SK8896Y1 - Equipment for processing organic waste and waste treatment method - Google Patents

Equipment for processing organic waste and waste treatment method Download PDF

Info

Publication number
SK8896Y1
SK8896Y1 SK158-2019U SK1582019U SK8896Y1 SK 8896 Y1 SK8896 Y1 SK 8896Y1 SK 1582019 U SK1582019 U SK 1582019U SK 8896 Y1 SK8896 Y1 SK 8896Y1
Authority
SK
Slovakia
Prior art keywords
waste
chambers
mixture
external
chamber
Prior art date
Application number
SK158-2019U
Other languages
Slovak (sk)
Other versions
SK1582019U1 (en
Inventor
Eva Jančová
Slávka Jančová
Original Assignee
Conformity S R O
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conformity S R O filed Critical Conformity S R O
Priority to SK158-2019U priority Critical patent/SK8896Y1/en
Publication of SK1582019U1 publication Critical patent/SK1582019U1/en
Priority to CZ2020259A priority patent/CZ309061B6/en
Priority to CZ2020-37525U priority patent/CZ34133U1/en
Publication of SK8896Y1 publication Critical patent/SK8896Y1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The organic waste treatment plant has inside it three separate stainless steel chambers, a first chamber (1a), a second chamber (1b) and a third chamber (1c), each of the chambers having its own pressure line with a relief valve (2) and the heating coils (3) for heating the chambers, and the chambers (1a), (1b), (1c) are connected to the fermenter (14), being interconnected by a hose line (4), and this is further connected to the mixing parts (5) devices, which are driven by a compressor (6) and are connected via a first valve (10) and a subsequently placed external hose system (9) to the external pipeline (7) of the producer for discharging enzymatically treated waste (8), the device having an outlet via a second valve (11) connected to an external fermenter (14), a after-fermentor (13) or to an external biogas plant (12). The device is used for the treatment of organic waste by connecting the mixing parts (5) of the device to the external pipeline (7) of the producer, from where the waste (8) is let in via an external hose system (9) and a first valve (10).

Description

Oblasť technikyTechnical field

Riešenie sa týka zariadenia na spracovanie organických odpadov a spôsobu spracovania nespotrebovateľných organických odpadov na ekologický obnoviteľný zdroj energie alebo na sekundárny zdroj živín pre poľnohospodársku výrobu.The solution relates to an organic waste treatment plant and a method for treating non-consumable organic waste into an ecologically renewable energy source or a secondary source of nutrients for agricultural production.

Doterajší stav technikyPrior art

Na Slovensku sa pri činnosti poľnohospodárskych, potravinárskych, farmaceutických, ako aj vodárenských spoločností vytvárajú odpady charakterizované v zmysle zákona o odpadoch 79/2015 Z. z ako (O) „ostatné“.In Slovakia, the activities of agricultural, food, pharmaceutical and water companies generate waste characterized in accordance with the Waste Act 79/2015 Coll. As (O) "other".

Ide o nasledujúce druhy odpadov:These are the following types of waste:

02 02 Odpady z poľnohospodárstva, záhradníctva, lesníctva, poľovníctva a rybárstva, akvakultúry a z výroby a spracovania potravín Wastes from agriculture, horticulture, forestry, hunting and fishing, aquaculture and food production and processing 03 03 Odpady zo spracovania dreva a z výroby papiera, lepenky, celulózy, reziva a nábytku Wastes from wood processing and from the production of paper, cardboard, pulp, lumber and furniture 18 18 Odpady zo zdravotnej alebo veterinárnej starosthvostialebo s nimi súvisiaceho výskumu okrem kuchynských a reštauračných odpadov, ktoré nevznikli z priamej zdravotnej starostlivosti Wastes from health or veterinary care or related research, except kitchen and restaurant wastes not arising from direct health care 19 19 Odpady zo zariadení na úpravu odpadu, z čistiarní odpadových vôd mimo miesta ich vzniku a úpravní pitnej vody a priemyselnej vody Wastes from off-site treatment plants, off-site waste water treatment plants and drinking water and industrial water treatment plants 20 20 Komunálne odpady (odpady z domácností a podobné odpady z obchodu, priemyslu a inštitúcií) vrátane ich zložiek z triedeného zberu Municipal wastes (household wastes and similar wastes from trade, industry and institutions) including their components from separate collection

Základnou časťou týchto odpadov sú organické zložky tvoriacou 30 - 90 % podiel ich zloženia.The basic part of these wastes are organic components making up 30-90% of their composition.

Z praxe sú známe rôzne riešenia spracovania organických odpadov.Various solutions for the treatment of organic waste are known from practice.

Pevný odpad sa odstraňuje bežne štyrmi spôsobmi:Solid waste is usually disposed of in four ways:

1. Riadené skládkovanie:1. Managed landfill:

- hoci ide o najmenej vhodný spôsob likvidácie odpadu, likviduje saním asi 70 - 90 % svetového odpadu.- Although it is the least suitable way of disposing of waste, it disposes of about 70-90% of the world's waste by suction.

2. Spaľovanie:2. Combustion:

- najmodernejší spôsob likvidácie.- the most modern method of disposal.

3. Kompostovanie:3. Composting:

- môže nahradiť priemyselné hnojivá.- can replace industrial fertilizers.

4. Spracovanie odpadov:4. Waste treatment:

- umožňuje využiť odpad ako druhotnú surovinu (recyklácia), podmienkou znovuvyužitia odpadu je jeho triedenie.- allows to use waste as a secondary raw material (recycling), the condition for reuse of waste is its sorting.

Mnohé spôsoby a technológie spracovania odpadu boh prezentované na konferencii Priemyselná emisie 2018, ktorá sa konala v Bratislave v októbri 2018. Na konferenen vystúpil napríklad prof. Ing. Igor Bodík, PhD., Oddelenie environmentálneho inžinierstva FCHPT STU, s prezentáciou na tému „Odstraňovanie prioritných látok a mikropolutantov z odpadových vôd degradačnými procesmi“ alebo prof. Ing. Ján Derco, DrSc., Oddelenie environmentálneho inžinierstva FCHPT STU, s témou „Stratégie anaeróbneho spracovania biologicky rozložiteľných odpadovsvysokýmobsahomdusíkaa síry“.Many ways and technologies of waste processing god presented at the conference Industrial Emissions 2018, which took place in Bratislava in October 2018. At the conference, for example, prof. Ing. Igor Bodík, PhD., Department of Environmental Engineering FCFT STU, with a presentation on the topic "Removal of priority substances and micropollutants from wastewater by degradation processes" or prof. Ing. Ján Derco, DrSc., Department of Environmental Engineering FCFT STU, with the topic "Strategies for anaerobic treatment of biodegradable waste with a high content of nitrogen and sulfur".

Najčastejším spôsobom spracovania organických odpadov je ich skladovanie a kompostovanie, založené na postupnomrozklade odpadu.The most common way of processing organic waste is its storage and composting, based on the gradual decomposition of waste.

V dôsledku vysokého podielu organických látok sú takéto odpady produktom s veľmi nepríjemným sprievodným zápachom, obzvlášť pri procese skládkovania, prípadne kompostovania, kedy sa organická časť odpadu dlhodobo odbúrava procesom prirodzeného organického rozpadu (vyhnívania), s následnou tvorbou odpadových plynov. Tieto plyny unikajú zvyčajne voľne do ovzdušia, čo má obťažujúci dopad na okolie, najmä na obývané rezidentné zóny. Okremzápachu spôsobujú takéto plyny aj zvyšovanie obsahu škodlivých skleníkových plynov v ovzduší.Due to the high proportion of organic matter, such wastes are a product with a very unpleasant accompanying odor, especially in the process of landfilling or composting, where the organic part of the waste is decomposed for a long time by natural organic decomposition (digestion), followed by waste gases. These gases usually escape freely into the air, which has an annoying impact on the environment, especially on populated residential areas. In addition to odor, such gases also increase the content of harmful greenhouse gases in the air.

Značná časť organických odpadov obsahuje zároveň ďalšie škodlivé látky, tzv. ..mikropolutanty. ktoré sa dostávajú do organického odpadu vylúčením z tráviaceho traktu zvierat, človeka (napríklad steroidné a antibiotické liečivá), ale aj z poľnohospodárskej výroby (napríklad herbicídne látky, pesticídne postrek} ). Tieto látky sú pre životné prostredie škodhvé a vysoko problematické, nakoľko sú neodbúrateľné bežnými postupmi, atak sa stávajú súčasťou kolobehu vody.A significant part of organic waste also contains other harmful substances, the so-called ..micropollutants. which enter organic waste by excretion from the digestive tract of animals, humans (eg steroid and antibiotic drugs), but also from agricultural production (eg herbicides, pesticide spray}). These substances are harmful to the environment and highly problematic, as they are non-degradable by conventional methods, and thus become part of the water cycle.

S K 8896 Υ1S K 8896 Υ1

Podstata technického riešeniaThe essence of the technical solution

Cieľom predkladaného technického riešenia je zabezpečiť také spracovanie organických odpadov, ktoré odstráni zápach pri skladovaní a spracovaní odpadu a zároveň bude ekologické.The aim of the presented technical solution is to ensure such processing of organic waste, which removes the odor during storage and processing of waste and at the same time will be ecological.

Základom spracovania organických odpadov podľa tohto riešenia je maximálna možná biodegradácia odpadu na plyn v krátkom časovom intervale a v priestorovo riadenom procese spracovania. Na spracovanie odpadu sú použité enzýmy.The basis of the processing of organic waste according to this solution is the maximum possible biodegradation of waste into gas in a short time interval and in a spatially controlled processing process. Enzymes are used to process waste.

Zariadenie na spracovanie organických odpadov má vo svojom vnútri umiestnené tri samostatné komoiy z nehrdzavejúcej ocele, pričom každá z komôr má vlastný tlakovací prepúšťací ventil a vnútorné výhrevné potrubné hady určené na ohrev komôr. Komory sú vzájomne prepojené potrubím, a to je ďalej spojené s miešacími časťami zariadenia poháňanými kompresoromThe organic waste treatment plant has three separate stainless steel chambers located inside it, each of the chambers having its own pressure relief valve and internal heating pipe coils for heating the chambers. The chambers are interconnected by piping, and this is further connected to the mixing parts of the device driven by a compressor

Miešacie časti zariadenia sú pripojené cez ventil a následne umiestnený hadicový systém k vonkajšej potmbnej trase na vypúšťanie cnzy matičky upraveného odpadu, pričom zariadenie je na výstupe napojené na externý ľermentor, dofermentor alebo na externé bioplynové zariadenie.The mixing parts of the device are connected via a valve and a hose system subsequently placed to the external sealing path for discharging the cured nut of the treated waste, the device being connected at the outlet to an external fermenter, dofermentor or to an external biogas plant.

V prvom kroku spracovania odpadu sa urobí predpríprava: najprv sa odoberú vzorky odpadu z celého procesu tvorby odpadu v prevádzke producenta odpadu, a na ich základe sú vyhodnotené základné parametre odpadu: PH, obsah sušiny, obsah dusíkatých látok ako celkový N, obsah fosforu ako celkový P, obsah rizikových látok v zmysle zákona o odpadoch a hodnoty mikropolutantov.In the first step of waste treatment, pre-preparation is performed: first waste samples are taken from the whole waste generation process in the waste producer's plant, and based on them the basic waste parameters are evaluated: PH, dry matter content, nitrogen content as total N, phosphorus content as total P, content of hazardous substances in the sense of the Waste Act and values of micropollutants.

V druhom kroku je vykonaný test odpadu a jeho následná biodegradácia v laboratórnych podmienkach, kde sa stanovípresná účinná dávka enzýmov a presné zloženie apomer enzýmov pre danévzorky odpadu.In the second step, a waste test is performed and its subsequent biodegradation under laboratory conditions, where the exact effective dose of enzymes and the exact composition and proportions of enzymes for the given waste samples are determined.

V treťom kroku je nastavená dávka enzýmov doručená producentovi odpadu. V každom procese tvorby odpadu producenta odpadu je určený pomer a dávkovanie zmesi enzýmov. Takto stanovenú dávku enzýmov potom producent denne pridáva do procesov, v ktorých vzniká odpad. Po čase zdržania odpadu vo výrobe producenta v intervale od 24 hodín do 30 dní nasleduje vypustenie cnzy matičky upraveného odpadu do pristaveného stacionárneho alebo mobilného miešacieho zariadenia.In the third step, a set dose of enzymes is delivered to the waste producer. In each waste producer's waste generation process, the ratio and dosage of the enzyme mixture is determined. The dose of enzymes thus determined is then added daily by the producer to the processes in which the waste is generated. After the time of waste retention in the producer's production in the interval from 24 hours to 30 days, the cnzy mother of the treated waste is discharged into the built-in stationary or mobile mixing device.

Spracovanie cnzy matičky upraveného odpadu sa vykonáva okamžite, aby sa predišlo neriadenému procesu tvorby plynu. Zariadenie sa pripojí k potmbnej trase producenta na vypúšťanie cnzymaticky upraveného odpadu cez hadicový systéma cez následne umiestnený ventil na komorovom systéme sapostupným nasávaním odpad nasáva do prvých dvoch komôr. Súbežne s procesom nasávania sa spustí proces ohrevu komôr, tento proces trvá do napustenia oboch komôr a do dosiahnutia prevádzkovej teploty 65 °C. Nasleduje otvorenie komory číslo tri a spustenie procesu cirkulácie. Komora číslo tri obsahuje enzým pripravený na domiešanie do dvoch plných komôr. Následným miešaním a obehom všetkých troch komôr je zmes pripravená na transfer do bioply nového zariadenia.The treatment of the treated waste matrix is performed immediately to avoid an uncontrolled gas generation process. The device is connected to the producer's route for discharging the enzymatically treated waste through a hose system through a subsequently located valve on the chamber system by suction suction into the first two chambers. Simultaneously with the suction process, the process of heating the chambers is started, this process lasts until the filling of both chambers and until the operating temperature of 65 ° C is reached. This is followed by the opening of chamber number three and the start of the circulation process. Chamber number three contains the enzyme ready to be mixed into two full chambers. Subsequent mixing and circulation of all three chambers makes the mixture ready for transfer to the biogas of the new plant.

Miešanie zmesi trvá 10 hodín, za stáleho ohrevu komôr a udržiavania maximálnych prevádzkových podmienok na zabezpečenie aktivity enzýmu. V procese miešania sa vytvárajú plyny, ktoré sa vyrovnávajú vo všetkých tlakových komorách prepúšťacím ventilom Pri procese miešania sa vytvára mierna pena v celkovej výške nad hladinou cca do 10 cmStirring of the mixture takes 10 hours, with constant heating of the chambers and maintaining maximum operating conditions to ensure enzyme activity. During the mixing process, gases are formed, which are balanced in all pressure chambers by a relief valve. During the mixing process, a slight foam is formed in the total height above the level of up to approx. 10 cm.

V následnom kroku sa uskutoční meranie hodnoty pH pripravenej zmesi. Zo zmesi sa odoberie vzorka, táto sa ochladí na 20 °C a odmeria sa jej pH. Požadované pH má byť v rozmedzí 6,5 ± 0,2. V prípade odchýlky sapH upraví chloridom železitým alebo 24 % hmotn. čpavkovou vodou.In the next step, the pH of the prepared mixture is measured. A sample was taken from the mixture, cooled to 20 ° C and the pH was measured. The required pH should be in the range of 6.5 ± 0.2. In case of sapH deviation, it is treated with ferric chloride or 24 wt. ammonia water.

Proces miešania sa potom zastaví, miešacie časti zariadenia sa spoja cez ventil a hadicu s potrubnou trasou producenta a nasleduje pomalý výtlak z komôr do fermentora. Výtlak trvá niekoľko hodín pri regulovaní tlaku tak, aby pena nepresiahla prípustnú hladinovú hodnotu do 10 cm Potom nasleduje fáza splynenia zmesi. Čas zdržania zmesi vo fermentore príjemcu je 20 - 30 dní za stáleho miešania.The mixing process is then stopped, the mixing parts of the device are connected via a valve and a hose to the pipeline of the producer, followed by a slow discharge from the chambers to the fermenter. The discharge takes several hours to regulate the pressure so that the foam does not exceed the permissible level value up to 10 cm. This is followed by the gasification phase of the mixture. The residence time of the mixture in the recipient's fermenter is 20-30 days with constant stirring.

V následnom kroku sa zmes presúva do dofermentora príjemcu alebo do koncového skladu externého bioplynového zariadenia. Nasleduje čas zdržania 60 - 90 dní. Potom je potrebné zabezpečiť odčerpanie vody.In the next step, the mixture is transferred to the recipient's dofermentor or to the final storage of the external biogas plant. This is followed by a residence time of 60-90 days. Then it is necessary to ensure the drainage of water.

V poslednom kroku sa odoberie vzorka zvyškovej hmoty na analýzu a vyhodnotenie jej parametrov v zmysle zákonu o hnojivách - ako sekundárneho zdroja živín.In the last step, a sample of the residual mass is taken for analysis and evaluation of its parameters in accordance with the Act on Fertilizers - as a secondary source of nutrients.

Pri tomto technickom riešení sa spracovaním odpadu vytvorí ekologický obnoviteľný zdroj živín s primárnou energetickou spotrebou a následnou sekundárnou spotrebou živín v poľnohospodárstve.In this technical solution, the processing of waste will create an ecologically renewable source of nutrients with primary energy consumption and subsequent secondary consumption of nutrients in agriculture.

Prehľad obrázkov na výkresochOverview of figures in the drawings

Na obr. 1 je zobrazené zariadenie na spracovanie organických odpadov pri pohľade zboku, v priereze.In FIG. 1 is a cross-sectional side view of an organic waste treatment plant.

Na obr. 2 je zobrazené zariadenie na spracovanie organických odpadov pri pohľade zhora, v priereze, bez externých častí zariadenia.In FIG. 2 shows a top view, in cross section, of an organic waste treatment plant, without external parts of the plant.

S K 8896 Υ1S K 8896 Υ1

Príklady uskutočneniaExamples of embodiments

Príklad 1Example 1

Zariadenie na spracovanie organických odpadov má vnútri umiestnené tri samostatné komory z nehrdzavejúcej ocele: prvú komoru la, druhú enzymatickú komoru 1b a tretiu komoru 1c, pričom každá z komôr má vlastné tlakovacie potrubie s prepúšťacím ventilom 2 a výhrevné potrubné hady 3 určené na ohrev komôr. Komory la, 1b, 1c sú spojené s fermentorom 14, pričom sú vzájomne prepojené hadicovým potrubím 4, a to je ďalej spojené s miešacími časťami 5 zariadenia, ktoré sú poháňané kompresorom 6.The organic waste treatment plant has three separate stainless steel chambers located inside: a first chamber 1a, a second enzymatic chamber 1b and a third chamber 1c, each of the chambers having its own pressure line with a discharge valve 2 and heating coils 3 for heating the chambers. The chambers 1a, 1b, 1c are connected to the fermenter 14, being interconnected by a hose line 4, and this is further connected to the mixing parts 5 of the device, which are driven by the compressor 6.

Miešacie časti 5 zariadenia sú pripojené cez ventil 10 a následne umiestnený externý hadicový systém 9 kvonkajšej potrubnej trase 7 producenta na vypúšťanie cnzynraticky upraveného odpadu 8, pričom zariadenie je na výstupe cez druhý ventil 11 napojené na externý fermentor 14, dofermentor 13 alebo na externé bioplynové zariadenie 12.The mixing parts 5 of the device are connected via a valve 10 and subsequently an external hose system 9 of the producer's external pipeline 7 is discharged to discharge the treated waste 8, the device being connected at the outlet via a second valve 11 to an external fermenter 14, dofermentor 13 or external biogas plant. 12.

Zariadenie na spracovanie organických odpadov môže byť mobilné.Organic waste treatment facilities can be mobile.

Pred začiatkom spracovateľského procesu sa odoberú vzorky odpadu z celého procesu tvorby odpadu v prevádzke producenta odpadu, vyhodnotia sa základné parametre odpadu: PH, obsah sušiny, obsah dusíkatých látok ako celkový N, obsah fosforu ako celkový P, obsah rizikových látok, ako je napríklad arzén, vápnik, kadmium, chróm, meď, ortuť, draslík, K2O, horčík, nikel, olovo, selén, zmok, hodnoty mikropolutantov.Before the start of the processing process, waste samples are taken from the entire waste generation process at the waste producer's plant, the basic waste parameters are evaluated: PH, dry matter content, nitrogen content as total N, phosphorus content as total P, hazardous substances content such as arsenic , calcium, cadmium, chromium, copper, mercury, potassium, K2O, magnesium, nickel, lead, selenium, wetting, values of micropollutants.

Nasleduje test odpadu a jeho biodegradácia v laboratórnych podmienkach diskontinuálnou mezofilnou anaeróbnou digesciou bez miešania (test BMP - Biochemical Methane Potential) pomocou bankových bioreaktorov. Postup vychádza z normy ČSN EN ISO 11734, respektíve z metodického návodu RNDr. Bubeníkovej. Reaktory sú umiestnené vo vodnom prostredí pri teplote 40 °C ± 0,5 °C. Na stanovenie endogénnej produkcie bioplynu a metánu sú použité 2 bio reaktory. Počas 40 dní je zapisovaná teplota (teplota bioplynu), barometrický tlak a prírastok objemu bioplynu. Pri dostatočnom množstve bioplynu v byrete (nad 150 nú) je spravené meranie obsahu metánu prenosným analyzátorom bioplynu Geotechnical Instruments (UK) Ltd. „Biogas5000“ s duálnymi infračervenými senzormi CH4 (0 - 70 % ± 0,5 %) a CO2 (0 - 60 % ± 0,5 %) a elektrochemickými senzormi 02 (0 - 25 % ± 1,0 %), H2 (0 - 2000 ppm ± 2,0 % FS) a H2S (0 - 5000 ppm ± 2,0 % FS) analyzátorom Geotech Biogas5000 (CH4 0 - 70 % ± 0,5 %). pH bolo merané prístrojom WTW 340i so sondou SenTix41, na sušenie bol použitý analyzátor vlhkosti KERN DLB 160 3A s halogénovou lampou a žíhanie bolo vykonané termogravimetrickým analyzátorom LEČO TGA 701. Pri teste sa stanoví dávka enzýmu pomerom k tvorbe plynu a obsahu sušiny.This is followed by a test of the waste and its biodegradation under laboratory conditions by discontinuous mesophilic anaerobic digestion without agitation (BMP - Biochemical Methane Potential test) using bank bioreactors. The procedure is based on the ČSN EN ISO 11734 standard, or on the methodological instructions of RNDr. Drummer. The reactors are located in an aqueous medium at a temperature of 40 ° C ± 0.5 ° C. Two bio reactors are used to determine endogenous biogas and methane production. During 40 days, the temperature (biogas temperature), barometric pressure and biogas volume increase are recorded. With a sufficient amount of biogas in the burette (above 150 nu), the measurement of methane content is performed by a portable biogas analyzer Geotechnical Instruments (UK) Ltd. "Biogas5000" with dual infrared sensors CH4 (0 - 70% ± 0.5%) and CO2 (0 - 60% ± 0.5%) and electrochemical sensors 02 (0 - 25% ± 1.0%), H2 ( 0 - 2000 ppm ± 2.0% FS) and H2S (0 - 5000 ppm ± 2.0% FS) with a Geotech Biogas5000 analyzer (CH4 0 - 70% ± 0.5%). The pH was measured with a WTW 340i with a SenTix41 probe, a KERN DLB 160 3A moisture analyzer with a halogen lamp was used for drying, and annealing was performed with a LEČO TGA 701 thermogravimetric analyzer. The enzyme dose was determined in relation to gas formation and dry matter content.

t t ililiil ililiil Prudukt Prudukt llillll llillll Stod*» ϊίϊίχΐίίϊίί; Stod * »;ίϊίχΐίίϊίί; i i I · x lakáza x laccase 70 % 70% 70 % 70% 40 % 40% 15 % 15% 70% 70% 40% 40% 15% 15% 20 % 20% 20% 20% x cehrläza x cehrläza 60% 60% 60% 60% 70 %' 70% x ainyläza x ainylase 10% 10% 5 % 5% 10% 10% 5 % 5% 20 % 20% 30 % 30% : 30 %· : 30% · x lipázä x lipase 20 % 20% 30 % 30% 20 % 20% 5% 5% 30%· 30% · 20 % 20% 5 % 5% 20% 20% 20% 20% x pektináža x pectinage 10 % 10% 30 3i 30 3i 15 3¾ 15 3¾ 30% 30% 15 % 15% 10 % 10% 25 % 25% 25 % 25% Mediátor (g/liter enzýmu) Mediator (g / liter of enzyme) 2 2 2: 2: 2 2 .*) . *) 2 2 Odporúčané dávkovanie (litre/siichá tojra) Recommended dosage (liters / siichá tojra) 3 ¢1 -3) 3 ¢ 1 -3) 3 í 1 - 5) 3 and 1 - 5) 3 Í2 - 7) 3 Í2 - 7) 10 (5-15; 10 (5-15; ír? 1 ir? 1 (2-7) (2-7) 10 (5- 15) 10 (5-15) 10 (5 - 15) 10 (5 - 15) 3 (1 -5) 3 (1 -5) (1 -5) (1 -5)

Tabuľka 1 Zloženie zmesi enzýmov, príkladTable 1 Composition of the enzyme mixture, example

V treťom kroku sa prenesie nastavená dávka zmesi k producentovi odpadu. Takto stanovená dávka enzýmov sa denne pridáva do procesov so vznikom odpadu, pričom v každom procese tvorby odpadu je určený pomer a dávkovanie zmesi enzýmov. Po čase zdržania odpadu vo výrobe producenta od 24 hodín do 30 dní nasleduje vypustenie cnzynraticky upraveného odpadu do pristaveného zariadenia na spracovanie organických odpadov. Zariadenie môže byť mobilné. Mobilné miešacie zariadenie má kapacitu miešania 30 m3 odpadu denne rozdelenú do troch samostatných komôr z nehrdzavejúcej ocele. Postupný m nasávaním s a odpad nasáva do prvých dvoch komôr s celkovou kapacitou nasávania 5 m3/hod.In the third step, the set dose of the mixture is transferred to the waste producer. The dose of enzymes thus determined is added daily to the waste generation processes, with the ratio and dosage of the enzyme mixture being determined in each waste generation process. The retention time of the waste in the producer's production from 24 hours to 30 days is followed by the discharge of the treated waste into the attached organic waste treatment plant. The device can be mobile. The mobile mixing device has a mixing capacity of 30 m 3 of waste per day divided into three separate stainless steel chambers. By gradual suction, the waste is sucked into the first two chambers with a total suction capacity of 5 m 3 / hour.

S K 8896 Υ1S K 8896 Υ1

Spracovanie organických odpadov sa uskutoční tak, že miešacie zariadenie 5 sa pripojí k vonkajšej potrubnej trase 7 producenta, odkiaľ sa vpustí do zariadenia upravený odpad 8 cez externý hadicový systém 9 a prvý ventil 10, pričom odpad 8 sa postupným nasávaním nasáva do prvých dvoch komôr - do prvej komory la admhej enzymatickej komory 1b, a súbežne s procesom nasávania sa začne proces ohrevu komôr la, 1b, pričom tento proces trvá celkovo 3-5 hodín až do úplného napustenia oboch komôr a do dosiahnutia ich prevádzkovej teploty 65 °C. Potom sa otvorí tretia komora 1c a začne sa proces cirkulácie zmesi vo všetkých komorách, pričom tretia komora 1c obsahuje enľýmna domiešanie do dvoch plných komôr la, 1b. Odpad 8 sa ďalej spracúva miešaním, pričom obieha vo všetkých troch komorách, miešanie trvá 10 hodín za stáleho ohrevu komôr, v ktorých sa udržujú prevádzkové podmienky na udržanie aktivity enzýmu. Pri miešaní vznikajúce plyny sa vyrovnávajú vo všetkých tlakových komorách ich prepúšťacím ventilom 2. Po zmiešaní sa zo zmesi odoberie vzorka, ochladí sa na 20 °C a odmeria sa jej pH, pričom ak namerané pH zmesi nie je v rozmedzí 6,5 ± 0,2, tak sa pH upraví pridaním chloridu železitého alebo 24 % hmotn. čpavkovej vody. Proces miešania sa potom zastaví a miešacie časti 5 zariadenia sa napoja cez prvý ventil 10 a následne umiestnený externý hadicový systém9 k vonkajšej potrubnej trase 7 producenta a pomalým výtlakom sa dostane zmes upraveného odpadu 8 z komôr do fermentora 14, pričom výtlak trvá 3 hodiny s regulovanýmprocesomtlaku. Potom nasleduje fáza splynenia zmesi, pričom čas zdržania zmesi vo fermentore 14 príjemcu je 20 - 30 dní. Následne sa zmes presúva do externého dofermentora 13 alebo do koncového externého skladu bioplynového zariadenia 14, kde je ešte čas zdržania 60 - 90 dní. Po tomto čase nasleduje odčerpávanie vody a následne sa odoberie vzorka zvyškovej hmoty na analýzu a vyhodnotenie parametrov vzorky ako sekundárneho zdroja živín.The treatment of organic waste is carried out by connecting the mixing device 5 to the external pipeline 7 of the producer, from where the treated waste 8 is introduced into the device via an external hose system 9 and a first valve 10, the waste 8 being sucked into the first two chambers by successive suction. into the first chamber 1a of the small enzyme chamber 1b, and in parallel with the suction process, the process of heating the chambers 1a, 1b is started, this process lasting a total of 3-5 hours until both chambers are completely filled and reach their operating temperature of 65 ° C. Then the third chamber 1c is opened and the process of circulating the mixture in all chambers begins, the third chamber 1c containing the enzymatic mixing into two full chambers 1a, 1b. The waste 8 is further processed by stirring, circulating in all three chambers, the stirring lasting 10 hours with constant heating of the chambers in which the operating conditions are maintained to maintain the activity of the enzyme. The gases formed during mixing are equilibrated in all pressure chambers through their relief valve 2. After mixing, a sample is taken from the mixture, cooled to 20 ° C and its pH is measured, if the measured pH of the mixture is not within 6,5 ± 0, 2, the pH is adjusted by adding ferric chloride or 24 wt. ammonia water. The mixing process is then stopped and the mixing parts 5 of the device are connected via a first valve 10 and subsequently an external hose system 9 to the external pipeline 7 of the producer and slowly discharges the treated waste mixture 8 from the chambers to the fermenter 14, 3 hours with controlled process pressure. . This is followed by the gasification phase of the mixture, the residence time of the mixture in the fermenter 14 of the recipient being 20-30 days. Subsequently, the mixture is transferred to an external dofermentor 13 or to the final external storage of the biogas plant 14, where there is still a residence time of 60-90 days. This time is followed by the pumping of water and then a sample of the residual mass is taken for analysis and evaluation of the parameters of the sample as a secondary source of nutrients.

Ako enzým na spracovanie odpadu sa použije napríklad LIGNO KAL. Aktivita anaeróbneho prostredia enzýmu LIGNO KAL je taká, že za stáleho miešania spracuje 1,38 % organickej hmoty denne. Odpad 8 obsiahnutý v komorách la, 1b sa v tomto prípade zmieša s enzýmomza stáleho miešania zmesi a primiešaní sa vznikajúce plyny vyrovnávajú prepúšťacím ventilom 2 vo všetkých tlakových komorách la, 1b, 1c tak, že množstvo vznikajúcich plynov sa udržuje v rozmedzí 250 m3 až 550 m3/m3 zmesi.LIGNO KAL, for example, is used as the waste treatment enzyme. The activity of the anaerobic environment of the LIGNO KAL enzyme is such that it processes 1.38% of organic matter per day with constant stirring. In this case, the waste 8 contained in the chambers 1a, 1b is mixed with the enzyme of constant mixing of the mixture and the mixed gases are balanced by the relief valve 2 in all pressure chambers 1a, 1b, 1c so that the amount of gases formed is kept between 250 m 3 to 550 m 3 / m 3 of mixture.

Priemyselná využiteľnosťIndustrial applicability

Zariadenie na spracovanie organických odpadov a spôsob spracovania nespotrebovateľných organický ch odpadov podľa tohto technického riešenia sa využije v oblasti poľnohospodárskych, potravinárskych, farmaceutických, ako aj vodárenských spoločností na ekologické spracovanie odpadu a jeho premenu na obnoviteľný zdroj energie alebo na sekundárny zdroj živín pre poľnohospodársku výrobu.The organic waste treatment plant and the method of processing non-consumable organic waste according to this technical solution will be used in the field of agricultural, food, pharmaceutical and water companies for ecological treatment of waste and its conversion into a renewable energy source or secondary nutrient source for agricultural production.

S K 8896 Υ1S K 8896 Υ1

Zoznam vzťahových značiek prvá komora (la) druhá komora (1b) tretia komora (1c) tlakovacie potrubie s prepúšťacím ventilom (2) výhrevné potrubné hady (3) hadicové potrubie (4) miešacie časti (5) zariadenia kompresor (6) potrubná trasa (7) producenta odpad (8) externý hadicový systém(9) prvý ventil (10) druhý ventil (11) externé bioplynové zariadenie (12) dofermentor (13) fermentor (14)List of reference numerals first chamber (1a) second chamber (1b) third chamber (1c) pressure line with relief valve (2) heating line coils (3) hose line (4) mixing parts (5) compressor equipment (6) line route ( 7) waste producer (8) external hose system (9) first valve (10) second valve (11) external biogas plant (12) dofermentor (13) fermenter (14)

Claims (5)

NÁROKY NA OCHRANUCLAIMS FOR PROTECTION 1. Zariadenie na spracovanie organických odpadov, vyznačujúce sa tým, že v jeho vnútri sú umiestnené tri samostatné komory z nehrdzavejúcej ocele, prvá komora (la), druhá komora (1b) a tretia komora (1c), pričom každá z komôr má vlastné tlakovacie potrubie s prepúšťacím ventilom (2) a výhrevné hady (3) na ohrev komôr, a komory (la), (1b), (1c) sú spojené s fermentorom (14), pričom sú vzájomne prepojené hadicovým potrubím (4), a to je ďalej spojené s miešacími časťami (5) zariadenia, ktoré sú poháňané kompresorom (6), a sú pripojené cez prvý ventil (10) a následne umiestnený externý hadicový systém (9) k vonkajšej potrubnej trase (7) producenta na vypúšťanie cnzy matičky upraveného odpadu (8), pričom zariadenie má výstup cez druhý ventil (11) napojený na externý fermentor (14), dofermentor (13) alebo na externé bioplynové zariadenie (12).An apparatus for the treatment of organic waste, characterized in that inside it are arranged three separate stainless steel chambers, a first chamber (1a), a second chamber (1b) and a third chamber (1c), each of the chambers having its own pressure the line with the relief valve (2) and the heating coils (3) for heating the chambers, and the chambers (1a), (1b), (1c) are connected to the fermenter (14), being interconnected by a hose line (4), namely is further connected to the mixing parts (5) of the device, which are driven by a compressor (6) and are connected via a first valve (10) and subsequently placed by an external hose system (9) to the external pipeline (7) of the producer waste (8), the plant having an outlet via a second valve (11) connected to an external fermenter (14), a dofermentor (13) or to an external biogas plant (12). 2. Zariadenie na spracovanie organických odpadov podľa nároku 1, vyznačujúce sa tým, že je mobilné a má kapacitu miešania 30 m3 odpadu denne.Organic waste treatment plant according to claim 1, characterized in that it is mobile and has a mixing capacity of 30 m 3 of waste per day. 3. Spôsob spracovania organických odpadov v zariadení definovanom v nárokoch 1 alebo 2, vyznačujúci sa tým, že miešacie časti (5) zariadenie sa pripoja k vonkajšej potrubnej trase (7) producenta, odkiaľ sa vpustí odpad (8) cez hadicový systém (9) a prvý ventil (10), pričom odpad (8) sa postupne nasáva do dvoch komôr, do prvej komory (la) a do druhej komory (1b), a súbežne s procesom nasávania sa začne proces ohrevu komôr (la), (1b), ktorý trvá celkovo 3 až 5 hodín až do úplného napustenia oboch komôr (la), (1b) a do dosiahnutia ich prevádzkovej teploty na úrovni 65 °C, potom sa otvorí tretia komora (1c) a začne sa proces cirkulácie zmesi v komorách, pričom tretia komora (1c) obsahuje enzým, ktorý sa domiešava do odpadu (8) obsiahnutého v plných komorách (la), (1b), potom sa odpad (8) ďalej mieša a obieha vo všetkých troch komorách, pričom miešanie trvá 2 až 10 hodín za stáleho ohrevu komôr, v ktorých sa udržujú prevádzkové podmienky vhodné na zabezpečenie aktivity enzýmu, pričom pri miešaní vznikajúce plyny sa vyrovnávajú vo všetkých tlakových komorách (la), (1b), (1c) ich prepúšťacím ventilom (2), a po zmiešaní sa zo zmesi odoberie vzorka, ktorá sa ochladí na 20 °C a odmeria sa jej pH, pričom ak namerané pH zmesi nie je v rozmedzí 6,5 ± 0,2, tak sa pH zmesi upraví pridaním chloridu železitého alebo 24 % hmotn. čpavkovej vody, proces miešania sa potom zastaví a miešacie časti (5) zariadenia sa napoja cez prvý ventil (10) a následne umiestnený hadicový systém (9) k vonkajšej potrubnej trase (7) producenta na vypúšťanie cnzy matičky upraveného odpadu (8), potom sa pomalým výtlakom dostane zmes upraveného odpadu (8) z komôr (la), (1b), (1c) do fermentora (14), pričom výtlak trvá 3 hodiny s regulovaným procesom tlaku, ďalej nasleduje fáza splynenia zmesi, pričom čas zdržania zmesi vo fermentore (14) je 20 až 30 dní, potom sa zmes presunie do externého dofermentora (13) alebo do externého bioplynového zariadenia (12), kde je ešte čas zdržania 60 až 90 dní, po tomto čase sa odčerpá zo zmesi voda a následne sa odoberie vzorka zvyškovej hmoty na analýzu a vyhodnotenie parametrov vzorky ako sekundárneho zdroja živín.Method for treating organic waste in a plant as defined in claims 1 or 2, characterized in that the mixing parts (5) of the plant are connected to an external pipeline (7) of the producer, from where the waste (8) is fed through a hose system (9) and a first valve (10), the waste (8) being successively sucked into the two chambers, the first chamber (1a) and the second chamber (1b), and the heating process of the chambers (1a), (1b) is started in parallel with the suction process. , which lasts a total of 3 to 5 hours until both chambers (1a), (1b) are completely filled and reach their operating temperature at 65 ° C, then the third chamber (1c) is opened and the process of circulating the mixture in the chambers begins, wherein the third chamber (1c) contains an enzyme which is mixed into the waste (8) contained in the full chambers (1a), (1b), then the waste (8) is further mixed and circulated in all three chambers, the mixing lasting 2 to 10 hours with constant heating of the chambers, in which the operating conditions suitable for ensuring the activity of the enzyme are maintained, The resulting gases are equilibrated in all pressure chambers (1a), (1b), (1c) by their relief valve (2), and after mixing, a sample is taken from the mixture, cooled to 20 ° C and its pH is measured, if the measured pH of the mixture is not in the range 6.5 ± 0.2, then the pH of the mixture is adjusted by adding ferric chloride or 24% by weight. ammonia water, the mixing process is then stopped and the mixing parts (5) of the device are connected via a first valve (10) and subsequently located hose system (9) to the external pipeline (7) of the producer to discharge the cnzy nut of the treated waste (8), the mixture of treated waste (8) from chambers (1a), (1b), (1c) is slowly discharged into the fermenter (14), the discharge lasting 3 hours with a controlled pressure process, followed by the gasification phase of the mixture, the residence time of the mixture in fermenter (14) is 20 to 30 days, then the mixture is transferred to an external dofermentor (13) or to an external biogas plant (12), where there is a residence time of 60 to 90 days, after which time water is pumped out of the mixture and then take a sample of the residual mass for analysis and evaluation of the parameters of the sample as a secondary source of nutrients. 4. Spôsob spracovania organických odpadov podľa nároku 3, vyznačujúci sa tým, že odpad (8) vstupujúcido zariadenia z potrubnej trasy (7) producenta je cnzy matičky upravený.The method for treating organic waste according to claim 3, characterized in that the waste (8) entering the plant from the producer's pipeline (7) is treated by means of a nut. 5. Spôsob spracovania organických odpadov podľa nárokov 3 alebo 4, vyznačujúci sa tým, že odpad (8) obsiahnutý v komorách (la), (1b) sa zmieša s en^mom za stáleho miešania zmesi a pri miešaní vznikajúce plyny sa vyrovnávajú prepúšťacím ventilom (2) vo všetkých tlakových komorách (la), (1b), (1c) tak, že množstvo plynov sa udržuje v rozmedzí 250 m3 až 550 m3/m3 zmesi.Process for the treatment of organic waste according to claims 3 or 4, characterized in that the waste (8) contained in the chambers (1a), (1b) is mixed with the enzyme while stirring the mixture and the gases formed during mixing are equalized by a relief valve (2) in all pressure chambers (1a), (1b), (1c) so that the amount of gases is kept between 250 m 3 and 550 m 3 / m 3 of mixture.
SK158-2019U 2019-10-28 2019-10-28 Equipment for processing organic waste and waste treatment method SK8896Y1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SK158-2019U SK8896Y1 (en) 2019-10-28 2019-10-28 Equipment for processing organic waste and waste treatment method
CZ2020259A CZ309061B6 (en) 2019-10-28 2020-05-11 Organic waste treatment plant and waste treatment method
CZ2020-37525U CZ34133U1 (en) 2019-10-28 2020-05-11 Organic waste treatment plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SK158-2019U SK8896Y1 (en) 2019-10-28 2019-10-28 Equipment for processing organic waste and waste treatment method

Publications (2)

Publication Number Publication Date
SK1582019U1 SK1582019U1 (en) 2020-05-04
SK8896Y1 true SK8896Y1 (en) 2020-10-02

Family

ID=70453835

Family Applications (1)

Application Number Title Priority Date Filing Date
SK158-2019U SK8896Y1 (en) 2019-10-28 2019-10-28 Equipment for processing organic waste and waste treatment method

Country Status (2)

Country Link
CZ (2) CZ309061B6 (en)
SK (1) SK8896Y1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008038361A1 (en) * 2006-09-28 2010-01-28 エコマテリアル株式会社 Organic waste treatment system
CN201552171U (en) * 2009-08-11 2010-08-18 广州农冠生物科技有限公司 Movable recycle disposal system of organic waste resources
CZ21515U1 (en) * 2010-09-17 2010-11-29 Kvarcák@Jaromír Apparatus for heat treatment of organic materials, especially waste materials

Also Published As

Publication number Publication date
CZ309061B6 (en) 2022-01-05
SK1582019U1 (en) 2020-05-04
CZ34133U1 (en) 2020-06-23
CZ2020259A3 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
Buendía et al. Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes
Jalili et al. Toxicity evaluation and management of co-composting pistachio wastes combined with cattle manure and municipal sewage sludge
CN104261550B (en) A kind of biological compounded mix processing waste water of livestock poultry and its preparation method and application
CN104229976B (en) A kind of method utilizing biological compounded mix process waste water of livestock poultry
CN109354520A (en) A kind of aerobic dynamic composting process of continous way using sludge and stalk
Belhadj et al. Evaluation of the anaerobic co-digestion of sewage sludge and tomato waste at mesophilic temperature
EP2678295A1 (en) Method and system for sanitization of pathogen containing liquid waste in composting applications
Basak et al. Anaerobic digestion of tannery solid waste by mixing with different substrates
Burka et al. Technological features of biogas production while anaerobic co-digestion of faecal sludge, sewage sludge and livestock
Ali et al. Predictive modeling of biogas production from anaerobic digestion of mixed kitchen waste at mesophilic temperature
Dubrovskis et al. Biogas production potential from agricultural biomass and organic residues in Latvia
SK8896Y1 (en) Equipment for processing organic waste and waste treatment method
SK82021A3 (en) Equipment for processing organic waste and waste treatment method
Kadam et al. Filtration of biogas spent slurry and it’s chemical analysis
Galitskaya et al. The effectiveness of co-digestion of sewage sludge and phytogenic waste
Martínez et al. Biogas potential of residues generated by the tomato processing industry under different substrate and inoculum conditions
Singh et al. Utilization of sludge co-digested with pine needles for the generation of biogas
Otaraku et al. Modelling the cumulative biogas produced from sawdust, cow dung and water hyacinth
Liang et al. Potential of Rapid Anaerobic Fermentation on Animal Slurry for Biogas Production and Storage of Biogas Slurry.
Ezekoye et al. Comparative study of calorific values and proximate analysis of biogas from different feedstocks
Sakiewicz et al. Methane fermentation of poultry manure—shortcomings and advantages of the technology: fermentation or co-fermentation?
Alkhrissat et al. Impact of Iron Oxide Nanoparticles on Anaerobic Co-digestion of Chicken Manure and Sewage Sludge Substrates
Lee et al. Effect of substrate to inoculum ratio on methane production and organic matter removal during solid state anaerobic digestion of beef manure and sawdust mixture
Damian et al. INFLUENCE OF TEMPERATURE ON CO2 EMISSION FROM SEWAGE SLUDGE COMPOSTING PROCESS
Farrow et al. Influence of temperature and ammonia on the high solids co-digestion of poultry manure