SK5742001A3 - Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism - Google Patents

Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism Download PDF

Info

Publication number
SK5742001A3
SK5742001A3 SK574-2001A SK5742001A SK5742001A3 SK 5742001 A3 SK5742001 A3 SK 5742001A3 SK 5742001 A SK5742001 A SK 5742001A SK 5742001 A3 SK5742001 A3 SK 5742001A3
Authority
SK
Slovakia
Prior art keywords
ala
leu
gly
asp
glu
Prior art date
Application number
SK574-2001A
Other languages
Slovak (sk)
Inventor
Jurgen Rabenhorst
Alexander Steinbuchel
Horst Priefert
Jorg Overhage
Original Assignee
Haarmann & Reimer Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haarmann & Reimer Gmbh filed Critical Haarmann & Reimer Gmbh
Publication of SK5742001A3 publication Critical patent/SK5742001A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to a transformed and/or mutagenated unicellular or multicellular organism which is characterized in that enzymes of the eugenol and/or ferulic acid catabolism are deactivated in such a manner that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillinic acid are accumulated.

Description

Predkladaný vynález sa týka konštrukcie produkčných kmeňov a spôsobu prípravy substituovaných metoxyfenolov, predovšetkým vanilínu.The present invention relates to the construction of production strains and to a process for the preparation of substituted methoxyphenols, in particular vanillin.

Doterajší stav technikyBACKGROUND OF THE INVENTION

DE-A 4 227 076 (spôsob prípravy substituovaných metoxyfenolov, a mikroorganizmu vhodného na tento účel) popisuje prípravu substituovaných metoxyfenolov použitím nového kmeňa Pseudomonas sp. Východiskovým materiálom v tomto prípade je eugenol a produktmi sú kyselina ferulová, kyselina vanilová, koniferylalkohol a koniferylaldehyd.DE-A 4,227,076 (a process for preparing substituted methoxyphenols, and a microorganism suitable for this purpose) describes the preparation of substituted methoxyphenols using a new strain of Pseudomonas sp. The starting material in this case is eugenol and the products are ferulic acid, vanilic acid, coniferyl alcohol and coniferyl aldehyde.

V roku 1995 publikoval Rosazza a kol. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol. 15:457471) rozsiahly prehľad biotransformácií uskutočniteľných na kyseline ferulovej.In 1995, Rosazza et al. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol. 15: 457471) an extensive review of biotransformations feasible on ferulic acid.

V EP-A 0 845 532 boli popísané gény a enzýmy z Pseudomonas sp. pre syntézu koniferylalkoholu, koniferylaldehydu, kyseliny ferulovej, vanilínu a kyseliny vanilovej.In EP-A 0 845 532, genes and enzymes from Pseudomonas sp. for the synthesis of coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid.

Inštitúte of Food Research, Norwich, Veľká Británia, popísal vWOThe Institute of Food Research, Norwich, UK, described vWO

97/35999 enzýmy na premenu kyseliny ŕrans-ferulovej na ester ŕrans-feruloylSCoA a postupne na vanilín, a tiež gén na hydrolýzu uvedeného esteru. V roku97/35999 enzymes for converting trans-ferulic acid to trans-feruloylSCoA ester and successively vanillin, as well as a gene for hydrolyzing said ester. In year

1998 bol obsah patentu uverejnený vo forme vedeckých publikácií (Gasson a kol 1998. Metabolism of ferulic acid to vanillin. Metabolizmus kyseliny ferulovejIn 1998, the contents of the patent were published in the form of scientific publications (Gasson et al. 1998. Metabolism of ferulic acid to vanillin. Metabolism of ferulic acid

31700 h • · ·· ·· ·· ·· • · · · · · · • · · · · ··· • ··· · · · · · • · · · · · ···· ·· ·· ·· na vanilín. J. Biol. Chem. 273:4163-4170; Narbad and Gasson 1998. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly isolated strain of Pseudomonas fluorescens. Microbiology 144:1397 1405).31700 h · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· vanillin. J. Biol. Chem. 273: 4163-4170; Narbad and Gasson 1998. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly isolated strain of Pseudomonas fluorescens. Microbiology 144: 1397-1405).

DE-A 195 32 317 popisuje použitie Amycolatopsis sp. vo fermentačnom získavaní vanilínu z kyseliny ferulovej vo vysokých výťažkoch.DE-A 195 32 317 describes the use of Amycolatopsis sp. in fermentative recovery of vanillin from ferulic acid in high yields.

Známe procesy majú tú nevýhodu, že buď dosahujú len veľmi nízke výťažky vanilínu, alebo používajú drahé východiskové zlúčeniny. Zatiaľčo posledne uvedený spôsob (DE-A 195 32 317) dosahuje vysoké výťažky, použitie Pseudomonas sp. HR199 a Amycolatopsis sp. HR167 na biotransformáciu eugenolu na vanilín vyžaduje fermentáciu, ktorá sa uskutočňuje vo dvoch krokoch, čo vedie k podstatnému zdraženiu a je časovo náročné.The known processes have the disadvantage that they either achieve only very low yields of vanillin or use expensive starting compounds. While the latter process (DE-A 195 32 317) achieves high yields, the use of Pseudomonas sp. HR199 and Amycolatopsis sp. HR167 for the biotransformation of eugenol to vanillin requires fermentation which takes place in two steps, resulting in substantial cost and time-consuming costs.

Podstata vynálezuSUMMARY OF THE INVENTION

Predmetom predkladaného vynálezu je preto konštruovanie organizmov ktoré sú schopné premieňať pomerne lacnú surovinu eugenol na vanilín jednostupňovým procesom.It is therefore an object of the present invention to construct organisms which are capable of converting the relatively cheap raw material eugenol into vanillin in a one-step process.

Tento cieľ je dosiahnutý konštruovaním produkčných kmeňov jednobunkových alebo mnohobunkových organizmov, pričom tieto kmene sú charakterizované tým, že enzýmy zúčastňujúce sa katabolizmu eugenolu a/alebo kyseliny ferulovej sú inaktivované, takže dochádza k akumulácii medziproduktov koniferylalkoholu, koniferylaldehydu, kyseliny ferulovej, vanilínu a/alebo kyseliny vanilovej.This objective is achieved by constructing production strains of unicellular or multicellular organisms, which strains are characterized in that the enzymes involved in the catabolism of eugenol and / or ferulic acid are inactivated, so that the coniferyl alcohol, coniferyl aldehyde, or ferulic acid / ferulic acid intermediates accumulate. vanillic.

Produkčný kmeň môže byť jednobunkový alebo mnohobunkový. Preto sa vynález môže vzťahovať na mikroorganizmy, rastliny, alebo živočíchy. Okrem toho môžu byť použité aj extrakty získané z produkčných kmeňov. PodľaThe production strain may be single-cell or multicellular. Therefore, the invention may relate to microorganisms, plants, or animals. In addition, extracts obtained from production strains may also be used. by

31700 h • · • t • · • ··· • · • ····· ·· ··· · • ······· ···· ·· ·· ·· ·· · vynálezu sa uprednostňuje použitie jednobunkových organizmov, čo môžu byť mikroorganizmy alebo rastlinné či živočíšne bunky. Podľa vynálezu sa zvlášť uprednostňuje použitie vláknitých húb a baktérií. Najviac uprednostňované je použitie baktérií. Z baktérií, ktoré môžu byť predovšetkým použité po pozmenení ich katabolizmu eugenolu a/alebo kyseliny ferulovej, sú to druhy z rodov Rhodococcus, Pseudomonas a Escherichia.31700 h • The invention is preferred the use of unicellular organisms, which may be microorganisms or plant or animal cells. According to the invention, the use of filamentous fungi and bacteria is particularly preferred. Most preferred is the use of bacteria. Among the bacteria which can be used primarily after altering their catabolism of eugenol and / or ferulic acid, they are species of the genera Rhodococcus, Pseudomonas and Escherichia.

V najjednoduchšom prípade sa na izoláciu organizmov použiteľných podľa vynálezu môžu použiť známe, bežne používané mikrobiologické metódy. V tom prípade sa enzýmová aktivita bielkovín zúčastňujúcich sa katabolických premien eugenolu a/alebo kyseliny ferulovej môže pozmeniť použitím enzýmových inhibítorov. okrem toho sa enzýmová aktivita bielkovín zúčastňujúcich sa katabolizmu eugenolu a/alebo kyseliny ferulovej môže pozmeniť mutáciou génov ktoré kódujú tieto bielkoviny. Tieto mutácie sa môžu vytvárať náhodne klasickými metódami, napríklad použitím ultrafialového žiarenia alebo látok spôsobujúcich mutácie.In the simplest case, known, commonly used microbiological methods can be used to isolate the organisms useful in the invention. In this case, the enzymatic activity of the proteins involved in catabolic conversions of eugenol and / or ferulic acid can be altered by the use of enzyme inhibitors. furthermore, the enzymatic activity of the proteins involved in the catabolism of eugenol and / or ferulic acid can be altered by mutating the genes encoding these proteins. These mutations can be generated randomly by classical methods, for example using ultraviolet radiation or mutants.

Na izoláciu nových organizmov sú tiež použiteľné metódy rekombinantnej DNA ako sú delécie, inzercie a/alebo zámeny nukleotidov. Gény organizmov tak môžu byť napríklad inaktivované použitím iných elementov DNA (Ω elementy). Tiež môžu byť použité vhodné vektory na náhradu intaktných génov génovými štruktúrami ktoré sú pozmenené alebo inaktivované. V tomto prípade gény ktoré majú byť inaktivované a DNA elementy ktoré sú použité na inaktiváciu môžu byť získané klasickými klonovacími technikami alebo pomocou reťazových polymerázových reakcií (PCR).Recombinant DNA methods such as deletions, insertions and / or nucleotide exchanges are also useful for isolating new organisms. Thus, for example, the genes of organisms can be inactivated using other DNA elements (Ω elements). Appropriate vectors can also be used to replace intact genes with gene structures that are altered or inactivated. In this case, the genes to be inactivated and the DNA elements that are used for inactivation can be obtained by classical cloning techniques or by chain polymerase reactions (PCR).

31700 h31700 h

Napríklad podľa jedného z možných uskutočnení vynálezu môžu byť katabolizmus eugenolu a katabolizmus kyseliny ferulovej pozmenené inzerciouFor example, according to one embodiment of the invention, the catabolism of eugenol and the catabolism of ferulic acid may be altered by insertion

Ω elementov do príslušných génov, alebo deléciami uskutočnenými na týchto génoch. V tomto prípade sa na inaktiváciu funkcií génov, ktoré kódujú dehydrogenázy, syntetázy, hydratázy-aldolázy, tiolázy, alebo demetylázy môžu • · · • · ·· ·· ·· ·· • · · · · · · • · · · · ··· • ····· ·· • · · · · ···· ·· ·· ·· použiť už spomínané metódy rekombinantej DNA takže produkcia kľúčových enzýmov je potom blokovaná. Prednostne ide o gény, ktoré kódujú koniferylalkoholdehydrogenázy, koniferylaldehyddehydrogenázy, feruloyl-CoAsyntetázy, enoyl-CoA-hydratázy-aldolázy, beta-ketotiolázy, vanilíndehydrogenázy alebo demetylázy kyseliny vanilovej. Osobitne sa uprednostňujú gény ktoré kódujú sekvencie aminokyselín špecifikované v EP-A 0845532 a/alebo sekvencie nukleotidov ktoré kódujú ich alelické variácie.Ω elements into the respective genes or deletions carried out on these genes. In this case, to inactivate the functions of genes that code for dehydrogenases, synthetases, hydratase-aldolase, thiolases, or demethylases, they can be inactivated. Using the previously mentioned recombinant DNA methods, the production of key enzymes is then blocked. Preferably, they are genes that code for coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA-hydratase aldolase, beta-ketothiolase, vanillin dehydrogenase, or vanilla acid demethylase. Particularly preferred are genes that encode the amino acid sequences specified in EP-A 0845532 and / or nucleotide sequences that encode their allelic variations.

Predmet vynálezu sa podľa toho vzťahuje aj na génové štruktúry pre prípravu transformovaných organizmov a mutantov.Accordingly, the present invention also relates to gene structures for the preparation of transformed organisms and mutants.

Prednostne sa využijú génové štruktúry v ktorých sú na izoláciu týchto organizmov a mutantov inaktivované sekvencie nukleotidov kódujúce dehydrogenázy, syntetázy, hydratázy-aldolázy, tiolázy alebo demetylázy. Predovšetkým sa uprednostňujú génové štruktúry v ktorých sú inaktivované sekvencie nukleotidov kódujúce koniferylalkoholdehydrogenázy, koniferylaldehyddehydrogenázy, feruloyl-CoA-syntetázy, enoyl-CoA-hydratázyaldolázy, beta-tiolázy, vanilíndehydrogenázy, alebo demetylázy kyseliny vanilovej. Osobitne sa uprednostňujú génové štruktúry ktoré majú štruktúru uvedenú na obrázkoch 1a až 1r a majú sekvencie nukleotidov opísané na obrázkoch 2a až 2r a/alebo sekvencie nukleotidov kódujúce ich alelické varianty. V tomto zmysle sa zvlášť uprednostňujú sekvencie nukleotidov 1 až 18.Preferably, gene structures are used in which nucleotide sequences encoding dehydrogenases, synthetases, hydratase-aldolase, thiolases, or demethylases are inactivated to isolate these organisms and mutants. Particularly preferred are gene structures in which the nucleotide sequences encoding coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetase, enoyl-CoA-hydratasealdolase, beta-thiolase, vanillin dehydrogenase, or vanilla acid demethylase are inactivated. Particularly preferred are gene structures having the structure shown in Figures 1a to 1r and having the nucleotide sequences described in Figures 2a to 2r and / or nucleotide sequences encoding allelic variants thereof. In this regard, nucleotide sequences of 1 to 18 are particularly preferred.

Vynález zahrňuje tiež časti sekvencií uvedených génových štruktúr rovnako ako ich funkčné ekvivalenty. Pod pojmom funkčné ekvivalenty sa rozumejú tie deriváty DNA v ktorých boli zamenené jednotlivé nukleobázy (kolísavé zámeny - wobble exchanges) bez toho že by sa funkcia zmenila. Takisto sa môžu na bielkovinovej úrovni zameniť aminokyseliny bez toho, aby došlo k zmene funkcie.The invention also encompasses portions of the sequences of said gene structures as well as functional equivalents thereof. Functional equivalents are those DNA derivatives in which individual nucleobases have been exchanged (wobble exchanges) without changing the function. Also, amino acids can be exchanged at the protein level without altering function.

31700 h ·· ·· • · · · • · · • · · · ···· ·· ·· • · • · · • · • · · ·· • · · • · ··· • · · · · ·· ··31700 h ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· ··

Jedna alebo viac DNA sekvencií môže byť vložená pred a/alebo za génovými štruktúrami. Klonovaním génových štruktúr je možné získať plazmidy alebo vektory vhodné na transformácie a/alebo transfekciu organizmu a/alebo pre prenos do organizmu.One or more DNA sequences may be inserted upstream and / or downstream of the gene structures. By cloning the gene structures, it is possible to obtain plasmids or vectors suitable for transformation and / or transfection of the organism and / or for transfer into the organism.

Vynález sa okrem toho vzťahuje na plazmidy a/alebo vektory na prípravu organizmov a mutantov ktoré sú transformované v súlade s vynálezom. Tieto organizmy a mutanty následne prechovávajú génové štruktúry ktoré boli popísané. Tento vynález sa preto vzťahuje aj na organizmy ktoré prechovávajú spomínané plazmidy a/alebo vektory.The invention furthermore relates to plasmids and / or vectors for the preparation of organisms and mutants which are transformed in accordance with the invention. These organisms and mutants subsequently harbor the gene structures described above. The invention therefore also relates to organisms harboring said plasmids and / or vectors.

Povaha plazmidov a/alebo vektorov závisí od toho na aký účel majú byť tieto použité. Napríklad na to aby bolo možné nahradiť intaktné gény katabolizmu eugenolu a/alebo kyseliny ferulovej v pseudomonádach génmi ktoré boli inaktivované omega elementárni sú potrebné vektory, ktoré na jednej strane môžu byť prenesené do pseudomonád (konjugatívne prenosné plazmidy) ale ktoré na strane druhej nemôžu byť v týchto organizmoch replikované a sú teda v pseudomonádach nestabilné (takzvané sebevražedné plazmidy). Segmenty DNA prenesené do pseudomonád pomocou takéhoto plazmidového systému sa vgenóme bakteriálnej bunky udržia len vtom prípade že sa doň integrujú homologickou rekombináciou.The nature of the plasmids and / or vectors depends on the purpose for which they are to be used. For example, in order to replace the intact eugenol and / or ferulic acid catabolism genes in pseudomonads with genes that have been inactivated by omega elementary vectors are needed which, on the one hand, can be transferred to pseudomonads (conjugate transferable plasmids) but these organisms are replicated and are therefore unstable in pseudomonads (so-called suicide plasmids). DNA segments transferred to pseudomonads using such a plasmid system are only maintained in the bacterial cell genome if they are integrated into it by homologous recombination.

Popísané génové štruktúry, vektory a plazmidy sa môžu použiť na prípravu rôznych transformovaných organizmov alebo mutantov. Uvedené génové štruktúry sa môžu využiť na nahradenie intaktných sekvencií nukleových kyselín pozmenenými a/alebo inaktivovanými génovými štruktúrami. V bunkách, ktoré možno získať transformáciou alebo transfekciou alebo konjugáciou je pomocou homologickej rekombinácie intaktný gén nahradený pozmenenou a/alebo inaktivovanou génovou štruktúrou, následkom čoho výsledné bunky obsahujú vo svojom genóme len zmenenú a/alebo inaktivovanú génovú štruktúru. Týmto spôsobom môžu byť v súlade s vynálezom zmenené a/alebo inaktivované gény tak, že relevantné organizmy sú schopné produkovaťThe described gene structures, vectors and plasmids can be used to prepare various transformed organisms or mutants. Said gene structures may be used to replace intact nucleic acid sequences with altered and / or inactivated gene structures. In cells obtainable by transformation or transfection or conjugation, the intact gene is replaced by an altered and / or inactivated gene structure by homologous recombination, as a result of which the resulting cells contain only altered and / or inactivated gene structure in their genome. In this way, genes can be altered and / or inactivated in accordance with the invention so that the relevant organisms are capable of producing

31700 h ·· ·· ·· ·· ·· ··· · · · ·· • · · · · ··· · · • ····· · e ··· · • ······« ··· ·· ·· ·· ·· koniferylalkohol, koniferylaldehyd, kyselinu ferulovú, vanilín a/alebo kyselinu vanilovú.31700 h ·· ·· ·· ·· ··· · · · ··· · e ····· · e ··· · · ······ « Coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or vanillic acid.

Mutanty kmeňa Pseudomonas sp. HR199 (DSM 7063), ktorý bol detailne popísaný v DE-A 4 227 076 a EP-A 0845532, sú príkladmi produkčných kmeňov ktoré boli skonštruované týmto spôsobom podľa predmetu vynálezu, s príslušnými génovými štruktúrami vyplývajúcimi okrem iného z obrázkov 1a až 1 r, v kombinácii s obrázkami 2a až 2r.Mutants of Pseudomonas sp. HR199 (DSM 7063), which has been described in detail in DE-A 4 227 076 and EP-A 0845532, are examples of production strains which have been constructed in this way according to the invention, with respective gene structures resulting inter alia from Figures 1a to 1r. in combination with Figures 2a to 2r.

1. Pseudomonas sp. HR199ca/ÄQKm, ktorá obsahuje QKm-inaktivovaný gén calA namiesto intaktného génu calA kódujúceho koniferylalkoholdehydrogenázu (Obr. 1a; Obr. 2a).1. Pseudomonas sp. HR199ca / QQKm, which contains the QKm-inactivated calA gene instead of the intact calA gene encoding coniferyl alcohol dehydrogenase (Fig. 1a; Fig. 2a).

2. Pseudomonas sp. HR199ca/AQGm, ktorá obsahuje QGm-inaktivovaný gén calA namiesto intaktného génu calA kódujúceho koniferylalkoholdehydrogenázu (Obr. 1b; Obr. 2b).2. Pseudomonas sp. HR199ca / AQGm, which contains the QGm-inactivated calA gene instead of the intact calA gene encoding coniferyl alcohol dehydrogenase (Fig. 1b; Fig. 2b).

3. Pseudomonas sp. HR199ca/AA, ktorá obsahuje deléciou inaktivovaný gén calA namiesto intaktného génu calA kódujúceho koniferylalkoholdehydrogenázu (Obr. 1c; Obr. 2c).3. Pseudomonas sp. HR199ca / AA, which contains a deletion inactivated calA gene instead of an intact calA gene encoding coniferyl alcohol dehydrogenase (Fig. 1c; Fig. 2c).

4. Pseudomonas sp. HR199ca/SQKm, ktorá obsahuje QKm-inaktivovaný gén calB namiesto intaktného génu calB kódujúceho koniferylaidehyddehydrogenázu (Obr. 1d; Obr. 2d).4. Pseudomonas sp. HR199ca / SQKm, which contains the QKm-inactivated calB gene instead of the intact calB gene encoding coniferylaide dehydrogenase (Fig. 1d; Fig. 2d).

5. Pseudomonas sp. HR199ca/fíQGm, ktorá obsahuje QGm-inaktivovaný gén calB namiesto intaktného génu calB kódujúceho koniferylaidehyddehydrogenázu (Obr. 1e; Obr. 2e).5. Pseudomonas sp. HR199ca / fQGm, which contains the QGm-inactivated calB gene instead of the intact calB gene encoding coniferylaide dehydrogenase (Fig. 1e; Fig. 2e).

6. Pseudomonas sp. HR199ca/SA, ktorá obsahuje deléciou inaktivovaný gén calB namiesto intaktného génu calB kódujúceho koniferylaidehyddehydrogenázu (Obr. 1f; Obr. 2f).6. Pseudomonas sp. HR199ca / SA, which contains a deletion-inactivated calB gene instead of an intact calB gene encoding coniferylaide dehydrogenase (Fig. 1f; Fig. 2f).

7. Pseudomonas sp. HR199fcsQKm, ktorá obsahuje QKm-inaktivovaný gén fcs namiesto intaktného génu fcs kódujúceho feruloyl-CoA-syntetázu (Obr. 1g; Obr. 2g).7. Pseudomonas sp. HR199fcsQKm, which contains the QKm-inactivated fcs gene instead of the intact fcs gene encoding feruloyl-CoA synthetase (Fig. 1g; Fig. 2g).

31700 h31700 h

·· · · ·· · · ·· · · ·· · · · ·  · · • · • · • · • · ·· · · • · • · ··· · · · e e • · • · ··· · ··· · ·· · · • · • · ·· · · ·· · · • · • ·

8. Pseudomonas sp. HR199fcsOGm, ktorá obsahuje QGm-inaktivovaný gén fcs namiesto intaktného génu fcs kódujúceho feruloyl-CoA-syntetázu (Obr. 1h; Obr. 2h).8. Pseudomonas sp. HR199fcsOGm, which contains the QGm-inactivated fcs gene instead of the intact fcs gene encoding feruloyl-CoA synthetase (Fig. 1h; Fig. 2h).

9. Pseudomonas sp. HR199fcsA, ktorá obsahuje deléciou inaktivovaný gén fcs namiesto intaktného génu fcs kódujúceho koniferylalkoholdehydrogenázu (Obr. 1i; Obr. 2i).9. Pseudomonas sp. HR199fcsA, which contains a deletion-inactivated fcs gene instead of an intact fcs gene encoding coniferyl alcohol dehydrogenase (Fig. 1i; Fig. 2i).

10. Pseudomonas sp. HR199echQKm, ktorá obsahuje QKm-inaktivovaný gén ech namiesto intaktného génu ech kódujúceho enoyl-CoAhydratázu-aldolázu (Obr. 1j; Obr. 2j).10. Pseudomonas sp. HR199echQKm, which contains the QKm-inactivated ech gene instead of the intact ech gene encoding enoyl-CoAhydratase-aldolase (Fig. 1j; Fig. 2j).

11. Pseudomonas sp. HR199echQGm, ktorá obsahuje QGm-inaktivovaný gén ech namiesto intaktného génu ech kódujúceho enoyl-CoAhydratázu-aldolázu (Obr. 1k; Obr. 2k).11. Pseudomonas sp. HR199echQGm, which contains the QGm-inactivated ech gene instead of the intact ech gene encoding enoyl-CoAhydratase-aldolase (Fig. 1k; Fig. 2k).

12. Pseudomonas sp. HR199ec/7A, ktorá obsahuje deléciou inaktivovaný gén ech namiesto intaktného génu ech kódujúceho enoyl-CoAhydratázu-aldolázu (Obr. 11; Obr. 21).12. Pseudomonas sp. HR199ec / 7A, which contains a deletion-inactivated ech gene instead of an intact ech gene encoding enoyl-CoAhydratase-aldolase (Fig. 11; Fig. 21).

13. Pseudomonas sp. HR199aaíQKm, ktorá obsahuje QKm-inaktivovaný gén aat namiesto intaktného génu aat kódujúceho beta-ketotiolázu (Obr. 1m; Obr. 2m).13. Pseudomonas sp. HR199a and qKm, which contains the QKm-inactivated aat gene instead of the intact aat gene encoding beta-ketothiolase (Fig. 1m; Fig. 2m).

14. Pseudomonas sp. HR199aaťQGm, ktorá obsahuje QGm-inaktivovaný gén aat namiesto intaktného génu aat kódujúceho beta-ketotiolázu (Obr. 1 n; Obr. 2n).14. Pseudomonas sp. HR199aatQGm, which contains the QGm-inactivated aat gene instead of the intact aat gene encoding beta-ketothiolase (Fig. 1 n; Fig. 2n).

15. Pseudomonas sp. HR199aaŕA, ktorá obsahuje deléciou inaktivovaný gén aat namiesto intaktného génu aat kódujúceho beta-ketotiolázu (Obr. 1o; Obr. 2o).15. Pseudomonas sp. HR199aaA, which contains a deletion inactivated aat gene instead of an intact aat gene encoding beta-ketothiolase (Fig. 1o; Fig. 2o).

16. Pseudomonas sp. HR199vdhQKm, ktorá obsahuje QKm-inaktivovaný gén vdh namiesto intaktného génu vdh kódujúceho vanilíndehydrogenázu (Obr. 1 p; Obr. 2p).16. Pseudomonas sp. HR199vdhQKm, which contains the QKm-inactivated vdh gene instead of the intact vdh gene encoding vanillin dehydrogenase (Fig. 1p; Fig. 2p).

17. Pseudomonas sp. HR199vd/7QGm, ktorá obsahuje QGm-inaktivovaný gén vdh namiesto intaktného génu vdh kódujúceho vanilíndehydrogenázu (Obr. 1 p; Obr. 2p).17. Pseudomonas sp. HR199vd / 7QGm, which contains the QGm-inactivated vdh gene instead of the intact vdh gene encoding vanillin dehydrogenase (Fig. 1p; Fig. 2p).

31700 h ·· ·· ··31700 h ·· ·· ··

99999999

99 ··· · · • · ·· • · · • · ···99 ··· · · · ··· · · · ···

18. Pseudomonas sp. HR199vdbA, ktorá obsahuje deléciou inaktivovaný gén vdh namiesto intaktného génu vdh kódujúceho vanilíndehydrogenázu (Obr. 1 r; Obr. 2r).18. Pseudomonas sp. HR199vdbA, which contains a deletion-inactivated vdh gene instead of an intact vdh gene encoding vanillin dehydrogenase (Fig. 1 r; Fig. 2r).

19. Pseudomonas sp. HR199vdúBQKm, ktorá obsahuje QKm-inaktivovaný gén vdhB namiesto intaktného génu vdhB kódujúceho vanilíndehydrogenázu II.19. Pseudomonas sp. HR199vBQKm, which contains the QKm-inactivated vdhB gene instead of the intact vdhB gene encoding vanillin dehydrogenase II.

20. Pseudomonas sp. HR199vdhBQGm, ktorá obsahuje QGm-inaktivovaný gén vdhB namiesto intaktného génu vdhB kódujúceho vanilíndehydrogenázu II.20. Pseudomonas sp. HR199vdhBQGm, which contains a QGm-inactivated vdhB gene instead of an intact vdhB gene encoding vanillin dehydrogenase II.

21. Pseudomonas sp. HR199vd/?BA, ktorá obsahuje deléciou inaktivovaný gén vdhB namiesto intaktného génu vdhB kódujúceho vanilíndehydrogenázu II.21. Pseudomonas sp. HR199vd /? BA, which contains a deletion-inactivated vdhB gene instead of an intact vdhB gene encoding vanillin dehydrogenase II.

22. Pseudomonas sp. HR199addQKm, ktorá obsahuje QKm-inaktivovaný gén adh namiesto intaktného génu adh kódujúceho alkoholdehydrogenázu.22. Pseudomonas sp. HR199addQKm, which contains a QKm-inactivated adh gene instead of an intact adh gene encoding an alcohol dehydrogenase.

23. Pseudomonas sp. HR199ad/7QGm, ktorá obsahuje QGm-inaktivovaný gén adh namiesto intaktného génu adh kódujúceho alkoholdehydrogenázu.23. Pseudomonas sp. HR199ad / 7QGm, which contains a QGm-inactivated adh gene instead of an intact adh gene encoding an alcohol dehydrogenase.

24. Pseudomonas sp. HR199addA, ktorá obsahuje deléciou inaktivovaný gén adh namiesto intaktného génu adh kódujúceho alkoholdehydrogenázu.24. Pseudomonas sp. HR199addA, which contains a deletion-inactivated adh gene instead of an intact adh gene encoding an alcohol dehydrogenase.

25. Pseudomonas sp. HR199vanAQKm, ktorá obsahuje QKm-inaktivovaný gén vanA namiesto intaktného génu vanA kódujúceho a-podjednotku demetylázy kyseliny vanilovej25. Pseudomonas sp. HR199vanAQKm, which contains the QKm-inactivated vanA gene instead of the intact vanA gene encoding the vanilla acid demethylase α-subunit

26. Pseudomonas sp. HR199vanAQGm, ktorá obsahuje QGm-inaktivovaný gén vanA namiesto intaktného génu vanA kódujúceho a-podjednotku demetylázy kyseliny vanilovej26. Pseudomonas sp. HR199vanAQGm, which contains the QGm-inactivated vanA gene instead of the intact vanA gene encoding the vanilla acid demethylase α-subunit

27. Pseudomonas sp. HR199vanÄA, ktorá obsahuje deléciou inaktivovaný gén vanA namiesto intaktného génu vanA kódujúceho a-podjednotku demetylázy kyseliny vanilovej27. Pseudomonas sp. HR199vanA, which contains a deletion-inactivated vanA gene instead of an intact vanA gene encoding the vanilla acid demethylase α-subunit

31700 h • · • · • · • 9 • ··· ·· ··31700 h • 9 • 9

28. Pseudomonas sp. HR199vanfíOKm, ktorá obsahuje OKm-inaktivovaný gén vanB namiesto intaktného génu vanB kódujúceho β-podjednotku demetylázy kyseliny vanilovej28. Pseudomonas sp. HR199ViOKm which contains the OKm-inactivated vanB gene instead of the intact vanB gene encoding the vanilla acid demethylase β-subunit

29. Pseudomonas sp. HR199vanfiQGm, ktorá obsahuje QGm-inaktivovaný gén vanB namiesto intaktného génu vanB kódujúceho β-podjednotku demetylázy kyseliny vanilovej29. Pseudomonas sp. HR199vanfiQGm, which contains the QGm-inactivated vanB gene instead of the intact vanB gene encoding the vanilla acid demethylase β-subunit

30. Pseudomonas sp. HR199vanSA, ktorá obsahuje deléciou inaktivovaný gén vanB namiesto intaktného génu vanB kódujúceho β-podjednotku demetylázy kyseliny vanilovej30. Pseudomonas sp. HR199vanSA, which contains a deletion inactivated vanB gene instead of an intact vanB gene encoding the vanilla acid demethylase β-subunit

Vynález sa naviac vzťahuje aj na proces biotechnologickej prípravy organických látok. Predovšetkým sa proces môže použiť na prípravu alkoholov, aldehydov a organických kyselín, z nich prednostne koniferylalkoholu, koniferylaldehydu, kyseliny ferulovej, vanilínu a kyseliny vanilovej.The invention also relates to a process for the biotechnological preparation of organic substances. In particular, the process can be used to prepare alcohols, aldehydes and organic acids, preferably coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin, and vanilla acid.

Horepopísané organizmy boli použité v tomto novom procese. Obzvlášť preferované organizmy zahrňujú baktérie, predovšetkým druhy z rodu Pseudomonas. Presnejšie, horeuvedené druhy rodu Pseudomonas môžu byť prednostne použité v nasledovných procesoch:The above described organisms were used in this new process. Particularly preferred organisms include bacteria, especially Pseudomonas species. More specifically, the aforementioned species of the genus Pseudomonas may preferably be used in the following processes:

1. Pseudomonas sp. HR199ca/AQKm, Pseudomonas sp. HR199ca/AQGm a Pseudomonas sp. HR199ca/AA na prípravu koniferylalkoholu z eugenolu1. Pseudomonas sp. HR199ca / AQKm, Pseudomonas sp. HR199ca / AQGm and Pseudomonas sp. HR199ca / AA for the preparation of coniferyl alcohol from eugenol

2. Pseudomonas sp. HR199ca/BQKm, Pseudomonas sp. HR199ca/BQGm a Pseudomonas sp. HR199ca/SA na prípravu koniferylaldehydu z eugenolu alebo koniferylalkoholu2. Pseudomonas sp. HR199ca / BQKm, Pseudomonas sp. HR199ca / BQGm and Pseudomonas sp. HR199ca / SA for the preparation of coniferyl aldehyde from eugenol or coniferyl alcohol

3. Pseudomonas sp. HR199fcsQKm, Pseudomonas sp. HR199fcsQGm, Pseudomonas sp. HR199fcsA, Pseudomonas sp. HR199echQKm, Pseudomonas sp. HR199echQGm a Pseudomonas sp. HR199echA na3. Pseudomonas sp. HR199fcsQKm, Pseudomonas sp. HR199fcsQGm, Pseudomonas sp. HR199fcsA, Pseudomonas sp. HR199echQKm, Pseudomonas sp. HR199echQGm and Pseudomonas sp. HR199echA na

31700 h • · • · • · • ··· • · ···· ·· • · · · · ·· ·· ·· · prípravu kyseliny feruiovej zeugenolu alebo koniferylalkoholu alebo koniferylaldehydu.31700 h • Preparation of feruic acid zeugenol or coniferyl alcohol or coniferyl aldehyde.

4. Pseudomonas sp. HR199vdhQKm, Pseudomonas sp. HR199vdhQGm,4. Pseudomonas sp. HR199vdhQKm, Pseudomonas sp. HR199vdhQGm.

Pseudomonas sp. HR199vdríA, Pseudomonas sp. HR199vdríQGmvdhBQKm, Pseudomonas sp.Pseudomonas sp. HR199vdrA, Pseudomonas sp. HR199vdrqQGmvdhBQKm, Pseudomonas sp.

HR199vd/7QKmvd/7fínGm, Pseudomonas sp. HR199vdríAvdríBQGm a Pseudomonas sp. HR199vd/7AvdríBQKm na prípravu vanilínu z eugenolu alebo koniferylalkoholu alebo koniferylaldehydu alebo kyseliny feruiovejHR199vd / 7QKmvd / 7µGm, Pseudomonas sp. HR199vdrvAvdrvBQGm and Pseudomonas sp. HR199vd / 7AvdriBQKm for the preparation of vanillin from eugenol or coniferyl alcohol or coniferyl aldehyde or feruic acid

5. Pseudomonas sp. HR199vanADKm, Pseudomonas sp. HR199vanAQGm, Pseudomonas sp. HR199vanAA, Pseudomonas sp. HR199vanfínKm, Pseudomonas sp. HR199vanSDGm a Pseudomonas sp. HR199vanfíA na prípravu kyseliny vanilovej zeugenolu alebo koniferylalkoholu, alebo koniferylaldehydu alebo kyseliny feruiovej alebo vanilínu5. Pseudomonas sp. HR199vanADKm, Pseudomonas sp. HR199vanAQGm, Pseudomonas sp. HR199vanAA, Pseudomonas sp. HR199Vanfin, Pseudomonas sp. HR199vanSDGm and Pseudomonas sp. HR199VanfiA for the preparation of vanillic acid zeugenol or coniferyl alcohol, or coniferyl aldehyde or feruic acid or vanillin

Preferovaným substrátom je eugenol. Tiež však možno pridať ďalšie substráty alebo dokonca nahradiť eugenol iným substrátom.The preferred substrate is eugenol. However, it is also possible to add other substrates or even replace eugenol with another substrate.

Vhodnými živnými médiami pre organizmy využívané podľa vynálezu sú syntetické, semisyntetické alebo komplexné kultivačné médiá. Tieto média môžu obsahovať uhlíkaté a dusíkaté látky, anorganické soli, tam kde je potrebné stopové prvky, a vitamíny.Suitable nutrient media for the organisms used according to the invention are synthetic, semi-synthetic or complex culture media. These media may contain carbon and nitrogen substances, inorganic salts where trace elements are needed, and vitamins.

Vhodnými uhlíkatými látkami môžu byť sacharidy, uhľovodíky alebo bežné organické zlúčeniny. Príkladmi prednostne použitých látok sú cukry, alkoholy alebo cukorné alkoholy, organické kyseliny alebo komplexné zmesi.Suitable carbonaceous substances may be carbohydrates, hydrocarbons or common organic compounds. Examples of preferred substances are sugars, alcohols or sugar alcohols, organic acids or complex mixtures.

31700 h ·· ·· ·· ·· • · · • · ··· • · · ·· • · • · · · • · · • · · · • · ···· ·· ·· ·31700 h ·······················

Cukrom je prednostne glukóza. Použitými organickými kyselinami môžu byť prednostne kyselina citrónová a kyselina octová. Príkladom komplexných zmesí sú sladový extrakt, kvasničný extrakt, kazeín alebo kazeínový hydrolyzát.The sugar is preferably glucose. The organic acids used may preferably be citric acid and acetic acid. Examples of complex mixtures are malt extract, yeast extract, casein or casein hydrolyzate.

Anorganickými zlúčeninami sú vhodné dusíkaté substráty. Ich príkladom sú dusičnany a amóniové soli. Tiež sa môžu použiť organické zdroje dusíka. Tieto zahrnujú kvasničný extrakt, sójový šrot, kazeín, kazeínový hydrolyzát a kukuričný výluh.Inorganic compounds are suitable nitrogenous substrates. Examples are nitrates and ammonium salts. Organic nitrogen sources can also be used. These include yeast extract, soybean meal, casein, casein hydrolyzate and corn steep liquor.

Príkladmi anorganických solí ktoré možno použiť sú sírany, dusičnany, chloridy, uhličitany a fosforečnany. Kovmi ktoré tieto soli obsahujú sú prednostne sodík, draslík, horčík, mangán, vápnik, zinok a železo.Examples of inorganic salts that can be used are sulfates, nitrates, chlorides, carbonates and phosphates. The metals containing these salts are preferably sodium, potassium, magnesium, manganese, calcium, zinc and iron.

Teplota kultivácie je prednostne v rozsahu od 5 do 100 °C. Predovšetkým sa uprednostňuje rozsah od 15 do 60 °C, najviac sa uprednostňuje rozsah od 22 do 37°C.The culture temperature is preferably in the range of 5 to 100 ° C. In particular, a range of 15 to 60 ° C is preferred, a range of 22 to 37 ° C is most preferred.

pH média je prednostne od 2 do 12. Predovšetkým sa uprednostňuje rozsah pH od 4 do 8.The pH of the medium is preferably from 2 to 12. A pH range of from 4 to 8 is particularly preferred.

Na tento nový proces sa môže v zásade použiť hocijaký fermentor s ktorým vie skúsená osoba pracovať. Uprednostňujú sa všetky zariadenia vhodné pre submerzné procesy. To znamená že podľa vynálezu možno použiť nádoby vybavené mechanickým miešacím zariadením alebo nádoby bez neho. Príkladmi nádob bez miešacieho zariadenia sú trepačkové zariadenia, prebublávané kolónové reaktory alebo reaktory s recirkuláciou. Prístroje s miešacím zariadením prednostne zahrnujú všetky známe prístroje vybavené miešadlami každého možného typu.In principle, any fermenter with which the skilled person can work can be used for this new process. All devices suitable for submerged processes are preferred. That is, according to the invention, vessels equipped with or without a mechanical agitator can be used. Examples of vessels without agitator are shaker, bubble column or recirculation reactors. Apparatus with a mixing device preferably includes all known apparatuses equipped with stirrers of any possible type.

Tento nový proces sa môže uskutočňovať kontinuálne alebo vsádzkovo.This new process can be carried out continuously or batchwise.

Doba fermentácie potrebná na dosiahnutie maximálneho množstva produktuFermentation time required to reach the maximum amount of product

31700 h • ··· · · závisí na špecifickej povahe použitého organizmu. V zásade sú však doby fermentácie medzi 2 až 200 hodinami.31700 h • ··· · · depends on the specific nature of the organism used. In principle, however, the fermentation times are between 2 and 200 hours.

Predmet vynálezu je bližšie vysvetlený s odvolaním na príklady nasledovne:The subject matter of the invention is explained in more detail with reference to the examples as follows:

Mutanty kmeňa Pseudomonas sp. HR199 (DSM 7063) utilizujúce eugenol boli cielene generované špecifickou inaktiváciou génov katabolizmu eugenolu vložením omega elementov alebo deléciami. Použitými omega elementárni boli segmenty DNA ktoré kódovali rezistencie na antibiotiká kanamycín (ΩΚπί) a gentamycín (Gm). Tieto gény pre rezistenciu boli izolované štandardnými metódami zTn5 a plazmidu pBB1MCS-5. Gény calA, calB, fcs, ech, aat, vdh, adh, vdhB, vanA a vanB, ktoré kódujú koniferylalkoholdehydrogenázu, koniferylaldehyddehydrogenázu, feruloyl-CoAsyntetázu, enoyl-CoA-hydratázu-aldolázu, beta-ketotiolázu, vanilíndehydrogenázu, alkoholdehydrogenázu, vanilíndehydrogenázu II a demetylázu kyseliny vanilovej, boli izolované štandardnými metódami zgenomickej DNA kmeňa Pseudomonas sp. HR199 a klonované do pBluescript SK'. Štiepením vhodnými reštrikčnými endonukleázami boli segmenty DNA z týchto génov odstránené (delécia) alebo nahradené Ω elementárni (inzercia), čím sa prískušné gény inaktivovalí. Gény mutované týmto spôsobom boli potom reklonované do konjugatívne prenosných vektorov a postupne zavedené do kmeňa Pseudomonas sp. HR199. Vhodnou selekciou sa získali transkonjuganty v ktorých boli príslušné funkčné gény pôvodného kmeňa nahradené zavedenými inaktivovanými génmi. Inzerčné a delečné mutanty získané týmto spôsobom obsahovali len príslušné inaktivované gény. Tento postup sa použil tak na získanie mutantov ktoré majú len jeden defektný gén ako aj na získanie viacnásobných mutantov, ktoré mali týmto spôsobom inaktivovaných niekoľko génov.Tieto mutanty sa použili na biotransformáciu:Mutants of Pseudomonas sp. HR199 (DSM 7063) utilizing eugenol was specifically generated by specific inactivation of eugenol catabolism genes by insertion of omega elements or deletions. The omega elementary used were DNA segments that encode antibiotic resistance of kanamycin (ΩΚπί) and gentamycin (Gm). These resistance genes were isolated using standard methods of zTn5 and plasmid pBB1MCS-5. The genes calA, calB, fcs, ech, aat, vdh, adh, vdhB, vanA and vanB, which code for coniferyl alcohol dehydrogenase, coniferyl aldehyde dehydrogenase, feruloyl-CoA synthetase, enoyl-CoA-hydratase-aldolase dehydrogenase, beta-vanotheolase, demethylase of vanilic acid were isolated by standard methods of genomic DNA of Pseudomonas sp. HR199 and cloned into pBluescript SK '. By digesting with the appropriate restriction endonucleases, the DNA segments were removed from these genes (deletion) or replaced by Ω elemental (insertion), thereby inactivating the genes of interest. The genes mutated in this way were then recloned into conjugally transferable vectors and sequentially introduced into the Pseudomonas sp. HR199. By appropriate selection, transconjugants were obtained in which the respective functional genes of the parent strain were replaced with established inactivated genes. The insertion and deletion mutants obtained in this way contained only the respective inactivated genes. This procedure was used both to obtain mutants having only one defective gene as well as to obtain multiple mutants having several genes inactivated in this way. These mutants were used for biotransformation:

a) eugenolu na koniferylalkohol, koniferylaldehyd, kyselinu ferulovú, vanilín a/alebo kyselinu vanilovú;(a) eugenol to coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or vanillic acid;

31700 h31700 h

9 9 • · • · · · · · · • · · · e ··· • ····· e · • · · · e ···· ·· ·· ··9 9 e ··· e · e ···············

b) koniferylalkoholu na koniferylaldehyd, kyselinu ferulovú, vanilín a/alebo kyselinu vanilovú;b) coniferyl alcohol to coniferyl aldehyde, ferulic acid, vanillin and / or vanillaic acid;

c) koniferylaldehydu na kyselinu ferulovú, vanilín a/alebo kyselinu vanilovú;c) coniferyl aldehyde to ferulic acid, vanillin and / or vanillaic acid;

d) kyseliny ferulovej na vanilín a/alebo kyselinu vanilovú;d) ferulic acid to vanillin and / or vanillic acid;

e) vanilínu na kyselinu vanilovú.e) vanillin to vanillic acid.

Materiály a metódyMaterials and methods

Podmienky na kultiváciu baktérií.Conditions for the cultivation of bacteria.

Kmene Escherichia coli boli propagované pri 37 °C v minerálnom médiu Luria-Bertani (LB) alebo M9 (J. Sambrook, E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Molekulárne klonovanie: laboratórny manuál. 2nd Edition., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York). Kmene Pseudomonas sp. boli propagované pri 30 °C v Živnom Médiu (ŽM, 0,8%, hm./obj.) alebo v minerálnom médiu (MM) (H. G. Schlegel, et al. 1961. Árch. Mikrobiol. 38:209-222) alebo v HR minerálnom médiu (HR-MM) (J. Rabenhorst, 1996. Appl. Microbiol. Biotechnol. 46:470-474). Kyselina ferulová, vanilín, kyselina vanilová a kyselina protokatechová boli rozpustené v dimetylsulfoxide a pridali sa do príslušného média v takom množstve, aby výsledná koncentrácia bola 0,1% (hm./obj.). Eugenol sa pridával priamo do média na výslednú koncentráciu 0,1% (obj./hm.) alebo sa naniesol na filtračný papier (kruhový filter 595, Schleicher & Schueil, Dassel, Nemecko) vo viečkach MM agarových platní. Pri propagácii transkonjugantov a mutantov Pseudomonas sp. sa používali tetracyklín v konečnej koncentrácii 25 pg/ml, kanamycín v konečnej koncentrácii 100 gg/ml a gentamycín v konečnej koncentrácii 7,5 pg/ml.Escherichia coli strains were propagated at 37 ° C in mineral medium Luria-Bertani (LB) or M9 (J. Sambrook, EF Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Molecular cloning: laboratory manual. 2nd Edition. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York). Pseudomonas sp. were propagated at 30 ° C in Nutrient Medium (SM, 0.8%, w / v) or in Mineral Medium (MM) (HG Schlegel, et al. 1961. Árch. Microbiol. 38: 209-222), or in HR mineral medium (HR-MM) (J. Rabenhorst, 1996. Appl. Microbiol. Biotechnol. 46: 470-474). Ferulic acid, vanillin, vanilic acid and protocatechic acid were dissolved in dimethylsulfoxide and added to the appropriate medium in an amount such that the final concentration was 0.1% (w / v). Eugenol was added directly to the medium to a final concentration of 0.1% (v / w) or loaded onto filter paper (595 round filter, Schleicher & Schueil, Dassel, Germany) in MM agar plate lids. In promoting the transconjugants and mutants of Pseudomonas sp. tetracycline at a final concentration of 25 pg / ml, kanamycin at a final concentration of 100 gg / ml, and gentamycin at a final concentration of 7.5 pg / ml were used.

Kvalitatívna a kvantitatívna detekcia metabolických medziproduktov v s u per na taňte kultivačného média.Qualitative and quantitative detection of metabolic intermediates in cultures.

Supernatanty kultivačných médiií boli analyzované vysokoúčinnou kvapalinovou chromatografiou (Knauer HPLC) buď priamo alebo po zriedení sCulture medium supernatants were analyzed by high performance liquid chromatography (Knauer HPLC) either directly or after dilution with

31700 h • · • · • · · • · • · · · • · · ··· dvakrát destilovanou H2O. Chromatografia sa vykonávala na kolóne Nucleosil 100 C18 (7 gm, 250 x 4 mm). Ako rozpúšťadlo sa použila zmes 0,1% (obj./obj.) kyseliny mravčej a acetonitrilu. Priebeh použitého gradientu na elúciu látok bol následovný:31700 h Double distilled H2O. Chromatography was performed on a Nucleosil 100 C18 column (7 gm, 250 x 4 mm). A mixture of 0.1% (v / v) formic acid and acetonitrile was used as solvent. The gradient of the gradient elution used was as follows:

00:00 - 06:30 -> 26% acetonitrilu00:00 - 06:30 -> 26% acetonitrile

06:30 - 08:00 -> 100% acetonitrilu06:30 - 08:00 -> 100% acetonitrile

08:00 -12:00 -> 100% acetonitrilu08:00 -12: 00 -> 100% acetonitrile

12:00 -13:00 -> 26% acetonitrilu12:00 -13: 00 -> 26% acetonitrile

13:00 - 18:00 -> 26% acetonitrilu13:00 - 18:00 -> 26% acetonitrile

Čistenie vanilíndehydrogenázy II.Purification of vanillin dehydrogenase II.

Purifikácia sa uskutočňovala pri 4 °C.Purification was performed at 4 ° C.

Hrubý extraktCoarse extract

Bunky Pseudomonas sp. HR199 propagované na eugenole sa premyli v 10 mM tlmivom roztoku fosforečnanu sodného, pH 6,0, resuspendovali sa v tom istom tlmivom roztoku a rozbili sa dvojitým prepustením cez Frenchov lis (Amicon, Silver Spring, Maryland, USA) za tlaku 1000 psi. Bunkový homogenát sa podrobil uitracentrifugácii (1hod., 100 000 x g, 4 °C), čím sa získala rozpustná frakcia hrubého extraktu vo forme supematantu.Pseudomonas sp. HR199 propagated on eugenol was washed in 10 mM sodium phosphate buffer, pH 6.0, resuspended in the same buffer and broken by double pass through a French press (Amicon, Silver Spring, Maryland, USA) at 1000 psi pressure. The cell homogenate was subjected to centrifugation (1h, 100,000 x g, 4 ° C) to obtain a soluble fraction of the crude extract as a supernatant.

Aniónovýmenná chromatografia na DEAE Sephacel-e.Anion exchange chromatography on DEAE Sephacel.

Rozpustná frakcia hrubého extraktu sa cez noc dialyzovala oproti 10 mM tlmivému roztoku fosforečnanu sodného, pH 6,0. Dialyzát sa naniesol na kolónu z DEAE -Sephacel (2,6 cm x 35 cm, objem kolóny 186 ml) stabilizovanú v 10 mM tlmivom roztoku fosforečnanu sodného, pH 6,0, s prietokom 0,8 ml/min. Kolóna bola premytá dvoma objemami kolóny 10 mM tlmivého fosforečnanového roztoku, pH 6,0. Vanilíndehydrogenáza II (VDH II) bola eluovaná lineárnym soľným gradientom od 0 do 400 mM NaCl v 10 mM tlmivom roztoku fosforečnanu sodného, pH 6,0 (750 ml), pričom sa odoberali frakcie oThe soluble crude extract fraction was dialyzed overnight against 10 mM sodium phosphate buffer, pH 6.0. The dialysate was applied to a DEAE -ephacel column (2.6 cm x 35 cm, column volume 186 ml) stabilized in 10 mM sodium phosphate buffer, pH 6.0, at a flow rate of 0.8 ml / min. The column was washed with two column volumes of 10 mM phosphate buffer, pH 6.0. Vanillin dehydrogenase II (VDH II) was eluted with a linear salt gradient from 0 to 400 mM NaCl in 10 mM sodium phosphate buffer, pH 6.0 (750 mL), collecting fractions of

31700 h ·· ·· ·· ·· ·· ···· ··· 9 9 9 • · · · 9 ··· · · · ··· ·· ·· ··· · ···· ·· ·· ·· ·· · objeme 10 ml. Podiely s vysokou aktivitou VDH II sa spojili do spoločnej DEAE frakcie.31700 h ·· ·· ·· ·· ·· ········ 9 9 9 9 Volume 10 ml. High VDH II fractions were pooled into a common DEAE fraction.

Stanovenie aktivity vanilíndehydrogenázyDetermination of vanillin dehydrogenase activity

Aktivita VDH sa stanovila pri 30 °C použitím optického enzýmového testu. Reakčná zmes o objeme 1 ml obsahovala 0,1 mmol fosforečnanu sodného (pH 7,1), 0,125 μιτιοΙ vanilínu, 0,5 μιτιοΙ NAD, 1,2 μιτιοΙ pyrohroznanu sodného, laktát dehydrogenázu (1U, z prasačieho srdca), a roztok enzýmu. Oxidácia vanilínu sa sledovala pri vlnovej dĺžke λ = 340 nm (evaniiin = 11.6 ατι2/μΐτ)οΙ). Aktivita enzýmu bola vyjadrená v jednotkách (U), pričom 1 U zodpovedá množstvu enzýmu ktoré premení 1 μπιοΙ vanilínu za minútu. Koncentrácie bielkovín vo vzorkách boli stanovované metódou Lowryho a kol. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. 193:265-275).VDH activity was determined at 30 ° C using an optical enzyme assay. The 1 ml reaction mixture contained 0.1 mmol sodium phosphate (pH 7.1), 0.125 μιτιοΙ vanillin, 0.5 μιτιοΙ NAD, 1.2 μιτιοΙ sodium pyruvate, lactate dehydrogenase (1U, from pig heart), and enzyme solution . Vanillin oxidation was monitored at a wavelength of λ = 340 nm (e va niiin = 11.6 ατι 2 / μΐτ) οΙ). Enzyme activity was expressed in units (U), with 1 U corresponding to the amount of enzyme that converts 1 μπιοΙ vanillin per minute. Protein concentrations in the samples were determined by the method of Lowry et al. (OH Lowry, NJ Rosebrough, AL Farr and RJ Randall. 1951. J. Biol. Chem. 193: 265-275).

Stanovenie aktivity koniferylalkoholdehydrogenázy.Determination of coniferyl alcohol dehydrogenase activity.

Aktivita koniferylalkoholdehydrogenázy bola stanovovaná pri 30 °C optickým enzýmovým testom podľa Jaegra a kol. (E. L. Jaeger, Eggeling and H. Sahm. 1981. Current Microbiology. 6:333-336). Reakčná zmes o objeme 1 ml obsahovala 0,2 mmol tris/HCI (pH 9,0), 0,4 μιτιοΙ koniferyl alkoholu, 2 μΓηοΙ NAD, 0,1 mmol semikarbazidu a roztok enzýmu. Redukcia NAD sa sledovala pri λ = 340 nm (ε = 6,3 ατι2/μηιοΙ). Aktivita enzýmu bola vyjadrená v jednotkách (U), pričom 1 U zodpovedá množstvu enzýmu ktoré premení 1 μιτιοΙ substrátu za minútu. Koncentrácie bielkovín vo vzorkách boli stanovované metódou Lowryho a kol. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. 193:265-275).Coniferyl alcohol dehydrogenase activity was determined at 30 ° C by the optical enzyme assay of Jaeg et al. (EL Jaeger, Eggeling and H. Sahm. 1981. Current Microbiology. 6: 333-336). The 1 ml reaction mixture contained 0.2 mmol tris / HCl (pH 9.0), 0.4 μmτιοΙ coniferyl alcohol, 2 μΓηοΙ NAD, 0.1 mmol semicarbazide and enzyme solution. NAD reduction was monitored at λ = 340 nm (ε = 6.3 ατι 2 / μηιοΙ). Enzyme activity was expressed in units (U), with 1 U corresponding to the amount of enzyme that converts 1 μιτιοΙ of substrate per minute. Protein concentrations in the samples were determined by the method of Lowry et al. (OH Lowry, NJ Rosebrough, AL Farr and RJ Randall. 1951. J. Biol. Chem. 193: 265-275).

Stanovenie aktivity koniferylaldehyddehydrogenázy.Determination of coniferyl aldehyde dehydrogenase activity.

Aktivita koniferylaldehyddehydrogenázy bola stanovená pri 30 °C optickým enzýmovým testom. Reakčná zmes o objeme 1 ml obsahovala 0,1 mmol tris/HCI (pH 8,8), 0,08 μιτιοΙ koniferyl aldehydu, 2,7 μητο! NAD a roztokConiferyl aldehyde dehydrogenase activity was determined at 30 ° C by an optical enzyme assay. The 1 ml reaction mixture contained 0.1 mmol tris / HCl (pH 8.8), 0.08 μιτιοΙ coniferyl aldehyde, 2.7 μητο! NAD and solution

31700 h • · ·· ·· ·· ·· ···· ··· ··· • · · · · ··· · · • ··· · · ·· ··· · ···· ·· ·· ·· ·· enzýmu. Oxidácia koniferylaldehydu na kyselinu ferulovú sa sledovala pri λ = 400 nm (ε = 34 cm2/pmol). Aktivita enzýmu bola vyjadrená v jednotkách (U), pričom 1 U zodpovedá množstvu enzýmu ktoré premení 1 μηηοΙ substrátu za minútu. Koncentrácie bielkovín vo vzorkách boli stanovované metódou Lowryho a kol. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. 193:265-275).31700 h · ································· ·· ·· ·· enzyme. The oxidation of coniferyl aldehyde to ferulic acid was monitored at λ = 400 nm (ε = 34 cm 2 / pmol). Enzyme activity was expressed in units (U), with 1 U corresponding to the amount of enzyme that converts 1 μηηοΙ of substrate per minute. Protein concentrations in the samples were determined by the method of Lowry et al. (OH Lowry, NJ Rosebrough, AL Farr and RJ Randall. 1951. J. Biol. Chem. 193: 265-275).

Stanovenie aktivity feruloyl-CoA-syntetázy (tiokinázy kyseliny ferulovej).Determination of the activity of feruloyl-CoA synthetase (ferulic acid thiokinase).

Aktivita feruloyl-CoA-syntetázy bola stanovená pri 30 °C modifikáciou optického enzýmového testu podľa Zenka a kol. (Zenk et al. 1980. Anál. Biochem. 101:182-187). Reakčná zmes o objeme 1 ml obsahovala 0,09 mmol fosforečnanu draselného (pH 7,0), 2,1 pmol MgCb, 0,7 μιτιοΙ kyseliny ferulovej, 2 pmol ATP, 0,4 μπιοΙ koenzýmu A a roztok enzýmu. Tvorba esteru CoA z kyseliny ferulovej sa sledovala pri λ = 345 nm (ε = 10 cm2/pmol). Aktivita enzýmu bola vyjadrená v jednotkách (U), pričom 1 U zodpovedá množstvu enzýmu ktoré premení 1 μιτιοΙ substrátu za minútu. Koncentrácie bielkovín vo vzorkách boli stanovované metódou Lowryho a kol. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. 193:265-275).The activity of feruloyl-CoA synthetase was determined at 30 ° C by modification of the optical enzyme assay of Zen et al. (Zenk et al. 1980. Anal. Biochem. 101: 182-187). The 1 ml reaction mixture contained 0.09 mmol of potassium phosphate (pH 7.0), 2.1 pmol MgCl 2, 0.7 µl ferulic acid, 2 µmol ATP, 0.4 µmol of coenzyme A and the enzyme solution. CoA ester formation from ferulic acid was monitored at λ = 345 nm (ε = 10 cm 2 / pmol). Enzyme activity was expressed in units (U), with 1 U corresponding to the amount of enzyme that converts 1 μιτιοΙ of substrate per minute. Protein concentrations in the samples were determined by the method of Lowry et al. (OH Lowry, NJ Rosebrough, AL Farr and RJ Randall. 1951. J. Biol. Chem. 193: 265-275).

Elektroforetické metódyElectrophoretic methods

Extrakty obsahujúce bielkoviny sa frakcionovali za natívnych podmienok v 7,4% (hm./obj.) polyakrylamidových géloch metódou podľa Stegermanna a kol. (Stegermann et al. 1973. Z. Naturforsch. 28c:722-732) a za denaturačných podmienok v 11,5% (hm./obj.) polyakrylamidových géloch metódou podľa Laemmli (Laemmli, U. K. 1970. Náture (London) 227:680-685). Nešpecifické farbenie proteínov sa vykonávalo pomocou Serva Blue R. Pre špecifické farbenie koniferylalkoholdehydrogenázy, koniferylaldehyddehydrogenázy a vanilíndehydrogenázy boli gély počas 20 min. prepufrované v 100 mM tlmivom roztoku fosforečnanu draselného (pH 7,0) a postupne inkubované pri 30 °C v tom istom tlmivom roztoku do ktorého bolo pridaných 0,08% (hm./obj.) NAD,Protein-containing extracts were fractionated under native conditions in 7.4% (w / v) polyacrylamide gels by the method of Stegermann et al. (Stegermann et al. 1973. Z. Naturforsch. 28c: 722-732) and under denaturing conditions in 11.5% (w / v) polyacrylamide gels by the method of Laemmli (Laemmli, UK 1970. Nature (London) 227: 680-685). Non-specific protein staining was performed with Serva Blue R. For specific staining of coniferyl alcohol dehydrogenase, coniferyl aldehyde dehydrogenase and vanillin dehydrogenase, gels were gassed for 20 min. buffered in 100 mM potassium phosphate buffer (pH 7.0) and incubated successively at 30 ° C in the same buffer to which 0.08% (w / v) NAD was added,

31700 h • · ·· ·· ·· ·· • · · · · · · • · · · · ··· • ··· · · · · · • · · · · · ···· ·· ·· ·· • · · • 931700 h · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9

9 · • · ·· ·9 · · · ·· ·

0,04% (hm./obj.) p-nitro blue tetrazolium chloridu, 0,003% (hm./obj.) fenazín metosulfátu a 1 mM príslušného substrátu až do zviditeľnenia farebných pásov.0.04% (w / v) p-nitro blue tetrazolium chloride, 0.003% (w / v) phenazine metosulfate and 1 mM of the respective substrate until the color bands become visible.

Prenos bielkovín z polyakrylamidových gélov na PVDF membrány.Transfer of proteins from polyacrylamide gels to PVDF membranes.

Bielkoviny boli prenesené z SDS-polyakrylamidových gélov na PVDF membrány (Waters-Millipore, Bedford, Mass. USA) s použitím zariadenia Semidry Fastblot (B32/33, Biometra, Gôttingen, Nemecko) podľa inštrukcií výrobcu.Proteins were transferred from SDS-polyacrylamide gels to PVDF membranes (Waters-Millipore, Bedford, Mass. USA) using a Semidry Fastblot (B32 / 33, Biometra, Gottingen, Germany) according to the manufacturer's instructions.

Určenie N-terminálnych sekvencii aminokyselín.Determination of N-terminal amino acid sequences.

N-terminálne aminokyseliny boli určené pomocou Protein Peptide Sequencer (Type 477 A, Applied Biosystems, Foster City, USA) a PTH analyzérom podľa inštrukcií výrobcu.N-terminal amino acids were determined using a Protein Peptide Sequencer (Type 477 A, Applied Biosystems, Foster City, USA) and a PTH analyzer according to the manufacturer's instructions.

Izolácia a spracovanie DNADNA isolation and processing

Genomická DNA bola izolovaná metódou podľa Marmura (J. Marmur, 1961. J. Mol. Biol. 3:208-218). Iné DNA z plazmidov a/alebo reštrikčné fragmenty DNA boli izolované a analyzované štandardnými metódami (J. E. Sambrook, F Fritsch a T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition., Cold Spring Harbor Laboratoury Press, Cold Spring Harbor, New York).Genomic DNA was isolated by the method of Marmur (J. Marmur, 1961. J. Mol. Biol. 3: 208-218). Other plasmid DNA and / or DNA restriction fragments were isolated and analyzed by standard methods (JE Sambrook, F Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition., Cold Spring Harbor Laboratories Press, Cold Spring Harbor, New York).

Prenosy DNA.DNA transfers.

Kompetentné bunky Escherichia coli boli pripravené a transformované metódou podľa Hanahana (D. Hanahan, J. Mol. Biol. 166:557-580). Konjugatívny prenos plazmidov medzi kmeňmi Escherichia coli S17-1 prechovávajúcimi plazmidy (donor) a kmeňmi Pseudomonas sp. (recipient) sa uskutočnil na agarových platniach so živným médiom podľa metódy Friedricha a kol. (B. Friedrich et al. 1981. J. Bacteriol.. 147:198-205), alebo „minikomplementačnou metódou,, na agarových platniach s minerálnym médiom obsahujúcich 0,5% (hm./obj.) glukonátu ako zdroja uhlíka a 25 pg tetracyklínu/ml alebo 100 μ9 kanamycínu/ml. V tomto prípade sa bunkyCompetent Escherichia coli cells were prepared and transformed by the Hanahan method (D. Hanahan, J. Mol. Biol. 166: 557-580). Conjugative transfer of plasmids between Escherichia coli S17-1 strains harboring plasmids (donor) and Pseudomonas sp. (recipient) was performed on nutrient agar plates according to the method of Friedrich et al. (B. Friedrich et al. 1981. J. Bacteriol. 147: 198-205), or by the "mini-complementation method", on mineral medium agar plates containing 0.5% (w / v) gluconate as a carbon source and 25 pg tetracycline / ml or 100 μ9 kanamycin / ml. In this case, the cells

31700 h ·· ·· ·· • · · · • · · • ··· • · ···· ·· ·· ·· • · · · · · • · ··· · · • · ·· ··· · • · · · · · ·· ·· ·· · recipientu naniesli čiarkovaním v jednom smere ako inokulačná čiara. Po piatich minútach sa aplikovali kmene donoru ako inokulačné čiary, pričom križovali inokulačnú čiaru recipienta. Po 48 hodinovej inkubácii pri 30 °C rástli priamo na miestach prekríženia inokulačných čiar transkonjuganty, zatiaľčo ani kmeň donora ani kmeň recipienta neboli schopné rásť.31700 h ························· They were applied to the recipient by dashing in one direction as the inoculation line. After five minutes, donor strains were applied as inoculation lines, crossing the recipient inoculation line. After a 48 hour incubation at 30 ° C, transconsultants grew directly at the crossing points of the inoculation line, while neither the donor strain nor the recipient strain were able to grow.

Hybridizačné experimentyHybridization experiments

Reštrikčné fragmenty DNA boli elektroforeticky frakcionované v 0,8% (hm./obj.) agarózovom géli v tlmivom roztoku 50 mM tris- 50 mM kyselina boritá- 1,25 mM EDTA (pH 8,25) (J. E. Sambrook, F. Fritch, and T. Maniatis. 1989, Molecular cloning: a laboratory manual. Molekulárne klonovanie: laboratórny manuál. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.). Prenos denaturovanmej DNA z gélu na kladne nabitú nylonovú membránu (veľkosť pórov: 0,45 mm, Pall Filtrationtechnik, Dreieich, Nemecko), postupná hybridizácia s biotinylovanými alebo digoxigenínom značenými DNA vzorkami a príprava týchto vzoriek DNA boli uskutočnené štandardnými metódami (J. E. Sambrook, F. Fritch, and T. Maniatis. 1989, Molecular cloning: a laboratory manual. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.).The restriction DNA fragments were electrophoretically fractionated in a 0.8% (w / v) agarose gel in 50 mM tris-50 mM boric acid-1.25 mM EDTA buffer (pH 8.25) (JE Sambrook, F. Fritch) , and T. Maniatis, 1989, Molecular Cloning: a Laboratory Manual Molecular Cloning: Laboratory Manual 2 nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Transfer of denatured DNA from the gel to a positively charged nylon membrane (pore size: 0.45 mm, Pall Filtrationtechnik, Dreieich, Germany), sequential hybridization with biotinylated or digoxigenin labeled DNA samples and preparation of these DNA samples were performed by standard methods (Sambrook NP, F) Fritch, and T. Maniatis 1989, Molecular Cloning: A Laboratory Manual, 2 nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Sekvenovanie DNADNA sequencing

Sekvencie nukleotidov boli určené „nerádioaktívne,, metódou dideoxy konca podľa Sangera a kol. (Sanger et al. 1977. Proc. Natl. Acad. Sci USA 74:5463-5467) s použitím „LI-COR,, DNA sekvencéra Model 4000L (LI-COR Inc., Biotechnology Division, Lincoln NE, USA) a použitím „súpravy na cyklické sekvenovanie termosekvenázou s fluorescenčné značeným primérom so 7deaza-dGTP„ (Amersham Life Science, Amersham International plc., Little Chalfont, Buckinghamshire, England), vždy podľa inštrukcií výrobcu.Nucleotide sequences were determined "non-radioactive" by the dideoxy end method of Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sci USA 74: 5463-5467) using the "LI-COR" DNA Sequencer Model 4000L (LI-COR Inc., Biotechnology Division, Lincoln NE, USA) and using "Thermosequenase cyclic sequencing kits with a fluorescently labeled 7deaza-dGTP primer" (Amersham Life Science, Amersham International plc., Little Chalfont, Buckinghamshire, England), each according to the manufacturer's instructions.

Na sekvenovanie „stratégiou skákajúceho priméru,, podľa Straussa a kol.For sequencing by a "jumping primer strategy" according to Strauss et al.

(E. C. Strauss et al. 1986. Anál. Biochem. 154:353-360) sa použili syntetické oiigonukleotidy.(E. C. Strauss et al. 1986. Anal. Biochem. 154: 353-360) synthetic oligonucleotides were used.

31700 h ·· • · · • · • · · • · ·· · ·· ·· ·· • · · · • · · • ··· • I ···· ·· ·· • · · • · ··· • · · · · • · · · ·· ··31700 h ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · ·

Chemikálie, biochemikálie a enzýmy.Chemicals, biochemicals and enzymes.

Reštrikčné enzýmy, DNA iigáza T4, lambda DNA a enzýmy a substráty pre optické enzýmové testy pochádzali od C.F. Boehringer & Sôhne (Mannheim, Nemecko), alebo z GIBCO/BRL (Eggenstei, Nemecko). [γ-32Ρ]ΑΤΡ pochádzalo od Amersham/Buchler (Braunschweig, Nemecko). Oligonukleotidy boli od MWG-Biotech GmbH (Ebersberg, Nemecko). Agaróza typ NA bola od Pharmacia-LKB (Uppsala, Švédsko). Všetky ostatné chemikálie boli od Haarmann & Reimer (Holzminden, Nemecko), E. Merck AG (Darmstadt, Nemecko), Fluka Chemie (Buchs, Švajčiarsko), Serva Feinbiochemica (Heidelberg, Nemecko) alebo Sigma Chemie (Deisenhofen, Nemecko).Restriction enzymes, DNA ligand T4, lambda DNA, and enzymes and substrates for optical enzyme assays were obtained from CF Boehringer & Sohne (Mannheim, Germany), or from GIBCO / BRL (Eggenstei, Germany). [γ- 32 Ρ] ΑΤΡ was from Amersham / Buchler (Braunschweig, Germany). Oligonucleotides were from MWG-Biotech GmbH (Ebersberg, Germany). Agarose type NA was from Pharmacia-LKB (Uppsala, Sweden). All other chemicals were from Haarmann & Reimer (Holzminden, Germany), E. Merck AG (Darmstadt, Germany), Fluka Chemie (Buchs, Switzerland), Serva Feinbiochemica (Heidelberg, Germany) or Sigma Chemie (Deisenhofen, Germany).

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Príklad 1Example 1

Konštrukcia omega elementov ktoré sprostredkúvajú rezistencie voči kanamycínu (Ω Km) alebo gentamycínu (QGm).Construction of omega elements that mediate resistance to kanamycin (Ω Km) or gentamycin (QGm).

Na konštrukciu elementu ΩΚιτι bol v preparatívnom merítku izolovaný fragment 2099 bp Sg/I z Transposons Tn5 (E. A. Auierswald, G. Ludwig and H. Schuller. 1981. Cold Sprin Harb. Symp. Quant. Biol. 45:107-113; E. Beck, G. Ludwig, E. A. Auerswald, B. Reiss and H. Schaller. 1982. Genes 19:327-336; P. Mazodier, P. Cossart, E. Giraud and F. Gasser. 1985. Nucleic Acids Res. 13:195-205). Tento fragment bol skrátený na približne 990 bp použitím nukleázy Bal 31. Tento fragment, ktorý teraz obsahoval len gén pre rezistenciu voči kanamycínu (kódujúci aminoglykozid-3'-O-fosfotranferázu) bol potom ligovaný do rezu Smal pSKsym DNA (derivát pBluescript SK obsahujúci symetricky konštruované viacnásobné miesto pre klonovanie [Sa/I, H/ndlII, EcoRI, HindlW, Sa/I]). Z výsledného plazmidu bolo možné reizolovať ΩΚιτιThe 2099 bp Sg / I fragment from Transposons Tn5 was isolated on a preparative scale for the construction of the element ΩΚιτι (EA Auierswald, G. Ludwig and H. Schuller. 1981. Cold Sprin Harb. Symp. Quant. Biol. 45: 107-113; E. Beck, G. Ludwig, EA Auerswald, B. Reiss, and H. Schaller, 1982. Genes 19: 327-336, P. Mazodier, P. Cossart, E. Giraud, and F. Gasser, 1985. Nucleic Acids Res. 195-205). This fragment was truncated to approximately 990 bp using nuclease Bal 31. This fragment, which now contained only the kanamycin resistance gene (encoding aminoglycoside-3'-O-phosphotranferase), was then ligated into a SmaI section of pSKsym DNA (a pBluescript SK derivative containing symmetrically) constructed multiple cloning site [Sa / I, H / ndIII, EcoRI, HindIII, Sa / I]). It was possible to reisolate výsledιτι from the resulting plasmid

31700 h31700 h

·· ·· ·· ·· • · · · · · · • · · · · ··· • ··· · · · · « e • · · · · · ···· ·· ·· ·· element ako Smal fragment, EcoRI fragment, HindlH fragment alebo Sa/I fragment.· · · · · · · · • · · · • · · · · · · • · · · · · · «e • · · · · · · · · · · ···· element as a SmaI fragment, an EcoRI fragment, a HindIII fragment or an Sa / I fragment.

Na konštrukciu elementu QGm, bol v preparatívnom merítku izolovaný fragment Eael veľkosti 983 bp z plazmidu pBR1MCS-5 (M. E. Kovach, P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop and K. M. Peterson. 1995. Genes 166:175-176) a štiepený nukleázou z bôbu (postupujúca hydrolýza koncov molekúl jednovláknovej DNA). Tento fragment, ktorý teraz obsahoval len gén pre rezistenciu voči gentamycínu (kódujúci gentamycín-3acetyltransferázu) bol potom ligovaný do pSKsym DNA (pozri vyššie) štiepenej so Smal. Z takto pripraveného plazmidu bolo možné reizolovať QGm element ako Smal fragment, EcoRI fragment, Hind\\\ fragment alebo Sa/I fragment.For the construction of the QGm element, a 983 bp Eael fragment was isolated from plasmid pBR1MCS-5 (ME Kovach, PH Elzer, DS Hill, GT Robertson, MA Farris, RM Roop and KM Peterson. 1995. Genes 166: 175-176). ) and digested with nuclease from the bean (progressive hydrolysis of the ends of the single-stranded DNA molecules). This fragment, which now contained only the gentamycin resistance gene (encoding gentamycin-3-acetyltransferase), was then ligated into SmaI digested pSKsym DNA (see above). From the plasmid thus prepared, it was possible to reisolate the QGm element as a SmaI fragment, an EcoRI fragment, a HindIII fragment or an Sa / I fragment.

Príklad 2Example 2

Klonovanie génov z Pseudomonas sp. HR199 (DSM7063) s cieľom inaktivovať ich vložením Ω elementov alebo deléciou.Cloning of Pseudomonas sp. HR199 (DSM7063) to inactivate them by inserting Ω elements or by deletion.

Každý z génov fcs, ech, vdh a aat bol osobitne klonovaný z kmeňov E. coli S17-1 a to DSM 10439 a DSM 10440 s použitím plazmidov pE207 a pE5-1 (pozri EP-A 0845532). Z týchto plazmidov boli dané fragmenty izolované v preparatívnom merítku a spracované nasledovne:Each of the fcs, ech, vdh and aat genes were separately cloned from E. coli S17-1 strains DSM 10439 and DSM 10440 using plasmids pE207 and pE5-1 (see EP-A 0845532). From these plasmids, the fragments were isolated on a preparative scale and processed as follows:

Pre klonovanie génu fcs boli fragmenty 2350 bp Sa/l/EcoRI z plazmidu pE207 a 3700 bp EcoRI/Sa/l z plazmidu pE5-1 klonované spolu v pBluescript SK' tým spôsobom, že tieto dva fragmenty sa spojili svojimi EcoRI koncami. Z výsledného hybridného plazmidu bol izolovaný v preparatívnom merítku fragment 6050 bp Sa/I a skrátený na približne 2480 bp pomocou nukleázy BalFor cloning of the fcs gene, the 2350 bp Sa / l / EcoRI fragments from plasmid pE207 and the 3700 bp EcoRI / Sa / l from plasmid pE5-1 were cloned together in pBluescript SK 'by joining the two fragments with their EcoRI ends. From the resulting hybrid plasmid, a 6050 bp Sa / I fragment was isolated on a preparative scale and truncated to approximately 2480 bp by Bal nuclease

31. Na konce fragmentu boli postupne ligované linkery Psti a po štiepení s Psfí bol fragment klonovaný do pBluescript SK' (pSKfcs). Po transformácii E. coli XL1 blue sa získali klony s génmi fcs, ktoré vykazovali aktivitu FCS 0,2U/mg bielkovín.31. Psti linkers were sequentially ligated to the ends of the fragment, and after digestion with Psfi, the fragment was cloned into pBluescript SK '(pSKfcs). After transformation of E. coli XL1 blue, clones were obtained with fcs genes that exhibited FCS activity of 0.2U / mg protein.

31700 h ·· ·· ·· • · ·31700 h ·· ·· ·· · · ·

·· ·· • · · · • · · • ··· · • · ···· ·····························

Na klonovanie génu ech bol izolovaný fragment 3800 bp H/ndlll/EcoRI z plazmidu pE207 v preparativnom merítku a skrátený na približne 1470 bp nukleázou Bal 31. Na konce fragmentu boli potom ligované linkery EcoRI a po štiepení s EcoRI bol fragment klonovaný do pBluescript SK' (pSKech).For cloning the ech gene, a 3800 bp H / ndlll / EcoRI fragment was isolated from plasmid pE207 on a preparative scale and truncated to approximately 1470 bp by nuclease Bal 31. The EcoRI linkers were then ligated to the ends of the fragment and cloned into pBluescript SK '. (pSKech).

Na klonovanie génu vdh bol v preparativnom merítku izolovaný fragment 2350 bp Sa/l/EcoRI z plazmidu pE207. Po klonovaní do pBluescript SK' bol fragment skrátený na jednom konci o cca 1530 bp systémom exonukleáza III/ bobová nukleáza. Na koniec fragmentu bol ligovaný linker EcoRI a po štiepení s EcoRI bol fragment klonovaný do pBluescript SK' (pSKvdh). Transformáciou E. coli XL1 blue sa získali klony s génmi VDH, ktoré vykazovali aktivitu VDH 0,01 U/mg bielkovín.For cloning of the vdh gene, a 2350 bp Sa / l / EcoRI fragment was isolated from plasmid pE207 on a preparative scale. After cloning into pBluescript SK ', the fragment was truncated at one end by about 1530 bp with the exonuclease III / bean nuclease system. The EcoRI linker was ligated to the end of the fragment, and after digestion with EcoRI, the fragment was cloned into pBluescript SK '(pSKvdh). Transformation of E. coli XL1 blue resulted in clones with VDH genes that showed VDH activity of 0.01 U / mg protein.

Na klonovanie génu aat bol v preparativnom merítku izolovaný fragment 3700 bp EcoRI/Sa/l z plazmidu pE5-1 a skrátený na cca 1590 bp nukleázou Bal 31. Na konce fragmentu boli potom pripútané linkery EcoRI a po hydrolýze s EcoRI bol fragment klonovaný do pBluescript SK' (pSKaaŕ).For the cloning of the aat gene, a 3700 bp EcoRI / Sa / 1z fragment of plasmid pE5-1 was isolated on a preparative scale and truncated to ca. 1590 bp by nuclease Bal 31. The fragment was then chained with EcoRI linkers and after hydrolysis with EcoRI the fragment was cloned into pBluescript SK (pSKaar).

Príklad 3Example 3

Inaktivácia vyššie popísaných génov vložením Ω elementov alebo vystrihnutím oblastí so základnými zložkami z týchto génov.Inactivation of the genes described above by inserting Ω elements or cutting out regions with the basic components from these genes.

Plazmid pSKŕcs, ktorý obsahoval gén fcs, bol štiepený pomocou BssHII, čím došlo k excízii fragmentu o veľkosti 1200 bp z génu fcs. Následnou religáciou sa získal delečný derivát génu fcs (fcsN) (pozri obr. 1i a 2i) v klonovanej forme v pBluescript SK' (pSKfcsA). Po excízii spomínaného fragmentu boli naviac namiesto neho naligované omega elementy QKm a OGm. Tak boli vytvorené Ω-inaktivované deriváty génu fcs (fcsQKm, pozri Obr. 1g a 2g) a (fcsQGm, pozri Obr. 1h a 2h) v klonovanej forme v pBluescript SK' (pSKfcsOKm a pSKfcsOGm). V extraktoch takto získaných klonov E. coli,The plasmid pSKrcs containing the fcs gene was digested with BssHII to excise the 1200 bp fragment from the fcs gene. Subsequent religions yielded the deletion derivative of the fcs gene (fcsN) (see Figures 1i and 2i) in cloned form in pBluescript SK '(pSKfcsA). In addition, the omega elements QKm and OGm were ligated instead after excision of said fragment. Thus, Ω-inactivated derivatives of the fcs gene (fcsQKm, see Figures 1g and 2g) and (fcsQGm, see Figures 1h and 2h) were generated in cloned form in pBluescript SK '(pSKfcsOKm and pSKfcsOGm). In the extracts of the E. coli clones thus obtained,

31700 h ··31700 h ··

·· ·· ·· ·· • · · · · · · • · · · · ··· • ··· · · · 9 9 9 • · · · · · ···· ·· ·· «· ktorých hybridné plazmidy mali gény fcs inaktivované deléciou alebo vložením Ω elementov, nebola detekovaná žiadna aktivita FCS.9 9 9 9 9 9 9 9 9 9 9 9 hybrid plasmids had fcs genes inactivated by deletion or insertion of Ω elements, no FCS activity was detected.

Plazmid pSKech, ktorý niesol gén ech, bol hydrolyzovaný pomocou Λ/rul, čím sa z génu ech vyštiepili dva fragmenty, 53 bp a 430 bp. Po religácii sa získal delečný derivát génu ech (echá, pozri obr. 11 a 21) v klonovanej forme v pBluescriptSK' (pSKec/ιΔ). Okrem toho po vyštiepení fragmentov boli namiesto nich do génu ligované omega elementy ΩΚγπ a QGm. Tak sa získali Ωinaktivované deriváty génu ech (echQKm a echQGm) v klonovanej forme v pBluescript SK' (pSKec^Km a pSKec^Gm).The plasmid pSKech, which carried the ech gene, was hydrolyzed with, / ruler, thereby cleaving two fragments from the ech gene, 53 bp and 430 bp. After religation, the ech gene deletion derivative (echa, see Figures 11 and 21) was obtained in cloned form in pBluescriptSK '(pSKec / ιΔ). In addition, the omega elements fragmentγπ and QGm were ligated into the gene after cleavage of the fragments. Thus, inactivated ech gene derivatives (echQKm and echQGm) were obtained in cloned form in pBluescript SK '(pSKec ^ Km and pSKec ^ Gm).

Plazmid pSKvd/7 ktorý obsahoval gén vdh bol hydrolyzovaný s físsHII, čím bol z génu vdh vyštiepený fragment 210 bp. Po religácii sa získal delečný derivát génu vdh (vdhA, pozri obr. 1o a 2o) v klonovanej forme v pBluescript SK- (pSKvc/ΛΔ). Naviac po vyštiepení uvedeného fragmentu boli namiesto neho do génu ligované omega elementy ΩΚγπ a ΩΘιτι. Tak sa získali Ω-inaktivované deriváty génu vdh (vdhQKm a vdM^Gm) v klonovanej forme v pBluescript SK' (pSKvd^Km, pozri obr. 1m a 2m) a (pSKvd^Gm, pozri obr. 1n a 2n). V hrubých extraktoch takto získaných klonov E. coli, ktorých hybridné plazmidy obsahovali gén vdh inaktivovaný deléciou alebo vložením Ω elementov, nebola detekovaná žiadna aktivita VDH.The plasmid pSKvd / 7 containing the vdh gene was hydrolyzed with fissHII to cleave a 210 bp fragment from the vdh gene. After religation, the deletion derivative of the vdh gene (vdhA, see Figs. 1o and 2o) was obtained in cloned form in pBluescript SK- (pSKvc / ΛΔ). Moreover, after cleavage of the fragment, omega elements γγπ and ΩΘιτι were ligated into the gene instead. Thus, Ω-inactivated derivatives of the vdh gene (vdhQKm and vdMMGm) were obtained in cloned form in pBluescript SK '(pSKvd ^ Km, see Figures 1m and 2m) and (pSKvddGm, see Figures 1n and 2n). No VDH activity was detected in the crude extracts of the thus obtained E. coli clones whose hybrid plasmids contained the vdh gene inactivated by deletion or insertion of Ω elements.

Plazmid pSKaaf, ktorý obsahoval gén aat, bol hydrolyzovaný s SssHII, čím bol z génu aat vyštiepený fragment 59 bp. Po religácii sa získal derivát génu aat (aat&, pozri obr. 1r a 2r) v klonovanej forme v pBluescript SK' (pskaaŕA). Naviac, po vyštiepení uvedeného fragmentu boli namiesto neho do génu ligované omega elementy ΩΚγπ a Ωβιτι. Tak sa získali Ω-inaktivované deriváty génu aat (aaftlKm, pozri obr. 1p a 2p) a (aaŕQGm, pozri obr. 1q a 2q) v klonovanej forme v pBluescript SK' (pSKaatoKm a pSKaaffiGm).Plasmid pSKaaf, which contained the aat gene, was hydrolyzed with SssHII, leaving a 59 bp fragment from the aat gene. After religation, the aat gene derivative (aat & see Figs. 1r and 2r) was obtained in cloned form in pBluescript SK '(pskaaàA). In addition, after cleavage of the fragment, omega elements ΩΚγπ and Ωβιτι were ligated into the gene instead. Thus, Ω-inactivated derivatives of the aat gene (aaft1Km, see Figures 1p and 2p) and (aaaQGm, see Figures 1q and 2q) were obtained in cloned form in pBluescript SK '(pSKaatoKm and pSKaaffiGm).

31700 h31700 h

Príklad 4Example 4

Subklonovanie génov inaktivovaných pomocou Ω elementov do konjugatívne prenosného „sebevražedného plazmidu,, pSUP202.Subcloning of Ω-element inactivated genes into the conjugally transferable "suicide plasmid" pSUP202.

Na to, aby sa dali nahradiť intaktné gény v Pseudomonas sp. HR199 génmi inaktivovanými Ω-elementom, je potrebný vektor, ktorý na jednej strane môže byť prenesený do pseudomonád (konjugatívne prenosné plazmidy), ale ktorý sa na strane druhej nemôže v týchto baktériách replikovať a je teda v pseudomonádach nestabilný („sebevražedný plazmid,,). Segmenty DNA ktoré sú takýmto plazmidovým systémom prenesené do pseudomonád sa v nich uchovajú len ak sú do genómu bakteriálnej bunky integrované homologickou rekombináciou (Rec A-dependentná rekombinácia). V našom prípade bol použitý „sebevražedný plazmid,, pSUP202 (Šimon et al. 1983. In: A. Puhler. Molecular genetics of the bacteria-plant interaction. Springer Verlag, Berlín, New York, pp. 98-106).In order to replace the intact genes in Pseudomonas sp. HR199 genes inactivated by the element-element, a vector is required which, on the one hand, can be transferred to pseudomonads (conjugally transferable plasmids), but which on the other hand cannot replicate in these bacteria and is therefore unstable in the pseudomonads ("suicide plasmid") . DNA segments that are transferred into such pseudomonads by such a plasmid system are only retained therein if they are integrated into the genome of the bacterial cell by homologous recombination (Rec A-dependent recombination). In our case, the "suicide plasmid" pSUP202 (Simon et al. 1983. In: A. Puhler. Molecular genetics of the bacterial-plant interaction. Springer Verlag, Berlin, New York, pp. 98-106) was used.

Po štiepení s Psŕl sa inaktivované gény /οδΩΚπι a /οβΩΘιτι izolovali z plazmidov pSKfcsfíKm a pSKfcsQGm a ligovali do DNA z pSUP202 štiepenej sPsŕl. Ligačné zmesi sa preniesli do E. coli S17-1. Selekcia prebehla na LB médiu obsahujúcom tetracyklín a tiež buď kanamycín alebo gentamycín. Získali sa tak transformanty rezistentné voči kanamycínu, ktorých hybridný plazmid (pSUPft^Km) obsahoval inaktivovaný gén fcsQKm. Príslušný hybridný plazmid (pSUPft^Gm) transformantov rezistentných voči gentamycínu obsahoval inaktivovaný gén ft^Gm.After digestion with PsIII, the inactivated genes (οδΩΚπι and / οβΩΘιτι) were isolated from plasmids pSKfcsf1Km and pSKfcsQGm and ligated into DNA from pSUP202 digested with sPsl1. The ligation mixtures were transferred to E. coli S17-1. Selection was performed on LB medium containing tetracycline as well as either kanamycin or gentamycin. Thus, kanamycin resistant transformants were obtained whose hybrid plasmid (pSUPft ^ Km) contained the inactivated fcsQKm gene. The respective hybrid plasmid (pSUPft.RTM.) Of gentamicin-resistant transformants contained an inactivated .beta.Gm gene.

Po štiepení s EcoRI boli z plazmidov pSKecbQKm a pSKec^Gm izolované inaktivované gény ec/iQKm a echQGm a ligované do DNA z pSUP202 štiepenej s EcoRI. Ligačné zmesi boli transformované do E. coli S17-1. Selekcia prebehla na LB médiu obsahujúcom tetracyklín a tiež buď kanamycín alebo gentamycín. Získali sa tak transformanty rezistentné voči kanamycínu, ktorých hybridný plazmid (pSUPec^Km) obsahoval inaktivovanýAfter digestion with EcoRI, inactivated ec / iQKm and echQGm genes were isolated from the plasmids pSKecbQKm and pSKec1Gm and ligated into EcoRI digested pSUP202 DNA. The ligation mixtures were transformed into E. coli S17-1. Selection was performed on LB medium containing tetracycline as well as either kanamycin or gentamycin. Thus, kanamycin resistant transformants were obtained whose hybrid plasmid (pSUPec ^ Km) contained inactivated

31700 h • · • · • · • ··· • · ··· gén echQKm. Príslušný hybridný plazmid (pSUPecbQGm) transformantov rezistentných voči gentamycínu obsahoval inaktivovaný gén echQGm.31700 h echQKm gene. The respective hybrid plasmid (pSUPecbQGm) of gentamicin-resistant transformants contained the inactivated echQGm gene.

Po štiepení pomocou EcoRI boli z plazmidov pSKvďhQKm a pSKvdňQGm izolované inaktivované gény vc/ňQKm a vdhQGm a ligované do DNA z pSUP202 štiepenej s EcoRI. Ligačné zmesi boli transformované do E. coli S17-1. Selekcia prebehla na LB médiu obsahujúcom tetracyklín a tiež buď kanamycín alebo gentamycín. Získali sa tak transformanty rezistentné voči kanamycínu, ktorých hybridný plazmid (pSUPvdňQKm) obsahoval inaktivovaný gén νάΛΩΚιτι. Príslušný hybridný plazmid (pSUPvdhQGm) transformantov rezistentných voči gentamycínu obsahoval inaktivovaný gén vdhQGm.After digestion with EcoRI, inactivated genes in c / qKm and vdhQGm were isolated from plasmids pSKvhQKm and pSKvdQQm and ligated into EcoRI digested pSUP202 DNA. The ligation mixtures were transformed into E. coli S17-1. Selection was performed on LB medium containing tetracycline as well as either kanamycin or gentamycin. Thus, kanamycin-resistant transformants were obtained whose hybrid plasmid (pSUPvdQQm) contained an inactivated gene. The respective hybrid plasmid (pSUPvdhQGm) of gentamicin resistant transformants contained the inactivated vdhQGm gene.

Po štiepení pomocou EcoRI boli z plazmidov pSKaaŕQKm a pSKaaíQGm izolované inaktivované gény aaŕQKm a aaŕQGm a ligované do DNA z pSUP202 štiepenej s EcoRI. Ligačné zmesi boli transformované do E. coli S17-1. Selekcia prebehla na LB médiu obsahujúcom tetracyklín a tiež buď kanamycín alebo gentamycín. Získali sa tak transformanty rezistentné voči kanamycínu, ktorých hybridný plazmid (pSUPaaŕQKm) obsahoval inaktivovaný gén aaíQKm. Príslušný hybridný plazmid (pSUPaa/QGm) transformantov rezistentných voči gentamycínu obsahoval inaktivovaný gén aafQGm.After digestion with EcoRI, inactivated genes aaqKm and aaqQm were isolated from the plasmids pSKaaqKm and pSKaaqQm and ligated into EcoRI digested pSUP202 DNA. The ligation mixtures were transformed into E. coli S17-1. Selection was performed on LB medium containing tetracycline as well as either kanamycin or gentamycin. Thus, kanamycin-resistant transformants were obtained whose hybrid plasmid (pSUPaaQKm) contained the inactivated aaQKm gene. The respective hybrid plasmid (pSUPaa / QGm) of gentamicin-resistant transformants contained the inactivated aafQGm gene.

Príklad 5Example 5

Subklonovanie delečne-inaktivovaných génov do konjugatívne prenosného „sebevražedného plazmidu,, pHE55, ktorý obsahuje „systém selekcie sacB„.Subcloning of deletion-inactivated genes into a conjugally transferable " suicide plasmid " pHE55 that contains a " sacB selection system ".

Aby sa dali nahradiť intaktné gény v Pseudomonas sp. HR199 delečneinaktivovanými génmi, je potrebný vektor, ktorý má vlastnosti už popísané v prípade pSUP202. Keďže na rozdiel od génov inaktivovaných Ω-elementami v prípade delečne inaktivovaných génov neexistuje žiadna možnosť selekcie (žiadna rezistencia voči antibiotikám) pre úspešné nahradenie génovIn order to replace the intact genes in Pseudomonas sp. HR199 by deletion-inactivated genes, a vector is required which has the properties already described for pSUP202. Since, unlike in-inactivated genes, in the case of deletion-inactivated genes, there is no possibility of selection (no antibiotic resistance) for successful gene replacement

31700 h • · · · • · · • ··· • · ···· ·· • · · • · ··· • * · · ·· ·· v Pseudomonas sp. HR199, musel sa použiť iný systém. V „systéme selekcie sacB„ je nahrádzajúci, delečne inaktivovaný gén klonovaný do plazmidu obsahujúceho gén sacB spolu s génom rezistencie voči antibiotiku. Pri konjugatívnom prenose tohto hybridného plazmidu do pseudomonád je plazmid zaradený homologickou rekombináciou v tom mieste genómu, kde sa nachádza intaktný gén (prvý crossover). Takto vznikne „heterogenotický“ kmeň, ktorý obsahuje aj intaktný aj delečne inaktivovaný gén, pričom sú tieto od seba oddelené s DNA pHE55. Tieto kmene vykazujú rezistenciu kódovanú vektorom a zároveň majú aktívny gén sacB. Zámerom potom je odstrániť z genómu DNA pHE55 aj s intaktným génom pomocou druhej homologickej rekombinácie (druhý crossover). Takouto rekombináciou vznikne kmeň, ktorý má len inaktivovaný gén, a z genómu tohto kmeňa bola odstránená tak rezistencia kódovaná pHE55 ako aj gén sacB. Ak sa kmene nanesú na médium obsahujúce sacharózu, rast kmeňov ktoré prejavujú gén sacB je inhibovaný, keďže genetický produkt premieňa sacharózu na polymér, ktorý sa ukladá v periplazme buniek. Rast tých buniek, ktoré vďaka uvedenej druhej rekombinácii už nenesú gén sacB, nie je inhibovaný. Aby bolo fenotypicky možné rozlíšiť zaradenie delečne-inaktivovaného génu, tento gén sa nezamieňa za intaktný gén; namiesto toho sa použije kmeň, v ktorom je gén ktorý má byť nahradený, označený vložením Ω elementom. Ak je zámena úspešná, výsledný kmeň stratí antibiotickú rezistenciu zakódovanú v Ω elemente.31700 h * in Pseudomonas sp. HR199, another system had to be used. In the "sacB selection system", a replacement, deletion-inactivated gene is cloned into a plasmid containing the sacB gene along with an antibiotic resistance gene. In conjugative transfer of this hybrid plasmid to pseudomonads, the plasmid is inserted by homologous recombination at the site of the genome where the intact gene (first crossover) is located. This results in a "heterogenotic" strain that contains both an intact and a deletion inactivated gene, separated from the pHE55 DNA. These strains exhibit resistance encoded by the vector while having an active sacB gene. The intention then is to remove the pHE55 DNA genome even with the intact gene by means of a second homologous recombination (second crossover). Such recombination results in a strain having only an inactivated gene, and both the pHE55 encoded and the sacB gene have been removed from the genome of that strain. When strains are applied to a medium containing sucrose, the growth of strains exhibiting the sacB gene is inhibited since the genetic product converts sucrose into a polymer that is stored in the periplasm of cells. The growth of those cells that no longer carry the sacB gene due to said second recombination is not inhibited. In order to distinguish phenotypically the deletion of the deletion-inactivated gene, this gene is not confused with the intact gene; instead, the strain in which the gene to be replaced is indicated by the insertion of the Ω element is used. If the substitution is successful, the resulting strain loses antibiotic resistance encoded in the Ω element.

Po štiepení s Pst\ bol inaktivovaný gén fcsA izolovaný z plazmidu pSKfcsA a ligovaný do DNA pHE55 štiepenej s Pst\. Ligačná zmes bola transformovaná do E. coli S17-1. Selekcia sa vykonala na LB médiu obsahujúcom tetracyklín. Získali sa tak transformanty rezistentné voči tetracyklínu, ktorých hybridný plazmid (pHEfcsA) obsahoval inaktivovaný gén fcsA.After digestion with Pst I, the inactivated fcsA gene was isolated from plasmid pSKfcsA and ligated into Pst I digested pHE55 DNA. The ligation mixture was transformed into E. coli S17-1. Selection was performed on LB medium containing tetracycline. Thus, tetracycline resistant transformants were obtained whose hybrid plasmid (pHEfcsA) contained the inactivated fcsA gene.

31700 h • · • · • · • ··· • · ···· ··31700 h · · · · · · · ·

Po štiepení s EcoRI sa z plazmidu pSKechA izoloval inaktivovaný gén echá a hydrolyzoval sa bobovou nukleázou (tvorba tupých koncov). Fragment bol ligovaný do DNA pHE55 štiepenej s SamHI a spracovanej bobovou nukleázou. Ligačná zmes bola transformovaná do E. coli S17-1. Selekcia sa uskutočnila na LB médiu obsahujúcom tetracyklín. Získali sa tak transformanty rezistentné na tetracyklín, ktorých plazmid (pHEechA) obsahoval inaktivovaný gén echá.After digestion with EcoRI, the inactivated echa gene was isolated from plasmid pSKechA and hydrolyzed with bean nuclease (blunt end formation). The fragment was ligated into SamHI digested pHE55 DNA and treated with bean nuclease. The ligation mixture was transformed into E. coli S17-1. Selection was performed on LB medium containing tetracycline. This resulted in tetracycline resistant transformants whose plasmid (pHEechA) contained the inactivated echo gene.

Po štiepení s EcoRI sa z plazmidu pSKvdhA izoloval inaktivovaný gén vdhk a spracoval pomocou bobovou nukleázou. Fragment sa ligoval do DNA pHE55 štiepenej s SamHI a spracovanej bobovou nukleázou. Ligačná zmes bola transformovaná do E. coli S17-1. Selekcia prebehla na médiu LB obsahujúcom tetracyklín. Získali sa tak transformanty rezistentné na tetracyklín, ktorých plazmid (pHEvdhA) obsahoval inaktivovaný gén vdhk.After digestion with EcoRI, the inactivated vdhk gene was isolated from plasmid pSKvdhA and processed by bean nuclease. The fragment was ligated into SamHI digested pHE55 DNA and treated with bean nuclease. The ligation mixture was transformed into E. coli S17-1. Selection was performed on LB medium containing tetracycline. This resulted in tetracycline resistant transformants whose plasmid (pHEvdhA) contained the inactivated vdhk gene.

Po štiepení s EcoRI sa z plazmidu pSKaaŕA izoloval inaktivovaný gén aaŕA a spracoval pomocou bobovej nukleázy. Fragment sa ligoval do DNA pHE55 štiepenej s SamHI a ošetrenej s bobovou nukleázou. Ligačná zmes bola transformovaná do E. coli S17-1. Selekcia prebehla na médiu LB obsahujúcom tetracyklín. Získali sa tak transformanty rezistentné na tetracyklín, ktorých plazmid (pHEaaŕA) obsahoval inaktivovaný gén aaŕA.After digestion with EcoRI, the inactivated aa? A gene was isolated from plasmid pSKaa? A and processed with bean nuclease. The fragment was ligated into SamHI digested pHE55 DNA and treated with bean nuclease. The ligation mixture was transformed into E. coli S17-1. Selection was performed on LB medium containing tetracycline. Thus, tetracycline resistant transformants were obtained whose plasmid (pHEaa? A) contained the inactivated aa? A gene.

Príklad 6Example 6

Generovanie kmeňov Pseudomonas sp. HR199 v ktorých boli gény pre katabolizmus eugenolu špecificky inaktivované inzerciou Ω-elementu.Generation of strains of Pseudomonas sp. HR199 in which eugenol catabolism genes were specifically inactivated by Ω-element insertion.

Kmeň Pseudomonas sp. HR199 sa využil ako recipient v konjugačných experimentoch v ktorých ako donory boli použité kmene E. coli S17-1 prechovávajúce doleuvedené hybridné plazmidy z pSUP202. Transkonjuganty boli selektované na minerálnom médiu obsahujúcom glukonát a antibiotikum prislúchajúce k patričnému Ω elementu. Na základe rezistencie voči tetracyklínuPseudomonas sp. HR199 was used as a recipient in conjugation experiments in which E. coli S17-1 strains harboring the above hybrid plasmids from pSUP202 were used as donors. The transconjugants were selected on a mineral medium containing gluconate and an antibiotic belonging to the appropriate Ω element. Based on tetracycline resistance

31700 h • · · · · · · ··· • · · · · ··· · · • ··· · · ·· ··· · • t · · · · ·· ···· ·· ·· ·· ·· · kódovanej pSUP202 bolo možné rozlišovať „homogenotické“ (nahradenie intaktného génu génom inaktivovaným inzerciou Ω elementu pomocou dvojitého crossoveru) a „heterogenotické“ (integrácia hybridného plazmidu do genómu jednoduchým crossoverom) transkonjuganty.31700 h · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · The encoded pSUP202 was able to distinguish between "homogeneous" (replacement of the intact gene by a gene inactivated by pomocou element insertion by a double crossover) and "heterogenotic" (integration of a hybrid plasmid into the genome with a single crossover) transconjugants.

Mutanty Pseudomonas sp. HR199 fcsQKm a Pseudomonas sp. HR199 ΖόδΩΘηη sa získali konjugovaním Pseudomonas sp. HR199 buď s E. coli S17-1 (pSUPft^Km) alebo s E. coli S17-1 (pSUPft^Gm). Náhrada intaktného génu fcs génmi inaktivovanými s ΩΚγπ a OGm (/όδΩΚιτι alebo ft^Gm) bola potvrdená sekvenovaním DNA.Mutants of Pseudomonas sp. HR199 fcsQKm and Pseudomonas sp. HR199 ΖόδΩΘηη were obtained by conjugating Pseudomonas sp. HR199 with either E. Coli S17-1 (pSUPft? Gm) or with E. Coli S17-1 (pSUPft? Gm). Replacement of the intact fcs gene by genes inactivated with ΩΚγπ and OGm (/ όδΩΚιτι or ft ^Gm) was confirmed by DNA sequencing.

Mutanty Pseudomonas sp. HR199 echQKm a Pseudomonas sp. HR199 echQGm sa získali konjugovaním Pseudomonas sp. HR199 buď s E. coli S17-1 (pSUPecŕtoKm) alebo s E. coli 17-1 (pSUPechQGm). Náhrada intaktného génu ech génmi inaktivovanými s ΩΚγπ a ΩΟηη (ecriQKm alebo echQGm) bola potvrdená sekvenovaním DNA.Mutants of Pseudomonas sp. HR199 echQKm and Pseudomonas sp. HR199 echQGm were obtained by conjugating Pseudomonas sp. HR199 with either E. Coli S17-1 (pSUPecretKm) or E. coli 17-1 (pSUPechQGm). Replacement of the intact gene by ech genes inactivated with ΩΚγπ and ΩΟηη (ecriQKm or echQGm) was confirmed by DNA sequencing.

Mutanty Pseudomonas sp. HR199 vdhQKm a Pseudomonas sp. HR199 vdhQGm sa získali po konjugovaní Pseudomonas sp. HR199 buď s E. coli S171 (pSUPvd^Km) alebo s E. coli 17-1 (pSUPvcWGm). Náhrada intaktného génu vdh génmi inaktivovanými s ΩΚγπ a Ωθιη (vdhQKm alebo vdhQGm) bola potvrdená sekvenovaním DNA.Mutants of Pseudomonas sp. HR199 vdhQKm and Pseudomonas sp. HR199 vdhQGm were obtained after conjugation of Pseudomonas sp. HR199 with either E. coli S171 (pSUPvd ^ Km) or E. coli 17-1 (pSUPvcWGm). Replacement of the intact gene with vdh genes inactivated with ΩΚγπ and Ωθιη (vdhQKm or vdhQGm) was confirmed by DNA sequencing.

Mutanty Pseudomonas sp. HR199 aaíQKm a Pseudomonas sp. HR199 aaK^Gm sa získali konjugovaním Pseudomonas sp. HR199 buď s E. coli S17-1 (pSUPaaKIKm) alebo s E. coli 17-1 (pSUPaaK7Gm). Náhrada intaktného génu aat génmi inaktivovanými s ΩΚγπ (aaíQKm) a ΩΟγπ (aaKlGm) bola potvrdená sekvenovaním DNA.Mutants of Pseudomonas sp. HR199 and QKm and Pseudomonas sp. HR199 and αK G Gm were obtained by conjugating Pseudomonas sp. HR199 with either E. coli S17-1 (pSUPaaK7Gm) or E. coli 17-1 (pSUPaaK7Gm). Replacement of the intact gene with the aat genes inactivated with ΩΚγπ (aaíQKm) and ΩΟγπ (aaK1Gm) was confirmed by DNA sequencing.

Mutant Pseudomonas sp. HR199 ft^KmvďW2Gm sa získal konjugovaním Pseudomonas sp. HR199fcsQKm s E. coli S17-1Mutant Pseudomonas sp. HR199 ft ^ KmvW2Gm was obtained by conjugating Pseudomonas sp. HR199fcsQKm with E. coli S17-1

31700 h • · • · • · • ··· • · (pSUPvdhQGm). Náhrada intaktného génu vdh génom inaktivovaným s QGm (vddQGm) bola potvrdená sekvenovaním DNA.31700 h (pSUPvdhQGm). Replacement of the intact gene with the vdh gene inactivated with QGm (vddQGm) was confirmed by DNA sequencing.

Mutant Pseudomonas sp. HR199 vddQKmaa/QGm sa získal konjugovaním Pseudomonas sp. HR199vdôQKm s E. coli S17-1 (pSUPaaŕQGm). Náhrada intaktného génu aat génom inaktivovaným s QGm (aa/QGm) bola potvrdená sekvenovaním DNA.Mutant Pseudomonas sp. HR199 vddQKmaa / QGm was obtained by conjugating Pseudomonas sp. HR199 in QKm with E. coli S17-1 (pSUPαarQGm). Replacement of the intact gene with the aat gene inactivated with QGm (aa / QGm) was confirmed by DNA sequencing.

Mutant Pseudomonas sp. HR199 vddQKmecôQGm sa získal konjugovaním Pseudomonas sp. HR199vd/7QKm s E. coli S17-1 (pSUPecdQGm). Náhrada intaktného génu ech génom inaktivovaným s QGm (ecôQGm) bola potvrdená sekvenovaním DNA.Mutant Pseudomonas sp. HR199 was obtained by conjugating Pseudomonas sp. HR199vd / 7QKm with E. coli S17-1 (pSUPecdQGm). Replacement of the intact ech gene with QGm inactivated gene (ec6QGm) was confirmed by DNA sequencing.

Príklad 7Example 7

Generovanie mutantov kmeňa Pseudomonas sp. HR199 v ktorých boli gény pre katabolizmus eugenolu špecificky inaktivované vystrihnutím oblastí so základnými zložkami z týchto génov.Generation of Pseudomonas sp. HR199 in which eugenol catabolism genes have been specifically inactivated by excision of the constituent regions from these genes.

Kmene Pseudomonas sp. HR199 fcsQKm, Pseudomonas sp. HR199 ecdQKm, Pseudomonas sp. HR199 vddQKm, Pseudomonas sp. HR199 aafQKm, sa využili ako recipienti v konjugačných experimentoch v ktorých ako donory boli použité kmene E. coli S17-1 prechovávajúce doleuvedené hybridné plazmidy z pHE55. „Heterogenotické“ transkonjuganty boli selektované na minerálnom médiu obsahujúcom glukonát a antibiotikum prislúchajúce k patričnému Q elementu a tiež tetracyklín (rezistencia kódovaná s pHE55). Po nanesení na minerálnu pôdu obsahujúcu sacharózu sa získali transkonjuganty v ktorých bola DNA vektora odstránená druhou rekombináciou (druhý crossover). Nanesením na minerálnu pôdu bez antibiotika alebo obsahujúcu antibiotikum zodpovedajúce príslušnému Q elementu bolo možné identifikovať mutanty v ktorých bol gén inaktivovaný Q elementom nahradený delečne inaktivovaným génom (bez rezistencie voči antibiotiku).Pseudomonas sp. HR199 fcsQKm, Pseudomonas sp. HR199 ecdQKm, Pseudomonas sp. HR199 vddQKm, Pseudomonas sp. HR199 and QFKm, were used as recipients in conjugation experiments in which E. coli S17-1 strains harboring the above hybrid plasmids from pHE55 were used as donors. The "heterogeneous" transconjugants were selected on a mineral medium containing gluconate and an antibiotic belonging to the appropriate Q element as well as tetracycline (resistance encoded by pHE55). After loading onto sucrose containing mineral broth, transconjugants were obtained in which the vector DNA was removed by a second recombination (second crossover). By applying to an antibiotic-free mineral soil or containing an antibiotic corresponding to the respective Q element, it was possible to identify mutants in which the Q element inactivated gene was replaced by a deletion-inactivated gene (without antibiotic resistance).

31700 h • · · • ··· · • · · · · ··· · · ··31700 h · · · ··· · · · · · ···

Konjugáciou Pseudomonas sp. HR199 fcsQKm s E. coli S17-1 (pHEfcsA) sa získal mutant Pseudomonas sp. HR199 fcsA. Náhrada génu inaktivovaného s QKm (fcsQKm) delečne inaktivovaným génom (fcsA) bola potvrdená sekvenovaním DNA.Conjugation of Pseudomonas sp. HR199 fcsQKm with E. coli S17-1 (pHEfcsA), a mutant of Pseudomonas sp. HR199 fcsA. Replacement of the gene inactivated with QKm (fcsQKm) by the deletion inactivated gene (fcsA) was confirmed by DNA sequencing.

Konjugáciou Pseudomonas sp. HR199 echQKm s E. coli S17-1 (pHEecňA) sa získal mutant Pseudomonas sp. HR199 echk. Náhrada génu inaktivovaného s QKm (ec/?QKm) delečne inaktivovaným génom (echA) bola potvrdená sekvenovaním DNA.Conjugation of Pseudomonas sp. HR199 echQKm with E. coli S17-1 (pHEecnA), a mutant of Pseudomonas sp. HR199 echk. Replacement of the gene inactivated with QKm (ec / QQKm) by the deletion inactivated gene (echA) was confirmed by DNA sequencing.

Konjugáciou Pseudomonas sp. HR199 vdňQKm s E. coli S17-1 (pHEvdňA) sa získal mutant Pseudomonas sp. HR199 vdhh. Náhrada génu inaktivovaného s QKm (vdhQKm) delečne inaktivovaným génom (vdňA) bola potvrdená sekvenovaním DNA.Conjugation of Pseudomonas sp. HR199 in E. coli S17-1 (pHEvdA) gave a mutant of Pseudomonas sp. HR199 vdhh. Replacement of the gene inactivated with QKm (vdhQKm) by the deletion-inactivated gene (vddA) was confirmed by DNA sequencing.

Konjugáciou Pseudomonas sp. HR199 aaŕQKm s E. coli S17-1 (pHEaaŕA) sa získal mutant Pseudomonas sp. HR199 aaŕA. Náhrada génu inaktivovaného s QKm (aaŕQKm) delečne inaktivovaným génom (aaŕA) bola potvrdená sekvenovaním DNA.Conjugation of Pseudomonas sp. HR199 and QKm with E. coli S17-1 (pHEaaŕA), a mutant of Pseudomonas sp. HR199 aaàA. Replacement of the gene inactivated with QKm (aa? QKm) by the deletion inactivated gene (aa? A) was confirmed by DNA sequencing.

Príklad 8Example 8

Biotransformácia eugenolu na vanilín mutantom Pseudomonas sp. HR199 vdríQKm.Biotransformation of eugenol to vanillin by mutant Pseudomonas sp. HR199 vdríQKm.

Kmeň Pseudomonas sp. HR199 vd/jQKm bol propagovaný v 50 ml HRMM obsahujúceho 6mM eugenolu kým sa nedosiahla optická denzita približne OD600nm=0,6. Po 17 h bolo možné v supernatante kultivačnej zmesi stanoviť 2,9 mM vanilínu, 1,4 mM kyseliny feruiovej a 0,4 mM kyseliny vanilovej.Pseudomonas sp. HR199 d / µKm was propagated in 50 ml HRMM containing 6 mM eugenol until an optical density of approximately OD600nm = 0.6 was reached. After 17 h, 2.9 mM vanillin, 1.4 mM feruic acid and 0.4 mM vanillic acid could be determined in the culture supernatant.

31700 h • · · • B · • ·31700 h • B

B ··· • · • · B B B B ··B ··· • B B B B

B··· ·· ·· ·· ··B ··· ·· ·· ·· ··

Príklad 9Example 9

Biotransformácia eugenolu na kyselinu ferulovú mutantom Pseudomonas sp. HR199 vdhQGmaaťQKm.Biotransformation of eugenol to ferulic acid by mutant Pseudomonas sp. HR199 vdhQGmaaťQKm.

Kmeň Pseudomonas sp. HR199 vdňQGmaaíQKm bol propagovaný v 50 ml HR-MM obsahujúceho 6mM eugenolu kým sa nedosiahla optická denzita približne OD600nm=0,6. Po 18 h bolo v supernatante kultivačnej zmesi možné stanoviť 1,9 mM vanilínu, 2,4 mM kyseliny ferulovej a 0,6 mM kyseliny vanilovej.Pseudomonas sp. HR199 in GmA and QKm was propagated in 50 ml HR-MM containing 6 mM eugenol until an optical density of approximately OD600nm = 0.6 was reached. After 18 h it was possible to determine 1.9 mM vanillin, 2.4 mM ferulic acid and 0.6 mM vanillic acid in the culture supernatant.

Príklad 10Example 10

Biotransformácia eugenolu na koniferylalkohol mutantom Pseudomonas sp. HR199 vdftQGmaaťQKm.Biotransformation of eugenol to coniferyl alcohol by Pseudomonas sp. HR199 vdftQGmaaťQKm.

Kmeň Pseudomonas sp. HR199 vdňQGmaa/QKm bol propagovaný v 50 ml HR-MM obsahujúceho 6mM eugenolu kým sa nedosiahla optická denzita približne OD600nm=0,4. Po 15 h bolo možné stanoviť v supernatante kultivačnej zmesi 1,7 mM koniferylalkoholu, 1,4 mM vanilínu, 1,4 mM kyseliny ferulovej a 0,2 mM kyseliny vanilovej.Pseudomonas sp. HR199 in qGmaa / QKm was propagated in 50 ml HR-MM containing 6 mM eugenol until an optical density of approximately OD600nm = 0.4 was reached. After 15 h, it was possible to determine 1.7 mM coniferyl alcohol, 1.4 mM vanillin, 1.4 mM ferulic acid and 0.2 mM vanillic acid in the culture supernatant.

Príklad 11Example 11

Fermentačná produkcia prírodného vanilínu z eugenolu v 10 I fermentore mutantom Pseudomonas sp. HR199 vdbQKm.Fermentation production of natural vanillin from eugenol in a 10 L fermentor with Pseudomonas sp. HR199 vdbQKm.

Produkčný fermentor bol inokulovaný 100 ml 24 hodín starej kultúry propagovanej pri 32 °C na trepačkovom inkubátore (120 rpm) v médiu, ktoré bolo upravené na pH 7,0 a ktoré pozostávalo z 12,5 g glycerolu/1,10 g kvasničného extraktu/l a 0,37 g kyseliny octovej/l. Fermentor obsahoval 9,9 I média nasledovného zloženia: 1,5 g kvasničného extraktu/l, 1,6 g KH2PO4/I, 0,2 g NaCI/l, 0,2 g MgSO4/l. pH bolo nastavené na pH 7,0 roztokom hydroxidu sodného. Po sterilizácii boli do média pridané 4g eugenolu. Teplota bola 32 °C,The production fermenter was inoculated with 100 ml of a 24 hour old culture propagated at 32 ° C in a shaker incubator (120 rpm) in a medium adjusted to pH 7.0 consisting of 12.5 g glycerol (1.10 g yeast extract) and 0.37 g of acetic acid / l. The fermenter contained 9.9 L of the following composition: 1.5 g yeast extract / L, 1.6 g KH 2 PO 4 / L, 0.2 g NaCl / L, 0.2 g MgSO 4 / L. The pH was adjusted to pH 7.0 with sodium hydroxide solution. After sterilization, 4g of eugenol was added to the medium. The temperature was 32 ° C,

31700 h ·· • · · · • · * • ··· • · ···· ·· ·· • · · • · ··· • · ·· ·· ·· ·· ·· · aerácia 3 Nl/min a rýchlosť miešadla 600 ot./min. pH bolo udržiavané na pH 6,5 roztokom hydroxidu sodného.31700 h * 3 * aeration 3 Nl / min and stirrer speed 600 rpm. The pH was maintained at pH 6.5 with sodium hydroxide solution.

Po 4 hodinách od inokulácie bolo zahájené kontinuálne dávkovanie eugenolu tak, že keď bola fermentácia po 65 hodinách ukončená, celkový prídavok bol 255 g eugenolu. Počas fermentácie bolo tiež pridaných 40 g kvasničného extraktu. Na konci fermentácie bola koncentrácia eugenolu 0,2 g/1. Obsah vanilínu bol 2,6 g/1, tiež bola prítomná kyselina ferulová 3,4 g/1.After 4 hours of inoculation, continuous dosing of eugenol was initiated such that when fermentation was complete after 65 hours, the total addition was 255 g of eugenol. 40 g of yeast extract was also added during the fermentation. At the end of the fermentation, the eugenol concentration was 0.2 g / l. The vanillin content was 2.6 g / l, and ferulic acid 3.4 g / l was also present.

Vanilín získaný týmto spôsobom možno izolovať známymi fyzikálnymi metódami ako je chromatografia, destilácia a/alebo extrakcia a môže byť použitý na prípravu prírodných ochucovadiel.The vanillin obtained in this way can be isolated by known physical methods such as chromatography, distillation and / or extraction, and can be used to prepare natural flavorings.

Popis obrázkov na výkresochDescription of the drawings

OBR. 1a až 1 r:FIG. 1 to 1 years:

Génové štruktúry pre izolácie organizmov a mutantov calA*\ Časť inaktivovaného génu pre koniferylalkoholdehydrogenázu calB*: Časť inaktivovaného génu pre koniferylaldehyddehydrogenázu fcs*: Časť inaktivovaného génu pre feruloyl-CoA-syntetázu ech*: Časť inaktivovaného génu pre enoyl-CoA-hydratázu-aldolázu vdh*: Časť inaktivovaného génu pre vanilíndehydrogenázu aaf: Časť inaktivovaného génu pre beta-ketotiolázuGene structures for isolation of organisms and mutants of calA * \ Part of the inactivated coniferyl alcohol dehydrogenase gene calB *: Part of the inactivated coniferyl aldehyde dehydrogenase gene fcs *: Part of the inactivated gene for feruloyl-CoA-synthase-echo * co for inactivated gol *: *: Part of the inactivated vanillin dehydrogenase gene aaf: Part of the inactivated beta-ketothiolase gene

Zatiaľčo pre konštrukciu boli použité body pre hydrolýzu reštrikčnými enzýmami značené vo výsledných produktoch sú nefunkčné.While the restriction enzyme hydrolysis points labeled in the resulting products were used for construction, they were non-functional.

OBR. 2a: Sekvencia nukleotidov pre štruktúru génu ca/ΑΩΚηΊFIG. 2a: Nucleotide sequence for the structure of the ca / ΑΩΚηΊ gene

OBR. 2b: Sekvencia nukleotidov pre štruktúru génu ca/AQGmFIG. 2b: Nucleotide sequence for the structure of the ca / AQGm gene

OBR. 2c: Sekvencia nukleotidov pre štruktúru génu ca/ΑΔFIG. 2c: Nucleotide sequence for the structure of the ca / ΑΔ gene

31700 h • · • · • · ·· · • ·· · ·· • · · · • · ··· · · • · ·· ··· · • · · · · ·31700 h · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

OBR. 1d: Sekvencia nukleotidov pre štruktúru génu ca/8QKmFIG. 1d: Nucleotide sequence for the ca / 8QKm gene structure

OBR. 1e: Sekvencia nukleotidov pre štruktúru génu ca/BOGmFIG. 1e: Nucleotide sequence for the structure of the ca / BOGm gene

OBR. 1f: Sekvencia nukleotidov pre štruktúru génu ca/ΒΔFIG. 1f: Nucleotide sequence for the ca / štrukt gene structure

OBR. 1g: Sekvencia nukleotidov pre štruktúru génu fcsOKmFIG. 1g: Nucleotide sequence for fcsOKm gene structure

OBR. 1h: Sekvencia nukleotidov pre štruktúru génu fcsOGmFIG. 1h: Nucleotide sequence for fcsOGm gene structure

OBR. 1 i: Sekvencia nukleotidov pre štruktúru génu fcsAFIG. 11 i: Nucleotide sequence for fcsA gene structure

OBR. 1j: Sekvencia nukleotidov pre štruktúru génu ecftQKmFIG. 1j: Nucleotide sequence for ecftQKm gene structure

OBR. 2k: Sekvencia nukleotidov pre štruktúru génu ecftQGmFIG. 2k: Nucleotide sequence for ecftQGm gene structure

OBR. 2I: Sekvencia nukleotidov pre štruktúru génu ech&FIG. 2I: Nucleotide sequence for ech < > gene structure

OBR. 2m: Sekvencia nukleotidov pre štruktúru génu vdríQKmFIG. 2m: Nucleotide sequence for gene structure

OBR. 2n: Sekvencia nukleotidov pre štruktúru génu vďhOGmFIG. 2n: Nucleotide sequence for gene structure in hOGm

OBR. 2o: Sekvencia nukleotidov pre štruktúru génu vdhbFIG. 2o: Nucleotide sequence for vdhb gene structure

OBR. 2p: Sekvencia nukleotidov pre štruktúru génu aa/ΩΚπιFIG. 2p: Nucleotide sequence for aa / ΩΚπι gene structure

OBR. 2q: Sekvencia nukleotidov pre štruktúru génu aaŕOGmFIG. 2q: Nucleotide sequence for aaOGOG gene structure

OBR. 2r: Sekvencia nukleotidov pre štruktúru génu aaŕAFIG. 2r: Nucleotide sequence for aa? A gene structure

31700 h • · • ·31700 h • · · ·

JJ • · · · · · • · · ··· · · φJJ · · · · · · · φ ·

···· · ·· ·· ······ · ·· ·· ··

Claims (16)

1. Transformovaný a/alebo mutagenizovaný jednobunkový alebo mnohobunkový organizmus vyznačujúci sa tým, že enzýmy pre katabolizmus eugenolu a/alebo kyseliny ferulovej sú inaktivované takže sa akumulujú medziprodukty koniferylalkohol, koniferylaldehyd, kyselina ferulová, vanilín a/alebo kyselina vanilová1. A transformed and / or mutagenized unicellular or multicellular organism, characterized in that the enzymes for the catabolism of eugenol and / or ferulic acid are inactivated so that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or vanilla acid accumulate. 2. Organizmus podľa nároku 1 vyznačujúci sa tým, že katabolizmus eugenolu a/alebo kyseliny ferulovej je pozmenený vložením Ω elementov, alebo deléciou na príslušných génoch.An organism according to claim 1, characterized in that the catabolism of eugenol and / or ferulic acid is altered by the introduction of Ω elements or by deletion on the respective genes. 3. Organizmus podľa nároku 1 alebo 2 vyznačujúci sa tým, že jeden alebo viaceré gény kódujúci/e enzýmy koniferylalkoholdehydrogenázy, koniferylaldehyddehydrogenázy, feruloyl-CoA-syntetázy, enoyl-CoAhydratázy-aldolazy, beta-ketotiolázy, vanilíndehydrogenázy alebo demetylázy kyseliny vanilovej je/sú zmenený/é a/alebo inaktivovaný/é.Organism according to claim 1 or 2, characterized in that the one or more genes encoding the coniferyl alcohol dehydrogenase (s), coniferyl aldehyde dehydrogenase (s), feruloyl-CoA synthetase (s), enoyl-CoAhydratase (s) aldolase, beta-ketothiolases, vanillin dehydrogenases or demethylase / and / or inactivated. 4. Organizmus podľa jedného z nárokov 1 až 3 vyznačujúci sa tým, že je jednobunkový, prednostne mikroorganizmus alebo rastlinná alebo živočíšna bunka.The organism according to one of claims 1 to 3, characterized in that it is a single-cell, preferably a microorganism or a plant or animal cell. 5. Organizmus podľa jedného z nárokov 1 až 4 vyznačujúci sa tým, že je to baktéria, prednostne z rodu PseudomonasOrganism according to one of Claims 1 to 4, characterized in that it is a bacterium, preferably of the genus Pseudomonas. 6. Štruktúry génov v ktorých sú sekvencie nukleotidov kódujúce enzýmy koniferylalkoholdehydrogenázy, koniferylaldehyddehydrogenázy, feruloylCoA-syntetázy, enoyl-CoA-hydratázy-aldolázy, beta-ketotiolázy, vanilíndehydrogenázy alebo demetylázy kyseliny vanilovej, alebo dva alebo viaceré z týchto enzýmov pozmenené a/alebo inaktivované.6. Structures of genes in which the nucleotide sequences encoding the coniferyl alcohol dehydrogenase, coniferyl aldehyde dehydrogenase, feruloylCoA synthetase, enoyl-CoA-hydratase-aldolase, beta-ketothiolase, vanillin dehydrogenase, or the demethylase or vanemic acid enzymes or demethylases, or vanillaic acid or methylene enzymes. 31700 h ·· ·· ·· ·· ·· • · · · · · · ··· • · · · · ··· · · • ··· ·· ·· ··· · ···· ·· ·· ·· ·· ·31700 h ································· ·· ·· ·· · 7. Štruktúry génov majúce sekvencie znázornené na obrázkoch 1a až 1 r.7. Gene structures having the sequences shown in Figures 1a to 1r. 8. Štruktúry génov majúce sekvencie znázornené na obrázkoch 2a až 2r.8. Gene structures having the sequences shown in Figures 2a to 2r. 9. Vektory ktoré obsahujú prinajmenšom jednu génovú štruktúru podľa jedného z nárokov 6 až 8.Vectors comprising at least one gene structure according to one of claims 6 to 8. 10. Transformovaný organizmus podľa jedného z nárokov 1 až 5, vyznačujúci sa tým, že prechováva prinajmenšom jeden vektor podľa nároku 9.Transformed organism according to one of claims 1 to 5, characterized in that it houses at least one vector according to claim 9. 11. Organizmus podľa s jedného z nárokov 1 až 5, vyznačujúci sa tým, že obsahuje aspoň jednu génovú štruktúru podľa jedného z nárokov 6 až 8 integrovanú do genómu namiesto príslušného intaktného génu.An organism according to any one of claims 1 to 5, characterized in that it comprises at least one gene structure according to one of claims 6 to 8 integrated into the genome instead of the respective intact gene. 12. Spôsob biotechnologickej prípravy organických zlúčenín, predovšetkým alkoholov, aldehydov, a organických kyselín, vyznačujúci sa tým, že sa použije niektorý organizmus podľa jedného z nárokov 1 až 5 alebo 10 až 11.Process for the biotechnological preparation of organic compounds, in particular alcohols, aldehydes, and organic acids, characterized in that an organism according to one of claims 1 to 5 or 10 to 11 is used. 13. Spôsob prípravy organizmov uvedených v jednom z nárokov 1 až 5 vyznačujúci sa tým, že katabolizmus eugenolu a/alebo kyseliny ferulovej sa dosiahne známymi mikrobiologickými kultivačnými metódami.Method for the preparation of the organisms as claimed in one of claims 1 to 5, characterized in that the catabolism of eugenol and / or ferulic acid is achieved by known microbiological culture methods. 14. Spôsob prípravy organizmu podľa niektorého z nárokov 1 až 5 alebo 10 až 11, vyznačujúci sa tým, že zmena v katabolizme eugenolu a/aiebo kyseliny ferulovej, a/alebo inaktivácia príslušných génov sa dosiahne metódami rekombinantnej DNA.Method for the preparation of an organism according to any one of claims 1 to 5 or 10 to 11, characterized in that the change in the catabolism of eugenol and / or ferulic acid and / or the inactivation of the respective genes is achieved by recombinant DNA methods. 31700 h ·· • · • · ·· ·· ·· ·· • · · · · · · é · · · · ··· • ··· · · · · • · · · · ···· ·· ·· ··31700 h ··· ··················· ·· ·· 15. Použitie organizmov podľa jedného z nárokov 1 až 5 alebo 10 až 11 na prípravu koniferylalkoholu, koniferylaldehydu, kyseliny ferulovej, vanilínu a/alebo kyseliny vanilovej.Use of organisms according to one of claims 1 to 5 or 10 to 11 for the preparation of coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or vanillic acid. 16. Použitie génových štruktúr podľa jedného z nárokov 6 až 8 alebo vektora podľa nároku 9 na prípravu transformovaných a/alebo mutagenizovaných organizmov.Use of the gene structures according to one of claims 6 to 8 or of the vector according to claim 9 for the preparation of transformed and / or mutagenized organisms. 31700 h ·· ·· • · • ··· • · « • · β ·· ·· ···· ·· ·· ··· · ·31700 h ·· ··· · · · · β ·· ·· ········· · · -Ι--Ι- Sekvencie sequences CTGCAGCCAG CTGCAGCCAG GGCTGAAAAG GGCTGAAAAG GAGGGATTCA GAGGGATTCA GTGAGGTCAT GTGAGGTCAT GAAGGGAGGG GAAGGGAGGG GACGGCGCCT GACGGCGCCT 60 60 GGCTCCAATT GGCTCCAATT GCTCGATGGC GCTCGATGGC GCCGCGATTG GCCGCGATTG AGTGTCTTGG AGTGTCTTGG GCGCGGTCTT GCGCGGTCTT GGAGAGTTCG GGAGAGTTCG 120 120 GCTAGGGAGA GCTAGGGAGA TAAATTTGCT TAAATTTGCT GGCCATGGTG GGCCATGGTG GCGGCCCCTG GCGGCCCCTG ATGGGTTGGA ATGGGTTGGA TGATTTTCTG TGATTTTCTG 180 180 CATTCTGCAT CATTCTGCAT CATGAAATTC CATGAAATTC ATGAAATCAT ATGAAATCAT CACTTTTCGG CACTTTTCGG GGGGTGGGTG GGGGTGGGTG CACGGGATTG CACGGGATTG 240 240 AAGGTTGCTA AAGGTTGCTA GGAGAGTGCA GGAGAGTGCA TTGCTCGTAA TTGCTCGTAA GCCCAGGAAG GCCCAGGAAG CACGCGGGTT CACGCGGGTT TCAGGATGGT TCAGGATGGT 300 300 GCATGGAAAT GCATGGAAAT GGCATGAGCT GGCATGAGCT TTGCTGGATA TTGCTGGATA TGATTAGAGA TGATTAGAGA CATTAACTAT CATTAACTAT TTTGGCGGAA TTTGGCGGAA 360 360 TGGAAGCACG TGGAAGCACG ATTCCTCGCC ATTCCTCGCC CGGTAGAGCG CGGTAGAGCG GTAACCGCGA GTAACCGCGA CATTCAGGAC CATTCAGGAC CGTAAAAAGG CGTAAAAAGG 420 420 AAAGAGCATG Met 1 AAAGAGCATG Met 1 CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA Gin Leu Thr Asn Lys Lys Ile Val Val Thr Gly 5 10 CAA CTG ACC AAC AAA ATC GTC GTC ACC GGA Gin Leu Thr 5 10 GTG TCC TCC Val Ser Ser 15 GTG TCC TCC Val Ser 15 472 472
GGT Gly GGT Gly ATC GGT GCC GAA ATC GGT GCC GAA ACT GCC CGC Thr Ala Arg ACT GCC CGC Thr Ala Arg GTT CTG CGC TCT CAC GGC GTG CTG CGC TCT CAC GGC GCC Ala 30 GCC Ala 30 ACA Thr ACA Thr 520 520 íle Ile Gly Ala Gly Ala Glu 20 Glu 20 Val wall Leu Arg Ser 25 Leu Arg Ser His His Gly Gly GTG GTG ATT ATT GGC GGC GTA GTA GAT GAT CGC CGC AAC AAC ATG ATG CCG CCG AGC AGC CTG CTG ACT ACT CTG CTG GAT GAT GCT GCT TTC TTC 568 568 Val wall Ile Ile Gly Gly Val wall Asp Asp Arg Arg Asn same time Met Met Pro for Ser Ser Leu Leu Thr Thr Leu Leu Asp Asp Ala Ala Phe Phe 35 35 40 40 45 45 GTT GTT CAG CAG GCT GCT GAC GAC CTG CTG AGC AGC CAT CAT CCT CCT GAA GAA GGC GGC ATC ATC GAT GAT AAG AAG GCC GCC ATC ATC GGG GGG 616 616 Val wall Gin gin Ala Ala Asp Asp Leu Leu Ser Ser His His Pro for Glu Glu Gly Gly íle Ile Asp Asp Lys Lys Ala Ala íle Ile
ΞΟ 55 60 6255 60 62 ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG GTAAGGTTGG GAAGCCCTGC 676ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG GTAAGGTTGG GAAGCCCTGC 676 AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT 736AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT 736 GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATG ATT GAA CAA GAT GGA TTG CAC 7SOGATCAAGAGA CAGGATGAGG ATCGTTTCGC ATG ATT GAA CAA Met Ile Glu Gin Aso Gly Leu HisMet Ile Glu Aso Gly Leu His 1 51 5 GCA GGT Ala Gly GCA GGT Ala Gly TCT Ser TCT Ser CCG GCC CCG GCC GCT TGG GTG Ala Trp Val 15 GCT TGG GTG 15 GAG AGG CTA TTC GAG AGG CTA TTC GGC TAT GAC TGG GGC TAT GAC TGG 838 838 Pro for Ala Ala Glu Arg Glu Arg Leu Leu Phe 20 Phe 20 Gly Tyr Asp Gly Tyr Asp Trp Trp 10 10 GCA GCA CAA CAA CAG CAG ACA ACA ATC ATC GGC GGC TGC TGC TCT TCT GAT GAT GCC GCC GCC GCC GTG GTG TTC TTC CGG CGG CTG CTG TCA TCA 886 886 Ala Ala Gin gin Gin gin Thr Thr Ile Ile Gly Gly Cys Cys Ser Ser Asp Asp Ala Ala Ala Ala Val wall Phe Phe Arg Arg Leu Leu Ser Ser 25 25 30 30 35 35 40 40 GCG GCG CAG CAG GGG GGG CGC CGC CCG CCG GTT GTT CTT CTT TTT TTT GTC GTC AAG AAG ACC ACC GAC GAC CTG CTG TCC TCC GGT GGT GCC GCC 934 934 Ala Ala Gin gin Gly Gly Arg Arg Pro for Val wall Leu Leu Phe Phe Val wall Lys Lys Thr Thr Asp Asp Leu Leu Ser Ser Gly Gly Ala Ala 45 45 50 50 55 55 CTG CTG AAT AAT GAA GAA CTG CTG CAG CAG GAC GAC GAG GAG GCA GCA GCG GCG CGG CGG CTA CTA TCG TCG TGG TGG CTG CTG GCC GCC ACG ACG 982 982 Leu Leu Asn same time Glu Glu Leu Leu Gin gin Asp Asp Glu Glu Ala Ala Ala Ala Arg Arg Leu Leu Ser Ser Trp Trp Leu Leu Ala Ala Thr Thr
60 65 7060 65 70 -2·· ·· ·· • · · · « · • · · · · • ··· · · · • · · é ···· ·· ·· ·· ·· • · t ··· « · • · · • · · ·-2 ·························· • · · · · · · · · ACG Thr ACG Thr GGC Gly GGC Gly GTT CCT GTT CCT TGC Cys TGC Cys GCA Ala GCA Ala GCT GTG CTC GAC GTT GTC ACT GAA GCG GGA GCT GTG CTC 1030 1030 Val 75 wall 75 Pro for Ala Ala Val Leu 80 Val Leu Asp Asp Val wall Val wall Thr 85 Thr 85 Glu Glu Ala Ala Gly Gly AGG AGG GAC GAC TGG TGG CTG CTG CTA CTA TTG TTG GGC GGC GAA GAA GTG GTG CCG CCG GGG GGG CAG CAG GAT GAT CTC CTC CTG CTG TCA TCA 1078 1078 Arg Arg Asp Asp Trp Trp Leu Leu Leu Leu Leu Leu Gly Gly Glu Glu Val wall Pro for Gly Gly Gin gin Asp Asp Leu Leu Leu Leu Ser Ser 90 90 95 95 100 100 TCT TCT CAC CAC CTT CTT GCT GCT CCT CCT GCC GCC GAG GAG AAA AAA GTA GTA TCC TCC ATC ATC ATG ATG GCT GCT GAT GAT GCA GCA ATG ATG 1126 1126 Ser Ser His His Leu Leu Ala Ala Pro for Ala Ala Glu Glu Lys Lys Val wall Ser Ser íle Ile Met Met Ala Ala Asp Asp Ala Ala Met Met 105 105 110 110 115 115 120 120 CGG CGG CGG CGG CTG CTG CAT CAT ACG ACG CTT CTT GAT GAT CCG CCG GCT GCT ACC ACC TGC TGC CCA CCA TTC TTC GAC GAC CAC CAC CAA CAA 1174 1174 Arg Arg Arg Arg Leu Leu His His Thr Thr Leu Leu Asp Asp Pro for Ala Ala Thr Thr Cys Cys Pro for Phe Phe Asp Asp His. His. Gin gin 125 125 130 130 135 135 GCG GCG AAA AAA CAT CAT CGC CGC ATC ATC GAG GAG CGA CGA GCA GCA CGT CGT ACT ACT CGG CGG ATG ATG GAA GAA GCC GCC GGT GGT CTT CTT 1222 1222 Ala Ala Lys Lys His His Arg Arg íle Ile Glu Glu Arg Arg Ala Ala Arg Arg Thr Thr Arg Arg Met Met Glu Glu Ala Ala Gly Gly Leu Leu 140 140 145 145 150 150 GTC GTC GAT GAT CAG CAG GAT GAT GAT GAT CTG CTG GAC GAC GAA GAA GAG GAG CAT CAT CAG CAG GGG GGG CTC CTC GCG GCG CCA CCA GCC GCC 1270 1270 Val wall Asp Asp Gin gin Asp Asp Asp Asp Leu Leu Asp Asp Glu Glu Glu Glu His His Gin gin Gly Gly Leu Leu Ala Ala Pro for Ala Ala 155 155 160 160 165 165 GAA GAA CTG CTG TTC TTC GCC GCC AGG AGG CTC CTC AAG AAG GCG GCG CGC CGC ATG ATG CCC CCC GAC GAC GGC GGC GAG GAG GAT GAT CTC CTC 1318 1318 Glu Glu Leu Leu Phe Phe Ala Ala Arg Arg Leu Leu Lys Lys Ala Ala Arg Arg Met Met Pro for Asp Asp Gly Gly Glu Glu Asp Asp Leu Leu 170 170 175 175 180 180 GTC GTC GTG GTG ACC ACC CAT CAT GGC GGC GAT GAT GCC GCC TGC TGC TTG TTG CCG CCG AAT AAT ATC ATC ATG ATG GTG GTG GAA GAA AAT AAT 1366 1366 Val wall Val wall Thr Thr His His Gly Gly Asp Asp Ala Ala Cys Cys Leu Leu Pro for Asn same time íle Ile Met Met Val wall Glu Glu Asn same time 185 185 190 190 195 195 200 200 GGC GGC CGC CGC TTT TTT TCT TCT GGA GGA TTC TTC ATC ATC GAC GAC TGT TGT GGC GGC CGG CGG CTG CTG GGT GGT GTG GTG GCG GCG GAC GAC 1414 1414 Gly Gly Arg Arg Phe Phe Ser Ser Gly Gly Phe Phe íle Ile Asp Asp Cys Cys Gly Gly Arg Arg Leu Leu Gly Gly Val wall Ala Ala Asp Asp 205 205 210 210 215 215 CGC CGC TAT TAT CAG CAG GAC GAC ATA ATA GCG GCG TTG TTG GCT GCT ACC ACC CGT CGT GAT GAT ATT ATT GCT GCT GAA GAA GAG GAG CTT CTT 1462 1462 Arg Arg Tyr Tyr Gin gin Asp Asp íle Ile Ala Ala Leu Leu Ala Ala Thr Thr Arg Arg Asp Asp íle Ile Ala Ala Glu Glu Glu Glu Leu Leu 220 220 225 225 230 230 GGC GGC GGC GGC GAA GAA TGG TGG GCT GCT GAC GAC CGC CGC TTC TTC CTC CTC GTG GTG CTT CTT TAC TAC GGT GGT ATC ATC GCC GCC GCT GCT 1510 1510 Gly Gly Gly Gly Glu Glu Trp Trp Ala Ala Asp Asp Arg Arg Phe Phe Leu Leu Val wall Leu Leu Tyr Tyr Gly Gly íle Ile Ala Ala Ala Ala 235 235 240 240 245 245 CCC CCC GAT GAT TCG TCG CAG CAG CGC CGC ATC ATC GCC GCC TTC TTC TAT TAT CGC CGC CTT CTT CTT CTT GAC GAC GAG GAG TTC TTC TTC TTC 1558 1558 Pro for Asp Asp Ser Ser Gin gin Arg Arg íle Ile Ala Ala Phe Phe Tyr Tyr Arg Arg Leu Leu Leu Leu Asp Asp Glu Glu Phe Phe Phe Phe 250 250 255 255 260 260 264 264
TGAGCGGGAC TCTGGGGTTC GAAATGACCG ACCAAGCGAC GCCCTG GCC GCG GTG 1613TGAGCGGGAC TCTGGGGTTC GAAATGACCG ACCAAGCGAC GCCCTG GCC GCG GTG 1613 Ala Ala Val 225Ala Ala Val ATT GCA TTC ATG TGT GCT GAG GAG TCA CGT TGG ATC AAC GGC ATA AAT 1661 íle Ala Phe Met Cys Ala Glu Glu Ser Arg Trp íle Asn Gly íle AsnATC AAC GGC ATA AAT 1661 white Ala Phe Met Cys Ala Glu Ser Arg Trp white Asn Gly white Asn 230 235 240 ·· ·· ·· ·· ·· • · · · · · · • · · · · ··· • ··· · · · · · · • · · · · · ···· ·· ·· ·· ··230 235 240 ····························· ·· ·· ·· -3ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC 1710 íle Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val-3ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC 1710 White Pro Val Gly Gly Gly Leu Ala Ser Thr Tyr Val 245 250 255245 250 255 GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG 1770GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG 1770 GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA 1830GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA 1830 GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT 1890GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT 1890 GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG 1950GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG 1950 CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC 2010CAAACTCGAT GCAGCTGGAT GTAGGTAGCT GGATTGGAC GGTGCGTTGG GGACAACACC 2010 CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG 2070CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG 2070 ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC 2130ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC 2130 TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG 2164TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG 2164 FIG. 2a:FIG. 2a: -4• · · · · t·· · · • ··· ·· ·· ··· · • ······· ···· ·· ·· ·· ··-4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60 GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120 GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180 CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG 240CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG 240 AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300 GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA 360GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA 360 TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420 AAAGAGCATG CAACTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG ŤCC TCC 472AAAGAGCATG CAACTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG «TCC 472 Met Gin Leu Thr Asn Lys Lys íle Val Val Thr Gly Val Ser SerMet Gin Leu Thr Asn Lys Lys Clay Val Val Thr Gly Val Ser Ser 15 10 1515 10 15 GGT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA 520GGT ATC GGT GCC ACA 520 Gly íle Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala ThrGly Ala Glu Ala Glu Thr Ala Arg Val Leu Arg Ser Gly Ala Thr 20 25 3020 25 30 GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC 568GTG ATT GGC GTA GAT GCT TTC 568 Val íle Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala PheVal ile Gly Val Asp Arg Asn Met Pro Leu Thr Leu Asp Ala Phe 35 40 4534 40 45 GTT CAG GCT GAC CTG AGC CAT CCT GAGGGGAGAG GCGGTTTGCG TATTGGGCGC 622GTT CAG GCT GAC CTG AGC CAT CCT GAGGGGAGAG GCGGTTTGCG TATTGGGCGC 622 Val Gin Ala Asp Leu Ser His ProVal Gin Ala, Asp Leu Ser His Pro 50 5550 55 ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA CATGGAAGCC ATCACAAACG 682ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA CATGGAAGCC ATCACAAACG 682 GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT CGCCTTGCGT ATAATATTTG 742GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT CGCCTTGCGT ATAATATTTG 742 CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CCAGTTGACA TAAGCCTGTT 802CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CCAGTTGACA TAAGCCTGTT 802 CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC AGAACCTTGA 862CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC AGAACCTTGA 862 CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT GGCTTGTTAT GACTGTTTTT 922CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT GGCTTGTTAT GACTGTTTTT 922 TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTT 982TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTT 982 TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC AAC GAT GTT ACG CAG 1033TGATGTTATG GAGCAGCAAC G ATG TTA GC AGC AGC AAC GAT GTT ACG CAG 1033 Met Leu Arg Ser Ser Asn Asp Val Thr GinMet Leu Arg Ser Asn Asp Val Thr Gin 15 1015 10 CAG GGC AGT CGC CCT AAA ACA AAG TTA GGT GGC TCA AGT ATG GGC ATC 1081CAG GGC AGT CCT AAA ACA AAG TAG GGT GGC TCA AGT ATG GGC ATC 1081 Gin Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly Ser Ser Met Gly íleGin Gly Ser Arg For Lys Thr Lys Leu Gly Ser Gly Ser Ser Gly White 15 20 2515 20 25 ATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC AAA TCC ATG CGG GCT 1129 íle Arg Thr Cys Arg Leu Gly Pro Asp Gin Val Lys Ser Met Arg AlaATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC AAA TCC ATG CGG GCT 1129 White Arg Thr Cys 30 35 4030 GCT CTT GAT CTT TTC GGT CGT GAG TTC GGA GAC GTA GCC ACC TAC TCC 1177GCT GTC GTC GTC GTC GTC GTC GTC GTC GTC TTC TCC 1177 Ala Leu Asp Leu Phe Gly Arg Glu Phe Gly Asp Val Ala Thr Tyr SerAla Leu Asp Phu Gly Arg Glu Phe Gly Val Val Thr Tyr Ser 45 50 55 ·· • · · • · ···· ··45 50 55 ·· • · · · ····· -5·· • · · • · ··· • · · · • · · · ·· ··-5 ·· · · · ··· · · · · · CAA CAT CAG CCG GAC CAA CAT CAG CCG GAC TCC GAT TAC CTC GGG AAC TTG CTC CGT AGT AAG TCC GAT TAC CTC GGG AAC 1225 1225 Gin His Gin 60 Gin His Gin Pro Asp For Asp Ser Ser Asp 65 Asp 65 Tyr Tyr Leu Leu Gly Gly Asn same time Leu 70 Leu 70 Leu Arg Leu Arg Ser Lys Ser Lys ACA TTC ATC ACA TTC ATC GCG CTT GCG CTT GCT GCT GCC GCC TTC TTC GAC GAC CAA CAA GAA GAA GCG GCG GTT GTT GTT GTT GGC GCT GGC GCT 1273 1273 Thr Phe íle Thr Phe White Ala Leu Ala Leu Ala Ala Ala Ala Phe Phe Asp Asp Gin gin Glu Glu Ala Ala Val Val Val Val Gly Ala Gly Ala 75 75 80 80 85 85 90 90 CTC GCG GCT CTC GCG GCT TAC GTT TAC GTT CTG CTG CCC CCC AGG AGG TTT TTT GAG GAG CAG CAG CCG CCG CGT AGT CGT AGT GAG ATC GAG ATC 1321 1321 Leu Ala Ala Leu Ala Tyr Val Tyr Val Leu Leu Pro for Arg Arg Phe Phe Glu Glu Gin gin Pro for Arg Ser Arg Ser Glu íle Glu ile 95 95 100 100 105 105 TAT ATC TAT ATC TAT GAT CTC GAT CTC GCA GCA GTC GTC TCC TCC GGC GGC GAG GAG CAC CAC CGG CGG AGG CAG AGG CAG GGC ATT GGC ATT 1369 1369 Tyr íle Tyr Tyr ile Tyr Asp Leu Asp Leu Ala Ala Val wall Ser Ser Gly Gly Glu Glu His His Arg Arg Arg Gin Arg Gin Gly íle Gly ile 110 110 115 115 120 120 GCC ACC GCG GCC ACC GCG CTC ATC CTC ATC AAT AAT CTC CTC CTC CTC AAG AAG CAT CAT GAG GAG GCC GCC AAC GCG AAC GCG CTT GGT CTT GGT 1417 1417 Ala Thr Ala Ala Thr Ala Leu íle Leu ile Asn same time Leu Leu Leu Leu Lys Lys His His Glu Glu Ala Ala Asn Ala Asn Ala Leu Gly Leu Gly 125 125 130 130 135 135 GCT TAT GTG GCT TAT GTG ATC TAC ATC TAC GTG GTG CAA CAA GCA GCA GAT GAT TAC TAC GGT GGT GAC GAC GAT CCC GAT CCC GCA GTG GCA GTG 1465 1465 Ala Tyr Val Ala Tyr Val íle Tyr ile Tyr Val wall Gin gin Ala Ala Asp Asp Tyr Tyr Gly Gly Asp Asp Asp Pro Asp Pro Ala Val Ala Val 140 140 145 145 150 150 GCT CTC TAT GCT CTC TAT ACA AAG ACA AAG TTG TTG GGC GGC ATA ATA CGG CGG GAA GAA GAA GAA GTG GTG ATG CAC ATG CAC TTT GAT TTT GAT 1513 1,513 Ala Leu Tyr Ala Leu Tyr Thr Lys Thr Lys Leu Leu Gly Gly íle Ile Arg Arg Glu Glu Glu Glu Val wall Met His Met His Phe Asp Phe Asp 155 155 160 160 165 165 170 170 ATC GAC CCA ATC GAC CCA AGT ACC AGT ACC GCC GCC ACC ACC TAA TAA CAATTCGTTC AAGCCGAGAT CGGCTTCCCT CAATTCGTTC AAGCCGAGAT CGGCTTCCCT 1567 1567 íle Asp Pro Asp Pro Ser Thr Ser Thr Ala Ala Thr Thr
175 177175 177 G ATT GCA TTC ATG TGT GCT GAG GAG TCA CGT TGG ATC AAC GGC ATA AAT 1616 íle Ala Phe Met Cys Ala Glu Glu Ser Arg Trp íle Asn Gly íle AsnG ATT GCA TTC ATG TGT GCT GAG GAG TCA CGT TGG ATC AAC GGC ATA AAT 1616 white Ala Phe Met Cys Ala Glu Glu Ser Arg Trp white Asn Gly white Asn 228 230 235 240(+420) 228 230 235 240 ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC 1665 íle Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr ValATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC 1665 White Pro Val Gly Gly Gly Leu Ala Ser Thr Tyr Val 245 250 255245 250 255 GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG 1725GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG 1725 GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA 1785GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA 1785 GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT 1845GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT 1845 GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG 1905GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG 1905 CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC 1965CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC 1965 CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG 2025CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG 2025 ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC 2085ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC 2085 TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG 2119TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG 2119 FIG. 2b:FIG. 2b: • · • ··· • · ( • · ····• • • • • (• · ···· B·· ··B ·· ·· CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60 60 GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120 120 GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180 180 CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG 240 240 AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300 300 GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA 360 360 TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420 420 AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC. GGA GTG TCC TCC AAAGAGCATG CAA CTG ACC AAC AAA ATC GTC GTC ACC. GGA GTG TCC 472 472 Met Gin Leu Thr Asn Lys Lys íle Val Val Thr Gly Val Ser Ser 15 10 15 Met Gin Leu Thr Asn Lys Lys Clay Val Val Thr Gly Val Ser Ser 15 10 15
GGT GGT ATC ATC GGT GGT GCC GCC GAA GAA ACT ACT GCC GCC CGC CGC GTT GTT CTG CTG CGC CGC TCT TCT CAC CAC GGC GCC ACA GCC GCC ACA 520 520 Gly Gly íle Ile Gly Gly Ala Ala Glu 20 Glu 20 Thr Thr Ala Ala Arg Arg Val wall Leu 25 Leu 25 Arg Arg Ser Ser His His Gly Ala Thr 30 Gly Ala Thr 30 GTG GTG ATT ATT GGC GGC GTA GTA GAT GAT CGC CGC AAC AAC ATG ATG CCG CCG AGC AGC CTG CTG ACT ACT CTG CTG GAT GCT TTC GAT GCT TTC 568 568 Val wall íle Ile Gly Gly Val 35 wall 35 Asp Asp Arg Arg Asn same time Met Met Pro 40 for 40 Ser Ser Leu Leu Thr Thr Leu Leu Asp Ala Phe 45 Asp Ala Phe 45 GTT Val GTT wall CAG Gin CAG gin GCT Ala 50 GCT Ala 50 GAC Asp GAC Asp CTG Leu CTG Leu AGC Ser AGC Ser CAT His CAT His CCT Pro 55 CCT for 55 GAA Glu GAA Glu GGC Gly GGC Gly ATC íle 58 ATC Ile 58 GATC AAC GGC ΑΤΑ AAT Asn Gly íle Asn 240 GATC AAC Asn Gly White Asn 240 617 617 ATT íle ATT Ile CCA Pro CCA for GTG Val GTG wall GAC Asp GAC Asp GGA Gly GGA Gly GGT Gly GGT Gly TTG Leu TTG Leu GCA Ala GCA Ala TCG Ser TCG Ser ACC Thr ACC Thr TAC Tyr TAC Tyr GTG Val GTG wall TAA TAA GTTCGTGGAC GTTCGTGGAC 666 666
245 250 255245 250 255 GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG 726GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG 726 GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA 786GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA 786 GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT 846GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT 846 GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG 906GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG 906 CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC 966CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC 966 CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG 1026CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG 1026 ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC 1086ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC 1086 TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG 1120TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG 1120 FIG. 2c:FIG. 2c: • · ··• · ·· -7·· ·· • · · · · a · • · · a a aaa • ··· a a a a a • · a a a a ···· ·· aa aa-7 ·· ·· · a · a · a · a aaa · ··· a a a a a a · a a a a ···· ·· aa aa GAATTCCGCGGAATTCCGCG GGTAGGGTCTGGTAGGGTCT TGCGTTTGCCTGCGTTTGCC TATCGCCCGGTATCGCCCGG TTTTCTTGGCTTTTCTTGGC GCTTCGCTTCGCTTCGCTTC TTCTATCAGCTTCTATCAGC CATGCTTGTTCATGCTTGTT GCGATGAACCGCGATGAACC GGGCCGCTTTGGGCCGCTTT GCCTGAACCTGCCTGAACCT GCATCGAGATGCATCGAGAT CGAAAGTCATCGAAAGTCAT TCGTTGACATTCGTTGACAT GCTGAGGTCAGCTGAGGTCA GGTGTTAGCCGGTGTTAGCC AGGGCAGAGGAGGGCAGAGG GGATTTTTCCGGATTTTTCC 120120 180180 TTAACTCGCG TAAGCATTCT GTCATTTTTTTTAACTCGCG TAAGCATTCT GTCATTTTTT GTCTCGCCCT TTGAGGCCGA TTCTTGGGCGGTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CGATTAAGAT AATTAAAATA AGGAAACCGCCGATTAAGAT AATTAAAATA AGGAAACCGC CTCCAGCTCA AGGGCAATTT TTGGGCTATTCTCCAGCTCA AGGGCAATTT TTGGGCTATT TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240 CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300 ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360 GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420 AGAATAACAAAGAATAACAA TTGACTCCTCTTGACTCCTC AGGAGGTCAGAGGAGGTCAG CG ATG AGCCG ATG AGC ATT CTTATT CTT GGT TTG AATGGT TTG AAT Met 1 Met 1 Ser Ser Ile Ile Leu Leu Gly 5 Gly 5 Leu Leu Asn same time GGT GGT GCC GCC CCG CCG GTC GTC GGA GGA GCT GCT GAG GAG CAG CAG CTG CTG GGC GGC TCG TCG GCT GCT CTT CTT GAT GAT CGC CGC ATG ATG Gly Gly Ala Ala Pro 10 for 10 Val wall Gly Gly Ala Ala Glu Glu Gin 15 gin 15 Leu Leu Gly Gly Ser Ser Ala Ala Leu 20 Leu 20 Asp Asp Arg Arg Met Met AAG AAG AAG AAG GCG GCG CAC CAC CTG CTG GAG GAG CAG CAG GGG GGG CCT CCT GCA GCA AAC AAC TTG TTG GAG GAG CTG CTG CGT CGT CTG CTG Lys Lys Lys 25 Lys 25 Ala Ala His His Leu Leu Glu Glu Gin 30 gin 30 Gly Gly Pro for Ala Ala Asn same time Leu 35 Leu 35 Glu Glu Leu Leu Arg Arg Leu Leu AGT AGT AGG AGG CTG CTG GAT GAT CGT CGT GCG GCG ATT ATT GCA GCA ATG ATG CTT CTT CTG CTG GAA GAA AAT AAT CGT CGT GAA GAA GCA GCA Ser 40 Ser 40 Arg Arg Leu Leu Asp Asp Arg Arg Ala 45 Ala 45 íle Ile Ala Ala Met Met Leu Leu Leu 50 Leu 50 Glu Glu Asn same time Arg Arg Glu Glu Ala 55 Ala 55 ATT ATT GCC GCC GAC GAC GCG GCG GTT GTT TCT TCT GCT GCT GAC GAC TTT TTT GGC GGC AAT AAT CGC CGC AGC AGC CGT CGT GAG GAG CAA CAA Ile Ile Ala Ala Asp Asp Ala Ala Val 60 wall 60 Ser Ser Ala Ala Asp Asp Phe Phe Gly 65 Gly 65 Asn same time Arg Arg Ser Ser Arg Arg Glu 70 Glu 70 Gin gin ACA ACA CTG CTG CTT CTT TGC TGC GAC GAC ATT ATT GCT GCT GGC GGC TCG TCG GTG GTG GCA GCA AGC AGC CTG CTG AAG AAG GAT GAT AGC AGC Thr Thr Leu Leu Leu Leu Cys 75 Cys 75 Asp Asp íle Ile Ala Ala Gly Gly Ser 80 Ser 80 Val wall Ala Ala Ser Ser Leu Leu Lys 85 Lys 85 Asp Asp Ser Ser CGC CGC GAG GAG CAC CAC GTG GTG GCC GCC AAA AAA TGG TGG ATG ATG GAG GAG CCC CCC GAA GAA CAT CAT CAC CAC AAG AAG GCG GCG ATG ATG Arg Arg Glu Glu His 90 His 90 Val wall Ala Ala Lys Lys Trp Trp Met 95 Met 95 Glu Glu Pro for Glu Glu His His His 100 His 100 Lys Lys Ala Ala Met Met TTT TTT CCA CCA GGG GGG GCG GCG GAG GAG GCA GCA CGC CGC GTT GTT GAG GAG TTT TTT CAG CAG CCG CCG CTG CTG GGT GGT GTC GTC GTT GTT Phe Phe Pro 105 for 105 Gly Gly Ala Ala Glu Glu Ala Ala Arg 110 Arg 110 Val wall Glu Glu Phe Phe Gin gin Pro 115 for 115 Leu Leu Gly Gly Val wall Val wall GGG GGG GTC GTC ATT ATT AGT AGT CCC CCC TGG TGG AAC AAC TTC TTC CCT CCT ATC ATC GTA GTA CTG CTG GCC GCC TTT TTT GGG GGG CCG CCG Gly 120 Gly 120 Val wall Ile Ile Ser Ser Pro for Trp 125 Trp 125 Asn same time Phe Phe Pro for íle Ile Val 130 wall 130 Leu Leu Ala Ala Phe Phe Gly Gly Pro 135 for 135 CTG CTG GCC GCC GGC GGC ATA ATA TTC TTC GCA GCA GCA GCA GGT GGT AAT AAT CGC CGC GCC GCC ATG ATG CTC CTC AAG AAG CCG CCG TCC TCC Leu Leu Ala Ala Gly Gly íle Ile Phe 140 Phe 140 Ala Ala Ala Ala Gly Gly Asn same time Arg 145 Arg 145 Ala Ala Met Met Leu Leu Lys Lys Pro 150 for 150 Ser Ser GAG GAG CTT CTT ACC ACC CCG CCG CGG CGG ACT ACT TCT TCT GCC GCC CTG CTG CTT CTT GCG GCG GAG GAG CTA CTA ATT ATT GCT GCT CGT CGT Glu Glu Leu Leu Thr Thr Pro 155 for 155 Arg Arg Thr Thr Ser Ser Ala Ala Leu 160 Leu 160 Leu Leu Ala Ala Glu Glu Leu Leu Ile 165 Ile 165 Ala Ala Arg Arg
473473 521521 569569 617617 665665 713713 761761 809809 857857 905905 953 • · ···953 • · ··· -8• ··· · · • · · • · · · · ·-8 · ··· · · · · · · · · · · · · TAC TTC GAT Tyr Phe Asp TAT TTC GAT Tyr Phe Asp GAA ACT GAG CTG GAA ACT GAG CTG ACT ACA GTG CTG GGC ACT ACA GTG CTG GGC GAC GCT GAA GTC GAC GCT GAA GTC 1001 1001 Glu Glu Thr Thr Glu Glu Leu Leu Thr Thr 175 Thr Thr Val Leu Gly Val Leu Asp 180 Asp 180 Ala Glu Ala Glu Val wall 170 170 GGT GGT GCG GCG CTG CTG TTC TTC AGT AGT GCT GCT CAG CAG CCT CCT TTC TTC GAT GAT CAT CAT CTG CTG ATC ATC TTC TTC ACC ACC GGC GGC 1049 1049 Gly Gly Ala Ala Leu Leu Phe Phe Ser Ser Ala Ala Gin gin Pro for Phe Phe Asp Asp His His Leu Leu íle Ile Phe Phe Thr Thr Gly Gly 185 185 190 190 195 195 GGC GGC ACT ACT GCC GCC GTG GTG GCC GCC AAG AAG CAC CAC ATC ATC ATG ATG CGT CGT GCC GCC GCG GCG GCG GCG GAT GAT AAC AAC CTA CTA 1097 1097 Gly Gly Thr Thr Ala Ala Val wall Ala Ala Lys Lys His His Ile Ile Met Met Arg Arg Ala Ala Ala Ala Ala Ala Asp Asp Asn same time Leu Leu 200 200 205 205 210 210 215 215 GTG GTG CCC CCC GTT GTT ACC ACC CTG CTG GAA GAA TTG TTG GGT GGT GGC GGC AAA AAA TCG TCG CCG CCG GTG GTG ATC ATC GTT GTT TCC TCC 1145 1145 Val wall Pro for Val wall Thr Thr Leu Leu Glu Glu Leu Leu Gly Gly Gly Gly Lys Lys Ser Ser Pro for Val wall íle Ile Val wall Ser Ser 220 220 225 225 230 230 - - CGC CGC AGT AGT GCA GCA GAT GAT ATG ATG GCG GCG GAC GAC GTT GTT GCA GCA CAA CAA CGG CGG GTG GTG TTG TTG ACG ACG GTG GTG AAA AAA 1193 1193 Arg Arg Ser Ser Ala Ala Asp Asp Met Met Ala Ala Asp Asp Val wall Ala Ala Gin gin Arg Arg Val wall Leu Leu Thr Thr Val wall Lys Lys 235 235 240 240 245 245 ACC ACC TTC TTC AAT AAT GCC GCC GGG GGG CAA CAA ATC ATC TGT TGT CTG CTG GCA GCA CCG CCG GAC GAC TAT TAT GTG GTG CTG CTG CTG CTG 1241 1241 Thr Thr Phe Phe Asn same time Ala Ala Gly Gly Gin gin Ile Ile Cys Cys Leu Leu Ala Ala Pro for Asp Asp Tyr Tyr Val wall Leu Leu Leu Leu 250 250 255 255 260 260
CCG GAA GGGACAGCAA GCGAACCGGA ATTGCCAGCT GGGGCGCCCT CTGGTAAGGT 1297CCG GAA GGGACAGCAA GCGAACCGGA ATTGCCAGCT GGGGCGCCCT Pro GluPro Glu 265265 TGGGAAGCCC TGCAAAGTAA ACTGGATGGC TTTCTTGCCG CCAAGGATCT GATGGCGCAG 1357TGGGAAGCCC TGCAAAGTAA ACTGGATGGC TTTCTTGCCG CCAAGGATCT GATGGCGCAG 1357 GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTTT CGC ATG ATT GAA CAA 1412GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTTT Met Ile Glu GinMet Ile Glu GAT Asp 5 GAT Asp 5 GGA TTG CAC GCA Gly Leu His Ala GGA TTG GCA Gly Leu His Ala GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGT TCT. CCG GCC GCT 1460 1460 Gly Ser 10 Gly Ser Pro for Ala Ala Ala Ala Trp 15 Trp 15 Val wall Glu Glu Arg Leu Arg Leu Phe 20 Phe 20 GGC GGC TAT TAT GAC GAC TGG TGG GCA GCA CAA CAA CAG CAG ACA ACA ATC ATC GGC GGC TGC TGC TCT TCT GAT GAT GCC GCC GCC GCC GTG GTG 1508 1508 Gly Gly Tyr Tyr Asp Asp Trp Trp Ala Ala Gin gin Gin gin Thr Thr Ile Ile Gly Gly Cys Cys Ser Ser Asp Asp Ala Ala Ala Ala Val wall 25 25 30 30 35 35 TTC TTC CGG CGG CTG CTG TCA TCA GCG GCG CAG CAG GGG GGG CGC CGC CCG CCG GTT GTT CTT CTT TTT TTT GTC GTC AAG AAG ACC ACC GAC GAC 1556 1556 Phe Phe Arg Arg Leu Leu Ser Ser Ala Ala Gin gin Gly Gly Arg Arg Pro for Val wall Leu Leu Phe Phe Val wall Lys Lys Thr Thr Asp Asp 40 40 45 45 50 50 CTG CTG TCC TCC GGT GGT GCC GCC CTG CTG AAT AAT GAA GAA CTG CTG CAG CAG GAC GAC GAG GAG GCA GCA GCG GCG CGG CGG CTA CTA TCG TCG 1604 1604 Leu Leu Ser Ser Gly Gly Ala Ala Leu Leu Asn same time Glu Glu Leu Leu Gin gin Asp Asp Glu Glu Ala Ala Ala Ala Arg Arg Leu Leu Ser Ser 55 55 60 60 65 65 TGG TGG CTG CTG GCC GCC ACG ACG ACG ACG GGC GGC GTT GTT CCT CCT TGC TGC GCA GCA GCT GCT GTG GTG CTC CTC GAC GAC GTT GTT GTC GTC 1652 1652 Trp Trp Leu Leu Ala Ala Thr Thr Thr Thr Gly Gly Val wall Pro for Cys Cys Ala Ala Ala Ala Val wall Leu Leu Asp Asp Val wall Val wall 70 70 75 75 80 80
• · • · • ·• • • -9··· ·· » ·· • · · • · I • · «-9 ··· ·· »·· · · · · · ACT Thr 85 ACT Thr 85 GAA GCG GGA GAA GCG GGA AGG GAC AGG GAC TGG CTG CTA TTG GGC GAA GTG CCG GGG CAG TGG CTG CTA TTG GGC GAA 1700 1700 Glu Glu Ala Ala Gly Gly Arg Arg Asp 90 Asp 90 Trp Trp Leu Leu Leu Leu Leu Gly 95 Leu Gly Glu Glu Val wall Pro Gly Gin 100 For Gly Gin 100 GAT GAT CTC CTC CTG CTG TCA TCA TCT TCT CAC CAC CTT CTT GCT GCT CCT CCT GCC GCC GAG GAG AAA AAA GTA GTA TCC TCC ATC ATC ATG ATG 1748 1748 Asp Asp Leu Leu Leu Leu Ser Ser Ser Ser His His Leu Leu Ala Ala Pro for Ala Ala Glu Glu Lys Lys Val wall Ser Ser íle Ile Met Met 105 105 110 110 115 115 GCT GCT GAT GAT GCA GCA ATG ATG CGG CGG CGG CGG CTG CTG CAT CAT ACG ACG CTT CTT GAT GAT CCG CCG GCT GCT ACC ACC TGC TGC CCA CCA 1796 1796 Ala Ala Asp Asp Ala Ala Met Met Arg Arg Arg Arg Leu Leu His His Thr Thr Leu Leu Asp Asp Pro for Ala Ala Thr Thr Cys Cys Pro for 120 120 125 125 130 130 TTC TTC GAC GAC CAC CAC CAA CAA GCG GCG AAA AAA CAT CAT CGC CGC ATC ATC GAG GAG CGA CGA GCA GCA CGT CGT ACT ACT CGG CGG ATG ATG 1844 1844 Phe Phe Asp Asp Hls HLS Gin gin Ala Ala Lys Lys His His Arg Arg íle Ile Glu Glu Arg Arg Ala Ala Arg Arg Thr Thr Arg Arg Met Met 135 135 140 140 145 145 GAA GAA GCC GCC GGT GGT CTT CTT GTC GTC GAT GAT CAG CAG GAT GAT GAT GAT CTG CTG GAC GAC GAA GAA GAG GAG CAT CAT CAG CAG GGG GGG 1892 1892 Glu Glu Ala Ala Gly Gly Leu Leu Val wall Asp Asp Gin gin Asp Asp Asp Asp Leu Leu Asp Asp Glu Glu Glu Glu His His Gin gin Gly Gly 150 150 155 155 160 160 CTC CTC GCG GCG CCA CCA GCC GCC GAA GAA CTG CTG TTC TTC GCC GCC AGG AGG CTC CTC AAG AAG GCG GCG CGC CGC ATG ATG CCC CCC GAC GAC 1940 1940 Leu Leu Ala Ala Pro for Ala Ala Glu Glu Leu Leu Phe Phe Ala Ala Arg Arg Leu Leu Lys Lys Ala Ala Arg Arg Met Met Pro for Asp Asp 165 165 170 170 175 175 180 180 GGC GGC GAG GAG GAT GAT CTC CTC GTC GTC GTG GTG ACC ACC CAT CAT GGC GGC GAT GAT GCC GCC TGC TGC TTG TTG CCG CCG AAT AAT ATC ATC 1988 1988 Gly Gly Glu Glu Asp Asp Leu Leu Val wall Val wall Thr Thr His His Gly Gly Asp Asp Ala Ala Cys Cys Leu Leu Pro for Asn same time íle Ile 185 185 190 190 195 195 ATG ATG GTG GTG GAA GAA AAT AAT GGC GGC CGC CGC TTT TTT TCT TCT GGA GGA TTC TTC ATC ATC GAC GAC TGT TGT GGC GGC CGG CGG CTG CTG 2036 2036 Met Met Val wall Glu Glu Asn same time Gly Gly Arg Arg Phe Phe Ser Ser Gly Gly Phe Phe íle Ile Asp Asp Cys Cys Gly Gly Arg Arg Leu Leu 200 200 205 205 210 210 GGT GGT GTG GTG GCG GCG GAC GAC CGC CGC TAT TAT CAG CAG GAC GAC ATA ATA GCG GCG TTG TTG GCT GCT ACC ACC CGT CGT GAT GAT ATT ATT 2084 2084 Gly Gly Val wall Ala Ala Asp Asp Arg Arg Tyr Tyr Gin gin Asp Asp íle Ile Ala Ala Leu Leu Ala Ala Thr Thr Arg Arg Asp Asp íle Ile 215 215 220 220 225 225 GCT GCT GAA GAA GAG GAG CTT CTT GGC GGC GGC GGC GAA GAA TGG TGG GCT GCT GAC GAC CGC CGC TTC TTC CTC CTC GTG GTG CTT CTT TAC TAC 2132 2132 Ala Ala Glu Glu Glu Glu Leu Leu Gly Gly Gly Gly Glu Glu Trp Trp Ala Ala Asp Asp Arg Arg Phe Phe Leu Leu Val wall Leu Leu Tyr Tyr
230 235 240230 235 240 GGT ATC GCC GCT CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT 2180GGT ATC GCC GCT CCC GAT TCG CAG Gly íle Ala Ala Pro Asp Ser Gin Arg íle Ala Phe Tyr Arg Leu LeuGly Ala Ala Ala For Asp Ser Gin Arg Ala Ala Phe Tyr Arg Leu Leu 245 250 255 260245 250 255 260 GAC GAG TTC TTC TGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC 2235GAC GAG TTC TTC GGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC 2235 Asp Glu Phe PheAsp Glu Phe Phe 264264 CGC CGC CAT GCC AAG CAT GCC AAG CCT GTT CTC GTG CAA AGT CCT GTG GGT GAG TCG AAC CCT GTT CTC GTG AAC 2283 2283 His 444 His 444 Ala Lys 445 Ala Lys Pro Val Pro Val Leu Leu Val Gin 450 Val Gin Ser Ser Pro Val Pro Val Gly Glu 455 Gly Glu Ser Asn Ser Asn TTG TTG GCG GCG ATG ATG CGC CGC GCA GCA CCC CCC TAC TAC GGA GGA GAA GAA GCG GCG ATC ATC CAC CAC GGA GGA CTG CTG CTC CTC TCT TCT 2331 2331 Leu Leu Ala Ala Met Met Arg Arg Ala Ala Pro for Tyr Tyr Gly Gly Glu Glu Ala Ala íle Ile His His Gly Gly Leu Leu Leu Leu Ser Ser 460 460 465 465 470 470
·· • ··· • · - 10GTC CTC CTT TCA ACG GAG TGT TAG AACCGTTGGT AGTGGTTTTG GACGGGCCCA 2385 Val Leu Leu Ser Thr Glu Cys 475 480 481- 10GTC CTC CTT TCA ACG GAG TGT TAG AACCGTTGGT AGTGGTTTTG GACGGGCCCA 2385 Val Leu Le Thr Glu Cys 475 480 481 GGAGCATGCG GGAGCATGCG CTTCTGGGCC CTTCTGGGCC CGTTTCTTGA CGTTTCTTGA GTATTCATTG GTATTCATTG GATAGTCACG GATAGTCACG CGTGGTAGCT CGTGGTAGCT 2445 2445 TCGAGCCTGC TCGAGCCTGC ACAGCTGATG ACAGCTGATG AGCACCCTGG AGCACCCTGG AAGGCGCGCT AAGGCGCGCT GTACGCGGAC GTACGCGGAC GACTGGGTTC GACTGGGTTC 2505 2505 ATCTTCGCCA ATCTTCGCCA TTCATGACGG TTCATGACGG AACTCCGTTC AACTCCGTTC CCCAGTACCG CCCAGTACCG CGATGACTAT CGATGACTAT TTTGCCTCTT TTTGCCTCTT 2565 2565 CCGATGTCCG CCGATGTCCG ATTCCACGCC ATTCCACGCC GCCTGACGCT GCCTGACGCT AAGCGGGGGC AAGCGGGGGC GGGGGCGCCC GGGGGCGCCC GCATCCCAGC GCATCCCAGC 2625 2625 CCAGACAGCA CCAGACAGCA ACAAATGAGT ACAAATGAGT AGGCTCTTGG AGGCTCTTGG ATGCCGCGGC ATGCCGCGGC GGCTGAGATT GGCTGAGATT GGTAACGGCA GGTAACGGCA 2685 2685 ATTTCGTCAA ATTTCGTCAA TGTGACGATG TGTGACGATG GATTCGATTG GATTCGATTG CCCGTGCTGC CCCGTGCTGC CGGCGTCTCA CGGCGTCTCA AAAAAAACGC AAAAAAACGC 2745 2745 TGTACGTCTT TGTACGTCTT GGTGGCGAGC GGTGGCGAGC AAGGAAGAAC AAGGAAGAAC TCATTTCCCG TCATTTCCCG GTTAGTGGCT GTTAGTGGCT CGAGACATGT CGAGACATGT 2805 2805 CCAACCTTGA CCAACCTTGA GGAATTC GGAATTC 2822 2822
FIG. 2d:FIG. 2d: ·· • · • · · · · · ···· ·· ·· ·································· GAATTCCGCG GAATTCCGCG TATCGCCCGG TATCGCCCGG TTCTATCAGC TTCTATCAGC GGGCCGCTTT GGGCCGCTTT CGAAAGTCAT CGAAAGTCAT GGTGTTAGCC GGTGTTAGCC 60 60 GGTAGGGTCT GGTAGGGTCT TTTTCTTGGC TTTTCTTGGC CATGCTTGTT CATGCTTGTT GCCTGAACCT GCCTGAACCT TCGTTGACAT TCGTTGACAT AGGGCAGAGG AGGGCAGAGG 120 120 TGCGTTTGCC TGCGTTTGCC GCTTCGCTTC GCTTCGCTTC GCGATGAACC GCGATGAACC GCATCGAGAT GCATCGAGAT GCTGAGGTCA GCTGAGGTCA GGATTTTTCC GGATTTTTCC 180 180 TTAACTCGCG TTAACTCGCG TAAGCATTCT TAAGCATTCT GTCATTTTTT GTCATTTTTT TGGTGGCTTT TGGTGGCTTT GAACAGCCTG GAACAGCCTG ATGAAAGGTG ATGAAAGGTG 240 240 GTCTCGCCCT GTCTCGCCCT TTGAGGCCGA TTGAGGCCGA TTCTTGGGCG TTCTTGGGCG CTTGGCGGCG CTTGGCGGCG TCGAAGCGAT TCGAAGCGAT GCTCCACTAC GCTCCACTAC 300 300 CGATTAAGAT CGATTAAGAT AATTAAAATA AATTAAAATA AGGAAACCGC AGGAAACCGC atggtttctt atggtttctt ATGTGAATTT ATGTGAATTT GTCTGGCATA GTCTGGCATA 360 360 CTCCAGCTCA CTCCAGCTCA AGGGCAATTT AGGGCAATTT TTGGGCTATT TTGGGCTATT GGCTGAGCAG GGCTGAGCAG TTGCCTCTAT TTGCCTCTAT ATGGTTATTC ATGGTTATTC 420 420 AGAATAACAA AGAATAACAA TTGACTCCTC TTGACTCCTC AGGAGGTCAG AGGAGGTCAG CG ATG AGC Met Ser CG ATG AGC Met Ser ATT CTT GGT TTG AAT íle Leu Gly Leu Asn ATT CTT GGT TTG AAT White Leu Gly Leu Asn 473 473
1 51 5 GGT GCC CCG GTC GGT GCC CCG GTC GGA Gly GGA Gly GCT GAG CAG CTG GGC TCG GCT CTT GAT CGC ATG GCT GAG CAG CTG GGC TCG 521 521 Gly Ala Pro Gly Ala Pro Val wall Ala Ala Glu Glu Gin Leu Gly Ser Ala Leu Gin Leu Gly Ser Ala Leu Asp Asp Arg Arg Met Met 10 10 15 15 20 20 AAG AAG AAG AAG GCG GCG CAC CAC CTG CTG GAG GAG CAG CAG GGG GGG CCT CCT GCA GCA AAC AAC TTG TTG GAG GAG CTG CTG CGT CGT CTG CTG 569 569 Lys Lys Lys Lys Ala Ala His His Leu Leu Glu Glu Gin gin Gly Gly Pro for Ala Ala Asn same time Leu Leu Glu Glu Leu Leu Arg Arg Leu Leu 25 25 30 30 35 35 AGT AGT AGG AGG CTG CTG GAT GAT CGT CGT GCG GCG ATT ATT GCA GCA ATG ATG CTT CTT CTG CTG GAA GAA AAT AAT CGT CGT GAA GAA GCA GCA 617 617 Ser Ser Arg Arg Leu Leu Asp Asp Arg Arg Ala Ala íle Ile Ala Ala Met Met Leu Leu Leu Leu Glu Glu Asn same time Arg Arg Glu Glu Ala Ala 40 40 45 45 50 50 55 55 ATT ATT GCC GCC GAC GAC GCG GCG GTT GTT TCT TCT GCT GCT GAC GAC TTT TTT GGC GGC AAT AAT CGC CGC AGC AGC CGT CGT GAG GAG CAA CAA 665 665 íle Ile Ala Ala Asp Asp Ala Ala Val wall Ser Ser Ala Ala Asp Asp Phe Phe Gly Gly Asn same time Arg Arg Ser Ser Arg Arg Glu Glu Gin gin 60 60 65 65 70 70 ACA ACA CTG CTG CTT CTT TGC TGC GAC GAC ATT ATT GCT GCT GGC GGC TCG TCG GTG GTG GCA GCA AGC AGC CTG CTG AAG AAG GAT GAT AGC AGC 713 713 Thr Thr Leu Leu Leu Leu Cys Cys Asp Asp íle Ile Ala Ala Gly Gly Ser Ser Val wall Ala Ala Ser Ser Leu Leu Lys Lys Asp Asp Ser Ser 75 75 80 80 85 85 CGC CGC GAG GAG CAC CAC GTG GTG GCC GCC AAA AAA TGG TGG ATG ATG GAG GAG CCC CCC GAA GAA CAT CAT CAC CAC AAG AAG GCG GCG ATG ATG 761 761 Arg Arg Glu Glu His His Val wall Ala Ala Lys Lys Trp Trp Met Met Glu Glu Pro for Glu Glu His His His His Lys Lys Ala Ala Met Met 90 90 95 95 100 100 TTT TTT CCA CCA GGG GGG GCG GCG GAG GAG GCA GCA CGC CGC GTT GTT GAG GAG TTT TTT CAG CAG CCG CCG CTG CTG GGT GGT GTC GTC GTT GTT 809 809 Phe Phe Pro for Gly Gly Ala Ala Glu Glu Ala Ala Arg Arg Val wall Glu Glu Phe Phe Gin gin Pro for Leu Leu Gly Gly Val wall Val wall 105 105 110 110 115 115 GGG GGG GTC GTC ATT ATT AGT AGT CCC CCC TGG TGG AAC AAC TTC TTC CCT CCT ATC ATC GTA GTA CTG CTG GCC GCC TTT TTT GGG GGG CCG CCG 857 857 Gly Gly Val wall íle Ile Ser Ser Pro for Trp Trp Asn same time Phe Phe Pro for íle Ile Val wall Leu Leu Ala Ala Phe Phe Gly Gly Pro for 120 120 125 125 130 130 135 135 CTG CTG GCC GCC GGC GGC ATA ATA TTC TTC GCA GCA GCA GCA GGT GGT AAT AAT CGC CGC GCC GCC ATG ATG CTC CTC AAG AAG CCG CCG TCC TCC 905 905 Leu Leu Ala Ala Gly Gly íle Ile Phe Phe Ala Ala Ala Ala Gly Gly Asn same time Arg Arg Ala Ala Met Met Leu Leu Lys Lys Pro for Ser Ser 140 140 145 145 150 150 GAG GAG CTT CTT ACC ACC CCG CCG CGG CGG ACT ACT TCT TCT GCC GCC CTG CTG CTT CTT GCG GCG GAG GAG CTA CTA ATT ATT GCT GCT CGT CGT 953 953 Glu Glu Leu Leu Thr Thr Pro for Arg Arg Thr Thr Ser Ser Ala Ala Leu Leu Leu Leu Ala Ala Glu Glu Leu Leu íle Ile Ala Ala Arg Arg
155 160 165155 160 -12·· ·· • · · • · · ·· · ···« ·· ·· » · · • ··· • · β • · « • · ··-12 · · 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 TAC TAC TTC TTC GAT GAT GAA GAA ACT ACT GAG GAG CTG CTG ACT ACT ACA ACA GTG GTG CTG CTG GGC GGC GAC GAC GCT GCT Tyr Tyr Phe Phe Asp 170 Asp 170 Glu Glu Thr Thr Glu Glu Leu Leu Thr 175 Thr 175 Thr Thr Val wall Leu Leu Gly Gly Asp 180 Asp 180 Ala Ala GGT GGT GCG GCG CTG CTG TTC TTC AGT AGT GCT GCT CAG CAG CCT CCT TTC TTC GAT GAT CAT CAT CTG CTG ATC ATC TTC TTC Gly Gly Ala 185 Ala 185 Leu Leu Phe Phe Ser Ser Ala Ala Gin 190 gin 190 Pro for Phe Phe Asp Asp His His Leu 195 Leu 195 íle Ile Phe Phe GGC GGC ACT ACT GCC GCC GTG GTG GCC GCC AAG AAG CAC CAC ATC ATC ATG ATG CGT CGT GCC GCC GCG GCG GCG GCG GAT GAT Gly 200 Gly 200 Thr Thr Ala Ala Val wall Ala Ala Lys 205 Lys 205 His His íle Ile Met Met Arg Arg Ala 210 Ala 210 Ala Ala Ala Ala Asp Asp GTG GTG CCC CCC GTT GTT ACC ACC CTG CTG GAA GAA TTG TTG GGT GGT GGC GGC AAA AAA TCG TCG CCG CCG GTG GTG ATC ATC Val wall Pro for Val wall Thr Thr Leu 220 Leu 220 Glu Glu Leu Leu Gly Gly Gly Gly Lys 225 Lys 225 Ser Ser Pro for Val wall íle Ile CGC CGC AGT AGT GCA GCA GAT GAT ATG ATG GCG GCG GAC GAC GTT GTT GCA GCA CAA CAA CGG CGG GTG GTG TTG TTG ACG ACG Arg Arg Ser Ser Ala Ala Asp 235 Asp 235 Met Met Ala Ala Asp Asp Val wall Ala 240 Ala 240 Gin gin Arg Arg Val wall Leu Leu Thr 245 Thr 245 ACC ACC TTC TTC AAT AAT GCC GCC GGG GGG CAA CAA ATC ATC TGT TGT CTG CTG GCA GCA CCG CCG GAC GAC TAT TAT GTG GTG Thr Thr Phe Phe Asn 250 same time 250 Ala Ala Gly Gly Gin gin íle Ile Cys 255 Cys 255 Leu Leu Ala Ala Pro for Asp Asp Tyr 260 Tyr 260 Val wall
GAA GTC Glu ValGTC Glu Glu Val ACC GGC Thr GlyACC GGC Thr Gly AAC CTA Asn LeuAAC CTA Asn Leu 215215 GTT TCC Val Ser 230GTT TCC Val Ser 230 GTG AAA Val LysGTG AAA Val Lys CTG GGG Leu 262CTG GGG Leu 262 10011001 10491049 10971097 11451145 11931193 12411241 GAGAGGCGGT TTGCGTATTG GGCGCATGCA TAAAAACTGT TGTAATTCAT TAAGCATTCT GAGAGGCGGT TTGCGTATTG GGCGCATGCA TAAAAACTGT TGTAATTCAT TAAGCATTCT 1301 1301 GCCGACATGG AAGCCATCAC AAACGGCATG ATGAACCTGA ATCGCCAGCG GCATCAGCAC GCCGACATGG AAGCCATCAC AAACGGCATG ATGAACCTGA ATCGCCAGCG GCATCAGCAC 1361 1361 CTTGTCGCCT TGCGTATAAT ATTTGCCCAT GGACGCACAC CGTGGAAACG GATGAAGGCA CTTGTCGCCT TGCGTATAAT ATTTGCCCAT GGACGCACAC CGTGGAAACG GATGAAGGCA 1421 1421 CGAACCCAGT TGACATAAGC CTGTTCGGTT CGTAAACTGT AATGCAAGTA GCGTATGCGC CGAACCCAGT TGACATAAGC CTGTTCGGTT CGTAAACTGT AATGCAAGTA GCGTATGCGC 1481 1481 TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT 1541 1541 TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA 1601 1601 GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC Met Leu Arg GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGC GCAACG ATG TTA CGC Met Leu Arg 1656 1656
AGC AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA AGC AGC AAC GAT GTT ACG CAG CAG 1704 1704 Ser Ser Ser Asn Asp Val 5 Ser Asn Asp Val 4 Thr Gin 10 Thr Gin Gin Gly Gin Gly Ser Ser Arg Pro Lys 15 Arg Pro Lys Thr Thr Lys Lys Leu Leu GGT GGT GGC GGC TCA TCA AGT AGT ATG ATG GGC GGC ATC ATC ATT ATT CGC CGC ACA ACA TGT TGT AGG AGG CTC CTC GGC GGC CCT CCT GAC GAC 1752 1752 Gly Gly Gly Gly Ser Ser Ser Ser Met Met Gly Gly íle Ile íle Ile Arg Arg Thr Thr Cys Cys Arg Arg Leu Leu Gly Gly Pro for Asp Asp 20 20 25 25 30 30 35 35 CAA CAA GTC GTC AAA AAA TCC TCC ATG ATG CGG CGG GCT GCT GCT GCT CTT CTT GAT GAT CTT CTT TTC TTC GGT GGT CGT CGT GAG GAG TTC TTC 1800 1800 Gin gin Val wall Lys Lys Ser Ser Met Met Arg Arg Ala Ala Ala Ala Leu Leu Asp Asp Leu Leu Phe Phe Gly Gly Arg Arg Glu Glu Phe Phe 40 40 45 45 50 50 GGA GGA GAC GAC GTA GTA GCC GCC ACC ACC TAC TAC TCC TCC CAA CAA CAT CAT CAG CAG CCG CCG GAC GAC TCC TCC GAT GAT TAC TAC CTC CTC 1848 1848 Gly Gly Asp Asp Val wall Ala Ala Thr Thr Tyr Tyr Ser Ser Gin gin His His Gin gin Pro for Asp Asp Ser Ser Asp Asp Tyr Tyr Leu Leu 55 55 60 60 65 65 GGG GGG AAC AAC TTG TTG CTC CTC CGT CGT AGT AGT AAG AAG ACA ACA TTC TTC ATC ATC GCG GCG CTT CTT GCT GCT GCC GCC TTC TTC GAC GAC 1896 1896 Gly Gly Asn same time Leu Leu Leu Leu Arg Arg Ser Ser Lys Lys Thr Thr Phe Phe íle Ile Ala Ala Leu Leu Ala Ala Ala Ala Phe Phe Asp Asp 70 70 75 75 80 80 CAA CAA GAA GAA GCG GCG GTT GTT GTT GTT GGC GGC GCT GCT CTC CTC GCG GCG GCT GCT TAC TAC GTT GTT CTG CTG CCC CCC AGG AGG TTT TTT 1944 1944
·· ·· • · · • · ··· • · · · • · · · ·· ·· ·· • · · • · • · · • · ·· · ·· ·· • · · · • · · • · · · · • · ···· ··· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · • · · · · · · ····· Gin Glu Ala Gin Glu Ala Val wall Val wall Gly Gly Ala Leu Ala Ala Tyr Val Leu Pro Arg Ala Leu Ala Ala Tyr Val Leu Pro Arg Phe Phe 85 85 90 90 95 95 GAG GAG CAG CAG CCG CCG CGT CGT AGT AGT GAG GAG ATC ATC TAT TAT ATC ATC TAT TAT GAT GAT CTC CTC GCA GCA GTC GTC TCC TCC GGC GGC 1992 1992 Glu Glu Gin gin Pro for Arg Arg Ser Ser Glu Glu íle Ile Tyr Tyr Ile Ile Tyr Tyr Asp Asp Leu Leu Ala Ala Val wall Ser Ser Gly Gly 100 100 105 105 110 110 115 115 GAG GAG CAC CAC CGG CGG AGG AGG CAG CAG GGC GGC ATT ATT GCC GCC ACC ACC GCG GCG CTC CTC ATC ATC AAT AAT CTC CTC CTC CTC AAG AAG 2040 2040 Glu Glu His His Arg Arg Arg Arg Gin gin Gly Gly íle Ile Ala Ala Thr Thr Ala Ala Leu Leu íle Ile Asn same time Leu Leu Leu Leu Lys Lys 120 120 125 125 130 130 CAT CAT GAG GAG GCC GCC AAC AAC GCG GCG CTT CTT GGT GGT GCT GCT TAT TAT GTG GTG ATC ATC TAC TAC GTG GTG CAA CAA GCA GCA GAT GAT 2088 2088 His His Glu Glu Ala Ala Asn same time Ala Ala Leu Leu Gly Gly Ala Ala Tyr Tyr Val wall íle Ile Tyr Tyr Val wall Gin gin Ala Ala Asp Asp 135 135 140 140 145 145 TAC TAC GGT GGT GAC GAC GAŤ Gath CCC CCC GCA GCA GTG GTG GCT GCT CTC CTC TAT TAT ACA ACA AAG AAG TTG TTG GGC GGC ATA ATA 'CGG 'CGG 2136 2136 Tyr Tyr Gly Gly Asp Asp Asp Asp Pro for Ala Ala Val wall Ala Ala Leu Leu Tyr Tyr Thr Thr Lys Lys Leu Leu Gly Gly Ile Ile Arg Arg 150 150 155 155 160 160 GAA GAA GAA GAA GTG GTG ATG ATG CAC CAC TTT TTT GAT GAT ATC ATC GAC GAC CCA CCA AGT AGT ACC ACC GCC GCC ACC ACC TAA TAA CAA CAA 2184 2184 Glu Glu Glu Glu Val wall Met Met His His Phe Phe Asp Asp íle Ile Asp Asp Pro for Ser Ser Thr Thr Ala Ala Thr Thr 165 165 170 170 175 175 177 177
TTCGTTCAAG CCGAGATCGG CTTCCCTG CAA AGT CCT GTG GGT GAG TCG AAC 2236TTCGTTCAAG CCGAGATCGG CTTCCCTG CAA AGT CCT GTG Gin Ser Pro Val Gly Glu Ser Asn 451 455Gin Ser Pro Val Gly Ser Asn 451 455 TTG GCG ATG CGC GCA TTG GCG CCC TAC GGA GAA GCG ATC CAC GGA CTG CTC TCT CCC TAC GGA GAA GCG CTC TCT 2284 2284 Leu Ala Met 460 Leu Ala Met 460 Arg Ala Arg Ala Pro Tyr 465 For Tyr 465 Gly Gly Glu Glu Ala Ala íle Ile His Gly Leu Leu Ser 470 His Gly Leu Leu Ser 470 GTC CTC CTT GTC CTC CTT TCA ACG TCA ACG GAG TGT GAG TGT TAG TAG AACCGTTGGT AGTGGTTTTG GACGGGCCCA AACCGTTGGT AGTGGTTTTG GACGGGCCCA 2338 2338 Val Leu Leu Val Leu Ser Thr Ser Thr Glu Cys Glu Cys 475 475 480 481 480 481
GGAGCATGCG CTTCTGGGCC GGAGCATGCG CTTCTGGGCC CGTTTCTTGA GTATTCATTG GATAGTCACG CGTGGTAGCT CGTTTCTTGA GTATTCATTG GATAGTCACG CGTGGTAGCT 2398 2398 TCGAGCCTGC ACAGCTGATG TCGAGCCTGC ACAGCTGATG AGCACCCTGG AAGGCGCGCT GTACGCGGAC GACTGGGTTC AGCACCCTGG AAGGCGCGCT GTACGCGGAC GACTGGGTTC 2458 2458 ATCTTCGCCA TTCATGACGG ATCTTCGCCA TTCATGACGG AACTCCGTTC CCCAGTACCG CGATGACTAT TTTGCCTCTT AACTCCGTTC CCCAGTACCG CGATGACTAT TTTGCCTCTT 2518 2518 CCGATGTCCG ATTCCACGCC CCGATGTCCG ATTCCACGCC GCCTGACGCT AAGCGGGGGC GGGGGCGCCC GCATCCCAGC GCCTGACGCT AAGCGGGGGC GGGGGCGCCC GCATCCCAGC 2578 2578 CCAGACAGCA ACAAATGAGT CCAGACAGCA ACAAATGAGT AGGCTCTTGG ATGCCGCGGC GGCTGAGATT GGTAACGGCA AGGCTCTTGG ATGCCGCGGC GGCTGAGATT GGTAACGGCA 2638 2638 ATTTCGTCAA TGTGACGATG ATTTCGTCAA TGTGACGATG GATTCGATTG CCCGTGCTGC CGGCGTCTCA AAAAAAACGC GATTCGATTG CCCGTGCTGC CGGCGTCTCA AAAAAAACGC 2698 2698 TGTACGTCTT GGTGGCGAGC TGTACGTCTT GGTGGCGAGC AAGGAAGAAC TCATTTCCCG GTTAGTGGCT CGAGACATGT AAGGAAGAAC TCATTTCCCG GTTAGTGGCT CGAGACATGT 2758 2758 CCAACCTTGA GGAATTC CCAACCTTGA GGAATTC 2775 2775
FIG. 2e:FIG. 2e: ·· • · · · • · · • ··· · ···· ·· ·· ·· ··· • · · • · ·· ··························································· - 14GAATTCCGCG TATCGCCCGG TTCTATCAGC GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60- 14GAATTCCGCG TATCGCCCGG TTCTATCAGC GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60 GGTAGGGTCT TTTTCTTGGC CATGCTTGTT GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120GGTAGGGTCT TTTTCTTGGC CATGCTTGTT GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120 TGCGTTTGCC GCTTCGCTTC GCGATGAACC GCATCGAGAT GCTGAGGTCA GGATTTTTCC 180TGCGTTTGCC GCTTCGCTTC GCGATGAACC GCATCGAGAT GCTGAGGTCA GGATTTTTCC 180 TTAACTCGCG TAAGCATTCT GTCATTTTTT TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240TTAACTCGCG TAAGCATTCT GTCATTTTTT TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240 GTCTCGCCCT TTGAGGCCGA TTCTTGGGCGGTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CGATTAAGAT AATTAAAATA AGGAAACCGCCGATTAAGAT AATTAAAATA AGGAAACCGC CTCCAGCTCA AGGGCAATTT TTGGGCTATTCTCCAGCTCA AGGGCAATTT TTGGGCTATT CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300 ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360 GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420 AGAATAACAAAGAATAACAA TTGACTCCTCTTGACTCCTC AGGAGGTCAGAGGAGGTCAG CG ATG ÁGCCG ATG AGC ATT CTT GGTATT CTT GGT TTGTTG AATAAT Met 1 Met 1 Ser Ser íle Ile Leu Leu Gly 5 Gly 5 Leu Leu Asn same time GGT GGT GCC GCC CCG CCG GTC GTC GGA GGA GCT GCT GAG GAG CAG CAG CTG CTG GGC GGC TCG TCG GCT GCT CTT CTT GAT GAT CGC CGC ATG ATG Gly Gly Ala Ala Pro 10 for 10 Val wall Gly Gly Ala Ala Glu Glu Gin 15 gin 15 Leu Leu Gly Gly Ser Ser Ala Ala Leu 20 Leu 20 Asp Asp Arg Arg Met Met AAG AAG AAG AAG GCG GCG CAC CAC CTG CTG GAG GAG CAG CAG GGG GGG CCT CCT GCA GCA AAC AAC TTG TTG GAG GAG CTG CTG CGT CGT CTG CTG Lys Lys Lys 25 Lys 25 Ala Ala His His Leu Leu Glu Glu Gin 30 gin 30 Gly Gly Pro for Ala Ala Asn same time Leu 35 Leu 35 Glu Glu Leu Leu Arg Arg Leu Leu AGT AGT AGG AGG CTG CTG GAT GAT CGT CGT GCG GCG ATT ATT GCA GCA ATG ATG CTT CTT CTG CTG GAA GAA AAT AAT CGT CGT GAA GAA GCA GCA Ser 40 Ser 40 Arg Arg Leu Leu Asp Asp Arg Arg Ala 45 Ala 45 íle Ile Ala Ala Met Met Leu Leu Leu 50 Leu 50 Glu Glu Asn same time Arg Arg Glu Glu Ala 55 Ala 55 ATT ATT GCC GCC GAC GAC GCG GCG GTT GTT TCT TCT GCT GCT GAC GAC TTT TTT GGC GGC AAT AAT CGC CGC AGC AGC CGT CGT GAG GAG CAA CAA Ile Ile Ala Ala Asp Asp Ala Ala Val 60 wall 60 Ser Ser Ala Ala Asp Asp Phe Phe Gly 65 Gly 65 Asn same time Arg Arg Ser Ser Arg Arg Glu 70 Glu 70 Gin gin ACA ACA CTG CTG CTT CTT TGC TGC GAC GAC ATT ATT GCT GCT GGC GGC TCG TCG GTG GTG GCA GCA AGC AGC CTG CTG AAG AAG GAT GAT AGC AGC Thr Thr Leu Leu Leu Leu Cys 75 Cys 75 Asp Asp íle Ile Ala Ala Gly Gly Ser 80 Ser 80 Val wall Ala Ala Ser Ser Leu Leu Lys 85 Lys 85 Asp Asp Ser Ser CGC CGC GAG GAG CAC CAC GTG GTG GCC GCC AAA AAA TGG TGG ATG ATG GAG GAG CCC CCC GAA GAA CAT CAT CAC CAC AAG AAG GCG GCG ATG ATG Arg Arg Glu Glu His 90 His 90 Val wall Ala Ala Lys Lys Trp Trp Met 95 Met 95 Glu Glu Pro for Glu Glu His His His 100 His 100 Lys Lys Ala Ala Met Met TTT TTT CCA CCA GGG GGG GCG GCG GAG GAG GCA GCA CGC CGC GTT GTT GAG GAG TTT TTT CAG CAG CCG CCG CTG CTG GGT GGT GTC GTC GTT GTT Phe Phe Pro 105 for 105 Gly Gly Ala Ala Glu Glu Ala Ala Arg 110 Arg 110 Val wall Glu Glu Phe Phe Gin gin Pro 115 for 115 Leu Leu Gly Gly Val wall Val wall GGG GGG GTC GTC ATT ATT AGT AGT CCC CCC TGG TGG AAC AAC TTC TTC CCT CCT ATC ATC GTA GTA CTG CTG GCC GCC TTT TTT GGG GGG CCG CCG Gly 120 Gly 120 Val wall Ile Ile Ser Ser Pro for Trp 125 Trp 125 Asn same time Phe Phe Pro for íle Ile Val 130 wall 130 Leu Leu Ala Ala Phe Phe Gly Gly Pro 135 for 135 CTG CTG GCC GCC GGC GGC ATA ATA TTC TTC GCA GCA GCA GCA GGT GGT AAT AAT CGC CGC GCC GCC ATG ATG CTC CTC AAG AAG CCG CCG TCC TCC Leu Leu Ala Ala Gly Gly Ile Ile Phe 140 Phe 140 Ala Ala Ala Ala Gly Gly Asn same time Arg 145 Arg 145 Ala Ala Met Met Leu Leu Lys Lys Pro 150 for 150 Ser Ser GAG GAG CTT CTT ACC ACC CCG CCG CGG CGG ACT ACT TCT TCT GCC GCC CTG CTG CTT CTT GCG GCG GAG GAG CTA CTA ATT ATT GCT GCT CGT CGT Glu Glu Leu Leu Thr Thr Pro 155 for 155 Arg Arg Thr Thr Ser Ser Ala Ala Leu 160 Leu 160 Leu Leu Ala Ala Glu Glu Leu Leu íle 165 Ile 165 Ala Ala Arg Arg
473473 521521 569569 617617 665665 713713 761761 809809 857857 905905 953953 -15·· ·Φ • · · · • · · • ·· · • · ···· ·· ·· ·· ·· • · · · · · • · ··· · · • · · · · · · • · · · · · ·· ·· ·· ·-15 · Φ · 15 15 15 15 15 15 15 15 15 · · · · · · · · · · · · TAC TTC GAT GAA ACT GAT GAA ACT GAG CTG ACT GAG CTG ACT ACA GTG CTG GGC GAC GCT GAA GTC ACA GTG CTG GGC GAC GCT 1001 1001 Tyr Phe Asp 170 Tyr Phe Asp 170 Glu Glu Thr Thr Glu Leu Glu Leu Thr 175 Thr 175 Thr Thr Val wall Leu Gly Leu Gly Asp Ala Glu Val 180 Asp Ala Glu Val 180 GGT GCG CTG GGT GCG CTG TTC TTC AGT AGT GCT CAG GCT CAG CCT CCT TTC TTC GAT GAT CAT CTG CAT CTG ATC TTC ACC GGC ATC TTC ACC GGC 1049 1049 Gly Ala Leu Gly Ala Leu Phe Phe Ser Ser Ala Gin Ala Gin Pro for Phe Phe Asp Asp His Leu His Leu íle Phe Thr Gly Phe Thr Gly 185 185 190 190 195 195 GGC ACT GCC GGC ACT GCC GTG GTG GCC GCC AAG CAC AAG CAC ATC ATC ATG ATG CGT CGT GCC GCG GCC GCG GCG GAT AAC CTA GCG GAT AAC CTA 1097 1097 Gly Thr Ala Gly Thr Ala Val wall Ala Ala Lys His Lys His íle Ile Met Met Arg Arg Ala Ala Ala Ala Ala Asp Asn Leu Ala Asp Asn Leu 200 200 205 205 210 210 215 215 GTG CCC GTT GTG CCC GTT ACC ACC CTG CTG GAA TTG GAA TTG GGT GGT GGC GGC AAA AAA TCG CCG TCG CCG GTG ATC GTT TCC GTG ATC 1145 1145 Val Pro Val Val Pro Val Thr Thr Leu Leu Glu Leu Glu Leu Gly Gly Gly Gly Lys Lys Ser Pro Ser Pro Val íle Val Ser Val ile Val Ser 220 220 225 225 230 230 CGC AGT GCA CGC AGT GCA GAT GAT ATG ATG GCG GAC GCG GAC GTT GTT GCA GCA CAA CAA CGG GTG CGG GTG TTG ACG GTG AAA TTG ACG GTG AAA 1193 1193 Arg Ser Ala Arg Ser Ala Asp Asp Met Met Ala Asp Ala Asp Val wall Ala Ala Gin gin Arg Val Arg Val Leu Thr Val Lys Leu Thr Val Lys 235 235 240 240 245 245 ACC TTC AAT ACC TTC AAT GCC GCC GGG GGG CAA ATC CAA ATC TGT TGT CTG CTG GCA GCA CC GTG GGT GAG TCG AAC CC GTG GGT GAG TCG AAC 1240 1240 Thr Phe Asn Thr Phe Asn Ala Ala Gly Gly Gin íle Gin ile Cys Cys Leu Leu Ala Ala Val Gly Glu Ser Asn Val Gly Glu Ser Asn 250 250 255 255 257 257 454 455 454 455 TTG GCG ATG TTG GCG ATG CGC CGC GCA GCA CCC TAC CCC TAC GGA GGA GAA GAA GCG GCG ATC CAC ATC CAC GGA CTG CTC TCT GGA CTG CTC TCT 1288 1288 Leu Ala Met Leu Ala Met Arg Arg Ala Ala Pro Tyr Pro Tyr Gly Gly Glu Glu Ala Ala íle His ile His Gly Leu Leu Ser Gly Leu Leu Ser 460 460 465 465 470 470 GTC CTC CTT GTC CTC CTT TCA TCA ACG ACG GAG TGT GAG TGT TAG TAG AACCGTTGGT AGTGGTTTTG GACGGGCCCA AACCGTTGGT AGTGGTTTTG GACGGGCCCA 1342 1342 Val Leu Leu Val Leu Ser Ser Thr Thr Glu Cys Glu Cys 475 475 480 481 480 481
GGAGCATGCG CTTCTGGGCC CGTTTCTTGA GTATTCATTG GATAGTCACG CGTGGTAGCT GGAGCATGCG CTTCTGGGCC CGTTTCTTGA GTATTCATTG GATAGTCACG CGTGGTAGCT 1402 1402 TCGAGCCTGC ACAGCTGATG AGCACCCTGG AAGGCGCGCT GTACGCGGAC GACTGGGTTC TCGAGCCTGC ACAGCTGATG AGCACCCTGG AAGGCGCGCT GTACGCGGAC GACTGGGTTC 1462 1462 ATCTTCGCCA TTCATGACGG AACTCCGTTC CCCAGTACCG CGATGACTAT TTTGCCTCTT ATCTTCGCCA TTCATGACGG AACTCCGTTC CCCAGTACCG CGATGACTAT TTTGCCTCTT 1522 1522 CCGATGTCCG ATTCCACGCC GCCTGACGCT AAGCGGGGGC GGGGGCGCCC GCATCCCAGC CCGATGTCCG ATTCCACGCC GCCTGACGCT AAGCGGGGGC GGGGGCGCCC GCATCCCAGC 1582 1582 CCAGACAGCA ACAAATGAGT AGGCTCTTGG ATGCCGCGGC GGCTGAGATT GGTAACGGCA CCAGACAGCA ACAAATGAGT AGGCTCTTGG ATGCCGCGGC GGCTGAGATT GGTAACGGCA 1642 1642 ATTTCGTCAA TGTGACGATG GATTCGATTG CCCGTGCTGC CGGCGTCTCA AAAAAAACGC ATTTCGTCAA TGTGACGATG GATTCGATTG CCCGTGCTGC CGGCGTCTCA AAAAAAACGC 1702 1702 TGTACGTCTT GGTGGCGAGC AAGGAAGAAC TCATTTCCCG GTTAGTGGCT CGAGACATGT TGTACGTCTT GGTGGCGAGC AAGGAAGAAC TCATTTCCCG GTTAGTGGCT CGAGACATGT 1762 1762 CCAACCTTGA GGAATTC CCAACCTTGA GGAATTC 1779 1779
FIG. 2f:FIG. 2f: ·· • · ··· ···· ····· ··· ······· -16• ··· • · · • · · ··-16 · ··· · · · · · · · CTGCAGCCGA CTGCAGCCGA GCATCGATTG GCATCGATTG AGCACTTTAC AGCACTTTAC CCAGCTGCGC CCAGCTGCGC TGGCTGACCA TGGCTGACCA TTCAGAATGG TTCAGAATGG 60 60 CCCGCGGCAC CCCGCGGCAC TATCCAATCT TATCCAATCT AAATCGATCT AAATCGATCT TCGGGCGCCG TCGGGCGCCG CGGGCATCAT CGGGCATCAT GCCCGCGGCG GCCCGCGGCG 120 120 CTCGCCTCAT CTCGCCTCAT TTCAATCTCT TTCAATCTCT AACTTGATAA AACTTGATAA AAACAGAGCT AAACAGAGCT GTTCTCCGGT GTTCTCCGGT CTTGGTGGAT CTTGGTGGAT 180 180 CAAGGCCAGT CAAGGCCAGT CGCGGAGAGT CGCGGAGAGT CTCGAAGAGG CTCGAAGAGG AGAGTACAGT AGAGTACAGT GAACGCCGAG GAACGCCGAG TCCACATTGC TCCACATTGC 240 240 AACCGCAGGC AACCGCAGGC ATCATCATGC ATCATCATGC TCTGCTCAGC TCTGCTCAGC CACGCTACCG CACGCTACCG CAGTGTGTCG CAGTGTGTCG ATTGGTCATC ATTGGTCATC 300 300 CTCCGGTTGA CTCCGGTTGA GGTTACGCAA GGTTACGCAA GACGCTGGAG GACGCTGGAG GTATTGTCCG GTATTGTCCG G ATG CGT TCT CTC GAG ATG CGT TCT CTC GAG 356 356
Met Arg Ser Leu Glu 1 5Met Arg Ser Leu Glu GCG Ala GCG Ala CTT CTT CTT CTT CCC TTC CCG GGT CGA CCG TTC CCG GGT CGA ATT CTT GAG CGT ATT CTT GAG CGT CTC GAG CAT TGG CTC GAG CAT TGG 404 404 Leu Leu Leu Leu Pro Phe 10 For Phe 10 Pro Gly Arg For Gly Arg íle Ile Leu 15 Leu 15 Glu Glu Arg Arg Leu Glu His 20 Leu Glu His Trp Trp GCT GCT AAG AAG ACC ACC CGT CGT CCA CCA GAA GAA CAA CAA ACC ACC TGC TGC GTT GTT GCT GCT GCC GCC AGG AGG GCG GCG GCA GCA AAT AAT 452 452 Ala Ala Lys Lys Thr Thr Arg Arg Pro for Glu Glu Gin gin Thr Thr Cys Cys Val wall Ala Ala Ala Ala Arg Arg Ala Ala Ala Ala Asn same time 25 25 30 30 35 35 GGG GGG GAA GAA TGG TGG CGT CGT CGT CGT ATC ATC AGC AGC TAC TAC GCG GCG GAA GAA ATG ATG TTC TTC CAC CAC AAC AAC GTC GTC CGC CGC 500 500 Gly Gly Glu Glu Trp Trp Arg Arg Arg Arg íle Ile Ser Ser Tyr Tyr Ala Ala Glu Glu Met Met Phe Phe His His Asn same time Val wall Arg Arg 40 40 45 45 50 50 GCC GCC ATC ATC GCA GCA CAG CAG AGC AGC TTG TTG CTT CTT CCT CCT TAC TAC GGA GGA CTA CTA TCG TCG GCA GCA GAG GAG CGT CGT CCG CCG 548 548 Ala Ala íle Ile Ala Ala Gin gin Ser Ser Leu Leu Leu Leu Pro for Tyr Tyr Gly Gly Leu Leu Ser Ser Ala Ala Glu Glu Arg Arg Pro for 55 55 60 60 65 65 CTG CTG CTT CTT ATC ATC GTC GTC TCT TCT GGA GGA AAT AAT GAC GAC CTG CTG GAA GAA CAT CAT CTT CTT CAG CAG CTG CTG GCA GCA TTT TTT 596 596 Leu Leu Leu Leu íle Ile Val wall Ser Ser Gly Gly Asn same time Asp Asp Leu Leu Glu Glu His His Leu Leu Gin gin Leu Leu Ala Ala Phe Phe 70 70 75 75 80 80 85 85 GGG GGG GCT GCT ATG ATG TAT TAT GCG GCG GGC GGC ATT ATT CCC CCC TAT TAT TGC TGC CCG CCG GTG GTG TCT TCT CCT CCT GCT GCT TAT TAT 644 644 Gly Gly Ala Ala Met Met Tyr Tyr Ala Ala Gly Gly íle Ile Pro for Tyr Tyr Cys Cys Pro for Val wall Ser Ser Pro for Ala Ala Tyr Tyr 90 90 95 95 100 100 TCA TCA CTG CTG CTG CTG TCG TCG CAA CAA GAT GAT TTG TTG GCG GCG AAG AAG CTG CTG CGT CGT CAC CAC ATC ATC GTA GTA GGT GGT CTT CTT 692 692 Ser Ser Leu Leu Leu Leu Ser Ser Gin gin Asp Asp Leu Leu Ala Ala Lys Lys Leu Leu Arg Arg His His íle Ile Val wall Gly Gly Leu Leu 105 105 110 110 115 115 CTG CTG CAA CAA CCG CCG GGA GGA CTG CTG GTC GTC TTT TTT GCT GCT GCC GCC GAT GAT GCA GCA GCA GCA CCT CCT TTC TTC CAG CAG GGG GGG 740 740 Leu Leu Gin gin Pro for Gly Gly Leu Leu Val wall Phe Phe Ala Ala Ala Ala Asp Asp Ala Ala Ala Ala Pro for Phe Phe Gin gin 120 120 125 125 130 130 132 132
ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG GTAAGGTTGG GAAGCCCTGC 800ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG GTAAGGTTGG GAAGCCCTGC 800 AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT 860AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT 860 GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATG ATT GAA CAA GAT GGA TTG CAC 914GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATG ATT GAA CAA Met íle Glu Gin Asp Gly Leu HisMethyl Glu Gin Asp Gly Leu His 1 51 5 GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG 962GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG 962 Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp TrpAla Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe 10 15 2010 15 20 BBBB BB • BBB • B -17BB BB-17BB BB B · · · • · · • BBB B • β ···· BB • BB • BBB B • BB • B B ·B · B BB B B ·B · BBBB BB BBB • · BBBBB • BB BB BB BB BB GCA Ala 25 GCA Ala 25 CAA CAG CAA CAG ACA ATC GGC Thr íle Gly 30 ACA ATC GGC Thr Gly 30 TGC Cys TGC Cys TCT GAT GCC GCC GTG TTC TCT GAT GCC GCC GTG TTC CGG CTG TCA CGG CTG TCA 1010 1010 Gin gin Gin gin Ser Ser Asp Ala Asp Ala Ala 35 Ala 35 Val wall Phe Phe Arg Arg Leu Leu Ser 40 Ser 40 GCG GCG CAG CAG GGG GGG CGC CGC CCG CCG GTT GTT CTT CTT TTT TTT GTC GTC AAG AAG ACC ACC GAC GAC CTG CTG TCC TCC GGT GGT GCC GCC 1058 1058 Ala Ala Gin gin Gly Gly Arg Arg Pro for Val wall Leu Leu Phe Phe Val wall Lys Lys Thr Thr Asp Asp Leu Leu Ser Ser Gly Gly Ala Ala 45 45 50 50 55 55 CTG CTG AAT AAT GAA GAA CTG CTG CAG CAG GAC GAC GAG GAG GCA GCA GCG GCG CGG CGG CTA CTA TCG TCG TGG TGG CTG CTG GCC GCC ACG ACG 1106 1106 Leu Leu Asn same time Glu Glu Leu Leu Gin gin Asp Asp Glu Glu Ala Ala Ala Ala Arg Arg Leu Leu Ser Ser Trp Trp Leu Leu Ala Ala Thr Thr 60 60 65 65 70 70 ACG ACG GGC GGC GTT GTT CCT CCT TGC TGC GCA GCA GCT GCT GTG GTG CTC CTC GAC GAC GTT GTT GTC GTC ACT ACT GAA GAA GCG GCG GGA GGA 1154 1154 Thr Thr Gly Gly Val wall Pro for Cys Cys Ala Ala Ala Ala Val wall Leu Leu Asp Asp Val wall Val wall Thr Thr Glu Glu Ala Ala Gly Gly 75 75 80 80 85 85 AGG AGG GAC GAC TGG TGG CTG CTG CTA CTA TTG TTG GGC GGC GAA GAA GTG GTG CCG CCG GGG GGG CAG CAG GAT GAT CTC CTC CTG CTG TCA TCA 1202 1202 Arg Arg Asp Asp Trp Trp Leu Leu Leu Leu Leu Leu Gly Gly Glu Glu Val wall Pro for Gly Gly Gin gin Asp Asp Leu Leu Leu Leu Ser Ser 90 90 95 95 100 100 TCT TCT CAC CAC CTT CTT GCT GCT CCT CCT GCC GCC GAG GAG AAA AAA GTA GTA TCC TCC ATC ATC ATG ATG GCT GCT GAT GAT GCA GCA ATG ATG 1250 1250 Ser Ser His His Leu Leu Ala Ala Pro for Ala Ala Glu Glu Lys Lys Val wall Ser Ser íle Ile Met Met Ala Ala Asp Asp Ala Ala Met Met 105 105 110 110 115 115 120 120 CGG CGG CGG CGG CTG CTG CAT CAT ACG ACG CTT CTT GAT GAT CCG CCG GCT GCT ACC ACC TGC TGC CCA CCA TTC TTC GAC GAC CAC CAC CAA CAA 1298 1298 Arg Arg Arg Arg Leu Leu His His Thr Thr Leu Leu Asp Asp Pro for Ala Ala Thr Thr Cys Cys Pro for Phe Phe Asp Asp His His Gin gin 125 125 130 130 135 135 GCG GCG AAA AAA CAT CAT CGC CGC ATC ATC GAG GAG CGA CGA GCA GCA CGT CGT ACT ACT CGG CGG ATG ATG GAA GAA GCC GCC GGT GGT CTT CTT 1346 1346 Ala Ala Lys Lys His His Arg Arg íle Ile Glu Glu Arg Arg Ala Ala Arg Arg Thr Thr Arg Arg Met Met Glu Glu Ala Ala Gly Gly Leu Leu 140 140 145 145 150 150 GTC GTC GAT GAT CAG CAG GAT GAT GAT GAT CTG CTG GAC GAC GAA GAA GAG GAG CAT CAT CAG CAG GGG GGG CTC CTC GCG GCG CCA CCA GCC GCC 1394 1394 Val wall Asp Asp Gin gin Asp Asp Asp Asp Leu Leu Asp Asp Glu Glu Glu Glu His His Gin gin Gly Gly Leu Leu Ala Ala Pro for Ala Ala 155 155 160 160 165 165 GAA GAA CTG CTG TTC TTC GCC GCC AGG AGG CTC CTC AAG AAG GCG GCG CGC CGC ATG ATG CCC CCC GAC GAC GGC GGC GAG GAG GAT GAT CTC CTC 1442 1442 Glu Glu Leu Leu Phe Phe Ala Ala Arg Arg Leu Leu Lys Lys Ala Ala Arg Arg Met Met Pro for Asp Asp Gly Gly Glu Glu Asp Asp Leu Leu 170 170 175 175 180 180 GTC GTC GTG GTG ACC ACC CAT CAT GGC GGC GAT GAT GCC GCC TGC TGC TTG TTG CCG CCG AAT AAT ATC ATC ATG ATG GTG GTG GAA GAA AAT AAT 1490 1490 Val wall Val wall Thr Thr His His Gly Gly Asp Asp Ala Ala Cys Cys Leu Leu Pro for Asn same time íle Ile Met Met Val wall Glu Glu Asn same time 185 185 190 190 195 195 200 200 GGC GGC CGC CGC TTT TTT TCT TCT GGA GGA TTC TTC ATC ATC GAC GAC TGT TGT GGC GGC CGG CGG CTG CTG GGT GGT GTG GTG GCG GCG GAC GAC 1538 1538 Gly Gly Arg Arg Phe Phe Ser Ser Gly Gly Phe Phe íle Ile Asp Asp Cys Cys Gly Gly Arg Arg Leu Leu Gly Gly Val wall Ala Ala Asp Asp 205 205 210 210 215 215 CGC CGC TAT TAT CAG CAG GAC GAC ATA ATA GCG GCG TTG TTG GCT GCT ACC ACC CGT CGT GAT GAT ATT ATT GCT GCT GAA GAA GAG GAG CTT CTT 1586 1586 Arg Arg Tyr Tyr Gin gin Asp Asp íle Ile Ala Ala Leu Leu Ala Ala Thr Thr Arg Arg Asp Asp íle Ile Ala Ala Glu Glu Glu Glu Leu Leu 220 220 225 225 230 230 GGC GGC GGC GGC GAA GAA TGG TGG GCT GCT GAC GAC CGC CGC TTC TTC CTC CTC GTG GTG CTT CTT TAC TAC GGT GGT ATC ATC GCC GCC GCT GCT 1634 1634 Gly Gly Gly Gly Glu Glu Trp Trp Ala Ala Asp Asp Arg Arg Phe Phe Leu Leu Val wall Leu Leu Tyr Tyr Gly Gly íle Ile Ala Ala Ala Ala 235 235 240 240 245 245
·· • · • · · • · • · · • *·· · · · · -18·· ·· • · · · • · · • ··· · • · • •·· ·· • · • · • · • · ·· ·· ··· • · • ·-18 · · · • 18 18 18 18 18 18 18 18 18 18 18 18 18 18 CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT GAC GAG TTC TTC 1682CCC GAT TCG CAG CGC ATC GCC TTC TTC Pro Asp Ser Gin Arg íle Ala Phe Tyr Arg Leu Leu Asp Glu Phe PheFor Asp Ser Gin Arg Ala Ala Phe Tyr Arg Leu Leu Asp Glu Phe Phe 250 255 260 264250 255 260 264 TGAGCGGGAC TCTGGGGTTC GAAATGACCG ACCAAGCGAC GCCCCT GTT TTG CAA 1737TGAGCGGGAC TCTGGGGTTC GAAATGACCG ACCAAGCGAC GCCCCT GTT TTG CAA 1737 Val Leu Gin 563 565Val Leu Gin 565 565 TGG TGG CGG CGG TCG TCG GCG GCG AAA AAA GTT GTT GAT GAT GCG GCG CTG CTG TAT CGT GGT GAA TAT CGT GGT GAA GAT GAT CAA CAA TCC TCC 1785 1785 Trp Trp Arg Arg Ser Ser Ala Ala Lys Lys Val wall Asp Asp Ala Ala Leu Leu Tyr Arg Gly Glu Tyr Arg Gly Glu Asp Asp Gin gin Ser Ser 570 570 575 575 580 580 ATG ATG CTG CTG CGT CGT GAC GAC GAG GAG GCC GCC ACA ACA CTG CTG TGA TGA GTTGGTCAGG GGGGGCTTAC GTTGGTCAGG GGGGGCTTAC 1832 1832 Met Met Leu Leu Arg Arg Asp Asp Glu Glu Ala Ala Thr Thr Leu Leu
585 589585 589 TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG 1892TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG 1892 GGTGCCCTGT CGCTGGTGTC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG 1952GGTGCCCTGT CGCTGGTGTC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG 1952 ATGCGTGCGT CGCTTGAACC ACAAATGGTC GATAGCGTAC TCGCAGGCTC TATGGCTCAA 2012ATGCGTGCGT CGCTTGAACC ACAAATGGTC GATAGCGTAC TCGCAGGCTC TATGGCTCAA 2012 GCAAGCTTTG ATGCTTACCT GCTCCCGCGG CACATTGGCT TGTACAGCGG TGTTCCCAAG 2072GCAAGCTTTG ATGCTTACCT GCTCCCGCGG CACATTGGCT TGTACAGCGG TGTTCCCAAG 2072 TCGGTTCCGG CCTTGGGGGT GCAGCGCATT TGCGGCACAG GCTTCGAACT GCTTCGGCAG 2132TCGGTTCCGG CCTTGGGGGT GCAGCGCATT TGCGGCACAG GCTTCGAACT GCTTCGGCAG 2132 GCCGGCGAGC AGATTTCCCA AGGCGCTGAT CACGTGCTGT GTGTCGCGGG CTGCAG 2188GCCGGCGAGC AGATTTCCCA AGGCGCTGAT CACGTGCTGT GTGTCGCGGG CTGCAG 2188 FIG. 2g:FIG. 2G ·· ·· • · · · • · · • ··· • · ···· ····························· -19·· ·· • · · • · ··· • · · · « • · · · ·· ·· ·· • · · • · •: i ·· ·-19 · · · 19 19 19: 19 19 19 19 19 19 i 19 i CTGCAGCCGA CTGCAGCCGA GCATCGATTG GCATCGATTG AGCACTTTAC AGCACTTTAC CCAGCTGCGC CCAGCTGCGC TGGCTGACCA TGGCTGACCA TTCAGAATGG TTCAGAATGG 60 60 CCCGCGGCAC CCCGCGGCAC TATCCAATCT TATCCAATCT AAATCGATCT AAATCGATCT TCGGGCGCCG TCGGGCGCCG CGGGCATCAT CGGGCATCAT GCCCGCGGCG GCCCGCGGCG 120 120 CTCGCCTCAT CTCGCCTCAT TTCAATCTCT TTCAATCTCT AACTTGATAA AACTTGATAA AAACAGAGCT AAACAGAGCT GTTCTCCGGT GTTCTCCGGT CTTGGTGGAT CTTGGTGGAT 180 180 CAAGGCCAGT CAAGGCCAGT CGCGGAGAGT CGCGGAGAGT CTCGAAGAGG CTCGAAGAGG AGAGTACAGT AGAGTACAGT GAACGCCGAG GAACGCCGAG TCCACATTGC TCCACATTGC 240 240 AACCGCAGGC AACCGCAGGC ATCATCATGC ATCATCATGC TCTGCTCAGC TCTGCTCAGC CACGCTACCG CACGCTACCG CAGTGTGTCG CAGTGTGTCG ATTGGTCATC ATTGGTCATC 300 300 CTCCGGTTGA CTCCGGTTGA GGTTACGCAA GGTTACGCAA GACGCTGGAG GACGCTGGAG GTATTGTCCG GTATTGTCCG G ATG CGT TCT CTC GAG ATG CGT TCT CTC GAG 356 356
Met Arg Ser Leu Glu 1 5Met Arg Ser Leu Glu GCG CTT CTT CCC GCG CTT CTT CCC TTC CCG GGT TTC CCG GGT CGA ATT CTT GAG CGT CTC GAG CGA ATT CTT GAG CAT His 20 CAT His 20 TGG Trp TGG Trp 404 404 Ala Ala Leu Leu Leu Leu Pro for Phe 10 Phe 10 Pro for Gly Gly Arg íle Arg ile Leu 15 Leu 15 Glu Glu Arg Arg Leu Leu Glu Glu GCT GCT AAG AAG ACC ACC CGT CGT CCA CCA GAA GAA CAA CAA ACC ACC TGC TGC GTT GTT GCT GCT GCC GCC AGG AGG GCG GCG GCA GCA AAT AAT 452 452 Ala Ala Lys Lys Thr Thr Arg Arg Pro for Glu Glu Gin gin Thr Thr Cys Cys Val wall Ala Ala Ala Ala Arg Arg Ala Ala Ala Ala Asn same time 25 25 30 30 35 35 GGG GGG GAA GAA TGG TGG CGT CGT CGT CGT ATC ATC AGC AGC TAC TAC GCG GCG GAA GAA ATG ATG TTC TTC CAC CAC AAC AAC GTC GTC CGC CGC 500 500 Gly Gly Glu Glu Trp Trp Arg Arg Arg Arg íle Ile Ser Ser Tyr Tyr Ala Ala Glu Glu Met Met Phe Phe His His Asn same time Val wall Arg Arg 40 40 45 45 50 50 GCC GCC ATC ATC GCA GCA CAG CAG AGC AGC TTG TTG CTT CTT CCT CCT TAC TAC GGA GGA CTA CTA TCG TCG GCA GCA GAG GAG CGT CGT CCG CCG 548 548 Ala Ala íle Ile Ala Ala Gin gin Ser Ser Leu Leu Leu Leu Pro for Tyr Tyr Gly Gly Leu Leu Ser Ser Ala Ala Glu Glu Arg Arg Pro for 55 55 60 60 65 65 CTG CTG CTT CTT ATC ATC GTC GTC TCT TCT GGA GGA AAT AAT GAC GAC CTG CTG GAA GAA CAT CAT CTT CTT CAG CAG CTG CTG GCA GCA TTT TTT 596 596 Leu Leu Leu Leu íle Ile Val wall Ser Ser Gly Gly Asn same time Asp Asp Leu Leu Glu Glu His His Leu Leu Gin gin Leu Leu Ala Ala Phe Phe 70 70 75 75 80 80 85 85 GGG GGG GCT GCT ATG ATG TAT TAT GCG GCG GGC GGC ATT ATT CCC CCC TAT TAT TGC TGC CCG CCG GTG GTG TCT TCT CCT CCT GCT GCT TAT TAT 644 644 Gly Gly Ala Ala Met Met Tyr Tyr Ala Ala Gly Gly íle Ile Pro for Tyr Tyr Cys Cys Pro for Val wall Ser Ser Pro for Ala Ala Tyr Tyr 90 90 95 95 100 100 TCA TCA CTG CTG CTG CTG TCG TCG CAA CAA GAT GAT TTG TTG GCG GCG AAG AAG CTG CTG CGT CGT CAC CAC ATC ATC GTA GTA GGT GGT CTT CTT 692 692 Ser Ser Leu Leu Leu Leu Ser Ser Gin gin Asp Asp Leu Leu Ala Ala Lys Lys Leu Leu Arg Arg His His íle Ile Val wall Gly Gly Leu Leu 105 105 110 110 115 115 CTG CTG CAA CAA CCG CCG GGA GGA CTG CTG GTC GTC TTT TTT GCT GCT GCC GCC GAT GAT GCA GCA GCA GCA CCT CCT TTC TTC CAG CAG GGG GGG 740 740 Leu Leu Gin gin Pro for Gly Gly Leu Leu Val wall Phe Phe Ala Ala Ala Ala Asp Asp Ala Ala Ala Ala Pro for Phe Phe Gin gin 120 120 125 125 130 130 132 132
GAGAGGCGGT GAGAGGCGGT TTGCGTATTG TTGCGTATTG GGCGCATGCA GGCGCATGCA TAAAAACTGT TAAAAACTGT TGTAATTCAT TGTAATTCAT TAAGCATTCT TAAGCATTCT 800 800 GCCGACATGG GCCGACATGG AAGCCATCAC AAGCCATCAC AAACGGCATG AAACGGCATG ATGAACCTGA ATGAACCTGA ATCGCCAGCG ATCGCCAGCG GCATCAGCAC GCATCAGCAC 860 860 CTTGTCGCCT CTTGTCGCCT TGCGTATAAT TGCGTATAAT ATTTGCCCAT ATTTGCCCAT GGACGCACAC GGACGCACAC CGTGGAAACG CGTGGAAACG GATGAAGGCA GATGAAGGCA 920 920 CGAACCCAGT CGAACCCAGT TGACATAAGC TGACATAAGC CTGTTCGGTT CTGTTCGGTT CGTAAACTGT CGTAAACTGT AATGCAAGTA AATGCAAGTA GCGTATGCGC GCGTATGCGC 980 980 TCACGCAACT TCACGCAACT GGTCCAGAAC GGTCCAGAAC CTTGACCGAA CTTGACCGAA CGCAGCGGTG CGCAGCGGTG GTAACGGCGC GTAACGGCGC AGTGGCGGTT AGTGGCGGTT 1040 1040 TTCATGGCTT TTCATGGCTT GTTATGACTG GTTATGACTG TTTTTTTGTA TTTTTTTGTA CAGTCTATGC CAGTCTATGC CTCGGGCATC CTCGGGCATC CAAGCAGCAA CAAGCAGCAA 1100 1100
·· • ··· • · -20GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC 1155-20GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC 1155 Met Leu ArgMet Leu Arg AGC Ser AGC Ser AGC Ser 5 AGC Ser 5 AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA AAC GAT GTT ACG CAG CAG 1203 1203 Asn same time Asp Val Thr Gin 10 Asp Val Thr Gin Gin gin Gly Gly Ser Ser Arg Pro 15 Arg Pro Lys Lys Thr Lys Leu Lys Leu Thr GGT GGT GGC GGC TCA TCA AGT AGT ATG ATG GGC GGC ATC ATC ATT ATT CGC CGC ACA ACA TGT TGT AGG AGG CTC CTC GGC GGC CCT CCT GAC GAC 1251 1251 Gly Gly Gly Gly Ser Ser Ser Ser Met Met Gly Gly íle Ile íle Ile Arg Arg Thr Thr Cys Cys Arg Arg Leu Leu Gly Gly Pro for Asp Asp 20 20 25 25 30 30 35 35 CAA CAA GTC GTC AAA AAA TCC TCC ATG ATG CGG CGG GCT GCT GCT GCT CTT CTT GAT GAT CTT CTT TTC TTC GGT GGT CGT CGT GAG GAG TTC TTC 1299 1299 Gin gin Val wall Lys Lys Ser Ser Met Met Arg Arg Ala. Ala. Ala Ala Leu Leu Asp Asp Leu Leu Phe Phe Gly Gly Arg Arg Glu Glu Phe Phe 40 40 45 45 50 50 GGA GGA GAC GAC GTA GTA GCC GCC ACC ACC TAC TAC TCC TCC CAA CAA CAT CAT CAG CAG CCG CCG GAC GAC TCC TCC GAT GAT TAC TAC CTC CTC 1347 1347 Gly Gly Asp Asp Val wall Ala Ala Thr Thr Tyr Tyr Ser Ser Gin gin His His Gin gin Pro for Asp Asp Ser Ser Asp Asp Tyr Tyr Leu Leu 55 55 60 60 65 65 GGG GGG AAC AAC TTG TTG CTC CTC CGT CGT AGT AGT AAG AAG ACA ACA TTC TTC ATC ATC GCG GCG CTT CTT GCT GCT GCC GCC TTC TTC GAC GAC 1395 1395 Gly Gly Asn same time Leu Leu Leu Leu Arg Arg Ser Ser Lys Lys Thr Thr Phe Phe íle Ile Ala Ala Leu Leu Ala Ala Ala Ala Phe Phe Asp Asp 70 70 75 75 80 80 CAA CAA GAA GAA GCG GCG GTT GTT GTT GTT GGC GGC GCT GCT CTC CTC GCG GCG GCT GCT TAC TAC GTT GTT CTG CTG CCC CCC AGG AGG TTT TTT 1443 1443 Gin gin Glu Glu Ala Ala Val wall Val wall Gly Gly Ala Ala Leu Leu Ala Ala Ala Ala Tyr Tyr Val wall Leu Leu Pro for Arg Arg Phe Phe 85 85 90 90 95 95 GAG GAG CAG CAG CCG CCG CGT CGT AGT AGT GAG GAG ATC ATC TAT TAT ATC ATC TAT TAT GAT GAT CTC CTC GCA GCA GTC GTC TCC TCC GGC GGC 1491 1491 Glu Glu Gin gin Pro for Arg Arg Ser Ser Glu Glu íle Ile Tyr Tyr íle Ile Tyr Tyr Asp Asp Leu Leu Ala Ala Val wall Ser Ser Gly Gly 100 100 105 105 110 110 115 115 GAG GAG CAC CAC CGG CGG AGG AGG CAG CAG GGC GGC ATT ATT GCC GCC ACC ACC GCG GCG CTC CTC ATC ATC AAT AAT CTC CTC CTC CTC AAG AAG 1539 1539 Glu Glu His His Arg Arg Arg Arg Gin gin Gly Gly íle Ile Ala Ala Thr Thr Ala Ala Leu Leu íle Ile Asn same time Leu Leu Leu Leu Lys Lys 120 120 125 125 130 130 CAT CAT GAG GAG GCC GCC AAC AAC GCG GCG CTT CTT GGT GGT GCT GCT TAT TAT GTG GTG ATC ATC TAC TAC GTG GTG CAA CAA GCA GCA GAT GAT 1587 1587 His His Glu Glu Ala Ala Asn same time Ala Ala Leu Leu Gly Gly Ala Ala Tyr Tyr Val wall íle Ile Tyr Tyr Val wall Gin gin Ala Ala Asp Asp 135 135 140 140 145 145 TAC TAC GGT GGT GAC GAC GAT GAT CCC CCC GCA GCA GTG GTG GCT GCT CTC CTC TAT TAT ACA ACA AAG AAG TTG TTG GGC GGC ATA ATA CGG CGG 1635 1635 Tyr Tyr Gly Gly Asp Asp Asp Asp Pro for Ala Ala Val wall Ala Ala Leu Leu Tyr Tyr Thr Thr Lys Lys Leu Leu Gly Gly íle Ile Arg Arg 150 150 155 155 160 160 GAA GAA GAA GAA GTG GTG ATG ATG CAC CAC TTT TTT GAT GAT ATC ATC GAC GAC CCA CCA AGT AGT ACC ACC GCC GCC ACC ACC TAA TAA CAA CAA 1683 1683 Glu Glu Glu Glu Val wall Met Met His His Phe Phe Asp Asp íle Ile Asp Asp Pro for Ser Ser Thr Thr Ala Ala Thr Thr 165 165 170 170 175 175 177 177
TTCGTTCAAG CCGAGATCGG CTTCCCCT GTT TTG CAA TGG CGG TCG'GCG AAA 1735TTCGTTCAAG CCGAGATCGG CTTCCCCT GTT TTG CAA TCG'GCG AAA 1735 Val Leu Gin Trp Arg Ser Ala Lys 563 565 570Val Leu Gin Trp Arg Ser Ala Lys 563,565,570 GTT GAT GCG CTG TAT CGT GGT GAA GAT CAA TCC ATG CTG CGT GAC GAG 1783GTT GAT GCG CTG TAT CGT GGT GAA GAT Val Asp Ala Leu Tyr Arg Gly Glu Asp Gin Sér Met Leu Arg Asp GluVal Asp Ala Leu Tyr Arg Gly Glu Asp Gin Ser Met Leu Arg Asp Glu 575 580 585 ·· ·· • · · • · • · ··· • · ·· ·· • · · · • · · • ··· · • · ···· ·· • · • · • · • · ··575 580 585 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· -21GCC ACA CTG TGA GTTGGTCAGG GGGGGCTTAC TCGGCGTTTT CCGACACTGC 1835-21GCC ACA CTG TGA GTGGGTCAGG GGGGGCTTAC TCGGCGTTTT CCGACACTGC 1835 Ala Thr LeuAla Thr Leu 589589 GTTGGTTGCG GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG GGTGCCCTGT CGCTGGTGTC GCAGTGCGCA CCCCCTGGAT TGATTGCGGG GGTGCCCTGT CGCTGGTGTC 1895 1895 GCCTATCGAC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG ATGCGTGCGT CGCTTGAACC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG ATGCGTGCGT CGCTTGAACC 1955 1955 ACAAATGGTC ACAAATGGTC GATAGCGTAC TCGCAGGCTC TATGGCTCAA GCAAGCTTTG ATGCTTACCT GATAGCGTAC TCGCAGGCTC TATGGCTCAA GCAAGCTTTG ATGCTTACCT 2015 2015 GCTCCCGCGG GCTCCCGCGG CACATTGGCT TGTACAGCGG TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT CACATTGGCT TGTACAGCGG TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT 2075 2075 GCAGCGCATT GCAGCGCATT TGCGGCACAG GCTTCGAACT GCTTCGGCAG GCCGGCGAGC AGATTTCCCA TGCGGCACAG GCTTCGAACT GCTTCGGCAG GCCGGCGAGC AGATTTCCCA 2135 2135 AGGCGCTGAT AGGCGCTGAT CACGTGCTGT GTGTCGCGGG CTGCAG CACGTGCTGT GTGTCGCGGG CTGCAG 2171 2171
FIG. 2h:FIG. 2h: ·· • ··· • · -22·· ·· ·· • · · · ··· · • · · · · ··· · • ····· ·· ··· • · · · · · ·· ···· ·· ·· II e -22 ········································ ·· II e CTGCAGCCGA GCATCGATTG AGCACTTTAC CCAGCTGCGC CTGCAGCCGA GCATCGATTG AGCACTTTAC CCAGCTGCGC TGGCTGACCA TTCAGAATGG TGGCTGACCA TTCAGAATGG 60 60 CCCGCGGCAC TATCCAATCT AAATCGATCT TCGGGCGCCG CCCGCGGCAC TATCCAATCT AAATCGATCT TCGGGCGCCG CGGGCATCAT GCCCGCGGCG CGGGCATCAT GCCCGCGGCG 120 120 CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTCCGGT CTTGGTGGAT GTTCTCCGGT CTTGGTGGAT 180 180 CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC GAACGCCGAG TCCACATTGC 240 240 AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC CAGTGTGTCG ATTGGTCATC 300 300 CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG G ATG CGT TCT CTC GAG ATG CGT TCT CTC GAG 356 356
Met Arg Ser Leu Glu 1 5Met Arg Ser Leu Glu GCG Ala GCG Ala CTT Leu CTT Leu CTT CCC TTC CTT CCC TTC CCG GGT CGA ATT CTT GAG CGT CTC GAG CAT TGG CCG GGT CGA ATT CTT GAG 404 404 Leu Leu Pro for Phe 10 Phe 10 Pro Gly Pro Gly Arg Arg Ile Ile Leu Glu 15 Leu Glu Arg Arg Leu Leu Glu His Trp 20 Glu His Trp 20 GCT GCT AAG AAG ACC ACC CGT CGT CCA CCA GAA CAA GAA CAA ACC ACC TGC TGC GTT GCT GTT GCT GCC GCC AGG AGG GCG GCA AAT GCG GCA AAT 452 452 Ala Ala Lys Lys Thr Thr Arg 25 Arg 25 Pro for Glu Gin Glu Gin Thr Thr Cys 30 Cys 30 Val Ala Val Ala Ala Ala Arg Arg Ala Ala Asn 35 Ala Ala Asn 35 GGG GGG GAA GAA TGG TGG CGT CGT CGT CGT ATC AGC ATC AGC TAC TAC GCG GCG GAA ATG GAA ATG TTC TTC CAC CAC AAC GTC CGC AAC GTC CGC 500 500 Gly Gly Glu Glu Trp 40 Trp 40 Arg Arg Arg Arg íle Ser íle Ser Tyr 45 Tyr 45 Ala Ala Glu Met Glu Met Phe Phe His 50 His 50 Asn Val Arg Asn Val Arg GCC GCC ATC ATC GCA GCA CAG CAG AGC AGC TTG CTT TTG CTT CCT CCT TAC TAC GGA CTA GGA CTA TCG TCG GCA GCA GAG CGT CCG GAG CGT CCG 548 548 Ala Ala Ile 55 Ile 55 Ala Ala Gin gin Ser Ser Leu Leu 60 Leu Leu Pro for Tyr Tyr Gly Leu Gly Leu Ser 65 Ser 65 Ala Ala Glu Arg Pro Glu Arg Pro CTG CTG CTT CTT ATC ATC GTC GTC TCT TCT GGA AAT GGA AAT GAC GAC CTG CTG GAA CAT GAA CAT CTT CTT CAG CAG CTG GCA TTT CTG GCA TTT 596 596 Leu 70 Leu 70 Leu Leu Ile Ile Val wall Ser Ser Gly Asn 75 Gly Asn Asp Asp Leu Leu Glu His 80 Glu His 80 Leu Leu Gin gin Leu Ala Phe85 Leu Ala Phe85 GGG GGG GCT GCT ATG ATG TAT TAT GCG GCG GGC ATT GGC ATT CCC CCC TAT TAT TGC CCG TGC CCG GTG GTG TCT TCT CCT GCT TAT CCT GCT TAT 644 644 Gly Gly Ala Ala Met Met Tyr Tyr Ala 90 Ala 90 Gly íle Gly ile Pro for Tyr Tyr Cys Pro 95 Cys Pro 95 Val wall Ser Ser Pro Ala Tyr 100 For Ala Tyr 100 TCA TCA CTG CTG CTG CTG TCG TCG CAA CAA GAT TTG GAT TTG GCG GCG AAG AAG CTG CGT CTG CGT CAC CAC ATC ATC GTA GGT CTT GTA GGT CTT 692 692 Ser Ser Leu Leu Leu Leu Ser 105 Ser 105 Gin gin Asp Leu Asp Leu Ala Ala Lys 110 Lys 110 Leu Arg Leu Arg His His Ile Ile Val Gly Leu 115 Le Gly Leu 115 CTG CTG CAA CAA CCG CCG GGA GGA CTG CTG GTC TTT GTC TTT GCT GCT GCC GCC GAT GCA GAT GCA GCA GCA CCT CCT TTC CAG CGC TTC CAG CGC 740 740 Leu Leu Gin gin Pro 120 for 120 Gly Gly Leu Leu Val Phe Val Phe Ala 125 Ala 125 Ala Ala Asp Ala Asp Ala Ala Ala Pro 130 for 130 Phe Gin Arg 133 Phe Gin Arg 133 GCT GCT GTT GTT TTG TTG CAA CAA TGG TGG CGG TCG CGG TCG GCG GCG AAA AAA GTT GAT GTT GAT GCG GCG CTG CTG TAT CGT GGT TAT CGT GGT 788 788 Ala 562 Ala 562 Val wall Leu Leu Gin 565 gin 565 Trp Trp Arg Ser Arg Ser Ala Ala Lys 570 Lys 570 Val Asp Val Asp Ala Ala Leu Leu Tyr Arg Gly 575 Tyr Arg Gly 575 GAA Glu GAA Glu GAT Asp GAT Asp CAA Gin CAA gin TCC Ser TCC Ser ATG Met ATG Met CTG CGT Leu Arg CGT Leu Arg GAC Asp GAC Asp GAG Glu GAG Glu GCC ACA Ala Thr GCC ACA Ala Thr CTG Leu CTG Leu TGA TGA GTTGGTCAGG GTTGGTCAGG 837 837
580 585 589580 585 589 GGGGGCTTAC TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT 897GGGGGCTTAC TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT 897 TGATTGCGGG GGTGCCCTGT CGCTGGTGTC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG 957 ··· · ·TGATTGCGGG GGTGCCCTGT CGCTGGTGTC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG 957 ··· · · CGAAGTTCTG ATGCGTGCGT CGAAGTTCTG ATGCGTGCGT CGCTTGAACC ACAAATGGTC GATAGCGTAC TCGCAGGCTC CGCTTGAACC ACAAATGGTC GATAGCGTAC TCGCAGGCTC 1017 1017 TATGGCTCAA GCAAGCTTTG TATGGCTCAA GCAAGCTTTG ATGCTTACCT GCTCCCGCGG CACATTGGCT TGTACAGCGG ATGCTTACCT GCTCCCGCGG CACATTGGCT TGTACAGCGG 1077 1077 TGTTCCCAAG TCGGTTCCGG TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT GCAGCGCATT TGCGGCACAG GCTTCGAACT CCTTGGGGGT GCAGCGCATT TGCGGCACAG GCTTCGAACT 1137 1137 GCTTCGGCAG GCCGGCGAGC GCTTCGGCAG GCCGGCGAGC AGATTTCCCA AGGCGCTGAT CACGTGCTGT GTGTCGCGGG AGATTTCCCA AGGCGCTGAT CACGTGCTGT GTGTCGCGGG 1197 1197 CTGCAG CTGCAG 1203 1203
FIG. 2i:FIG. 2i: ·· ·· • · · · · • ··· · · • · · · · · • · · · * ·· ·· ··························· -24·· ·· · · · · · • · · · • ··· « · • · · ···· ·· ·-24 ·· ·· · · · · · · · · · · · · · · · · · · · · · · · GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGCGAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAGGCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAGGGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCCAATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC GGTAACTGATGGTAACTGAT AGAATCATGCAGAATCATGC AAAAATAGTTAAAAATAGTT ACAGCACTGGACAGCACTGG 120120 180180 240240 GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG 290GGTGCACG ATG AAT AGC TAC GAT GGC CGT Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val LysMet Asn Ser Thr Asp Gly Arg Trp Thr Val Th Val Lys 1 1 5 5 10 10 GTT GAA GTT GAA GAA GGT ATC GAA GGT ATC GCT TGG GTC ACG CTG AAC GCT TGG GTC CGC CCG GAG AAG CGC 338 CGC CCG GAG Val Glu 15 Val Glu Glu Gly íle Glu Gly white Ala Trp Val Thr Leu Asn 20 25 Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg 30 Arg Pro Glu Lys Arg 30 AAC GCA AAC GCA ATG AGC CCA ATG AGC CCA ACT CTC AAT CGA GAG ATG ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG 386 GTC GAG GTT GG 386 Asn Ala Asn Ala Met Ser Pro 35 Met Ser Pro Thr Leu Asn Arg Glu Met 40 Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu 45 Val Glu Val Glu 45 GTG CTG GTG CTG GAG CAG GAC GAG CAG GAC GCA GAT GCT CGC GTG CTT GCA GAT GCT GTT CTG ACT GGT GCA 434 GTT CTG ACT GGT GCA 434 Val Leu Val Leu Glu Gin Asp 50 Glu Gin Asp 50 Ala Asp Ala Arg Val Leu 55 Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 60 Val Leu Thr Gly Ala 60 GGC GAA GGC GAA TCC TGG ACC TCC TGG ACC GCG GGC ATG GAC CTG AAG GCG GGC ATG GAG TAT TTC CGC GAG 482 GAG TAT TTC CGC GAG 482 Gly Glu Gly Glu Ser Trp Thr 65 Ser Trp Thr Ala Gly Met Asp Leu Lys 70 Ala Gly Met Asp Leu Lys 71 Glu Tyr Phe Arg Glu 75 Glu Tyr Phe Arg Glu 75 ACC GAT Thr Asp 80 ACC GAT Thr Asp 80 GCT GGC CCC Ala Gly Pro GCT GGC CCC Ala Gly Pro GAA ATT CTG CAA GAG AAG Glu íle Leu Gin Glu Lys 85 GAA ATT CTG CAA GAG AAG Glu White Leu Gin Glu Lys 85 ATT CGT CGGGGACAGC 531 íle Arg 90 91 ATT CGT CGGGGACAGC Arg 90 91 AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT 591 GTTGGGAAGC CCTGCAAAGT 591 AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA 651 AGGGGATCAA GATCTGATCA 651 AGAGACAGGA TGAGGATCGT TTCGC ATG ATT GAA CAA Met íle Glu Gin 1 AGAGACAGGA TGAGGATCGT TTCGC ATG ATT 1 GAT GGA TTG CAC GCA 703 Asp Gly Leu His Ala 5 GAT GGA TTG CAC GCA 703 Asp Gly Leu His Ala 5 GGT TCT GGT TCT CCG GCC GCT CCG GCC GCT TGG GTG GAG AGG CTA TTC TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA 751 GGC TAT GAC TGG GCA 751 Gly Ser 10 Gly Ser Pro Ala Ala For Al Ala Trp Val Glu Arg Leu Phe 15 20 20 Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 25 Gly Tyr Asp Trp Ala 25 CAA CAG CAA CAG ACA ATC GGC ACA ATC GGC TGC TCT GAT GCC GCC GTG TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCG 799 TTC CGG CTG TCA GCG 799 Gin Gin Gin Gin Thr íle Gly 30 Thr ile Gly 30 Cys Ser Asp Ala Ala Val 35 Cys Ser Asp Ala Ala Val 34 Phe Arg Leu Ser Ala 40 Phe Arg Leu Ser Ala 40 CAG GGG CAG GGG CGC CCG GTT CGC CCG GTT CTT TTT GTC AAG ACC GAC CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG 847 CTG TCC GGT GCC CTG 847 Gin Gly Gin Gly Arg Pro Val 45 Arg Pro Val Leu Phe Val Lys Thr Asp 50 Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 55 Leu Ser Gly Ala Leu 55 AAT GAA AAT GAA CTG CAG GAC CTG CAG GAC GAG GCA GCG CGG CTA TCG GAG GCA GCG TGG CTG GCC ACG ACG 895 TGG CTG GCC ACG ACG 895 Asn Glu Asn Glu Leu Gin Asp Leu Gin Asp Glu Ala Ala Arg Leu Ser Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr Trp Leu Ala Thr Thr
60 65 7060 65 70 GGC GTT CCT TGC GGC GTT CCT TGC GCA GCT GTG CTC GAC GTT GTC ACT GAA GCG GGA AGG GCA GCT GTC GG GTC GTC GGA 943 943 Gly Val 75 Gly Val Pro for Cys Cys Ala Ala Ala Ala Val 80 wall 80 Leu Asp Val Leu Asp Val Thr Glu 85 Val Thr Glu Ala Ala Gly Gly Arg Arg GAC GAC TGG TGG CTG CTG CTA CTA TTG TTG GGC GGC GAA GAA GTG GTG CCG CCG GGG GGG CAG CAG GAT GAT CTC CTC CTG CTG TCA TCA TCT TCT 991 991 Asp Asp Trp Trp Leu Leu Leu Leu Leu Leu Gly Gly Glu Glu Val wall Pro for Gly Gly Gin gin Asp Asp Leu Leu Leu Leu Ser Ser Ser Ser 90 90 95 95 100 100 105 105 CAC CAC CTT CTT GCT GCT CCT CCT GCC GCC GAG GAG AAA AAA GTA GTA TCC TCC ATC ATC ATG ATG GCT GCT GAT GAT GCA GCA ATG ATG CGG CGG 1039 1039 His His Leu Leu Ala Ala Pro for Ala Ala Glu Glu Lys Lys Val wall Ser Ser íle Ile Met Met Ala Ala Asp Asp Ala Ala Met Met Arg Arg 110 110 115 115 120 120 CGG CGG CTG CTG CAT CAT ACG ACG CTT CTT GAT GAT CCG CCG GCT GCT ACC ACC TGC TGC CCA CCA TTC TTC GAC GAC CAC CAC CAA CAA GCG GCG 1087 1087 Arg Arg Leu Leu His His Thr Thr Leu Leu Asp Asp Pro for Ala Ala Thr Thr Cys Cys Pro for Phe Phe Asp Asp His His Gin gin Ala Ala 125 125 130 130 135 135 AAA AAA CAT CAT CGC CGC ATC ATC GAG GAG CGA CGA GCA GCA CGT CGT ACT ACT CGG CGG ATG ATG GAA GAA GCC GCC GGT GGT CTT CTT GTC GTC 1135 1135 Lys Lys His His Arg Arg íle Ile Glu Glu Arg Arg Ala Ala Arg Arg Thr Thr Arg Arg Met Met Glu Glu Ala Ala Gly Gly Leu Leu Val wall 140 140 145 145 150 150 GAT GAT CAG CAG GAT GAT GAT GAT CTG CTG GAC GAC GAA GAA GAG GAG CAT CAT CAG CAG GGG GGG CTC CTC GCG GCG CCA CCA GCC GCC GAA GAA 1183 1183 Asp Asp Gin gin Asp Asp Asp Asp Leu Leu Asp Asp Glu Glu Glu Glu His His Gin gin Gly Gly Leu Leu Ala Ala Pro for Ala Ala Glu Glu 155 155 160 160 165 165 CTG CTG TTC TTC GCC GCC AGG AGG CTC CTC AAG AAG GCG GCG CGC CGC ATG ATG CCC CCC GAC GAC GGC GGC GAG GAG GAT GAT CTC CTC GTC GTC 1231 1231 Leu Leu Phe Phe Ala Ala Arg Arg Leu Leu Lys Lys Ala Ala Arg Arg Met Met Pro for Asp Asp Gly Gly Glu Glu Asp Asp Leu Leu Val wall 170 170 175 175 180 180 185 185 GTG GTG ACC ACC CAT CAT GGC GGC GAT GAT GCC GCC TGC TGC TTG TTG CCG CCG AAT AAT ATC ATC ATG ATG GTG GTG GAA GAA AAT AAT GGC GGC 1279 1279 Val wall Thr Thr His His Gly Gly Asp Asp Ala Ala Cys Cys Leu Leu Pro for Asn same time íle Ile Met Met Val wall Glu Glu Asn same time Gly Gly 190 190 195 195 200 200 CGC CGC TTT TTT TCT TCT GGA GGA TTC TTC ATC ATC GAC GAC TGT TGT GGC GGC CGG CGG CTG CTG GGT GGT GTG GTG GCG GCG GAC GAC CGC CGC 1327 1327 Arg Arg Phe Phe Ser Ser Gly Gly Phe Phe íle Ile Asp Asp Cys Cys Gly Gly Arg Arg Leu Leu Gly Gly Val wall Ala Ala Asp Asp Arg Arg 205 205 210 210 215 215 TAT TAT CAG CAG GAC GAC ATA ATA GCG GCG TTG TTG GCT GCT ACC ACC CGT CGT GAT GAT ATT ATT GCT GCT GAA GAA GAG GAG CTT CTT GGC GGC 1375 1375 Tyr Tyr Gin gin Asp Asp íle Ile Ala Ala Leu Leu Ala Ala Thr Thr Arg Arg Asp Asp íle Ile Ala Ala Glu Glu Glu Glu Leu Leu Gly Gly 220 220 225 225 230 230 GGC GGC GAA GAA TGG TGG GCT GCT GAC GAC CGC CGC TTC TTC CTC CTC GTG GTG CTT CTT TAC TAC GGT GGT ATC ATC GCC GCC GCT GCT CCC CCC 1423 1423 Gly Gly Glu Glu Trp Trp Ala Ala Asp Asp Arg Arg Phe Phe Leu Leu Val wall Leu Leu Tyr Tyr Gly Gly íle Ile Ala Ala Ala Ala Pro for 235 235 240 240 245 245 GAT GAT TCG TCG CAG CAG CGC CGC ATC ATC GCC GCC TTC TTC TAT TAT CGC CGC CTT CTT CTT CTT GAC GAC GAG GAG TTC TTC TTC TTC TGA TGA 1471 1471 Asp Asp Ser Ser Gin gin Arg Arg íle Ile Ala Ala Phe Phe Tyr Tyr Arg Arg Leu Leu Leu Leu Asp Asp Glu Glu Phe Phe Phe Phe 250 250 255 255 260 260 264 264
GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC CC GAG CAG GGC ATG 1525GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC CC GAG CAG GGC ATG 1525 Glu Gin Gly Met 255Glu Gin Gly Met 255 AAG CAG TTC CTT GAC GAG AAA AGC ATC AAG CCG GGC TTG CAG ACC TAC 1573AAG CAG TTC CTT GAC GAG AAA AGC ATC Lys Gin Phe Leu Asp Glu Lys Ser íle Lys Pro Gly Leu Gin Thr TyrLys Gin Thr Tyr 260 265 270 ·· ·· ·· • · · · * · • · · · · • ··· · · · • · · · • ··· ·· a · • · · · • •t « • · a a a • · · ·· ·· a260 265 270 ···················· • · · ·· ·· a -26AAG CGC TGA TAAATGCGCC GGGGCCCTCG CTGCGCCCCC GGCCTTCCAA TAATGACAAT 1632 Lys Arg 275 276-26AAG CGC TGA TAAATGCGCC GGGGCCCTCG CTGCGCCCCC GGCCTTCCAA TAATGACAAT 1632 AATGAGGAGT AATGAGGAGT GCCCAATGTT GCCCAATGTT TCACGTGCCC TCACGTGCCC CTGCTTATTG CTGCTTATTG GTGGTAAGCC GTGGTAAGCC TTGTTCAGCA TTGTTCAGCA 1692 1692 TCTGATGAGC TCTGATGAGC GCACCTTCGA GCACCTTCGA GCGTCGTAGC GCGTCGTAGC CCGCTGACCG CCGCTGACCG GAGAAGTGGT GAGAAGTGGT ATCGCGCGTC ATCGCGCGTC 1752 1752 GCTGCTGCCA GCTGCTGCCA GTTTGGAAGA GTTTGGAAGA TGCGGACGCC TGCGGACGCC GCAGTGGCCG GCAGTGGCCG CTGCACAGGC CTGCACAGGC TGCGTTTCCT TGCGTTTCCT 1812 1812 GAATGGGCGG GAATGGGCGG CGCTTGCTCC CGCTTGCTCC GAGCGAACGC GAGCGAACGC CGTGCCCGAC CGTGCCCGAC TGCTGCGAGC TGCTGCGAGC GGCGGATCTT GGCGGATCTT 1872 1872 CTAGAGGACC CTAGAGGACC GTTCTTCCGA GTTCTTCCGA GTTCACCGCC GTTCACCGCC GCAGCGAGTG GCAGCGAGTG AAACTGGCGC AAACTGGCGC AGCGGGAAAC AGCGGGAAAC 1932 1932 TGGTATGGGT TGGTATGGGT TTAACGTTTA TTAACGTTTA CCTGGČGGCG CCTGGČGGCG GGCATGTTGC GGCATGTTGC GGGGAATTC GGGGAATTC 1981 1981
FIG. 2 j :FIG. 2 j: ···· · · -27GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60-27GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60 GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC 120GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC 120 GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180 AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG 240AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG 240 GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG 290GGTGCACG ATG AAT AGC TAC GAT GGC CGT Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val LysMet Asn Ser Thr Asp Gly Arg Trp Thr Val Th Val Lys 15 1015 10 GTT Val 15 GTT wall 15 GAA GAA GGT ATC Glu Glu Gly íle GAA GAA GGT ATC Glu Glu Gly White GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC GCT TGG GTC ACG CTG AAC CGC 338 338 Ala Trp 20 Ala Trp Val wall Thr Leu Thr Leu Asn 25 same time 25 Arg Arg Pro for Glu Glu Lys Arg 30 Lys Arg 30 AAC AAC GCA GCA ATG ATG AGC AGC CCA CCA ACT ACT CTC CTC AAT AAT CGA CGA GAG GAG ATG ATG GTC GTC GAG GAG GTT GTT CTG CTG GAG GAG 386 386 Asn same time Ala Ala Met Met Ser Ser Pro for Thr Thr Leu Leu Asn same time Arg Arg Glu Glu Met Met Val wall Glu Glu Val wall Leu Leu Glu Glu 35 35 40 40 45 45 GTG GTG CTG CTG GAG GAG CAG CAG GAC GAC GCA GCA GAT GAT GCT GCT CGC CGC GTG GTG CTT CTT GTT GTT CTG CTG ACT ACT GGT GGT GCA GCA 434 434 Val wall Leu Leu Glu Glu Gin gin Asp Asp Ala Ala Asp Asp Ala Ala Arg Arg Val wall Leu Leu Val wall Leu Leu Thr Thr Gly Gly Ala Ala 50 50 55 55 60 60 GGC GGC GAA GAA TCC TCC TGG TGG ACC ACC GCG GCG GGC GGC ATG ATG GAC GAC CTG CTG AAG AAG GAG GAG TAT TAT TTC TTC CGC CGC GAG GAG 482 482 Gly Gly Glu Glu Ser Ser Trp Trp Thr Thr Ala Ala Gly Gly Met Met Asp Asp Leu Leu Lys Lys Glu Glu Tyr Tyr Phe Phe Arg Arg Glu Glu 65 65 70 70 75 75 ACC ACC GAT GAT GCT GCT GGC GGC CCC CCC GAA GAA ATT ATT CTG CTG CAA CAA GAG GAG AAG AAG ATT ATT CGT CGT CGGGGGAGAG CGGGGGAGAG 531 531 Thr Thr Asp Asp Ala Ala Gly Gly Pro for Glu Glu íle Ile Leu Leu Gin gin Glu Glu Lys Lys íle Ile Arg Arg 80 80 85 85 90 90 91 91
GCGGTTTGCG TATTGGGCGC ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA GCGGTTTGCG TATTGGGCGC ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA 591 591 CATGGAAGCC ATCACAAACG GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT CATGGAAGCC ATCACAAACG GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT 651 651 CGCCTTGCGT ATAATATTTG CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CGCCTTGCGT ATAATATTTG CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC 711 711 CCAGTTGACA TAAGCCTGTT CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CCAGTTGACA TAAGCCTGTT CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG 771 771 CAACTGGTCC AGAACCTTGA CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT CAACTGGTCC AGAACCTTGA CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT 831 831 GGCTTGTTAT GACTGTTTTT TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG GGCTTGTTAT GACTGTTTTT TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG 891 891 TTACGCCGTG GGTCGATGTT TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC TTACGCCGTG GGTCGATGTT TGATGTTATG GAGCAGCAACG ATG TTA CGC AGC AGC 947 947
Met Leu Arg Ser SerMet Leu Arg Ser AAC Asn AAC same time GAT Asp GAT Asp GTT Val GTT wall ACG CAG Thr Gin 10 ACG CAG Thr Gin 10 CAG Gin CAG gin GGC AGT CGC CCT GGC AGT CGC CCT 1 AAA ACA AAG TTA 1 AAA ACA AAG TTA 5 GGT GGC 5 GGT GGC 995 995 Gly Ser Arg Gly Ser Arg Pro 15 for 15 Lys Thr Lys Thr Lys Leu Lys Leu Gly 20 Gly 20 Gly Gly TCA TCA AGT AGT ATG ATG GGC GGC ATC ATC ATT ATT CGC CGC ACA ACA TGT TGT AGG AGG CTC CTC GGC GGC CCT CCT GAC GAC CAA CAA GTC GTC 1043 1043 Ser Ser Ser Ser Met Met Gly Gly íle Ile íle Ile Arg Arg Thr Thr Cys Cys Arg Arg Leu Leu Gly Gly Pro for Asp Asp Gin gin Val wall 25 25 30 30 35 35
·· ·· • · • · φ·· ·· • · • · φ ΦΦ·ΦΦ · -28φφφφ ·· • Φ·· φ φ φ-28φφφφ ·· • Φ ·· φ φ φ 9 9 φ9 9 φ Φ ΦΦΦ ΦΦ AAA Lys AAA Lys TCC ATG CGG GCT TCC ATG CGG GCT GCT Ala GCT Ala CTT GAT CTT TTC GGT CGT GAG TTC GGA GAC CTT GAT GTC GTC GTC GTC GTC GTC GTC 1091 1091 Ser Ser Met 40 Met 40 Arg Ala Arg Ala Leu Leu Asp 45 Asp 45 Leu Leu Phe Phe Gly Gly Arg Glu 50 Arg Glu Phe Gly Asp Phe. Gly Asp GTA GTA GCC GCC ACC ACC TAC TCC TAC TCC CAA CAA CAT CAT CAG CAG CCG CCG GAC GAC TCC TCC GAT TAC GAT TAC CTC GGG AAC CTC GGG AAC 1139 1139 Val wall Ala 55 Ala 55 Thr Thr Tyr Ser Tyr Ser Gin gin His 60 His 60 Gin gin Pro for Asp Asp Ser Ser Asp Tyr 65 Asp Tyr Leu Gly Asn Leu Gly Asn TTG TTG CTC CTC CGT CGT AGT AAG AGT AAG ACA ACA TTC TTC ATC ATC GCG GCG CTT CTT GCT GCT GCC TTC GCC TTC GAC CAA GAA GAC CAA GAA 1187 1187 Leu 70 Leu 70 Leu Leu Arg Arg Ser Lys Ser Lys Thr 75 Thr 75 Phe Phe íle Ile Ala Ala Leu Leu Ala 80 Ala 80 Ala Phe Ala Phe Asp Gin Glu 85 Asp Gin Glu 85 GCG GCG GTT GTT GTT GTT GGC GCT GGC GCT CTC CTC GCG GCG GCT GCT TAC TAC GTT GTT CTG CTG CCC AGG CCC AGG TTT GAG CAG TTT GAG CAG 1235 1235 Ala Ala Val wall Val wall Gly Ala 90 Gly Ala Leu Leu Ala Ala Ala Ala Tyr Tyr Val 95 wall 95 Leu Leu Pro Arg For Arg Phe Glu Gin 100 Phe Glu 100 CCG CCG CGT CGT AGT AGT GAG ATC GAG ATC TAT TAT ATC ATC TAT TAT GAT GAT CTC CTC GCA GCA GTC TCC GTC TCC GGC GAG CAC GGC GAG CAC 1283 1283 Pro for Arg Arg Ser Ser Glu íle 105 Glues 105 Tyr Tyr íle Ile Tyr Tyr Asp 110 Asp 110 Leu Leu Ala Ala Val Ser Val Ser Gly Glu His 115 Gly Glu His 115 CGG CGG AGG AGG CAG CAG GGC ATT GGC ATT GCC GCC ACC ACC GCG GCG CTC CTC ATC ATC AAT AAT CTC CTC CTC CTC AAG CAT GAG AAG CAT GAG 1331 1331 Arg Arg Arg Arg Gin 120 gin 120 Gly íle Gly ile Ala Ala Thr Thr Ala 125 Ala 125 Leu Leu íle Ile Asn same time Leu Leu 130 Leu Leu Lys His Glu Lys His Glu GCC GCC AAC AAC GCG GCG CTT GGT CTT GGT GCT GCT TAT TAT GTG GTG ATC ATC TAC TAC GTG GTG CAA GCA CAA GCA GAT TAC GGT GAT TAC GGT 1379 1379 Ala Ala Asn 135 same time 135 Ala Ala Leu Gly Leu Gly Ala Ala Tyr 140 Tyr 140 Val wall íle Ile Tyr Tyr Val wall Gin Ala 145 Gin Ala Asp Tyr Gly Asp Tyr Gly GAC GAC GAT GAT CCC CCC GCA GTG GCA GTG GCT GCT CTC CTC TAT TAT ACA ACA AAG AAG TTG TTG GGC ATA GGC ATA CGG GAA GAA CGG GAA 1427 1427 Asp 150 Asp 150 Asp Asp Pro for Ala Val Ala Val Ala 155 Ala 155 Leu Leu Tyr Tyr Thr Thr Lys Lys Leu 160 Leu 160 Gly íle Gly ile Arg Glu Glu 165 Arg Glu Glu 165 GTG Val GTG wall ATG Met ATG Met CAC His CAC His TTT GAT Phe Asp 170 TTT GAT Phe Asp 170 ATC íle ATC Ile GAC Asp GAC Asp CCA Pro CCA for AGT Ser AGT Ser ACC Thr 175 ACC Thr 175 GCC Ala GCC Ala ACC TAA Thr 177 ACC TAA Thr 177 CAATTCGTTC CAATTCGTTC 1476 1476
AAGCCGAGAT CGGCTTCCCC GAG CAG GGC ATG AAG CAG TTC CTT GAC GAG 1526AAGCCGAGAT CGGCTTCCCC GAG CAG GGC ATG Glu Gin Gly Met Lys Gin Phe Leu Asp Glu 255 260Glu Gin Gly Met Lys Gin Phe Leu Asp Glu 255 260 AAA AGC ATC AAG CCG GGC TTG CAG ACC TAC AAG CGC TGA TAAATGCGCC 1575AAA AGC ATC AAG CCG GGC TTG CAG ACC TAC AAG CGC TGA TAAATGCGCC 1575 Lys Ser íle Lys Pro Gly Leu Gin Thr Tyr Lys Arg 265 270 275 276Lys Serie Lys Pro Gly Leu Gin Thr Tyr Lys Arg 265 270 275 276 GGGGCCCTCG CTGCGCCCCC GGGGCCCTCG CTGCGCCCCC GGCCTTCCAA TAATGACAAT AATGAGGAGT GCCCAATGTT GGCCTTCCAA TAATGACAAT AATGAGGAGT GCCCAATGTT 1635 1635 TCACGTGCCC CTGCTTATTG TCACGTGCCC CTGCTTATTG GTGGTAAGCC TTGTTCAGCA TCTGATGAGC GCACCTTCGA GTGGTAAGCC TTGTTCAGCA TCTGATGAGC GCACCTTCGA 1695 1695 GCGTCGTAGC CCGCTGACCG GCGTCGTAGC CCGCTGACCG GAGAAGTGGT ATCGCGCGTC GCTGCTGCCA GTTTGGAAGA GAGAAGTGGT ATCGCGCGTC GCTGCTGCCA GTTTGGAAGA 1755 1755 TGCGGACGCC GCAGTGGCCG TGCGGACGCC GCAGTGGCCG CTGCACAGGC TGCGTTTCCT GAATGGGCGG CGCTTGCTCC CTGCACAGGC TGCGTTTCCT GAATGGGCGG CGCTTGCTCC 1815 1815 GAGCGAACGC CGTGCCCGAC GAGCGAACGC CGTGCCCGAC TGCTGCGAGC GGCGGATCTT CTAGAGGACC GTTCTTCCGA TGCTGCGAGC GGCGGATCTT CTAGAGGACC GTTCTTCCGA 1875 1875
-29GTTCACCGCC GCAGCGAGTG AAACTGGCGC AGCGGGAAAC TGGTATGGGT TTAACGTTTA 1935-29GTTCACCGCC GCAGCGAGTG AAACTGGCGC AGCGGGAAAC TGGTATGGGT TTAACGTTTA 1935 CCTGGCGGCG GGCATGTTGC GGGGAATTC 1964CCTGGCGGCG GGCATGTTGC GGGGAATTC 1964 FIG. 2k:FIG. 2k: ·· ·· • · · · • · · • ··· • · • · * · · · ························· 9 99 9 -30• · • · • · • · ··-30 • · · · · · · · ··· 999 i : ··999 i: ·· GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60 GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC 120GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC 120 GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180 AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG 240AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG 240 GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG 290GGTGCACG ATG AAT AGC TAC GAT GGC CGT Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val LysMet Asn Ser Thr Asp Gly Arg Trp Thr Val Th Val Lys 15 1015 10 GTT GAA Val Glu 15 GTT GAA Val Glu 15 GAA Glu GAA Glu GGT ATC GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC GCT TGG GTC ACG CTG AAC CGC 338 338 Gly Gly íle Ile Ala 20 Ala 20 Trp Val Trp Val Thr Leu Thr Leu Asn 25 same time 25 Arg Arg Pro Glu Pro Glu Lys Lys Arg 30 Arg 30 AAC AAC GCA GCA ATG ATG AGC AGC CCA CCA ACT ACT CTC CTC AAT AAT CGA CGA GAG GAG ATG ATG GTC GTC GAG GAG GTT GTT CTG CTG GAG GAG 386 386 Asn same time Ala Ala Met Met Ser Ser Pro for Thr Thr Leu Leu Asn same time Arg Arg Glu Glu Met Met Val wall Glu Glu Val wall Leu Leu Glu Glu 35 35 40 40 45 45 GTG GTG CTG CTG GAG GAG CAG CAG GAC GAC GCA GCA GAT GAT GCT GCT CGC CGC GTG GTG CTT CTT GTT GTT CTG CTG ACT ACT GGT GGT GCA GCA 434 434 Val wall Leu Leu Glu Glu Gin gin Asp Asp Ala Ala Asp Asp Ala Ala Arg Arg Val wall Leu Leu Val wall Leu Leu Thr Thr Gly Gly Ala Ala 50 50 55 55 60 60 GGC GGC GAA GAA TCC TCC TGG TGG ACC ACC GCG GCG GGC GGC ATG ATG GAC GAC CTG CTG AAG AAG GAG GAG TAT TAT TTC TTC CGC CGC GAG GAG 482 482 Gly Gly Glu Glu Ser Ser Trp Trp Thr Thr Ala Ala Gly Gly Met Met Asp Asp Leu Leu Lys Lys Glu Glu Tyr Tyr Phe Phe Arg Arg Glu Glu 65 65 70 70 75 75 ACC ACC GAT GAT GCT GCT GGC GGC CCC CCC GAA GAA ATT ATT CTG CTG CAA CAA GAG GAG AAG AAG ATT ATT CGT CGT CGC CGC GAG GAG CAG CAG 530 530 Thr Thr Asp Asp Ala Ala Gly Gly Pro for Glu Glu íle Ile Leu Leu Gin gin Glu Glu Lys Lys íle Ile Arg Arg Arg Arg Glu Glu Gin gin 80 80 85 85 90 90 92 92 255 255 GGC GGC ATG ATG AAG AAG CAG CAG TTC TTC CTT CTT GAC GAC GAG GAG AAA AAA AGC AGC ATC ATC AAG AAG CCG CCG GGC GGC TTG TTG CAG CAG 578 578 Gly Gly Met Met Lys Lys Gin gin Phe Phe Leu Leu Asp Asp Glu Glu Lys Lys Ser Ser íle Ile Lys Lys Pro for Gly Gly Leu Leu Gin gin 260 260 265 265 270 270
ACC TAC AAG CGC TGA TAAATGCGCC GGGGCCCTCG CTGCGCCCCC GGCCTTCCAA 633ACC TAC AAG TGA TAAATGCGCC GGGGCCCTCG GGCCTTCCAA 633 Thr Tyr Lys ArgThr Tyr Lys Arg 275 276275 276 TAATGACAAT TAATGACAAT AATGAGGAGT AATGAGGAGT GCCCAATGTT GCCCAATGTT TCACGTGCCC TCACGTGCCC CTGCTTATTG CTGCTTATTG GTGGTAAGCC GTGGTAAGCC 693 693 TTGTTCAGCA TTGTTCAGCA TCTGATGAGC TCTGATGAGC GCACCTTCGA GCACCTTCGA GCGTCGTAGC GCGTCGTAGC CCGCTGACCG CCGCTGACCG GAGAAGTGGT GAGAAGTGGT 753 753 ATCGCGCGTC ATCGCGCGTC GCTGCTGCCA GCTGCTGCCA GTTTGGAAGA GTTTGGAAGA TGCGGACGCC TGCGGACGCC GCAGTGGCCG GCAGTGGCCG CTGCACAGGC CTGCACAGGC 813 813 TGCGTTTCCT TGCGTTTCCT GAATGGGCGG GAATGGGCGG CGCTTGCTCC CGCTTGCTCC GAGCGAACGC GAGCGAACGC CGTGCCCGAC CGTGCCCGAC TGCTGCGAGC TGCTGCGAGC 873 873 GGCGGATCTT GGCGGATCTT CTAGAGGACC CTAGAGGACC GTTCTTCCGA GTTCTTCCGA GTTCACCGCC GTTCACCGCC GCAGCGAGTG GCAGCGAGTG AAACTGGCGC AAACTGGCGC 933 933 AGCGGGAAAC AGCGGGAAAC TGGTATGGGT TGGTATGGGT TTAACGTTTA TTAACGTTTA CCTGGCGGCG CCTGGCGGCG GGCATGTTGC GGCATGTTGC GGGGAATTC GGGGAATTC 992 992
FIG. 21:FIG. 21: -31GAATTCCAAT AATGACAATA ATGAGGAGTG CCCA ATG TTT CAC GTG CCC CTG CTT 55-31GAATTCCAAT AATGACAATA ATGAGGAGTG CCG ATT TTG CAC GTG CCC CTG CTT 55 Met Phe His Val Pro Leu LeuMet Phe His Val For Leu Leu 1 5 ·· ·· ·· ··1 5 ·· ·· ·· ·· ATT GGT GGT AAG íle Gly Gly Lys ATT GGT GGT AAG White Gly Gly Lys CCT TGT TCA CCT TGT TCA GCA TCT GAT GAG CGC ACC TTC GAG CGT GCA TCT GAT GAG GC ACC TTC GAG CGT 103 103 Pro for Cys Cys Ser Ser Ala 15 Ala 15 Ser Asp Ser Asp Glu Arg Glu Arg Thr 20 Thr 20 Phe Glu Phe Glu Arg Arg 10 10 CGT CGT AGC AGC CCG CCG CTG CTG ACC ACC GGA GGA GAA GAA GTG GTG GTA GTA TCG TCG CGC CGC GTC GTC GCT GCT GCT GCT GCC GCC AGT AGT 151 151 Arg Arg Ser Ser Pro for Leu Leu Thr Thr Gly Gly Glu Glu Val wall Val wall Ser Ser Arg Arg Val wall Ala Ala Ala Ala Ala Ala Ser Ser 25 25 30 30 35 35 TTG TTG GAA GAA GAT GAT GCG GCG GAC GAC GCC GCC GCA GCA GTG GTG GCC GCC GCT GCT GCA GCA CAG CAG GCT GCT GCG GCG TTT TTT CCT CCT 199 199 Leu Leu Glu Glu Asp Asp Ala Ala Asp Asp Ala Ala Ala Ala Val wall Ala Ala Ala Ala Ala Ala Gin gin Ala Ala Ala Ala Phe Phe Pro for 40 40 45 45 50 50 55 55 GAA GAA TGG TGG GCG GCG GCG GCG CTT CTT GCT GCT CCG CCG AGC AGC GAA GAA CGC CGC CGT CGT GCC GCC CGA CGA CTG CTG CTG CTG CGA CGA 247 247 Glu Glu Trp Trp Ala Ala Ala Ala Leu Leu Ala Ala Pro for Ser Ser Glu Glu Arg Arg Arg Arg Ala Ala Arg Arg Leu Leu Leu Leu Arg Arg 60 60 65 65 70 70 GCG GCG GCG GCG GAT GAT CTT CTT CTA CTA GAG GAG GAC GAC CGT CGT TCT TCT TCC TCC GAG GAG TTC TTC ACC ACC GCC GCC GCA GCA GCG GCG 295 295 Ala Ala Ala Ala Asp Asp Leu Leu Leu Leu Glu Glu Asp Asp Arg Arg Ser Ser Ser Ser Glu Glu Phe Phe Thr Thr Ala Ala Ala Ala Ala Ala 75 75 80 80 85 85 AGT AGT GAA GAA ACT ACT GGC GGC GCA GCA GCG GCG GGA GGA AAC AAC TGG TGG TAT TAT GGG GGG TTT TTT AAC AAC GTT GTT TAC TAC CTG CTG 343 343 Ser Ser Glu Glu Thr Thr Gly Gly Ala Ala Ala Ala Gly Gly Asn same time Trp Trp Tyr Tyr Gly Gly Phe Phe Asn same time Val wall Tyr Tyr Leu Leu 90 90 95 95 100 100 GCG GCG GCG GCG GGC GGC ATG ATG TTG TTG CGG CGG GAA GAA GCC GCC GCG GCG GCC GCC ATG ATG ACC ACC ACA ACA CAG CAG ATT ATT CAG CAG 391 391 Ala Ala Ala Ala Gly Gly Met Met Leu Leu Arg Arg Glu Glu Ala Ala Ala Ala Ala Ala Met Met Thr Thr Thr Thr Gin gin íle Ile Gin gin 105 105 110 110 115 115 GGC GGC GAT GAT GTC GTC ATT ATT CCG CCG TCC TCC AAT AAT GTG GTG CCC CCC GGT GGT AGC AGC TTT TTT GCC GCC ATG ATG GCG GCG GTT GTT 439 439 Gly Gly Asp Asp Val wall íle Ile Pro for Ser Ser Asn same time Val wall Pro for Gly Gly Ser Ser Phe Phe Ala Ala Met Met Ala Ala Val wall 120 120 125 125 130 130 135 135 CGA CGA CAG CAG CCA CCA TGT TGT GGC GGC GTG GTG GTG GTG CTC CTC GGT GGT ATT ATT GCG GCG CCT CCT TGG TGG AAT AAT GCT GCT CCG CCG 487 487 Arg Arg Gin gin Pro for Cys Cys Gly Gly Val wall Val wall Leu Leu Gly Gly íle Ile Ala Ala Pro for Trp Trp Asn same time Ala Ala Pro for 140 140 145 145 150 150 GTA GTA ATC ATC CTT CTT GGC GGC GTA GTA CGG CGG GCT GCT GTT GTT GCG GCG ATG ATG CCG CCG TTG TTG GCA GCA TGC TGC GGC GGC AAT AAT 535 535 Val wall íle Ile Leu Leu Gly Gly Val wall Arg Arg Ala Ala Val wall Ala Ala Met Met Pro for Leu Leu Ala Ala Cys Cys Gly Gly Asn same time 155 155 160 160 165 165 ACC ACC GTG GTG GTG GTG TTG TTG AAA AAA AGC AGC TCT TCT GAG GAG CTG CTG AGT AGT CCC CCC TTT TTT ACC ACC CAT CAT CGC CGC CTG CTG 583 583 Thr Thr Val wall Val wall Leu Leu Lys Lys Ser Ser Ser Ser Glu Glu Leu Leu Ser Ser Pro for Phe Phe Thr Thr His His Arg Arg Leu Leu 170 170 175 175 180 180 ATT ATT GGT GGT CAG CAG GTG GTG TTG TTG CAT CAT GAT GAT GCT GCT GGT GGT CTG CTG GGG GGG GAT GAT GGC GGC GTG GTG GTG GTG AAT AAT 631 631 Ile Ile Gly Gly Gin gin Val wall Leu Leu His His Asp Asp Ala Ala Gly Gly Leu Leu Gly Gly Asp Asp Gly Gly Val wall Val wall Asn same time 185 185 190 190 195 195 GTC GTC ATC ATC AGC AGC AAT AAT GCC GCC CCG CCG CAA CAA GAC GAC GCT GCT CCT CCT GCG GCG GTG GTG GTG GTG GAG GAG CGA CGA CTG CTG 679 679 Val wall íle Ile Ser Ser Asn same time Ala Ala Pro for Gin gin Asp Asp Ala Ala Pro for Ala Ala Val wall Val wall Glu Glu Arg Arg Leu Leu 200 200 205 205 210 210 215 215
·· a·· a .2..2. -32·· a· • · · · • · 1 • ··· · • · ···· ·· t· aa • a a · · • · ··· · a • · · a a a a • a a a a a ·· aa aa-32 · · 1 1 1 t a 1 1 1 1 1 1 1 1 1 1 1 a a a a a a a a a a a a a ATT Ile ATT Ile GCA AAT GCA AAT CCT GCG Pro Ala 220 CCT GCG Pro Ala 220 GTA Val GTA wall CGT CGA GTG AAC TTC ACC GGT TCG ACC CAC CGT CGA GTG AAC TTC ACC 727 727 Ala Ala Asn same time Arg Arg Arg Arg Val wall Asn Phe 225 Asn Phe Thr Thr Gly Gly Ser Ser Thr His 230 Thr His 230 GTT GTT GGA GGA CGG CGG ATC ATC ATT ATT GGT GGT GAG GAG CTG CTG TCT TCT GCG GCG CGT CGT CAT CAT CTG CTG AAG AAG CCT CCT GCT GCT 775 775 Val wall Gly Gly Arg Arg Ile Ile Ile Ile Gly Gly Glu Glu Leu Leu Ser Ser Ala Ala Arg Arg His His Leu Leu Lys Lys Pro for Ala Ala 235 235 240 240 245 245 GTG GTG CTG CTG GAA GAA TTA TTA GGT GGT GGT GGT AAG AAG GCT GCT CCG CCG TTC TTC TTG TTG GTC GTC TTG TTG GAC GAC GAT GAT GCC GCC 823 823 Val wall Leu Leu Glu Glu Leu Leu Gly Gly Gly Gly Lys Lys Ala Ala Pro for Phe Phe Leu Leu Val wall Leu Leu Asp Asp Asp Asp Ala Ala 250 250 255 255 260 260 GAC GAC CTC CTC GAT GAT GCG GCG GCG GCG GTC GTC GAA GAA GCG GCG GCG GCG GCC GCC TTT TTT GGT GGT GCC GCC TAC TAC TTC TTC AAT AAT 871 871 Asp Asp Leu Leu Asp Asp Ala Ala Ala Ala Val wall Glu Glu Ala Ala Ala Ala Ala Ala Phe Phe Gly Gly Ala Ala Tyr Tyr Phe Phe Asn same time 265 265 270 270 275 275 - - CAG CAG GGT GGT CAA CAA ATC ATC TGC TGC ATG ATG TCC TCC ACT ACT GAG GAG CGT CGT CTG CTG ATT ATT GTG GTG ACA ACA GCA GCA GTC GTC 919 919 Gin gin Gly Gly Gin gin íle Ile Cys Cys Met Met Ser Ser Thr Thr Glu Glu Arg Arg Leu Leu íle Ile Val wall Thr Thr Ala Ala Val wall 280 280 285 285 290 290 295 295 GCA GCA GAC GAC GCC GCC TTT TTT GTT GTT GAA GAA AAG AAG CTG CTG GCG GCG AGG AGG AAG AAG GTC GTC GCC GCC ACA ACA CTG CTG CGT CGT 967 967 Ala Ala Asp Asp Ala Ala Phe Phe Val wall Glu Glu Lys Lys Leu Leu Ala Ala Arg Arg Lys Lys Val wall Ala Ala Thr Thr Leu Leu Arg Arg 300 300 305 305 310 310 GCT GCT GGC GGC GAT GAT CCT CCT AAT AAT GAT GAT CCG CCG CAA CAA TCG TCG GTC GTC TTG TTG GGT GGT TCG TCG TTG TTG ATT ATT GAT GAT 1015 1015 Ala Ala Gly Gly Asp Asp Pro for Asn same time Asp Asp Pro for Gin gin Ser Ser Val wall Leu Leu Gly Gly Ser Ser Leu Leu íle Ile Asp Asp 315 315 320 320 325 325 GCC GCC AAT AAT GCA GCA GGT GGT CAA CAA CGC CGC ATC ATC CAG CAG GTT GTT CTG CTG GTC GTC GAT GAT GAT GAT GCG GCG CTC CTC GGG GGG 1063 1063 Ala Ala Asn same time Ala Ala Gly Gly Gin gin Arg Arg Ile Ile Gin gin Val wall Leu Leu Val wall Asp Asp Asp Asp Ala Ala Leu Leu 330 330 335 335 340 340 342 342
GACAGCAAGC GAACCGGAAT TGCCAGCTGGGACAGCAAGC GAACCGGAAT TGCCAGCTGG CAAAGTAAAC TGGATGGCTT TCTTGCCGCCCAAAGTAAAC TGGATGGCTT TCTTGCCGCC TGATCAAGAG ACAGGATGAG GATCGTTTCGTGATCAAGAG ACAGGATGAG GATCGTTTCG GGCGCCCTCT GGTAAGGTTG GGAAGCCCTG 1123GGCGCCCTCT GGTAAGGTTG GGAAGCCCTG 1123 AAGGATCTGA TGGCGCAGGG GATCAAGATC 1183AAGGATCTGA TGGCGCAGGG GATCAAGATC 1183 C ATG ATT GAA CAA GAT GGA TTG 1235C ATG ATT GAA GAT GGA TTG 1235 Met Zle Glu Gin Asp Gly LeuMet Bad Glu Gin Asp Gly Leu 1 51 5 CAC His CAC His GCA GGT TCT CCG GCC Ala Gly Ser Pro Ala 10 GCA GGT TCT CCG GCC Ala 10 GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC GCT TGG GTG GAG AGG CTA TTC GGC 1283 1283 Ala Ala Trp 15 Trp 15 Val wall Glu Glu Arg Arg Leu Leu Phe 20 Phe 20 Gly Gly Tyr Tyr Asp Asp TGG TGG GCA GCA CAA CAA CAG CAG ACA ACA ATC ATC GGC GGC TGC TGC TCT TCT GAT GAT GCC GCC GCC GCC GTG GTG TTC TTC CGG CGG CTG CTG 1331 1331 Trp Trp Ala Ala Gin gin Gin gin Thr Thr Ile Ile Gly Gly Cys Cys Ser Ser Asp Asp Ala Ala Ala Ala Val wall Phe Phe Arg Arg Leu Leu 25 25 30 30 35 35 TCA TCA GCG GCG CAG CAG GGG GGG CGC CGC CCG CCG GTT GTT CTT CTT TTT TTT GTC GTC AAG AAG ACC ACC GAC GAC CTG CTG TCC TCC GGT GGT 1379 1379 Ser Ser Ala Ala Gin gin Gly Gly Arg Arg Pro for Val wall Leu Leu Phe Phe Val wall Lys Lys Thr Thr Asp Asp Leu Leu Ser Ser Gly Gly 40 40 45 45 50 50 55 55 GCC GCC CTG CTG AAT AAT GAA GAA CTG CTG CAG CAG GAC GAC GAG GAG GCA GCA GCG GCG CGG CGG CTA CTA TCG TCG TGG TGG CTG CTG GCC GCC 1427 1427 Ala Ala Leu Leu Asn same time Glu Glu Leu Leu Gin gin Asp Asp Glu Glu Ala Ala Ala Ala Arg Arg Leu Leu Ser Ser Trp Trp Leu Leu Ala Ala
60 65 7060 65 70 -33·· ·· ·· »· • · · · · · · • · · · · ··· • ··· · · · · · • · · · · · ···· ·· ·· ·· ·· • · · • · • ·-33 ····························· ·· · · · · · · ACG ACG GGC GTT CCT ACG ACG GGC GTT CCT TGC Cys TGC Cys GCA GCT GTG CTC GAC GTT GTC ACT GAA GCG GCA GCT GTG CTC 1475 1475 Thr Thr Thr Gly Thr Gly Val 75 wall 75 Pro for Ala Ala Ala Ala Val 80 wall 80 Leu Asp Leu Asp Val Val Thr 85 Val Val Thr Glu Ala Glu Ala GGA GGA AGG AGG GAC GAC TGG TGG CTG CTG CTA CTA TTG TTG GGC GGC GAA GAA GTG GTG CCG CCG GGG GGG CAG CAG GAT GAT CTC CTC CTG CTG 1523 1523 Gly Gly Arg Arg Asp Asp Trp Trp Leu Leu Leu Leu Leu Leu Gly Gly Glu Glu Val wall Pro for Gly Gly Gin gin Asp Asp Leu Leu Leu Leu 90 90 95 95 100 100 TCA TCA TCT TCT CAC CAC CTT CTT GCT GCT CCT CCT GCC GCC GAG GAG AAA AAA GTA GTA TCC TCC ATC ATC ATG ATG GCT GCT GAT GAT GCA GCA 1571 1571 Ser Ser Ser Ser His His Leu Leu Ala Ala Pro for Ala Ala Glu Glu Lys Lys Val wall Ser Ser íle Ile Met Met Ala Ala Asp Asp Ala Ala 105 105 110 110 115 115 ATG ATG CGG CGG CGG CGG CTG CTG CAT CAT ACG ACG CTT CTT GAT GAT CCG CCG GCT GCT ACC ACC TGC TGC CCA CCA TTC TTC GAC GAC CAC CAC 1619 1619 Met Met Arg Arg Arg Arg Leu Leu His His Thr Thr Leu Leu Asp Asp Pro for Ala Ala Thr Thr Cys Cys Pro for Phe Phe Asp Asp His His 120 120 125 125 130 130 135 135 CAA CAA GCG GCG AAA AAA CAT CAT CGC CGC ATC ATC GAG GAG CGA CGA GCA GCA CGT CGT ACT ACT CGG CGG ATG ATG GAA GAA GCC GCC GGT GGT 1667 1667 Gin gin Ala Ala Lys Lys His His Arg Arg íle Ile Glu Glu Arg Arg Ala Ala Arg Arg Thr Thr Arg Arg Met Met Glu Glu Ala Ala Gly Gly 140 140 145 145 150 150 CTT CTT GTC GTC GAT GAT CAG CAG GAT GAT GAT GAT CTG CTG GAC GAC GAA GAA GAG GAG CAT CAT CAG CAG GGG GGG CTC CTC GCG GCG CCA CCA 1715 1715 Leu Leu Val wall Asp Asp Gin gin Asp Asp Asp Asp Leu Leu Asp Asp Glu Glu Glu Glu His His Gin gin Gly Gly Leu Leu Ala Ala Pro for 155 155 160 160 165 165 GCC GCC GAA GAA CTG CTG TTC TTC GCC GCC AGG AGG CTC CTC AAG AAG GCG GCG CGC CGC ATG ATG CCC CCC GAC GAC GGC GGC GAG GAG GAT GAT 1763 1763 Ala Ala Glu Glu Leu Leu Phe Phe Ala Ala Arg Arg Leu Leu Lys Lys Ala Ala Arg Arg Met Met Pro for Asp Asp Gly Gly Glu Glu Asp Asp 170 170 175 175 180 180 CTC CTC GTC GTC GTG GTG ACC ACC CAT CAT GGC GGC GAT GAT GCC GCC TGC TGC TTG TTG CCG CCG AAT AAT ATC ATC ATG ATG GTG GTG GAA GAA 1811 1811 Leu Leu Val wall Val wall Thr Thr His His Gly Gly Asp Asp Ala Ala Cys Cys Leu Leu Pro for Asn same time Ile Ile Met Met Val wall Glu Glu 185 185 190 190 195 195 AAT AAT GGC GGC CGC CGC TTT TTT TCT TCT GGA GGA TTC TTC ATC ATC GAC GAC TGT TGT GGC GGC CGG CGG CTG CTG GGT GGT GTG GTG GCG GCG 1859 1859 Asn same time Gly Gly Arg Arg Phe Phe Ser Ser Gly Gly Phe Phe íle Ile Asp Asp Cys Cys Gly Gly Arg Arg Leu Leu Gly Gly Val wall Ala Ala 200 200 205 205 210 210 215 215 GAC GAC CGC CGC TAT TAT CAG CAG GAC GAC ATA ATA GCG GCG TTG TTG GCT GCT ACC ACC CGT CGT GAT GAT ATT ATT GCT GCT GAA GAA GAG GAG 1907 1907 Asp Asp Arg Arg Tyr Tyr Gin gin Asp Asp íle Ile Ala Ala Leu Leu Ala Ala Thr Thr Arg Arg Asp Asp íle Ile Ala Ala Glu Glu Glu Glu 220 220 225 225 230 230 CTT CTT GGC GGC GGC GGC GAA GAA TGG TGG GCT GCT GAC GAC CGC CGC TTC TTC CTC CTC GTG GTG CTT CTT TAC TAC GGT GGT ATC ATC GCC GCC 1955 1955 Leu Leu Gly Gly Gly Gly Glu Glu Trp Trp Ala Ala Asp Asp Arg Arg Phe Phe Leu Leu Val wall Leu Leu Tyr Tyr Gly Gly Ile Ile Ala Ala 235 235 240 240 245 245 GCT GCT CCC CCC GAT GAT TCG TCG CAG CAG CGC CGC ATC ATC GCC GCC TTC TTC TAT TAT CGC CGC CTT CTT CTT CTT GAC GAC GAG GAG TTC TTC 2003 2003 Ala Ala Pro for Asp Asp Ser Ser Gin gin Arg Arg Ile Ile Ala Ala Phe Phe Tyr Tyr Arg Arg Leu Leu Leu Leu Asp Asp Glu Glu Phe Phe
250 255 260250 255 260 TTC TGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC CG GCC CAG 2057TTC TGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC Phe Ala GinPhe Gin 264 421264 421 CGC GTC GAT TCG GGC ATT TGC CAT ATC AAT GGA CCG ACT GTG CAT GAC 2105CGC GTC GAT TCG GGC ATT TGC CAT Arg Val Asp Ser Gly Ile Cys His íle Asn Gly Pro Thr Val His AspArg Val Asp Ser Gly Ile Cys His White Asn Gly Pro Thr Val His Asp 425 430 435 ··425 430 435 ·· -34·· • · · · • · · • ··· · • · ···· ·· ·· »· • · · • · ··· • · · · • · · · ·· ··-34 ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · GAG GCT CAG Glu Ala Gin GAG GCT Clu Glu Ala Gin ATG Met ATG Met CCA TTC Pro Phe CCA TTC Pro Phe GGT GGG Gly Gly 445 Gly Gly Gly Gly 445 GTG Val GTG wall AAG TCC AGC GGC TAC AAG TCC AGC GGC TAC GGC AGC GGC AGC 2153 2153 Lys Ser Ser 450 Lys Ser Ser 450 Gly Gly Tyr Tyr Gly Gly Ser Ser 440 440 TTC TTC GGC GGC AGT AGT CGA CGA GCA GCA TCG TCG ATT ATT GAG GAG CAC CAC TTT TTT ACC ACC CAG CAG CTG CTG CGC CGC TGG TGG CTG CTG 2201 2201 Phe Phe Gly Gly Ser Ser Arg Arg Ala Ala Ser Ser íle Ile Glu Glu His His Phe Phe Thr Thr Gin gin Leu Leu Arg Arg Trp Trp Leu Leu 455 455 460 460 465 465 470 470 ACC ACC ATT ATT CAG CAG AAT AAT GGC GGC CCG CCG CGG CGG CAC CAC TAT TAT CCA CCA ATC ATC TAA TAA ATCGATCTTC ATCGATCTTC 2247 2247 Thr Thr íle Ile Gin gin Asn same time Gly Gly Pro for Arg Arg His His Tyr Tyr Pro for íle Ile
475 475 480 481 480 481 GGGCGCCGCG GGGCGCCGCG GGCATCATGC GGCATCATGC CCGCGGCGCT CCGCGGCGCT CGCCTCATTT CGCCTCATTT CAATCTCTAA CAATCTCTAA CTTGATAAAA CTTGATAAAA 2307 2307 ACAGAGCTGT ACAGAGCTGT -TCTCCGGTCT -TCTCCGGTCT TGGTGGATCA TGGTGGATCA AGGCCAGTCG AGGCCAGTCG CGGAGAGTCT CGGAGAGTCT CGAAGAGGAG CGAAGAGGAG 2367 2367 AGTACAGTGA AGTACAGTGA ACGCCGAGTC ACGCCGAGTC CACATTGCAA CACATTGCAA CCGCAGGCAT CCGCAGGCAT CATCATGCTC CATCATGCTC TGCTCAGCCA TGCTCAGCCA 2427 2427 CGCTACCGCA CGCTACCGCA GTGTGTCGAT GTGTGTCGAT TGGTCATCCT TGGTCATCCT CCGGTTGAGG CCGGTTGAGG TTACGCAAGA TTACGCAAGA CGCTGGAGGT CGCTGGAGGT 2487 2487 ATTGTCCGGA ATTGTCCGGA TGCGTTCTCT TGCGTTCTCT CGAGGCGCTT CGAGGCGCTT CTTCCCTTCC CTTCCCTTCC CGGGTGGAAT CGGGTGGAAT TC TC 2539 2539
FIG. 2m:FIG. 2 m: ·· ·· ·· • ··· ·· ·· • · -35GAATTCCAAT AATGACAATA ATGAGGAGTG CCCA ATG TTT CAC GTG CCC CTG CTT 55-35GAATTCCAAT AATGACAATA ATGAGGAGTG CCG ATT TTG CAC GTG CCC CTG CTT 55 Met Phe His Val Pro Leu LeuMet Phe His Val For Leu Leu 1 5 ·· • · · · • · · * ··· · • · ···· ·· ·· • · · • · ··· • · · · • · · · ·· ·· ··1 5 ································· ATT GGT ATT GGT GGT AAG CCT TGT TCA GCA TCT GAT GAG CGC ACC TTC GAG CGT GGT AAG CCT TGT TCA 103 103 lle Ile Gly Gly Gly 10 Gly 10 Lys Pro Lys Pro Cys Cys Ser Ala Ser Asp Glu Arg Thr Phe Glu Ser Ala Ser Glu Arg Thr Phe Glu Arg Arg 15 15 20 20 CGT CGT AGC AGC CCG CCG CTG CTG ACC ACC GGA GGA GAA GAA GTG GTG GTA GTA TCG TCG CGC CGC GTC GTC GCT GCT GCT GCT GCC GCC AGT AGT 151 151 Arg Arg Ser Ser Pro for Leu Leu Thr Thr Gly Gly Glu Glu Val wall Val wall Ser Ser Arg Arg Val wall Ala Ala Ala Ala Ala Ala Ser Ser 25 25 30 30 35 35 TTG TTG GAA GAA GAT GAT GCG GCG GAC GAC GCC GCC GCA GCA GTG GTG GCC GCC GCT GCT GCA GCA CAG CAG GCT GCT GCG GCG TTT TTT CCT CCT 199 199 Leu Leu Glu Glu Asp Asp Ala Ala Asp Asp Ala Ala Ala Ala Val wall Ala Ala Ala Ala Ala Ala Gin gin Ala Ala Ala Ala Phe Phe Pro for 40 40 45 45 50 50 55 - 55 - GAA GAA TGG TGG GCG GCG GCG GCG CTT CTT GCT GCT CCG CCG AGC AGC GAA GAA CGC CGC CGT CGT GCC GCC CGA CGA CTG CTG CTG CTG CGA CGA 247 247 Glu Glu Trp Trp Ala Ala Ala Ala Leu Leu Ala Ala Pro for Ser Ser Glu Glu Arg Arg Arg Arg Ala Ala Arg Arg Leu Leu Leu Leu Arg Arg 60 60 65 65 70 70 GCG GCG GCG GCG GAT GAT CTT CTT CTA CTA GAG GAG GAC GAC CGT CGT TCT TCT TCC TCC GAG GAG TTC TTC ACC ACC GCC GCC GCA GCA GCG GCG 295 295 Ala Ala Ala Ala Asp Asp Leu Leu Leu Leu Glu Glu Asp Asp Arg Arg Ser Ser Ser Ser Glu Glu Phe Phe Thr Thr Ala Ala Ala Ala Ala Ala 75 75 80 80 85 85 AGT AGT GAA GAA ACT ACT GGC GGC GCA GCA GCG GCG GGA GGA AAC AAC TGG TGG TAT TAT GGG GGG TTT TTT AAC AAC GTT GTT TAC TAC CTG CTG 343 343 Ser Ser Glu Glu Thr Thr Gly Gly Ala Ala Ala Ala Gly Gly Asn same time Trp Trp Tyr Tyr Gly Gly Phe Phe Asn same time Val wall Tyr Tyr Leu Leu 90 90 95 95 100 100 GCG GCG GCG GCG GGC GGC ATG ATG TTG TTG CGG CGG GAA GAA GCC GCC GCG GCG GCC GCC ATG ATG ACC ACC ACA ACA CAG CAG ATT ATT CAG CAG 391 391 Ala Ala Ala Ala Gly Gly Met Met Leu Leu Arg Arg Glu Glu Ala Ala Ala Ala Ala Ala Met Met Thr Thr Thr Thr Gin gin íle Ile Gin gin 105 105 110 110 115 115 GGC GGC GAT GAT GTC GTC ATT ATT CCG CCG TCC TCC AAT AAT GTG GTG CCC CCC GGT GGT AGC AGC TTT TTT GCC GCC ATG ATG GCG GCG GTT GTT 439 439 Gly Gly Asp Asp Val wall íle Ile Pro for Ser Ser Asn same time Val wall Pro for Gly Gly Ser Ser Phe Phe Ala Ala Met Met Ala Ala Val wall 120 120 125 125 130 130 135 135 CGA CGA CAG CAG CCA CCA TGT TGT GGC GGC GTG GTG GTG GTG CTC CTC GGT GGT ATT ATT GCG GCG CCT CCT TGG TGG AAT AAT GCT GCT CCG CCG 487 487 Arg Arg Gin gin Pro for Cys Cys Gly Gly Val wall Val wall Leu Leu Gly Gly íle Ile Ala Ala Pro for Trp Trp Asn same time Ala Ala Pro for 140 140 145 145 150 150 GTA GTA ATC ATC CTT CTT GGC GGC GTA GTA CGG CGG GCT GCT GTT GTT GCG GCG ATG ATG CCG CCG TTG TTG GCA GCA TGC TGC GGC GGC AAT AAT 535 535 Val wall íle Ile Leu Leu Gly Gly Val wall Arg Arg Ala Ala Val wall Ala Ala Met Met Pro for Leu Leu Ala Ala Cys Cys Gly Gly Asn same time 155 155 160 160 165 165 ACC ACC GTG GTG GTG GTG TTG TTG AAA AAA AGC AGC TCT TCT GAG GAG CTG CTG AGT AGT CCC CCC TTT TTT ACC ACC CAT CAT CGC CGC CTG CTG 583 583 Thr Thr Val wall Val wall Leu Leu Lys Lys Ser Ser Ser Ser Glu Glu Leu Leu Ser Ser Pro for Phe Phe Thr Thr His His Arg Arg Leu Leu 170 170 175 175 180 180 ATT ATT GGT GGT CAG CAG GTG GTG TTG TTG CAT CAT GAT GAT GCT GCT GGT GGT CTG CTG GGG GGG GAT GAT GGC GGC GTG GTG GTG GTG AAT AAT 631 631 lle Ile Gly Gly Gin gin Val wall Leu Leu His His Asp Asp Ala Ala Gly Gly Leu Leu Gly Gly Asp Asp Gly Gly Val wall Val wall Asn same time 185 185 190 190 195 195 GTC GTC ATC ATC AGC AGC AAT AAT GCC GCC CCG CCG CAA CAA GAC GAC GCT GCT CCT CCT GCG GCG GTG GTG GTG GTG GAG GAG CGA CGA CTG CTG 679 679 Val wall íle Ile Ser Ser Asn same time Ala Ala Pro for Gin gin Asp Asp Ala Ala Pro for Ala Ala Val wall Val wall Glu Glu Arg Arg Leu Leu 200 200 205 205 210 210 215 215
·· • · · • · • · · • · ·· ··· · · · · · · · · · · · · -36·· ·· • · · · • · · • ··· · • · ···· ·· ·· ·· • · · • · ··· • · · · • · · · ·· ··-36 ·· ·························· · · · · · · · ATT íle ATT Ile GCA AAT GCA AAT CCT GCG Pro Ala 220 CCT GCG Pro Ala 220 GTA Val GTA wall CGT CGA GTG AAC TTC ACC GGT TCG ACC CAC CGT CGA GTG AAC TTC ACC 727 727 Ala Ala Asn same time Arg Arg Arg Arg Val wall Asn Phe 225 Asn Phe Thr Thr Gly Gly Ser Ser Thr His 230 Thr His 230 GTT GTT GGA GGA CGG CGG ATC ATT ATC ATT GGT GGT GAG GAG CTG CTG TCT TCT GCG CGT GCG CGT CAT CAT CTG CTG AAG AAG CCT GCT CCT GCT 775 775 Val wall Gly Gly Arg Arg íle íle ile ile Gly Gly Glu Glu Leu Leu Ser Ser Ala Arg Ala Arg His His Leu Leu Lys Lys Pro Ala Pro Ala 235 235 240 240 245 245 GTG GTG CTG CTG GAA GAA TTA GGT TTA GGT GGT GGT AAG AAG GCT GCT CCG CCG TTC TTG TTC TTG GTC GTC TTG TTG GAC GAC GAT GCC GAT GCC 823 823 Val wall Leu Leu Glu Glu Leu Gly Leu Gly Gly Gly Lys Lys Ala Ala Pro for Phe Leu Phe Leu Val wall Leu Leu Asp Asp Asp Ala Asp Ala 250 250 255 255 260 260 GAC GAC CTC CTC GAT GAT GCG GCG GCG GCG GTC GTC GAA GAA GCG GCG GCG GCG GCC TTT GCC TTT GGT GGT GCC GCC TAC TAC TTC AAT TTC AAT 871 871 Asp Asp Leu Leu Asp Asp Ala Ala Ala Ala Val wall Glu Glu Ala Ala Ala Ala Ala Phe Ala Phe Gly Gly Ala Ala Tyr Tyr Phe Asn Phe Asn 265 265 270 270 275 275 CAG CAG GGT GGT CAA CAA ATC TGC ATC TGC ATG ATG TCC TCC ACT ACT GAG GAG CGT CTG CGT CTG ATT ATT GTG GTG ACA ACA GCA GTC GCA GTC 919 919 Gin gin Gly Gly Gin gin íle Cys Cys Met Met Ser Ser Thr Thr Glu Glu Arg Leu Arg Leu íle Ile Val wall Thr Thr Ala Val Ala Val 280 280 285 285 290 290 295 295 GCA GCA GAC GAC GCC GCC TTT GTT TTT GTT GAA GAA AAG AAG CTG CTG GCG GCG AGG AAG AGG AAG GTC GTC GCC GCC ACA ACA CTG CGT CTG CGT 967 967 Ala Ala Asp Asp Ala Ala Phe Val Phe Val Glu Glu Lys Lys Leu Leu Ala Ala Arg Lys Arg Lys Val wall Ala Ala Thr Thr Leu Arg Leu Arg 300 300 305 305 310 310 GCT GCT GGC GGC GAT GAT CCT AAT CCT AAT GAT GAT CCG CCG CAA CAA TCG TCG GTC TTG GTC TTG GGT GGT TCG TCG TTG TTG ATT GAT ATT GAT 1015 1015 Ala Ala Gly Gly Asp Asp Pro Asn Pro Asn Asp Asp Pro for Gin gin Ser Ser Val Leu Val Leu Gly Gly Ser Ser Leu Leu íle Asp Asp 315 315 320 320 325 325 GCC GCC AAT AAT GCA GCA GGT CAA GGT CAA CGC CGC ATC ATC CAG CAG GTGGGGAGAG GCGGTTTGCG TATTGGGCGC GTGGGGAGAG GCGGTTTGCG TATTGGGCGC 1069 1069 Ala Ala Asn same time Ala Ala Gly Gin Gly Gin Arg Arg íle Ile Gin gin 330 330 335 335
ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA CATGGAAGCC ATCACAAACG 1129ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA CATGGAAGCC ATCACAAACG 1129 GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT CGCCTTGCGT ATAATATTTG 1189GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT CGCCTTGCGT ATAATATTTG 1189 CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CCAGTTGACA TAAGCCTGTT 1249CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CCAGTTGACA TAAGCCTGTT 1249 CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC AGAACCTTGA 1309CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC AGAACCTTGA 1309 CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT GGCTTGTTAT GACTGTTTTT 1369CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT GGCTTGTTAT GACTGTTTTT 1369 TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTT 1429TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTT 1429 TGATGTTATG GAGCAGCAAC G ATG Met TGATGTTATG GAGCAGCAAC G ATG Met TTA CGC TTA CGC AGC Ser AGC Ser AGC Ser 5 AGC Ser 5 AAC GAT GTT ACG CAG AAC GAT GTT ACG CAG 1480 1480 Leu Leu Arg Arg Asn same time Asp Val Asp Val Thr Gin 10 Thr Gin 10 1 1 CAG CAG GGC AGT CGC CCT AAA ACA GGC AGT CCT AAA ACA AAG AAG TTA TTA GGT GGT GGC GGC TCA TCA AGT ATG AGT ATG GGC ATC GGC ATC 1528 1528 Gin gin Gly Ser Arg Pro Lys Thr 15 Gly Ser Arg Lys Thr 15 Lys Lys Leu Leu Gly 20 Gly 20 Gly Gly Ser Ser Ser Met Ser Met Gly íle 25 Gly ile 25 ATT ATT CGC ACA TGT AGG CTC GGC CGC ACA TGT AGG CTC GGC CCT CCT GAC GAC CAA CAA GTC GTC AAA AAA TCC ATG TCC ATG CGG GCT CGG GCT 1576 1576 íle Ile Arg Thr Cys Arg Leu Gly 30 Arg Thr Cys Arg Leu Gly Pro for Asp 35 Asp 35 Gin gin Val wall Lys Lys Ser Met 40 Ser Met Arg Ala Arg Ala
-37·· ·· • · · ·-37 ·· ·· · · · · 9 9 9 • ··· · • · ···· ·· ·· ·· ·« • · · · · · • · ··· « t • 9 9 9 9 9 99 9 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 9 9 9 9 9 99 9 9 9 9 99 99 99 999 99 99 GCT CTT GAT CTT TTC GCT CTT GGT Gly GGT Gly CGT Arg CGT Arg GAG TTC GGA GAC GTA GCC ACC GAG TTC GGA GAC GTA GCC ACC TAC TCC Tyr Ser TAC TCC Tyr Ser 1624 1624 Ala Ala Leu Leu Asp Leu 45 Asp Leu Phe Phe Glu Phe 50 Glu Phe Gly Asp Gly Asp Val wall Ala 55 Ala 55 Thr Thr CAA CAA CAT CAT CAG CCG CAG CCG GAC GAC TCC TCC GAT GAT TAC CTC TAC CTC GGG AAC GGG AAC TTG TTG CTC CTC CGT CGT AGT AAG AGT AAG 1672 1672 Gin gin His 60 His 60 Gin Pro Gin Pro Asp Asp Ser Ser Asp 65 Asp 65 Tyr Leu Tyr Leu Gly Asn Gly Asn Leu 70 Leu 70 Leu Leu Arg Arg Ser Lys Ser Lys ACA ACA TTC TTC ATC GCG ATC GCG CTT CTT GCT GCT GCC GCC TTC GAC TTC GAC CAA GAA CAA GAA GCG GCG GTT GTT GTT GTT GGC GCT GGC GCT 1720 1720 Thr 75 Thr 75 Phe Phe íle Ala Ala Ala Leu Leu Ala 80 Ala 80 Ala Ala Phe Asp Phe Asp Gin Glu 85 Gin Glu Ala Ala Val wall Val wall Gly Ala 90 Gly Ala 90 CTC CTC GCG GCG GCT TAC GCT TAC GTT GTT CTG CTG CCC CCC AGG TTT AGG TTT GAG CAG GAG CAG CCG CCG CGT CGT AGT AGT GAG ATC GAG ATC 1768 1768 Leu Leu Ala Ala Ala Tyr Ala Tyr Val 95 wall 95 Leu Leu Pro for Arg Phe Arg Phe Glu Gin 100 Glu Gin 100 Pro for Arg Arg Ser Ser Glu íle 105 Glu ile 105 TAT TAT ATC ATC TAT GAT TAT GAT CTC CTC GCA GCA GTC GTC TCC GGC TCC GGC GAG CAC GAG CAC CGG CGG AGG AGG CAG CAG GGC ATT GGC ATT 1816 1816 Tyr Tyr íle Ile Tyr Asp 110 Tyr Asp 110 Leu Leu Ala Ala Val wall Ser Gly 115 Ser Gly Glu His Glu His Arg Arg Arg Arg Gin 120 gin 120 Gly íle Gly ile GCC GCC ACC ACC GCG CTC GCG CTC ATC ATC AAT AAT CTC CTC CTC AAG CTC AAG CAT GAG CAT GAG GCC GCC AAC AAC GCG GCG CTT GGT CTT GGT 1864 1864 Ala Ala Thr Thr Ala Leu 125 Ala Leu íle Ile Asn same time Leu Leu Leu Lys 130 Leu Lys His Glu His Glu Ala Ala Asn 135 same time 135 Ala Ala Leu Gly Leu Gly GCT GCT TAT TAT GTG ATC GTG ATC TAC TAC GTG GTG CAA CAA GCA GAT GCA GAT TAC GGT TAC GGT GAC GAC GAT GAT CCC CCC GCA GTG GCA GTG 1912 1912 Ala Ala Tyr 140 Tyr 140 Val íle Val ile Tyr Tyr Val wall Gin 145 gin 145 Ala Asp Ala Asp Tyr Gly Tyr Gly Asp 150 Asp 150 Asp Asp Pro for Ala Val Ala Val GCT GCT CTC CTC TAT ACA TAT ACA AAG AAG TTG TTG GGC GGC ATA CGG ATA CGG GAA GAA GAA GAA GTG GTG ATG ATG CAC CAC TTT GAT TTT GAT 1960 1960 Ala 155 Ala 155 Leu Leu Tyr Thr Tyr Thr Lys Lys Leu 160 Leu 160 Gly Gly íle Arg Arg Glu Glu 165 Glu Glu Val wall Met Met His His Phe Asp 170 Phe Asp 170 ATC íle ATC Ile GAC Asp GAC Asp CCA AGT Pro Ser CCA AGT Pro Ser ACC Thr ACC Thr GCC Ala GCC Ala ACC Thr ACC Thr TAA CAATTCGTTC AAGCCGAGAT CGGCTTCCCA TAA CAATTCGTTC AAGCCGAGAT CGGCTTCCCA 2014 2014
175 177175 177 A TTG GCC CAG CGC GTC GAT TCG GGC ATT TGC CAT ATC AAT GGA CCG ACT 2063A TTG GCC CAG CGC GTC GAT TCG GGC ATT Leu Ala Gin Arg Val Asp Ser Gly íle Cys His íle Asn Gly Pro ThrLeu Ala Gin Arg Val Asp Ser Gly White Cys His White Asn Gly Pro Thr 420 425 430 435420 425 430 435 GTG CAT GAC GAG GCT GTG CAT GAC GAG GCT CAG ATG CCA TTC GGT GGG GTG AAG TCC AGC GGC CAG ATG CCA TTC GGT 2111 2111 Val wall His Asp His Asp Glu Ala 440 Glu Ala 440 Gin gin Met Met Pro for Phe Gly Gly Val Lys Ser Ser Gly Phe Gly Gly 445 445 450 450 TAC TAC GGC GGC AGC AGC TTC TTC GGC GGC AGT AGT CGA CGA GCA GCA TCG TCG ATT ATT GAG GAG CAC CAC TTT TTT ACC ACC CAG CAG CTG CTG 2159 2159 Tyr Tyr Gly Gly Ser Ser Phe Phe Gly Gly Ser Ser Arg Arg Ala Ala Ser Ser íle Ile Glu Glu His His Phe Phe Thr Thr Gin gin Leu Leu 455 455 460 460 465 465 CGC CGC TGG TGG CTG CTG ACC ACC ATT ATT CAG CAG AAT AAT GGC GGC CCG CCG CGG CGG CAC CAC TAT TAT CCA CCA ATC ATC TAA TAA 2204 2204 Arg Arg Trp Trp Leu Leu Thr Thr íle Ile Gin gin Asn same time Gly Gly Pro for Arg Arg His His Tyr Tyr Pro for íle Ile 470 470 475 475 480 480 481 481
ATCGATCTTC GGGCGCCGCG GGCATCATGC CCGCGGCGCT CGCCTCATTT CAATCTCTAA 2264ATCGATCTTC GGGCGCCGCG GGCATCATGC CCGCGGCGCT CGCCTCATTT CAATCTCTAA 2264 CTTGATAAAA ACAGAGCTGT TCTCCGGTCT TGGTGGATCA AGGCCAGTCG CGGAGAGTCT 2324 ·· ·· ’ · · · • · · • ··· • · >··· ·· ·· • · • ··· • · · • · · > ··CTTGATAAAA ACAGAGCTGT TCTCCGGTCT TGGTGGATCA AGGCCAGTCG CGGAGAGTCT 2324 ·························· CGAAGAGGAG AGTACAGTGA CGAAGAGGAG AGTACAGTGA ACGCCGAGTC CACATTGCAA CCGCAGGCAT CATCATGCTC ACGCCGAGTC CACATTGCAA CCGCAGGCAT CATCATGCTC 2384 2384 TGCTCAGCCA CGCTACCGCA TGCTCAGCCA CGCTACCGCA GTGTGTCGAT TGGTCATCCT CCGGTTGAGG TTACGCAAGA GTGTGTCGAT TGGTCATCCT CCGGTTGAGG TTACGCAAGA 2444 2444 CGCTGGAGGT ATTGTCCGGA CGCTGGAGGT ATTGTCCGGA TGCGTTCTCT CGAGGCGCTT CTTCCCTTCC CGGGTGGAAT TGCGTTCTCT CGAGGCGCTT CTTCCCTTCC CGGGTGGAAT 2504 2504 TC TC 2506 2506 FIG. 2n: FIG. 2n:
·· ···· ·· -39GAATTCCAAT AATGACAATA ATGAGGAGTG CCCA ATG TTT CAC GTG CCC CTG CTT 55-39GAATTCCAAT AATGACAATA ATGAGGAGTG CCG ATT TTG CAC GTG CCC CTG CTT 55 Met Phe His Val Pro Leu LeuMet Phe His Val For Leu Leu 1 51 5 ATT GGT íle Gly ATT GGT White Gly GGT Gly 10 GGT Gly 10 AAG CCT AAG CCT TGT TCA GCA TCT GAT GAG CGC ACC TTC GAG CGT TGT TCA GCA TCT GAT GAG 103 103 Lys Lys Pro for Cys Cys Ser Ala 15 Ser Ala Ser Ser Asp Asp Glu Glu Arg Arg Thr 20 Thr 20 Phe Phe Glu Arg Glu Arg CGT CGT AGC AGC CCG CCG CTG CTG ACC ACC GGA GGA GAA GAA GTG GTG GTA GTA TCG TCG CGC CGC GTC GTC GCT GCT GCT GCT GCC GCC AGT AGT 151 151 Arg Arg Ser Ser Pro for Leu Leu Thr Thr Gly Gly Glu Glu Val wall Val wall Ser Ser Arg Arg Val wall Ala Ala Ala Ala Ala Ala Ser Ser 25 25 30 30 35 35 TTG TTG GAA GAA GAT GAT GCG GCG GAC GAC GCC GCC GCA GCA GTG GTG GCC GCC GCT GCT GCA GCA CAG CAG GCT GCT GCG GCG TTT TTT CCT CCT 199 199 Leu Leu Glu Glu Asp Asp Ala Ala Asp Asp Ala Ala Ala Ala Val wall Ala Ala Ala Ala Ala Ala Gin gin Ala Ala Ala Ala Phe Phe Pro for 40 40 45 45 50 50 55 55 GAA GAA TGG TGG GCG GCG GCG GCG CTT CTT GCT GCT CCG CCG AGC AGC GAA GAA CGC CGC CGT CGT GCC GCC CGA CGA CTG CTG CTG CTG CGA CGA 247 247 Glu Glu Trp Trp Ala Ala Ala Ala Leu Leu Ala Ala Pro for Ser Ser Glu Glu Arg Arg Arg Arg Ala Ala Arg Arg Leu Leu Leu Leu Arg Arg 60 60 65 65 70 70 GCG GCG GCG GCG GAT GAT CTT CTT CTA CTA GAG GAG GAC GAC CGT CGT TCT TCT TCC TCC GAG GAG TTC TTC ACC ACC GCC GCC GCA GCA GCG GCG 295 295 Ala Ala Ala Ala Asp Asp Leu Leu Leu Leu Glu Glu Asp Asp Arg Arg Ser Ser Ser Ser Glu Glu Phe Phe Thr Thr Ala Ala Ala Ala Ala Ala 75 75 80 80 85 85 AGT AGT GAA GAA ACT ACT GGC GGC GCA GCA GCG GCG GGA GGA AAC AAC TGG TGG TAT TAT GGG GGG TTT TTT AAC AAC GTT GTT TAC TAC CTG CTG 343 343 Ser Ser Glu Glu Thr Thr Gly Gly Ala Ala Ala Ala Gly Gly Asn same time Trp Trp Tyr Tyr Gly Gly Phe Phe Asn same time Val wall Tyr Tyr Leu Leu 90 90 95 95 100 100 GCG GCG GCG GCG GGC GGC ATG ATG TTG TTG CGG CGG GAA GAA GCC GCC GCG GCG GCC GCC ATG ATG ACC ACC ACA ACA CAG CAG ATT ATT CAG CAG 391 391 Ala Ala Ala Ala Gly Gly Met Met Leu Leu Arg Arg Glu Glu Ala Ala Ala Ala Ala Ala Met Met Thr Thr Thr Thr Gin gin íle Ile Gin gin 105 105 110 110 115 115 GGC GGC GAT GAT GTC GTC ATT ATT CCG CCG TCC TCC AAT AAT GTG GTG CCC CCC GGT GGT AGC AGC TTT TTT GCC GCC ATG ATG GCG GCG GTT GTT 439 439 Gly Gly Asp Asp Val wall íle Ile Pro for Ser Ser Asn same time Val wall Pro for Gly Gly Ser Ser Phe Phe Ala Ala Met Met Ala Ala Val wall 120 120 125 125 130 130 135 135 CGA CGA CAG CAG CCA CCA TGT TGT GGC GGC GTG GTG GTG GTG CTC CTC GGT GGT ATT ATT GCG GCG CCT CCT TGG TGG AAT AAT GCT GCT CCG CCG 487 487 Arg Arg Gin gin Pro for Cys Cys Gly Gly Val wall Val wall Leu Leu Gly Gly íle Ile Ala Ala Pro for Trp Trp Asn same time Ala Ala Pro for 140 140 145 145 150 150 GTA GTA ATC ATC CTT CTT GGC GGC GTA GTA CGG CGG GCT GCT GTT GTT GCG GCG ATG ATG CCG CCG TTG TTG GCA GCA TGC TGC GGC GGC AAT AAT 535 535 Val wall íle Ile Leu Leu Gly Gly Val wall Arg Arg Ala Ala Val wall Ala Ala Met Met Pro for Leu Leu Ala Ala Cys Cys Gly Gly Asn same time 155 155 160 160 165 165 ACC ACC GTG GTG GTG GTG TTG TTG AAA AAA AGC AGC TCT TCT GAG GAG CTG CTG AGT AGT CCC CCC TTT TTT ACC ACC CAT CAT CGC CGC CTG CTG 583 583 Thr Thr Val wall Val wall Leu Leu Lys Lys Ser Ser Ser Ser Glu Glu Leu Leu Ser Ser Pro for Phe Phe Thr Thr His His Arg Arg Leu Leu 170 170 175 175 180 180 ATT ATT GGT GGT CAG CAG GTG GTG TTG TTG CAT CAT GAT GAT GCT GCT GGT GGT CTG CTG GGG GGG GAT GAT GGC GGC GTG GTG GTG GTG AAT AAT 631 631 íle Ile Gly Gly Gin gin Val wall Leu Leu His His Asp Asp Ala Ala Gly Gly Leu Leu Gly Gly Asp Asp Gly Gly Val wall Val wall Asn same time 185 185 190 190 195 195 GTC GTC ATC ATC AGC AGC AAT AAT GCC GCC CCG CCG CAA CAA GAC GAC GCT GCT CCT CCT GCG GCG GTG GTG GTG GTG GAG GAG CGA CGA CTG CTG 679 679 Val wall íle Ile Ser Ser Asn same time Ala Ala Pro for Gin gin Asp Asp Ala Ala Pro for Ala Ala Val wall Val wall Glu Glu Arg Arg Leu Leu 200 200 205 205 210 210 215 215
··· · -40• · · · · · • · · · · • ··· · · · • · · · ···· ·· ·· ·» ·· • · · · ··· · · • · · · · • · · · ·· ·· ·-40 · 40 · 40 40 40 40 40 • · · · · · ATT GCA ATT GCA AAT CCT GCG GTA CGT CGA GTG AAC TTC ACC GGT TCG ACC CAC AAT CCT GCG GTA CGT CGA GTG 727 727 íle Ile Ala Ala Asn Pro Ala 220 Asn Pro Ala Val wall Arg Arg Arg Arg Val wall Asn Phe 225 Asn Phe Thr Gly Ser Thr Gly Ser Thr His 230 Thr His 230 GTT GTT GGA GGA CGG ATC ATT CGG ATC ATT GGT GGT GAG GAG CTG CTG TCT TCT GCG CGT GCG CGT CAT CTG AAG CAT CTG AAG CCT GCT CCT GCT 775 775 Val wall Gly Gly Arg íle íle 235 Arg tions 235 Gly Gly Glu Glu Leu Leu Ser 240 Ser 240 Ala Arg Ala Arg His Leu Lys 245 His Leu Lys Pro Ala Pro Ala GTG GTG CTG CTG GAA TTA GGT GAA TTA GGT GGT GGT AAG AAG GCT GCT CCG CCG TTC TTG TTC TTG GTC TTG GAC GTC TTG GAC GAT GCC GAT GCC 823 823 Val wall Leu Leu Glu Leu Gly 250 Glu Leu Gly 250 Gly Gly Lys Lys Ala 255 Ala 255 Pro for Phe Leu Phe Leu Val Leu Asp 260 Val Leu Asp 260 Asp Ala Asp Ala GAC GAC CTC CTC GAT GCG GCG GAT GCG GTC GTC GAA GAA GCG GCG GCG GCG GCC TTT GCC TTT GGT GCC TAC GCC GCC TAC TTC AAT TTC AAT 871 871 Asp Asp Leu 265 Leu 265 Asp Ala Ala Asp Ala Ala Val wall Glu 270 Glu 270 Ala Ala Ala Ala Ala Phe Ala Phe Gly Ala Tyr 275 Gly Ala Tyr Phe Asn Phe Asn CAG CAG GGT GGT CAA ATC TGC CAA ATC TGC ATG ATG TCC TCC ACT ACT GAG GAG CGT CTG CGT CTG ATT GTG ACA ATT GTG ACA GCA GTC GCA GTC 919 919 Gin 280 gin 280 Gly Gly Gin íle Cys Gin White Cys Met 285 Met 285 Ser Ser Thr Thr Glu Glu Arg Leu 290 Arg Leu íle Val Thr Val Thr Ala Val 295 Ala Val 295 GCA GCA GAC GAC GCC TTT GTT GCC TTT GTT GAA GAA AAG AAG CTG CTG GCG GCG AGG AAG AGG AAG GTC GCC ACA GTC GCC ACA CTG CGT CTG CGT 967 967 Ala Ala Asp Asp Ala Phe Val 300 Ala Phe Val 300 Glu Glu Lys Lys Leu Leu Ala Ala Arg Lys 305 Arg Lys Val Ala Thr Val Ala Thr Leu Arg 310 Leu Arg 310 GCT GCT GGC GGC GAT CCT AAT GAT CCT AAT GAT GAT CCG CCG CAA CAA TCG TCG GTC TTG GTC TTG GGT TCG TTG GGT TCG TTG ATT GAT ATT GAT 1015 1015 Ala Ala Gly Gly Asp Pro Asn 315 Asp Pro Asn 315 Asp Asp Pro for Gin gin Ser 320 Ser 320 Val Leu Val Leu Gly Ser Leu 325 Gly Ser Leu 325 íle Asp Asp GCC GCC AAT AAT GCA GGT CAA GCA GGT CAA CGC CGC ATC ATC CAG CAG GTT GTT CTG GTC CTG GTC GAT GAT GCG GAT GAT GCG CTC GCA CTC GCA 1063 1063 Ala Ala Asn same time Ala Gly Gin 330 Ala Gly Gin Arg Arg íle Ile Gin 335 gin 335 Val wall Leu Val Leu Val Asp Asp Ala 340 Asp Asp Ala 340 Leu Ala Leu Ala AAA Lys AAA Lys GGC Gly 345 GGC Gly 345 GCG CAATGGAA TTG GCC CAG CGC GTC GAT TCG GGC ATT TGC CAT Ala Leu Ala Gin Arg Val Asp Ser Gly íle Cys His 346 420 425 430 GCG CAATGGAA TTG GCC CAG CGC GTC GAT TCG GGC ATT TGC CAT Ala Leu 1113 1113 ATC ATC AAT AAT GGA CCG ACT GGA CCG ACT GTG GTG CAT CAT GAC GAC GAG GAG GCT CAG GCT CAG ATG CCA TTC ATG CCA TTC GGT GGG GGT GGG 1161 1161 íle Ile Asn same time Gly Pro Thr 435 Gly Pro Thr 434 Val wall His His Asp Asp Glu Glu Ala Gin 440 Ala Gin Met Pro Phe Met Pro Phe Gly Gly 445 Gly Gly 445 GTG GTG AAG AAG TCC AGC GGC TCC AGC GGC TAC TAC GGC GGC AGC AGC TTC TTC GGC AGT GGC AGT CGA GCA TCG CGA GCA TCG ATT GAG ATT GAG 1209 1209 Val wall Lys Lys Ser Ser Gly 450 Ser Ser Gly 450 Tyr Tyr Gly Gly Ser Ser Phe 455 Phe 455 Gly Ser Gly Ser Arg Ala Ser 460 Arg Ala Ser 460 íle Glu ile Glu CAC CAC TTT TTT ACC CAG CTG ACC CAG CTG CGC CGC TGG TGG CTG CTG ACC ACC ATT CAG ATT CAG AAT GGC CCG AAT GGC CCG CGG CAC CGG CAC 1257 1257 His His Phe Phe Thr Gin Leu 465 Thr Gin Leu 466 Arg Arg Trp Trp Leu 470 Leu 470 Thr Thr íle Gin ile Gin Asn Gly Pro 475 Asn Gly Pro 474 Arg His Arg His TAT Tyr TAT Tyr CCA Pro 480 CCA for 480 ATC TAA ATCGATCTTC GGGCGCCGCG GGCATCATGC CCGCGGCGCT íle 481 ATC TAA ATCGATCTTC GGGCGCCGCG GGCATCATGC CCGCGGCGCT 481 1309 1309
CGCCTCATTT CAATCTCTAA CTTGATAAAA ACAGAGCTGT TCTCCGGTCT TGGTGGATCA 1369CGCCTCATTT CAATCTCTAA CTTGATAAAA ACAGAGCTGT TCTCCGGTCT TGGTGGATCA 1369 AGGCCAGTCG CGGAGAGTCT CGAAGAGGAG AGTACAGTGA ACGCCGAGTC CACATTGCAA 1429 ·· • · · • · • t · • · ·· · ·· ·· • · · · • · · • ·· · · • · ···· ·· ·· • · • ··· • · · • · · ··AGGCCAGTCG CGGAGAGTCT CGAAGAGGAG AGTACAGTGA ACGCCGAGTC CACATTGCAA 1429 · t 29 29 29 29 29 29 1429 • ··· • · · · · · · CCGCAGGCAT CCGCAGGCAT CATCATGCTC CATCATGCTC TGCTCAGCCA TGCTCAGCCA CGCTACCGCA CGCTACCGCA GTGTGTCGAT GTGTGTCGAT TGGTCATCCT TGGTCATCCT 1489 1489 CCGGTTGAGG CCGGTTGAGG TTACGCAAGA TTACGCAAGA CGCTGGAGGT CGCTGGAGGT ATTGTCCGGA ATTGTCCGGA TGCGTTCTCT TGCGTTCTCT CGAGGCGCTT CGAGGCGCTT 1549 1549 CTTCCCTTCC CTTCCCTTCC CGGGTGGAAT CGGGTGGAAT TC TC 1571 1571
FIG. 2o:FIG. 2o: ·· • · ·· ···· · · ·· ·· -42·· • · • · ··· ·· • · ···· • · • e ·· ··· • · • · ·· • · · • · • · • · ·· ·-42 · e e 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 GAATTCCGCG GTCGGCGAAA GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC 60GAATTCCGCG GTCGGCGAAA GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GTGACGAGGC CACACT GTG AGT TGG TCA GGG GGG GCT TAC TCG GCG TTT TCC 112GTGACGAGGC CACACT GTG AGT TGG TCA GGG GGG GCT Met Ser Trp Ser Gly Gly Ala Tyr Ser Ala Phe SerMet Ser Trp Ser 15 1015 10 GAC Asp GAC Asp ACT GCG ACT GCG TTG GTT TTG GTT GCG GCA GTG CGC ACC CCC TGG ATT GAT TGC GGG GCG GCA GTG 160 160 Thr Thr Ala 15 Ala 15 Leu Leu Val wall Ala Ala Ala Ala Val 20 wall 20 Arg Arg Thr Thr Pro for Trp Trp íle 25 Ile 25 Asp Asp Cys Cys Gly Gly GGT GGT GCC GCC CTG CTG TCG TCG CTG CTG GTG GTG TCG TCG CCT CCT ATC ATC GAC GAC TTA TTA GGG GGG GTA GTA AAG AAG GTC GTC GCT GCT 208 208 Gly Gly Ala 30 Ala 30 Leu Leu Ser Ser Leu Leu Val wall Ser 35 Ser 35 Pro for íle Ile Asp Asp Leu Leu Gly 40 Gly 40 Val wall Lys Lys Val wall Ala Ala CGC CGC GAA GAA GTT GTT CTG CTG ATG ATG CGT CGT GCG GCG TCG TCG CTT CTT GAA GAA CCA CCA CAA CAA ATG ATG GTC GTC GAT GAT AGC AGC 256 256 Arg 45 Arg 45 Glu Glu Val wall Leu Leu Met Met Arg 50 Arg 50 Ala Ala Ser Ser Leu Leu Glu Glu Pro 55 for 55 Gin gin Met Met Val wall Asp Asp Ser 60 Ser 60 GTA GTA CTC CTC GCA GCA GGC GGC TCT TCT ATG ATG GCT GCT CAA CAA GCA GCA AGC AGC TTT TTT GAT GAT GCT GCT TAC TAC CTG CTG CTC CTC 304 304 Val wall Leu Leu Ala Ala Gly Gly Ser 65 Ser 65 Met Met Ala Ala Gin gin Ala Ala Ser 70 Ser 70 Phe Phe Asp Asp Ala Ala Tyr Tyr Leu 75 Leu 75 Leu Leu CCG CCG CGG CGG CAC CAC ATT ATT GGC GGC TTG TTG TAC TAC AGC AGC GGT GGT GTT GTT CCC CCC AAG AAG TCG TCG GTT GTT CCG CCG GCC GCC 352 352 Pro for Arg Arg His His íle 80 Ile 80 Gly Gly Leu Leu Tyr Tyr Ser Ser Gly 85 Gly 85 Val wall Pro for Lys Lys Ser Ser Val 90 wall 90 Pro for Ala Ala TTG TTG GGG GGG GTG GTG CAG CAG CGC CGC ATT ATT TGC TGC GGC GGC ACA ACA GGC GGC TTC TTC GAA GAA CTG CTG CTT CTT CGG CGG CAG CAG 400 400 Leu Leu Gly Gly Val 95 wall 95 Gin gin Arg Arg íle Ile Cys Cys Gly 100 Gly 100 Thr Thr Gly Gly Phe Phe Glu Glu Leu 105 Leu 105 Leu Leu Arg Arg Gin gin GCC GCC GGC GGC GAG GAG CAG CAG ATT ATT TCC TCC CAA CAA GGC GGC GCT GCT GAT GAT CAC CAC GTG GTG CTG CTG TGT TGT GTC GTC GCG GCG 448 448 Ala Ala Gly 110 Gly 110 Glu Glu Gin gin íle Ile Ser Ser Gin 115 gin 115 Gly Gly Ala Ala Asp Asp His His Val 120 wall 120 Leu Leu Cys Cys Val wall Ala Ala GCA GCA GAG GAG TCC TCC ATG ATG TCG TCG CGT CGT AAC AAC CCC CCC ATC ATC GCG GCG TCG TCG TAT TAT ACA ACA CAC CAC CGG CGG GGC GGC 496 496 Ala 125 Ala 125 Glu Glu Ser Ser Met Met Ser Ser Arg 130 Arg 130 Asn same time Pro for íle Ile Ala Ala Ser 135 Ser 135 Tyr Tyr Thr Thr His His Arg Arg Gly 140 Gly 140 GGG GGG TTC TTC CGC CGC CTC CTC GGT GGT GCG GCG CCC CCC GTT GTT GAG GAG TTC TTC AAG AAG GAT GAT TTT TTT TTG TTG TGG TGG GAG GAG 544 544 Gly Gly Phe Phe Arg Arg Leu Leu Gly 145 Gly 145 Ala Ala Pro for Val wall Glu Glu Phe 150 Phe 150 Lys Lys Asp Asp Phe Phe Leu Leu Trp 155 Trp 155 Glu Glu GCA GCA TTG TTG TTT TTT GAT GAT CCT CCT GCT GCT CCA CCA GGA GGA CTC CTC GAC GAC ATG ATG ATC ATC GCT GCT ACC ACC GCA GCA GAA GAA 592 592 Ala Ala Leu Leu Phe Phe Asp 160 Asp 160 Pro for Ala Ala Pro for Gly Gly Leu 165 Leu 165 Asp Asp Met Met íle Ile Ala Ala Thr 170 Thr 170 Ala Ala Glu Glu
AAC CTG GGGACAGCAA GCGAACCGGA ATTGCCAGCT GGGGCGCCCT CTGGTAAGGT 648AAC CTG GGGACAGCAA GCGAACCGGA ATTGCCAGCT GGGGCGCCCT CTGGTAAGGT 648 Asn LeuAsn Leu 174174 TGGGAAGCCC TGCAAAGTAA ACTGGATGGC TTTCTTGCCG CCAAGGATCT GATGGCGCAG 708TGGGAAGCCC TGCAAAGTAA ACTGGATGGC TTTCTTGCCG CCAAGGATCT GATGGCGCAG 708 GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTTT CGC ATG ATT GAA CAA 763GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTTT Met íle Glu Gin · ·· • · • · · · • · · · • · · • ··· • · ···· ·· • · ··· • · ··Met Giles Gin · G · • · · · · · · · · · • · • · • · GAT GGA Asp Gly 5 GAT GGA Asp Gly 5 TTG Leu TTG Leu CAC GCA CAC GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGT TCT. CCG GCC GCT 811 811 His His Ala Ala Gly 10 Gly 10 Ser Pro Ser Pro Ala Ala Ala Trp Val Glu Arg Leu Phe Ala Trp Val Leu Phe 15 15 20 20 GGC GGC TAT TAT GAC GAC TGG TGG GCA GCA CAA CAA CAG CAG ACA ACA ATC ATC GGC GGC TGC TGC TCT TCT GAT GAT GCC GCC GCC GCC GTG GTG 859 859 Gly Gly Tyr Tyr Asp Asp Trp Trp Ala Ala Gin gin Gin gin Thr Thr íle Ile Gly Gly Cys Cys Ser Ser Asp Asp Ala Ala Ala Ala Val wall 25 25 30 30 35 35 TTC TTC CGG CGG CTG CTG TCA TCA GCG GCG CAG CAG GGG GGG CGC CGC CCG CCG GTT GTT CTT CTT TTT TTT GTC GTC AAG AAG ACC ACC GAC GAC 907 907 Phe Phe Arg Arg Leu Leu Ser Ser Ala Ala Gin gin Gly Gly Arg Arg Pro for Val wall Leu Leu Phe Phe Val wall Lys Lys Thr Thr Asp Asp 40 40 45 45 50 50 CTG CTG TCC TCC GGT GGT GCC GCC CTG CTG AAT AAT GAA GAA CTG CTG CAG CAG GAC GAC GAG GAG GCA GCA GCG GCG CGG CGG CTA CTA TCG TCG 955 955 Leu Leu Ser Ser Gly Gly Ala Ala Leu Leu Asn same time Glu Glu Leu Leu Gin gin Asp Asp Glu Glu Ala Ala Ala Ala Arg Arg Leu Leu Ser Ser 55 55 60 60 65 65 TGG TGG CTG CTG GCC GCC ACG ACG ACG ACG GGC GGC GTT GTT CCT CCT TGC TGC GCA GCA GCT GCT GTG GTG CTC CTC GAC GAC GTT GTT GTC GTC 1003 1003 Trp Trp Leu Leu Ala Ala Thr Thr Thr Thr Gly Gly Val wall Pro for Cys Cys Ala Ala Ala Ala Val wall Leu Leu Asp Asp Val wall Val wall 70 70 75 75 80 80 ACT ACT GAA GAA GCG GCG GGA GGA AGG AGG GAC GAC TGG TGG CTG CTG CTA CTA TTG TTG GGC GGC GAA GAA GTG GTG CCG CCG GGG GGG CAG CAG 1051 1051 Thr Thr Glu Glu Ala Ala Gly Gly Arg Arg Asp Asp Trp Trp Leu Leu Leu Leu Leu Leu Gly Gly Glu Glu Val wall Pro for Gly Gly Gin gin 85 85 90 90 95 95 100 100 GAT GAT CTC CTC CTG CTG TCA TCA TCT TCT CAC CAC CTT CTT GCT GCT CCT CCT GCC GCC GAG GAG AAA AAA GTA GTA TCC TCC ATC ATC ATG ATG 1099 1099 Asp Asp Leu Leu Leu Leu Ser Ser Ser Ser His His Leu Leu Ala Ala Pro for Ala Ala Glu Glu Lys Lys Val wall Ser Ser íle Ile Met Met 105 105 110 110 115 115 GCT GCT GAT GAT GCA GCA ATG ATG CGG CGG CGG CGG CTG CTG CAT CAT ACG ACG CTT CTT GAT GAT CCG CCG GCT GCT ACC ACC TGC TGC CCA CCA 1147 1147 Ala Ala Asp Asp Ala Ala Met Met Arg Arg Arg Arg Leu Leu His His Thr Thr Leu Leu Asp Asp Pro for Ala Ala Thr Thr Cys Cys Pro for 120 120 125 125 130 130 TTC TTC GAC GAC CAC CAC CAA CAA GCG GCG AAA AAA CAT CAT CGC CGC ATC ATC GAG GAG CGA CGA GCA GCA CGT CGT ACT ACT CGG CGG ATG ATG 1195 1195 Phe Phe Asp Asp His His Gin gin Ala Ala Lys Lys His His Arg Arg íle Ile Glu Glu Arg Arg Ala Ala Arg Arg Thr Thr Arg Arg Met Met 135 135 140 140 145 145 GAA GAA GCC GCC GGT GGT CTT CTT GTC GTC GAT GAT CAG CAG GAT GAT GAT GAT CTG CTG GAC GAC GAA GAA GAG GAG CAT CAT CAG CAG GGG GGG 1243 1243 Glu Glu Ala Ala Gly Gly Leu Leu Val wall Asp Asp Gin gin Asp Asp Asp Asp Leu Leu Asp Asp Glu Glu Glu Glu His His Gin gin Gly Gly 150 150 155 155 160 160 CTC CTC GCG GCG CCA CCA GCC GCC GAA GAA CTG CTG TTC TTC GCC GCC AGG AGG CTC CTC AAG AAG GCG GCG CGC CGC ATG ATG CCC CCC GAC GAC 1291 1291 Leu Leu Ala Ala Pro for Ala Ala Glu Glu Leu Leu Phe Phe Ala Ala Arg Arg Leu Leu Lys Lys Ala Ala Arg Arg Met Met Pro for Asp Asp 165 165 170 170 175 175 180 180 GGC GGC GAG GAG GAT GAT CTC CTC GTC GTC GTG GTG ACC ACC CAT CAT GGC GGC GAT GAT GCC GCC TGC TGC TTG TTG CCG CCG AAT AAT ATC ATC 1339 1339 Gly Gly Glu Glu Asp Asp Leu Leu Val wall Val wall Thr Thr His His Gly Gly Asp Asp Ala Ala Cys Cys Leu Leu Pro for Asn same time íle Ile 185 185 190 190 195 195 ATG ATG GTG GTG GAA GAA AAT AAT GGC GGC CGC CGC TTT TTT TCT TCT GGA GGA TTC TTC ATC ATC GAC GAC TGT TGT GGC GGC CGG CGG CTG CTG 1387 1387 Met Met Val wall Glu Glu Asn same time Gly Gly Arg Arg Phe Phe Ser Ser Gly Gly Phe Phe íle Ile Asp Asp Cys Cys Gly Gly Arg Arg Leu Leu 200 200 205 205 210 210 GGT GGT GTG GTG GCG GCG GAC GAC CGC CGC TAT TAT CAG CAG GAC GAC ATA ATA GCG GCG TTG TTG GCT GCT ACC ACC CGT CGT GAT GAT ATT ATT 1435 1435 Gly Gly Val wall Ala Ala Asp Asp Arg Arg Tyr Tyr Gin gin Asp Asp íle Ile Ala Ala Leu Leu Ala Ala Thr Thr Arg Arg Asp Asp íle Ile 215 215 220 220 225 225
• · ·· ·· ···· ··• · ·········· GCT GAA GAG CTT GGC GCT GAA GAG GGC GAA TGG GCT GAC CGC TTC CTC GTG CTT TAC GGC GAA TGG GCT GTC Ala Glu Glu 230 Ala Glu Glu 230 Leu Gly Leu Gly Gly Glu 235 Gly Glu 235 Trp Trp Ala Ala Asp Asp Arg Arg Phe Leu Val Leu 240 Phe Leu Val Leu 240 Tyr Tyr GGT GGT ATC ATC GCC GCC GCT GCT CCC CCC GAT GAT TCG TCG CAG CAG CGC CGC ATC ATC GCC GCC TTC TTC TAT TAT CGC CGC CTT CTT CTT CTT Gly Gly íle Ile Ala Ala Ala Ala Pro for Asp Asp Ser Ser Gin gin Arg Arg íle Ile Ala Ala Phe Phe Tyr Tyr Arg Arg Leu Leu Leu Leu 245 245 250 250 255 255 260 260
GAC GAG TTC TTC TGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC 1586GAC GAG TTC TTC GGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC 1586 Asp Glu Phe PheAsp Glu Phe Phe 264264 CA TTG AGG GCG CAA GAG GAG AAA TGG ATT GAC CAA GAG ATC GTG GCT 1633CA TTG AGG GCG CAA GAG GC AAA TGG ATT GAC Leu Arg Ala Gin Glu Glu Lys Trp íle Asp Gin Glu íle Val Ala 197 200 -205 210Leu Arg Ala Gin Glu Lys Trp White Asp Gin Glu White Val Ala 197 200 -205 210 GTT ACG GAT GAA GTT ACG GAT GAA CAG TTC Gin Phe CAG TTC Gin Phe GAT TTA GAG GAT GGC TAC AAC AGT CGA GCA ATT GGC TAC AAC 1681 1681 Val wall Thr Thr Asp Asp Glu 215 Glu 215 Asp Asp Leu Glu 220 Leu Glu 220 Gly Tyr Asn Ser Gly Tyr Asn. Ser Arg Ala 225 Arg Ala 225 íle Ile GAA GAA CTG CTG CCT CCT CGG CGG AAG AAG GCA GCA AAA AAA TTG TTG TTG TTG ATC ATC GTG GTG ACA ACA GTC GTC ATC ATC CGC CGC GGC GGC 1729 1729 Glu Glu Leu Leu Pro for Arg Arg Lys Lys Ala Ala Lys Lys Leu Leu Leu Leu íle Ile Val wall Thr Thr Val wall íle Ile Arg Arg Gly Gly 230 230 235 235 240 240 CTA CTA GCA GCA GTC GTC TTT TTT GAA GAA GCC GCC CTT CTT TCC TCC CGA CGA TTG TTG AAG AAG CCT CCT GTT GTT CAT CAT TCT TCT GGC GGC 1777 1777 Leu Leu Ala Ala Val wall Phe Phe Glu Glu Ala Ala Leu Leu Ser Ser Arg Arg Leu Leu Lys Lys Pro for Val wall His His Ser Ser Gly Gly 245 245 250 250 255 255 GGG GGG GTG GTG CAG CAG ACT ACT GCG GCG GGC GGC AAC AAC AGC AGC TGT TGT GCC GCC GTA GTA GTG GTG GAC GAC GGC GGC GCC GCC GCG GCG 1825 1825 Gly Gly Val wall Gin gin Thr Thr Ala Ala Gly Gly Asn same time Ser Ser Cys Cys Ala Ala Val wall Val wall Asp Asp Gly Gly Ala Ala Ala Ala 260 260 265 265 270 270 275 275 GCG GCG GCT GCT TTG TTG GTG GTG GCT GCT CGA CGA GAG GAG TCG TCG TCT TCT GCG GCG ACA ACA CAG CAG CCG CCG GTC GTC TTG TTG GCT GCT 1873 1873 Ala Ala Ala Ala Leu Leu Val wall Ala Ala Arg Arg Glu Glu Ser Ser Ser Ser Ala Ala Thr Thr Gin gin Pro for Val wall Leu Leu Ala Ala 280 280 285 285 290 290 AGG AGG ATA ATA CTG CTG GCT GCT ACC ACC TCC TCC GTA GTA GTC GTC GGG GGG ATC ATC GAG GAG CCC CCC GAG GAG CAT CAT ATG ATG GGG GGG 1921 1921 Arg Arg íle Ile Leu Leu Ala Ala Thr Thr Ser Ser Val wall Val wall Gly Gly íle Ile Glu Glu Pro for Glu Glu His His Met Met Gly Gly 295 295 300 300 305 305 CTC CTC GGC GGC CCT CCT GCG GCG CCC CCC GCG GCG ATT ATT CGC CGC CTG CTG CTG CTG CTT CTT GCG GCG CGT CGT AGT AGT GAT GAT CTT CTT 1969 1969 Leu Leu Gly Gly Pro for Ala Ala Pro for Ala Ala íle Ile Arg Arg Leu Leu Leu Leu Leu Leu Ala Ala Arg Arg Ser Ser Asp Asp Leu Leu 310 310 315 315 320 320 AGT AGT TTG TTG AGG AGG GAT GAT ATC ATC GAC GAC CTC CTC TTT TTT GAG GAG ATA ATA AAC AAC GAG GAG GCG GCG CAG CAG GCC GCC GCC GCC 2017 2017 Ser Ser Leu Leu Arg Arg Asp Asp íle Ile Asp Asp Leu Leu Phe Phe Glu Glu íle Ile Asn same time Glu Glu Ala Ala Gin gin Ala Ala Ala Ala 325 325 330 330 335 335 CAA CAA GTT GTT CTA CTA GCG GCG GTA GTA CAG CAG CAT CAT GAA GAA TTG TTG GGT GGT ATT ATT GAG GAG CAC CAC TCA TCA AAA AAA CTT CTT 2065 2065 Gin gin Val wall Leu Leu Ala Ala Val wall Gin gin His His Glu Glu Leu Leu Gly Gly íle Ile Glu Glu His His Ser Ser Lys Lys Leu Leu 340 340 345 345 350 350 355 355 AAT AAT ATT ATT TGG TGG GGC GGC GGG GGG GCC GCC ATT ATT GCA GCA CTT CTT GGA GGA CAC CAC CCG CCG CTT CTT GCC GCC GCG GCG ACC ACC 2113 2113 Asn same time íle Ile Trp Trp Gly Gly Gly Gly Ala Ala íle Ile Ala Ala Leu Leu Gly Gly His His Pro for Leu Leu Ala Ala Ala Ala Thr Thr
360 365 370 • · ··· • · • · · · · ·360 365 370 · ··· · · · · · · · · · -45• · · · · · · • · · e · · ·· ·· ·· ·-45 · · · · · · · · · · · · · · · · · · · · · · · · · · · GGA Gly GGA Gly TTG Leu TTG Leu CGT CTC TGC ATG ACC CTC CGT CTC TGG ATG ACC CTC GCT CAC CAA TTG CAA GCT AAT AAC GCT CAC CAA TTG CAA GCT AAT AAC 2161 2161 Arg Arg Leu Cys Met 375 Leu Cys Met 375 Thr Leu Thr Leu Ala 380 Ala 380 His His Gin gin Leu Leu Gin gin Ala Asn Asn 385 Ala Asn Asn 385 TTT TTT CGA CGA TAT TAT GGA ATT GCC GGA ATT GCC TCG GCA TCG GCA TGC TGC ATT ATT GGT GGT GGG GGG GGA GGA CAG GGG ATG CAG GGG ATG 2209 2209 Phe Phe Arg Arg Tyr Tyr Gly íle Ala Gly Ala Ala Ser Ala Ser Ala Cys Cys íle Ile Gly Gly Gly Gly Gly Gly Gin Gly Met Gin Gly Met 390 390 395 395 400 400 GCG GCG GTT GTT CTT CTT TTA GAG AAT TTA GAG AAT CCC CAC CCC CAC TTC TTC GGT GGT TCG TCG TCC TCC TCT TCT GCA CGA AGT GCA CGA AGT 2257 2257 Ala Ala Val wall Leu Leu Leu Glu Asn Leu Glu Asn Pro His Pro His Phe Phe Gly Gly Ser Ser Ser Ser Ser Ser Ala Arg Ser Ala Arg Ser 405 405 410 410 415 415 TCG TCG ATG ATG ATT ATT AAC AGA GTT AAC AGA GTT GAC CAC GAC CAC TAT TAT CCA CCA CTG CTG AGC AGC TAA TAA CGGGCATCTC CGGGCATCTC 2306 2306 Ser Ser Met Met íle Ile Asn Arg Val Asn Arg Val Asp His Asp His Tyr Tyr Pro for Leu Leu Ser Ser 420 420 425 425 430 430 431 431
CTTTGTTGCT CTTTGTTGCT TTGAGGTGGC TTGAGGTGGC GCACGAAGGA GCACGAAGGA GGGCTCGAAA GGGCTCGAAA ATCTCTGCTA ATCTCTGCTA AAAACAAGAA AAAACAAGAA 2366 2366 GAAGGAACAG GAAGGAACAG GGAACATGAT GGAACATGAT TAGTTTCGCT TAGTTTCGCT CGTATGGCAG CGTATGGCAG AAAGTTTAGG AAAGTTTAGG AGTCCAGGCT AGTCCAGGCT 2426 2426 AAACTTGCCC AAACTTGCCC TTGCCTTCGC TTGCCTTCGC ACTCGTATTA ACTCGTATTA TGTGTCGGGC TGTGTCGGGC TGATTGTTAC TGATTGTTAC CGGCACGGGT CGGCACGGGT 2486 2486 TTCTACAGTG TTCTACAGTG TACATACCTT TACATACCTT GTCAGGGTTG GTCAGGGTTG GTGGGAATTC GTGGGAATTC 2526 2526
FIG. 2p:FIG. 2p: • · ·· • · • ·• · · · -46·· ·· • · · · • · · • ··· • · ···· ·· • · • · • · • ·-46 ·· ··· · · · · · · · · · · · · · GAATTCCGCG GTCGGCGAAA GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC 60GAATTCCGCG GTCGGCGAAA GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GTGACGAGGC CACACT GTG AGT TGG TCA GGG GGG GCT TAC TCG GCG TTT TCC 112GTGACGAGGC CACACT GTG AGT TGG TCA GGG GGG GCT Met Ser Trp Ser Gly Gly Ala Tyr Ser Ala Phe SerMet Ser Trp Ser 15 1015 10 GAC Asp GAC Asp ACT GCG ACT GCG TTG GTT GCG GCA GTG CGC ACC TTG GTT GCG GCA CCC TGG ATT GAT TGC CCC TGG ATT GAT TGC GGG Gly GGG Gly 160 160 Thr Thr Ala 15 Ala 15 Leu Val Leu Val Ala Ala Ala Ala Val Arg 20 Val Arg Thr Thr Pro for Trp íle 25 Suffering 25 Asp Cys Asp Cys GGT GGT GCC GCC CTG CTG TCG TCG CTG CTG GTG GTG TCG TCG CCT CCT ATC ATC GAC GAC TTA TTA GGG GGG GTA GTA AAG AAG GTC GTC GCT GCT 208 208 Gly Gly Ala Ala Leu Leu Ser Ser Leu Leu Val wall Ser Ser Pro for íle Ile Asp Asp Leu Leu Gly Gly Val wall Lys Lys Val wall Ala Ala 30 30 35 35 40 40 CGC CGC GAA GAA GTT GTT CTG CTG ATG ATG CGT CGT GCG GCG TCG TCG CTT CTT GAA GAA CCA CCA CAA CAA ATG ATG GTC GTC GAT GAT AGC AGC . 256 . 256 Arg Arg Glu Glu Val wall Leu Leu Met Met Arg Arg Ala Ala Ser Ser Leu Leu Glu Glu Pro for Gin gin Met Met Val wall Asp Asp Ser Ser 45 45 50 50 55 55 60 60 GTA GTA CTC CTC GCA GCA GGC GGC TCT TCT ATG ATG GCT GCT CAA CAA GCA GCA AGC AGC TTT TTT GAT GAT GCT GCT TAC TAC CTG CTG CTC CTC 304 304 Val wall Leu Leu Ala Ala Gly Gly Ser Ser Met Met Ala Ala Gin gin Ala Ala Ser Ser Phe Phe Asp Asp Ala Ala Tyr Tyr Leu Leu Leu Leu 65 65 70 70 75 75 CCG CCG CGG CGG CAC CAC ATT ATT GGC GGC TTG TTG TAC TAC AGC AGC GGT GGT GTT GTT CCC CCC AAG AAG TCG TCG GTT GTT CCG CCG GCC GCC 352 352 Pro for Arg Arg His His íle Ile Gly Gly Leu Leu Tyr Tyr Ser Ser Gly Gly Val wall Pro for Lys Lys Ser Ser Val wall Pro for Ala Ala 80 80 85 85 90 90 TTG TTG GGG GGG GTG GTG CAG CAG CGC CGC ATT ATT TGC TGC GGC GGC ACA ACA GGC GGC TTC TTC GAA GAA CTG CTG CTT CTT CGG CGG CAG CAG 400 400 Leu Leu Gly Gly Val wall Gin gin Arg Arg íle Ile Cys Cys Gly Gly Thr Thr Gly Gly Phe Phe Glu Glu Leu Leu Leu Leu Arg Arg Gin gin 95 95 100 100 105 105 GCC GCC GGC GGC GAG GAG CAG CAG ATT ATT TCC TCC CAA CAA GGC GGC GCT GCT GAT GAT CAC CAC GTG GTG CTG CTG TGT TGT GTC GTC GCG GCG 448 448 Ala Ala Gly Gly Glu Glu Gin gin íle Ile Ser Ser Gin gin Gly Gly Ala Ala Asp Asp His His Val wall Leu Leu Cys Cys Val wall Ala Ala 110 110 115 115 120 120 GCA GCA GAG GAG TCC TCC ATG ATG TCG TCG CGT CGT AAC AAC CCC CCC ATC ATC GCG GCG TCG TCG TAT TAT ACA ACA CAC CAC CGG CGG GGC GGC 496 496 Ala Ala Glu Glu Ser Ser Met Met Ser Ser Arg Arg Asn same time Pro for íle Ile Ala Ala Ser Ser Tyr Tyr Thr Thr His His Arg Arg Gly Gly 125 125 130 130 135 135 140 140 GGG GGG TTC TTC CGC CGC CTC CTC GGT GGT GCG GCG CCC CCC GTT GTT GAG GAG TTC TTC AAG AAG GAT GAT TTT TTT TTG TTG TGG TGG GAG GAG 544 544 Gly Gly Phe Phe Arg Arg Leu Leu Gly Gly Ala Ala Pro for Val wall Glu Glu Phe Phe Lys Lys Asp Asp Phe Phe Leu Leu Trp Trp Glu Glu 145 145 150 150 155 155 GCA GCA TTG TTG TTT TTT GAT GAT CCT CCT GCT GCT CCA CCA GGA GGA CTC CTC GAC GAC ATG ATG ATC ATC GCT GCT ACC ACC GCA GCA GAA GAA 592 592 Ala Ala Leu Leu Phe Phe Asp Asp Pro for Ala Ala Pro for Gly Gly Leu Leu Asp Asp Met Met íle Ile Ala Ala Thr Thr Ala Ala Glu Glu
160 165 170160 ÄAC CTG GGGGAGAGGC GGTTTGCGTA TTGGGCGCAT GCATAAAAAC TGTTGTAATT 648ÄAC CTG GGGGAGAGGC GGTTTGCGTA TTGGGCGCAT GCATAAAAAC TGTTGTAATT 648 Asn LeuAsn Leu 174174 CATTAAGCAT TCTGCCGACA TGGAAGCCAT CACAAACGGC ATGATGAACC TGAATCGCCA 708CATTAAGCAT TCTGCCGACA TGGAAGCCAT CACAAACGGC ATGATGAACC TGAATCGCCA 708 GCGGCATCAG CACCTTGTCG CCTTGCGTAT AATATTTGCC CATGGACGCA CACCGTGGAA 768GCGGCATCAG CACCTTGTCG CCTTGCGTAT AATATTTGCC CATGGACGCA CACCGTGGAA 768 ACGGATGAAG GCACGAACCC AGTTGACATA AGCCTGTTCG GTTCGTAAAC TGTAATGCAA 828ACGGATGAAG GCACGAACCC AGTTGACATA AGCCTGTTCG GTTCGTAAAC TGTAATGCAA 828 GTAGCGTATG CGCTCACGCA ACTGGTCCAG AACCTTGACC GAACGCAGCG GTGGTAACGG 888GTAGCGTATG CGCTCACGCA ACTGGTCCAG AACCTTGACC GAACGCAGCG GTGGTAACGG 888 -47·· ·· • · · • · · • · · · ·· ·· ·· • · · · · · • · ··· · · • · · · · · · • · · · · · ·· ·· ·· ·-47 ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· ·· · CGCAGTGGCG GTTTTCATGG CTTGTTATGA CTGTTTTTTT GTACAGTCTA TGCCTCGGGC 948CGCAGTGGCG GTTTTCATGG CTTGTTATGA CTGTTTTTTT GTACAGTCTA TGCCTCGGGC 948 ATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTTTG ATGTTATGGA GCAGCAACG 1007ATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTTTG ATGTTATGGA GCAGCAACG 1007 ATG TTA CGC ATG TTA CGC AGC Ser AGC Ser AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA AGC AAC GAT GTT ACG CAG 1055 1055 Met Leu 1 Met Leu Arg Arg Ser 5 Ser 5 Asn same time Asp Val Asp Val Thr Thr Gin 10 gin 10 Gin gin Gly Gly Ser Ser Arg Pro Lys 15 Arg Pro Lys 15 ACA ACA AAG AAG TTA TTA GGT GGT GGC GGC TCA TCA AGT AGT ATG ATG GGC GGC ATC ATC ATT ATT CGC CGC ACA ACA TGT TGT AGG AGG CTC CTC 1103 1103 Thr Thr Lys Lys Leu Leu Gly Gly Gly Gly Ser Ser Ser Ser Met Met Gly Gly Ile Ile íle Ile Arg Arg Thr Thr Cys Cys Arg Arg Leu Leu 20 20 25 25 30 30 GGC GGC CCT CCT GAC GAC CAA CAA GTC GTC AAA AAA TCC TCC ATG ATG CGG CGG GCT GCT GCT GCT CTT CTT GAT GAT CTT CTT TTC TTC GGT GGT 1151 1151 Gly Gly Pro for Asp Asp Gin gin Val wall Lys Lys Ser Ser Met Met Arg Arg Ala Ala Ala Ala Leu Leu Asp Asp Leu Leu Phe Phe Gly Gly 35 35 40 40 45 45 CGT CGT GAG GAG TTC TTC GGA GGA GAC GAC GTA GTA GCC GCC ACC ACC TAC TAC TCC TCC CAA CAA CAT CAT CAG CAG CCG CCG GAC GAC TCC TCC 1199 1199 Arg Arg Glu Glu Phe Phe Gly Gly Asp Asp Val wall Ala Ala Thr Thr Tyr Tyr Ser Ser Gin gin His His Gin gin Pro for Asp Asp Ser Ser 50 50 55 55 60 60 GAT GAT TAC TAC CTC CTC GGG GGG AAC AAC TTG TTG CTC CTC CGT CGT AGT AGT AAG AAG ACA ACA TTC TTC ATC ATC GCG GCG CTT CTT GCT GCT 1247 1247 Asp Asp Tyr Tyr Leu Leu Gly Gly Asn same time Leu Leu Leu Leu Arg Arg Ser Ser Lys Lys Thr Thr Phe Phe Ile Ile Ala Ala Leu Leu Ala Ala 65 65 70 70 75 75 80 80 GCC GCC TTC TTC GAC GAC CAA CAA GAA GAA GCG GCG GTT GTT GTT GTT GGC GGC GCT GCT CTC CTC GCG GCG GCT GCT TAC TAC GTT GTT CTG CTG 1295 1295 Ala Ala Phe Phe Asp Asp Gin gin Glu Glu Ala Ala Val wall Val wall Gly Gly Ala Ala Leu Leu Ala Ala Ala Ala Tyr Tyr Val wall Leu Leu 85 85 90 90 95 95 CCC CCC AGG AGG TTT TTT GAG GAG CAG CAG CCG CCG CGT CGT AGT AGT GAG GAG ATC ATC TAT TAT ATC ATC TAT TAT GAT GAT CTC CTC GCA GCA 1343 1343 Pro for Arg Arg Phe Phe Glu Glu Gin gin Pro for Arg Arg Ser Ser Glu Glu íle Ile Tyr Tyr íle Ile Tyr Tyr Asp Asp Leu Leu Ala Ala 100 100 105 105 110 110 GTC GTC TCC TCC GGC GGC GAG GAG CAC CAC CGG CGG AGG AGG CAG CAG GGC GGC ATT ATT GCC GCC ACC ACC GCG GCG CTC CTC ATC ATC AAT AAT 1391 1391 Val wall Ser Ser Gly Gly Glu Glu His His Arg Arg Arg Arg Gin gin Gly Gly Ile Ile Ala Ala Thr Thr Ala Ala Leu Leu íle Ile Asn same time 115 115 120 120 125 125 CTC CTC CTC CTC AAG AAG CAT CAT GAG GAG GCC GCC AAC AAC GCG GCG CTT CTT GGT GGT GCT GCT TAT TAT GTG GTG ATC ATC TAC TAC GTG GTG 1439 1439 Leu Leu Leu Leu Lys Lys His His Glu Glu Ala Ala Asn same time Ala Ala Leu Leu Gly Gly Ala Ala Tyr Tyr Val wall Ile Ile Tyr Tyr Val wall 130 130 135 135 140 140 CAA CAA GCA GCA GAT GAT TAC TAC GGT GGT GAC GAC GAT GAT CCC CCC GCA GCA GTG GTG GCT GCT CTC CTC TAT TAT ACA ACA AAG AAG TTG TTG 1487 1487 Gin gin Ala Ala Asp Asp Tyr Tyr Gly Gly Asp Asp Asp Asp Pro for Ala Ala Val wall Ala Ala Leu Leu Tyr Tyr Thr Thr Lys Lys Leu Leu 145 145 150 150 155 155 160 160 GGC GGC ATA ATA CGG CGG GAA GAA GAA GAA GTG GTG ATG ATG CAC CAC TTT TTT GAT GAT ATC ATC GAC GAC CCA CCA AGT AGT ACC ACC GCC GCC 1535 1535 Gly Gly íle Ile Arg Arg Glu Glu Glu Glu Val wall Met Met His His Phe Phe Asp Asp Ile Ile Asp Asp Pro for Ser Ser Thr Thr Ala Ala
165 170 175165 170 175 AAA TGG ATT GAC CAA GAG ATC GTG GCT GTT ACG GAT Lys Trp Ile Asp Gin Glu íle Val Ala Val Thr Asp 205 210AAA TGG ATT GAC CAA GAG ATC GTG GCT GTG ACAT GAT Lys Trp Ile Asp Gin Glu White Val Ala Val Thr Asp 205 210 ACC TAA CAATTCGTTC AAGCCGAGAT CGGCTTCCCA TTG AGG GCG CAA GAG GAG 1589 Thr Leu Arg Ala Gin Glu GluACC TAA CAATTCGTTC AAGCCGAGATGGCTTCCCA TTG AGG GCG CAA GAG GAG 1589 Thr Leu Arg Glu Glu Glu 177 197 200177,197 200 GAA CAG TTC GAT 1637GAA CAG TTC GAT 1637 Glu Gin Phe Asp 215Glu Gin Phe Asp 215 -48·· ·· • · · · • · · • ··· · • · ···· ·· · ··-48 ·· ························ B · ·B · · I · ···I · ··· B · · ·B · · · B · · · ·· ··B · · · ·· ·· TTA GAG GGC TAC AAC TTA GAG GAC TAC AAC AGT CGA GCA ATT GAA CTG CCT CGG AAG GCA AGT CGA GCA AAA Lys AAA Lys 1685 1685 Leu Leu Glu 220 Glu 220 Gly Tyr Asn Gly Tyr Asn Ser Arg 225 Ser Arg 225 Ala Ala íle Ile Glu Glu Leu Pro 230 Leu Pro 230 Arg Arg Lys Lys Ala Ala TTG TTG TTG TTG ATC ATC GTG GTG ACA ACA GTC GTC ATC ATC CGC CGC GGC GGC CTA CTA GCA GCA GTC GTC TTT TTT GAA GAA GCC GCC CTT CTT 1733 1733 Leu Leu Leu Leu íle Ile Val wall Thr Thr Val wall íle Ile Arg Arg Gly Gly Leu Leu Ala Ala Val wall Phe Phe Glu Glu Ala Ala Leu Leu 235 235 240 240 245 245 250 250 TCC TCC CGA CGA TTG TTG AAG AAG CCT CCT GTT GTT CAT CAT TCT TCT GGC GGC GGG GGG GTG GTG CAG CAG ACT ACT GCG GCG GGC GGC AAC AAC 1781 1781 Ser Ser Arg Arg Leu Leu Lys Lys Pro for Val wall His His Ser Ser Gly Gly Gly Gly Val wall Gin gin Thr Thr Ala Ala Gly Gly Asn same time 255 255 260 260 265 265 AGC AGC TGT TGT GCC GCC GTA GTA GTG GTG GAC GAC GGC GGC GCC GCC GCG GCG GCG GCG GCT GCT TTG TTG GTG GTG GCT GCT CGA CGA GAG GAG 1829 1829 Ser Ser Cys Cys Ala Ala Val wall Val wall Asp Asp Gly Gly Ala Ala Ala Ala Ala Ala Ala Ala Leu Leu Val wall Ala Ala Arg Arg Glu Glu 270 270 275 275 280 280 TCG TCG TCT TCT GCG GCG ACA ACA CAG CAG CCG CCG GTC GTC TTG TTG GCT GCT AGG AGG ATA ATA CTG CTG GCT GCT ACC ACC TCC TCC GTA GTA 1877 1877 Ser Ser Ser Ser Ala Ala Thr Thr Gin gin Pro for Val wall Leu Leu Ala Ala Arg Arg íle Ile Leu Leu Ala Ala Thr Thr Ser Ser Val wall 285 285 290 290 295 295 GTC GTC GGG GGG ATC ATC GAG GAG CCC CCC GAG GAG CAT CAT ATG ATG GGG GGG CTC CTC GGC GGC CCT CCT GCG GCG CCC CCC GCG GCG ATT ATT 1925 1925 Val wall Gly Gly íle Ile Glu Glu Pro for Glu Glu His His Met Met Gly Gly Leu Leu Gly Gly Pro for Ala Ala Pro for Ala Ala íle Ile 300 300 305 305 310 310 CGC CGC CTG CTG CTG CTG CTT CTT GCG GCG CGT CGT AGT AGT GAT GAT CTT CTT AGT AGT TTG TTG AGG AGG GAT GAT ATC ATC GAC GAC CTC CTC 1973 1973 Arg Arg Leu Leu Leu Leu Leu Leu Ala Ala Arg Arg Ser Ser Asp Asp Leu Leu Ser Ser Leu Leu Arg Arg Asp Asp íle Ile Asp Asp Leu Leu 315 315 320 320 325 325 330 330 TTT TTT GAG GAG ATA ATA AAC AAC GAG GAG GCG GCG CAG CAG GCC GCC GCC GCC CAA CAA GTT GTT CTA CTA GCG GCG GTA GTA CAG CAG CAT CAT 2021 2021 Phe Phe Glu Glu íle Ile Asn same time Glu Glu Ala Ala Gin gin Ala Ala Ala Ala Gin gin Val wall Leu Leu Ala Ala Val wall Gin gin His His 335 335 340 340 345 345 GAA GAA TTG TTG GGT GGT ATT ATT GAG GAG CAC CAC TCA TCA AAA AAA CTT CTT AAT AAT ATT ATT TGG TGG GGC GGC GGG GGG GCC GCC ATT ATT 2069 2069 Glu Glu Leu Leu Gly Gly íle Ile Glu Glu His His Ser Ser Lys Lys Leu Leu Asn same time íle Ile Trp Trp Gly Gly Gly Gly Ala Ala íle Ile 350 350 355 355 360 360 GCA GCA CTT CTT GGA GGA CAC CAC CCG CCG CTT CTT GCC GCC GCG GCG ACC ACC GGA GGA TTG TTG CGT CGT CTC CTC TGC TGC ATG ATG ACC ACC 2117 2117 Ala Ala Leu Leu Gly Gly His His Pro for Leu Leu Ala Ala Ala Ala Thr Thr Gly Gly Leu Leu Arg Arg Leu Leu Cys Cys Met Met Thr Thr 365 365 370 370 375 375 CTC CTC GCT GCT CAC CAC CAA CAA TTG TTG CAA CAA GCT GCT AAT AAT AAC AAC TTT TTT CGA CGA TAT TAT GGA GGA ATT ATT GCC GCC TCG TCG 2165 2165 Leu Leu Ala Ala His His Gin gin Leu Leu Gin gin Ala Ala Asn same time Asn same time Phe Phe Arg Arg Tyr Tyr Gly Gly íle Ile Ala Ala Ser Ser 380 380 385 385 390 390 GCA GCA TGC TGC ATT ATT GGT GGT GGG GGG GGA GGA CAG CAG GGG GGG ATG ATG GCG GCG GTT GTT CTT CTT TTA TTA GAG GAG AAT AAT CCC CCC 2213 2213 Ala Ala Cys Cys íle Ile Gly Gly Gly Gly Gly Gly Gin gin Gly Gly Met Met Ala Ala Val wall Leu Leu Leu Leu Glu Glu Asn same time Pro for 395 395 400 400 405 405 410 410 CAC CAC TTC TTC GGT GGT TCG TCG TCC TCC TCT TCT GCA GCA CGA CGA AGT AGT TCG TCG ATG ATG ATT ATT AAC AAC AGA AGA GTT GTT GAC GAC 2261 2261 His His Phe Phe Gly Gly Ser Ser Ser Ser Ser Ser Ala Ala Arg Arg Ser Ser Ser Ser Met Met íle Ile Asn same time Arg Arg Val wall Asp Asp
415 420 425(+420) 415 420 425 CAC TAT CCA CTG AGC TAA CGGGCATCTC CTTTGTTGCT TTGAGGTGGC His Tyr Pro Leu SerCAC TAT CCA CTG AGG TAA CGGGCATCTC CTTTGTTGCT TTGAGGTGGC His Tyr Pro Leu Ser 430 431430 431 2309 ·· ·· ·· ·· ·· ···· ··· ··· • · · · · ··· · · • ··· ·· · · ··· · • · ···· e · ···· ·· ·· ·· ·· ·2309 ·· ··························· · ···· ·· ·· ·· ·· · GCACGAAGGA GGGCTCGAAA ATCTCTGCTA AAAACAAGAA GAAGGAACAG GGAACÄTGAT GCACGAAGGA GGGCTCGAAA ATCTCTGCTA AAAACAAGAA GAAGGAACAG GGAACÄTGAT 2369 2369 TAGTTTCGCT CGTATGGCAG AAAGTTTAGG AGTCCAGGCT AAACTTGCCC TTGCCTTCGC TAGTTTCGCT CGTATGGCAG AAAGTTTAGG AGTCCAGGCT AAACTTGCCC TTGCCTTCGC 2429 2429 ACTCGTATTA TGTGTCGGGC TGATTGTTAC CGGCACGGGT TTCTACAGTG TACATACCTT ACTCGTATTA TGTGTCGGGC TGATTGTTAC CGGCACGGGT TTCTACAGTG TACATACCTT 2489 2489 GTCAGGGTTG GTGGGAATTC GTCAGGGTTG GTGGGAATTC 2509 2509 FIG. 2q: FIG. 2Q:
-50·· ·· ·· ·· ·· ···· ··· ··· • t e · · ··· · · • ··· · · ·· ··· · • · · · · · ·· ···· ·· ·· ·· ·· ·-50 ·· ·· ·· ·· ··························································································· · ···· ·· ·· ·· ·· · GAATTCCGCG GTCGGCGAAA GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC 60GAATTCCGCG GTCGGCGAAA GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GTGACGAGGC CACACT GTG AGT TGG TCA GGG GGG GCT TAC TCG GCG TTT TCC 112GTGACGAGGC CACACT GTG AGT TGG TCA GGG GGG GCT Met Ser Trp Ser Gly Gly Ala Tyr Ser Ala Phe SerMet Ser Trp Ser 15 1015 10 GAC Asp GAC Asp ACT GCG ACT GCG TTG GTT GCG GCA GTG CGC ACC CCC TGG ATT GAT TTG GTT GCG GCA TGC GGG Cys Gly TGC GGG Cys Gly 160 160 Thr Thr Ala 15 Ala 15 Leu Val Leu Val Ala Ala Ala Ala Val Arg 20 Val Arg Thr Pro Thr Pro Trp Trp íle 25 Ile 25 Asp Asp GGT GGT GCC GCC CTG CTG TCG TCG CTG CTG GTG GTG TCG TCG CCT CCT ATC ATC GAC GAC TTA TTA GGG GGG GTA GTA AAG AAG GTC GTC GCT GCT 208 208 Gly Gly Ala Ala Leu Leu Ser Ser Leu Leu Val wall Ser Ser Pro for íle Ile Asp Asp Leu Leu Gly Gly Val wall Lys Lys Val wall Ala Ala 30 30 35 35 40 40 CGC CGC GAA GAA GTT GTT CTG CTG ATG ATG CGT CGT GCG GCG TCG TCG CTT CTT GAA GAA CCA CCA CAA CAA ATG ATG GTC GTC GAT GAT AGC AGC 256 256 Arg Arg Glu Glu Val wall Leu Leu Met Met Arg Arg Ala Ala Ser Ser Leu Leu Glu Glu Pro for Gin gin Met Met Val wall Asp Asp Ser Ser 45 45 50 50 55 55 60 60 GTA GTA CTC CTC GCA GCA GGC GGC TCT TCT ATG ATG GCT GCT CAA CAA GCA GCA AGC AGC TTT TTT GAT GAT GCT GCT TAC TAC CTG CTG CTC CTC 304 304 Val wall Leu Leu Ala Ala Gly Gly Ser Ser Met Met Ala Ala Gin gin Ala Ala Ser Ser Phe Phe Asp Asp Ala Ala Tyr Tyr Leu Leu Leu Leu 65 65 70 70 75 75 CCG CCG CGG CGG CAC CAC ATT ATT GGC GGC TTG TTG TAC TAC AGC AGC GGT GGT GTT GTT CCC CCC AAG AAG TCG TCG GTT GTT CCG CCG GCC GCC 352 352 Pro for Arg Arg His His íle Ile Gly Gly Leu Leu Tyr Tyr Ser Ser Gly Gly Val wall Pro for Lys Lys Ser Ser Val wall Pro for Ala Ala 80 80 85 85 90 90 TTG TTG GGG GGG GTG GTG CAG CAG CGC CGC ATT ATT TGC TGC GGC GGC ACA ACA GGC GGC TTC TTC GAA GAA CTG CTG CTT CTT CGG CGG CAG CAG 400 400 Leu Leu Gly Gly Val wall Gin gin Arg Arg Ile Ile Cys Cys Gly Gly Thr Thr Gly Gly Phe Phe Glu Glu Leu Leu Leu Leu Arg Arg Gin gin 95 95 100 100 105 105 GCC GCC GGC GGC GAG GAG CAG CAG ATT ATT TCC TCC CAA CAA GGC GGC GCT GCT GAT GAT CAC CAC GTG GTG CTG CTG TGT TGT GTC GTC GCG GCG 448 448 Ala Ala Gly Gly Glu Glu Gin gin íle Ile Ser Ser Gin gin Gly Gly Ala Ala Asp Asp His His Val wall Leu Leu Cys Cys Val wall Ala Ala 110 110 115 115 120 120 GCA GCA GAG GAG TCC TCC ATG ATG TCG TCG CGT CGT AAC AAC CCC CCC ATC ATC GCG GCG TCG TCG TAT TAT ACA ACA CAC CAC CGG CGG GGC GGC 496 496 Ala Ala Glu Glu Ser Ser Met Met Ser Ser Arg Arg Asn same time Pro for íle Ile Ala Ala Ser Ser Tyr Tyr Thr Thr His His Arg Arg Gly Gly 125 125 130 130 135 135 140 140 GGG GGG TTC TTC CGC CGC CTC CTC GGT GGT GCG GCG CCC CCC GTT GTT GAG GAG TTC TTC AAG AAG GAT GAT TTT TTT TTG TTG TGG TGG GAG GAG 544 544 Gly Gly Phe Phe Arg Arg Leu Leu Gly Gly Ala Ala Pro for Val wall Glu Glu Phe Phe Lys Lys Asp Asp Phe Phe Leu Leu Trp Trp Glu Glu 145 145 150 150 155 155 GCA GCA TTG TTG TTT TTT GAT GAT CCT CCT GCT GCT CCA CCA GGA GGA CTC CTC GAC GAC ATG ATG ATC ATC GCT GCT ACC ACC GCA GCA GAA GAA 592 592 Ala Ala Leu Leu Phe Phe Asp Asp Pro for Ala Ala Pro for Gly Gly Leu Leu Asp Asp Met Met íle Ile Ala Ala Thr Thr Ala Ala Glu Glu
160 165 170160 AAC CTG GCG CGC A TTG AGG GCG CAA GAG GAG AAA TGG ATT GAC CAA GAG 641AAC CTG GCG CGC A TTG AGG GCG CAA GAG Asn Leu Ala Arg Leu Arg Ala Gin Glu Glu Lys Trp Ile Asp Gin GluGn Glu Glu Glu Glu Glu Glu 175 176 197 200 205 '175 176 197 200 205 ' ATC íle ATC Ile GTG GCT GTT Val Ala Val 210 GTG GCT GTT Val Ala Val 210 ACG GAT GAA ACG GAT GAA CAG TTC GAT TTA GAG GGC TAC CAG TTC GAT TTA AAC AGT AAC AGT 689 689 Thr Thr Asp Asp Glu 215 Glu 215 Gin gin Phe Asp Phe Asp Leu Leu Glu 220 Glu 220 Gly Tyr Gly Tyr Asn same time Ser Ser CGA CGA GCA GCA ATT ATT GAA GAA CTG CTG CCT CCT CGG CGG AAG AAG GCA GCA AAA AAA TTG TTG TTG TTG ATC ATC GTG GTG ACA ACA GTC GTC 737 737 Arg Arg Ala Ala íle Ile Glu Glu Leu Leu Pro for Arg Arg Lys Lys Ala Ala Lys Lys Leu Leu Leu Leu íle Ile Val wall Thr Thr Val wall 225 225 230 230 235 235 240 240
·· ·· • ··· ·· • · -51 ·· ·· • · · · • · · • ··· • · ···· ·· • · · • · · · · • · · · · • · · · ·· ··-51 ············ · · · ATC íle ATC Ile CGC GGC CTA CGC GGC CTA GCA GTC TTT GCA GTC TTT GAA GCC CTT TCC CGA TTG AAG CCT GTT GAA GCC CTT TCC CGA TTG 785 785 Arg Arg Gly Leu Gly Leu Ala 245 Ala 245 Val wall Phe Phe Glu Ala Glu Ala Leu 250 Leu 250 Ser Arg Leu Ser Arg Leu Lys Lys Pro 255 for 255 Val wall CAT CAT TCT TCT GGC GGC GGG GGG GTG GTG CAG CAG ACT ACT GCG GCG GGC GGC AAC AAC AGC AGC TGT TGT GCC GCC GTA GTA GTG GTG GAC GAC 833 833 His His Ser Ser Gly Gly Gly Gly Val wall Gin gin Thr Thr Ala Ala Gly Gly Asn same time Ser Ser Cys Cys Ala Ala Val wall Val wall Asp Asp 260 260 265 265 270 270 GGC GGC GCC GCC GCG GCG GCG GCG GCT GCT TTG TTG GTG GTG GCT GCT CGA CGA GAG GAG TCG TCG TCT TCT GCG GCG ACA ACA CAG CAG CCG CCG 881 881 Gly Gly Ala Ala Ala Ala Ala Ala Ala Ala Leu Leu Val wall Ala Ala Arg Arg Glu Glu Ser Ser Ser Ser Ala Ala Thr Thr Gin gin Pro for 275 275 280 280 285 285 GTC GTC TTG TTG GCT GCT AGG AGG ATA ATA CTG CTG GCT GCT ACC ACC TCC TCC GTA GTA GTC GTC GGG GGG ATC ATC GAG GAG CCC CCC GAG GAG 929 929 Val wall Leu Leu Ala Ala Arg Arg íle Ile Leu Leu Ala Ala Thr Thr Ser Ser Val wall Val wall Gly Gly íle Ile Glu Glu Pro for Glu Glu 290 290 295 295 300 300 CAT CAT ATG ATG GGG GGG CTC CTC GGC GGC CCT CCT GCG GCG CCC CCC GCG GCG ATT ATT CGC CGC CTG CTG CTG CTG CTT CTT GCG GCG CGT CGT 977 977 His His Met Met Gly Gly Leu Leu Gly Gly Pro for Ala Ala Pro for Ala Ala íle Ile Arg Arg Leu Leu Leu Leu Leu Leu Ala Ala Arg Arg 305 305 310 310 315 315 320 320 AGT AGT GAT GAT CTT CTT AGT AGT TTG TTG AGG AGG GAT GAT ATC ATC GAC GAC CTC CTC TTT TTT GAG GAG ATA ATA AAC AAC GAG GAG GCG GCG 1025 1025 Ser Ser Asp Asp Leu Leu Ser Ser Leu Leu Arg Arg Asp Asp íle Ile Asp Asp Leu Leu Phe Phe Glu Glu íle Ile Asn same time Glu Glu Ala Ala 325 325 330 330 335 335 CAG CAG GCC GCC GCC GCC CAA CAA GTT GTT CTA CTA GCG GCG GTA GTA CAG CAG CAT CAT GAA GAA TTG TTG GGT GGT ATT ATT GAG GAG CAC CAC 1073 1073 Gin gin Ala Ala Ala Ala Gin gin Val wall Leu Leu Ala Ala Val wall Gin gin His His Glu Glu Leu Leu Gly Gly íle Ile Glu Glu His His 340 340 345 345 350 350 TCA TCA AAA AAA CTT CTT AAT AAT ATT ATT TGG TGG GGC GGC GGG GGG GCC GCC ATT ATT GCA GCA CTT CTT GGA GGA CAC CAC CCG CCG CTT CTT 1121 1121 Ser Ser Lys Lys Leu Leu Asn same time íle Ile Trp Trp Gly Gly Gly Gly Ala Ala íle Ile Ala Ala Leu Leu Gly Gly His His Pro for Leu Leu 355 355 360 360 365 365 GCC GCC GCG GCG ACC ACC GGA GGA TTG TTG CGT CGT CTC CTC TGC TGC ATG ATG ACC ACC CTC CTC GCT GCT CAC CAC CAA CAA TTG TTG CAA CAA 1169 1169 Ala Ala Ala Ala Thr Thr Gly Gly Leu Leu Arg Arg Leu Leu Cys Cys Met Met Thr Thr Leu Leu Ala Ala His His Gin gin Leu Leu Gin gin 370 370 375 375 380 380 GCT GCT AAT AAT AAC AAC TTT TTT CGA CGA TAT TAT GGA GGA ATT ATT GCC GCC TCG TCG GCA GCA TGC TGC ATT ATT GGT GGT GGG GGG GGA GGA 1217 1217 Ala Ala Asn same time Asn same time Phe Phe Arg Arg Tyr Tyr Gly Gly íle Ile Ala Ala Ser Ser Ala Ala Cys Cys íle Ile Gly Gly Gly Gly Gly Gly 385 385 390 390 395 395 400 400 CAG CAG GGG GGG ATG ATG GCG GCG GTT GTT CTT CTT TTA TTA GAG GAG AAT AAT CCC CCC CAC CAC TTC TTC GGT GGT TCG TCG TCC TCC TCT TCT 1265 1265 Gin gin Gly Gly Met Met Ala Ala Val wall Leu Leu Leu Leu Glu Glu Asn same time Pro for His His Phe Phe Gly Gly Ser Ser Ser Ser Ser Ser 405 405 410 410 415 415 GCA GCA CGA CGA AGT AGT TCG TCG ATG ATG ATT ATT AAC AAC AGA AGA GTT GTT GAC GAC CAC CAC TAT TAT CCA CCA CTG CTG AGC AGC TAA TAA 1313 1313 Ala Ala Arg Arg Ser Ser Ser Ser Met Met íle Ile Asn same time Arg Arg Val wall Asp Asp His His Tyr Tyr Pro for Leu Leu Ser Ser 420 420 425 425 430 430 431 431
CGGGCATCTC CGGGCATCTC CTTTGTTGCT CTTTGTTGCT TTGAGGTGGC TTGAGGTGGC GCACGAAGGA GCACGAAGGA GGGCTCGAAA GGGCTCGAAA ATCTCTGCTA ATCTCTGCTA 1373 1373 AAAACAAGAA AAAACAAGAA GAAGGAACAG GAAGGAACAG GGAACATGAT GGAACATGAT TAGTTTCGCT TAGTTTCGCT CGTATGGCAG CGTATGGCAG AAAGTTTAGG AAAGTTTAGG 1433 1433 AGTCCAGGCT AGTCCAGGCT AAACTTGCCC AAACTTGCCC TTGCCTTCGC TTGCCTTCGC ACTCGTATTA ACTCGTATTA TGTGTCGGGC TGTGTCGGGC TGATTGTTAC TGATTGTTAC 1493 1493 CGGCACGGGT CGGCACGGGT TTCTACAGTG TTCTACAGTG TACATACCTT TACATACCTT GTCAGGGTTG GTCAGGGTTG GTGGGAATTC GTGGGAATTC 1543 1543
FIG. 2r:FIG. 2r: ·· ·· • · · · • · · • ··· • · ···· ·· ·· ·· • · · • · ··· • · · · · • · · · ·· ·· • · · < · • · • · ·· ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · <· • · · · · · -52··-52 ·· Sekvencía 1Sequence 1 CTGCAGCCAG GGCTGAÄAAG GAGGGATTCA GGCTCCAATT GCTCGATGGC GCCGCGATTG GCTAGGGAGA TAAATTTGCT GGCCATGGTG CATTCTGCAT CATGAAATTC ATGAAATCAT AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCATGGAAAT GGCATGAGCT TTGCTGGATA TGGAAGCACG ATTCCTCGCC CGGTAGAGCG AAAGAGCATG CAACTGACCA ACAAGAAAAT TGCCGAAACT GCCCGCGTTC TGCGCTCTCA CATGCCGAGC CTGACTCTGG ATGCTTTCGT CGATAAGGCC ATCGGGACAG CAAGCGAACC GGTTGGGAAG CCCTGCAAAG 7ÄAACTGGAT CAGGGGATCA AGATCTGATC AAGAGACAGG TGGATTGCAC GCAGGTTCTC CGGCCGCTTG ACAACAGACÄ ATCGGCTGCT CTGATGCCGC 007707777? GTCAAGACCG ACCTGTCCGG GCGGCTA7CG TGGCTGGCCA CGACGGGCG7 TGAAGCGGGA AGGGACTGGC TGCTATTGGG 7CACCTTGCT CCTGCCGAGA AAGTATCCAT GCTTGATCCG GCTACCTGCC CATTCGACCA TACTCGGATG GAAGCCGGTC TTGTCGATCA CGCGCCAGCC GAACTGTTCG CCAGGCTCAA CGTGACCCA7 GGCGATGCCT GCTTGCCGAA ATTCATCGAC TGTGGCCGGC TGGGTGTGGC CCGTGATATT GCTGAAGAGC TTGGCGGCGA TATCGCCGCT CCCGATTCGC AGCGCATCGC AGCGGGACTC TGGGGTTCGA AATGACCGAC TCA7GTG7GC TGAGGAGTCA CGTTGGATCA TGGCATCGAC CTACGTGTAA GTTCGTGGAC AGCAGCTGAA AGCAGCTTTG GTTTTGA7CG TAAATAATAA AGGATTCTTG TGAAGCTTTA GGAATGATAT GAAAGCAAGT AGATCAGTCT CCATTTA7GC AGCGCTGCCA ATGTCAGCTG CGGATTGGAC GGTGCGTTGG GGACAACACC GAGCAAGACT CAAGTCTGAC AAATGCGCCG GTCAGGGTGA TCGTAACTTT GACCGGGGGC GCAGCTGCAGCCAG GGCTGAÄAAG GAGGGATTCA GGCTCCAATT GCTCGATGGC GCCGCGATTG GCTAGGGAGA TAAATTTGCT GGCCATGGTG CATTCTGCAT CATGAAATTC ATGAAATCAT AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCATGGAAAT GGCATGAGCT TTGCTGGATA TGGAAGCACG ATTCCTCGCC CGGTAGAGCG AAAGAGCATG CAACTGACCA ACAAGAAAAT TGCCGAAACT GCCCGCGTTC TGCGCTCTCA CATGCCGAGC CTGACTCTGG ATGCTTTCGT CGATAAGGCC ATCGGGACAG CAAGCGAACC GGTTGGGAAG CCCTGCAAAG 7ÄAACTGGAT CAGGGGATCA AGATCTGATC AAGAGACAGG TGGATTGCAC GCAGGTTCTC CGGCCGCTTG ACAACAGACÄ ATCGGCTGCT CTGATGCCGC 007707777? GTCAAGACCG ACCTGTCCGG GCGGCTA7CG TGGCTGGCCA CGACGGGCG7 TGAAGCGGGA AGGGACTGGC TGCTATTGGG 7CACCTTGCT CCTGCCGAGA AAGTATCCAT GCTTGATCCG GCTACCTGCC CATTCGACCA TACTCGGATG GAAGCCGGTC TTGTCGATCA CGCGCCAGCC GAACTGTTCG CCAGGCTCAA CGTGACCCA7 GGCGATGCCT GCTTGCCGAA ATTCATCGAC TGTGGCCGGC TGGGTGTGGC CCGTGATATT GCTGAAGAGC TTGGCGGCGA TATCGCCGCT CCCGATTCGC AGCGCATCGC AGCGGGACTC TGGGGTTCGA AATGACCGAC TCA7GTG7GC TGAGGAGTCA CGTTGGATCA TGGCATCGAC CTACGTGTAA GTTCGTGGAC AGCAGCTGAA AGCAGCTTTG GTTTTGA7CG TAAATAATAA AGGATTCTTG TGAAGCTTTA GGAATGATAT GAAAGCAAGT AGATCAGTCT CCATTTA7GC AGCGCTGCCA ATGTCAGCTG CGGATTGGAC GGTGCGTTGG GGACAACACC GAGCAAGACT CAAGTCTGAC AAATGCGCCG GTCAGGGTGA TCGTAACTTT GACCGGGGGC GCAG GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60 AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120 GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180 CACTTTTCGG GGGGTGGGTG CACGGGATTG 240 GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300 TGATTAGAGA CATTAACTAT TTTGGCGGAA 360 GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420 CGTCGTCACC GGAGTGTCCT CCGGTATCGG 480 CGGCGCCACA GTGATTGGCG TAGATCGCAA 540 TCAGGCTGAC CTGAGCCATC CTGAAGGCAT 600 GGAATTGCCA GCTGGGGCGC CCTCTGGTAA 660 GGCTTTCTTG CCGCCAAGGA TCTGATGGCG 720 ATGAGGATCG TTTCGCATGA TTGAACAAGA 780 GGTGGAGAGG CTATTCGGCT ATGACTGGGC 840 CGTGTTCCGG CTGTCAGCGC AGGGGCGCCC 900 TGCCCTGAAT GAACTGCAGG ACGAGGCAGC 960 TCCTTGCGCA GCTGTGCTCG ACGTTGTCAC 1020 CGAAGTGCCG GGGCAGGATC TCCTGTCATC 1080 CATGGCTGAT GCAATGCGGC GGCTGCATAC 1140 CCAAGCGAAA CATCGCATCG AGCGAGCACG 1200 GGATGATCTG GACGAAGAGC ATCAGGGGCT 1260 GGCGCGCATG CCCGACGGCG AGGATCTCGT 1320 TATCATGGTG GAAAATGGCC GCTTTTCTGG 1380 GGACCGCTAT CAGGACATAG CGTTGGCTAC 1440 ATGGGCTGAC CGCTTCCTCG TGCTTTACGG 1500 CTTCTA7CGC CTTCTTGACG AGTTCTTCTG 1560 CAAGCGACGC CCTGGCCGCG GTGATTGCAT 1620 ACGGCA7AAA TATTCCAGTG GACGGAGGTT 1680 GCCCTTTGCA CGCGCACTAT ATCTCTATGC 1740 GAGGTAGCGG GCGGAAAGGT GCAGAATGTC 1800 GTTGTCCGTÄ AACGAAAATA AAAATAAAGA 1860 GCACTTTCAA AATAGCTACC CTGGCAGGCG 1920 CAAACTCGAT GCAGCTGGAT GTAGGTAGCT 1980 CTCAAGTATA GCCTTGCCTC TCGCCTGAAT 2040 ACTGTCAATG GTTATATCCG GATATTCAAA 2100 TTGGTATCCA ATCGTCTCGA TATTCTGGCT 2160GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60 AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120 GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180 CACTTTTCGG GGGGTGGGTG CACGGGATTG 240 GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300 TGATTAGAGA CATTAACTAT TTTGGCGGAA 360 GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420 CGTCGTCACC GGAGTGTCCT CCGGTATCGG 480 CGGCGCCACA GTGATTGGCG TAGATCGCAA 540 TCAGGCTGAC CTGAGCCATC CTGAAGGCAT 600 GGAATTGCCA GCTGGGGCGC CCTCTGGTAA 660 GGCTTTCTTG CCGCCAAGGA TCTGATGGCG 720 ATGAGGATCG TTTCGCATGA TTGAACAAGA 780 GGTGGAGAGG CTATTCGGCT ATGACTGGGC 840 CGTGTTCCGG CTGTCAGCGC AGGGGCGCCC 900 TGCCCTGAAT GAACTGCAGG ACGAGGCAGC 960 TCCTTGCGCA GCTGTGCTCG ACGTTGTCAC 1020 CGAAGTGCCG GGGCAGGATC TCCTGTCATC 1080 CATGGCTGAT GCAATGCGGC GGCTGCATAC 1140 CCAAGCGAAA CATCGCATCG AGCGAGCACG 1200 GGATGATCTG GACGAAGAGC ATCAGGGGCT 1260 GGCGCGCATG CCCGACGGCG AGGATCTCGT 1320 TATCATGGTG GAAAATGGCC GCTTTTCTGG 1380 GGACCGCTAT CAGGACATAG CGTTGGCTAC 1440 ATGGGCTGAC CGCTTCCTCG TGCTTTACGG 1500 CTTCTA7CGC CTTCTTGACG AGTTCTTCTG 1560 CAAGCGACGC CCTGGCCGCG GTGATTG CAT 1620 ACGGCA7AAA TATTCCAGTG GACGGAGGTT 1680 GCCCTTTGCA CGCGCACTAT ATCTCTATGC 1740 GAGGTAGCGG GCGGAAAGGT GCAGAATGTC 1800 GTTGTCCGTÄ AACGAAAATA AAAATAAAGA 1860 GCACTTTCAA AATAGCTACC CTGGCAGGCG 1920 CAAACTCGAT GCAGCTGGAT GTAGGTAGCT 1980 CTCAAGTATA GCCTTGCCTC TCGCCTGAAT 2040 ACTGTCAATG GTTATATCCG GATATTCAAA 2100 TTGGTATCCA ATCGTCTCGA TATTCTGGCT 2160 2164 • · ·· • ·2164 • · ·· • · -53• · • · ··· · • · • · · · · · • · ··· · · • · · · · · · • * · · · · · ·· ·· · e ·-53 · · 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 Sekyencia 2Sekyencia 2 CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60 GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120 GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180 CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG 240 AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300 GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA 360 TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420 AAAGAGCATG CAACTGACCA ACAAGAAAAT CGTCGTCACC GGAGTGTCCT CCGGTATCGG 480 TGCCGAAACT GCCCGCGTTC TGCGCTCTCA CGGCGCCACA GTGATTGGCG TAGATCGCAA 540 CATGCCGAGC CTGACTCTGG ATGCTTTCGT TCAGGCTGAC CTGAGCCATC CTGAGGGGAG 600 AGGCGGTTTG CGTATTGGGC GCATGCATAA AAACTGTTGT AATTCATTAA GCATTCTGCC 660 GACATGGAAG CCATCACAAA CGGCATGATG AACCTGAATC GCCAGCGGCA TCAGCACCTT 720 GTCGCCTTGC GTATAATATT TGCCCATGGA CGCACACCGT GGAAACGGAT GAAGGCACGA 780 ACCCAGTTGA CATAAGCCTG TTCGGTTCGT AAACTGTAAT GCAAGTAGCG TATGCGCTCA 840 CGCAACTGGT CCAGAACCTT GACCGAACGC AGCGGTGGTA ACGGCGCAGT GGCGGTTTTC 900 ATGGCTTGTT ATGACTGTTT TTTTGTACAG TCTATGCCTC GGGCATCCAA GCAGCAAGCG 960 CGTTACGCCG TGGGTCGATG TTTGATGTTA TGGAGCAGCA ACGATGTTAC GCAGCAGCAA 1020 CGATGTTACG CAGCAGGGCA GTCGCCCTAA AACAAAGTTA GGTGGCTCAA GTATGGGCAT 1080 CATTCGCACA TGTAGGCTCG GCCCTGACCA AGTCAAATCC ATGCGGGCTG CTCTTGATCT 1140 TTTCGGTCGT GAGTTCGGAG ACGTAGCCAC CTACTCCCAA CATCAGCCGG ACTCCGATTA 1200 CCTCGGGAAC TTGCTCCGTA GTAÄGACATT CATCGCGCTT GCTGCCTTCG ACCAAGAAGC 1260 GGTTGTTGGC GCTCTCGCGG CTTACGTTCT GCCCAGGTTT GAGCAGCCGC GTAGTGAGAT 1320 CTATATCTAT GATCTCGCAG TCTCCGGCGA GCACCGGAGG CAGGGCATTG CCACCGCGCT 1380 CATCAATCTC CTCAAGCATG AGGCCAACGC GCTTGGTGCT TATGTGATCT AC3TGCAAGC 1440 AGATTACGGT GACGATCCCG CAGTGGCTCT CTATACAAAG TTGGGCATAC GGGAAGAAGT 1500 GATGCACTTT GATATCGACC CAAGTACCGC CACCTAACAA TTCGTTCAAG CCGAGATCGG 1560 CTTCCCTGAT TGCATTCATG TGTGCTGAGG AGTCACGTTG GATCAACGGC ATAAATATTC 1620 CAGTGGACGG AGGTTTGGCA TCGACCTACG TGTAAGTTCG TGGACGCCCT TTGCACGCGC 1680 ACTATATCTC TATGCAGCAG CTGAAAGCAG CTTTGGTTTT GATCGGAGGT AGCGGGCGGA 1740 AAGGTGCAGA ATGTCTAAAT AATAAAGGAT TCTTGTGAAG CTTTAGTTGT CCGTAAACGA 1800 AAATAAAAAT AAAGAGGAAT GATATGAAAG CAAGTAGATC AGTCTGCACT TTCAAAATAG 1860 CTACCCTGGC AGGCGCCATT TATGCAGCGC TGCCAATGTC AGCTGCAAAC TCGATGCAGC 1920 TGGATGTAGG TAGCTCGGAT TGGACGGTGC GTTGGGGACA ACACCCTCAA GTATAGCCTT 1980 GCCTCTCGCC TGAATGAGCA AGACTCAAGT CTGACAAATG CGCCGACTGT CAATGGTTAT 2040 ATCCGGATAT TCAAAGTCAG GGTGATCGTA ACTTTGACCG GGGGCTTGGT ATCCAATCGT 2100 CTCGATATTC TGGCTGCAG 2119 • · • · · • · • · ··CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60 GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120 GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180 CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG 240 AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300 GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA 360 TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420 AAAGAGCATG CAACTGACCA ACAAGAAAAT CGTCGTCACC GGAGTGTCCT CCGGTATCGG 480 TGCCGAAACT GCCCGCGTTC TGCGCTCTCA CGGCGCCACA GTGATTGGCG TAGATCGCAA 540 CATGCCGAGC CTGACTCTGG ATGCTTTCGT TCAGGCTGAC CTGAGCCATC CTGAGGGGAG 600 AGGCGGTTTG CGTATTGGGC GCATGCATAA AAACTGTTGT AATTCATTAA GCATTCTGCC 660 GACATGGAAG CCATCACAAA CGGCATGATG AACCTGAATC GCCAGCGGCA TCAGCACCTT 720 GTCGCCTTGC GTATAATATT TGCCCATGGA CGCACACCGT GGAAACGGAT GAAGGCACGA 780 ACCCAGTTGA CATAAGCCTG TTCGGTTCGT AAACTGTAAT GCAAGTAGCG TATGCGCTCA 840 CGCAACTGGT CCAGAACCTT GACCGAACGC AGCGGTGGTA ACGGCGCAGT GGCGGTTTTC 900 ATGGCTTGTT ATGACTGTTT TTTTGTACAG TCTATGCCTC GGGCATCCAA GCAGCAAGCG 960 CGTTACGCCG TGGGTCGATG TTTGATGTTA TGGAGCAGCA ACGATGTTAC GCAGCAGCAA 1020 CGATGTTACG CAGCAGGGCA GTCGCCCTAA AACAAAGTTA GGTGGCTCAA GTATGGGCAT 1080 CATTCGCACA TGTAGGCTCG GCCCTGACCA AGTCAAATCC ATGCGGGCTG CTCTTGATCT 1140 TTTCGGTCGT GAGTTCGGAG ACGTAGCCAC CTACTCCCAA CATCAGCCGG ACTCCGATTA 1200 CCTCGGGAAC TTGCTCCGTA GTAÄGACATT CATCGCGCTT GCTGCCTTCG ACCAAGAAGC 1260 GGTTGTTGGC GCTCTCGCGG CTTACGTTCT GCCCAGGTTT GAGCAGCCGC GTAGTGAGAT 1320 CTATATCTAT GATCTCGCAG TCTCCGGCGA GCACCGGAGG CAGGGCATTG CCACCGCGCT 1380 CATCAATCTC CTCAAGCATG AGGCCAACGC GCTTGGTGCT TATGTGATCT AC3TGCAAGC 1440 AGATTACGGT GACGATCCCG CAGTGGCTCT CTATACAAAG TTGGGCATAC GGGAAGAAGT 1500 GATGCACTTT GATATCGACC CAAGTACCGC CACCTAACAA TTCGTTCAAG CCGAGATCGG 1560 CTTCCCTGAT TGCATTCATG TGTGCTGAGG AGTCACGTTG GATCAACGGC ATAAATATTC 1620 CAGTGGACGG AGGTTTGGCA TCGACCTACG TGTAAGTTCG TGGACGCCCT TTGCACGCGC 1680 ACTATATCTC TATGCAGCAG CTGAAA GCAG CTTTGGTTTT GATCGGAGGT AGCGGGCGGA 1740 AAGGTGCAGA ATGTCTAAAT AATAAAGGAT TCTTGTGAAG CTTTAGTTGT CCGTAAACGA 1800 AAATAAAAAT AAAGAGGAAT GATATGAAAG CAAGTAGATC AGTCTGCACT TTCAAAATAG 1860 CTACCCTGGC AGGCGCCATT TATGCAGCGC TGCCAATGTC AGCTGCAAAC TCGATGCAGC 1920 TGGATGTAGG TAGCTCGGAT TGGACGGTGC GTTGGGGACA ACACCCTCAA GTATAGCCTT 1980 GCCTCTCGCC TGAATGAGCA AGACTCAAGT CTGACAAATG CGCCGACTGT CAATGGTTAT 2040 ATCCGGATAT TCAAAGTCAG GGTGATCGTA ACTTTGACCG GGGGCTTGGT ATCCAATCGT 2100 CTCGATATTC TGGCTGCAG 2119 • • • • -54• · • · ··· · ·· • · · • · • · • · ·· ·-54 · · · · · · · · · · · · · · · · · · · · · · · · · Sekvencie 3Sequences 3 CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GGCTCCAATT GCTCGATGGC GCCGCGATTG GCTAGGGAGA TAAATTTGCT GGCCATGGTG CATTCTGCAT CATGAAATTC ATGAAATCAT AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCATGGAAAT GGCATGAGCT TTGCTGGATA TGGAAGCACG ATTCCTCGCC CGGTAGAGCG AAAGAGCATG CAACTGACCA ACAAGAAAAT TGCCGAAACT GCCCGCGTTC TGCGCTCTCA CATGCCGAGC CTGACTCTGG ATGCTTTCGT CGATCAACGG CATAAATATT CCAGTGGACG GTGGACGCCC TTTGCACGCG CACTATATCT TGATCGGAGG TAGCGGGCGG AAAGGTGCAG GCTTTAGTTG TCCGTAAACG AAAATAAAAA CAGTCTGCAC TTTCAAAATA GCTACCCTGG CAGCTGCAAA CTCGATGCAG CTGGATGTAG AACACCCTCA AGTATAGCCT TGCCTCTCGC GCGCCGACTG TCAATGGTTA TATCCGGATA GGGGGCTTGG TATCCAATCG TCTCGATATTCTGCAGCCAG GGCTGAAAAG GAGGGATTCA GGCTCCAATT GCTCGATGGC GCCGCGATTG GCTAGGGAGA TAAATTTGCT GGCCATGGTG CATTCTGCAT CATGAAATTC ATGAAATCAT AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCATGGAAAT GGCATGAGCT TTGCTGGATA TGGAAGCACG ATTCCTCGCC CGGTAGAGCG AAAGAGCATG CAACTGACCA ACAAGAAAAT TGCCGAAACT GCCCGCGTTC TGCGCTCTCA CATGCCGAGC CTGACTCTGG ATGCTTTCGT CGATCAACGG CATAAATATT CCAGTGGACG GTGGACGCCC TTTGCACGCG CACTATATCT TGATCGGAGG TAGCGGGCGG AAAGGTGCAG GCTTTAGTTG TCCGTAAACG AAAATAAAAA CAGTCTGCAC TTTCAAAATA GCTACCCTGG CAGCTGCAAA CTCGATGCAG CTGGATGTAG AACACCCTCA AGTATAGCCT TGCCTCTCGC GCGCCGACTG TCAATGGTTA TATCCGGATA GGGGGCTTGG TATCCAATCG TCTCGATATT GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60 AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120 GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180 CACTTTTCGG GGGGTGGGTG CACGGGATTG 240 GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300 TGATTAGAGA CATTAACTAT TTTGGCGGAA 360 GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420 CGTCGTCACC GGAGTGTCCT CCGGTATCGG 480 CGGCGCCACA GTGATTGGCG TAGATCGCAA 540 TCAGGCTGAC CTGAGCCATC CTGAAGGCAT 600 GAGGTTTGGC ATCGACCTAC GTGTAAGTTC 660 CTATGCAGCA GCTGAAAGCA GCTTTGGTTT 720 AATGTCTAAA TAÄTAÄAGGA TTCTTGTGAA 780 TAAAGAGGAA TGATATGAAA GCAAGTAGAT 840 CAGGCGCCAT TTATGCAGCG CTGCCAATGT 900 GTAGCTCGGA TTGGACGGTG CGTTGGGGAC 960 CTGAATGAGC AAGACTCAAG TCTGACAAAT 1020 TTCAAAGTCA GGGTGATCGT AACTTTGACC 1080 CTGGCTGCAG 1120 ·· • ·GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60 AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120 GCGGCCCCTG ATGGGTTGGA TGATTTTCTG 180 CACTTTTCGG GGGGTGGGTG CACGGGATTG 240 GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300 TGATTAGAGA CATTAACTAT TTTGGCGGAA 360 GTAACCGCGA CATTCAGGAC CGTAAAAAGG 420 CGTCGTCACC GGAGTGTCCT CCGGTATCGG 480 CGGCGCCACA GTGATTGGCG TAGATCGCAA 540 TCAGGCTGAC CTGAGCCATC CTGAAGGCAT 600 GAGGTTTGGC ATCGACCTAC GTGTAAGTTC 660 CTATGCAGCA GCTGAAAGCA GCTTTGGTTT 720 AATGTCTAAA TAÄTAÄAGGA TTCTTGTGAA 780 TAAAGAGGAA TGATATGAAA GCAAGTAGAT 840 CAGGCGCCAT TTATGCAGCG CTGCCAATGT 900 GTAGCTCGGA TTGGACGGTG CGTTGGGGAC 960 CTGAATGAGC AAGACTCAAG -55·· ·· • · · · • · · • · · · · • * ···· ·· ··· • · · • · • ·-55 · · · 55 * 55 55 55 55 55 55 55 55 55 55 Sekvencia 4Sequence 4 GAATTCCGCG TATCGCCCGG TTCTATCAGC GGTAGGGTCT TTTTCTTGGC CATGCTTGTT TGCGTTTGCC GCTTCGCTTC GCGATGAACC TTAACTCGCG TAAGCATTCT GTCATTTTTT GTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CGATTAAGAT AATTAAAATA AGGAAACCGC CTCCAGCTCA AGGGCAATTT TTGGGCTATT AGAATAACAA TTGACTCCTC AGGAGGTCAG CGGTCGGAGC TGAGCAGCTG GGCTCGGCTC AGGGGCCTGC AAACTTGGAG CTGCGTCTGA TGGAAAATCG TGAAGCAATT GCCGACGCGG AGCAAACACT GCTTTGCGAC ATTGCTGGCT ACGTGGCCAA ATGGATGGAG CCCGAACATC GCGTTGAGTT TCAGCCGCTG GGTGTCGTTG TACTGGCCTT TGGGCCGCTG GCCGGCATAT CGTCCGAGCT TACCCCGCGG ACTTCTGCCC ATGAAACTGA GCTGACTACA GTGCTGGGCG AGCCTTTCGA TCATCTGATC TTCACCGGCG CCGCGGCGGA TAACCTAGTG CCCGTTACCC TTTCCCGCAG TGCAGATATG GCGGACGTTG ATGCCGGGCA AATCTGTCTG GCACCGGACT AACCGGAATT GCCAGCTGGG GCGCCCTCTG GGATGGCTTT CTTGCCGCCA AGGATCTGAT CAGGATGAGG ATCGTTTCGC ATGATTGAAC CTTGGGTGGA GAGGCTATTC GGCTATGACT CCGCCGTGTT CCGGCTGTCA GCGCAGGGGC CCGGTGCCCT GAATGAACTG CAGGACGAGG GCGTTCCTTG CGCAGCTGTG CTCGACGTTG TGGGCGAAGT GCCGGGGCAG GATCTCCTGT CCATCATGGC TGATGCAATG CGGCGGCTGC ACCACCAAGC GAAACATCGC ATCGAGCGAG ATCAGGATGA TCTGGACGAA GAGCATCAGG TCAAGGCGCG CATGCCCGAC GGCGAGGATC CGAATATCAT GGTGGAAAAT GGCCGCTTTT TGGCGGACCG CTATCAGGAC ATAGCGTTGG GCGAATGGGC TGACCGCTTC CTCGTGCTTTGAATTCCGCG TATCGCCCGG TTCTATCAGC GGTAGGGTCT TTTTCTTGGC CATGCTTGTT TGCGTTTGCC GCTTCGCTTC GCGATGAACC TTAACTCGCG TAAGCATTCT GTCATTTTTT GTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CGATTAAGAT AATTAAAATA AGGAAACCGC CTCCAGCTCA AGGGCAATTT TTGGGCTATT AGAATAACAA TTGACTCCTC AGGAGGTCAG CGGTCGGAGC TGAGCAGCTG GGCTCGGCTC AGGGGCCTGC AAACTTGGAG CTGCGTCTGA TGGAAAATCG TGAAGCAATT GCCGACGCGG AGCAAACACT GCTTTGCGAC ATTGCTGGCT ACGTGGCCAA ATGGATGGAG CCCGAACATC GCGTTGAGTT TCAGCCGCTG GGTGTCGTTG TACTGGCCTT TGGGCCGCTG GCCGGCATAT CGTCCGAGCT TACCCCGCGG ACTTCTGCCC ATGAAACTGA GCTGACTACA GTGCTGGGCG AGCCTTTCGA TCATCTGATC TTCACCGGCG CCGCGGCGGA TAACCTAGTG CCCGTTACCC TTTCCCGCAG TGCAGATATG GCGGACGTTG ATGCCGGGCA AATCTGTCTG GCACCGGACT AACCGGAATT GCCAGCTGGG GCGCCCTCTG GGATGGCTTT CTTGCCGCCA AGGATCTGAT CAGGATGAGG ATCGTTTCGC ATGATTGAAC CTTGGGTGGA GAGGCTATTC GGCTATGACT CCGCCGTGTT CCGGCTGTCA GCGCAGGGGC CCGGTGCCCT GAATGAACTG CAGGACGAGG GCGTTCCTTG CGCAGCTGTG CTCGACGTTG TGGGCGAAGT GCCGGGGCAG GATCTCCTGT CCATCATGGC TGATGCAATG CGGCGGCTGC ACCACCAAGC GAAACATCGC ATCGAGCGAG ATCAGGATGA TCTGGACGAA GAGCATCAGG TCAAGGCGCG CATGCCCGAC GGCGAGGATC CGAATATCAT GGTGGAAAAT GGCCGCTTTT TGGCGGACGG CTATCAGGGG GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60 GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120 GCATCGAGAT GCTGAGGTCA GGATTTTTCC 180 TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240 CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300 ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360 GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420 CGATGAGCAT TCTTGGTTTG AATGGTGCCC 480 TTGATCGCAT GAAGAAGGCG CACCTGGAGC 540 GTAGGCTGGA TCGTGCGATT GCAATGCTTC 600 TTTCTGCTGA CTTTGGCAAT CGCAGCCGTG 660 CGGTGGCAAG CCTGAAGGAT AGCCGCGAGC 720 ACAAGGCGAT GTTTCCAGGG GCGGAGGCAC 780 GGGTCATTAG TCCCTGGAAC TTCCCTATCG 840 TCGCAGCAGG TAATCGCGCC ATGCTCAAGC 900 TGCTTGCGGA GCTAATTGCT CGTTACTTCG 960 ACGCTGAAGT CGGTGCGCTG TTCAGTGCTC 1020 GCACTGCCGT GGCCAAGCAC ATCATGCGTG 1080 TGGAATTGGG TGGCAAATCG CCGGTGATCG 1140 CACAACGGGT GTTGACGGTG AAAACCTTCA 1200 ATGTGCTGCT GCCGGAAGGG ACAGCAAGCG 1260 GTAAGGTTGG GAAGCCCTGC AAAGTAAACT 1320 GGCGCAGGGG ATCAAGATCT GATCAAGAGA 1380 AAGATGGATT GCACGCAGGT TCTCCGGCCG 1440 GGGCACAACA GACAATCGGC TGCTCTGATG 1500 GCCCGGTTCT TTTTGTCAAG ACCGACCTGT 1560 CAGCGCGGCT ATCGTGGCTG GCCACGACGG 1620 TCACTGAAGC GGGAAGGGAC TGGCTGCTAT 1680 CATCTCACCT TGCTCCTGCC GAGAAAGTAT 1740 ATACGCTTGA TCCGGCTACC TGCCCATTCG 1800 CACGTACTCG GATGGAAGCC GGTCTTGTCG 1860 GGCTCGCGCC AGCCGAACTG TTCGCCAGGC 1920 TCGTCGTGAC CCATGGCGAT GCCTGCTTGC 1980 CTGGATTCAT CGACTGTGGC CGGCTGGGTG 2040 CTACCCGTGA TATTGCTGAA GAGCTTGGCG 2100 ACGGTATCGC CGCTCCCGAT TCGCAGCGCA 2160 ··· · • · • ··· • · · · · ·· ·· ·· ·GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60 GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120 GCATCGAGAT GCTGAGGTCA GGATTTTTCC 180 TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240 CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300 ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360 GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420 CGATGAGCAT TCTTGGTTTG AATGGTGCCC 480 TTGATCGCAT GAAGAAGGCG CACCTGGAGC 540 GTAGGCTGGA TCGTGCGATT GCAATGCTTC 600 TTTCTGCTGA CTTTGGCAAT CGCAGCCGTG 660 CGGTGGCAAG CCTGAAGGAT AGCCGCGAGC 720 ACAAGGCGAT GTTTCCAGGG GCGGAGGCAC 780 GGGTCATTAG TCCCTGGAAC TTCCCTATCG 840 TCGCAGCAGG TAATCGCGCC ATGCTCAAGC 900 TGCTTGCGGA GCTAATTGCT CGTTACTTCG 960 ACGCTGAAGT CGGTGCGCTG TTCAGTGCTC 1020 GCACTGCCGT GGCCAAGCAC ATCATGCGTG 1080 TGGAATTGGG TGGCAAATCG CCGGTGATCG 1140 CACAACGGGT GTTGACGGTG AAAACCTTCA 1200 ATGTGCTGCT GCCGGAAGGG ACAGCAAGCG 1260 GTAAGGTTGG GAAGCCCTGC AAAGTAAACT 1320 GGCGCAGGGG ATCAAGATCT GATCAAGAGA 1380 AAGATGGATT GCACGCAGGT TCTCCGGCCG 1440 GGGCACAACA GACAATCGGC TGCTCTGATG 1500 GCCCGGTTCT TTTTGTCAAG ACCGACCTGT 1560 CAGCGCGGCT ATCGTGGCTG GCCACGA CGG 1620 TCACTGAAGC GGGAAGGGAC TGGCTGCTAT 1680 CATCTCACCT TGCTCCTGCC GAGAAAGTAT 1740 ATACGCTTGA TCCGGCTACC TGCCCATTCG 1800 CACGTACTCG GATGGAAGCC GGTCTTGTCG 1860 GGCTCGCGCC AGCCGAACTG TTCGCCAGGC 1920 TCGTCGTGAC CCATGGCGAT GCCTGCTTGC 1980 CTGGATTCAT CGACTGTGGC CGGCTGGGTG 2040 CTACCCGTGA TATTGCTGAA GAGCTTGGCG 2100 ACGGTATCGC CGCTCCCGAT TCGCAGCGCA 2160 · · · · · • • • · · · · · · · · · · · · · -56TCGCCTTCTA TCGCCTTCTT GACGAGTTCT TCTGAGCGGG ACTCTGGGGT TCGAAATGAC 2220 CGACCAAGCG ACGCCCGCCA TGCCAAGCCT GTTCTCGTGC AAAGTCCTGT GGGTGAGTCG 2280 AACTTGGCGA TGCGCGCACC CTACGGAGAA GCGATCCACG GACTGCTCTC TGTCCTCCTT 2340 TCAACGGAGT GTTAGAACCG TTGGTAGTGG TTTTGGACGG GCCCAGGAGC ATGCGCTTCT 2400 GGGCCCGTTT CTTGAGTATT CATTGGATAG TCACGCGTGG TAGCTTCGAG CCTGCACAGC 2460 TGATGAGCAC CCTGGAAGGC GCGCTGTACG CGGACGACTG GGTTCATCTT CGCCATTCAT 2520 GACGGAACTC CGTTCCCCAG TACCGCGATG ACTATTTTGC CTCTTCCGAT GTCCGATTCC 2580 ACGCCGCCTG ACGCTAAGCG GGGGCGGGGG CGCCCGCATC CCAGCCCAGA CAGCAACAAA 2640 TGAGTAGGCT CTTGGATGCC GCGGCGGCTG AGATTGGTAA CGGCAATTTC GTCAATGTGA 2700 CGATGGATTC GATTGCCCGT GCTGCCGGCG TCTCAAAAAA AACGCTGTAC GTCTTGGTGG 2760 CGAGCAAGGA AGAACTCATT TCCCGGTTAG TGGCTCGAGA CATGTCCAAC CTTGAGGAAT 2820 TC 2822 • · ···-56TCGCCTTCTA TCGCCTTCTT GACGAGTTCT TCTGAGCGGG ACTCTGGGGT TCGAAATGAC 2220 CGACCAAGCG ACGCCCGCCA TGCCAAGCCT GTTCTCGTGC AAAGTCCTGT GGGTGAGTCG 2280 AACTTGGCGA TGCGCGCACC CTACGGAGAA GCGATCCACG GACTGCTCTC TGTCCTCCTT 2340 TCAACGGAGT GTTAGAACCG TTGGTAGTGG TTTTGGACGG GCCCAGGAGC ATGCGCTTCT 2400 GGGCCCGTTT CTTGAGTATT CATTGGATAG TCACGCGTGG TAGCTTCGAG CCTGCACAGC 2460 TGATGAGCAC CCTGGAAGGC GCGCTGTACG CGGACGACTG GGTTCATCTT CGCCATTCAT 2520 GACGGAACTC CGTTCCCCAG TACCGCGATG ACTATTTTGC CTCTTCCGAT GTCCGATTCC 2580 ACGCCGCCTG ACGCTAAGCG GGGGCGGGGG CGCCCGCATC CCAGCCCAGA CAGCAACAAA 2640 TGAGTAGGCT CTTGGATGCC GCGGCGGCTG AGATTGGTAA CGGCAATTTC GTCAATGTGA 2700 CGATGGATTC GATTGCCCGT GCTGCCGGCG TCTCAAAAAA AACGCTGTAC GTCTTGGTGG 2760 CGAGCAAGGA AGAACTCATT TCCCGGTTAG TGGCTCGAGA CATGTCCAAC CTTGAGGAAT 2820 TC 2822 • · · · · -57···· ·· • · '··-57 ·········· Sekvencia 5Sequence 5 GAATTCCGCG TATCGCCCGG TTCTATCAGC GGTAGGGTCT TTTTCTTGGC CATGCTTGTT TGCGTTTGCC GCTTCGCTTC GCGATGAACC TTAACTCGCG TAAGCATTCT GTCATTTTTT GTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CGATTAAGAT AATTAAAATA AGGAAACCGC CTCCAGCTCA AGGGCAATTT TTGGGCTATT AGAATAACAA TTGACTCCTC AGGAGGTCAG CGGTCGGAGC TGAGCAGCTG GGCTCGGCTC AGGGGCCTGC AAACTTGGAG CTGCGTCTGA TGGAÄAATCG TGAAGCAATT GCCGACGCGG AGCAAACACT GCTTTGCGAC ATTGCTGGCT ACGTGGCCAA ATGGATGGAG CCCGAACATC GCGTTGAGTT TCAGCCGCTG GGTGTCGTTG TACTGGCCTT TGGGCCGCTG GCCGGCATAT CGTCCGAGCT TACCCCGCGG ACTTCTGCCC ATGAAACTGA GCTGACTACA GTGCTGGGCG AGCCTTTCGA TCATCTGATC TTCACCGGCG CCGCGGCGGA TAACCTAGTG CCCGTTACCC TTTCCCGCAG TGCAGATATG GCGGACGTTG ATGCCGGGCA AATCTGTCTG GCACCGGACT GGGCGCATGC ATAAAAACTG TTGTAATTCA CAAACGGCAT GATGAACCTG AATCGCCAGC TATTTGCCCA TGGACGCACA CCGTGGAAAC CCTGTTCGGT TCGTAAACTG TAATGCAAGT CCTTGACCGA ACGCAGCGGT GGTAACGGCG GTTTTTTTGT ACAGTCTATG CCTCGGGCAT GATGTTTGAT GTTATGGAGC AGCAACGATG GGCAGTCGCC CTAAAACAAA GTTAGGTGGC CTCGGCCCTG ACCAAGTCAA ATCCATGCGG GGAGACGTAG CCACCTACTC CCAACATCAG CGTAGTAAGA CATTCATCGC GCTTGCTGCC GCGGCTTACG TTCTGCCCAG GTTTGAGCAG GCAGTCTCCG GCGAGCACCG GAGGCAGGGC CATGAGGCCA ACGCGCTTGG TGCTTATGTG CCCGCAGTGG CTCTCTATAC AAAGTTGGGCGAATTCCGCG TATCGCCCGG TTCTATCAGC GGTAGGGTCT TTTTCTTGGC CATGCTTGTT TGCGTTTGCC GCTTCGCTTC GCGATGAACC TTAACTCGCG TAAGCATTCT GTCATTTTTT GTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CGATTAAGAT AATTAAAATA AGGAAACCGC CTCCAGCTCA AGGGCAATTT TTGGGCTATT AGAATAACAA TTGACTCCTC AGGAGGTCAG CGGTCGGAGC TGAGCAGCTG GGCTCGGCTC AGGGGCCTGC AAACTTGGAG CTGCGTCTGA TGGAÄAATCG TGAAGCAATT GCCGACGCGG AGCAAACACT GCTTTGCGAC ATTGCTGGCT ACGTGGCCAA ATGGATGGAG CCCGAACATC GCGTTGAGTT TCAGCCGCTG GGTGTCGTTG TACTGGCCTT TGGGCCGCTG GCCGGCATAT CGTCCGAGCT TACCCCGCGG ACTTCTGCCC ATGAAACTGA GCTGACTACA GTGCTGGGCG AGCCTTTCGA TCATCTGATC TTCACCGGCG CCGCGGCGGA TAACCTAGTG CCCGTTACCC TTTCCCGCAG TGCAGATATG GCGGACGTTG ATGCCGGGCA AATCTGTCTG GCACCGGACT GGGCGCATGC ATAAAAACTG TTGTAATTCA CAAACGGCAT GATGAACCTG AATCGCCAGC TATTTGCCCA TGGACGCACA CCGTGGAAAC CCTGTTCGGT TCGTAAACTG TAATGCAAGT CCTTGACCGA ACGCAGCGGT GGTAACGGCG GTTTTTTTGT ACAGTCTATG CCTCGGGCAT GATGTTTGAT GTTATGGAGC AGCAACGATG GGCAGTCGCC CTAAAACAAA GTTAGGTGGC CTCGGCCCTG ACCAAGTCAA ATCCATGCGG GGAGACGTA G CCACCTACTC CCAACATCAG CGTAGTAAGA CATTCATCGC GCTTGCTGCC GCGGCTTACG TTCTGCCCAG GTTTGAGCAG GCAGTCTCCG GCGAGCACCG GAGGCAGGGC CATGAGGCCA ACGCGCTTGG TGCTTTCGG GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60 GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120 GCATCGAGAT GCTGAGGTCA GGATTTTTCC 180 TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240 CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300 ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360 GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420 CGATGAGCAT TCTTGGTTTG AATGGTGCCC 480 TTGATCGCAT GAAGAAGGCG CACCTGGAGC 540 GTAGGCTGGA TCGTGCGATT GCAATGCTTC 600 TTTCTGCTGA CTTTGGCAAT CGCAGCCGTG 660 CGGTGGCAAG CCTGAAGGAT AGCCGCGAGC 720 ACAAGGCGAT GTTTCCAGGG GCGGAGGCAC 780 GGGTCATTAG TCCCTGGAAC TTCCCTATCG 840 TCGCAGCAGG TAATCGCGCC ATGCTCAAGC 900 TGCTTGCGGA GCTAATTGCT CGTTACTTCG 960 ACGCTGAAGT CGGTGCGCTG TTCAGTGCTC 1020 GCACTGCCGT GGCCAAGCAC ATCATGCGTG 1080 TGGAATTGGG TGGCAAATCG CCGGTGATCG 1140 CACAACGGGT GTTGACGGTG AAAACCTTCA 1200 ATGTGCTGGG GGAGAGGCGG TTTGCGTATT 1260 TTAAGCATTC TGCCGACATG GAAGCCATCA 1320 GGCATCAGCA CCTTGTCGCC TTGCGTATAA 1380 GGATGAAGGC ACGAACCCAG TTGACATAAG 1440 AGCGTATGCG CTCACGCAAC TGGTCCAGAA 1500 CAGTGGCGGT TTTCATGGCT TGTTATGACT 1560 CCAAGCAGCA AGCGCGTTAC GCCGTGGGTC 1620 TTACGCAGCA GCAACGATGT TACGCAGCAG 1680 TCAAGTATGG GCATCATTCG CACATGTAGG 1740 GCTGCTCTTG ATCTTTTCGG TCGTGAGTTC 1800 CCGGACTCCG ATTACCTCGG GAACTTGCTC 1860 TTCGACCAAG AAGCGGTTGT TGGCGCTCTC 1920 CCGCGTAGTG AGATCTATAT CTATGATCTC 1980 ATTGCCACCG CGCTCATCAA TCTCCTCAAG 2040 ATCTACGTGC AAGCAGATTA CGGTGACGAT 2100 ATACGGGAAG AAGTGATGCA CTTTGATATC 2160 GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60 GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120 GCATCGAGAT GCTGAGGTCA GGATTTTTCC 180 TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240 CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300 ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360 GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420 CGATGAGCAT TCTTGGTTTG AATGGTGCCC 480 TTGATCGCAT GAAGAAGGCG CACCTGGAGC 540 GTAGGCTGGA TCGTGCGATT GCAATGCTTC 600 TTTCTGCTGA CTTTGGCAAT CGCAGCCGTG 660 CGGTGGCAAG CCTGAAGGAT AGCCGCGAGC 720 ACAAGGCGAT GTTTCCAGGG GCGGAGGCAC 780 GGGTCATTAG TCCCTGGAAC TTCCCTATCG 840 TCGCAGCAGG TAATCGCGCC ATGCTCAAGC 900 TGCTTGCGGA GCTAATTGCT CGTTACTTCG 960 ACGCTGAAGT CGGTGCGCTG TTCAGTGCTC 1020 GCACTGCCGT GGCCAAGCAC ATCATGCGTG 1080 TGGAATTGGG TGGCAAATCG CCGGTGATCG 1140 CACAACGGGT GTTGACGGTG AAAACCTTCA 1200 ATGTGCTGGG GGAGAGGCGG TTTGCGTATT 1260 TTAAGCATTC TGCCGACATG GAAGCCATCA 1320 GGCATCAGCA CCTTGTCGCC TTGCGTATAA 1380 GGATGAAGGC ACGAACCCAG TTGACATAAG 1440 AGCGTATGCG CTCACGCAAC TGGTCCAGAA 1500 CAGTGGCGGT TTTCATGGCT TGTTATGACT 1560 CCAAGCAGCA AGCGCGTTAC GCCGTGG GTC 1620 TTACGCAGCA GCAACGATGT TACGCAGCAG 1680 TCAAGTATGG GCATCATTCG CACATGTAGG 1740 GCTGCTCTTG ATCTTTTCGG TCGTGAGTTC 1800 CCGGACTCCG ATTACCTCGG GAACTTGCTC 1860 TTCGACCAAG AAGCGGTTGT TGGCGCTCTC 1920 CCGCGTAGTG AGATCTATAT CTATGATCTC 1980 ATTGCCACCG CGCTCATCAA TCTCCTCAAG 2040 ATCTACGTGC AAGCAGATTA CGGTGACGAT 2100 ATACGGGAAG AAGTGATGCA CTTTGATATC 2160 • · ·· ·· • · · · • · · • ··· • · ···· ·· ·· ·· • · • ··· • · « ·· ··· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · -58GACCCAAGTA CCGCCACCTA ACAATTCGTT CAAGCCGAGA TCGGCTTCCC TGCAAAGTCC 2220 TGTGGGTGAG TCGAACTTGG CGATGCGCGC ACCCTACGGA GAAGCGATCC ACGGACTGCT 2280 CTCTGTCCTC CTTTCAACGG AGTGTTAGAA CCGTTGGTAG TGGTTTTGGA CGGGCCCAGG 2340 AGCATGCGCT TCTGGGCCCG TTTCTTGAGT ATTCATTGGA TAGTCACGCG TGGTAGCTTC 2400 GAGCCTGCAC AGCTGATGAG CACCCTGGAA GGCGCGCTGT ACGCGGACGA CTGGGTTCAT 2460 CTTCGCCATT CATGACGGAA CTCCGTTCCC CAGTACCGCG ATGACTATTT TGCCTCTTCC 2520 GATGTCCGAT TCCACGCCGC CTGACGCTAA GCGGGGGCGG GGGCGCCCGC ATCCCAGCCC 2580 AGACAGCAAC AAATGAGTAG GCTCTTGGAT GCCGCGGCGG CTGAGATTGG TAACGGCAAT 2640 TTCGTCAATG TGACGATGGA TTCGATTGCC CGTGCTGCCG GCGTCTCAAA AAAAACGCTG 2700 TACGTCTTGG TGGCGAGCAA GGAAGAACTC ATTTCCCGGT TAGTGGCTCG AGACATGTCC 2760 AACCTTGAGG AATTC 2775 ·· ·· • · • · · • · • · • · ·· ·-58GACCCAAGTA CCGCCACCTA ACAATTCGTT CAAGCCGAGA TCGGCTTCCC TGCAAAGTCC 2220 TGTGGGTGAG TCGAACTTGG CGATGCGCGC ACCCTACGGA GAAGCGATCC ACGGACTGCT 2280 CTCTGTCCTC CTTTCAACGG AGTGTTAGAA CCGTTGGTAG TGGTTTTGGA CGGGCCCAGG 2340 AGCATGCGCT TCTGGGCCCG TTTCTTGAGT ATTCATTGGA TAGTCACGCG TGGTAGCTTC 2400 GAGCCTGCAC AGCTGATGAG CACCCTGGAA GGCGCGCTGT ACGCGGACGA CTGGGTTCAT 2460 CTTCGCCATT CATGACGGAA CTCCGTTCCC CAGTACCGCG ATGACTATTT TGCCTCTTCC 2520 GATGTCCGAT TCCACGCCGC CTGACGCTAA GCGGGGGCGG GGGCGCCCGC ATCCCAGCCC 2580 AGACAGCAAC AAATGAGTAG GCTCTTGGAT GCCGCGGCGG CTGAGATTGG TAACGGCAAT 2640 TTCGTCAATG TGACGATGGA TTCGATTGCC CGTGCTGCCG GCGTCTCAAA AAAAACGCTG 2700 TACGTCTTGG TGGCGAGCAA GGAAGAACTC ATTTCCCGGT TAGTGGCTCG AGACATGTCC 2760 AACCTTGAGG AATTC 2775 · · · · • · • · • · • · • · · · · -59···· ··· ·· ··· • fl ··-59 ··· ··· ·· ··· • fl ·· Sekvencia 6Sequence 6 GAATTCCGCG TATCGCCCGG TTCTATCAGC GGTAGGGTCT TTTTCTTGGC CATGCTTGTT TGCGTTTGCC GCTTCGCTTC GCGATGAACC TTAACTCGCG TAAGCATTCT GTCATTTTTT GTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CGATTAAGAT AATTAAAATA AGGAAACCGC CTCCAGCTCA AGGGCAATTT TTGGGCTATT AGAATAACAA TTGACTCCTC AGGAGGTCAG CGGTCGGAGC TGAGCAGCTG GGCTCGGCTC AGGGGCCTGC AAACTTGGAG CTGCGTCTGA TGGAAAATCG TGAAGCAATT GCCGACGCGG AGCAAACACT GCTTTGCGAC ATTGCTGGCT ACGTGGCCAA ATGGATGGAG CCCGAACATC GCGTTGAGTT TCAGCCGCTG GGTGTCGTTG TACTGGCCTT TGGGCCGCTG GCCGGCATAT CGTCCGAGCT TACCCCGCGG ACTTCTGCCC ATGAAACTGA GCTGACTACA GTGCTGGGCG AGCCTTTCGA TCATCTGATC TTCACCGGCG CCGCGGCGGA TAACCTAGTG CCCGTTACCC TTTCCCGCAG TGCAGATATG GCGGACGTTG ATGCCGGGCA AATCTGTCTG GCACCGTGGG CGGAGAAGCG ATCCACGGAC TGCTCTCTGT GTAGTGGTTT TGGÄCGGGCC CAGGAGCATG TGGATAGTCA CGCGTGGTAG CTTCGAGCCT CTGTACGCGG ACGACTGGGT TCATCTTCGC CGCGATGACT ATTTTGCCTC TTCCGATGTC GCGGGGGCGC CCGCATCCCA GCCCAGACAG GCGGCTGAGA TTGGTAACGG CAATTTCGTC GCCGGCGTCT CAAAAAAAAC GCTGTACGTC CGGTTAGTGG CTCGAGACAT GTCCAACCTTGAATTCCGCG TATCGCCCGG TTCTATCAGC GGTAGGGTCT TTTTCTTGGC CATGCTTGTT TGCGTTTGCC GCTTCGCTTC GCGATGAACC TTAACTCGCG TAAGCATTCT GTCATTTTTT GTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CGATTAAGAT AATTAAAATA AGGAAACCGC CTCCAGCTCA AGGGCAATTT TTGGGCTATT AGAATAACAA TTGACTCCTC AGGAGGTCAG CGGTCGGAGC TGAGCAGCTG GGCTCGGCTC AGGGGCCTGC AAACTTGGAG CTGCGTCTGA TGGAAAATCG TGAAGCAATT GCCGACGCGG AGCAAACACT GCTTTGCGAC ATTGCTGGCT ACGTGGCCAA ATGGATGGAG CCCGAACATC GCGTTGAGTT TCAGCCGCTG GGTGTCGTTG TACTGGCCTT TGGGCCGCTG GCCGGCATAT CGTCCGAGCT TACCCCGCGG ACTTCTGCCC ATGAAACTGA GCTGACTACA GTGCTGGGCG AGCCTTTCGA TCATCTGATC TTCACCGGCG CCGCGGCGGA TAACCTAGTG CCCGTTACCC TTTCCCGCAG TGCAGATATG GCGGACGTTG ATGCCGGGCA AATCTGTCTG GCACCGTGGG CGGAGAAGCG ATCCACGGAC TGCTCTCTGT GTAGTGGTTT TGGÄCGGGCC CAGGAGCATG TGGATAGTCA CGCGTGGTAG CTTCGAGCCT CTGTACGCGG ACGACTGGGT TCATCTTCGC CGCGATGACT ATTTTGCCTC TTCCGATGTC GCGGGGGCGC CCGCATCCCA GCCCAGACAG GCGGCTGAGA TTGGTAACGG CAATTTCGTC GCCGGCGTCT CAAAAAAAAC GCTGTACGTC CGGTTAGTGG CTCGAGACAT GTCCAACCTT GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60 GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120 GCATCGAGAT GCTGAGGTCA GGATTTTTCC 180 TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240 CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300 ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360 GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420 CGATGAGCAT TCTTGGTTTG AATGGTGCCC 480 TTGATCGCAT GAAGAAGGCG CACCTGGAGC 540 GTAGGCTGGA TCGTGCGATT GCÄATGCTTC 600 TTTCTGCTGA CTTTGGCAAT CGCAGCCGTG 660 CGGTGGCAAG CCTGAAGGAT AGCCGCGAGC 720 ACAAGGCGAT GTTTCCAGGG GCGGAGGCAC 780 GGGTCATTAG TCCCTGGAAC TTCCCTATCG 840 TCGCAGCAGG TAATCGCGCC A7GCTCAAGC 900 TGCTTGCGGA GCTAATTGCT CGTTACTTCG 960 ACGCTGAAGT CGGTGCGCTG TTCAGTGCTC 1020 GCACTGCCGT GGCCAAGCAC ATCATGCGTG 1080 TGGAATTGGG TGGCAAATCG CCGGTGATCG 1140 CACAACGGGT GTTGACGGTG AAAACCTTCA 1200 TGAGTCGAAC TTGGCGATGC GCGCACCCTA 1260 CCTCCTTTCA ACGGAGTGTT AGAACCGTTG 1320 CGCTTCTGGG CCCGTTTCTT GAGTATTCAT 1380 GCACAGCTGA TGAGCACCCT GGAAGGCGCG 1440 CATTCATGAC GGAACTCCGT TCCCCAGTAC 1500 CGATTCCACG CCGCCTGACG CTAAGCGGGG 1560 CAACAAATGA GTAGGCTCTT GGATGCCGCG 1620 AATGTGACGA TGGATTCGAT TGCCCGTGCT 1680 TTGGTGGCGA GCAAGGAAGA ACTCATTTCC 1740 GAGGAATTC 1779 ·· ···· ·· • · ····GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60 GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120 GCATCGAGAT GCTGAGGTCA GGATTTTTCC 180 TGGTGGCTTT GAACAGCCTG ATGAAAGGTG 240 CTTGGCGGCG TCGAAGCGAT GCTCCACTAC 300 ATGGTTTCTT ATGTGAATTT GTCTGGCATA 360 GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420 CGATGAGCAT TCTTGGTTTG AATGGTGCCC 480 TTGATCGCAT GAAGAAGGCG CACCTGGAGC 540 GTAGGCTGGA TCGTGCGATT GCÄATGCTTC 600 TTTCTGCTGA CTTTGGCAAT CGCAGCCGTG 660 CGGTGGCAAG CCTGAAGGAT AGCCGCGAGC 720 ACAAGGCGAT GTTTCCAGGG GCGGAGGCAC 780 GGGTCATTAG TCCCTGGAAC TTCCCTATCG 840 TCGCAGCAGG TAATCGCGCC A7GCTCAAGC 900 TGCTTGCGGA GCTAATTGCT CGTTACTTCG 960 ACGCTGAAGT CGGTGCGCTG TTCAGTGCTC 1020 GCACTGCCGT GGCCAAGCAC ATCATGCGTG 1080 TGGAATTGGG TGGCAAATCG CCGGTGATCG 1140 CACAACGGGT GTTGACGGTG AAAACCTTCA 1200 TGAGTCGAAC TTGGCGATGC GCGCACCCTA 1260 CCTCCTTTCA ACGGAGTGTT AGAACCGTTG 1320 CGCTTCTGGG CCCGTTTCTT GAGTATTCAT 1380 GCACAGCTGA TGAGCACCCT GGAAGGCGCG 1440 CATTCATGAC GGAACTCCGT TCCCCAGTAC 1500 CGATTCCACG CCGCCTGACG CTAAGCGGGG 1560 CAACAAATGA GTAGGCTCTT GGATGC CGCG 1620 AATGTGACGA TGGATTCGAT TGCCCGTGCT 1680 TTGGTGGCGA GCAAGGAAGA ACTCATTTCC 1740 GAGGAATTC 1779 Sekvencia 7Sequence 7 CTGCAGCCGA GCATCGATTG AGCACTTTAC CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60 CCCGCGGCAC TATCCAATCT AAATCGATCT TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 120 CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180 CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC 240 AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGGGG ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG 780 GTAAGGTTGG GAAGCCCTGC AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT 840 GGCGCAGGGG ATCAAGATCT GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATGATTGAAC 900 AAGATGGATT GCACGCAGGT TCTCCGGCCG CTTGGGTGGA GAGGCTATTC GGCTATGACT 960 GGGCACAACA GACAATCGGC TGCTCTGATG CCGCCGTGTT CCGGCTGTCA GCGCAGGGGC 1020 GCCCGGTTCT TTTTGTCAAG ACCGACCTGT CCGGTGCCCT GAATGAACTG CAGGACGAGG 1080 CAGCGCGGCT ATCGTGGCTG GCCACGACGG GCGTTCCTTG CGCAGCTGTG CTCGACGTTG 1140 TCACTGAAGC GGGAAGGGAC TGGCTGCTAT TGGGCGAAGT GCCGGGGCAG GATCTCCTGT 1200 CATCTCACCT TGCTCCTGCC GAGAAAGTAT CCATCATGGC TGATGCAATG CGGCGGCTGC 1260 ATACGCTTGA TCCGGCTACC TGCCCATTCG ACCACCAAGC GAAACATCGC ATCGAGCGAG 1320 CACGTACTCG GATGGAAGCC GGTCTTGTCG ATCAGGATGA TCTGGACGAA GAGCATCAGG 1380 GGCTCGCGCC AGCCGAACTG TTCGCCAGGC TCAAGGCGCG CATGCCCGAC GGCGAGGATC 1440 TCGTCGTGAC CCATGGCGAT GCCTGCTTGC CGAATATCAT GGTGGAAAAT GGCCGCTTTT 1500 CTGGATTCAT CGACTGTGGC CGGCTGGGTG TGGCGGACCG CTATCAGGAC ATAGCGTTGG 1560 CTACCCGTGA TATTGCTGAA GAGCTTGGCG GCGAATGGGC TGACCGCTTC CTCGTGCTTT 1620 ACGGTATCGC CGCTCCCGAT TCGCAGCGCA TCGCCTTCTA TCGCCTTCTT GACGAGTTCT 1680 TCTGAGCGGG ACTCTGGGGT TCGAAATGAC CGACCAAGCG ACGCCCCTGT TTTGCAATGG 1740 CGGTCGGCGA AAGTTGATGC GCTGTATCGT GGTGAAGATC AATCCATGCT GCGTGACGAG 1800 GCCACACTGT GAGTTGGTCA GGGGGGGCTT ACTCGGCGTT TTCCGACACT GCGTTGGTTG 1860 CGGCAGTGCG CACCCCCTGG ATTGATTGCG GGGGTGCCCT GTCGCTGGTG TCGCCTATCG 1920 ACTTAGGGGT AAAGGTCGCT CGCGAAGTTC TGATGCGTGC GTCGCTTGAA CCACAAATGG 1980 TCGATAGCGT ACTCGCAGGC TCTATGGCTC AAGCAAGCTT TGATGCTTAC CTGCTCCCGC 2040 GGCACATTGG CTTGTACAGC GGTGTTCCCA AGTCGGTTCC GGCCTTGGGG GTGCAGCGCA 2100 TTTGCGGCAC AGGCTTCGAA CTGCTTCGGC AGGCCGGCGA GCAGATTTCC CAAGGCGCTG 2160 ATCACGTGCT GTGTGTCGCG GGCTGCAG 2188 ·· ·· • · · • · • ·· ···· ··CTGCAGCCGA GCATCGATTG AGCACTTTAC CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60 CCCGCGGCAC TATCCAATCT AAATCGATCT TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 120 CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180 CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC 240 AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGGGG ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG 780 GTAAGGTTGG GAAGCCCTGC AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT 840 GGCGCAGGGG ATCAAGATCT GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATGATTGAAC 900 AAGATGGATT GCACGCAGGT TCTCCGGCCG CTTGGGTGGA GAGGCTATTC GGCTATGACT 960 GGGCACAACA GACAATCGGC TGCTCTGATG CCGCCGTGTT CCGGCTGTCA GCGCAGGGGC 1020 GCCCGGTTCT TTTTGTCAAG ACCGACCTGT CCGGTGCCCT GAATGAACTG CAGGACGAGG 1080 CAGCGCGGCT ATCGTGGCTG GCCACGACGG GCGTTCCTTG CGCAGCTGTG CTCGACGTTG 1140 TCACTGAAGC GGGAAGGGAC TGGCTGCTAT TGGGCGAAGT GCCGGGGCAG GATCTCCTGT 1200 CATCTCACCT TGCTCCTGCC GAGAAAGTAT CCATCATGGC TGATGCAATG CGGCGGCTGC 1260 ATACGCTTGA TCCGGCTACC TGCCCATTCG ACCACCAAGC GAAACATCGC ATCGAGCGAG 1320 CACGTACTCG GATGGAAGCC GGTCTTGTCG ATCAGGATGA TCTGGACGAA GAGCATCAGG 1380 GGCTCGCGCC AGCCGAACTG TTCGCCAGGC TCAAGGCGCG CATGCCCGAC GGCGAGGATC 1440 TCGTCGTGAC CCATGGCGAT GCCTGCTTGC CGAATATCAT GGTGGAAAAT GGCCGCTTTT 1500 CTGGATTCAT CGACTGTGGC CGGCTGGGTG TGGCGGACCG CTATCAGGAC ATAGCGTTGG 1560 CTACCCGTGA TATTGCTGAA GAGCTTGGCG GCGAATGGGC TGACCGCTTC CTCGTGCTTT 1620 ACGGTATCGC CGCTCCCGAT TCGCAGCGCA TCGCCTTCTA TCGCCTTCTT GACGAGTTCT 1680 TCTGAGCGGG ACTCTGGGGT TCGAAAT GAC CGACCAAGCG ACGCCCCTGT TTTGCAATGG 1740 CGGTCGGCGA AAGTTGATGC GCTGTATCGT GGTGAAGATC AATCCATGCT GCGTGACGAG 1800 GCCACACTGT GAGTTGGTCA GGGGGGGCTT ACTCGGCGTT TTCCGACACT GCGTTGGTTG 1860 CGGCAGTGCG CACCCCCTGG ATTGATTGCG GGGGTGCCCT GTCGCTGGTG TCGCCTATCG 1920 ACTTAGGGGT AAAGGTCGCT CGCGAAGTTC TGATGCGTGC GTCGCTTGAA CCACAAATGG 1980 TCGATAGCGT ACTCGCAGGC TCTATGGCTC AAGCAAGCTT TGATGCTTAC CTGCTCCCGC 2040 GGCACATTGG CTTGTACAGC GGTGTTCCCA AGTCGGTTCC GGCCTTGGGG GTGCAGCGCA 2100 TTTGCGGCAC AGGCTTCGAA CTGCTTCGGC AGGCCGGCGA GCAGATTTCC CAAGGCGCTG 2160 ATCACGTGCT GTGTGTCGCG GGCTGCAG 2188 ·· ··· ··· -61 ·· ·· ·· • · · · · · • · ··· · · ·· ·· ··· · • · · · · · ·· ·· ·· ·-61 ·· ·· ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Sekvencia 8Sequence 8 CTGCAGCCGA GCATCGATTG AGCACTTTAC CCCGCGGCAC TATCCAATCT AAATCGATCT CTCGCCTCAT TTCAATCTCT AACTTGATAA CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AACCGCAGGC ATCATCATGC TCTGCTCAGC CTCCGGTTGA GGTTACGCAA GACGCTGGAG TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC AACAAACCTG CGTTGCTGCC AGGGCGGCAA AAATGTTCCA CAACGTCCGC GCCATCGCAC ÄGCGTCCGCT GCTTATCGTC TCTGGAAATG CTATGTATGC GGGCATTCCC TATTGCCCGG ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC ATGCAGCACC TTTCCAGGGG GAGAGGCGGT TGTAATTCAT TAAGCATTCT GCCGACATGG ATCGCCAGCG GCATCAGCAC CTTGTCGCCT CGTGGAAÄCG GATGAAGGCA CGAACCCAGT AATGCAAGTA GCGTATGCGC TCACGCAACT GTAACGGCGC AGTGGCGGTT TTCATGGCTT CTCGGGCATC CAAGCAGCAA GCGCGTTACG GCAACGATGT TACGCAGCAG CAACGATGTT TTAGGTGGCT CAAGTATGGG CATCATTCGC TCCATGCGGG CTGCTCTTGA TCTTTTCGGT CAACATCAGC CGGACTCCGA TTACCTCGGG CTTGCTGCCT TCGACCAAGA AGCGGTTGTT TTTGAGCAGC CGCGTAGTGA GATCTATATC AGGCAGGGCA TTGCCACCGC GCTCATCAAT GCTTATGTGA TCTACGTGCA AGCAGATTAC AAGTTGGGCA TACGGGAAGA AGTGATGCAC CAATTCGTTC AAGCCGAGAT CGGCTTCCCC TGCGCTGTAT CGTGGTGAAG ATCAATCCAT TCAGGGGGGG CTTACTCGGC GTTTTCCGAC TGGATTGATT GCGGGGGTGC CCTGTCGCTG GCTCGCGAAG TTCTGATGCG TGCGTCGCTT GGCTCTATGG CTCAAGCAAG CTTTGATGCT AGCGGTGTTC CCAAGTCGGT TCCGGCCTTG GAACTGCTTC GGCAGGCCGG CGAGCAGATT GCGGGCTGCA GCTGCAGCCGA GCATCGATTG AGCACTTTAC CCCGCGGCAC TATCCAATCT AAATCGATCT CTCGCCTCAT TTCAATCTCT AACTTGATAA CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AACCGCAGGC ATCATCATGC TCTGCTCAGC CTCCGGTTGA GGTTACGCAA GACGCTGGAG TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC AACAAACCTG CGTTGCTGCC AGGGCGGCAA AAATGTTCCA CAACGTCCGC GCCATCGCAC ÄGCGTCCGCT GCTTATCGTC TCTGGAAATG CTATGTATGC GGGCATTCCC TATTGCCCGG ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC ATGCAGCACC TTTCCAGGGG GAGAGGCGGT TGTAATTCAT TAAGCATTCT GCCGACATGG ATCGCCAGCG GCATCAGCAC CTTGTCGCCT CGTGGAAÄCG GATGAAGGCA CGAACCCAGT AATGCAAGTA GCGTATGCGC TCACGCAACT GTAACGGCGC AGTGGCGGTT TTCATGGCTT CTCGGGCATC CAAGCAGCAA GCGCGTTACG GCAACGATGT TACGCAGCAG CAACGATGTT TTAGGTGGCT CAAGTATGGG CATCATTCGC TCCATGCGGG CTGCTCTTGA TCTTTTCGGT CAACATCAGC CGGACTCCGA TTACCTCGGG CTTGCTGCCT TCGACCAAGA AGCGGTTGTT TTTGAGCAGC CGCGTAGTGA GATCTATATC AGGCAGGGCA TTGCCACCGC GCTCATCAAT GCTTATGTGA TCTACGTGCA AGCAGATTAC AAGTTGGGCA TACGGGAAGA AGTGATGCAC CAATTCGTTC AAGCCGAGAT CGGCTTCCCC TGCGCTGTAT CGTGGTGAAG ATCAATCCAT TCAGGGGG GG CTTACTCGGC GTTTTCCGAC TGGATTGATT GCGGGGGTTGC CCTGTCGCTG GCTCGCGAAG TTCTGATGCG TGCGTCGCTT GGCTCTATGG CTCAAGCAAG CTTTGATGCT CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60 TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 120 AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180 AGAGTACAGT GAACGCCGAG TCCACATTGC 240 CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 gtctcgagca TTGGGCTAAG ACCCGTCCAG 420 ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 ACCTGGAACA TCTTCÄGCTG GCATTTGGGG 600 TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 TTGCGTATTG GGCGCATGCA TAAAAACTGT 780 AAGCCATCAC AAACGGCATG ATGAACCTGA 840 TGCGTATAAT ATTTGCCCAT GGACGCACAC 900 TGACATAAGC CTG7TCGGTT CGTAAACTGT 960 GGTCCAGAAC CTTGACCGAA CGCAGCGGTG 1020 GTTATGACTG TTTTTTTGTA CAGTCTATGC 1080 CCGTGGGTCG ATGTTTGATG TTATGGAGCA 1140 ACGCAGCAGG GCAGTCGCCC TAAAACAAAG 1200 ACATGTAGGC TCGGCCCTGA CCAAGTCAAA 1260 CGTGAGTTCG GAGACGTAGC CACCTACTCC 1320 AÄCTTGCTCC GTAGTAAGAC ATTCATCGCG 1380 GGCGCTCTCG CGGCTTACGT TCTGCCCAGG 1440 TATGÄTCTCG CAGTCTCCGG CGAGCACCGG 1500 CTCCTCAAGC ATGAGGCCAA CGCGCTTGGT 1560 GGTGACGATC CCGCAGTGGC TCTCTATACA 1620 T7TGATATCG ACCCAAGTAC CGCCACCTAA 1680 TGTTTTGCAA TGGCGGTCGG CGAAAGTTGA 1740 GCTGCG7GAC GAGGCCACAC TGTGAGTTGG 1800 ACTGCGTTGG TTGCGGCAGT GCGCACCCCC 1860 GTGTCGCCTA TCGACTTAGG GGTAAAGGTC 1920 GAACCACAAA TGGTCGATAG CGTACTCGCA 1980 TACCTGCTCC CGCGGCACAT TGGCTTGTAC 2040 GGGGTGCAGC GCATTTGCGG CACAGGCTTC 2100 TCCCAAGGCG CTGATCACGT GCTGTGTGTC 2160CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60 TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 120 AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180 AGAGTACAGT GAACGCCGAG TCCACATTGC 240 CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 gtctcgagca TTGGGCTAAG ACCCGTCCAG 420 ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 ACCTGGAACA TCTTCÄGCTG GCATTTGGGG 600 TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 TTGCGTATTG GGCGCATGCA TAAAAACTGT 780 AAGCCATCAC AAACGGCATG ATGAACCTGA 840 TGCGTATAAT ATTTGCCCAT GGACGCACAC 900 TGACATAAGC CTG7TCGGTT CGTAAACTGT 960 GGTCCAGAAC CTTGACCGAA CGCAGCGGTG 1020 GTTATGACTG TTTTTTTGTA CAGTCTATGC 1080 CCGTGGGTCG ATGTTTGATG TTATGGAGCA 1140 ACGCAGCAGG GCAGTCGCCC TAAAACAAAG 1200 ACATGTAGGC TCGGCCCTGA CCAAGTCAAA 1260 CGTGAGTTCG GAGACGTAGC CACCTACTCC 1320 AÄCTTGCTCC GTAGTAAGAC ATTCATCGCG 1380 GGCGCTCTCG CGGCTTACGT TCTGCCCAGG 1440 TATGÄTCTCG CAGTCTCCGG CGAGCACCGG 1500 CTCCTCAAGC ATGAGGCCAA CGCGCTTGGT 1560 GGTGACGATC CCGCAGTGGC TCTC Tataca 1620 T7TGATATCG ACCCAAGTAC CGCCACCTAA 1680 TGTTTTGCAA TGGCGGTCGG CGAAAGTTGA 1740 GCTGCG7GAC GAGGCCACAC TGTGAGTTGG 1800 ACTGCGTTGG TTGCGGCAGT GCGCACCCCC 1860 GTGTCGCCTA TCGACTTAGG GGTAAAGGTC 1920 GAACCACAAA TGGTCGATAG CGTACTCGCA 1980 TACCTGCTCC CGCGGCACAT TGGCTTGTAC 2040 GGGGTGCAGC GCATTTGCGG CACAGGCTTC 2100 TCCCAAGGCG CTGATCACGT GCTGTGTGTC 2160 2171 ·· • · · • · ··· • · · · • · · · ·· ·· ·· • · · • · • · · • · ·· ·2171 ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · -62• · • · · · • · · • ··· · • · ···· ·· ·· ··-62 · · · · · · · · · · · · · · · · · · · · · · · · · · · Sekvencia 9Sequence 9 CTGCAGCCGA GCATCGATTG AGCACTTTAC CCCGCGGCAC TATCCAATCT AAATCGATCT CTCGCCTCAT TTCAATCTCT AACTTGATAA CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AACCGCAGGC ATCATCATGC TCTGCTCAGC CTCCGGTTGA GGTTACGCAA GACGCTGGAG TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC AACAAACCTG CGTTGCTGCC AGGGCGGCAA AAATGTTCCA CAACGTCCGC GCCATCGCAC AGCGTCCGCT GCTTATCGTC TCTGGAAATG CTATGTATGC GGGCATTCCC TATTGCCCGG ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC ATGCAGCACC TTTCCAGCGC GCTGTTTTGC ATCGTGGTGA AGATCAATCC ATGCTGCGTG GGCTTACTCG GCGTTTTCCG ACACTGCGTT TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC AGTTCTGATG CGTGCGTCGC TTGAACCACA GGCTCAAGCA AGCTTTGATG CTTACCTGCT TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CAGCTGCAGCCGA GCATCGATTG AGCACTTTAC CCCGCGGCAC TATCCAATCT AAATCGATCT CTCGCCTCAT TTCAATCTCT AACTTGATAA CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AACCGCAGGC ATCATCATGC TCTGCTCAGC CTCCGGTTGA GGTTACGCAA GACGCTGGAG TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC AACAAACCTG CGTTGCTGCC AGGGCGGCAA AAATGTTCCA CAACGTCCGC GCCATCGCAC AGCGTCCGCT GCTTATCGTC TCTGGAAATG CTATGTATGC GGGCATTCCC TATTGCCCGG ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC ATGCAGCACC TTTCCAGCGC GCTGTTTTGC ATCGTGGTGA AGATCAATCC ATGCTGCGTG GGCTTACTCG GCGTTTTCCG ACACTGCGTT TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC AGTTCTGATG CGTGCGTCGC TTGAACCACA GGCTCAAGCA AGCTTTGATG CTTACCTGCT TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA TCGGCAGGCC GGCGAGCAGA CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60 TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 120 AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180 AGAGTACAGT GAACGCCGAG TCCACATTGC 240 CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 CGCTGATCAC GTGCTGTGTG TCGCGGGCTG 1200CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60 TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 120 AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180 AGAGTACAGT GAACGCCGAG TCCACATTGC 240 CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 CGCTGATCAC GTGCTGTGTG TCGCGGGCTG 1200 1203 ·· • · • · · • · • · · • · • · ·1203 ·· · · · · · · · · · · · · · · · · · · · · -63· ·· • · · · • · · • ··· · • · ···· ·· ·· • · · • · ··· • · · · • · · · r· ··-63 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Sekvencie 10Sequences 10 GAATTCCCCT GGCGACGAAA GGGCGGCAGG GCTTGCGTTA ATCGTTAACC GTTTGAAATT GGGTACGCCT TTCCGTGCGC TTTGATCTGC AATTGACAGA ACTATAGGTT CGCAGTAGCT GGTGCACGAT GAATAGCTAC GATGGCCGTT GTATCGCTTG GGTCACGCTG AACCGCCCGG ATCGAGAGAT GGTCGAGGTT CTGGAGGTGC TTCTGACTGG TGCAGGCGAA TCCTGGACCG AGACCGATGC TGGCCCCGAA ATTCTGCAAG GGAATTGCCA GCTGGGGCGC CCTCTGGTAA GGCTTTCTTG CCGCCAAGGA TCTGATGGCG ATGAGGATCG TTTCGCATGA TTGAACAAGA GGTGGAGAGG CTATTCGGCT ATGACTGGGC CGTGTTCCGG CTGTCAGCGC AGGGGCGCCC TGCCCTGAAT GAACTGCAGG ACGAGGCAGC TCCTTGCGCA GCTGTGCTCG ACGTTGTCAC CGAAGTGCCG GGGCAGGATC TCCTGTCATC CATGGCTGAT GCAATGCGGC GGCTGCATAC CCAAGCGAAA CATCGCATCG AGCGAGCACG GGATGATCTG GACGAAGAGC ATCAGGGGCT GGCGCGCATG CCCGACGGCG AGGATCTCGT TATCATGGTG GAAAATGGCC GCTTTTCTGG GGACCGCTAT CAGGACATAG CGTTGGCTAC ÄTGGGCTGAC CGCTTCCTCG TGCTTTACGG CTTCTATCGC CTTCTTGACG AGTTCTTCTG CAAGCGACGC CCCGAGCAGG GCATGAAGCA CTTGCAGACC TACAAGCGCT GATAAATGCG AATAATGACA ATAATGAGGA GTGCCCAATG CCTTGTTCAG CATCTGATGA GCGCACCTTC GTATCGCGCG TCGCTGCTGC CAGTTTGGAA GCTGCGTTTC CTGAATGGGC GGCGCTTGCT GCGGCGGATC TTCTAGAGGA CCGTTCTTCC GCAGCGGGAA ACTGGTATGG GTTTAACGTT CGAATTCCCCT GGCGACGAAA GGGCGGCAGG GCTTGCGTTA ATCGTTAACC GTTTGAAATT GGGTACGCCT TTCCGTGCGC TTTGATCTGC AATTGACAGA ACTATAGGTT CGCAGTAGCT GGTGCACGAT GAATAGCTAC GATGGCCGTT GTATCGCTTG GGTCACGCTG AACCGCCCGG ATCGAGAGAT GGTCGAGGTT CTGGAGGTGC TTCTGACTGG TGCAGGCGAA TCCTGGACCG AGACCGATGC TGGCCCCGAA ATTCTGCAAG GGAATTGCCA GCTGGGGCGC CCTCTGGTAA GGCTTTCTTG CCGCCAAGGA TCTGATGGCG ATGAGGATCG TTTCGCATGA TTGAACAAGA GGTGGAGAGG CTATTCGGCT ATGACTGGGC CGTGTTCCGG CTGTCAGCGC AGGGGCGCCC TGCCCTGAAT GAACTGCAGG ACGAGGCAGC TCCTTGCGCA GCTGTGCTCG ACGTTGTCAC CGAAGTGCCG GGGCAGGATC TCCTGTCATC CATGGCTGAT GCAATGCGGC GGCTGCATAC CCAAGCGAAA CATCGCATCG AGCGAGCACG GGATGATCTG GACGAAGAGC ATCAGGGGCT GGCGCGCATG CCCGACGGCG AGGATCTCGT TATCATGGTG GAAAATGGCC GCTTTTCTGG GGACCGCTAT CAGGACATAG CGTTGGCTAC ÄTGGGCTGAC CGCTTCCTCG TGCTTTACGG CTTCTATCGC CTTCTTGACG AGTTCTTCTG CAAGCGACGC CCCGAGCAGG GCATGAAGCA CTTGCAGACC TACAAGCGCT GATAAATGCG AATAATGACA ATAATGAGGA GTGCCCAATG CCTTGTTCAG CATCTGATGA GCGCACCTTC GTATCGCGCG TCGCTGCTGC CAGTTTGGAA GCTGCGTTT C CTGAATGGGC GGCGCTTGCT GCGGCGGATC TTCTAGAGGA CCGTTCTTCC GCAGCGGGAA ACTGGTATGG GTTTAACGTT C CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60 CCTTGCCAAA TTTCGGCGAG AGAATCATGC 120 GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180 TTTGCTCACC CACCAAATCC ACAGCACTGG 240 GGTCTACCGT TGATGTGAAG GTTGAAGAAG 300 AGAAGCGCAA CGCAATGAGC CCAACTCTCA 360 TGGAGCAGGA CGCAGATGCT CGCGTGCTTG 420 CGGGCATGGA CCTGAAGGAG TATTTCCGCG 480 AGAAGATTCG TCGGGGACAG CAAGCGAACC 540 GGTTGGGAAG CCCTGCAAAG TAAACTGGAT 600 CAGGGGATCA AGATCTGATC AAGAGACAGG 660 TGGATTGCAC GCAGGTTCTC CGGCCGCTTG 720 ACAACAGACA ATCGGCTGCT CTGATGCCGC 780 GGTTCTTTTT GTCAAGACCG ACCTGTCCGG 840 GCGGCTATCG TGGCTGGCCA CGACGGGCGT 900 TGAAGCGGGA AGGGACTGGC TGCTATTGGG 960 TCACCTTGCT CCTGCCGAGA AAGTATCCAT 1020 GCTTGATCCG GCTACCTGCC CATTCGACCA 1080 TACTCGGATG GAAGCCGGTC TTGTCGATCA 1140 CGCGCCAGCC GAACTGTTCG CCAGGCTCAA 1200 CGTGACCCAT GGCGATGCCT GCTTGCCGAA 1260 ATTCATCGAC TGTGGCCGGC TGGGTGTGGC 1320 CCGTGATATT GCTGAAGAGC TTGGCGGCGA 1380 TATCGCCGCT CCCGATTCGC AGCGCATCGC 1440 AGCGGGACTC TGGGGTTCGA AATGACCGAC 1500 GTTCCTTGAC GAGAAAAGCA TCAAGCCGGG 1560 CCGGGGCCCT CGCTGCGCCC CCGGCCTTCC 1620 TTTCACGTGC CCCTGCTTAT TGGTGGTAAG 1680 GAGCGTCGTA GCCCGCTGAC CGGAGAAGTG 1740 GATGCGGACG CCGCAGTGGC CGCTGCACAG 1800 CCGAGCGAAC GCCGTGCCCG ACTGCTGCGA 1860 GAGTTCACCG CCGCAGCGAG TGAAACTGGC 1920 TACCTGGCGG CGGGCATGTT GCGGGGAATT 1980CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60 CCTTGCCAAA TTTCGGCGAG AGAATCATGC 120 GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180 TTTGCTCACC CACCAAATCC ACAGCACTGG 240 GGTCTACCGT TGATGTGAAG GTTGAAGAAG 300 AGAAGCGCAA CGCAATGAGC CCAACTCTCA 360 TGGAGCAGGA CGCAGATGCT CGCGTGCTTG 420 CGGGCATGGA CCTGAAGGAG TATTTCCGCG 480 AGAAGATTCG TCGGGGACAG CAAGCGAACC 540 GGTTGGGAAG CCCTGCAAAG TAAACTGGAT 600 CAGGGGATCA AGATCTGATC AAGAGACAGG 660 TGGATTGCAC GCAGGTTCTC CGGCCGCTTG 720 ACAACAGACA ATCGGCTGCT CTGATGCCGC 780 GGTTCTTTTT GTCAAGACCG ACCTGTCCGG 840 GCGGCTATCG TGGCTGGCCA CGACGGGCGT 900 TGAAGCGGGA AGGGACTGGC TGCTATTGGG 960 TCACCTTGCT CCTGCCGAGA AAGTATCCAT 1020 GCTTGATCCG GCTACCTGCC CATTCGACCA 1080 TACTCGGATG GAAGCCGGTC TTGTCGATCA 1140 CGCGCCAGCC GAACTGTTCG CCAGGCTCAA 1200 CGTGACCCAT GGCGATGCCT GCTTGCCGAA 1260 ATTCATCGAC TGTGGCCGGC TGGGTGTGGC 1320 CCGTGATATT GCTGAAGAGC TTGGCGGCGA 1380 TATCGCCGCT CCCGATTCGC AGCGCATCGC 1440 AGCGGGACTC TGGGGTTCGA AATGACCGAC 1500 GTTCCTTGAC GAGAAAAGCA TCAAGCCGGG 1560 CCGGGGCCCT CGCTGCGCCC CCGGCCT TCC 1620 TTTCACGTGC CCCTGCTTAT TGGTGGTAAG 1680 GAGCGTCGTA GCCCGCTGAC CGGAGAAGTG 1740 GATGCGGACG CCGCAGTGGC 19811981 -64Sekvencia 11-64Sequence 11 GAATTCCCCT GGCGACGAAA GGGCGGCAGG GCTTGCGTTA ATCGTTAACC GTTTGAAATT GGGTACGCCT TTCCGTGCGC TTTGATCTGC AATTGACAGA ACTATAGGTT CGCAGTAGCT GGTGCACGAT GAATAGCTAC GATGGCCGTT GTATCGCTTG GGTCACGCTG AACCGCCCGG ATCGAGAGAT GGTCGAGGTT CTGGAGGTGC TTCTGACTGG TGCAGGCGAA TCCTGGACCG AGACCGATGC TGGCCCCGAA ATTCTGCAAG GTATTGGGCG CATGCATAAA AACTGTTGTA CATCACAAAC GGCATGATGA ACCTGAATCG TATAATATTT GCCCATGGAC GCACACCGTG ATAAGCCTGT TCGGTTCGTA AACTGTAATG CAGAACCTTG ACCGAACGCA GCGGTGGTAA TGACTGTTTT TTTGTACAGT CTATGCCTCG GGGTCGATGT TTGATGTTAT GGAGCAGCAA AGCAGGGCAG TCGCCCTAAA ACAAAGTTAG GTAGGCTCGG CCCTGACCAA GTCAAATCCA AGTTCGGAGA CGTAGCCACC TACTCCCAAC TGCTCCGTAG TAAGACATTC ATCGCGCTTG CTCTCGCGGC TTACGTTCTG CCCAGGTTTG ATCTCGCAGT CTCCGGCGAG CACCGGAGGC TCAAGCATGA GGCCAACGCG CTTGGTGCTT ACGATCCCGC AGTGGCTCTC TATACAAAGT ATATCGACCC AAGTACCGCC ACCTAACAAT AGGGCATGAA GCAGTTCCTT GACGAGAAAÄ GCTGATAAAT GCGCCGGGGC CCTCGCTGCG GGAGTGCCCA ATGTTTCACG TGCCCCTGCT TGAGCGCACC TTCGAGCGTC GTAGCCCGCT TGCCAGTTTG GAAGATGCGG ACGCCGCAGT GGCGGCGCTT GCTCCGAGCG AACGCCGTGC GGACCGTTCT TCCGAGTTCA CCGCCGCAGC TGGGTTTAAC GTTTACCTGG CGGCGGGCATGAATTCCCCT GGCGACGAAA GGGCGGCAGG GCTTGCGTTA ATCGTTAACC GTTTGAAATT GGGTACGCCT TTCCGTGCGC TTTGATCTGC AATTGACAGA ACTATAGGTT CGCAGTAGCT GGTGCACGAT GAATAGCTAC GATGGCCGTT GTATCGCTTG GGTCACGCTG AACCGCCCGG ATCGAGAGAT GGTCGAGGTT CTGGAGGTGC TTCTGACTGG TGCAGGCGAA TCCTGGACCG AGACCGATGC TGGCCCCGAA ATTCTGCAAG GTATTGGGCG CATGCATAAA AACTGTTGTA CATCACAAAC GGCATGATGA ACCTGAATCG TATAATATTT GCCCATGGAC GCACACCGTG ATAAGCCTGT TCGGTTCGTA AACTGTAATG CAGAACCTTG ACCGAACGCA GCGGTGGTAA TGACTGTTTT TTTGTACAGT CTATGCCTCG GGGTCGATGT TTGATGTTAT GGAGCAGCAA AGCAGGGCAG TCGCCCTAAA ACAAAGTTAG GTAGGCTCGG CCCTGACCAA GTCAAATCCA AGTTCGGAGA CGTAGCCACC TACTCCCAAC TGCTCCGTAG TAAGACATTC ATCGCGCTTG CTCTCGCGGC TTACGTTCTG CCCAGGTTTG ATCTCGCAGT CTCCGGCGAG CACCGGAGGC TCAAGCATGA GGCCAACGCG CTTGGTGCTT ACGATCCCGC AGTGGCTCTC TATACAAAGT ATATCGACCC AAGTACCGCC ACCTAACAAT AGGGCATGAA GCAGTTCCTT GACGAGAAAÄ GCTGATAAAT GCGCCGGGGC CCTCGCTGCG GGAGTGCCCA ATGTTTCACG TGCCCCTGCT TGAGCGCACC TTCGAGCGTC GTAGCCCGCT TGCCAGTTTG GAAGATGCGG ACGCCGCAGT GGCGGCGCT T GCTCCGAGCG AACGCCGTGC GGACCGTTCT TCCGAGTTCA CCGCCGCAGC TGGGTTTAAC GTTTACCTGG CGGCGGGCAT CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60 CCTTGCCÄAA TTTCGGCGAG AGAATCATGC 120 GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180 TTTGCTCACC CACCAAATCC ACAGCACTGG 240 GGTCTACCGT TGATGTGAAG GTTGAAGAAG 300 AGAAGCGCAA CGCAATGAGC CCAACTCTCA 360 TGGAGCAGGA CGCAGATGCT CGCGTGCTTG 420 CGGGCATGGA CCTGAAGGAG TATTTCCGCG 480 AGAAGATTCG TCGGGGGAGA GGCGGTTTGC 540 ATTCATTAAG CATTCTGCCG ACATGGAAGC 600 CCAGCGGCAT CAGCACCTTG TCGCCTTGCG 660 GAAACGGATG AAGGCACGAA CCCAGTTGAC 720 CAAGTAGCGT ATGCGCTCAC GCAACTGGTC 780 CGGCGCAGTG GCGGTTTTCA TGGCTTGTTA 840 GGCATCCAAG CAGCAAGCGC GTTACGCCGT 900 CGATGTTÄCG CAGCAGCAAC GA7GTTACGC 960 GTGGCTCAAG TATGGGCATC ATTCGCACAT 1020 TGCGGGCTGC TCTTGATCTT TTCGGTCGTG 1080 ATCAGCCGGA CTCCGATTAC CTCGGGAACT 1140 CTGCCTTCGA CCAAGAAGCG GTTGTTGGCG 1200 AGCAGCCGCG TAGTGAGATC TATATCTATG 1260 AGGGCATTGC CACCGCGCTC ATCAATCTCC 1320 ATGTGATCTA CGTGCAAGCA GATTACGGTG 1380 TGGGCATACG GGAAGAAGTG ATGCACTTTG 1440 TCGTTCAAGC CGAGATCGGC TTCCCCGAGC 1500 GCATCAAGCC GGGCTTGCAG ACCTACAAGC 1560 CCCCCGGCCT TCCAATAATG ACAATAATGA 1620 TATTGGTGGT AAGCCTTGTT CAGCATCTGA 1680 GACCGGAGAA GTGGTATCGC GCGTCGCTGC 1740 GGCCGCTGCA CAGGCTGCGT TTCCTGAATG 1800 CCGACTGCTG CGAGCGGCGG ATCTTCTAGA 1860 GAGTGAAACT GGCGCAGCGG GAAACTGGTA 1920 GTTGCGGGGA ATTC 1964 ·· ·· ·· ·· • · • · · • · ··· • · ·CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60 CCTTGCCÄAA TTTCGGCGAG AGAATCATGC 120 GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180 TTTGCTCACC CACCAAATCC ACAGCACTGG 240 GGTCTACCGT TGATGTGAAG GTTGAAGAAG 300 AGAAGCGCAA CGCAATGAGC CCAACTCTCA 360 TGGAGCAGGA CGCAGATGCT CGCGTGCTTG 420 CGGGCATGGA CCTGAAGGAG TATTTCCGCG 480 AGAAGATTCG TCGGGGGAGA GGCGGTTTGC 540 ATTCATTAAG CATTCTGCCG ACATGGAAGC 600 CCAGCGGCAT CAGCACCTTG TCGCCTTGCG 660 GAAACGGATG AAGGCACGAA CCCAGTTGAC 720 CAAGTAGCGT ATGCGCTCAC GCAACTGGTC 780 CGGCGCAGTG GCGGTTTTCA TGGCTTGTTA 840 GGCATCCAAG CAGCAAGCGC GTTACGCCGT 900 CGATGTTÄCG CAGCAGCAAC GA7GTTACGC 960 GTGGCTCAAG TATGGGCATC ATTCGCACAT 1020 TGCGGGCTGC TCTTGATCTT TTCGGTCGTG 1080 ATCAGCCGGA CTCCGATTAC CTCGGGAACT 1140 CTGCCTTCGA CCAAGAAGCG GTTGTTGGCG 1200 AGCAGCCGCG TAGTGAGATC TATATCTATG 1260 AGGGCATTGC CACCGCGCTC ATCAATCTCC 1320 ATGTGATCTA CGTGCAAGCA GATTACGGTG 1380 TGGGCATACG GGAAGAAGTG ATGCACTTTG 1440 TCGTTCAAGC CGAGATCGGC TTCCCCGAGC 1500 GCATCAAGCC GGGCTTGCAG ACCTACAAGC 1560 CCCCCGGCCT TCCAATAATG ACAAT And ATG 1620 TATTGGTGGT AAGCCTTGTT CAGCATCTGA 1680 GACCGGAGAA GTGGTATCGC GCGTCGCTGC 1740 GGCCGCTGCA CAGGCTGCGT TTCCTGAATG 1800 CCGACTGCTG CGAGCGGCGG ATCTTCTAGA 1860 GAGTGAAACT GGCGCAGCGG GAAACTGGTA 1920 GTTGCGGGGA ATCC 1964 · · · · · · · · • · • · • · • · · · · · -65·· ·· ·· · . Sekvencia 12-65 ·· ·· ·· ·. Sequence 12 GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60 GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC 120 GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180 AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG 240 GGTGCACGAT GAATAGCTAC GATGGCCGTT GGTCTACCGT TGATGTGAAG GTTGAAGAAG 300 GTATCGCTTG GGTCACGCTG AACCGCCCGG AGAAGCGCAA CGCAATGAGC CCAACTCTCA 360 ATCGAGAGAT GGTCGAGGTT CTGGAGGTGC TGGAGCAGGA CGCAGATGCT CGCGTGCTTG 420 TTCTGACTGG TGCAGGCGAA TCCTGGACCG CGGGCATGGA CCTGAAGGAG TATTTCCGCG 480 AGACCGATGC TGGCCCCGAA ATTCTGCAAG AGAAGATTCG TCGCGAGCAG GGCATGAAGC 540 AGTTCCTTGA CGAGAAAAGC ATCAAGCCGG GCTTGCAGAC CTACAAGCGC TGATAAATGC 600 GCCGGGGCCC TCGCTGCGCC CCCGGCCTTC CAATAATGAC AATAATGAGG AGTGCCCAAT 660 GTTTCACGTG CCCCTGCTTA TTGGTGGTAA GCCTTGTTCA GCATCTGATG AGCGCACCTT 720 CGAGCGTCGT AGCCCGCTGA CCGGAGAAGT GGTATCGCGC GTCGCTGCTG CCAGTTTGGA 780 AGATGCGGAC GCCGCAGTGG CCGCTGCACA GGCTGCGTTT CCTGAATGGG CGGCGCTTGC 840 TCCGAGCGAA CGCCGTGCCC GACTGCTGCG AGCGGCGGAT CTTCTAGAGG ACCGTTCTTC 900 CGAGTTCACC GCCGCAGCGA GTGAAACTGG CGCAGCGGGA AACTGGTATG GGTTTAACGT 960 TTACCTGGCG GCGGGCATGT TGCGGGGAAT TC 992 ·· ··GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT 60 GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC 120 GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT 180 AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG 240 GGTGCACGAT GAATAGCTAC GATGGCCGTT GGTCTACCGT TGATGTGAAG GTTGAAGAAG 300 GTATCGCTTG GGTCACGCTG AACCGCCCGG AGAAGCGCAA CGCAATGAGC CCAACTCTCA 360 ATCGAGAGAT GGTCGAGGTT CTGGAGGTGC TGGAGCAGGA CGCAGATGCT CGCGTGCTTG 420 TTCTGACTGG TGCAGGCGAA TCCTGGACCG CGGGCATGGA CCTGAAGGAG TATTTCCGCG 480 AGACCGATGC TGGCCCCGAA ATTCTGCAAG AGAAGATTCG TCGCGAGCAG GGCATGAAGC 540 AGTTCCTTGA CGAGAAAAGC ATCAAGCCGG GCTTGCAGAC CTACAAGCGC TGATAAATGC 600 GCCGGGGCCC TCGCTGCGCC CCCGGCCTTC CAATAATGAC AATAATGAGG AGTGCCCAAT 660 GTTTCACGTG CCCCTGCTTA TTGGTGGTAA GCCTTGTTCA GCATCTGATG AGCGCACCTT 720 CGAGCGTCGT AGCCCGCTGA CCGGAGAAGT GGTATCGCGC GTCGCTGCTG CCAGTTTGGA 780 AGATGCGGAC GCCGCAGTGG CCGCTGCACA GGCTGCGTTT CCTGAATGGG CGGCGCTTGC 840 TCCGAGCGAA CGCCGTGCCC GACTGCTGCG AGCGGCGGAT CTTCTAGAGG ACCGTTCTTC 900 CGAGTTCACC GCCGCAGCGA GTGAAACTGG CGCAGCGGGA AACTGGTATG GGTTTAACGT 960 TTACCTGGCG GCGGGCATGT · TC 992 · · -66··· • · ·· ·· • · · • · ··· • · · · • · · · • · ··-66 ··· • ················· Sekvencia 13Sequence 13 GAATTCCAAT AATGACAATA ATGAGGAGTG CCCAATGTTT CACGTGCCCC TGCTTATTGG 60 TGGTAAGCCT TGTTCAGCAT CTGATGAGCG CACCTTCGAG CGTCGTAGCC CGCTGACCGG 120 » AGAAGTGGTA TCGCGCGTCG CTGCTGCCAG TTTGGAAGAT GCGGACGCCG CAGTGGCCGC 180GAATTCCAAT AATGACAATA ATGAGGAGTG CCCAATGTTT CACGTGCCCC TGCTTATTGG 60 TGGTAAGCCT TGTTCAGCAT CTGATGAGCG CACCTTCGAG CGTCGTAGCC CGCTGACCGG 120 » TGCACAGGCT GCGTTTCCTG AATGGGCGGC GCTTGCTCCG AGCGAACGCC GTGCCCGACT 240 GCTGCGAGCG GCGGATCTTC TAGAGGACCG TTCTTCCGAG TTCACCGCCG CAGCGAGTGA 300 * AACTGGCGCA GCGGGAAACT GGTATGGGTT TAACGTTTAC CTGGCGGCGG GCATGTTGCG 360TGCACAGGCT GCGTTTCCTG AATGGGCGGC GCTTGCTCCG AGCGAACGCC GTGCCCGACT 240 GCTGCGAGCG GCGGATCTTC TAGAGGACCG TTCTTCCGAG TTCACCGCCG GGAAGCCGCG GCCATGACCA CACAGATTCA GGGCGATGTC ATTCCGTCCA ATGTGCCCGG 420 TAGCTTTGCC ATGGCGGTTC GACAGCCATG TGGCGTGGTG CTCGGTATTG CGCCTTGGAA 480 TGCTCCGGTA ATCCTTGGCG TACGGGCTGT TGCGATGCCG TTGGCATGCG GCAATACCGT 540 GGTGTTGAAA AGCTCTGAGC TGAGTCCCTT TACCCATCGC CTGATTGGTC AGGTGTTGCA 600 TGATGCTGGT CTGGGGGATG GCGTGGTGAA TGTCATCAGC AATGCCCCGC AAGACGCTCC 660 TGCGGTGGTG GAGCGACTGA TTGCAAATCC TGCGGTACGT CGAGTGAACT TCACCGGTTC 720 GACCCACGTT GGACGGATCA TTGGTGAGCT GTCTGCGCGT CATCTGAAGC CTGCTGTGCT 780 GGAATTAGGT GGTAAGGCTC CGTTCTTGGT CTTGGACGAT GCCGACCTCG ATGCGGCGGT 840 CGAAGCGGCG GCCTTTGGTG CCTACTTCAA TCAGGGTCAA ATCTGCATGT CCACTGAGCG 900 TCTGATTGTG ACAGCAGTCG CAGACGCCTT TGTTGAAAAG CTGGCGAGGA AGGTCGCCAC 960 ACTGCGTGCT GGCGATCCTA ATGATCCGCA ATCGGTCTTG GGTTCGTTGA TTGATGCCAÄ 1020 TGCAGGTCAA CGCATCCAGG TTCTGGTCGA TGATGCGCTC GGGGACAGCA AGCGAACCGG 1080 AATTGCCAGC TGGGGCGCCC TCTGGTAAGG TTGGGAAGCC CTGCAAAGTA AACTGGATGG 1140 CTTTCTTGCC GCCAAGGATC TGATGGCGCA GGGGATCAAG ATCTGATCAA GAGACAGGAT 1200 GAGGATCGTT TCGCATGATT GAACAAGATG GATTGCACGC AGGTTCTCCG GCCGCTTGGG 1260 TGGAGAGGCT ATTCGGCTAT GACTGGGCAC AACAGACAAT CGGCTGCTCT GATGCCGCCG 1320 TGTTCCGGCT GTCAGCGCAG GGGCGCCCGG TTCTTTTTGT CAAGACCGAC CTGTCCGGTG 1380 CCCTGAATGA ACTGCAGGAC GAGGCAGCGC GGCTATCGTG GCTGGCCACG ACGGGCGTTC 1440 CTTGCGCAGC TGTGCTCGAC GTTGTCACTG AAGCGGGAAG GGACTGGCTG CTATTGGGCG 1500 AAGTGCCGGG GCAGGATCTC CTGTCATCTC ACCTTGCTCC TGCCGAGAAA GTATCCATCA 1560 TGGCTGATGC AATGCGGCGG CTGCATACGC TTGATCCGGC TACCTGCCCA TTCGACCACC 1620 AAGCGAAACA TCGCATCGAG CGAGCACGTA CTCGGATGGA AGCCGGTCTT GTCGATCAGG 1680 ATGATCTGGA CGAAGAGCAT CAGGGGCTCG CGCCAGCCGA ACTGTTCGCC AGGCTCAAGG 1740 CGCGCATGCC CGACGGCGAG GATCTCGTCG TGACCCATGG CGATGCCTGC TTGCCGAATA 1800 TCATGGTGGA AAATGGCCGC TTTTCTGGAT TCATCGACTG TGGCCGGCTG GGTGTGGCGG 1860 ACCGCTATCA GGACATAGCG TTGGCTACCC GTGATATTGC TGAAGAGCTT GGCGGCGAAT 1920 GGGCTGACCG CTTCCTCGTG CTTTACGGTA TCGCCGCTCC CGATTCGCAG CGCATCGCCT 1980 TCTATCGCCT TCTTGACGAG TTCTTCTGAG CGGGACTCTG GGGTTCGAAA TGACCGACCA 2040 AGCGACGCCC GGCCCAGCGC GTCGATTCGG GCATTTGCCA TATCAATGGA CCGACTGTGC 2100 ATGACGAGGC TCAGATGCCA TTCGGTGGGG TGAAGTCCAG CGGCTACGGC AGCTTCGGCA 2160 ·· ·· • · · · • · · • ··· • · ···· ·· ·· ·· • · · • · ··· • · · · • · · · ·· ··GGAAGCCGCG GCCATGACCA CACAGATTCA GGGCGATGTC ATTCCGTCCA ATGTGCCCGG 420 TAGCTTTGCC ATGGCGGTTC GACAGCCATG TGGCGTGGTG CTCGGTATTG CGCCTTGGAA 480 TGCTCCGGTA ATCCTTGGCG TACGGGCTGT TGCGATGCCG TTGGCATGCG GCAATACCGT 540 GGTGTTGAAA AGCTCTGAGC TGAGTCCCTT TACCCATCGC CTGATTGGTC AGGTGTTGCA 600 TGATGCTGGT CTGGGGGATG GCGTGGTGAA TGTCATCAGC AATGCCCCGC AAGACGCTCC 660 TGCGGTGGTG GAGCGACTGA TTGCAAATCC TGCGGTACGT CGAGTGAACT TCACCGGTTC 720 GACCCACGTT GGACGGATCA TTGGTGAGCT GTCTGCGCGT CATCTGAAGC CTGCTGTGCT 780 GGAATTAGGT GGTAAGGCTC CGTTCTTGGT CTTGGACGAT GCCGACCTCG ATGCGGCGGT 840 CGAAGCGGCG GCCTTTGGTG CCTACTTCAA TCAGGGTCAA ATCTGCATGT CCACTGAGCG 900 TCTGATTGTG ACAGCAGTCG CAGACGCCTT TGTTGAAAAG CTGGCGAGGA AGGTCGCCAC 960 ACTGCGTGCT GGCGATCCTA ATGATCCGCA ATCGGTCTTG GGTTCGTTGA TTGATGCCAÄ 1020 TGCAGGTCAA CGCATCCAGG TTCTGGTCGA TGATGCGCTC GGGGACAGCA AGCGAACCGG 1080 AATTGCCAGC TGGGGCGCCC TCTGGTAAGG TTGGGAAGCC CTGCAAAGTA AACTGGATGG 1140 CTTTCTTGCC GCCAAGGATC TGATGGCGCA GGGGATCAAG ATCTGATCAA GAGACAGGAT 1200 GAGGATCGTT TCGC ATGATT GAACAAGATG GATTGCACGC AGGTTCTCCG GCCGCTTGGG 1260 TGGAGAGGCT ATTCGGCTAT GACTGGGCAC AACAGACAAT CGGCTGCTCT GATGCCGCCG 1320 TGTTCCGGCT GTCAGCGCAG GGGCGCCCGG TTCTTTTTGT CAAGACCGAC CTGTCCGGTG 1380 CCCTGAATGA ACTGCAGGAC GAGGCAGCGC GGCTATCGTG GCTGGCCACG ACGGGCGTTC 1440 CTTGCGCAGC TGTGCTCGAC GTTGTCACTG AAGCGGGAAG GGACTGGCTG CTATTGGGCG 1500 AAGTGCCGGG GCAGGATCTC CTGTCATCTC ACCTTGCTCC TGCCGAGAAA GTATCCATCA 1560 TGGCTGATGC AATGCGGCGG CTGCATACGC TTGATCCGGC TACCTGCCCA TTCGACCACC 1620 AAGCGAAACA TCGCATCGAG CGAGCACGTA CTCGGATGGA AGCCGGTCTT GTCGATCAGG 1680 ATGATCTGGA CGAAGAGCAT CAGGGGCTCG CGCCAGCCGA ACTGTTCGCC AGGCTCAAGG 1740 CGCGCATGCC CGACGGCGAG GATCTCGTCG TGACCCATGG CGATGCCTGC TTGCCGAATA 1800 TCATGGTGGA AAATGGCCGC TTTTCTGGAT TCATCGACTG TGGCCGGCTG GGTGTGGCGG 1860 ACCGCTATCA GGACATAGCG TTGGCTACCC GTGATATTGC TGAAGAGCTT GGCGGCGAAT 1920 GGGCTGACCG CTTCCTCGTG CTTTACGGTA TCGCCGCTCC CGATTCGCAG CGCATCGCCT 1980 TCTATCGCCT TCTTGACGAG TTCTTCTGAG CGGGACTCTG GGGTTCGAAA TGACCGACCA 2040 AGCGACGCCC GGCCCAGCGC GTCGATTCGG GCATTTGCCA TATCAATGGA CCGACTGTGC 2100 ATGACGAGGC TCAGATGCCA TTCGGTGGGG TGAAGTCCAG CGGCTACGGC AGCTTCGGCA 2160 · · · · · · · · · · · · · -67GTCGAGCATC GATTGAGCAC TTTACCCAGC TGCGCTGGCT GACCATTCAG AATGGCCCGC 2220 GGCACTATCC AATCTAAATC GATCTTCGGG CGCCGCGGGC ATCATGCCCG CGGCGCTCGC 2280 CTCATTTCAA TCTCTAACTT GATAAAAACA GAGCTGTTCT CCGGTCTTGG TGGATCAAGG 2340 CCAGTCGCGG AGAGTCTCGA AGAGGAGAGT ACAGTGAACG CCGAGTCCAC ATTGCAACCG 2400 CAGGCATCAT CATGCTCTGC TCAGCCACGC TACCGCAGTG TGTCGATTGG TCATCCTCCG 2460 GTTGAGGTTA CGCAAGACGC TGGAGGTATT GTCCGGATGC GTTCTCTCGA GGCGCTTCTT 2520 CCCTTCCCGG GTGGAATTC 2539 • · • · · • · ·-67GTCGAGCATC GATTGAGCAC TTTACCCAGC TGCGCTGGCT GACCATTCAG AATGGCCCGC 2220 GGCACTATCC AATCTAAATC GATCTTCGGG CGCCGCGGGC ATCATGCCCG CGGCGCTCGC 2280 CTCATTTCAA TCTCTAACTT GATAAAAACA GAGCTGTTCT CCGGTCTTGG TGGATCAAGG 2340 CCAGTCGCGG AGAGTCTCGA AGAGGAGAGT ACAGTGAACG CCGAGTCCAC ATTGCAACCG 2400 CAGGCATCAT CATGCTCTGC TCAGCCACGC TACCGCAGTG TGTCGATTGG TCATCCTCCG 2460 GTTGAGGTTA CGCAAGACGC TGGAGGTATT GTCCGGATGC GTTCTCTCGA GGCGCTTCTT 2520 CCCTTCCCGG GTGGAATTC 2539 • · • · · • · · -68• · · • · ··· • · · · · • · · · · ·· ··-68 · · · · · · · · · · · · · · · · · · · · · · · · · · · Sekvencia 14Sequence 14 GAATTCCAAT AATGACAATA ATGAGGAGTG TGGTAAGCCT TGTTCAGCAT CTGATGAGCG AGAAGTGGTA TCGCGCGTCG CTGCTGCCAG TGCACAGGCT GCGTTTCCTG AATGGGCGGC GCTGCGAGCG GCGGATCTTC TAGAGGACCG • AACTGGCGCA GCGGGAAACT GGTATGGGTTGAATTCCAAT AATGACAATA ATGAGGAGTG TGGTAAGCCT TGTTCAGCAT CTGATGAGCG AGAAGTGGTA TCGCGCGTCG CTGCTGCCAG TGCACAGGCT GCGTTTCCTG AATGGGCGGC GCTGCGAGCT GCGGGATCTC GGAAGCCGCG GCCATGACCA CACAGATTCA TAGCTTTGCC ATGGCGGTTC GACAGCCATG TGCTCCGGTA ATCCTTGGCG TACGGGCTGT GGTGTTGAAA AGCTCTGAGC TGAGTCCCTT TGATGCTGGT CTGGGGGATG GCGTGGTGAA TGCGGTGGTG GAGCGACTGA TTGCAAATCC GACCCACGTT GGACGGATCA TTGGTGAGCT GGAATTAGGT GGTAAGGCTC CGTTCTTGGT CGAAGCGGCG GCCTTTGGTG CCTACTTCAA TCTGATTGTG ACAGCAGTCG CAGACGCCTT ACTGCGTGCT GGCGATCCTA ATGATCCGCA TGCAGGTCAA CGCATCCAGG TGGGGAGAGG CTGTTGTAAT TCATTAAGCA TTCTGCCGAC CTGAATCGCC AGCGGCATCA GCACCTTGTC ACACCGTGGA AACGGATGAA GGCACGAACC CTGTAATGCA AGTAGCGTAT GCGCTCACGC GGTGGTAACG GCGCAGTGGC GGTTTTCATG ATGCCTCGGG CATCCAAGCA GCAAGCGCGT AGCAGCAACG ATGTTACGCA GCAGCAACGA AAAGTTAGGT GGCTCAAGTA TGGGCATCA? CAAATCCATG CGGGCTGCTC TTGATCTTTT CTCCCAACAT CAGCCGGACT CCGATTACCT CGCGCTTGCT GCCTTCGACC AAGAAGCGGT CAGGTTTGAG CAGCCGCGTA GTGAGATCTA CCGGAGGCAG GGCATTGCCA CCGCGCTCAT TGGTGCTTAT GTGATCTACG TGCAAGCAGA TACAAAGTTG GGCATACGGG AAGAAGTGAT CTAACAATTC GTTCAAGCCG AGATCGGCTT TTTGCCATAT CAATGGACCG ACTGTGCATG AGTCCAGCGG CTACGGCAGC TTCGGCÄGTCGGAAGCCGCG GCCATGACCA CACAGATTCA TAGCTTTGCC ATGGCGGTTC GACAGCCATG TGCTCCGGTA ATCCTTGGCG TACGGGCTGT GGTGTTGAAA AGCTCTGAGC TGAGTCCCTT TGATGCTGGT CTGGGGGATG GCGTGGTGAA TGCGGTGGTG GAGCGACTGA TTGCAAATCC GACCCACGTT GGACGGATCA TTGGTGAGCT GGAATTAGGT GGTAAGGCTC CGTTCTTGGT CGAAGCGGCG GCCTTTGGTG CCTACTTCAA TCTGATTGTG ACAGCAGTCG CAGACGCCTT ACTGCGTGCT GGCGATCCTA ATGATCCGCA TGCAGGTCAA CGCATCCAGG TGGGGAGAGG CTGTTGTAAT TCATTAAGCA TTCTGCCGAC CTGAATCGCC AGCGGCATCA GCACCTTGTC ACACCGTGGA AACGGATGAA GGCACGAACC CTGTAATGCA AGTAGCGTAT GCGCTCACGC GGTGGTAACG GCGCAGTGGC GGTTTTCATG ATGCCTCGGG CATCCAAGA GCAAGCGCGT AGCAGCAACG ATGTTACGCA GCAGCAACGA AAAGTTAGGT GGCTCAAGTA TGGGCATCA CAAATCCATG CGGGCTGCTC TTGATCTTTT CTCCCAACAT CAGCCGGACT CCGATTACCT CGCGCTTGCT GCCTTCGACC AAGAAGCGGT CAGGTTTGAG CAGCCGCGTA GTGAGATCTA CCGGAGGCAG GGCATTGCCA CCGCGCTCAT TGGTGCTTAT GTGATCTACG TGCAAGCAGA TACAAAGTTG GGCATACGGG AAGAAGTGAT CTAACAATTC GTTCAAGCCG AGATCGGCTT TTTGCCATAT CAATGGACCG ACTGTGCATG AGTCCAGCGG CTACGGCAGC TTCGGCÄGTC CCCAATGTTT CACGTGCCCC TGCTTATTGG 60 CACCTTCGAG CGTCGTAGCC CGCTGACCGG 120 TTTGGAAGAT GCGGACGCCG CAGTGGCCGC 180 GCTTGCTCCG AGCGAACGCC GTGCCCGACT 240 TTCTTCCGAG TTCACCGCCG CAGCGAGTGA 300 TAACGTTTAC CTGGCGGCGG GCATGTTGCG 360 GGGCGATGTC ATTCCGTCCA ATGTGCCCGG 420 TGGCGTGGTG CTCGGTATTG CGCCTTGGAA 480 TGCGATGCCG TTGGCATGCG GCAATACCGT 540 TACCCATCGC CTGATTGGTC AGGTGTTGCA 600 TGTCATCAGC AATGCCCCGC AAGACGCTCC 660 TGCGGTACGT CGAGTGAACT TCACCGGTTC 720 GTCTGCGCGT CATCTGAAGC CTGCTGTGCT 780 CTTGGACGAT GCCGACCTCG ATGCGGCGGT 840 TCAGGGTCAA ATCTGCATGT CCACTGAGCG 900 TGTTGAAAAG CTGGCGAGGA AGGTCGCCAC 960 ATCGGTCTTG GGTTCGTTGA TTGATGCCAÄ 1020 CGGTTTGCGT ATTGGGCGCA TGCATAAAAA 1080 ATGGAAGCCA TCACAAACGG CATGATGAAC 1140 GCCTTGCGTA TAATATTTGC CCATGGACGC 1200 CAGTTGACAT AAGCCTGTTC GGTTCGTAAA 1260 AACTGGTCCA GAACCTTGAC CGAACGCAGC 1320 GCTTGTTATG ACTGTTTTTT TGTACAGTCT 1380 TACGCCGTGG GTCGATGTTT GATGTTATGG 1440 TGTTACGCAG CAGGGCAGTC GCCCTAAAAC 1500 TCGCACATGT AGGCTCGGCC CTGACCAAGT 1560 CGGTCGTGAG TTCGGAGACG TAGCCACCTA 1620 CGGGAACTTG CTCCGTAGTA AGACATTCAT 1680 TGTTGGCGCT CTCGCGGCTT ACGTTCTGCC 1740 TATCTATGAT CTCGCAGTCT CCGGCGAGCA 1800 CAATCTCCTC AAGCATGAGG CCAACGCGCT 1860 TTACGGTGAC GATCCCGCAG TGGCTCTCTA 1920 GCACTTTGAT ATCGACCCAA G7ACCGCCAC 1980 CCCAATTGGC CCAGCGCGTC GATTCGGGCA 2040 ACGAGGCTCA GATGCCATTC GGTGGGGTGA 2100 GAGCATCGAT TGAGCACTTT ACCCAGCTGC 2160CCCAATGTTT CACGTGCCCC TGCTTATTGG 60 CACCTTCGAG CGTCGTAGCC CGCTGACCGG 120 TTTGGAAGAT GCGGACGCCG CAGTGGCCGC 180 GCTTGCTCCG AGCGAACGCC GTGCCCGACT 240 TTCTTCCGAG TTCACCGCCG CAGCGAGTGA 300 TAACGTTTAC CTGGCGGCGG GCATGTTGCG 360 GGGCGATGTC ATTCCGTCCA ATGTGCCCGG 420 TGGCGTGGTG CTCGGTATTG CGCCTTGGAA 480 TGCGATGCCG TTGGCATGCG GCAATACCGT 540 TACCCATCGC CTGATTGGTC AGGTGTTGCA 600 TGTCATCAGC AATGCCCCGC AAGACGCTCC 660 TGCGGTACGT CGAGTGAACT TCACCGGTTC 720 GTCTGCGCGT CATCTGAAGC CTGCTGTGCT 780 CTTGGACGAT GCCGACCTCG ATGCGGCGGT 840 TCAGGGTCAA ATCTGCATGT CCACTGAGCG 900 TGTTGAAAAG CTGGCGAGGA AGGTCGCCAC 960 ATCGGTCTTG GGTTCGTTGA TTGATGCCAÄ 1020 CGGTTTGCGT ATTGGGCGCA TGCATAAAAA 1080 ATGGAAGCCA TCACAAACGG CATGATGAAC 1140 GCCTTGCGTA TAATATTTGC CCATGGACGC 1200 CAGTTGACAT AAGCCTGTTC GGTTCGTAAA 1260 AACTGGTCCA GAACCTTGAC CGAACGCAGC 1320 GCTTGTTATG ACTGTTTTTT TGTACAGTCT 1380 TACGCCGTGG GTCGATGTTT GATGTTATGG 1440 TGTTACGCAG CAGGGCAGTC GCCCTAAAAC 1500 TCGCACATGT AGGCTCGGCC CTGACCAAGT 1560 CGGTCGTGAG TTCGGAGACG TAGCCA CCTA 1620 CGGGAACTTG CTCCGTAGTA AGACATTCAT 1680 TGTTGGCGCT CTCGCGGCTT ACGTTCTGCC 1740 TATCTATGAT CTCGCAGTCT CCGGCGAGCA 1800 CAATCTCCTC AAGCATGAGG CCAACGCGCT 1860 TTACGGTGAC GATCCCGCAG TGGCTCTCTA 1920 GCACTTTGAT ATCGACCCAA G7ACCGCCAC 1980 CCCAATTGGC CCAGCGCGTC GATTCGGGCA 2040 ACGAGGCTCA GATGCCATTC GGTGGGGTGA 2100 GAGCATCGAT TGAGCACTTT ACCCAGCTGC 2160 I ·· • · • · • · · · • · · • ··· • · ··· · ·· ·· ·· • · · • · ··· • · · · · • · · · ·· ··I · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · -69GCTGGCTGAC CATTCAGAAT GGCCCGCGGC ACTATCCAAT CTAAATCGAT CTTCGGGCGC 2220 CGCGGGCATC ATGCCCGCGG CGCTCGCCTC ATTTCAATCT CTAACTTGAT AAAAACAGAG 2280 CTGTTCTCCG GTCTTGGTGG ATCAAGGCCA GTCGCGGAGA GTCTCGAAGA GGAGAGTACA 2340 GTGAACGCCG AGTCCACATT GCAACCGCAG GCATCATCAT GCTCTGCTCA GCCACGCTAC 2400 CGCAGTGTGT CGATTGGTCA TCCTCCGGTT GAGGTTACGC AAGACGCTGG AGGTATTGTC 2460 CGGATGCGTT CTCTCGAGGC GCTTCTTCCC TTCCCGGGTG GAATTC 2506 • · • · • · • ·-69GCTGGCTGAC CATTCAGAAT GGCCCGCGGC ACTATCCAAT CTAAATCGAT CTTCGGGCGC 2220 CGCGGGCATC ATGCCCGCGG CGCTCGCCTC ATTTCAATCT CTAACTTGAT AAAAACAGAG 2280 CTGTTCTCCG GTCTTGGTGG ATCAAGGCCA GTCGCGGAGA GTCTCGAAGA GGAGAGTACA 2340 GTGAACGCCG AGTCCACATT GCAACCGCAG GCATCATCAT GCTCTGCTCA GCCACGCTAC 2400 CGCAGTGTGT CGATTGGTCA TCCTCCGGTT GAGGTTACGC AAGACGCTGG AGGTATTGTC 2460 CGGATGCGTT CTCTCGAGGC GCTTCTTCCC TTCCCGGGTG GAATTC 2506 • · • · • · • · -70··· · · ···· • · • · • ··· • · « • · « ·· ··-70 ··· · · ···· · · · · · · Sekvencia 15Sequence 15 GAATTCCAAT AATGACAATA ATGAGGAGTG TGGTAAGCCT TGTTCAGCAT CTGATGAGCG AGAAGTGGTA TCGCGCGTCG CTGCTGCCAG TGCACAGGCT GCGTTTCCTG AATGGGCGGC GCTGCGAGCG GCGGATCTTC TAGAGGACCG AACTGGCGCA GCGGGAAACT GGTATGGGTT GGAAGCCGCG GCCATGACCA CACAGATTCA TAGCTTTGCC ATGGCGGTTC GACAGCCATG TGCTCCGGTA ATCCTTGGCG TACGGGCTGT GGTGTTGAAA AGCTCTGAGC TGAGTCCCTT TGATGCTGGT CTGGGGGATG GCGTGGTGAA TGCGGTGGTG GAGCGACTGA TTGCAAATCC GACCCACGTT GGACGGATCA TTGGTGAGCT GGAATTAGGT GGTAAGGCTC CGTTCTTGGT CGAAGCGGCG GCCTTTGGTG CCTACTTCAA TCTGATTGTG ACAGCAGTCG CAGACGCCTT ACTGCGTGCT GGCGATCCTA ATGATCCGCA TGCAGGTCAA CGCATCCAGG TTCTGGTCGA TTGGCCCAGC GCGTCGATTC GGGCATTTGC GCTCAGATGC CATTCGGTGG GGTGAAGTCC TCGATTGAGC ACTTTACCCA GCTGCGCTGG CCAATCTAAA TCGATCTTCG GGCGCCGCGG AATCTCTAAC TTGATAAAAA CAGAGCTGTT GGAGAGTCTC GAAGAGGAGA GTACAGTGAA ATCATGCTCT GCTCAGCCAC GCTACCGCAG TACGCAAGAC GCTGGAGGTA TTGTCCGGAT GGGTGGAATT CGAATTCCAAT AATGACAATA ATGAGGAGTG TGGTAAGCCT TGTTCAGCAT CTGATGAGCG AGAAGTGGTA TCGCGCGTCG CTGCTGCCAG TGCACAGGCT GCGTTTCCTG AATGGGCGGC GCTGCGAGCG GCGGATCTTC TAGAGGACCG AACTGGCGCA GCGGGAAACT GGTATGGGTT GGAAGCCGCG GCCATGACCA CACAGATTCA TAGCTTTGCC ATGGCGGTTC GACAGCCATG TGCTCCGGTA ATCCTTGGCG TACGGGCTGT GGTGTTGAAA AGCTCTGAGC TGAGTCCCTT TGATGCTGGT CTGGGGGATG GCGTGGTGAA TGCGGTGGTG GAGCGACTGA TTGCAAATCC GACCCACGTT GGACGGATCA TTGGTGAGCT GGAATTAGGT GGTAAGGCTC CGTTCTTGGT CGAAGCGGCG GCCTTTGGTG CCTACTTCAA TCTGATTGTG ACAGCAGTCG CAGACGCCTT ACTGCGTGCT GGCGATCCTA ATGATCCGCA TGCAGGTCAA CGCATCCAGG TTCTGGTCGA TTGGCCCAGC GCGTCGATTC GGGCATTTGC GCTCAGATGC CATTCGGTGG GGTGAAGTCC TCGATTGAGC ACTTTACCCA GCTGCGCTGG CCAATCTAAA TCGATCTTCG GGCGCCGCGG AATCTCTAAC TTGATAAAAA CAGAGCTGTT GGAGAGTCTC GAAGAGGAGA GTACAGTGAA ATCATGCTCT GCTCAGCCAC GCTACCGCAG TACGCAAGAC GCTGGAGGTA TTGTCCGGAT GGGTGGAATT C CCCAATGTTT CACGTGCCCC TGCTTATTGG 60 CACCTTCGAG CGTCGTAGCC CGCTGACCGG 120 TTTGGAAGAT GCGGACGCCG CAGTGGCCGC 180 GCTTGCTCCG AGCGAACGCC GTGCCCGACT 240 TTCTTCCGAG TTCACCGCCG CAGCGAGTGA 300 TAACGTTTAC CTGGCGGCGG GCATGTTGCG 360 GGGCGATGTC ATTCCGTCCA ATGTGCCCGG 420 TGGCGTGGTG CTCGGTATTG CGCCTTGGAA 480 TGCGATGCCG TTGGCATGCG GCAATACCGT 540 TACCCATCGC CTGATTGGTC AGGTGTTGCA 600 TGTCATCAGC AATGCCCCGC AAGACGCTCC 660 TGCGGTACGT CGAGTGAACT TCACCGGTTC 720 GTCTGCGCGT CATCTGAAGC CTGCTGTGCT 780 CTTGGACGAT GCCGACCTCG ATGCGGCGGT 840 TCAGGGTCAA ATCTGCATGT CCACTGAGCG 900 TGTTGAAAAG CTGGCGAGGA AGGTCGCCAC 960 ATCGGTCTTG GGTTCGTTGA TTGATGCCAA 1020 TGATGCGCTC GCAAAAGGCG CGCAATGGAÄ 1080 CATATCAATG GACCGACTGT GCATGACGAG 1140 AGCGGCTACG GCAGCTTCGG CAGTCGAGCA 1200 CTGACCATTC AGAATGGCCC GCGGCACTAT 1260 GCATCATGCC CGCGGCGCTC GCCTCATTTC 1320 CTCCGGTCTT GGTGGATCAA GGCCAGTCGC 1380 CGCCGAGTCC ACATTGCAAC CGCAGGCATC 1440 TGTGTCGATT GGTCATCCTC CGGTTGAGGT 1500 GCGTTCTCTC GAGGCGCTTC TTCCCTTCCC 1560CCCAATGTTT CACGTGCCCC TGCTTATTGG 60 CACCTTCGAG CGTCGTAGCC CGCTGACCGG 120 TTTGGAAGAT GCGGACGCCG CAGTGGCCGC 180 GCTTGCTCCG AGCGAACGCC GTGCCCGACT 240 TTCTTCCGAG TTCACCGCCG CAGCGAGTGA 300 TAACGTTTAC CTGGCGGCGG GCATGTTGCG 360 GGGCGATGTC ATTCCGTCCA ATGTGCCCGG 420 TGGCGTGGTG CTCGGTATTG CGCCTTGGAA 480 TGCGATGCCG TTGGCATGCG GCAATACCGT 540 TACCCATCGC CTGATTGGTC AGGTGTTGCA 600 TGTCATCAGC AATGCCCCGC AAGACGCTCC 660 TGCGGTACGT CGAGTGAACT TCACCGGTTC 720 GTCTGCGCGT CATCTGAAGC CTGCTGTGCT 780 CTTGGACGAT GCCGACCTCG ATGCGGCGGT 840 TCAGGGTCAA ATCTGCATGT CCACTGAGCG 900 TGTTGAAAAG CTGGCGAGGA AGGTCGCCAC 960 ATCGGTCTTG GGTTCGTTGA TTGATGCCAA 1020 TGATGCGCTC GCAAAAGGCG CGCAATGGAÄ 1080 CATATCAATG GACCGACTGT GCATGACGAG 1140 AGCGGCTACG GCAGCTTCGG CAGTCGAGCA 1200 CTGACCATTC AGAATGGCCC GCGGCACTAT 1260 GCATCATGCC CGCGGCGCTC GCCTCATTTC 1320 CTCCGGTCTT GGTGGATCAA GGCCAGTCGC 1380 CGCCGAGTCC ACATTGCAAC CGCAGGCATC 1440 TGTGTCGATT GGTCATCCTC CGGTTGAGGT 1500 GCGTTCTCTC GAGGCGCTTC TTCCCTTCCC 1560 15711571 II -71 ·· ·· • · · · • · · • ··· · • · ···· ·· ·· ·· • · · • · ··· • · · · • · · · ·· ··-71 ·· ······························· Sekvencia 16 Sequence 16 GAATTCCGCG GTCGGCGAAA GTTGATGCGC GTGACGAGGC CACACTGTGA GTTGGTCAGG GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT GCCTATCGAC TTAGGGGTAA AGGTCGCTCG ACAAATGGTC GATAGCGTAC TCGCAGGCTC GCTCCCGCGG CACATTGGCT TGTACAGCGG GCAGCGCATT TGCGGCACAG GCTTCGAACT AGGCGCTGAT CACGTGCTGT GTGTCGCGGC GTATACACAC CGGGGCGGGT TCCGCCTCGG GGAGGCATTG TTTGATCCTG CTCCAGGACT GACAGCAAGC GAACCGGAAT TGCCAGCTGG CAAAGTAAAC TGGATGGCTT TCTTGCCGCC TGATCAAGAG ACAGGATGAG GATCGTTTCG TTCTCCGGCC GCTTGGGTGG AGAGGCTATT CTGCTCTGAT GCCGCCGTGT TCCGGCTGTC GACCGACCTG TCCGGTGCCC TGAATGAACT GGCCACGACG GGCGTTCCTT GCGCAGCTGT CTGGCTGCTA TTGGGCGAAG TGCCGGGGCA CGAGAAAGTA TCCATCATGG CTGATGCAAT CTGCCCATTC GACCACCAAG CGAAACATCG CGGTCTTGTC GATCAGGATG ATCTGGACGA GTTCGCCAGG CTCAAGGCGC GCATGCCCGA TGCCTGCTTG CCGAÄTATCA TGGTGGAAAA CCGGCTGGGT GTGGCGGACC GCTATCAGGA AGAGCTTGGC GGCGAATGGG CTGACCGCTT TTCGCAGCGC ATCGCCTTCT ATCGCCTTCT TTCGAAATGA CCGACCAAGC GACGCCCATT AGAGATCGTG GCTGTTACGG ATGAACAGTT TGAACTGCCT CGGAAGGCAA AATTGTTGAT TGAAGCCCTT TCCCGATTGA AGCCTGTTCA CTGTGCCGTA GTGGACGGCG CCGCGGCGGC GCCGGTCTTG GCTAGGATAC TGGCTACCTC GCTCGGCCCT GCGCCCGCGA TTCGCCTGCT TATCGACCTC TTTGAGATAA ACGAGGCGCA ATTGGGTATT GAGCACTCAA AACTTAATAT GCTTGCCGCG ACCGGATTGC GTCTCTGCATGAATTCCGCG GTCGGCGAAA GTTGATGCGC GTGACGAGGC CACACTGTGA GTTGGTCAGG GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT GCCTATCGAC TTAGGGGTAA AGGTCGCTCG ACAAATGGTC GATAGCGTAC TCGCAGGCTC GCTCCCGCGG CACATTGGCT TGTACAGCGG GCAGCGCATT TGCGGCACAG GCTTCGAACT AGGCGCTGAT CACGTGCTGT GTGTCGCGGC GTATACACAC CGGGGCGGGT TCCGCCTCGG GGAGGCATTG TTTGATCCTG CTCCAGGACT GACAGCAAGC GAACCGGAAT TGCCAGCTGG CAAAGTAAAC TGGATGGCTT TCTTGCCGCC TGATCAAGAG ACAGGATGAG GATCGTTTCG TTCTCCGGCC GCTTGGGTGG AGAGGCTATT CTGCTCTGAT GCCGCCGTGT TCCGGCTGTC GACCGACCTG TCCGGTGCCC TGAATGAACT GGCCACGACG GGCGTTCCTT GCGCAGCTGT CTGGCTGCTA TTGGGCGAAG TGCCGGGGCA CGAGAAAGTA TCCATCATGG CTGATGCAAT CTGCCCATTC GACCACCAAG CGAAACATCG CGGTCTTGTC GATCAGGATG ATCTGGACGA GTTCGCCAGG CTCAAGGCGC GCATGCCCGA TGCCTGCTTG CCGAÄTATCA TGGTGGAAAA CCGGCTGGGT GTGGCGGACC GCTATCAGGA AGAGCTTGGC GGCGAATGGG CTGACCGCTT TTCGCAGCGC ATCGCCTTCT ATCGCCTTCT TTCGAAATGA CCGACCAAGC GACGCCCATT AGAGATCGTG GCTGTTACGG ATGAACAGTT TGAACTGCCT CGGAAGGCAA AATTGTTGAT TGAAGCCCTT TCCCGATTGA AGCCTGTTCA CTGTGCCGT A GTGGACGGCG CCGCGGCGGC GCCGGTCTTG GCTAGGATAC TGGCTACCTC GCTCGGCCCT GCGCCCGCGA TTCGCCTGCT TATCGACCTC TTTGAGATAA ACGAGGCGCA ATTGGGTTT TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GGGGGCTTAC TCGGCGTTTT CCGACACTGC 120 TGATTGCGGG GGTGCCCTGT CGCTGGTGTC 180 CGAAGTTCTG ATGCGTGCGT CGCTTGAACC 240 TATGGCTCAA GCAAGCTTTG ATGCTTACCT 300 TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT 360 GCTTCGGCAG GCCGGCGAGC AGATTTCCCA 420 AGAGTCCATG TCGCGTAACC CCATCGCGTC 480 TGCGCCCGTT GAGTTCAAGG ATTTTTTGTG 540 CGACATGATC GCTACCGCAG AAAACCTGGG 600 GGCGCCCTCT GGTAAGGTTG GGAAGCCCTG 660 AAGGATCTGA TGGCGCAGGG GATCAAGATC 720 CATGATTGAA CAAGATGGAT TGCACGCAGG 780 CGGCTATGAC TGGGCACAAC AGACAATCGG 840 AGCGCAGGGG CGCCCGGTTC TTTTTGTCAA 900 GCAGGACGAG GCAGCGCGGC TATCGTGGCT 960 GCTCGACGTT GTCACTGAAG CGGGAAGGGA 1020 GGATCTCCTG TCATCTCACC TTGCTCCTGC 1080 GCGGCGGCTG CATACGCTTG ATCCGGCTAC 1140 CATCGAGCGA GCACGTACTC GGATGGAAGC 1200 AGAGCATCAG GGGCTCGCGC CAGCCGAACT 1260 CGGCGAGGAT CTCGTCGTGA CCCATGGCGA 1320 TGGCCGCTTT TCTGGATTCA TCGACTGTGG 1380 CATAGCGTTG GCTACCCGTG ATATTGCTGA 1440 CCTCGTGCTT TACGGTATCG CCGCTCCCGA 1500 TGACGAGTTC TTCTGAGCGG GACTCTGGGG 1560 GAGGGCGCAA GAGGAGAAAT GGATTGACCA 1620 CGATTTAGAG GGCTACAACA GTCGAGCAAT 1680 CGTGACAGTC ATCCGCGGCC TAGCAGTCTT 1740 TTCTGGCGGG GTGCAGACTG CGGGCAACAG 1800 TTTGGTGGCT CGAGAGTCGT CTGCGACACA 1860 CGTAGTCGGG ATCGAGCCCG AGCATATGGG 1920 GCTTGCGCGT AGTGATCTTA GTTTGAGGGA 1980 GGCCGCCCAA GTTCTAGCGG TACAGCATGA 2040 TTGGGGCGGG GCCATTGCAC TTGGACACCC 2100 GACCCTCGCT CACCAATTGC AAGCTAATAA 2160 • · • · ···· ·· • · • · ··· · ·· ·· ·· • · • · ··· • · · · · • · · · ·· ··TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GGGGGCTTAC TCGGCGTTTT CCGACACTGC 120 TGATTGCGGG GGTGCCCTGT CGCTGGTGTC 180 CGAAGTTCTG ATGCGTGCGT CGCTTGAACC 240 TATGGCTCAA GCAAGCTTTG ATGCTTACCT 300 TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT 360 GCTTCGGCAG GCCGGCGAGC AGATTTCCCA 420 AGAGTCCATG TCGCGTAACC CCATCGCGTC 480 TGCGCCCGTT GAGTTCAAGG ATTTTTTGTG 540 CGACATGATC GCTACCGCAG AAAACCTGGG 600 GGCGCCCTCT GGTAAGGTTG GGAAGCCCTG 660 AAGGATCTGA TGGCGCAGGG GATCAAGATC 720 CATGATTGAA CAAGATGGAT TGCACGCAGG 780 CGGCTATGAC TGGGCACAAC AGACAATCGG 840 AGCGCAGGGG CGCCCGGTTC TTTTTGTCAA 900 GCAGGACGAG GCAGCGCGGC TATCGTGGCT 960 GCTCGACGTT GTCACTGAAG CGGGAAGGGA 1020 GGATCTCCTG TCATCTCACC TTGCTCCTGC 1080 GCGGCGGCTG CATACGCTTG ATCCGGCTAC 1140 CATCGAGCGA GCACGTACTC GGATGGAAGC 1200 AGAGCATCAG GGGCTCGCGC CAGCCGAACT 1260 CGGCGAGGAT CTCGTCGTGA CCCATGGCGA 1320 TGGCCGCTTT TCTGGATTCA TCGACTGTGG 1380 CATAGCGTTG GCTACCCGTG ATATTGCTGA 1440 CCTCGTGCTT TACGGTATCG CCGCTCCCGA 1500 TGACGAGTTC TTCTGAGCGG 1560 GAGGGCGCAA GAGGAGAAAT GGATTGA CCA 1620 CGATTTAGAG GGCTACAACA GTCGAGCAAT 1680 CGTGACAGTC ATCCGCGGCC TAGCAGTCTT 1740 TTCTGGCGGG GTGCAGACTG CGGGCAACAG 1800 TTTGGTGGCT CGAGAGTCGT CTGCGACACA 1860 CGTAGTCGGG ATCGAGCCCG AGCATATGGG 1920 GCTTGCGCGT AGTGATCTTA GTTTGAGGGA 1980 GGCCGCCCAA GTTCTAGCGG TACAGCATGA 2040 TTGGGGCGGG GCCATTGCAC TTGGACACCC 2100 GACCCTCGCT CACCAATTGC AAGCTAATAA 2160 • · • · · · • · ···· • · ··· · · · · · · · · · · · · · · · · · · · · · · · · -72CTTTCGATAT-72CTTTCGATAT AGAGAATCCCAGAGAATCCC CTATCCACTGCTATCCACTG TCGAAAATCTTCGAAAATCT TGGCAGAAAGTGGCAGAAAG TCGGGCTGATTCGGGCTGAT GAATTCGAATTC GGAATTGCCT CGGCATGCAT TGGTGGGGGA CAGGGGATGG CGGTTCTTTT 2220 CACTTCGGTT CGTCCTCTGC ACGAAGTTCG ATGATTAACA GAGTTGACCA 2280 AGCTAACGGG CATCTCCTTT GTTGCTTTGA GGTGGCGCAC GAAGGAGGGC 2340 CTGCTAAAAA CAAGAAGAAG GAACAGGGAA CATGATTAGT TTCGCTCGTA 2400 TTTAGGAGTC CAGGCTAAAC TTGCCCTTGC CTTCGCACTC GTATTATGTG 2460 TGTTACCGGC ACGGGTTTCT ACAGTGTACA TACCTTGTCA GGGTTGGTGG 2520GGAATTGCCT CGGCATGCAT TGGTGGGGGA CAGGGGATGG CGGTTCTTTT 2220 CACTTCGGTT CGTCCTCTGC ACGAAGTTCG ATGATTAACA GAGTTGACCA 2280 AGCTAACGGG CATCTCCTTT GTTGCTTTGA GGTGGCGCAC GAAGGAGGGC 2340 CTGCTAAAAA CAAGAAGAAG GAACAGGGAA CATGATTAGT TTCGCTCGTA 2400 TTTAGGAGTC CAGGCTAAAC TTGCCCTTGC CTTCGCACTC GTATTATGTG 2460 TGTTACCGGC ACGGGTTTCT ACAGTGTACA TACCTTGTCA GGGTTGGTGG 2520 2526 ··2526 ·· -73·· • · · · • · · • ··· • · ···· ·· ·· ·· ·· • · · · · · • · ··· · · • · · · · · · • · · · · · ·· ·· ·· ·-73 ··· ··· · ····························· · · · · · · · · · · Sekvencie 17Sequences 17 GAATTCCGCG GTCGGCGAAA GTTGATGCGC GTGACGAGGC CACACTGTGA GTTGGTCAGG GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT GCCTATCGAC TTAGGGGTAA AGGTCGCTCG ACAAATGGTC GATAGCGTAC TCGCAGGCTC GCTCCCGCGG CACATTGGCT TGTACAGCGG GCAGCGCATT TGCGGCACAG GCTTCGAACT AGGCGCTGAT CACGTGCTGT GTGTCGCGGC GTATACACAC CGGGGCGGGT TCCGCCTCGG GGAGGCATTG TTTGATCCTG CTCCAGGACT GGAGAGGCGG TTTGCGTATT GGGCGCATGC TGCCGACATG GAAGCCATCA CAAACGGCAT CCTTGTCGCC TTGCGTATAA TATTTGCCCA ACGAACCCAG TTGACATAAG CCTGTTCGGT CTCACGCAAC TGGTCCAGAA CCTTGACCGA TTTCATGGCT TGTTATGACT GTTTTTTTGT AGCGCGTTAC GCCGTGGGTC GATGTTTGAT GCAACGATGT TACGCAGCAG GGCAGTCGCC GCATCATTCG CACATGTAGG CTCGGCCCTG ATCTTTTCGG TCGTGAGTTC GGAGACGTAG ATTACCTCGG GAACTTGCTC CGTAGTAAGA AAGCGGTTGT TGGCGCTCTC GCGGCTTACG AGATCTATAT CTATGATCTC GCAGTCTCCG CGCTCATCAA TCTCCTCAAG CATGAGGCCA AAGCAGATTA CGGTGACGAT CCCGCAGTGG AAGTGATGCA CTTTGATATC GACCCAAGTA TCGGCTTCCC ATTGAGGGCG CAAGAGGAGA CGGATGAACA GTTCGATTTA GAGGGCTACA CAAAATTGTT GATCGTGACA GTCATCCGCG TGAAGCCTGT TCATTCTGGC GGGGTGCAGA GCGCCGCGGC GGCTTTGGTG GCTCGAGAGT TACTGGCTAC CTCCGTAGTC GGGATCGAGC CGATTCGCCT GCTGCTTGCG CGTAGTGATC TAAACGAGGC GCAGGCCGCC CAAGTTCTAG CAAAACTTAA TATTTGGGGC GGGGCCATTG TGCGTCTCTG CATGACCCTC GCTCACCAATGAATTCCGCG GTCGGCGAAA GTTGATGCGC GTGACGAGGC CACACTGTGA GTTGGTCAGG GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT GCCTATCGAC TTAGGGGTAA AGGTCGCTCG ACAAATGGTC GATAGCGTAC TCGCAGGCTC GCTCCCGCGG CACATTGGCT TGTACAGCGG GCAGCGCATT TGCGGCACAG GCTTCGAACT AGGCGCTGAT CACGTGCTGT GTGTCGCGGC GTATACACAC CGGGGCGGGT TCCGCCTCGG GGAGGCATTG TTTGATCCTG CTCCAGGACT GGAGAGGCGG TTTGCGTATT GGGCGCATGC TGCCGACATG GAAGCCATCA CAAACGGCAT CCTTGTCGCC TTGCGTATAA TATTTGCCCA ACGAACCCAG TTGACATAAG CCTGTTCGGT CTCACGCAAC TGGTCCAGAA CCTTGACCGA TTTCATGGCT TGTTATGACT GTTTTTTTGT AGCGCGTTAC GCCGTGGGTC GATGTTTGAT GCAACGATGT TACGCAGCAG GGCAGTCGCC GCATCATTCG CACATGTAGG CTCGGCCCTG ATCTTTTCGG TCGTGAGTTC GGAGACGTAG ATTACCTCGG GAACTTGCTC CGTAGTAAGA AAGCGGTTGT TGGCGCTCTC GCGGCTTACG AGATCTATAT CTATGATCTC GCAGTCTCCG CGCTCATCAA TCTCCTCAAG CATGAGGCCA AAGCAGATTA CGGTGACGAT CCCGCAGTGG AAGTGATGCA CTTTGATATC GACCCAAGTA TCGGCTTCCC ATTGAGGGCG CAAGAGGAGA CGGATGAACA GTTCGATTTA GAGGGCTACA CAAAATTGTT GATCGTGACA GTCATCCGCG TGAAGCCTGT TCATTCTGGC GGGGTGCAGA GCGCCGCGGC GGCTTTGGTG GCTCGAGAGT TACTGGCTAC CTCCGTAGTC GGGATCGAGC CGATTCGCCT GCTGCTTGCG CGTAGTGATC TAAACGAGGC GCAGGCCGCC CAAGTTCTAG CAAAACTTAA TATTTGGGGCC GGGGGCTG TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GGGGGCTTAC TCGGCGTTTT CCGACACTGC 120 TGATTGCGGG GGTGCCCTGT CGCTGGTGTC 180 CGAAGTTCTG ATGCGTGCGT CGCTTGAACC 240 TATGGCTCAA GCAAGCTTTG ATGCTTACCT 300 TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT 360 GCTTCGGCAG GCCGGCGAGC AGATTTCCCA 420 AGAGTCCATG TCGCGTAACC CCATCGCGTC 480 TGCGCCCGTT GAGTTCAAGG ATTTTTTGTG 540 CGACATGATC GCTACCGCAG AAAACCTGGG 600 ATAAAAACTG TTGTAATTCA TTAAGCATTC 660 GATGAACCTG AATCGCCAGC GGCATCAGCA 720 TGGACGCACA CCGTGGAAAC GGATGAAGGC 780 TCGTAAACTG TAATGCAAGT AGCGTATGCG 840 ACGCAGCGGT GGTAACGGCG CAGTGGCGGT 900 ACAGTCTATG CCTCGGGCAT CCAAGCAGCA 960 GTTATGGAGC AGCAACGATG TTACGCAGCA 1020 CTAAAACAAA GTTAGGTGGC TCAAGTATGG 1080 ACCAAGTCAA ATCCATGCGG GCTGCTCTTG 1140 CCACCTACTC CCAACATCAG CCGGACTCCG 1200 CATTCATCGC GCTTGCTGCC TTCGACCAAG 1260 TTCTGCCCAG GTTTGAGCAG CCGCGTAGTG 1320 GCGAGCACCG GAGGCAGGGC ATTGCCACCG 1380 ACGCGCTTGG TGCTTATGTG ATCTACGTGC 1440 CTCTCTATAC AAAGTTGGGC ATACGGGAAG 1500 CCGCCACCTA ACAATTCGTT CAAGCCGAGA 1560 AATGGATTGA CCAAGAGATC GTGGCTGTTA 1620 ACAGTCGAGC AATTGAACTG CCTCGGAAGG 1680 GCCTAGCAGT CTTTGAAGCC CTTTCCCGAT 1740 CTGCGGGCAA CAGCTGTGCC GTAGTGGACG 1800 CGTCTGCGAC ACAGCCGGTC TTGGCTAGGA 1860 CCGAGCATAT GGGGCTCGGC CCTGCGCCCG 1920 TTAGTTTGAG GGATATCGAC CTCTTTGAGA 1980 CGGTACAGCA TGAATTGGGT ATTGAGCACT 2040 CACTTGGACA CCCGCTTGCC GCGACCGGAT 2100 TGCAAGCTAA TAACTTTCGA TATGGAATTG 2160 TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GGGGGCTTAC TCGGCGTTTT CCGACACTGC 120 TGATTGCGGG GGTGCCCTGT CGCTGGTGTC 180 CGAAGTTCTG ATGCGTGCGT CGCTTGAACC 240 TATGGCTCAA GCAAGCTTTG ATGCTTACCT 300 TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT 360 GCTTCGGCAG GCCGGCGAGC AGATTTCCCA 420 AGAGTCCATG TCGCGTAACC CCATCGCGTC 480 TGCGCCCGTT GAGTTCAAGG ATTTTTTGTG 540 CGACATGATC GCTACCGCAG AAAACCTGGG 600 ATAAAAACTG TTGTAATTCA TTAAGCATTC 660 GATGAACCTG AATCGCCAGC GGCATCAGCA 720 TGGACGCACA CCGTGGAAAC GGATGAAGGC 780 TCGTAAACTG TAATGCAAGT AGCGTATGCG 840 ACGCAGCGGT GGTAACGGCG CAGTGGCGGT 900 ACAGTCTATG CCTCGGGCAT CCAAGCAGCA 960 GTTATGGAGC AGCAACGATG TTACGCAGCA 1020 CTAAAACAAA GTTAGGTGGC TCAAGTATGG 1080 ACCAAGTCAA ATCCATGCGG GCTGCTCTTG 1140 CCACCTACTC CCAACATCAG CCGGACTCCG 1200 CATTCATCGC GCTTGCTGCC TTCGACCAAG 1260 TTCTGCCCAG GTTTGAGCAG CCGCGTAGTG 1320 GCGAGCACCG GAGGCAGGGC ATTGCCACCG 1380 ACGCGCTTGG TGCTTATGTG ATCTACGTGC 1440 CTCTCTATAC AAAGTTGGGC ATACGGGAAG 1500 CCGCCACCTA ACAATTCGTT CAAGCCGAGA 1560 AATGGATTGA CCAAGAGATC GTGGCTG TTA 1620 ACAGTCGAGC AATTGAACTG CCTCGGAAGG 1680 GCCTAGCAGT CTTTGAAGCC CTTTCCCGAT 1740 CTGCGGGCAA CAGCTGTGCC GTAGTGGACG 1800 CGTCTGCGAC ACAGCCGGTC TTGGCTAGGA 1860 CCGAGCATAT GGGGCTCGGC CCTGCGCCCG 1920 TTAGTTTGAG GGATATCGAC CTCTTTGAGA 1980 CGGTACAGCA TGAATTGGGT ATTGAGCACT 2040 CACTTGGACA CCCGCTTGCC GCGACCGGAT 2100 TGCAAGCTAA TAACTTTCGA TATGGAATTG 2160 ·· • · ···· ···· • · ······ -74··-74 ·· CCTCGGCATG CATTGGTGGG GGACAGGGGA TGGCGGTTCT TTTAGAGAAT CCCCACTTCG 2220 GTTCGTCCTC TGCACGAAGT TCGATGATTA ACAGAGTTGA CCACTATCCA CTGAGCTAAC 2280 GGGCATCTCC TTTGTTGCTT TGAGGTGGCG CACGAAGGAG GGCTCGAAAA TCTCTGCTAA 2340 AAACAAGAAG AAGGAACAGG GAACATGATT AGTTTCGCTC GTATGGCAGA AAGTTTAGGA 2400 GTCCAGGCTA AACTTGCCCT TGCCTTCGCA CTCGTATTAT GTGTCGGGCT GATTGTTACC 2460 GGCACGGGTT TCTACAGTGT ACATACCTTG TCAGGGTTGG TGGGAATTC 2509CCTCGGCATG CATTGGTGGG GGACAGGGGA TGGCGGTTCT TTTAGAGAAT CCCCACTTCG 2220 GTTCGTCCTC TGCACGAAGT TCGATGATTA ACAGAGTTGA CCACTATCCA CTGAGCTAAC 2280 GGGCATCTCC TTTGTTGCTT TGAGGTGGCG CACGAAGGAG GGCTCGAAAA TCTCTGCTAA 2340 AAACAAGAAG AAGGAACAGG GAACATGATT AGTTTCGCTC GTATGGCAGA AAGTTTAGGA 2400 GTCCAGGCTA AACTTGCCCT TGCCTTCGCA CTCGTATTAT GTGTCGGGCT GATTGTTACC 2460 GGCACGGGTT TCTACAGTGT ACATACCTTG TCAGGGTTGG TGGGAATTC 2509 I ·· ·· • · ·I ·· ·· • · · I · ·I · · -75• · · · • ··· · · • · · ···· ·· ·· • » • ··· • · · • · · ··-75 · · · 75 75 75 75 75 75 75 75 75 75 75 Sekvencia 18Sequence 18 GAATTCCGCG GTCGGCGAAA GTTGATGCGC GTGACGAGGC CACACTGTGA GTTGGTCAGG • GTTGGTTGCG GCAGTGCGCA CCCCCTGGATGAATTCCGCG GTCGGCGAAA GTTGATGCGC GTGACGAGGC CACACTGTGA GTTGGTCAGG • GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT GCCTATCGAC TTAGGGGTAA AGGTCGCTCG ACAAATGGTC GATAGCGTAC TCGCAGGCTC » GCTCCCGCGG CACATTGGCT TGTACAGCGGGCCTATCGAC TTAGGGGTAA AGGTCGCTCG ACAAATGGTC GATAGCGTAC TCGCAGGCTC »GCTCCCGCGG CACATTGGCT TGTACAGCGG GCAGCGCATT TGCGGCACAG GCTTCGAACT AGGCGCTGAT CACGTGCTGT GTGTCGCGGC GTATACACAC CGGGGCGGGT TCCGCCTCGG GGAGGCATTG TTTGATCCTG CTCCAGGACT GCGCATTGAG GGCGCAAGAG GAGAAATGGA AACAGTTCGA TTTAGAGGGC TACAACAGTC TGTTGATCGT GACAGTCATC CGCGGCCTAG CTGTTCATTC TGGCGGGGTG CAGACTGCGG CGGCGGCTTT GGTGGCTCGA GAGTCGTCTG CTACCTCCGT AGTCGGGATC GAGCCCGAGC GCCTGCTGCT TGCGCGTAGT GATCTTAGTT AGGCGCAGGC CGCCCAAGTT CTAGCGGTAC TTAATATTTG GGGCGGGGCC ATTGCACTTG TCTGCATGAC CCTCGCTCAC CAATTGCAAG CATGCATTGG TGGGGGACAG GGGATGGCGG CCTCTGCACG AAGTTCGATG ATTAACAGAG CTCCTTTGTT GCTTTGAGGT GGCGCACGAA GAAGAAGGAA CAGGGAACAT GATTAGTTTC GCTAAACTTG CCCTTGCCTT CGCACTCGTA GGTTTCTACA GTGTACATAC CTTGTCAGGGGCAGCGCATT TGCGGCACAG GCTTCGAACT AGGCGCTGAT CACGTGCTGT GTGTCGCGGC GTATACACAC CGGGGCGGGT TCCGCCTCGG GGAGGCATTG TTTGATCCTG CTCCAGGACT GCGCATTGAG GGCGCAAGAG GAGAAATGGA AACAGTTCGA TTTAGAGGGC TACAACAGTC TGTTGATCGT GACAGTCATC CGCGGCCTAG CTGTTCATTC TGGCGGGGTG CAGACTGCGG CGGCGGCTTT GGTGGCTCGA GAGTCGTCTG CTACCTCCGT AGTCGGGATC GAGCCCGAGC GCCTGCTGCT TGCGCGTAGT GATCTTAGTT AGGCGCAGGC CGCCCAAGTT CTAGCGGTAC TTAATATTTG GGGCGGGGCC ATTGCACTTG TCTGCATGAC CCTCGCTCAC CAATTGCAAG CATGCATTGG TGGGGGACAG GGGATGGCGG CCTCTGCACG AAGTTCGATG ATTAACAGAG CTCCTTTGTT GCTTTGAGGT GGCGCACGAA GAAGAAGGAA CAGGGAACAT GATTAGTTTC GCTAAACTTG CCCTTGCCTT CGCACTCGTA GGTTTCTACA GTGTACATAC CTTGTCAGGG TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GGGGGCTTAC TCGGCGTTTT CCGACACTGC 120 TGATTGCGGG GGTGCCCTGT CGCTGGTGTC 180 CGAAGTTCTG ATGCGTGCGT CGCTTGAACC 240 TATGGCTCAA GCAAGCTTTG ATGCTTACCT 300 TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT 360 GCTTCGGCAG GCCGGCGAGC AGATTTCCCA 420 AGAGTCCATG TCGCGTAACC CCATCGCGTC 480 TGCGCCCGTT GAGTTCAAGG ATTTTTTGTG 540 CGACATGATC GCTACCGCAG AAAACCTGGC 600 TTGACCAAGA GATCGTGGCT GTTACGGATG 660 GAGCAATTGA ACTGCCTCGG AAGGCAAAAT 720 CAGTCTTTGA AGCCCTTTCC CGATTGAAGC 780 GCAACAGCTG TGCCGTAGTG GACGGCGCCG 840 CGACACAGCC GGTCTTGGCT AGGATACTGG 900 ATATGGGGCT CGGCCCTGCG CCCGCGATTC 960 TGAGGGATAT CGACCTCTTT GAGATAAACG 1020 AGCATGAATT GGGTATTGAG CACTCAAAAC 1080 GACACCCGCT TGCCGCGACC GGATTGCGTC 1140 CTAATAACTT TCGATATGGA ATTGCCTCGG 1200 TTCTTTTAGA GAATCCCCAC TTCGGTTCGT 1260 TTGACCACTA TCCACTGAGC TAACGGGCAT 1320 GGAGGGCTCG AAAATCTCTG CTAAAAACAA 1380 GCTCGTATGG CAGAAAGTTT AGGAGTCCAG 1440 TTATGTGTCG GGCTGATTGT TACCGGCACG 1500 TTGGTGGGAÄ TTC 1543 TGTATCGTGG TGAAGATCAA TCCATGCTGC 60 GGGGGCTTAC TCGGCGTTTT CCGACACTGC 120 TGATTGCGGG GGTGCCCTGT CGCTGGTGTC 180 CGAAGTTCTG ATGCGTGCGT CGCTTGAACC 240 TATGGCTCAA GCAAGCTTTG ATGCTTACCT 300 TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT 360 GCTTCGGCAG GCCGGCGAGC AGATTTCCCA 420 AGAGTCCATG TCGCGTAACC CCATCGCGTC 480 TGCGCCCGTT GAGTTCAAGG ATTTTTTGTG 540 CGACATGATC GCTACCGCAG AAAACCTGGC 600 TTGACCAAGA GATCGTGGCT GTTACGGATG 660 GAGCAATTGA ACTGCCTCGG AAGGCAAAAT 720 CAGTCTTTGA AGCCCTTTCC CGATTGAAGC 780 GCAACAGCTG TGCCGTAGTG GACGGCGCCG 840 CGACACAGCC GGTCTTGGCT AGGATACTGG 900 ATATGGGGCT CGGCCCTGCG CCCGCGATTC 960 TGAGGGATAT CGACCTCTTT GAGATAAACG 1020 AGCATGAATT GGGTATTGAG CACTCAAAAC 1080 GACACCCGCT TGCCGCGACC GGATTGCGTC 1140 CTAATAACTT TCGATATGGA ATTGCCTCGG 1200 TTCTTTTAGA GAATCCCCAC TTCGGTTCGT 1260 TTGACCACTA TCCACTGAGC TAACGGGCAT 1320 GGAGGGCTCG AAAATCTCTG CTAAAAACAA 1380 GCTCGTATGG CAGAAAGTTT AGGAGTCCAG 1440 TTATGTGTCG GGCTGATTGT TACCGGCACG 1500 TTGGTGGGAÄ TTC 1543 II 1/3 ·· ·· • · · · • · « • ··· • · ···· ·· ·· ·· ·· • · · · · · • · ··· · · • · · · · · • · · · · · ·· ·· ·· · ca/ÄQKm1/3 · «« «3 3 3 3 3 3 3 3 3 3 3 3 1/ 3 · · · · · · · / · / / ÄQKm Obr. 1a ca/ÄQGmFig. 1a ca / ÄQGm Obr. 1b ca/ΑΔFig. 1b ca / ΑΔ Obr. 1c ca/SQKmFig. 1c ca / SQKm Obr. 1d ca/SQGmFig. 1d ca / SQGm Obr. 1e calBňFig. 1e calBň Psnpsn BMTBal 31BMTBal 31 Delécia 539 bpDeletion 539 bp ScoRISCORE SoAl'/Bal 31 SmaV ýj'-CnKm-Elémen:;·.SoAl '/ Bal 31 SmaV jj'-CnKm-Elémen:; SmaV BcAI7Bal3iSmaV BcAI7Bal3i V, ecoRiV, ecoRi EeoRIEcoRI SoJlITBal 31 SmalSoJlITBal 31 Smal Smal* ΒσΛΓ/Bal 31Smal * ΒσΛΓ / Bal 31 BcoRI fcoRI Bgllľ/Bal 31 fcoRIBcoRI fcoRI Bglll / Bal 31 fcoRI Delécia 586 bpDeletion 586 bp Obr. 1f ·· ·· • · · • · ··· • · · · • · · · ·· ··Fig. 1f ·· ··············· 2/3 ·· ·· • · · · • · · • ··· • · ···· ·· ·· • · · • · • · · • · ·· · fcsQKm2/3 ································· Obr. 1g fcsQGmFig. 1g fcsQGm Obr. 1h tesáFig. 1h tesá Obr. 1i ecóQKmFig. 1i ecóQKm Obr. 1j ecríQGmFig. 1j ecríQGm Obr. 1k echá o—un· c^jai' 'inkm-ElemenlFig. 1k echá — un · c ^ jai '' inkm-Elemenl Delécia 1290 bpDeletion 1290 bp HcoRIHCOR NnA' Smáľ ONnA 'Laugh O SmäT NnA' O s-TOKm-Element ecoRiSmaT NnA 'O with -TOKm-Element ecoRi EccRlEccRl NnA'SmaľNnA'Smaľ Smáľ NnA'Smáľ NnA ' EeoRl NnA EedKEeoRl NnA EedK EccfUECCF Delécia 483 bpDeletion 483 bp Obr. 11 ··Fig. 11 ·· 3/33/3 Smal* SssHII· *;.?*ΓΛΚπϊ-εΐβπΐβπΐ*--':-j ||||p ·· ·· • · · · • · · • ··· · • · ···· ·· ·· ·· • · · • · ··· • · · · · • · · · · ·· ·· vďĎQKmSmal * SssHII · *;.? * ΓΛΚπϊ-εΐβπΐβπΐ * - ' : -j |||| p ·· ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Obr. 1m rFig. 1m y vd/jQGmE / jQGm Obr. 1n vdhňFig. 1n vdhň Obr. 1o aa/QKmFig. 1o aa / QKm Obr. 1p aaíQGmFig. 1p aaíQGm Obr. 1qFig. 1q t. aatAt. AATA SssHII'Smaľ £coRISssHII'Real £ coRI Delécia 210 bp £csRiDeletion 210 bp £ csRi SssHIľS/nal· _SssHIS / nal · _ Smal· SssHIISmal · SssHII Sí>'-ÍÍKn»-’Éiemefs £coRlNetwork - 'Éiemefs £ coRl SssHirSmaľ VSssHirSmall V Smaľ SssHII· £cpRI £coRI SssHII £«πιDelete SssHII · £ cpRI £ coRI SssHII £ «πι Delécia 59 bpDeletion 59 bp Obr. 1rFig. 1r
SK574-2001A 1998-10-31 1999-10-20 Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism SK5742001A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19850242A DE19850242A1 (en) 1998-10-31 1998-10-31 Construction of production strains for the production of substituted phenols by targeted inactivation of genes of eugenol and ferulic acid catabolism
PCT/EP1999/007952 WO2000026355A2 (en) 1998-10-31 1999-10-20 Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism

Publications (1)

Publication Number Publication Date
SK5742001A3 true SK5742001A3 (en) 2001-12-03

Family

ID=7886266

Family Applications (1)

Application Number Title Priority Date Filing Date
SK574-2001A SK5742001A3 (en) 1998-10-31 1999-10-20 Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism

Country Status (14)

Country Link
EP (1) EP1124947A2 (en)
JP (1) JP2003533166A (en)
KR (1) KR20020022045A (en)
CN (1) CN1325444A (en)
AU (1) AU761093B2 (en)
BR (1) BR9914930A (en)
CA (1) CA2348962A1 (en)
DE (1) DE19850242A1 (en)
HK (1) HK1041902A1 (en)
HU (1) HUP0104772A3 (en)
IL (1) IL142272A0 (en)
PL (1) PL348647A1 (en)
SK (1) SK5742001A3 (en)
WO (1) WO2000026355A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830691B1 (en) * 2006-11-21 2008-05-20 광주과학기술원 Novel bacterium able to biotransform isoeugenol and eugenol to natural vanillin or vanillic acid
WO2012172108A1 (en) 2011-06-17 2012-12-20 Symrise Ag Microorganisms and methods for producing substituted phenols
JP6509215B2 (en) 2013-07-22 2019-05-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Genetic engineering of Pseudomonas putida KT 2440 for rapid and high yield production of vanillin from ferulic acid
CN103805640B (en) * 2014-01-26 2016-04-06 东华大学 A kind of method utilizing bacterial oxidation pine uncle aldehyde to prepare forulic acid
EP3000888B1 (en) * 2014-09-29 2018-12-05 Symrise AG Process for converting ferulic acid into vanillin
FR3041655B1 (en) * 2015-09-29 2017-11-24 Lesaffre & Cie NEW BACTERIAL STRAINS FOR VANILLIN PRODUCTION
CN111019995B (en) 2019-12-31 2021-04-27 厦门欧米克生物科技有限公司 Method for producing vanillin by fermentation with eugenol as substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227980A (en) * 1992-02-21 1993-09-07 Takasago Internatl Corp Production of vanillin and its related compound by fermentation
DE4227076A1 (en) * 1992-08-17 1994-02-24 Haarmann & Reimer Gmbh Process for the preparation of substituted methoxyphenols and microorganisms suitable therefor
GB9606187D0 (en) * 1996-03-23 1996-05-29 Inst Of Food Research Production of vanillin
DE19649655A1 (en) * 1996-11-29 1998-06-04 Haarmann & Reimer Gmbh Synthetic enzymes for the production of coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid and their use

Also Published As

Publication number Publication date
PL348647A1 (en) 2002-06-03
WO2000026355A3 (en) 2000-11-09
AU1041300A (en) 2000-05-22
BR9914930A (en) 2001-07-10
HUP0104772A3 (en) 2003-10-28
IL142272A0 (en) 2002-03-10
KR20020022045A (en) 2002-03-23
HK1041902A1 (en) 2002-07-26
HUP0104772A2 (en) 2002-03-28
CN1325444A (en) 2001-12-05
AU761093B2 (en) 2003-05-29
EP1124947A2 (en) 2001-08-22
WO2000026355A2 (en) 2000-05-11
JP2003533166A (en) 2003-11-11
CA2348962A1 (en) 2000-05-11
DE19850242A1 (en) 2000-05-04

Similar Documents

Publication Publication Date Title
JP4763017B2 (en) Multiple promoters for gene expression and uses thereof
Bron et al. Protein secretion and possible roles for multiple signal peptidases for precursor processing in bacilli
EP1094111B1 (en) Coryneform Bacteria with a deletion of Phosphoenolpyruvate-carboxykinase and their use
US5470719A (en) Modified OmpA signal sequence for enhanced secretion of polypeptides
DE19539952A1 (en) Process for the preparation of O-acetylserine, L-cysteine and L-cysteine-related products
US11278610B2 (en) Glycosylation method
RU2000117837A (en) CORINEBACTERIA PRODUCING L-LYSINE AND METHOD FOR PRODUCING L-LYSINE
KR101739128B1 (en) High level expression of recombinant crm197
WO1988009819A2 (en) C. glutamicum threonine biosynthetic pathway
SK5742001A3 (en) Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism
AU753879B2 (en) Industrial method for producing heterologous proteins in E.coli and strains useful for said method
JPH0838184A (en) Kanamycin resistant gene derived from rhodococcus bacterium
US20240271084A1 (en) Microorganism strain and method for antibiotic-free plasmid-based fermentation
CN116710471A (en) Mutant host cells with reduced cell motility
EP3599282B1 (en) Method for the fermentative production of l-lysine
US20040101837A1 (en) Nucleotide sequences coding for proteins involved in the biosynthesis of L-serine, an improved method for the microbial production of L-serine and a genetically modified microorganism suitable therefor
CN113166787A (en) Method for the fermentative production of L-lysine using L-lysine-secreting bacteria of the species Corynebacterium glutamicum having the gene whiB4 completely or partially deleted
CN111471631A (en) Process for the fermentative production of L-lysine
JP2516777B2 (en) Recombinant plasmid having gene of enzyme for asymmetric hydrolysis of carboxylic acid ester, microorganism transformed with the same, and method for producing optically active carboxylic acid by the microorganism
EP3594355A1 (en) Method for the fermentative production of l-lysine
EP1555320B1 (en) Expression system derived from the lipase regulation cascade of Pseudomonas alcaligenes
US20230407361A1 (en) Inducible cell lysis system
MXPA01004338A (en) Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism
RU2819270C1 (en) Microorganism for producing l-amino acid, having high activity of cytochrome c, and method of producing l-amino acid using same microorganism
WO2000008170A1 (en) Gene participating in the production of homo-glutamic acid and utilization thereof