SK1582019U1 - Equipment for processing organic waste and waste treatment method - Google Patents
Equipment for processing organic waste and waste treatment method Download PDFInfo
- Publication number
- SK1582019U1 SK1582019U1 SK158-2019U SK1582019U SK1582019U1 SK 1582019 U1 SK1582019 U1 SK 1582019U1 SK 1582019 U SK1582019 U SK 1582019U SK 1582019 U1 SK1582019 U1 SK 1582019U1
- Authority
- SK
- Slovakia
- Prior art keywords
- waste
- chambers
- mixture
- external
- chamber
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 77
- 239000010815 organic waste Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 37
- 238000012545 processing Methods 0.000 title description 9
- 238000002156 mixing Methods 0.000 claims abstract description 30
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 238000007599 discharging Methods 0.000 claims abstract description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 5
- 239000010935 stainless steel Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 35
- 108090000790 Enzymes Proteins 0.000 claims description 20
- 102000004190 Enzymes Human genes 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 8
- 235000015097 nutrients Nutrition 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 230000002045 lasting effect Effects 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000002309 gasification Methods 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 241000196324 Embryophyta Species 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012271 agricultural production Methods 0.000 description 3
- 238000006065 biodegradation reaction Methods 0.000 description 3
- 238000009264 composting Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000000383 hazardous chemical Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000010523 Cicer arietinum Nutrition 0.000 description 1
- 244000045195 Cicer arietinum Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000003898 horticulture Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- NOTVAPJNGZMVSD-UHFFFAOYSA-N potassium monoxide Inorganic materials [K]O[K] NOTVAPJNGZMVSD-UHFFFAOYSA-N 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Zariadenie na spracovanie organických odpadov má vnútri umiestnené tri samostatné komory z nehrdzavejúcej ocele, prvú komoru (1a), druhú komoru (1b) a tretiu komoru (1c), pričom každá z komôr má vlastné tlakovacie potrubie s prepúšťacím ventilom (2) a výhrevné hady (3) na ohrev komôr, a komory (1a), (1b), (1c) sú spojené s fermentorom (14), pričom sú vzájomne prepojené hadicovým potrubím (4), a to je ďalej spojené s miešacími časťami (5) zariadenia, ktoré sú poháňané kompresorom (6), a sú pripojené cez prvý ventil (10) a následne umiestnený externý hadicový systém (9) k vonkajšej potrubnej trase (7) producenta na vypúšťanie enzymaticky upraveného odpadu (8), pričom zariadenie má výstup cez druhý ventil (11) napojený na externý fermentor (14), dofermentor (13) alebo na externé bioplynové zariadenie (12). Na spracovanie organických odpadov sa použije zariadenie tak, že miešacie časti (5) zariadenia sa pripoja k vonkajšej potrubnej trase (7) producenta, odkiaľ sa vpustí odpad (8) cez externý hadicový systém (9) a prvý ventil (10).The organic waste treatment plant has inside it three separate stainless steel chambers, a first chamber (1a), a second chamber (1b) and a third chamber (1c), each of the chambers having its own pressure line with a relief valve (2) and heating coils (3) for heating the chambers, and the chambers (1a), (1b), (1c) are connected to the fermenter (14), being interconnected by a hose line (4), and this is further connected to the mixing parts (5) of the device which are driven by a compressor (6) and are connected via a first valve (10) and a subsequently placed external hose system (9) to the external pipeline (7) of the producer for discharging enzymatically treated waste (8), the device having an outlet via a second a valve (11) connected to an external fermenter (14), a dofermentor (13) or to an external biogas plant (12). The device is used for the treatment of organic waste by connecting the mixing parts (5) of the device to the external pipeline (7) of the producer, from where the waste (8) is let in via an external hose system (9) and a first valve (10).
Description
Oblasť technikyTechnical field
Riešenie sa týka zariadenia na spracovanie organických odpadov a spôsobu spracovania nespotiebovateľných organických odpadov na ekologický obnoviteľný zdroj energie, alebo na sekundárny zdroj živín pie poľno ho s p o dársku vý rob u.The solution concerns an organic waste treatment plant and a method for treating non-consumable organic waste into an ecologically renewable energy source or a secondary source of nutrients from agricultural production.
Doterajší stav technikyPrior art
Na Slovensku sa pri činnosti poľnohospodárskych, potravinárskych, farmaceutických ako aj vodárenských spoločností vytvárajú odpady charakterizované v zmysle zákona o odpadoch 79/2015 Z. z ako (O), „ostatné“.In Slovakia, the activities of agricultural, food, pharmaceutical and water companies generate waste characterized in accordance with the Waste Act 79/2015 Coll. As (O), "other".
Ide o nasledovné druhy odpadov:These are the following types of waste:
Základnou časťou týchto odpadov sú organické zložky tvoriacou 30 - 90 % podiel ich zloženia.The basic part of these wastes are organic components making up 30-90% of their composition.
Z praxe sú známe rôzne riešenia spracovania organických odpadov.Various solutions for the treatment of organic waste are known from practice.
Pevný odpad sa odstraňuje bežne 4 spôsobmi:Solid waste is usually disposed of in 4 ways:
1. Riadené skládkovanie:1. Managed landfill:
- hoci ide o najmenej vhodný spôsob likvidácie odpadu, likviduje saním asi 70 - 90 % svetového odpadu- Although it is the least suitable way of disposing of waste, it disposes of about 70-90% of the world's waste by suction
2. Spaľovanie:2. Combustion:
- najmodernejší spôsob likvidácie- the most modern method of disposal
3. Kompostovanie:3. Composting:
-môže nahradiť priemyselné hnojivá-can replace industrial fertilizers
4. Spracovanie odpadov:4. Waste treatment:
- umožňuje využiť odpad ako druhotnú surovinu (iecyklácia), podmienkou znovuvyužitia odpadu je jeho triedenie- allows to use waste as a secondary raw material (iecycling), the condition for reuse of waste is its sorting
Mnohé spôsoby a technológie spracovania odpadu boh prezentované na konferenen Priemyselné emisie 2018, ktorá sa konala v Bratislave v októbri 2018. Na konferenen vystúpil napríklad prof. Ing. Igor Bodík, PhD., Oddelenie environmentálneho inžinierstva FCHPT STU s prezentáciou na tému „Odstraňovanie prioritných látok a mikropolutantov z odpadových vôd degradačnými procesmi“, alebo prof. Ing. Ján Derco, DrSc., Oddelenie environmentálneho inžinierstva FCHPT STU „Stratégie anaeróbneho spracovania biologicky rozložiteľných odpadov s vysokýmobsahomdusíka a síry“.Many ways and technologies of waste treatment god presented at the conference Industrial Emissions 2018, which took place in Bratislava in October 2018. At the conference, for example, prof. Ing. Igor Bodík, PhD., Department of Environmental Engineering FCFT STU with a presentation on the topic "Removal of priority substances and micropollutants from wastewater by degradation processes", or prof. Ing. Ján Derco, DrSc., Department of Environmental Engineering FCFT STU "Strategies for anaerobic treatment of biodegradable waste with a high content of nitrogen and sulfur".
Najčastejším spôsobom spracovania organických odpadov je ich skladovanie a kompostovanie, založené na postupnomrozklade odpadu.The most common way of processing organic waste is its storage and composting, based on the gradual decomposition of waste.
V dôsledku vysokého podielu organických látok sú takéto odpady produktom s veľmi nepríjemným sprievodným zápachom, obzvlášť pri procese skládkovania, prípadne kompostovania, kedy sa organická časť odpadu dlhodobo odbúrava procesom prirodzeného organického rozpadu (vyhnívania), s následnou tvorbou odpadových plynov. Tieto plyny unikajú zvyčajne voľne do ovzdušia, čo má obťažujúci dopad na okohe, najmä na obývané rezidentné zóny. Okremzápachu spôsobujú takéto plyny aj zvyšovanie obsahu škodlivých skleníkových plynov v ovzduší.Due to the high proportion of organic substances, such wastes are a product with a very unpleasant accompanying odor, especially in the process of landfilling or composting, where the organic part of the waste is decomposed for a long time by natural organic decomposition (digestion), followed by waste gases. These gases usually escape freely into the air, which has an annoying effect on the eye, especially on populated residential areas. In addition to odor, such gases also increase the content of harmful greenhouse gases in the air.
Značná časť organických odpadov obsahuje zároveň ďalšie škodlivé látky, tzv. ..mikropolutanty. ktoré sa dostávajú do organického odpadu vylúčením z tráviaceho traktu zvierat, človeka (napríklad steroidné a antibiotické liečivá), ale aj z poľnohospodárskej výroby (napríklad herbicídne látky, pesticídne postreky ). Tieto látky sú pre životné prostredie škodlivé a vysoko problematické, nakoľko sú neodbúrateľné bežnými postupnú atak sa stávajú súčasťou kolobehu vody.A significant part of organic waste also contains other harmful substances, the so-called ..mikropolutanty. which enter organic waste by excretion from the digestive tract of animals, humans (eg steroid and antibiotic drugs), but also from agricultural production (eg herbicides, pesticide sprays). These substances are harmful to the environment and highly problematic, as they are non-degradable by normal gradual attack and become part of the water cycle.
S K158-2019 U1S K158-2019 U1
Podstata technického riešeniaThe essence of the technical solution
Cieľom predkladaného technického riešenia je zabezpečenie takého spracovania organických odpadov, ktoré odstráni zápach pri skladovaní a spracovaní odpadu, a zároveň bude ekologické.The aim of the presented technical solution is to ensure such treatment of organic waste, which removes the odor during storage and processing of waste, and at the same time will be ecological.
Základom spracovania organických odpadov podľa tohto riešenia je maximálna možná bio-degradácia odpadu na plyn v krátkom časovom intervale a v priestorovo riadenomprocese spracovania. Na spracovanie odpadu sú použité enzýmy.The basis of the processing of organic waste according to this solution is the maximum possible bio-degradation of waste into gas in a short time interval and in a spatially controlled processing process. Enzymes are used to process waste.
Zariadenie na spracovanie organických odpadov má vo svojom vnútri umiestnené tri samostatné nerezové komory, pričom každá z komôr má vlastný tlakovací prepúšťací ventil a vnútorné výhrevné potrubné hady určené na ohrev komôr. Komory sú vzájomne prepojené potrubím, a to je ďalej spojené s miešacími časťami zariadenia poháňanými kompresorom.The organic waste treatment plant has three separate stainless steel chambers located inside it, each of the chambers having its own pressure relief valve and internal heating pipe coils intended for heating the chambers. The chambers are interconnected by piping, and this is further connected to the mixing parts of the device driven by the compressor.
Miešacie časti zariadenia sú pripojené cez ventil a následne umiestnený hadicový systém k vonkajšej potrubnej trase pre vypúšťanie cnzy matičky upraveného odpadu, pričom zariadenie je na výstupe napojené na externý ľermentor, dofermentor alebo na externé bioplynové zariadenie.The mixing parts of the device are connected via a valve and subsequently a hose system placed to the external pipeline for discharging the cnzy nut of the treated waste, the device being connected at the outlet to an external fermenter, dofermentor or to an external biogas plant.
V prvom kroku spracovania odpadu sa urobí predpríprava: najprv sa odoberú vzorky odpadu z celého procesu tvorby odpadu v prevádzke producenta odpadu, a na ich základe sú vyhodnotené základné parametre odpadu: PH, obsah sušiny, obsah dusíkatých látok ako celkový N, obsah fosforu ako celkový P, obsah rizikových látok v zmysle zákona o odpadoch a hodnoty mikropolutantov.In the first step of waste treatment, pre-preparation is performed: first waste samples are taken from the whole waste generation process in the waste producer's plant, and based on them the basic waste parameters are evaluated: PH, dry matter content, nitrogen content as total N, phosphorus content as total P, content of hazardous substances in the sense of the Waste Act and values of micropollutants.
V druhom kroku je vykonaný test odpadu a jeho následná bio-degradácia v laboratórnych podmienkach, kde sa stanovípresná účinná dávka enzýmov a presné zloženie apomer enzýmov pre danévzorky odpadu.In the second step, the waste test is performed and its subsequent bio-degradation under laboratory conditions, where the exact effective dose of enzymes and the exact composition and proportions of enzymes for the given waste samples are determined.
V treťom kroku je nastavená dávka enzýmov doručená producentovi odpadu. V každom procese tvorby odpadu producenta odpadu je určený pomer a dávkovanie zmesi enzýmov. Takto stanovenú dávku enzýmov potom producent denne pridáva do procesov v ktorých vzniká odpad. Po čase zdržania odpadu vo výrobe producenta v intervale od 24 hodín do 30 dní nasleduje vypustenie cnzy matičky upraveného odpadu do pristaveného stacionárneho alebo mobilného miešacieho zariadenia.In the third step, a set dose of enzymes is delivered to the waste producer. In each waste producer's waste generation process, the ratio and dosage of the enzyme mixture is determined. The dose of enzymes thus determined is then added daily by the producer to the processes in which the waste is generated. After the time of waste retention in the producer's production in the interval from 24 hours to 30 days, the cnzy mother of the treated waste is discharged into the built-in stationary or mobile mixing device.
Spracovanie cnzy matičky upraveného odpadu sa vykonáva okamžite, aby sa predišlo neriadenému procesu tvorby plynu. Zariadenie sa pripojí k potrubnej trase producenta pre vypúšťanie cnzy matičky upraveného odpadu cez hadicový systém a cez následne umiestnený ventil na komorovom systéme sa postupným saním odpad nasáva do prvých dvoch komôr. Súbežne s procesom satia sa spustí proces ohrevu komôr, tento proces trvá do napustenia oboch komôr a do dosiahnutia prevádzkovej teploty 65 °C. Nasleduje otvorenie komory číslo tri a spustenie procesu cirkulácie. Komora číslo tri obsahuje enzým pripravený na domiešanie do dvoch plných komôr. Následným miešaním a obehom všetkých troch komôrje zmes pripravená na transfer do b ioplynového zariadenia.The treatment of the cnzy matrix of the treated waste is performed immediately to avoid an uncontrolled gas formation process. The device is connected to the producer's pipeline to discharge the nut of the treated waste through a hose system, and through a subsequently located valve on the chamber system, the waste is sucked into the first two chambers by successive suction. Simultaneously with the suction process, the process of heating the chambers is started, this process lasts until the filling of both chambers and until the operating temperature of 65 ° C is reached. This is followed by the opening of chamber number three and the start of the circulation process. Chamber number three contains the enzyme ready to be mixed into two full chambers. Subsequent mixing and circulation of all three chambers makes the mixture ready for transfer to the biogas plant.
Miešanie zmesi trvá 10 hodín, za stáleho ohrevu komôr a udržiavania maximálnych prevádzkových podmienok pre zabezpečenie aktivity enzýmu. V procese miešania sa vytvárajú plyny, ktoré sa vyrovnávajú vo všetkých tlakových komorách prepúšťacím ventilom Pri procese miešania sa vytvára mierna pena v celkovej výške nad hladinou cca do 10 cmStirring of the mixture takes 10 hours, while heating the chambers and maintaining maximum operating conditions to ensure enzyme activity. During the mixing process, gases are formed, which are balanced in all pressure chambers by a relief valve. During the mixing process, a slight foam is formed in the total height above the level of up to about 10 cm.
V následnom kroku sa uskutoční meranie hodnoty pH pripravenej zmesi. Zo zmesi sa odoberie vzorka, táto sa ochladí na 20 °C a odmeria sa jej pH. Požadované pH má byť v rozmedzí 6,5 ± 0,2. V prípade odchýlky sapH upraví chloridom železitým alebo 24 % hmotn. čpavkovou vodou.In the next step, the pH of the prepared mixture is measured. A sample was taken from the mixture, cooled to 20 ° C and measured for pH. The required pH should be in the range of 6.5 ± 0.2. In the case of a deviation, sapH is treated with ferric chloride or 24% by weight. ammonia water.
Proces miešania sa potom zastaví, miešacie časti zariadenia sa spoja cez ventil a hadicu s potmbnou trasou producenta, a nasleduje pomalý výtlak z komôr do fermentora. Výtlak trvá niekoľko hodín pri regulovaní tlaku tak, aby pena nepresiahla prípustnú hladinovú hodnotu do 10 cm Potom nasleduje fáza splynenia zmesi. Čas zdržania zmesi vo fermentore príjemcu je 20 - 30 dní, za stáleho miešania.The mixing process is then stopped, the mixing parts of the apparatus are connected via a valve and a hose to the production line of the producer, followed by a slow discharge from the chambers to the fermenter. The discharge lasts for several hours while regulating the pressure so that the foam does not exceed the permissible level value up to 10 cm. This is followed by the gasification phase of the mixture. The residence time of the mixture in the recipient's fermenter is 20-30 days, with constant stirring.
V následnom kroku sa zmes presúva do dofermentora príjemcu alebo do koncového skladu externého bioplynového zariadenia. Nasleduje čas zdržania 60 - 90 dní. Potom je potrebné zabezpečiť odčerpanie vody.In the next step, the mixture is transferred to the recipient's dofermentor or to the final storage of the external biogas plant. This is followed by a residence time of 60-90 days. Then it is necessary to ensure the drainage of water.
V poslednom kroku sa odoberie vzorka zvyškovej hmoty na analýzu a vyhodnotenie jej parametrov v zmysle zákonu o hnojivách - ako sekundárneho zdroja živín.In the last step, a sample of residual mass is taken for analysis and evaluation of its parameters in accordance with the Act on Fertilizers - as a secondary source of nutrients.
Pri našom riešení sa sa spracovaním odpadu vytvorí ekologický obnoviteľný zdroj živín s primárnou energetickou spotrebou a následnou sekundárnou spotrebou živín v poľnohospodárstve.In our solution, waste treatment will create an ecologically renewable source of nutrients with primary energy consumption and subsequent secondary consumption of nutrients in agriculture.
Prehľad obrázkov na výkresochOverview of figures in the drawings
Na obr. 1 je zobrazené zariadenie na spracovanie organických odpadov pri pohľade zboku, v priereze.In FIG. 1 is a cross-sectional side view of an organic waste treatment plant.
Na obr. 2 je zobrazené zariadenie na spracovanie organických odpadov pri pohľade zhora, v priereze, bez externých častí zariadenia.In FIG. 2 shows a top view, in cross section, of an organic waste treatment plant, without external parts of the plant.
S K158-2019 U1S K158-2019 U1
Príklady uskutočneniaExamples of embodiments
Príklad 1Example 1
Zariadenie na spracovanie organických odpadov má vnútri umiestnené tri samostatné nerezové komoiy: prvú komoru la, druhú enzymatickú komoru 1b a tietiu komoru 1c, pričom každá z komôr má vlastné tlakovacie potrubie s prepúšťacím ventilom 2 a výhrevné potrubné hady 3 určené na ohrev komôr. Komory la, 1b, 1c sú spojené s fermentorom 14, pričom sú vzájomne prepojené hadicovým potrub ím 4, a to je ďalej spojené s miešacími časťami 5 zariadenia, ktoré sú poháňané kompresorom 6.The organic waste treatment plant has three separate stainless steel chambers located inside: a first chamber 1a, a second enzymatic chamber 1b and a third chamber 1c, each of the chambers having its own pressure line with a relief valve 2 and heating pipe coils 3 for heating the chambers. The chambers 1a, 1b, 1c are connected to the fermenter 14, being interconnected by a hose line 4, and this is further connected to the mixing parts 5 of the device, which are driven by the compressor 6.
Miešacie časti 5 zariadenia sú pripojené cez ventil 10 a následne umiestnený externý hadicový systém 9 kvonkajšej potrubnej trase 7 producenta pre vypúšťanie cnzymaticky upraveného odpadu 8, pričom zariadenie je na výstupe cez druhý ventil 11 napojené na externý fermentor 14, dofermentor 13 alebo na externé bioplynové zariadenie 12.The mixing parts 5 of the device are connected via a valve 10 and subsequently an external hose system 9 of the producer's external pipeline 7 is discharged for discharging the physically treated waste 8, the device being connected at the outlet via a second valve 11 to an external fermenter 14, dofermentor 13 or external biogas plant. 12th
Zariadenie na spracovanie organických odpadov môže byť mobilné.Organic waste treatment facilities can be mobile.
Pred začiatkom spracovateľského procesu sa odoberú vzorky odpadu z celého procesu tvorby odpadu v prevádzke producenta odpadu, vyhodnotia sa základné parametre odpadu: PH, obsah sušiny, obsah dusíkatých látok ako celkový N, obsah fosforu ako celkový P, obsah rizikových látok ako je napríklad arzén, vápnik, kadmium, chróm, meď, ortuť, draslik, K2O, horčík, nikel, olovo, selén, zmok, hodnoty mikropolutantov.Before the start of the processing process, waste samples are taken from the entire waste generation process at the waste producer's plant, the basic waste parameters are evaluated: PH, dry matter content, nitrogen content as total N, phosphorus content as total P, hazardous substances such as arsenic, calcium, cadmium, chromium, copper, mercury, potassium, K2O, magnesium, nickel, lead, selenium, wetting, micropollutant values.
Nasleduje test odpadu a jeho biodegradácia v laboratórnych podmienkach diskontinuálnou mezofilnou anaeróbnou digesciou bez miešania (test BMP - Biochemical Methane Potential) pomocou bankových bioreaktorov. Postup vychádza z normy ČSN EN ISO 11734, respektíve z metodického návodu RNDr. Bubeníkové. Reaktory sú umiestnené vo vodnom prostredí pri teplote 40 °C ± 0,5 °C. Pre stanovenie endogénnej produkcie bioplynu a metánu sú použité 2 bio reaktory. Počas 40 dní je zapisovaná teplota (teplota bioplynu), barometrický tlak a prírastok objemu bioplynu. Pri dostatočnom množstve bioplynu v byrete (nad 150 nú) je spravené meranie obsahu metánu prenosným analyzátorom bioplynu Geotechnical Instruments (UK) Ltd. „Biogas5000“ s duálnymi inftačervenými senzormi CH4 (0 - 70 % ± 0,5 %) a CO2 (0 - 60 % ± 0,5 %) a elektrochemickými senzormi 02 (0 - 25 % ± 1,0 %), H2 (0 - 2000 ppm ± 2,0 % FS) a H2S (0 - 5000 ppm ± 2,0 % FS) analyzátorom Geotech Biogas5000 (CH4 0 - 70 % ± 0,5 %). pH bolo merané prístrojom WTW 340i so sondou Seriľix 41, pre sušenie bol použitý analyzátor vlhkosti KERN DLB 160 3A s halogénovou lampou a žíhanie bolo vykonané termogravimetrickým analyzátorom LEČO TGA 701. Pri teste sa stanoví dávka enzýmu pomerom k tvorbe plynná obsahu sušiny.This is followed by a test of the waste and its biodegradation under laboratory conditions by discontinuous mesophilic anaerobic digestion without agitation (BMP test - Biochemical Methane Potential) using bank bioreactors. The procedure is based on the ČSN EN ISO 11734 standard, or on the methodological instructions of RNDr. BUBENÍKOVÁ. The reactors are located in an aqueous medium at a temperature of 40 ° C ± 0.5 ° C. Two bio reactors are used to determine the endogenous production of biogas and methane. During 40 days, the temperature (biogas temperature), barometric pressure and biogas volume increase are recorded. With a sufficient amount of biogas in the burette (above 150 nou), the measurement of methane content is performed by a portable biogas analyzer Geotechnical Instruments (UK) Ltd. "Biogas5000" with dual infrared sensors CH4 (0-70% ± 0.5%) and CO2 (0-60% ± 0.5%) and electrochemical sensors 02 (0-25% ± 1.0%), H2 ( 0 - 2000 ppm ± 2.0% FS) and H2S (0 - 5000 ppm ± 2.0% FS) with a Geotech Biogas5000 analyzer (CH4 0 - 70% ± 0.5%). The pH was measured with a WTW 340i with a Serilix 41 probe, a KERN DLB 160 3A moisture analyzer with a halogen lamp was used for drying, and annealing was performed with a LEČO TGA 701 thermogravimetric analyzer. The enzyme dose was determined by the ratio to gaseous dry matter.
Tabuľka 1: Zloženie zmesi enzýmov, príkladTable 1: Composition of the enzyme mixture, example
V treťom kroku sa prenesie nastavená dávka zmesi k producentovi odpadu. Takto stanovená dávku enzýmov sa denne pridáva do procesov so vznikom odpadu, pričomv každom procese tvorby odpadu je určený pomer a dávkovanie zmesi enzýmov. Po čase zdržania odpadu vo výrobe producenta od 24 hodín do 30 dní nasleduje vypustenie cnzymaticky upraveného odpadu do pristaveného zariadenia na spracovanie organických odpadov. Zariadenie môže byť mobilné. Mobilné miešacie zariadenie má kapacitu miešania 30 m3 odpadu denne rozdelenú do troch nerezových samostatných komôr. Postupným saním sa odpad nasáva do prvých dvoch komôr o celkovej kapacite sania 5 m3/hod.In the third step, the set dose of the mixture is transferred to the waste producer. The dose of enzymes thus determined is added daily to the waste generation processes, with the ratio and dosage of the enzyme mixture being determined in each waste generation process. After the retention time of the waste in the producer's production from 24 hours to 30 days, the physically treated waste is discharged into the attached organic waste treatment plant. The device can be mobile. The mobile mixing device has a mixing capacity of 30 m 3 of waste per day divided into three stainless steel separate chambers. Gradual suction sucks the waste into the first two chambers with a total suction capacity of 5 m 3 / hour.
S K158-2019 U1S K158-2019 U1
Spracovanie organických odpadov sa uskutoční tak, že miešacie zariadenie 5 sa pripojí k vonkajšej potrubnej trase 7 producenta, odkiaľ sa vpustí do zariadenia upravený odpad 8 cez externý hadicový systém 9 a prvý ventil 10, pričom odpad 8 sa postupným saním nasáva do prvých dvo ch komôr - do prvej komory la a druhej enzymatickej komoiy 1b, a súbežne s procesom sania sa začne proces ohrevu komôr la, 1b, pričom tento proces trvá celkovo 3-5 hodín až do úplného napustenia oboch komôr a do dosiahnutia ich prevádzkovej teploty 65 °C. Potom sa otvorí tretia komora 1c a začne sa proces cirkulácie zmesi vo všetkých komorách, pričom tretia komora 1c obsahuje enzým na domiešanie do dvoch plných komôr la, 1b. Odpad 8 sa d'alej spracúva miešaním pričom obieha vo všetkých troch komorách, miešanie trvá 10 hodín za stáleho ohrevu komôr, v ktorých sa udržujú prevádzkové podmienky na udržanie aktivity enzýmu. Pri miešaní vznikajúce plyny sa vyrovnávajú vo všetkých tlakových komorách ich prepúšťacím ventilom 2. Po zmiešaní sa zo zmesi sa odoberie vzorka, ochladí sa na 20 °C a odmeria sa jej pH, pričom ak namerané pH zmesi nie je v rozmedzí 6,5 ± 0,2, tak sa pH upraví pridaním chloridu železitého alebo 24 % hmotn. čpavkovej vody. Proces miešania sa potom zastaví a miešacie časti 5 zariadenia sa napoja cez prvý ventil 10 a následne umiestnený externý hadicový systém 9 k vonkajšej potrubnej trase 7 producenta a pomalýmvýtlakom sa dostane zmes upraveného odpadu 8 z komôr do ľermentora 14, pričom výtlak trvá 3 hodiny s regulovaným procesom tlaku. Potom nasleduje fáza splynenia zmesi, pričom doba zdržania zmesi vo fermentore 14 príjemcu je 20 - 30 dní. Následne sa zmes presúva do externého dofermentora 13 alebo do koncového externého skladu bioplynového zariadenia 14, kde je ešte čas zdržania 60 - 90 dní. Po tomto čase nasleduje odčerpávanie vody, a následne sa odoberie vzorka zvyškovej hmoty na analýzu a vyhodnotenie parametrov vzorky ako sekundárneho zdroja živín.The treatment of organic waste is carried out by connecting the mixing device 5 to the external pipeline 7 of the producer, from where the treated waste 8 is discharged into the device via an external hose system 9 and a first valve 10, the waste 8 being sucked into the first two chambers by successive suction. - into the first chamber 1a and the second enzymatic chamber 1b, and in parallel with the suction process, the process of heating the chambers 1a, 1b is started, this process lasting a total of 3-5 hours until both chambers are completely filled and reach their operating temperature of 65 ° C. Then the third chamber 1c is opened and the process of circulating the mixture in all chambers starts, the third chamber 1c containing the enzyme for mixing into two full chambers 1a, 1b. The waste 8 is further processed by stirring while circulating in all three chambers, the stirring lasting 10 hours with constant heating of the chambers in which the operating conditions are maintained to maintain the activity of the enzyme. The gases formed during mixing are equilibrated in all pressure chambers by their relief valve 2. After mixing, a sample is taken from the mixture, cooled to 20 ° C and its pH is measured, while if the measured pH of the mixture is not within 6.5 ± 0 , 2, the pH is adjusted by adding ferric chloride or 24 wt. ammonia water. The mixing process is then stopped and the mixing parts 5 of the device are connected via a first valve 10 and subsequently an external hose system 9 to the producer's external pipeline 7 and slowly discharge the treated waste mixture 8 from the chambers to the fermenter 14, the discharge lasting 3 hours. pressure process. This is followed by the gasification phase of the mixture, the residence time of the mixture in the fermenter 14 of the recipient being 20-30 days. Subsequently, the mixture is transferred to an external dofermentor 13 or to the final external storage of the biogas plant 14, where there is still a residence time of 60-90 days. This time is followed by the pumping of water, and then a sample of the residual mass is taken for analysis and evaluation of the parameters of the sample as a secondary source of nutrients.
Ako enzým na spracovanie odpadu sa použije napríklad LIGNO KAL. Aktivita anaeróbneho prostredia enzýmu LIGNO KAL je taká, že za stáleho miešania spracuje 1,38 % organickej hmoty denne. Odpad 8 obsiahnutý v komorách la, 1b sa v tomto prípade zmieša s enýmomza stáleho miešania zmesi, a pri miešaní vznikajúce plyny sa vyrovnávajú prepúšťacím ventilom 2 vo všetkých tlakových komorách la, 1b, 1c tak, že množstvo vznikajúcich plynov sa udržuje v rozmedzí 250 m3 až 550 m3/m3 zmesi.For example, LIGNO KAL is used as the waste treatment enzyme. The activity of the anaerobic environment of the LIGNO KAL enzyme is such that it processes 1.38% of organic matter per day with constant stirring. The waste 8 contained in the chambers 1a, 1b is in this case mixed with a mixture of constant stirring of the mixture, and the gases formed during mixing are balanced by a relief valve 2 in all pressure chambers 1a, 1b, 1c so that the amount of gases formed is kept within 250 m. 3 to 550 m 3 / m 3 of mixture.
Priemyselná využiteľnosťIndustrial applicability
Zariadenie na spracovanie organických odpadov a spôsob spracovania nespoúebovateľných organických odpadov podľa tohto technického riešenia sa využije v oblasti poľnohospodársky ch, potravinárskych, farmaceutických ako aj vodárenských spoločností na ekologické spracovanie odpadu a jeho premenu na obnoviteľný zdroj energie, alebo na sekundárny zdroj živín pre poľnohospodársku výrobu.The plant for the treatment of organic waste and the method of processing non-reusable organic waste according to this technical solution will be used in agricultural, food, pharmaceutical and water companies for ecological treatment of waste and its conversion into a renewable energy source or a secondary source of nutrients for agricultural production.
S K158-2019 U1S K158-2019 U1
Zoznam vzťahových značiek prvá komora (la) druhá komora (1b) tretia komora (1c) tlakovacie potrubie s prepúšťacím ventilom (2) výhrevné potrubné hady (3) hadicové potrubie (4) miešacie časti (5) zariadenia kompresorom (6) potrubná trasa (7) producenta odpad (8) externý hadicový systém(9) prvý ventil (10) druhý ventil (11) externé bioplynové zariadenie (12) dofermentor (13) fermentor (14)List of reference numerals first chamber (1a) second chamber (1b) third chamber (1c) pressure line with relief valve (2) heating line coils (3) hose line (4) mixing parts (5) of the compressor equipment (6) line route ( 7) waste producer (8) external hose system (9) first valve (10) second valve (11) external biogas plant (12) dofermentor (13) fermenter (14)
Claims (5)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SK158-2019U SK8896Y1 (en) | 2019-10-28 | 2019-10-28 | Equipment for processing organic waste and waste treatment method |
CZ2020-37525U CZ34133U1 (en) | 2019-10-28 | 2020-05-11 | Organic waste treatment plants |
CZ2020259A CZ309061B6 (en) | 2019-10-28 | 2020-05-11 | Organic waste treatment plant and waste treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SK158-2019U SK8896Y1 (en) | 2019-10-28 | 2019-10-28 | Equipment for processing organic waste and waste treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
SK1582019U1 true SK1582019U1 (en) | 2020-05-04 |
SK8896Y1 SK8896Y1 (en) | 2020-10-02 |
Family
ID=70453835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK158-2019U SK8896Y1 (en) | 2019-10-28 | 2019-10-28 | Equipment for processing organic waste and waste treatment method |
Country Status (2)
Country | Link |
---|---|
CZ (2) | CZ309061B6 (en) |
SK (1) | SK8896Y1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008038361A1 (en) * | 2006-09-28 | 2008-04-03 | Eco Material Co., Ltd. | Organic waste disposal system |
CN201552171U (en) * | 2009-08-11 | 2010-08-18 | 广州农冠生物科技有限公司 | Movable recycle disposal system of organic waste resources |
CZ21515U1 (en) * | 2010-09-17 | 2010-11-29 | Kvarcák@Jaromír | Apparatus for heat treatment of organic materials, especially waste materials |
-
2019
- 2019-10-28 SK SK158-2019U patent/SK8896Y1/en unknown
-
2020
- 2020-05-11 CZ CZ2020259A patent/CZ309061B6/en not_active IP Right Cessation
- 2020-05-11 CZ CZ2020-37525U patent/CZ34133U1/en active Protection Beyond IP Right Term
Also Published As
Publication number | Publication date |
---|---|
CZ309061B6 (en) | 2022-01-05 |
CZ2020259A3 (en) | 2021-05-12 |
SK8896Y1 (en) | 2020-10-02 |
CZ34133U1 (en) | 2020-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Scaglia et al. | Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge | |
Otero et al. | Digestion of cattle manure: thermogravimetric kinetic analysis for the evaluation of organic matter conversion | |
CN104261550B (en) | A kind of biological compounded mix processing waste water of livestock poultry and its preparation method and application | |
Gómez et al. | Evaluation of digestate stability from anaerobic process by thermogravimetric analysis | |
CN104229976B (en) | A kind of method utilizing biological compounded mix process waste water of livestock poultry | |
EP2678295A1 (en) | Method and system for sanitization of pathogen containing liquid waste in composting applications | |
CN109354520A (en) | A kind of aerobic dynamic composting process of continous way using sludge and stalk | |
Aksay et al. | Co-digestion of cattle manure and tea waste for biogas production | |
Somashekar et al. | Potential of biogas production from food waste in a uniquely designed reactor under lab conditions | |
Noor et al. | Enhanced biomethane production by 2-stage anaerobic co-digestion of animal manure with pretreated organic waste | |
Basak et al. | Anaerobic digestion of tannery solid waste by mixing with different substrates | |
Pilarska et al. | Impact of organic additives on biogas efficiency of sewage sludge | |
Dubrovskis et al. | Biogas production potential from agricultural biomass and organic residues in Latvia | |
SK1582019U1 (en) | Equipment for processing organic waste and waste treatment method | |
SK82021A3 (en) | Equipment for processing organic waste and waste treatment method | |
Ibikunle et al. | Evaluation of the energy potential of biogas produced from the anaerobic co-digestion of animal and poultry dung | |
Ugwu et al. | Optimization of parameters in biomethanization process with co-digested poultry wastes and palm oil mill effluents | |
Clarke et al. | Evaluation by respirometry of the loading capacity of a high rate vermicompost bed for treating sewage sludge | |
Jędrczak et al. | Testing of co-fermentation of poultry manure and corn silage | |
Kadam et al. | Filtration of biogas spent slurry and it’s chemical analysis | |
Galitskaya et al. | The effectiveness of co-digestion of sewage sludge and phytogenic waste | |
Otaraku et al. | Modelling the cumulative biogas produced from sawdust, cow dung and water hyacinth | |
Sapkota | Effect of Manure and Enzyme on the Degradation of Organic Fraction of Municipal Solid Waste in Biocell | |
Ezekoye et al. | Comparative study of calorific values and proximate analysis of biogas from different feedstocks | |
Singh et al. | Utilization of sludge co-digested with pine needles for the generation of biogas |