ·· 2 ··. ·· 6 ··] -dec-9-yl-xanthate and medicinal products therefrom
US6979679B2 (en) 2002-10-16 2005-12-27 Marcum Frank D Composition and method for treatment and prevention of traumatic synovitis and damage to articular cartilage
US7465766B2 (en) * 2004-01-08 2008-12-16 The Cleveland Clinic Foundation Hydroxyphenyl cross-linked macromolecular network and applications thereof
US6982298B2 (en) 2003-01-10 2006-01-03 The Cleveland Clinic Foundation Hydroxyphenyl cross-linked macromolecular network and applications thereof
CN102382308B (en) 2004-07-09 2014-04-16 克利夫兰临床基金会 Hydroxyphenyl cross-linked macromolecular network and applications thereof
US8394782B2 (en) 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having increased longevity
KR101091028B1 (en) * 2009-07-02 2011-12-09 아주대학교산학협력단 In situ forming hydrogel and biomedical use thereof
KR101161640B1 (en) * 2009-08-25 2012-07-02 서울과학기술대학교 산학협력단 Synthesis of lipoic acid-grafted compound and method therefor
US9132201B2 (en) * 2009-11-11 2015-09-15 University Of Twente, Institute For Biomedical And Technical Medicine (Mira) Hydrogels based on polymers of dextran tyramine and tyramine conjugates of natural polymers
CZ28434U1 (en) * 2015-05-18 2015-07-07 Contipro Biotech S.R.O. Nanocomposite based on hydroxyphenyl derivative of hyaluronic acid or salt thereof containing nanoparticles of calcium phosphate

Also Published As

Publication number Publication date
SK500272022U1 (en) 2022-07-27
FR3104945B3 (en) 2021-12-10
AT18104U1 (en) 2024-02-15
DE212020000715U1 (en) 2022-04-21
WO2021043349A1 (en) 2021-03-11
FR3104945A3 (en) 2021-06-25
CZ33324U1 (en) 2019-10-25

Similar Documents

Publication Publication Date Title
US8481080B2 (en) Method of cross-linking hyaluronic acid with divinulsulfone
EP1753787B1 (en) Method of covalently linking hyaluronan and chitosan
JP5746617B2 (en) Injectable hydrogel forming a chitosan mixture
CZ20011650A3 (en) Cross-linked hyaluronic acids
EP2038308A2 (en) Thiolated macromolecules and methods of making and using thereof
RU2613887C2 (en) Split-resistant low molecular cross-linked hyaluronate
US8202986B2 (en) Branched hyaluronic acid and method of manufacture
EP4038105B1 (en) A hyperbranched polyglycerol polyglycidyl ether and its use as crosslinker for polysaccharides
SK9649Y1 (en) Hydrogel based on crosslinked hydroxyphenyl derivative of hyaluronic acid
Fakhari Biomedical application of hyaluronic acid nanoparticles
EP3980029B1 (en) Means for use in preparation of hydrogel based on hydroxyphenyl derivative of hyaluronan, method of hydrogel preparation and use thereof
CN106714856B (en) Composition containing glycosaminoglycan and protein
CZ33901U1 (en) A composition for use when preparing a hydrogel based on a hydroxyphenyl derivative of hyaluronan
RU2750000C1 (en) Method for synthesis of modified hyaluronan and application thereof in medicine, including in endoprosthetics
CN113943382B (en) Acrylate modified hyaluronic acid (sodium) and synthesis method and application thereof
TWI728463B (en) Sulfated hyaluronic acid-based hydrogel and pharmaceutical composition comprising same
Trifan et al. STRATEGIES OF HYALURONAN CHEMICAL MODIFICATIONS FOR BIOMEDICAL APPLICATIONS
Kumar et al. Use of Polysaccharides: Novel Delivery System for Genetic Material
IT202100012737A1 (en) BLENDS OF POLYSACCHARIDES AND POLYAMINOSACCHARIDES WITH IMPROVED RHEOLOGICAL PROPERTIES
EP3142749A1 (en) Viscosupplement composition comprising ulvan for treating arthritis
JP2022550111A (en) Hydrogels based on zinc gluconate and hyaluronic acid esters
Dhanasingh sP (EO-stat-PO)-glycosaminoglycans (GAGs) hybrid-hydrogels for medical applications
Anandhan Dhanasingh et al. sP (EO-stat-PO)-Glycosaminoglycans (GAGs) Hybrid-Hydrogels for Medical Applications
Stern Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett
Noh HYALURONAN-BASED HYDROGEL SCAFFOLDS