EP1124947A2 - Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism - Google Patents

Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism

Info

Publication number
EP1124947A2
EP1124947A2 EP99953892A EP99953892A EP1124947A2 EP 1124947 A2 EP1124947 A2 EP 1124947A2 EP 99953892 A EP99953892 A EP 99953892A EP 99953892 A EP99953892 A EP 99953892A EP 1124947 A2 EP1124947 A2 EP 1124947A2
Authority
EP
European Patent Office
Prior art keywords
gene
inactivated
pseudomonas
ferulic acid
eugenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99953892A
Other languages
German (de)
French (fr)
Inventor
Jürgen Rabenhorst
Alexander Steinbüchel
Horst Priefert
Jörg Overhage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symrise AG
Original Assignee
Haarmann and Reimer GmbH
Symrise AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haarmann and Reimer GmbH, Symrise AG filed Critical Haarmann and Reimer GmbH
Publication of EP1124947A2 publication Critical patent/EP1124947A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)

Definitions

  • the present invention relates to the construction of production strains and a method for the production of substituted methoxyphenols, in particular vanillin.
  • DE-A 4 227 076 (process for the preparation of substituted methoxyphenols and a suitable microorganism) describes the preparation of substituted methoxyphenols with a new Pseudomonas sp.
  • the starting material here is eugenol and the products are ferulic acid, vanillic acid, coniferyl alcohol and coniferyl aldehyde.
  • the enzymes for the conversion of tra / w-ferulic acid to trc s-feruloyl-SCoA ester and further to vanillin, as well as the gene for the cleavage of the ester were from
  • the object of the present invention is therefore to construct organisms which are able to convert the inexpensive raw material eugenol into vanillin in a one-step process.
  • This object is achieved by the construction of production strains of single or multicellular organisms, which are characterized in that enzymes of eugenol and / or ferulic acid catabolism are inactivated such that an accumulation of the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or Vanillic acid takes place.
  • the production strain can be single-cell or multi-cell. Accordingly, the subject of the invention can be microorganisms, plants or animals. In addition, extracts obtained from the production master can also be used. According to the invention, single-celled organisms are preferably used. These can be microorganisms, animal or plant cells. The use of fungi and bacteria is particularly preferred according to the invention. Bacteria are highly preferred. Among the bacteria, Rhodococcus, Pseudomonas and Esche ichia species in particular can be used after changing the eugenol and / or ferulic acid catabolism. In the simplest case, the organisms which can be used according to the invention can be obtained by means of known, conventional microbiological methods.
  • the enzyme activity of the proteins involved in the catabolism of eugenol and / or ferulic acid can be changed by the use of enzyme inhibitors.
  • the enzyme activity of the proteins involved in the eugenol and / or ferulic acid catabolism can be changed by mutating the genes coding for these proteins.
  • Such mutations can be generated undirected using classic methods, such as, for example, UV radiation or chemicals that trigger mutations.
  • Genetic engineering methods for obtaining the organisms according to the invention are also suitable, such as deletions, insertions and / or nucleotide exchanges.
  • the genes of the organisms can be inactivated with the help of other DNA elements ( ⁇ elements).
  • the intact genes can be exchanged for modified and / or inactivated gene structures by means of suitable vectors.
  • the genes to be inactivated and the DNA elements used for the inactivation can be obtained by classic cloning techniques or by polymerase chain reactions (PCR).
  • the eugenol and ferulic acid catabolism can be changed by inserting ⁇ elements or introducing deletions into corresponding genes.
  • the functions of the genes which code for dehydrogenases, synthetases, hydratase aldolases, thiolases or demethylases can be inactivated using the abovementioned genetic engineering methods, so that the production of the enzymes in question is blocked.
  • genes which code for coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, ferulic acid-CoA synthetases, enoyl-CoA hydratase aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillinic acid demethylases are preferably the genes which code for coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, ferulic acid-CoA synthetases, enoyl-CoA hydratase aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillinic acid demethylases.
  • Genes which encode the amino acid sequences given in EP-A 0845532 and / or their nucleotide sequences encoding allelic variations are very particularly preferred.
  • the invention accordingly also relates to gene structures for producing transformed organisms and mutants.
  • Gene structures are preferably used to obtain the organisms and mutants in which the nucleotide sequences coding for dehydrogenases, synthetases, hydratase aldolases, thiolases or demethylases are inactivated. Particularly preferred are gene structures in which the nucleotide sequences coding for coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, ferulic acid-CoA synthetases, enoyl-CoA hydratase aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases are inactive. Gene structures which have the structures given in FIGS. 1a to 1r with the nucleotide sequences shown in FIGS. 2a to 2r and / or their allele variations coding nucleotide sequences are very particularly preferred. Nucleotide sequences from 1 to 18 are particularly preferred.
  • the invention also includes the partial sequences of these gene structures as well as functional equivalents.
  • Functional equivalents are to be understood as those derivatives of DNA in which individual nucleobases have been exchanged (Wobbe exchanges) without changing their function. Also at the protein level,
  • Amino acids can be exchanged without changing the function.
  • One or more DNA sequences can be connected upstream and / or downstream of the gene structures.
  • plasmids or vectors are obtainable which are suitable for the transformation and / or transfection of an organism and / or for the conjugative transfer into an organism.
  • the invention further relates to plasmids and / or vectors for producing the transformed organisms and mutants according to the invention. Accordingly, these contain the gene structures described.
  • the present invention relates to accordingly also organisms which contain the plasmids and / or vectors mentioned.
  • plasmids and / or vectors depends on their intended use. To z. For example, to be able to exchange the intact genes of eugenol and / or ferulic acid catabolism in pseudomonas against the genes inactivated by omega elements, vectors are required which can be transferred on the one hand in pseudomonads (conjugatively transferable plasmids) but on the other hand there cannot be replicated and are therefore unstable in pseudomonas (so-called suicide plasmids). DNA sections which are transferred into pseudomonads with the aid of such a plasmid system can only be preserved if they are integrated into the genome of the bacterial cell by homologous recombination.
  • genes can preferably be changed and / or inactivated such that the organisms in question are able to produce coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or vanillic acid.
  • Production strains constructed in accordance with the invention are, for example, mutants of the strain Pseudomonas sp. HR199 (DSM 7063), which was described in detail in DE-A 4 227 076 and EP-A 0845532, where, among other things, the corresponding gene structures result from FIGS. 1a to 1r in conjunction with FIGS. 2a to 2r: 1.
  • Pseudomonas sp. HR199c ⁇ 4 ⁇ Km containing the ⁇ Km inactivated calA gene instead of the intact c ⁇ 4 gene coding for coniferyl alcohol dehydrogenase (Fig. La; Fig. 2a).
  • Pseudomonas sp. HR199ecb ⁇ Km containing the ⁇ Km inactivated ecb gene instead of the intact ecb gene coding for enoyl-CoA hydratase aldolase (Fig.lj; Fig. 2j).
  • Pseudomonas sp. HR199ecb ⁇ Gm containing the ecb gene inactivated by ⁇ Gm instead of the intact ecb gene coding for enoyl-CoA hydratase aldolase (FIG. 1k; FIG. 2k).
  • Pseudomonas sp. HR199 ⁇ t ⁇ Km containing the aat gene inactivated by ⁇ Km instead of the intact aat gene coding for beta-ketothiolase (Fig. Im; Fig. 2m).
  • Pseudomonas sp. HR199 t ⁇ Gm containing the ⁇ t gene inactivated by ⁇ Gm instead of the intact ⁇ t gene coding for beta-ketothiolase (Fig. In; Fig. 2n).
  • Pseudomonas sp. HR199v b ⁇ containing the deletion inactivated vdh gene instead of the intact v b gene coding for vanillin dehydrogenase (Fig.lr; Fig. 2r).
  • the invention also relates to a method for the biotechnical production of organic compounds.
  • alcohols, aldehydes and organic acids can be produced with this process. These are preferably coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid.
  • the organisms described above are used in the process according to the invention.
  • the most particularly preferred organisms include bacteria, especially the Pseudomonas species.
  • the above-mentioned Pseudomonas species can preferably be used for the following processes:
  • the preferred substrate is eugenol.
  • the addition of further substrates or even the replacement of the eugenol with another substrate may be possible.
  • Synthetic, semi-synthetic or complex culture media can be used as the nutrient medium for the organisms used according to the invention. These can contain carbon-containing and nitrogen-containing compounds, inorganic salts, optionally trace elements and vitamins.
  • Carbohydrates, hydrocarbons or basic organic chemicals can be considered as carbon-containing compounds.
  • Examples of compounds which can preferably be used are sugars, alcohols or sugar alcohols, organic acids or complex mixtures.
  • the preferred sugar is glucose.
  • Citric acid or acetic acid can preferably be used as organic acids.
  • the complex mixtures include e.g. B. malt extract, yeast extract, casein or casein hydrolyzate.
  • Inorganic compounds are suitable as nitrogen-containing substrates. Examples include nitrates and ammonium salts. Organic nitrogen sources can also be used. These include yeast extract, soy flour, casein, casein hydrolyzate and corn steep liquor.
  • the inorganic salts that can be used include, for example, sulfates, nitrates, chlorides, carbonates and phosphates. The salts mentioned preferably contain sodium, potassium, magnesium, manganese, calcium, zinc and iron as metals.
  • the temperature for cultivation is preferably in the range of 5 to 100 ° C.
  • the range from 15 to 60 ° C. is particularly preferred, and 22 to 60 ° C. is most preferred
  • the pH of the medium is preferably 2 to 12.
  • the range from 4 to 8 is particularly preferred.
  • bioreactors known to the person skilled in the art can be used to carry out the method according to the invention.
  • All devices suitable for submerged processes are preferred.
  • the former include e.g. B. shakers, bubble column or loop reactors.
  • the latter preferably include all known devices with stirrers in any configuration.
  • the process according to the invention can be carried out continuously or batchwise.
  • the duration of the fermentation until a maximum amount of product is reached depends on the particular type of organism used. Basically, however, the times of fermentation are between 2 and 200 hours.
  • genes calA, calB, fcs, ech, aat, vdh, adh, vdhB, vanA and vanB which are for coniferyl alcohol dehydrogenase, coniferylaldehyde dehydrogenase, ferulic acid-CoA synthetase, enoyl-CoA hydratase-aldolase, beta-ketothiolase, vanillin Dehydrogenase, alcohol dehydrogenase, vanillin dehydrogenase II and vanillic acid demethylase were encoded starting from genomic DNA of the strain Pseudomonas sp.
  • mutants had only the inactivated gene, so that mutants with only one defective gene and multiple mutants in which several genes were inactivated in this way were obtained.
  • These mutants were used for the biotransformation of a) eugenol to coniferyl alcohol , Coniferyl aldehyde, ferulic acid, Va nillin and / or
  • Vanillic acid b) coniferyl alcohol to coniferyl aldehyde, ferulic acid, vanillin and / or vanillic acid; c) coniferyl aldehyde to ferulic acid, vanillin and / or vanillic acid; d) ferulic acid to vanillin and / or vanillic acid and e) vanillin to vanillic acid. material and methods
  • Pseudomonas sp Cells grown on eugenol. HR199 were washed in 10 mM sodium phosphate buffer, pH 6.0, resuspended in the same buffer and disrupted by passing twice through a French press (Amicon, Silver Spring, Maryland, USA) at a pressure of 1000 psi. The cell homogenate was subjected to ultracentrifugation (1 h, 100,000 x g, 4 ° C.), whereby the soluble
  • the soluble fraction of the crude extract was dialyzed overnight against 10 mM sodium phosphate buffer, pH 6.0.
  • the dialysate was made up to a 10 mM
  • the column was rinsed with two BV 10 mM sodium phosphate buffers, pH 6.0.
  • VDH-II vanillin dehydrogenase-II
  • VDH activity was determined at 30 ° C. by means of an optically enzymatic test.
  • the reaction mixture with a volume of 1 ml contained 0.1 mmol potassium phosphate (pH 7.1), 0.125 ⁇ mol vanillin, 0.5 ⁇ mol NAD, 1.2 ⁇ mol pyruvate (Na salt), lactate dehydrogenase (1 U; from pig heart) and enzyme solution.
  • the CADH activity was determined at 30 ° C. using an optical enzymatic test according to Jaeger et al. (Jaeger, E., L. Eggeling and H. Sahm. 1981. Current Microbiology. 6: 333-336).
  • the reaction mixture with a volume of 1 ml contained 0.2 mmol Tris / HCl (pH 9.0), 0.4 ⁇ mol coniferyl alcohol, 2 ⁇ mol NAD, 0.1 mmol semicarbazide and enzyme solution.
  • the enzyme activity was given in units (U), where 1 U corresponds to the amount of enzyme that converts 1 ⁇ mol substrate per minute.
  • the protein concentrations in the samples were determined according to Lowry et al. (Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. J. Biol. Chem. 193: 265-275).
  • the CALDH activity was determined at 30 ° C. by means of an optically enzymatic test.
  • the reaction mixture with a volume of 1 ml contained 0.1 mmol Tris / HCl (pH 8.8), 0.08 ⁇ mol coniferylaldehyde, 2.7 ⁇ mol NAD and enzyme solution.
  • FCS activity was determined at 30 ° C. by an optically enzymatic test, modified according to Zenk et al. (Zenk et al. 1980. Anal. Biochem. 101: 182-
  • the reaction mixture with a volume of 1 ml contained 0.09 mmol potassium Phosphate (pH 7.0), 2.1 ⁇ mol MgCl2, 0.7 ⁇ mol ferulic acid, 2 ⁇ mol ATP, 0.4 ⁇ mol coenzyme A and enzyme solution.
  • the enzyme activity was given in units (U), where 1 U corresponds to the amount of enzyme that converts 1 ⁇ mol substrate per minute.
  • the protein concentrations in the samples were checked
  • the gels were buffered for 20 min in 100 mM KP buffer (pH 7.0) and then at 30 ° C in the same buffer the 0.08% (wt / vol) NAD, 0.04 % (wt / vol) p-nitroblue tetrazolium chloride, 0.003% »(wt / vol) phenazine methosulfate and 1 mM of the respective substrate had been added until appropriate color bands became visible.
  • N-terminal amino acid sequences were determined using a protein peptide sequencer (type 477 A, Applied Biosystems, Foster City, USA) and a PTH analyzer according to the manufacturer's instructions. Isolation and manipulation of DNA.
  • Genomic DNA was isolated using the method of Marmur (Marmur, J. 1961. J. Mol. Biol. 3: 208-218). The isolation and analysis of other plasmid DNA or of DNA restriction fragments was carried out according to standard methods (Sambrook, JEF Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York.).
  • Cells of the recipient were applied in one direction as an inoculation line. After 5 minutes, cells from the donor strains were then applied as inoculation lines, the recipient line being crossed. After incubation for 48 h at 30 ° C, the transconjugants grew directly behind the
  • Nucleotide sequences were determined using the dideoxy chain termination method of Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sci. USA 74: 5463-5467) "non-radioactive" with a "LI-COR DNA Sequencer Model 4000L” (LI-COR Inc., Biotechnology Division, Lincoln , NE, .USA) using a "Thermo Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Life Science, Amersham International pls, Little Chalfont, Buckinghamshire, England) each according to the manufacturer's instructions.
  • the 2099 bp 5g / l fragment of the transposon Tn5 (Auerswald EA, G. Ludwig and H. Schaller. 1981. Cold Spring Harb. Symp. Quant. Biol. 45: 107-113; Beck E., G. Ludwig, EA Auerswald, B. Reiss and H. Schaller. 1982. Gene 19: 327-336; Mazodier P., P. Cossart, E. Giraud and F. Gasser. 1985. Nucleic Acids Res. 13 : 195-205.) Preparatively isolated. The fragment was shortened to approximately 990 bp by treatment with the nuclease Bal-31.
  • This fragment which only comprised the kanamycin resistance gene (coding for an aminoglycoside-3'-O-phosphotransferase), was then cut with Smally cut pSKsym-DNA (pBluescript SK derivative, which has a symmetrically constructed multiple cloning site [Sall, Hindlll, EcoRI, Sm ⁇ l, EcoRI, Hindl ⁇ l, Sall] contains) ligated.
  • the ⁇ Km element could be reisolated from the resulting plasmid as a Smal, EcoRI, HwdIII or So / I fragment.
  • Plasmids pBBRlMCS-5 (Kovach M. ⁇ ., P. ⁇ . Elzer, DS Hill, GT Robertson, MA Farris, RM Roop and KM Peterson. 1995. Gene 166: 175-176.) Were preparatively isolated and then with mung bean nuclease (Digestion of single-stranded DNA molecule ends) treated. This fragment, which only comprised the gentamycin resistance gene (coding for a gentamycin-3-acetyltransferase), was then ligated with Smal cut pSKsym-DNA (see above). The ⁇ Gm element could be re-isolated from the resulting plasmid as a Smal, EcoRI, H dlll or Sall fragment.
  • Example 2 Example 2
  • Plasmid p ⁇ 207 and the 3700 bp EcoRI / S ⁇ / I fragment of plasmid p ⁇ 5-l were cloned together in pBluescript SK in such a way that both fragments were connected to one another via the EcoRI ends.
  • the 6050 bp S ⁇ I fragment was isolated and shortened to about 2480 bp by treatment with the nuclease Bal-31.
  • ligated to the fragment ends / sfl linker and the fragment after Pstl digestion was cloned into pBluescript SK " (pSK ⁇ s).
  • pSK ⁇ s After transformation of E. coli XLl-Blue, clones were obtained which expressed the fcs gene and one FCS activity of 0.2 U / mg protein.
  • the 3800 bp Hmdlll / EcoRI fragment of the plasmid p ⁇ 207 was preparatively isolated and shortened to approximately 1470 bp by treatment with the nuclease Bal-31. Then EcoRI linkers were ligated to the fragment ends and the fragment was cloned into pBluescript SK " after EcoRI digestion (pSKecb).
  • Plasmids p ⁇ 207 isolated preparatively. After cloning in pBluescript SK " that was
  • the 3700 bp EcoRI / S ⁇ / I fragment of the plasmid p ⁇ 5-l was preparatively isolated and shortened to approximately 1590 bp by treatment with the nuclease Bal-31. Then EcoRI linkers were ligated to the fragment ends and the fragment was cloned into pBluescript SK " (pSKaat) after EcoRI digestion.
  • the plasmid pSKfcs which contained the fcs gene, was included digested, whereby a 1290 bp fragment was cut out of the ⁇ cs gene.
  • the deletion derivative of the fcs gene (fcsA) (see Figs. Li and 2i) cloned in pBluescript SK " (pSK / ⁇ sA) was obtained.
  • the omega elements ⁇ Km and ⁇ Gm on the fragment were cut out
  • the plasmid pSKecb which contained the ecb gene, was digested with NrwI, whereby a 53 bp and a 430 bp fragment was excised from the ecb gene. After religation, the deletion derivative of the ecb gene (ecb ⁇ , see FIGS. 11 and 21) was obtained cloned in pBluescript SK " (pSKecb ⁇ ) after cutting out the fragments, the omega elements ⁇ Km and ⁇ Gm were inserted in their place.
  • the plasmid pSKvJb which contained the vJb gene, was digested with ⁇ ssHII, whereby a 210 bp fragment was excised from the vdh gene. After religation, the deletion derivative of the vdh gene (vdhA, see Figs. Lo and 2o) was obtained cloned in pBluescript SK (pSKvdh ⁇ ). In addition, after cutting out the fragment, the omega elements _ ⁇ Km and ⁇ Gm were inserted in its place.
  • the plasmid pSK ⁇ t which contained the aat gene, was digested with ⁇ wHII, whereby a 59 bp fragment was cut out of the aat gene. After religation, the deletion derivative of the ⁇ ⁇ t gene (aatA, see Fig. Lr and
  • the "suicide plasmid" was pSUP202 (Simon et al. 1983. In: A. Pühler. Molecular genetics of the bacteria-plant interaction. Springer Verlag, Berlin, Heidelberg, New York, pp. 98-106.) used.
  • the inactivated genes fcs ⁇ Km and c ⁇ Gm were isolated from the plasmids pSK / ⁇ s ⁇ Km and pSK / c ⁇ ⁇ Gm after stl digestion and ligated with PstL cut pSUP202 DNA. The ligation batches were transformed to E. coli S17-1. The selection was made on LB medium containing tetracycline with kanamycin or gentamycin. Kanamycin-resistant transformants were obtained whose hybrid plasmid (pSUP / cs ⁇ Km) contained the inactivated yes ⁇ Km gene. The corresponding hybrid plasmid (pSUP / ⁇ s ⁇ Gm) of the gentamycin-resistant transformants contained the inactivated Genevacs ⁇ Gm.
  • the inactivated genes ecb ⁇ Km and ecb ⁇ Gm were isolated from the plasmids pSKecb ⁇ Km and pSKecb ⁇ Gm after EcoRI digestion and ligated with EcoRI cut pSUP202 DNA.
  • the ligation batches were transformed according to E. coli S17-1. The selection was made on LB medium containing tetracycline with kanamycin or gentamycin. Kanamycin-resistant transformants were obtained, whose Hybrid plasmid (pSUPecb ⁇ Km) containing the inactivated ecb ⁇ Km gene.
  • the corresponding hybrid plasmid (pSUPecb ⁇ Gm) of the gentamycin-resistant transformants contained the inactivated gene ecb ⁇ Gm.
  • the inactivated genes vJb ⁇ Km and vJb ⁇ Gm were isolated from the plasmids pSKv ⁇ b ⁇ Km and pSKvtib ⁇ Gm after EcoRI digestion and ligated with EcoRI cut pSUP202 DNA.
  • the ligation batches were transformed according to E. coli S17-1. The selection was made on LB medium containing tetracycline with kanamycin or gentamycin. Kanamycin-resistant transformants were obtained whose hybrid plasmid (pSUPvdb ⁇ Km) contained the inactivated gene v b ⁇ Km.
  • the corresponding hybrid plasmid (pSUPvJb ⁇ Gm) of the gentamycin-resistant transformants contained the inactivated gene vJb ⁇ Gm.
  • the inactivated genes aat ⁇ Km and ⁇ t ⁇ Gm were isolated from the plasmids pSK ⁇ t ⁇ Km and pSK ⁇ t ⁇ Gm after EcoRI digestion and ligated with EcoRI cut pSUP202 DNA. The ligation batches were transformed according to E. coli S17-1. The selection was made on LB medium containing tetracycline with kanamycin or gentamycin. Kanamycin-resistant transformants were obtained whose hybrid plasmid (pSUP ⁇ t ⁇ Km) contained the inactivated gene aat ⁇ Km. The corresponding hybrid plasmid (pSUP ⁇ t ⁇ Gm) of the gentamycin-resistant transformants contained the inactivated gene ⁇ t ⁇ Gm.
  • the plasmid After conjugative transfer of this hybrid plasmid into a pseudomonad, the plasmid is integrated into the genome by homologous recombination at the point at which the intact gene is located (first "cross over”). In this way, a "heterogeneous" strain is created which has both an intact and a deletion-inactivated gene, which are separated from one another by the pHE55 DNA.
  • Strains have the resistance encoded by the vector and also have an active sacB gene.
  • second homologous recombination event second "cross over"
  • the pHE55 DNA together with the intact gene is now to be separated from the genomic DNA.
  • This recombination event creates a strain that only has the inactivated gene.
  • the inactivated gene fcs A was isolated from the plasmid pSK / cs ⁇ after stl digestion and ligated with Pstl cut pHE55 DNA. The ligation mixture was transformed into E. coli S17-1. The selection was made on LB containing tetracycline Medium. Tetracycline-resistant transformants were obtained whose hybrid plasmid (pHEfcsA) contained the inactivated GenevacsA.
  • the inactivated echA gene was isolated from the plasmid pSKecb ⁇ after EcoRI digestion and treated with mung bean nuclease (generation of smooth
  • the fragment was ligated with BamHl cut and mung bean nuclease treated pHE55 DNA.
  • the ligation mixture was transformed into E. coli S17-1.
  • the selection was made on LB medium containing tetracycline. Tetracycline-resistant transformants were obtained whose hybrid plasmid (pHEecb ⁇ ) contained the inactivated gene echA.
  • the inactivated gene vdhA was isolated from the plasmid pSKvüfb ⁇ after EcoRI digestion and treated with mung bean nuclease. The fragment was ligated with BamHl cut and Mung Bean nuclease treated pH ⁇ 55 DNA. The ligation mixture was transformed into E. coli S17-1. The selection was made on
  • Tetracycline-resistant transformants were obtained whose hybrid plasmid (pHEv b ⁇ ) contained the inactivated gene vJb ⁇ .
  • the inactivated gene aatA was isolated from the plasmid pSK ⁇ t ⁇ after EcoRI digestion and treated with mung bean nuclease. The fragment was made with
  • the Pseudomonas sp. HR199 was used as a recipient in conjugation experiments in which strains of E. coli S17-1 were used as donors, which contained the hybrid plasmids of pSUP202 listed below.
  • the transconjugants were selected on mineral medium containing gluconate, which contained the antibiotic corresponding to the ⁇ element. "Homogenote” (exchange of the intact gene for the gene inactivated by ⁇ -element insertion by double “cross over”) and "heterogenote” (integration of the hybrid plasmid into the genome by simple "cross over”) transconjugants could be coded using pSUP202 Tetracycline resistance can be distinguished.
  • the mutants Pseudomonas sp. HR199 c.s ⁇ Km and Pseudomonas sp. HR199 fcs ⁇ Gm were conjugated by Pseudomonas sp. Get HR199 with E. coli S17-1 (pSUP / cs ⁇ Km) or E. coli S17-1 (pSUP / ⁇ Gm).
  • the exchange of the intact fcs gene for the gene inactivated by ⁇ Km or ⁇ Gm (fcs ⁇ Km or fcs ⁇ Gm) was verified by means of DNA sequencing.
  • the mutants Pseudomonas sp. HR199 ecb ⁇ Km and Pseudomonas sp. HR199 ech ⁇ Gm were conjugated from Pseudomonas sp. Receive HR199 with E. coli S17-1 (pSUPecb ⁇ Km) or E. coli S17-1 (pSUPecb ⁇ Gm).
  • the exchange of the intact ecb gene for the gene inactivated by ⁇ Km or ⁇ Gm (ecb ⁇ Km or ecb ⁇ Gm) was verified by means of DNA sequencing.
  • ⁇ Gm were obtained after conjugation of Pseudomonas sp. Receive HR199 with E. coli S17-1 (pSUPv b ⁇ Km) or E. coli S17-1 (pSUPvJb ⁇ Gm). The exchange of the intact vJb gene against the gene inactivated by ⁇ Km or ⁇ Gm (wtTz ⁇ Km or vJb ⁇ Gm) was verified by means of DNA sequencing.
  • the mutant Pseudomonas sp. HR199 cs ⁇ KmvJb ⁇ Gm were conjugated by Pseudomonas sp. HR199 / cs ⁇ Km obtained with E. coli S17-1 (pSUPvJb ⁇ Gm).
  • the exchange of the intact vdh gene for the gene inactivated by ⁇ Gm (vdh ⁇ Gm) was verified by DNA sequencing.
  • the mutant Pseudomonas sp. HR199 vJb ⁇ Km ⁇ t ⁇ Gm were after conjugation of Pseudomonas sp. HR199 viib ⁇ Km with E. coli S17-1 (pSUP ⁇ t ⁇ Gm) obtained.
  • the exchange of the intact ⁇ t gene for the gene inactivated by ⁇ Gm (aat ⁇ Gm) was verified by means of DNA sequencing.
  • the mutant Pseudomonas sp. HR199 vJb ⁇ Kmecb ⁇ Gm were conjugated to Pseudomonas sp. HR199 vtib ⁇ Km obtained with E. coli S17-1 (pSUPecb ⁇ Gm).
  • the exchange of the intact ecb gene for the gene inactivated by ⁇ Gm (ech ⁇ Gm) was verified by DNA sequencing.
  • the Pseudomonas sp. HR199 ⁇ s ⁇ Km, Pseudomonas sp. HR199 ecb ⁇ Km, Pseudomonas sp. HR199 vdh ⁇ K and Pseudomonas sp. HR199 aat ⁇ Km were used as a recipient in conjugation experiments in which strains of E. coli S17-1 were used as donors, which contained the hybrid plasmids of pHE55 listed below.
  • the "heterogeneous" transconjugants were selected on mineral medium containing gluconate, which contained the antibiotic corresponding to the ⁇ element in addition to tetracycline (resistance coded pHE55).
  • transconjugants After streaking on sucrose-containing mineral medium, transconjugants were obtained which had eliminated the vector DNA by a second recombination event (second "cross over”).
  • second "cross over” By spreading on mineral medium without antibiotics or with the antibiotic corresponding to the ⁇ element, it was possible to identify the mutants in which the gene inactivated by ⁇ element had been replaced by the gene inactivated by deletion (no antibiotic resistance).
  • the mutant Pseudomonas sp. HR199 ⁇ c.sA was obtained after conjugation of Pseudomonas sp. HR199 cs ⁇ Km obtained with E. coli S17-1 (pHEfcsA).
  • the exchange of the gene inactivated by ⁇ Km (fcs ⁇ K) for the gene inactivated by deletion (fcsA) was verified by means of DNA sequencing.
  • the mutants Pseudomonas sp. HR199 echA was conjugated to Pseudomonas sp. HR199 ecb ⁇ Km obtained with E. coli S17-1 (pHEecb ⁇ ).
  • the exchange of the gene inactivated by ⁇ Km (ecb ⁇ Km) for the gene inactivated by deletion (echA) was verified by means of DNA sequencing.
  • the mutants Pseudomonas sp. HR199 vdhA was conjugated to Pseudomonas sp. HR199 vdh ⁇ Km. obtained with E. coli S17-1 (pHEvJb ⁇ ).
  • the exchange of the gene inactivated by ⁇ Km (vdh ⁇ Km) for the gene inactivated by deletion (vdhA) was verified by means of DNA sequencing.
  • the mutants Pseudomonas sp. HR199 aatA was conjugated to Pseudomonas sp. HR199 ⁇ t ⁇ Km obtained with E. coli S17-1 (pHE ⁇ / ⁇ ).
  • the exchange of the gene inactivated by ⁇ Km ( ⁇ t ⁇ Km) for the gene inactivated by deletion (aatA) was verified by means of DNA sequencing.
  • the production fermenter was inoculated with 10 g / 1 yeast extract and 0.37 g / 1 acetic acid.
  • the fermenter contained 9.9 liters of medium with the following composition: 1.5 g / 1 yeast extract, 1.6 g / 1 KH 2 PO 4 , 0.2 g / 1 NaCl, 0.2 g / 1 MgSO 4 .
  • the pH was adjusted to pH 7.0 with sodium hydroxide solution. After sterilization, 4 g of eugenol was added to the medium.
  • the temperature was 32 ° C, the ventilation 3
  • FIG. la to lr
  • calA * part of the inactivated gene of the coniferyl alcohol dehydrogenase calB *: part of the inactivated gene of the coniferylaldehyde dehydrogenase fcs *: part of the inactivated gene of the ferulic acid-CoA synthetase ech *: part of the inactivated gene of the enoyl-CoA hydratase aldolase vdh * : Part of the inactivated gene of vanillin dehydrogenase aat *: Part of the inactivated gene of beta-ketothiolase
  • restriction enzyme interfaces provided with "*" were used for the construction, but are no longer functional in the resulting construct.
  • FIG. 2a nucleotide sequence of the calA ⁇ Km gene structure
  • FIG. 2b nucleotide sequence of the gene structure calA ⁇ Gm
  • FIG. 2c nucleotide sequence of the calAA gene structure
  • FIG. 2d Nucleotide sequence of the gene structure calB ⁇ Km
  • FIG. 2e nucleotide sequence of the calB ⁇ Gm gene structure
  • FIG. 2f Nucleotide sequence of the gene structure calBA
  • FIG. 2g nucleotide sequence of the gene structure fcs ⁇ Km
  • FIG. 2h nucleotide sequence of the gene structure fcs ⁇ Gm
  • FIG. 2i nucleotide sequence of the gene structure fcsA
  • FIG. 2j nucleotide sequence of the gene structure ecb ⁇ Km
  • FIG. 2k nucleotide sequence of the gene structure ecb ⁇ Gm
  • FIG. 21 Nucleotide sequence of the gene structure echA
  • FIG. 2m nucleotide sequence of the gene structure vtib ⁇ Km
  • FIG. 2n nucleotide sequence of the gene structure vJb ⁇ Gm
  • FIG. 2o Nucleotide sequence of the gene structure vdhA
  • FIG. 2p nucleotide sequence of the gene structure aat ⁇ Km
  • FIG. 2q nucleotide sequence of the gene structure aat ⁇ Gm
  • FIG. 2r nucleotide sequence of the gene structure aatA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to a transformed and/or mutagenated unicellular or multicellular organism which is characterized in that enzymes of the eugenol and/or ferulic acid catabolism are deactivated in such a manner that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillinic acid are accumulated.

Description

Konstruktion von Produktionsstämmen für die Herstellung von substituierten Phenolen durch gezielte Inaktivierungen von Genen des Eugenol- und Ferulasäure-KatabolismusConstruction of production strains for the production of substituted phenols through targeted inactivation of genes of eugenol and ferulic acid catabolism
Die vorliegende Erfindung betrifft die Konstruktion von Produktionsstämmen und ein Verfahren für die Herstellung substituierter Methoxyphenole, insbesondere Vanillin.The present invention relates to the construction of production strains and a method for the production of substituted methoxyphenols, in particular vanillin.
Die DE-A 4 227 076 (Verfahren zur Herstellung substituierter Methoxyphenole und dafür geeigneter Mikroorganismus) beschreibt die Herstellung substituierter Methoxyphenole mit einer neuen Pseudomonas sp.. Ausgangsmaterial ist hier Eugenol und die Produkte sind Ferulasäure, Vanillinsäure, Coniferylalkohol und Coni- ferylaldehyd.DE-A 4 227 076 (process for the preparation of substituted methoxyphenols and a suitable microorganism) describes the preparation of substituted methoxyphenols with a new Pseudomonas sp. The starting material here is eugenol and the products are ferulic acid, vanillic acid, coniferyl alcohol and coniferyl aldehyde.
Ebenfalls 1995 erscheint ein umfangreiches Review über die Biotransformationsmöglichkeiten mit Ferulasäure von Rosazza et al. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol. 15:457-471).Also in 1995 an extensive review of the biotransformation possibilities with ferulic acid by Rosazza et al. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol. 15: 457-471).
Die Gene und Enzyme zur Synthese von Coniferylalkohol, Coniferylaldehyd,The genes and enzymes for the synthesis of coniferyl alcohol, coniferyl aldehyde,
Ferulasäure, Vanillin und Vanillinsäure aus Pseudomonas sp. wurden in EP-A 0 845 532 beschrieben.Ferulic acid, vanillin and vanillic acid from Pseudomonas sp. have been described in EP-A 0 845 532.
Die Enzyme zur Umsetzung von tra/w-Ferulasäure zu trc s-Feruloyl-SCoA Ester und weiter zum Vanillin, sowie das Gen für die Spaltung des Esters wurden vomThe enzymes for the conversion of tra / w-ferulic acid to trc s-feruloyl-SCoA ester and further to vanillin, as well as the gene for the cleavage of the ester were from
Institute of Food Research, Norwich, GB, in WO 97/35999 beschrieben. 1998 erscheint der Inhalt des Patents auch als wissenschaftliche Publikationen (Gasson et al. 1998. Metabolism of ferulic acid to vanillin. J. Biol. Chem. 273:4163-4170; Narbad and Gasson 1998. Metabolism of ferulic acid via vanillin using a novel CoA- dependent pathway in a newly isolated strain of Pseudomonas fluorescens. Micro- biology 144: 1397 - 1405). Die DE-A 195 32 317 beschreibt die fermentative Gewinnung von Vanillin aus Ferulasäure mit Amycolatopsis sp. in hohen Ausbeuten.Institute of Food Research, Norwich, GB, described in WO 97/35999. In 1998 the content of the patent also appeared as scientific publications (Gasson et al. 1998. Metabolism of ferulic acid to vanillin. J. Biol. Chem. 273: 4163-4170; Narbad and Gasson 1998. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly isolated strain of Pseudomonas fluorescens. Microbiology 144: 1397-1405). DE-A 195 32 317 describes the fermentative production of vanillin from ferulic acid with Amycolatopsis sp. in high yields.
Die bekannten Verfahren haben den Nachteil, daß entweder nur sehr geringe Ausbeuten an Vanillin erzielt werden, oder von relativ teuren Edukten ausgegangen wird. Bei dem letztgenannten Verfahren (DE-A 195 32 317) werden zwar hohe Ausbeuten erzielt, jedoch bedingt der Einsatz von Pseudomonas sp. HR199 und Amycolatopsis sp. HR167 für die Biotransformation von Eugenol zu Vanillin eine zweistufige Fermentationsführung und somit einen erheblichen Kosten- und Zeitaufwand.The known processes have the disadvantage that either only very low yields of vanillin are achieved or that relatively expensive starting materials are used. In the latter method (DE-A 195 32 317) high yields are achieved, but the use of Pseudomonas sp. HR199 and Amycolatopsis sp. HR167 for the biotransformation of eugenol to vanillin a two-stage fermentation control and therefore a considerable expense and time.
Aufgabe der vorliegenden Erfindung ist es daher, Organismen zu konstruieren, die in der Lage sind den preiswerten Rohstoff Eugenol in einem einstufigen Prozeß zu Vanillin umzusetzen.The object of the present invention is therefore to construct organisms which are able to convert the inexpensive raw material eugenol into vanillin in a one-step process.
Diese Aufgabe wird durch die Konstruktion von Produktionsstämmen ein- oder mehrzelliger Organismen gelöst, die dadurch gekennzeichnet sind, daß Enzyme des Eugenol- und/oder Ferulasäure-Katabolismus derart inaktiviert sind, daß eine Akkumulation der Intermediate Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure erfolgt.This object is achieved by the construction of production strains of single or multicellular organisms, which are characterized in that enzymes of eugenol and / or ferulic acid catabolism are inactivated such that an accumulation of the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or Vanillic acid takes place.
Der Produktionsstamm kann einzellig oder mehrzellig sein. Demgemäß können Gegenstand der Erfindung Mikroorganismen, Pflanzen oder Tiere sein. Darüber hinaus können auch Extrakte die aus dem Produktionsstamm gewonnen werden zum Einsatz kommen. Erfindungsgemäß werden vorzugsweise einzellige Organismen eingesetzt. Hierbei kann es sich um Mikroorganismen, tierische oder pflanzliche Zellen handeln. Besonders bevorzugt ist erfindungsgemäß der Einsatz von Pilzen und Bakterien. Höchst bevorzugt sind Bakterienarten. Unter den Bakterien können insbesondere Rhodococcus-, Pseudomonas- und Esche ichia- Arten nach Veränderung des Eugenol- und/oder Ferulasäure-Katabolismus zum Einsatz kommen. Die Gewinnung der erfindungsgemäß einsetzbaren Organismen kann im einfachsten Fall mittels bekannter, konventioneller mikrobiologischer Methoden erfolgen. So kann die Enzymaktivität der am Eugenol- und/oder Ferulasäure-Katabolismus beteiligten Proteine durch den Einsatz von Enzym-Hemmstoffen verändert werden. Darüber hinaus kann die Enzymaktivität der am Eugenol- und/oder Ferulasäure- Katabolismus beteiligten Proteine durch Mutation der für diese Proteine kodierenden Gene verändert werden. Derartige Mutationen können nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise durch UV -Bestrahlung oder muta- tionsauslösende Chemikalien.The production strain can be single-cell or multi-cell. Accordingly, the subject of the invention can be microorganisms, plants or animals. In addition, extracts obtained from the production master can also be used. According to the invention, single-celled organisms are preferably used. These can be microorganisms, animal or plant cells. The use of fungi and bacteria is particularly preferred according to the invention. Bacteria are highly preferred. Among the bacteria, Rhodococcus, Pseudomonas and Esche ichia species in particular can be used after changing the eugenol and / or ferulic acid catabolism. In the simplest case, the organisms which can be used according to the invention can be obtained by means of known, conventional microbiological methods. The enzyme activity of the proteins involved in the catabolism of eugenol and / or ferulic acid can be changed by the use of enzyme inhibitors. In addition, the enzyme activity of the proteins involved in the eugenol and / or ferulic acid catabolism can be changed by mutating the genes coding for these proteins. Such mutations can be generated undirected using classic methods, such as, for example, UV radiation or chemicals that trigger mutations.
Ebenso sind gentechnische Methoden zur Gewinnung der erfindungsgemäßen Organismen geeignet, wie Deletionen, Insertionen und/oder Nukleotid- Austausche. So können beispielsweise die Gene der Organismen mit Hilfe von anderen DNA-Elementen (Ω-Elemente) inaktiviert werden. Ebenso können mittels geeigneter Vektoren Austausche der intakten Gene gegen veränderte und/oder inaktivierte Gen- Strukturen durchgeführt werden. Die zu inaktivierenden Gene und die für die Inaktivierung eingesetzten DNA-Elemente können dabei durch klassische Klonierungstechniken oder durch Polymerase-Kettenreaktionen (PCR) gewonnen werden.Genetic engineering methods for obtaining the organisms according to the invention are also suitable, such as deletions, insertions and / or nucleotide exchanges. For example, the genes of the organisms can be inactivated with the help of other DNA elements (Ω elements). Likewise, the intact genes can be exchanged for modified and / or inactivated gene structures by means of suitable vectors. The genes to be inactivated and the DNA elements used for the inactivation can be obtained by classic cloning techniques or by polymerase chain reactions (PCR).
In einer möglichen Ausgestaltung der Erfindung kann beispielsweise der Eugenol- sowie der Ferulasäure-Katabolismus durch Ω-Element-Insertion oder Einführen von Deletionen in entsprechende Gene verändert werden. Hierbei können die Funktionen der Gene, die für Dehydrogenasen, Synthetasen, Hydratasen-Aldolasen, Thiolasen oder Demethylasen kodieren, mittels der oben genannten gentechnischen Methoden inaktiviert werden, so daß die Erzeugung der betreffenden Enzyme blockiert ist. Vorzugsweise handelt es sich um die Gene, die für Coniferylalkohol-Dehydrogenasen, Coniferylaldehyd-Dehydrogenasen, Ferulasäure-CoA-Synthetasen, Enoyl-CoA- Hydratasen-Aldolasen, beta-Ketothiolasen, Vanillin-Dehydrogenasen oder Vanillin- säure-Demethylasen kodieren. Ganz besonders bevorzugt sind Gene, die die in der EP-A 0845532 angegebenen Aminosäuresequenzen kodieren und/oder deren Allel- variationen kodierenden Nukleotidsequenzen. Gegenstand der Erfindung sind demgemäß auch Gen-Strukturen zur Herstellung transformierter Organismen und Mutanten.In a possible embodiment of the invention, for example, the eugenol and ferulic acid catabolism can be changed by inserting Ω elements or introducing deletions into corresponding genes. The functions of the genes which code for dehydrogenases, synthetases, hydratase aldolases, thiolases or demethylases can be inactivated using the abovementioned genetic engineering methods, so that the production of the enzymes in question is blocked. These are preferably the genes which code for coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, ferulic acid-CoA synthetases, enoyl-CoA hydratase aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillinic acid demethylases. Genes which encode the amino acid sequences given in EP-A 0845532 and / or their nucleotide sequences encoding allelic variations are very particularly preferred. The invention accordingly also relates to gene structures for producing transformed organisms and mutants.
Vorzugsweise werden Gen-Strukturen zur Gewinnung der Organismen und Mutanten eingesetzt, bei denen die für Dehydrogenasen, Synthetasen, Hydratasen-Aldolasen, Thiolasen oder Demethylasen kodierenden Nukleotidsequenzen inaktiviert sind. Besonders bevorzugt sind Gen-Strukturen, bei dene die für Coniferylalkohol- Dehydrogenasen, Coniferylaldehyd-Dehydrogenasen, Ferulasäure-CoA-Synthetasen, Enoyl-CoA-Hydratasen- Aldolasen, beta-Ketothiolasen, Vanillin-Dehydrogenasen oder Vanillinsäure-Demethylasen kodierenden Nukleotidsequenzen inaktiviert sind. Ganz besonders bevorzugt sind Gen-Strukturen, die die in den Figuren la bis lr angegebenen Strukturen mit den in den Figuren 2a bis 2r wiedergegebenen Nukleotidsequenzen und/oder deren Allelvariationen kodierenden Nukleotidsequen- zen aufweisen. Besonders bevorzugt sind hierbei Nukleotidsequenzen von 1 bis 18.Gene structures are preferably used to obtain the organisms and mutants in which the nucleotide sequences coding for dehydrogenases, synthetases, hydratase aldolases, thiolases or demethylases are inactivated. Particularly preferred are gene structures in which the nucleotide sequences coding for coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, ferulic acid-CoA synthetases, enoyl-CoA hydratase aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases are inactive. Gene structures which have the structures given in FIGS. 1a to 1r with the nucleotide sequences shown in FIGS. 2a to 2r and / or their allele variations coding nucleotide sequences are very particularly preferred. Nucleotide sequences from 1 to 18 are particularly preferred.
Die Erfindung schließt auch die Teilsequenzen dieser Gen-Strukturen sowie funktio- nelle Äquivalente ein. Unter funktionellen Äquivalenten sind solche Derivate der DNA zu verstehen, bei denen einzelne Nukleobasen ausgetauscht worden sind (Wobbeiaustausche), ohne die Funktion zu ändern. Auch auf Proteinebene könnenThe invention also includes the partial sequences of these gene structures as well as functional equivalents. Functional equivalents are to be understood as those derivatives of DNA in which individual nucleobases have been exchanged (Wobbe exchanges) without changing their function. Also at the protein level
Aminosäuren ausgetauscht werden, ohne daß eine Veränderung der Funktion die Folge ist.Amino acids can be exchanged without changing the function.
Den Gen-Strukturen können ein oder mehrere DNA-Sequenzen vor- und/oder nach- geschaltet sein. Durch Klonierung der Gen-Strukturen sind Plasmide bzw. Vektoren erhältlich, die zur Transformation und/oder Transfektion eines Organismus und/oder zur konjugativen Übertragung in einen Organismus geeignet sind.One or more DNA sequences can be connected upstream and / or downstream of the gene structures. By cloning the gene structures, plasmids or vectors are obtainable which are suitable for the transformation and / or transfection of an organism and / or for the conjugative transfer into an organism.
Gegenstand der Erfindung sind ferner Plasmide und/oder Vektoren zur Herstellung der erfindungsgemäßen transformierten Organismen und Mutanten. Diese enthalten demgemäß die beschriebenen Gen-Strukturen. Die vorliegende Erfindung betrifft demgemäß auch Organismen, die die genannten Plasmide und/oder Vektoren enthalten.The invention further relates to plasmids and / or vectors for producing the transformed organisms and mutants according to the invention. Accordingly, these contain the gene structures described. The present invention relates to accordingly also organisms which contain the plasmids and / or vectors mentioned.
Die Art der Plasmide und/oder Vektoren hängt von deren Einsatzzweck ab. Um z. B. die intakten Gene des Eugenol- und/oder Ferulasäure-Katabolismus in Pseudomona- den gegen die durch Omega-Elemente inaktivierten Gene austauschen zu können, benötigt man Vektoren, die einerseits in Pseudomonaden übertragen werden können (konjugativ übertragbare Plasmide), andererseits dort jedoch nicht repliziert werden können und somit in Pseudomonaden instabil sind (sogenannte Suizid-Plasmide). DNA- Abschnitte, die mit Hilfe eines solchen Plasmidsystems in Pseudomonaden übertragen werden, können nur erhalten bleiben, wenn sie durch homologe Rekombination in das Genom der Bakterienzelle integriert werden.The type of plasmids and / or vectors depends on their intended use. To z. For example, to be able to exchange the intact genes of eugenol and / or ferulic acid catabolism in pseudomonas against the genes inactivated by omega elements, vectors are required which can be transferred on the one hand in pseudomonads (conjugatively transferable plasmids) but on the other hand there cannot be replicated and are therefore unstable in pseudomonas (so-called suicide plasmids). DNA sections which are transferred into pseudomonads with the aid of such a plasmid system can only be preserved if they are integrated into the genome of the bacterial cell by homologous recombination.
Die beschriebenen Gen-Strukturen, Vektoren und Plasmide können zur Herstellung verschiedener transformierter Organismen oder Mutanten verwendet werden. Mittels der gennanten Gen-Strukturen können intakte Nukleinsäuresequenzen gegen veränderte und/oder inaktivierte Gen-Strukturen ausgetauscht werden. In den durch Transformation oder Transfektion oder Konjugation erhältlichen Zellen erfolgt durch homologe Rekombination ein Austausch des intakten Gens gegen die veränderte und/oder inaktivierte Gen-Struktur, wodurch die resultierenden Zellen nur noch über die veränderte und/oder inaktivierte Gen-Struktur im Genom verfügen. So können erfindungsgemäß vorzugsweise Gene derart verändert und/oder inaktiviert werden, daß die betreffenden Organismen Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure zu erzeugen vermögen.The gene structures, vectors and plasmids described can be used to produce various transformed organisms or mutants. By means of the named gene structures, intact nucleic acid sequences can be exchanged for modified and / or inactivated gene structures. In the cells obtainable by transformation or transfection or conjugation, the intact gene is exchanged for the modified and / or inactivated gene structure by homologous recombination, as a result of which the resulting cells only have the modified and / or inactivated gene structure in the genome. Thus, according to the invention, genes can preferably be changed and / or inactivated such that the organisms in question are able to produce coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or vanillic acid.
Erfindungsgemäß derart konstruierte Produktionsstämme sind beispielsweise Mutanten des Stammes Pseudomonas sp. HR199 (DSM 7063) der in der DE-A 4 227 076 und der EP-A 0845532 genau beschrieben wurde, wobei sich unter anderem die entsprechenden Genstrukturen aus den Figuren la bis lr in Verbindung mit den Figuren 2a bis 2r ergeben: 1. Pseudomonas sp. HR199cα 4ΩKm, enthaltend das durch ΩKm inaktivierte calA-Gen an Stelle des intakten cα 4-Gens kodierend für Coniferylalkohol- Dehydrogenase (Fig. la; Fig. 2a).Production strains constructed in accordance with the invention are, for example, mutants of the strain Pseudomonas sp. HR199 (DSM 7063), which was described in detail in DE-A 4 227 076 and EP-A 0845532, where, among other things, the corresponding gene structures result from FIGS. 1a to 1r in conjunction with FIGS. 2a to 2r: 1. Pseudomonas sp. HR199cα 4ΩKm, containing the ΩKm inactivated calA gene instead of the intact cα 4 gene coding for coniferyl alcohol dehydrogenase (Fig. La; Fig. 2a).
2. Pseudomonas sp. HR199cα/ylΩGm, enthaltend das durch ΩGm inaktivierte calA-Gen an Stelle des intakten calA-Gens kodierend für Coniferylalkohol-2. Pseudomonas sp. HR199cα / ylΩGm, containing the ΩGm-inactivated calA gene instead of the intact calA gene coding for coniferyl alcohol
Dehydrogenase (Fig. lb; Fig. 2b).Dehydrogenase (Fig. Lb; Fig. 2b).
3. Pseudomonas sp. HR199cα/^4Δ, enthaltend das durch Deletion inaktivierte calA-Gen an Stelle des intakten calA-Gens kodierend für Coniferylalkohol- Dehydrogenase (Fig. lc; Fig. 2c). 4. Pseudomonas sp. HR199cα/JδΩKm, enthaltend das durch ΩKm inaktivierte calB-Gen an Stelle des intakten calB-Gens kodierend für Coniferylaldehyd- Dehydrogenase (Fig. ld; Fig. 2d)3. Pseudomonas sp. HR199cα / ^ 4Δ, containing the deletion inactivated calA gene instead of the intact calA gene coding for coniferyl alcohol dehydrogenase (FIG. 1c; FIG. 2c). 4. Pseudomonas sp. HR199cα / J δΩKm, containing the ΩKm-inactivated calB gene instead of the intact calB gene coding for coniferylaldehyde dehydrogenase (FIG. 1d; FIG. 2d)
5. Pseudomonas sp. HR199cα/\BΩGm, enthaltend das durch ΩGm inaktivierte calB-Gen an Stelle des intakten cα/5-Gens kodierend für Coniferylaldehyd- Dehydrogenase (Fig. le; Fig. 2e).5. Pseudomonas sp. HR199cα / \ BΩGm, containing the ΩGm-inactivated calB gene instead of the intact cα / 5 gene coding for coniferylaldehyde dehydrogenase (Fig. Le; Fig. 2e).
6. Pseudomonas sp. HR199cα/5Δ, enthaltend das durch Deletion inaktivierte cα/5-Gen an Stelle des intakten calB-Gens kodierend für Coniferylaldehyd- Dehydrogenase(Fig.lf; Fig. 2f).6. Pseudomonas sp. HR199cα / 5Δ, containing the deletion inactivated cα / 5 gene instead of the intact calB gene coding for coniferylaldehyde dehydrogenase (Fig. 1f; Fig. 2f).
7. Pseudomonas sp. HR199/αsΩKm, enthaltend das durch ΩKm inaktivierte fcs- Gen an Stelle des intakte «-Gens kodierend für Ferulasäure-CoA-Synthe- tase ( Fig.lg; Fig. 2g).7. Pseudomonas sp. HR199 / αsΩKm, containing the fcs gene inactivated by ΩKm instead of the intact «gene coding for ferulic acid-CoA synthase (Fig.lg; Fig. 2g).
8. Pseudomonas sp. HR199/αsΩGm, enthaltend das durch ΩGm inaktivierte fcs- Gen an Stelle des intakten fcs-Gens kodierend für Ferulasäure-CoA-Synthe- tase (Fig.lh; Fig. 2h). 9. Pseudomonas sp. HR199/csΔ, enthaltend das durch Deletion inaktivierte fcs-8. Pseudomonas sp. HR199 / αsΩGm, containing the fcs gene inactivated by ΩGm instead of the intact fcs gene coding for ferulic acid-CoA synthase (FIG. 1h; FIG. 2h). 9. Pseudomonas sp. HR199 / csΔ containing the deletion inactivated fcs-
Gen an Stelle des intakten ^cs-Gens kodierend für Ferulasäure-CoA-Synthe- tase (Fig.li; Fig. 2i).Gene in place of the intact ^ cs gene coding for ferulic acid-CoA synthase (Fig.li; Fig. 2i).
10. Pseudomonas sp. HR199ecbΩKm, enthaltend das durch ΩKm inaktivierte ecb-Gen an Stelle des intakten ecb-Gens kodierend für Enoyl-CoA- Hydratase-Aldolase (Fig.lj; Fig. 2j). 11. Pseudomonas sp. HR199ecbΩGm, enthaltend das durch ΩGm inaktivierte ecb-Gen an Stelle des intakten ecb-Gens kodierend für Enoyl-CoA-Hydra- tase-Aldolase (Fig.lk; Fig. 2k).10. Pseudomonas sp. HR199ecbΩKm, containing the ΩKm inactivated ecb gene instead of the intact ecb gene coding for enoyl-CoA hydratase aldolase (Fig.lj; Fig. 2j). 11. Pseudomonas sp. HR199ecbΩGm, containing the ecb gene inactivated by ΩGm instead of the intact ecb gene coding for enoyl-CoA hydratase aldolase (FIG. 1k; FIG. 2k).
12. Pseudomonas sp. HR199ecbΔ, enthaltend das durch Deletion inaktivierte ech- Gen an Stelle des intakten ecb-Gens kodierend für Enoyl-CoA-Hydratase-12. Pseudomonas sp. HR199ecbΔ, containing the deletion inactivated ech gene instead of the intact ecb gene coding for enoyl-CoA hydratase
Aldolase (Fi.ll; Fig. 21).Aldolase (Fig. 21; Fig. 21).
13. Pseudomonas sp. HR199 αtΩKm, enthaltend das durch ΩKm inaktivierte aat-Gen an Stelle des intakten aat-Gens kodierend für beta-Ketothiolase (Fig. Im; Fig. 2m). 14. Pseudomonas sp. HR199 tΩGm, enthaltend das durch ΩGm inaktivierte α t-Gen an Stelle des intakten ααt-Gens kodierend für beta-Ketothiolase (Fig. In; Fig. 2n).13. Pseudomonas sp. HR199 αtΩKm, containing the aat gene inactivated by ΩKm instead of the intact aat gene coding for beta-ketothiolase (Fig. Im; Fig. 2m). 14. Pseudomonas sp. HR199 tΩGm, containing the α t gene inactivated by ΩGm instead of the intact ααt gene coding for beta-ketothiolase (Fig. In; Fig. 2n).
15. Pseudomonas sp. HR199ααtΔ, enthaltend das durch Deletion inaktivierte aat- Gen an Stelle des intakten ααt-Gens kodierend für beta-Ketothiolase (Fig.lo; 2o).15. Pseudomonas sp. HR199ααtΔ, containing the deletion inactivated aat gene instead of the intact ααt gene coding for beta-ketothiolase (Fig.lo; 2o).
16. Pseudomonas sp. HR199vJbΩKm, enthaltend das durch ΩKm inaktivierte vdh-Gen an Stelle des intakten vdb-Gens kodierend für Vanillin-Dehydroge- nase (Fig.lp; Fig. 2p).16. Pseudomonas sp. HR199vJbΩKm, containing the vdh gene inactivated by ΩKm instead of the intact vdb gene coding for vanillin dehydrogenase (FIG. 1p; FIG. 2p).
17. Pseudomonas sp. HR199vrfbΩGm, enthaltend das durch ΩGm inaktivierte vJb-Gen an Stelle des intakten vdh-Gens kodierend für Vanillin-Dehydroge- nase (Fig.lq; Fig. 2q).17. Pseudomonas sp. HR199vrfbΩGm, containing the vJb gene inactivated by ΩGm instead of the intact vdh gene coding for vanillin dehydrogenase (FIG. 1q; FIG. 2q).
18. Pseudomonas sp. HR199v bΔ, enthaltend das durch Deletion inaktivierte vdh-Gen an Stelle des intakten v b-Gens kodierend für Vanillin-Dehydroge- nase (Fig.lr; Fig. 2r). 19. Pseudomonas sp. HR199ve?b5ΩKm, enthaltend das durch ΩKm inaktivierte väfbß-Gen an Stelle des intakten vdhB-Gens kodierend für Vanillin-Dehydro- genase II.18. Pseudomonas sp. HR199v bΔ, containing the deletion inactivated vdh gene instead of the intact v b gene coding for vanillin dehydrogenase (Fig.lr; Fig. 2r). 19. Pseudomonas sp. HR199ve? B5ΩKm, containing the väfbß gene inactivated by ΩKm instead of the intact vdhB gene coding for vanillin dehydrogenase II.
20. Pseudomonas sp. HR199vtib5ΩGm, enthaltend das durch ΩGm inaktivierte vdhB-Gen an Stelle des intakten vdhB-Gens kodierend für Vanillin-Dehydro- genäse II. 21. Pseudomonas sp. HR199v b5Δ, enthaltend das durch Deletion inaktivierte vdhB-Gen an Stelle des intakten vJbß-Gens kodierend für Vanillin-Dehydro- genase II.20. Pseudomonas sp. HR199vtib5ΩGm, containing the vdhB gene inactivated by ΩGm instead of the intact vdhB gene coding for vanillin dehydrogenase II. 21. Pseudomonas sp. HR199v b5Δ, containing the deletion inactivated vdhB gene instead of the intact vJbß gene coding for vanillin dehydrogenase II.
22. Pseudomonas sp. HR199αdbΩKm, enthaltend das durch ΩKm inaktivierte adh-Gen an Stelle des intakten adh-Gens kodierend für Alkohol-Dehydroge- nase.22. Pseudomonas sp. HR199αdbΩKm, containing the ΩKm inactivated adh gene instead of the intact adh gene coding for alcohol dehydrogenase.
23. Pseudomonas sp. HR199α<ibΩGm, enthaltend das durch ΩGm inaktivierte adh-Gen an Stelle des intakten adh-Gens kodierend für Alkohol-Dehydroge- nase. 24. Pseudomonas sp. HR199α<ibΔ enthaltend das durch Deletion inaktivierte adh-23. Pseudomonas sp. HR199α <ibΩGm, containing the adh gene inactivated by ΩGm instead of the intact adh gene coding for alcohol dehydrogenase. 24. Pseudomonas sp. HR199α <ibΔ containing the deletion inactivated adh-
Gen an Stelle des intakten Jb-Gens kodierend für Alkohol-Dehydrogenase. 25. Pseudomonas sp. HR199vα« ΩKm, enthaltend das durch ΩKm inaktivierte vanA-Gen an Stelle des intakten vanA-Gens kodierend für die α-Untereinheit der Vanillinsäure-Demethylase. 26. Pseudomonas sp. \Rλ99vanAQ.Gnx, enthaltend das durch ΩGm inaktivierte vanA-Gen an Stelle des intakten vanA-Gens kodierend für die α-Untereinheit der Vanillinsäure-Demethylase.Gene coding for alcohol dehydrogenase in place of the intact Jb gene. 25. Pseudomonas sp. HR199vα «ΩKm, containing the vanA gene inactivated by ΩKm instead of the intact vanA gene coding for the α-subunit of vanillic acid demethylase. 26. Pseudomonas sp. \ Rλ99vanAQ.Gnx, containing the vanA gene inactivated by ΩGm instead of the intact vanA gene coding for the α-subunit of vanillic acid demethylase.
27. Pseudomonas sp. HR199vα«^4Δ, enthaltend das durch Deletion inaktivierte vanA-Gen an Stelle des intakten vanA-Gens kodierend für die α-Untereinheit der Vanillinsäure-Demethylase.27. Pseudomonas sp. HR199vα « ^ 4Δ, containing the deletion inactivated vanA gene instead of the intact vanA gene coding for the α-subunit of vanillic acid demethylase.
28. Pseudomonas sp. HR199vα«5ΩKm, enthaltend das durch ΩKm inaktivierte vanB-Gen an Stelle des intakten vαnß-Gens kodierend für die ß-Untereinheit der Vanillinsäure-Demethylase.28. Pseudomonas sp. HR199vα «5ΩKm, containing the vanB gene inactivated by ΩKm instead of the intact vαnß gene coding for the β-subunit of vanillic acid demethylase.
29. Pseudomonas sp. HR199wm5ΩGm, enthaltend das durch ΩGm inaktivierte vanB-Gen an Stelle des intakten vanB-Gens kodierend für die ß-Untereinheit der Vanillinsäure-Demethylase.29. Pseudomonas sp. HR199wm5ΩGm, containing the vanG gene inactivated by ΩGm instead of the intact vanB gene coding for the β-subunit of vanillic acid demethylase.
30. Pseudomonas sp. HR199vα/ιBΔ, enthaltend das durch Deletion inaktivierte vanB-Gen an Stelle des intakten vanB-Gens kodierend für die ß-Untereinheit der Vanillinsäure-Demethylase. Gegenstand der Erfindung ist außerdem ein Verfahren zur biotechnischen Herstellung von organischen Verbindungen. Insbesondere können mit diesem Verfahren Alkohole, Aldehyde und organische Säuren hergestellt werden. Vorzugsweise handelt es sich hierbei um Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure.30. Pseudomonas sp. HR199vα / ιBΔ, containing the deletion inactivated vanB gene instead of the intact vanB gene coding for the β-subunit of vanillic acid demethylase. The invention also relates to a method for the biotechnical production of organic compounds. In particular, alcohols, aldehydes and organic acids can be produced with this process. These are preferably coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid.
In dem erfindungsgemäßen Verfahren werden die oben beschriebenen Organismen eingesetzt. Zu den ganz besonders bevorzugten Organismen gehören Bakterien, insbesondere die Pseudomonas-Arten. Im einzelnen können die oben genannten Pseu- domonas- Arten vorzugsweise für folgende Verfahren eingesetzt werden:The organisms described above are used in the process according to the invention. The most particularly preferred organisms include bacteria, especially the Pseudomonas species. In particular, the above-mentioned Pseudomonas species can preferably be used for the following processes:
1. Pseudomonas sp. HR199cα//lΩKm, Pseudomonas sp. HR199cύ7 ΩGm und Pseudomonas sp. HR199cα 4Δ zur Herstellung von Coniferylalkohol aus Eugenol.1. Pseudomonas sp. HR199cα // lΩKm, Pseudomonas sp. HR199cύ7 ΩGm and Pseudomonas sp. HR199cα 4Δ for the production of coniferyl alcohol from eugenol.
2. Pseudomonas sp. HR199cα/5ΩKm, Pseudomonas sp. HR199cα/£ΩGm und Pseudomonas sp. HR199cα/5Δ zur Herstellung von Coniferylaldehyd aus Eugenol oder Coniferylalkohol.2. Pseudomonas sp. HR199cα / 5ΩKm, Pseudomonas sp. HR199cα / £ ΩGm and Pseudomonas sp. HR199cα / 5Δ for the production of coniferyl aldehyde from eugenol or coniferyl alcohol.
3. Pseudomonas sp. HR199/csΩKm, Pseudomonas sp. HR199/csΩGm, Pseudomonas sp. HR199fcsΔ, Pseudomonas sp. HR199ecbΩKm, Pseudomonas sp. HR199ecbΩGm und Pseudomonas sp. HR199ecbΔ zur Herstellung von Ferulasäure aus Eugenol oder Coniferylalkohol oder Coniferylaldehyd.3. Pseudomonas sp. HR199 / csΩKm, Pseudomonas sp. HR199 / csΩGm, Pseudomonas sp. HR199fcsΔ, Pseudomonas sp. HR199ecbΩKm, Pseudomonas sp. HR199ecbΩGm and Pseudomonas sp. HR199ecbΔ for the production of ferulic acid from eugenol or coniferyl alcohol or coniferyl aldehyde.
4. Pseudomonas sp. HR199v bΩKm, Pseudomonas sp. HR199v bΩGm, Pseudomonas sp. WRl99vdhA, Pseudomonas sp. HR199vJbΩGmvc b5ΩKm, Pseudomonas sp. HR199v<ibΩKmvJb5ΩGm, Pseudomonas sp. HR199vc/bΔvdbßΩGm und Pseudomonas sp. HR199vJbΔvJb£ΩKm zur Herstellung von Vanillin aus Eugenol oder Coniferylalkohol oder Coni- ferylaldehyd oder Ferulasäure. 5. Pseudomonas sp. HR199vα«y4ΩKm, Pseudomonas sp. HR199v ΩGm,4. Pseudomonas sp. HR199v bΩKm, Pseudomonas sp. HR199v bΩGm, Pseudomonas sp. WRl99vdhA, Pseudomonas sp. HR199vJbΩGmvc b5ΩKm, Pseudomonas sp. HR199v <ibΩKmvJb5ΩGm, Pseudomonas sp. HR199vc / bΔvdbßΩGm and Pseudomonas sp. HR199vJbΔvJb £ ΩKm for the production of vanillin from eugenol or coniferyl alcohol or coniferyl aldehyde or ferulic acid. 5. Pseudomonas sp. HR199vα «y4ΩKm, Pseudomonas sp. HR199v ΩGm,
Pseudomonas sp. HR199vα«y4Δ, Pseudomonas sp. HR199v< ßΩKm, Pseudomonas sp. HR199v n5ΩGm und Pseudomonas sp. HR199v «Z?Δ zur Herstellung von Vanillinsäure aus Eugenol oder Coniferylalkohol oder Coniferylaldehyd oder Ferulasäure oder Vanillin.Pseudomonas sp. HR199vα «y4Δ, Pseudomonas sp. HR199v <ßΩKm, Pseudomonas sp. HR199v n5ΩGm and Pseudomonas sp. HR199v «Z? Δ for the production of vanillic acid from eugenol or coniferyl alcohol or coniferylaldehyde or ferulic acid or vanillin.
Bevorzugtes Substrat ist Eugenol. Jedoch kann der Zusatz weiterer Substrate oder sogar der Austausch des Eugenol gegen ein anderes Substrat möglich sein.The preferred substrate is eugenol. However, the addition of further substrates or even the replacement of the eugenol with another substrate may be possible.
Als Nährmedium für die erfindungsgemäß eingesetzten Organismen kommen synthetische, halbsynthetische oder komplexe Kulturmedien in Betracht. Diese können kohlenstoffhaltige und stickstoffhaltige Verbindungen, anorganische Salze, gegebenenfalls Spurenelemente sowie Vitamine enthalten.Synthetic, semi-synthetic or complex culture media can be used as the nutrient medium for the organisms used according to the invention. These can contain carbon-containing and nitrogen-containing compounds, inorganic salts, optionally trace elements and vitamins.
Als kohlenstoffhaltige Verbindungen können Kohlenhydrate, Kohlenwasserstoffe oder organische Grundchemikalien in Betracht kommen. Beispiele für vorzugsweise verwendbare Verbindungen sind Zucker, Alkohole bzw. Zuckeralkohole, organische Säuren oder komplexe Gemische.Carbohydrates, hydrocarbons or basic organic chemicals can be considered as carbon-containing compounds. Examples of compounds which can preferably be used are sugars, alcohols or sugar alcohols, organic acids or complex mixtures.
Als Zucker kommt vorzugsweise Glucose in Betracht. Als organische Säuren können vorzugsweise Zitronensäure oder Essigsäure zum Einsatz kommen. Zu den komplexen Gemischen zählen z. B. Malzextrakt, Hefeextrakt, Casein oder Caseinhydro- lysat.The preferred sugar is glucose. Citric acid or acetic acid can preferably be used as organic acids. The complex mixtures include e.g. B. malt extract, yeast extract, casein or casein hydrolyzate.
Als stickstoffhaltige Substrate kommen anorganische Verbindungen in Betracht. Beispiele hierfür sind Nitrate und Ammoniumsalze. Ebenso können organische Stickstoffquellen zum Einsatz kommen. Hierzu zählen Hefeextrakt, Sojamehl, Casein, Caseinhydrolysat und Maisquellwasser. Zu den einsetzbaren anorganischen Salzen zählen beispielsweise Sulfate, Nitrate, Chloride, Carbonate und Phosphate. Als Metalle enthalten die genannte Salze vorzugsweise Natrium, Kalium, Magnesium, Mangan, Calcium, Zink und Eisen.Inorganic compounds are suitable as nitrogen-containing substrates. Examples include nitrates and ammonium salts. Organic nitrogen sources can also be used. These include yeast extract, soy flour, casein, casein hydrolyzate and corn steep liquor. The inorganic salts that can be used include, for example, sulfates, nitrates, chlorides, carbonates and phosphates. The salts mentioned preferably contain sodium, potassium, magnesium, manganese, calcium, zinc and iron as metals.
Die Temperatur für die Kultivierung liegt vorzugsweise im Bereich von 5 bis 100°C.The temperature for cultivation is preferably in the range of 5 to 100 ° C.
Besonders bevorzugt ist der Bereich von 15 bis 60°C, höchst bevorzugt sind 22 bisThe range from 15 to 60 ° C. is particularly preferred, and 22 to 60 ° C. is most preferred
37°C.37 ° C.
Der pH-Wert des Mediums beträgt bevorzugt 2 bis 12. Besonders bevorzugt ist der Bereich von 4 bis 8.The pH of the medium is preferably 2 to 12. The range from 4 to 8 is particularly preferred.
Grundsätzlich können für die Durchführung des erfindungsgemäßen Verfahrens alle dem Fachmann bekannten Bioreaktoren eingesetzt werden. Vorzugsweise kommen alle für Submersverfahren geeigneten Vorrichtungen in Betracht. Das heißt, es können erfindungsgemäß Gefäße ohne oder mit mechanischer Mischeinrichtung eingesetzt werden. Zu ersteren zählen z. B. Schüttelapparaturen, Blasensäulen- oder Schlaufenreaktoren. Zu letzteren gehören vorzugsweise alle bekannten Vorrichtungen mit Rührern in beliebiger Gestaltung.In principle, all bioreactors known to the person skilled in the art can be used to carry out the method according to the invention. All devices suitable for submerged processes are preferred. This means that vessels with or without a mechanical mixing device can be used according to the invention. The former include e.g. B. shakers, bubble column or loop reactors. The latter preferably include all known devices with stirrers in any configuration.
Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden. Die Dauer der Fermentation bis zum Erreichen einer maximalen Produktmenge hängt von der speziellen Art des eingesetzten Organismus ab. Grundsätzlich liegen die Zeiten der Fermentation jedoch zwischen 2 und 200 Stunden.The process according to the invention can be carried out continuously or batchwise. The duration of the fermentation until a maximum amount of product is reached depends on the particular type of organism used. Basically, however, the times of fermentation are between 2 and 200 hours.
Im folgenden wird die Erfindung unter Bezugnahme auf Beispiele näher erläutert:The invention is explained in more detail below with reference to examples:
Von dem Eugenol verwertenden Stamm Pseudomonas sp. HR199 (DSM 7063) wurden gezielt Mutanten erzeugt, wobei spezifisch Gene des Eugenol-Katabolismus durch Insertion von Omega-Elementen oder durch Einführen von Deletionen inakti- viert wurden. Als Omega-Elemente dienten DNA- Abschnitte die für Antibiotikaresistenzen gegen Kanamycin (ΩKm) und Gentamycin (ΩGm) codierten. Diese Resistenzgene wurden ausgehend von Tn5 und dem Plasmid pBBRlMCS-5 mit Hilfe von Standardmethoden isoliert. Die Gene calA, calB, fcs, ech, aat, vdh, adh, vdhB, vanA und vanB, die für Coniferylalkohol-Dehydrogenase, Coniferylaldehyd- Dehydrogenase, Ferulasäure-CoA Synthetase, Enoyl-CoA Hydratase-Aldolase, beta- Ketothiolase, Vanillin-Dehydrogenase, Alkohol-Dehydrogenase, Vanillin-Dehydro- genase II und Vanillinsäure-Demethylase codieren wurden ausgehend von genomischer DNA des Stammes Pseudomonas sp. HR199 mit Hilfe von Standardmethoden isoliert und in pBluescript SK" kloniert. Aus diesen Genen wurden durch Verdauung mit geeigneten Restriktionsendonukleasen DNA-Abschnitte entfernt (Deletion), bzw durch Ω-Elemente substituiert (Insertion), wodurch das jeweilige Gen inaktiviert wurde. Die auf diese Weise mutierten Gene wurden in konjugativ übertragbare Vektoren umkloniert und anschließend in den Stamm Pseudomonas sp. HR199 eingeführt. Durch geeignete Selektion wurden Transkonjuganten erhalten, die das jeweils funktionsfähige wildtyp-Gen gegen das neu eingebrachte inaktivierte Gen ausge- tauscht hatten. Die so erhaltenen Insertions- und Deletionsmutanten wiesen nur noch das jeweils inaktivierte Gen auf. Auf diese Weise wurden sowohl Mutanten mit nur einem defekten Gen als auch Mehrfachmutanten, in denen mehrere Gene auf diese Weise inaktiviert wurden, erhalten. Diese Mutanten wurden für die Biotransformation von a) Eugenol zu Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und/oderFrom the Eugenol utilizing strain Pseudomonas sp. HR199 (DSM 7063), targeted mutants were generated, in which genes of eugenol catabolism were specifically inactivated by inserting omega elements or by introducing deletions. DNA segments that code for antibiotic resistance to kanamycin (ΩKm) and gentamycin (ΩGm) served as omega elements. This Resistance genes were isolated from Tn5 and the plasmid pBBRlMCS-5 using standard methods. The genes calA, calB, fcs, ech, aat, vdh, adh, vdhB, vanA and vanB, which are for coniferyl alcohol dehydrogenase, coniferylaldehyde dehydrogenase, ferulic acid-CoA synthetase, enoyl-CoA hydratase-aldolase, beta-ketothiolase, vanillin Dehydrogenase, alcohol dehydrogenase, vanillin dehydrogenase II and vanillic acid demethylase were encoded starting from genomic DNA of the strain Pseudomonas sp. HR199 isolated using standard methods and cloned into pBluescript SK " . DNA sections were removed from these genes by digestion with suitable restriction endonucleases (deletion) or substituted by Ω elements (insertion), whereby the respective gene was inactivated Genes mutated in this way were cloned into conjugatively transferable vectors and then introduced into the strain Pseudomonas sp HR199. By means of suitable selection, transconjugants were obtained which had replaced the functional wild-type gene in question with the newly introduced inactivated gene. and deletion mutants had only the inactivated gene, so that mutants with only one defective gene and multiple mutants in which several genes were inactivated in this way were obtained.These mutants were used for the biotransformation of a) eugenol to coniferyl alcohol , Coniferyl aldehyde, ferulic acid, Va nillin and / or
Vanillinsäure; b) Coniferylalkohol zu Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure; c) Coniferylaldehyd zu Ferulasäure, Vanillin und/oder Vanillinsäure; d) Ferulasäure zu Vanillin und/oder Vanillinsäure und e) Vanillin zu Vanillinsäure eingesetzt. Material und MethodenVanillic acid; b) coniferyl alcohol to coniferyl aldehyde, ferulic acid, vanillin and / or vanillic acid; c) coniferyl aldehyde to ferulic acid, vanillin and / or vanillic acid; d) ferulic acid to vanillin and / or vanillic acid and e) vanillin to vanillic acid. material and methods
Wachstumsbedingungen der Bakterien.Bacterial growth conditions.
Stämme von Escher ichia coli wurden bei 37°C in Luria-Bertani (LB) oder M9-Mine- ralmedium (Sambrook, J., E. F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.) angezogen. Stämme von Pseudomonas sp. wurden bei 30°C in Nutrient Broth (NB, 0,8%, wt/vol) oder in Mineralmedium (MM) (Schlegel, H. G. et al. 1961. Arch. Mikrobiol. 38:209-222) bzw. HR-Mineralmedium (HR-MM) (Rabenhorst, J. 1996. Appl. Microbiol. Biotechnol. 46:470-474.) angezogen. Ferulasäure, Vanillin, Vanillinsäure und Protocatechusäure wurden" in Dimethylsulfoxid gelöst, und dem jeweiligen Medium in einer Endkonzentration von 0.1% (wt/vol) zugesetzt. Eugenol wurde dem Medium direkt in einer Endkonzentration von 0.1% (vol/vol) zugesetzt, bzw. in den Deckel von MM-Agarplatten auf Filterpapier (Rundfilter 595, Schleicher & Schuell, Dassel, Deutschland) appliziert. Bei derStrains of Escher ichia coli were grown at 37 ° C in Luria-Bertani (LB) or M9 mineral medium (Sambrook, J., EF Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.) Strains of Pseudomonas sp. were at 30 ° C in nutrient broth (NB, 0.8%, wt / vol) or in mineral medium (MM) (Schlegel, HG et al. 1961. Arch. Mikrobiol. 38: 209-222) or HR mineral medium (HR-MM) (Rabenhorst, J. 1996. Appl. Microbiol. Biotechnol. 46: 470-474.). Ferulic acid, vanillin, vanillic acid and protocatechic acid were "dissolved in dimethyl sulfoxide and added to the respective medium in a final concentration of 0.1% (wt / vol). Eugenol was added directly to the medium in a final concentration of 0.1% (vol / vol), or applied to the lid of MM agar plates on filter paper (circular filter 595, Schleicher & Schuell, Dassel, Germany)
Anzucht von Transkonjuganten und Mutanten von Pseudomonas sp. wurde Tetra- cyclin, Kanamycin, und Gentamycin in Endkonzentrationen von 25 μg/ml bzw. 100 μg/ml bzw. 7,5 μg/ml eingesetzt.Cultivation of transconjugants and mutants of Pseudomonas sp. tetracycline, kanamycin and gentamycin were used in final concentrations of 25 μg / ml, 100 μg / ml and 7.5 μg / ml, respectively.
Qualitativer und quantitativer Nachweis von Stoffwechselintermediaten in Kulturüberständen.Qualitative and quantitative detection of metabolic intermediates in culture supernatants.
Kulturüberstände wurden direkt, bzw. nach Verdünnung mit H2θ-bidest. mittels Hochdruck-Flüssigkeits-Chromatographie (Knauer-HPLC) analysiert. Die Chromatographie erfolgte an Nucleosil-100 C18 (7 μm, 250 x 4 mm). Als Lösungsmittel diente 0.1 % (vol/vol) Ameisensäure und Acetonitril. Der verwendete Gradient zurCulture supernatants were immediately, or after dilution with H2θ-bidest. analyzed by high pressure liquid chromatography (Knauer HPLC). Chromatography was carried out on Nucleosil-100 C18 (7 μm, 250 x 4 mm). 0.1% (vol / vol) formic acid and acetonitrile were used as solvents. The gradient used for
Elution der Substanzen verlief wie folgt:Elution of the substances was as follows:
00:00 - 06:30 → 26% Acetonitril 06:30 - 08:00 → 100% Acetonitril 08:00 - 12:00 → 100% Acetonitril00:00 - 06:30 → 26% acetonitrile 06:30 - 08:00 → 100% acetonitrile 08:00 - 12:00 → 100% acetonitrile
12:00 - 13:00 → 26% Acetonitril 13:00 - 18:00 → 26% Acetonitril Reinigung der Vanillin-Dehydrogenase-II.12:00 - 13:00 → 26% acetonitrile 13:00 - 18:00 → 26% acetonitrile Purification of Vanillin Dehydrogenase II.
Die Aufreinigung erfolgte bei 4°C.The purification took place at 4 ° C.
Rohextrakt.Crude extract.
Auf Eugenol angezogene Zellen von Pseudomonas sp. HR199 wurden in 10 mM Natriumphosphat-Puffer, pH 6.0 gewaschen, im gleichen Puffer resuspendiert und durch zweimalige Passage einer French-Presse (Amicon, Silver Spring, Maryland, USA) bei einem Druck von 1000 psi aufgeschlossen. Das Zellhomogenat wurde einer Ultrazentrifugation (1 h, 100 000 x g, 4°C) unterzogen, wodurch die löslichePseudomonas sp. Cells grown on eugenol. HR199 were washed in 10 mM sodium phosphate buffer, pH 6.0, resuspended in the same buffer and disrupted by passing twice through a French press (Amicon, Silver Spring, Maryland, USA) at a pressure of 1000 psi. The cell homogenate was subjected to ultracentrifugation (1 h, 100,000 x g, 4 ° C.), whereby the soluble
Fraktion des Rohextraktes als Überstand erhalten wurde.Fraction of the crude extract was obtained as a supernatant.
Anionenaustauschchromatographie an DEAE-Sephacel.Anion exchange chromatography on DEAE-Sephacel.
Die lösliche Fraktion des Rohextraktes wurde über Nacht gegen 10 mM Natrium- phosphat-Puffer, pH 6.0 dialysiert. Das Dialysat wurde auf eine mit 10 mMThe soluble fraction of the crude extract was dialyzed overnight against 10 mM sodium phosphate buffer, pH 6.0. The dialysate was made up to a 10 mM
Natriumphosphat-Puffer, pH 6.0 äquilibrierte DEAE-Sephacel-Säule (2,6 cm x 35 cm, Bettvolumen[BV]: 186 ml) mit einer Durchflußrate von 0.8 ml/min aufgetragen.Sodium phosphate buffer, pH 6.0 equilibrated DEAE-Sephacel column (2.6 cm x 35 cm, bed volume [BV]: 186 ml) applied at a flow rate of 0.8 ml / min.
Die Säule wurde mit zwei BV 10 mM Natriumphosphat-Puffer, pH 6.0 gespült. DieThe column was rinsed with two BV 10 mM sodium phosphate buffers, pH 6.0. The
Elution der Vanillin-Dehydrogenase-II (VDH-II) erfolgte mit einem linearen Salz- gradient von 0 bis 400 mM NaCl in 10 mM Natriumphosphat-Puffer, pH 6.0 (750 ml). Es wurden 10 ml-Fraktionen aufgefangen. Fraktionen mit hoher VDH-II-Akti- vität wurden zum DEAE-Pool vereinigt.The vanillin dehydrogenase-II (VDH-II) was eluted with a linear salt gradient from 0 to 400 mM NaCl in 10 mM sodium phosphate buffer, pH 6.0 (750 ml). 10 ml fractions were collected. Fractions with high VDH II activity were pooled into the DEAE pool.
Bestimmung der Vanillin-Dehydrogenase-Aktivität. Die Bestimmung der VDH-Aktivität erfolgte bei 30°C durch einen optisch enzyma- tischen Test. Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0.1 mmol Kalium-Phosphat (pH 7.1), 0.125 μmol Vanillin, 0.5 μmol NAD, 1.2 μmol Pyruvat (Na-Salz), Lactat-Dehydrogenase (1 U; aus Schweineherz ) und Enzymlösung. Die Oxidation von Vanillin wurde bei λ = 340 nm verfolgt (εvanillin = 1 ,6 cm^/μmol). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 μmol Vanillin pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O. H., N. J. Rosebrough, A. L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.Determination of vanillin dehydrogenase activity. The VDH activity was determined at 30 ° C. by means of an optically enzymatic test. The reaction mixture with a volume of 1 ml contained 0.1 mmol potassium phosphate (pH 7.1), 0.125 μmol vanillin, 0.5 μmol NAD, 1.2 μmol pyruvate (Na salt), lactate dehydrogenase (1 U; from pig heart) and enzyme solution. The oxidation of vanillin was monitored at λ = 340 nm (εvanillin = 1.6 cm ^ / μmol). The enzyme activity was given in units (U), where 1 U corresponds to the amount of enzyme that converts 1 μmol vanillin per minute. The protein concentrations in according to Lowry et al. (Lowry, OH, NJ Rosebrough, AL Farr and RJ Randall. 1951. J. Biol. Chem. 193: 265-275).
Bestimmung der Coniferylalkohol-Dehydrogenase-Aktivität.Determination of coniferyl alcohol dehydrogenase activity.
Die Bestimmung der CADH- Aktivität erfolgte bei 30°C durch einen optisch enzy- matischen Test nach Jaeger et al. (Jaeger, E., L. Eggeling und H. Sahm. 1981. Current Microbiology. 6:333-336). Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0.2 mmol Tris/HCl (pH 9.0), 0.4 μmol Coniferylalkohol, 2 μmol NAD, 0.1 mmol Semicarbazid und Enzymlösung. Die Reduktion von NAD wurde bei λ = 340 nm verfolgt (ε = 6.3 cm^/μmol). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 μmol Substrat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O. H., N. J. Rosebrough, A. L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.The CADH activity was determined at 30 ° C. using an optical enzymatic test according to Jaeger et al. (Jaeger, E., L. Eggeling and H. Sahm. 1981. Current Microbiology. 6: 333-336). The reaction mixture with a volume of 1 ml contained 0.2 mmol Tris / HCl (pH 9.0), 0.4 μmol coniferyl alcohol, 2 μmol NAD, 0.1 mmol semicarbazide and enzyme solution. The reduction in NAD was followed at λ = 340 nm (ε = 6.3 cm ^ / μmol). The enzyme activity was given in units (U), where 1 U corresponds to the amount of enzyme that converts 1 μmol substrate per minute. The protein concentrations in the samples were determined according to Lowry et al. (Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. J. Biol. Chem. 193: 265-275).
Bestimmung der Coniferylaldehyd-Dehydrogenase-Aktivität.Determination of coniferylaldehyde dehydrogenase activity.
Die Bestimmung der CALDH-Aktivität erfolgte bei 30°C durch einen optisch enzy- matischen Test. Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0.1 mmol Tris/HCl (pH 8.8), 0.08 μmol Coniferylaldehyd, 2.7 μmol NAD und Enzymlösung. Die Oxidation von Coniferylaldehyd zu Ferulasäure wurde bei λ = 400 nm verfolgtThe CALDH activity was determined at 30 ° C. by means of an optically enzymatic test. The reaction mixture with a volume of 1 ml contained 0.1 mmol Tris / HCl (pH 8.8), 0.08 μmol coniferylaldehyde, 2.7 μmol NAD and enzyme solution. The oxidation of coniferyl aldehyde to ferulic acid was followed at λ = 400 nm
(ε = 34 cm.2/μmol). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 μmol Substrat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O. H., N. J. Rosebrough, A. L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.(ε = 34 cm.2 / μmol). The enzyme activity was given in units (U), where 1 U corresponds to the amount of enzyme that converts 1 μmol substrate per minute. The protein concentrations in the samples were determined according to Lowry et al. (Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. J. Biol. Chem. 193: 265-275).
Bestimmung der Ferulasäure-CoA-Synthetase (Ferulasäure-Thiokinase)-Aktivi- tät.Determination of ferulic acid-CoA synthetase (ferulic acid thiokinase) activity.
Die Bestimmung der FCS-Aktivität erfolgte bei 30°C durch einen optisch enzyma- tischen Test, modifiziert nach Zenk et al. (Zenk et al. 1980. Anal. Biochem. 101: 182-The FCS activity was determined at 30 ° C. by an optically enzymatic test, modified according to Zenk et al. (Zenk et al. 1980. Anal. Biochem. 101: 182-
187). Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0.09 mmol Kalium- Phosphat (pH 7.0), 2.1 μmol MgCl2, 0.7 μmol Ferulasäure, 2 μmol ATP, 0.4 μmol Coenzym A und Enzymlösung. Die Entstehung des CoA-Esters aus Ferulasäure wurde bei λ = 345 nm verfolgt (ε = 10 cmNμmol). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 μmol Sub- strat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach187). The reaction mixture with a volume of 1 ml contained 0.09 mmol potassium Phosphate (pH 7.0), 2.1 μmol MgCl2, 0.7 μmol ferulic acid, 2 μmol ATP, 0.4 μmol coenzyme A and enzyme solution. The formation of the CoA ester from ferulic acid was followed at λ = 345 nm (ε = 10 cmNμmol). The enzyme activity was given in units (U), where 1 U corresponds to the amount of enzyme that converts 1 μmol substrate per minute. The protein concentrations in the samples were checked
Lowry et al. (Lowry, O. H., N. J. Rosebrough, A. L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.Lowry et al. (Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. J. Biol. Chem. 193: 265-275).
Electrophoretische Methoden. Die Auftrennung von proteinhaltigen Extrakten erfolgte in 7.4% (wt/vol) Poly- acrylamidgelen unter nativen Bedingungen nach der Methode von Stegemann et al. (Stegemann et al. 1973. Z. Naturforsch. 28c:722-732) und unter denaturierenden Bedingungen in 11.5% (wt/vol) Polyacrylamidgelen nach der Methode von Laemmli (Laemmli, U. K. 1970. Nature (London) 227:680-685). Zur unspezifischen Protein- färbung wurde Serva Blue R verwendet. Zur spezifischen Anfärbung der Coniferylalkohol-, Coniferylaldehyd- und Vanillin-Dehydrogenase wurden die Gele für 20 min in 100 mM KP-Puffer (pH 7.0) umgepuffert und anschließend bei 30°C im gleichen Puffer dem 0.08% (wt/vol) NAD, 0.04% (wt/vol) p-Nitroblau-Tetrazolium- chlorid, 0.003%» (wt/vol) Phenazine-Methosulfat und 1 mM des jeweiligen Substrates zugesetzt worden war inkubiert, bis entsprechende Farbbanden sichtbar wurden.Electrophoretic methods. Protein-containing extracts were separated in 7.4% (wt / vol) polyacrylamide gels under native conditions by the method of Stegemann et al. (Stegemann et al. 1973. Z. Naturforsch. 28c: 722-732) and under denaturing conditions in 11.5% (wt / vol) polyacrylamide gels according to the method of Laemmli (Laemmli, UK 1970. Nature (London) 227: 680-685 ). Serva Blue R was used for non-specific protein staining. For specific staining of coniferyl alcohol, coniferyl aldehyde and vanillin dehydrogenase, the gels were buffered for 20 min in 100 mM KP buffer (pH 7.0) and then at 30 ° C in the same buffer the 0.08% (wt / vol) NAD, 0.04 % (wt / vol) p-nitroblue tetrazolium chloride, 0.003% »(wt / vol) phenazine methosulfate and 1 mM of the respective substrate had been added until appropriate color bands became visible.
Transfer von Proteinen aus Polyacrylamidgelen auf PVDF-Membranen. Proteine wurden aus SDS-Polyacrylamidgelen mit Hilfe eines Semidry-Fasfblot Gerätes (B32/33, Biometra, Göttingen, Deutschland) nach Herstellerangaben auf PVDF- Membranen (Waters-Milipore, Bedford, Mass., USA) übertragen.Transfer of proteins from polyacrylamide gels to PVDF membranes. Proteins were transferred from SDS-polyacrylamide gels using a Semidry-Fasfblot device (B32 / 33, Biometra, Göttingen, Germany) according to the manufacturer's instructions on PVDF membranes (Waters-Milipore, Bedford, Mass., USA).
Bestimmung von N-terminalen Aminosäuresequenzen.Determination of N-terminal amino acid sequences.
Die Bestimmung von N-terminalen Aminosäuresequenzen erfolgte mit Hilfe eines Protein Peptide Sequenzers (Typ 477 A, Applied Biosystems, Foster City, USA) und eines PTH- Analysers nach Herstellerangaben. Isolierung und Manipulation von DNA.N-terminal amino acid sequences were determined using a protein peptide sequencer (type 477 A, Applied Biosystems, Foster City, USA) and a PTH analyzer according to the manufacturer's instructions. Isolation and manipulation of DNA.
Die Isolierung von genomischer DNA erfolgte nach der Methode von Marmur (Marmur, J. 1961. J. Mol. Biol. 3:208-218). Die Isolierung und Analyse von anderer Plasmid-DNA bzw. von DNA-Restriktionsfragmenten erfolgte nach Standardmetho- den (Sambrook, J. E. F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York.).Genomic DNA was isolated using the method of Marmur (Marmur, J. 1961. J. Mol. Biol. 3: 208-218). The isolation and analysis of other plasmid DNA or of DNA restriction fragments was carried out according to standard methods (Sambrook, JEF Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York.).
Transfer von DNA. Die Präparation und Transformation von kompetenten Escherichia co/ -Zellen erfolgte nach der Methode von Hanahan (Hanahan, D. 1983. J. Mol. Biol. 166:557- 580). Konjugativer Plasmidtransfer zwischen Plasmid-tragenden Escherichia coli S 17- 1 -Stämmen (Donor) und Pseudomonas sp. -Stämmen (Rezipient) erfolgte auf NB-Agarplatten nach der Methode von Friedrich et al. (Friedrich, B. et al. 1981. J. Bacteriol. 147: 198-205), oder durch eine "Minikomplementations-Methode" aufTransfer of DNA. The preparation and transformation of competent Escherichia co / cells was carried out using the Hanahan method (Hanahan, D. 1983. J. Mol. Biol. 166: 557-580). Conjugative plasmid transfer between plasmid-bearing Escherichia coli S 17-1 strains (donor) and Pseudomonas sp. Strains (recipient) were carried out on NB agar plates by the method of Friedrich et al. (Friedrich, B. et al. 1981. J. Bacteriol. 147: 198-205), or by a "mini-complementation method"
MM-Agarplatten mit 0.5%> (wt/vol) Gluconat als C-Quelle und 25 μg/ml Tetracyclin oder 100 μg/ml Kanamycin. Dabei wurden Zellen des Rezipienten in einer Richtung als Impfstrich aufgetragen. Nach 5 min wurden dann Zellen der Donor-Stämme als Impfstriche aufgetragen, wobei der Rezipienten-Impfstrich gekreuzt wurde. Nach einer Inkubation für 48 h bei 30°C wuchsen die Transkonjuganten direkt hinter derMM agar plates with 0.5%> (wt / vol) gluconate as a C source and 25 μg / ml tetracycline or 100 μg / ml kanamycin. Cells of the recipient were applied in one direction as an inoculation line. After 5 minutes, cells from the donor strains were then applied as inoculation lines, the recipient line being crossed. After incubation for 48 h at 30 ° C, the transconjugants grew directly behind the
Kreuzungsstelle, wohingegen weder Donor- noch Rezipienten-Stamm zum Wachstum in der Lage war.Crossing point, whereas neither donor nor recipient strain was able to grow.
Hybridisierungsexperimente. DNA-Restriktionsfragmente wurden in einem 0.8% (wt/vol) Agarose-Gel in 50 mMHybridization experiments. DNA restriction fragments were in a 0.8% (wt / vol) agarose gel in 50 mM
Tris- 50 mM Borsäure- 1.25 mM EDTA-Puffer (pH 8.5) elektrophoretisch aufgetrennt (Sambrook, J. E. F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York.). Die Übertragung der denaturierten DNA aus dem Gel auf eine positiv geladene Nylonmembran (Porengröße: 0.45 μm, Pall Filtrationstechnik, Dreieich, Deutschland), die anschließende Hybridisierung mit biotinylierten, bzw. Digoxigenin-markierten DNA-Sonden und die Herstellung dieser DNA-Sonden erfolgte nach Standardmethoden (Sambrook, J. E. F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York.).Tris-50 mM boric acid-1.25 mM EDTA buffer (pH 8.5) electrophoresed (Sambrook, JEF Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Habor , New York.). The transfer of the denatured DNA from the gel to a positively charged nylon membrane (pore size: 0.45 μm, Pall Filtrationstechnik, Dreieich, Germany), the subsequent hybridization with biotinylated or Digoxigenin-labeled DNA probes and the production of these DNA probes were carried out according to standard methods (Sambrook, JEF Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Laboratory, New York.).
DNA-Sequenzierung.DNA sequencing.
Die Bestimmung von Nukleotidsequenzen erfolgte nach der Didesoxy-Kettenab- bruch-Methode von Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sei. USA 74:5463-5467) "nicht-radioaktiv" mit einem "LI-COR DNA-Sequencer Modell 4000L" (LI-COR Inc., Biotechnology Division, Lincoln, NE,.USA) unter Verwendung eines "Thermo Sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Life Science, Amersham International pls, Little Chalfont, Buckinghamshire, England) jeweils nach Vorschrift des Herstellers.Nucleotide sequences were determined using the dideoxy chain termination method of Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sci. USA 74: 5463-5467) "non-radioactive" with a "LI-COR DNA Sequencer Model 4000L" (LI-COR Inc., Biotechnology Division, Lincoln , NE, .USA) using a "Thermo Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Life Science, Amersham International pls, Little Chalfont, Buckinghamshire, England) each according to the manufacturer's instructions.
Mit Hilfe von synthetischen Oligonukleotiden wurde nach der "Primer-hoppingWith the help of synthetic oligonucleotides the "primer hopping
Strategie" von Strauss et al. (Strauss, E. C. et al. 1986. Anal. Biochem. 154:353-360) sequenziert.Strategy "by Strauss et al. (Strauss, E.C. et al. 1986. Anal. Biochem. 154: 353-360).
Chemikalien, Biochemikalien und Enzyme. Restriktionsenzyme, T4 DNA-Ligase, Lambda-DNA und Enzyme bzw. Substrate für die optisch enzymatischen Tests wurden von C. F. Boehringer & Söhne (Mannheim, Deutschland) oder von GIBCO/BRL (Eggenstein, Deutschland) bezogen, [γ- 32p]ATP kam von Amersham/Buchler (Braunschweig, Deutschland). Oligonukleo- tide wurden von der Firma MWG-Biotech GmbH (Ebersberg, Deutschland) bezogen. Agarose vom Typ NA wurde von Pharmacia-LKB (Uppsala, Schweden) bezogen.Chemicals, biochemicals and enzymes. Restriction enzymes, T4 DNA ligase, lambda DNA and enzymes or substrates for the optical enzymatic tests were obtained from CF Boehringer & Söhne (Mannheim, Germany) or from GIBCO / BRL (Eggenstein, Germany), [γ- 32p] ATP came by Amersham / Buchler (Braunschweig, Germany). Oligonucleotides were obtained from MWG-Biotech GmbH (Ebersberg, Germany). NA-type agarose was purchased from Pharmacia-LKB (Uppsala, Sweden).
Alle anderen Chemikalien waren von Haarmann & Reimer (Holzminden, Deutschland), E. Merck AG (Darmstadt, Deutschland), Fluka Chemie (Buchs,, Schweiz), Serva Feinbiochemica (Heidelberg, Deutschland) oder Sigma Chemie (Deisenhofen, Deutschland). BeispieleAll other chemicals were from Haarmann & Reimer (Holzminden, Germany), E. Merck AG (Darmstadt, Germany), Fluka Chemie (Buchs ,, Switzerland), Serva Feinbiochemica (Heidelberg, Germany) or Sigma Chemie (Deisenhofen, Germany). Examples
Beispiel 1example 1
Konstruktion von Omega-Elementen, die Resistenzen gegenüber Kanamycin (ΩConstruction of omega elements that are resistant to kanamycin (Ω
Km) bzw. Gentamycin( ΩGm) vermitteln.Km) or gentamycin (ΩGm).
Für die Konstruktion des ΩKm-Elements wurde das 2099 bp 5g/I-Fragment des Transposons Tn5 (Auerswald E. A., G. Ludwig und H. Schaller. 1981. Cold Spring Harb. Symp. Quant. Biol. 45: 107-113; Beck E., G. Ludwig, E. A. Auerswald, B. Reiss und H. Schaller. 1982. Gene 19:327-336; Mazodier P., P. Cossart, E. Giraud und F. Gasser. 1985. Nucleic Acids Res. 13: 195-205.) präparativ isoliert. Das Fragment wurde durch Behandlung mit der Nuklease Bal-31 auf ca. 990 bp verkürzt. Dieses Fragment, das nur noch das Kanamycin-Resistenzgen (codierend für eine Aminoglycosid-3'-O-Phosphotransferase) umfaßte, wurde anschließend mit Smal geschnittener pSKsym-DNA (pBluescript SK -Derivat, welches eine symetrisch aufgebaute multiple Klonierungsstelle [Sall, Hindlll, EcoRI, Smαl, EcoRI, Hindlϊl, Sall] enthält) ligiert. Aus dem resultierenden Plasmid konnte das ΩKm-Εlement als Smal-, EcoRI-, HwdIII- oder So/I-Fragment reisoliert werden.For the construction of the ΩKm element, the 2099 bp 5g / l fragment of the transposon Tn5 (Auerswald EA, G. Ludwig and H. Schaller. 1981. Cold Spring Harb. Symp. Quant. Biol. 45: 107-113; Beck E., G. Ludwig, EA Auerswald, B. Reiss and H. Schaller. 1982. Gene 19: 327-336; Mazodier P., P. Cossart, E. Giraud and F. Gasser. 1985. Nucleic Acids Res. 13 : 195-205.) Preparatively isolated. The fragment was shortened to approximately 990 bp by treatment with the nuclease Bal-31. This fragment, which only comprised the kanamycin resistance gene (coding for an aminoglycoside-3'-O-phosphotransferase), was then cut with Smally cut pSKsym-DNA (pBluescript SK derivative, which has a symmetrically constructed multiple cloning site [Sall, Hindlll, EcoRI, Smαl, EcoRI, Hindlϊl, Sall] contains) ligated. The ΩKm element could be reisolated from the resulting plasmid as a Smal, EcoRI, HwdIII or So / I fragment.
Für die Konstruktion des ΩGm-Εlements wurde das 983 bp Eαel-Fragment desFor the construction of the ΩGm element, the 983 bp Eαel fragment of the
Plasmids pBBRlMCS-5 (Kovach M.Ε., P. Η. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop und K. M. Peterson. 1995. Gene 166:175-176.) präparativ isoliert und anschließend mit Mung Bean Nuklease (Abdauen von einzelsträngigen DNA-Molekülenden) behandelt. Dieses Fragment, das nur noch das Gentamycin- Resistenzgen (codierend für eine Gentamycin-3-Acetyltransferase) umfaßte, wurde anschließend mit Smal geschnittener pSKsym-DNA (s.o.) ligiert. Aus dem resultierenden Plasmid konnte das ΩGm-Element als Smal-, EcoRI-, H dlll- oder Sall- Fragment reisoliert werden. Beispiel 2Plasmids pBBRlMCS-5 (Kovach M.Ε., P. Η. Elzer, DS Hill, GT Robertson, MA Farris, RM Roop and KM Peterson. 1995. Gene 166: 175-176.) Were preparatively isolated and then with mung bean nuclease (Digestion of single-stranded DNA molecule ends) treated. This fragment, which only comprised the gentamycin resistance gene (coding for a gentamycin-3-acetyltransferase), was then ligated with Smal cut pSKsym-DNA (see above). The ΩGm element could be re-isolated from the resulting plasmid as a Smal, EcoRI, H dlll or Sall fragment. Example 2
Klonierung der Gene aus Pseudomonas sp. HR199 (DSM7063), die durch Inser- tion von Ω-Elementen oder durch Deletionen inaktiviert werden sollten. Die separaten Klonierungen der Gene fcs, ech, vdh und aat erfolgte ausgehend von den E. coli S17-1 Stämmen DSM 10439 und DSM 10440 mit den Plasmiden pE207 und pE5-l (siehe EP-A 0845532). Aus diesen Plasmiden wurden die angegebenen Fragmente präparativ isoliert und wie im weiteren beschrieben behandelt:Cloning of the genes from Pseudomonas sp. HR199 (DSM7063), which should be inactivated by inserting Ω elements or by deletions. The separate cloning of the genes fcs, ech, vdh and aat was carried out starting from the E. coli S17-1 strains DSM 10439 and DSM 10440 with the plasmids pE207 and pE5-l (see EP-A 0845532). The fragments indicated were preparatively isolated from these plasmids and treated as described below:
Für die Klonierung desfcs-Gens wurde das 2350 bp große Sα/I/EcoRI-Fragment desFor the cloning of the fcs gene, the 2350 bp Sα / I / EcoRI fragment of the
Plasmids pΕ207 und das 3700 bp große EcoRI/Sα/I-Fragment des Plasmids pΕ5-l zusammen in pBluescript SK in einer Weise kloniert, daß beide Fragmente über die EcoRI-Enden miteinander verbunden waren. Ausgehend von dem resultierenden Hybridplasmid wurde das 6050 bp Sα I-Fragment präparativ isoliert und durch Behandlung mit der Nuklease Bal-31 auf ca. 2480 bp verkürzt. Anschließend wurden an die Fragment-Enden / sfl-Linker ligiert und das Fragment nach Pstl-Verdauung in pBluescript SK" kloniert (pSK αs). Nach Transformation von E. coli XLl-Blue wurden Klone erhalten, die das fcs-Gen exprimierten und eine FCS-Aktivität von 0.2 U/mg Protein aufwiesen.Plasmid pΕ207 and the 3700 bp EcoRI / Sα / I fragment of plasmid pΕ5-l were cloned together in pBluescript SK in such a way that both fragments were connected to one another via the EcoRI ends. Starting from the resulting hybrid plasmid, the 6050 bp Sα I fragment was isolated and shortened to about 2480 bp by treatment with the nuclease Bal-31. Subsequently, ligated to the fragment ends / sfl linker and the fragment after Pstl digestion was cloned into pBluescript SK " (pSK αs). After transformation of E. coli XLl-Blue, clones were obtained which expressed the fcs gene and one FCS activity of 0.2 U / mg protein.
Für die Klonierung des ecb-Gens wurde das 3800 bp große Hmdlll/EcoRI-Fragment des Plasmids pΕ207 präparativ isoliert und durch Behandlung mit der Nuklease Bal- 31 auf ca. 1470 bp verkürzt. Anschließend wurden an die Fragment-Enden EcoRI - Linker ligiert und das Fragment nach EcoRI-Verdauung in pBluescript SK" kloniert (pSKecb).For the cloning of the ecb gene, the 3800 bp Hmdlll / EcoRI fragment of the plasmid pΕ207 was preparatively isolated and shortened to approximately 1470 bp by treatment with the nuclease Bal-31. Then EcoRI linkers were ligated to the fragment ends and the fragment was cloned into pBluescript SK " after EcoRI digestion (pSKecb).
Für die Klonierung des vJb-Gens wurde das 2350 bp große Sα/I/EcoRI-Fragment desFor the cloning of the vJb gene, the 2350 bp Sα / I / EcoRI fragment of the
Plasmids pΕ207 präparativ isoliert. Nach Klonierung in pBluescript SK" wurde dasPlasmids pΕ207 isolated preparatively. After cloning in pBluescript SK " that was
Fragment mit Hilfe eines Exonuklease 111/ Mung Bean Nukleasesystems einseitig um ca. 1530 bp verkürzt. Anschließend wurde an das Fragmentende ein EcoRI- Linker ligiert und das Fragment nach EcoRI-Verdauung in pBluescript SK kloniert (pSKvdh). Nach Transformation von E. coli XLl-Blue wurden Klone erhalten, die das vJb-Gen exprimierten und eine VDH- Aktivität von 0.01 U/mg Protein aufwiesen.Fragment shortened on one side by approximately 1530 bp using an exonuclease 111 / Mung Bean nuclease system. Subsequently, an EcoRI- Linker ligated and the fragment cloned into pBluescript SK after EcoRI digestion (pSKvdh). After transformation of E. coli XLl-Blue, clones were obtained which expressed the vJb gene and had a VDH activity of 0.01 U / mg protein.
Für die Klonierung des aat-Gens wurde das 3700 bp große EcoRI/Sα/I-Fragment des Plasmids pΕ5-l präparativ isoliert und durch Behandlung mit der Nuklease Bal-31 auf ca. 1590 bp verkürzt. Anschließend wurden an die Fragment-Enden EcoRI- Linker ligiert und das Fragment nach EcoRI-Verdauung in pBluescript SK" kloniert (pSKaat).For the cloning of the aat gene, the 3700 bp EcoRI / Sα / I fragment of the plasmid pΕ5-l was preparatively isolated and shortened to approximately 1590 bp by treatment with the nuclease Bal-31. Then EcoRI linkers were ligated to the fragment ends and the fragment was cloned into pBluescript SK " (pSKaat) after EcoRI digestion.
Beispiel 3Example 3
Inaktivierung der oben beschriebenen Gene durch Insertion von Ω-Εlementen, bzw durch Deletion von Teilbereichen dieser Gene.Inactivation of the genes described above by inserting Ω elements or deleting partial areas of these genes.
Das Plasmid pSKfcs, welches das fcs-Gen enthielt wurde mit verdaut, wodurch ein 1290 bp großes Fragment aus dem ^cs-Gen herausgeschnitten wurde. Nach Religation wurde das Deletions-Derivat desfcs-Gens (fcsA) (siehe Abb. li und 2i) kloniert in pBluescript SK" (pSK/αsA) erhalten. Darüber hinaus wurden nach Herausschneiden des Fragments die Omega-Εlemente ΩKm und ΩGm an dessenThe plasmid pSKfcs, which contained the fcs gene, was included digested, whereby a 1290 bp fragment was cut out of the ^ cs gene. After religation, the deletion derivative of the fcs gene (fcsA) (see Figs. Li and 2i) cloned in pBluescript SK " (pSK / αsA) was obtained. In addition, the omega elements ΩKm and ΩGm on the fragment were cut out
Stelle einligiert. Dadurch entstanden die Ω-inaktivierten Derivate des/c -Gens (fcsΩ Km, siehe Abb. lg und 2g) und (fcsΩ.Gm, siehe Abb. lh und 2h) kloniert in pBluescript SK" (pSK csΩKm und pSK/αsΩGm). In Rohextrakten der erhaltenen E. coli Klone, deren Hybridplasmide ein durch Deletion bzw. Ω-Εlement-Insertion inaktiviertes/cs-Gen aufwiesen, konnte keine FCS-Aktivität nachgewiesen werden.Position registered. This resulted in the Ω-inactivated derivatives of the / c gene (fcsΩ Km, see Fig. Lg and 2g) and (fcsΩ.Gm, see Fig. Lh and 2h) cloned in pBluescript SK " (pSK csΩKm and pSK / αsΩGm). No FCS activity could be detected in crude extracts of the E. coli clones obtained, whose hybrid plasmids had a / cs gene inactivated by deletion or Ω-element insertion.
Das Plasmid pSKecb, welches das ecb-Gen enthielt, wurde mit Nrwl verdaut, wodurch ein 53 bp und ein 430 bp großes Fragment aus dem ecb-Gen herausgeschnitten wurde. Nach Religation wurde das Deletions-Derivat des ecb-Gens (ecbΔ, siehe Abb. 11 und 21) kloniert in pBluescript SK" (pSKecbΔ) erhalten. Darüber hinaus wurden nach Herausschneiden der Fragmente die Omega-Elemente ΩKm und ΩGm an deren Stelle einligiert. Dadurch entstanden die Ω-inaktivierten Derivate des ecb-Gens (ecbΩKm und ecbΩGm) kloniert in pBluescript SK (pSKecbΩKm und pSKecbΩGm).The plasmid pSKecb, which contained the ecb gene, was digested with NrwI, whereby a 53 bp and a 430 bp fragment was excised from the ecb gene. After religation, the deletion derivative of the ecb gene (ecbΔ, see FIGS. 11 and 21) was obtained cloned in pBluescript SK " (pSKecbΔ) after cutting out the fragments, the omega elements ΩKm and ΩGm were inserted in their place. This resulted in the Ω-inactivated derivatives of the ecb gene (ecbΩKm and ecbΩGm) cloned in pBluescript SK (pSKecbΩKm and pSKecbΩGm).
Das Plasmid pSKvJb, welches das vJb-Gen enthielt wurde mit ÄssHII verdaut, wodurch ein 210 bp großes Fragment aus dem vdh-Gen herausgeschnitten wurde. Nach Religation wurde das Deletions-Derivat des vdh-Gens (vdhA, siehe Abb. lo und 2o) kloniert in pBluescript SK (pSKvdhΔ) erhalten. Darüber hinaus wurden nach Herausschneiden des Fragments die Omega-Elemente _ ΩKm und ΩGm an dessen Stelle einligiert. Dadurch entstanden die Ω-inaktivierten Derivate des vdh- Gens (vdhΩKm und vdhΩGm) kloniert in pBluescript SK (pSKvdhΩKm, siehe Abb. Im und 2m) und (pSKvöfbΩGm, siehe Abb. In und 2n). In Rohextrakten der erhaltenen E. coli Klone, deren Hybridplasmide ein durch Deletion bzw. Ω-Element- Insertion inaktiviertes vtib-Gen aufwiesen, konnte keine VDH-Aktivität nachgewiesen werden.The plasmid pSKvJb, which contained the vJb gene, was digested with ÄssHII, whereby a 210 bp fragment was excised from the vdh gene. After religation, the deletion derivative of the vdh gene (vdhA, see Figs. Lo and 2o) was obtained cloned in pBluescript SK (pSKvdhΔ). In addition, after cutting out the fragment, the omega elements _ ΩKm and ΩGm were inserted in its place. This resulted in the Ω-inactivated derivatives of the vdh gene (vdhΩKm and vdhΩGm) cloned in pBluescript SK (pSKvdhΩKm, see Fig. Im and 2m) and (pSKvöfbΩGm, see Fig. In and 2n). No VDH activity could be detected in crude extracts of the E. coli clones obtained, whose hybrid plasmids had a vtib gene inactivated by deletion or Ω element insertion.
Das Plasmid pSKααt, welches das aat-Gen enthielt wurde mit ÄwHII verdaut, wodurch ein 59 bp großes Fragment aus dem aat-Gen herausgeschnitten wurde. Nach Religation wurde das Deletions-Derivat des α^t-Gens (aatA, siehe Abb. lr undThe plasmid pSKααt, which contained the aat gene, was digested with ÄwHII, whereby a 59 bp fragment was cut out of the aat gene. After religation, the deletion derivative of the α ^ t gene (aatA, see Fig. Lr and
2r) kloniert in pBluescript SK (pSKααtΔ) erhalten. Darüber hinaus wurden nach Herausschneiden des Fragments die Omega-Elemente ΩKm und ΩGm an dessen Stelle einligiert. Dadurch entstanden die Ω-inaktivierten Derivate des ααt-Gens (aat ΩKm, siehe Abb. lp und 2p) und (ααtΩGm, siehe Abb. Iq und 2q) kloniert in pBluescript SK" (pSKααtΩKm und pSKααtΩGm). Beispiel 42r) cloned in pBluescript SK (pSKααtΔ) obtained. In addition, after cutting out the fragment, the omega elements ΩKm and ΩGm were inserted in its place. This resulted in the Ω-inactivated derivatives of the ααt gene (aat ΩKm, see Fig. Lp and 2p) and (ααtΩGm, see Fig. Iq and 2q) cloned in pBluescript SK " (pSKααtΩKm and pSKααtΩGm). Example 4
Umklonieren der durch Ω-Elemente inaktivierten Gene in das konjugativ übertragbare "Suizid-Plasmid" pSUP202. Um die durch Ω-Elemente inaktivierten Gene in Pseudomonas sp. HR199 gegen die intakten Gene austauschen zu können, benötigt man einen Vektor, der einerseits in Pseudomonaden übertragen werden kann (konjugativ übertragbare Plasmide), andererseits dort jedoch nicht repliziert werden kann und somit in Pseudomonaden instabil ist ("Suizid-Plasmid"). DNA- Abschnitte, die mit Hilfe eines solchen Plasmid- Systems in Pseudomonaden übertragen werden, können nur erhalten bleiben, wenn sie durch homologe Rekombination (RecA-abhängige Rekombination) in das Genom der Bakterienzelle integriert werden. Im vorliegenden Fall wurde das "Suizid- Plasmid" pSUP202 (Simon et al. 1983. In: A. Pühler. Molecular genetics of the bacteria-plant interaction. Springer Verlag, Berlin, Heidelberg, New York, S. 98- 106.) eingesetzt.Cloning of the genes inactivated by Ω elements into the conjugatively transferable "suicide plasmid" pSUP202. The genes inactivated by Ω elements in Pseudomonas sp. To be able to exchange HR199 for the intact genes, you need a vector that can be transferred in pseudomonas (conjugatively transferable plasmids) but cannot be replicated there and is therefore unstable in pseudomonas ("suicide plasmid"). DNA sections which are transferred into pseudomonads with the aid of such a plasmid system can only be preserved if they are integrated into the genome of the bacterial cell by homologous recombination (RecA-dependent recombination). In the present case, the "suicide plasmid" was pSUP202 (Simon et al. 1983. In: A. Pühler. Molecular genetics of the bacteria-plant interaction. Springer Verlag, Berlin, Heidelberg, New York, pp. 98-106.) used.
Die inaktivierten Gene fcsΩKm und cΛΩGm wurden nach stl-Verdauung aus den Plasmiden pSK/αsΩKm und pSK/c^ΩGm isoliert und mit Pstl geschnittener pSUP202 DNA ligiert. Die Ligationsansätze wurden nach E. coli S17-1 transfor- miert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium mit Kanamycin bzw. Gentamycin. Es wurden Kanamycin-resistente Transformanden erhalten, deren Hybridplasmid (pSUP/csΩKm) das inaktivierte Gen yesΩKm enthielt. Das entsprechende Hybridplasmid (pSUP/αsΩGm) der Gentamycin- resistenten Transformanden enthielt das inaktivierte GenfcsΩGm.The inactivated genes fcsΩKm and cΛΩGm were isolated from the plasmids pSK / αsΩKm and pSK / c ^ ΩGm after stl digestion and ligated with PstL cut pSUP202 DNA. The ligation batches were transformed to E. coli S17-1. The selection was made on LB medium containing tetracycline with kanamycin or gentamycin. Kanamycin-resistant transformants were obtained whose hybrid plasmid (pSUP / csΩKm) contained the inactivated yesΩKm gene. The corresponding hybrid plasmid (pSUP / αsΩGm) of the gentamycin-resistant transformants contained the inactivated GenevacsΩGm.
Die inaktivierten Gene ecbΩKm und ecbΩGm wurden nach EcoRI-Verdauung aus den Plasmiden pSKecbΩKm und pSKecbΩGm isoliert und mit EcoRI geschnittener pSUP202 DNA ligiert. Die Ligationsansätze wurden nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium mit Kanamycin bzw. Gentamycin. Es wurden Kanamycin-resistente Transformanden erhalten, deren Hybridplasmid (pSUPecbΩKm) das inaktivierte Gen ecbΩKm enthielt. Das entsprechende Hybridplasmid (pSUPecbΩGm) der Gentamycin- resistenten Transformanden enthielt das inaktivierte Gen ecbΩGm.The inactivated genes ecbΩKm and ecbΩGm were isolated from the plasmids pSKecbΩKm and pSKecbΩGm after EcoRI digestion and ligated with EcoRI cut pSUP202 DNA. The ligation batches were transformed according to E. coli S17-1. The selection was made on LB medium containing tetracycline with kanamycin or gentamycin. Kanamycin-resistant transformants were obtained, whose Hybrid plasmid (pSUPecbΩKm) containing the inactivated ecbΩKm gene. The corresponding hybrid plasmid (pSUPecbΩGm) of the gentamycin-resistant transformants contained the inactivated gene ecbΩGm.
Die inaktivierten Gene vJbΩKm und vJbΩGm wurden nach EcoRI-Verdauung aus den Plasmiden pSKv^bΩKm und pSKvtibΩGm isoliert und mit EcoRI geschnittener pSUP202 DNA ligiert. Die Ligationsansätze wurden nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium mit Kanamycin bzw. Gentamycin. Es wurden Kanamycin-resistente Transformanden erhalten, deren Hybridplasmid (pSUPvdbΩKm) das inaktivierte Gen v bΩKm enthielt. Das entsprechende Hybridplasmid (pSUPvJbΩGm) der Gentamycin- resistenten Transformanden enthielt das inaktivierte Gen vJbΩGm.The inactivated genes vJbΩKm and vJbΩGm were isolated from the plasmids pSKv ^ bΩKm and pSKvtibΩGm after EcoRI digestion and ligated with EcoRI cut pSUP202 DNA. The ligation batches were transformed according to E. coli S17-1. The selection was made on LB medium containing tetracycline with kanamycin or gentamycin. Kanamycin-resistant transformants were obtained whose hybrid plasmid (pSUPvdbΩKm) contained the inactivated gene v bΩKm. The corresponding hybrid plasmid (pSUPvJbΩGm) of the gentamycin-resistant transformants contained the inactivated gene vJbΩGm.
Die inaktivierten Gene aatΩKm und ααtΩGm wurden nach EcoRI-Verdauung aus den Plasmiden pSKααtΩKm und pSKααtΩGm isoliert und mit EcoRI geschnittener pSUP202 DNA ligiert. Die Ligationsansätze wurden nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium mit Kanamycin bzw. Gentamycin. Es wurden Kanamycin-resistente Transformanden erhalten, deren Hybridplasmid (pSUP αtΩKm) das inaktivierte Gen aatΩKm enthielt. Das entspre- chende Hybridplasmid (pSUPααtΩGm) der Gentamycin- resistenten Transformanden enthielt das inaktivierte Gen αtΩGm.The inactivated genes aatΩKm and ααtΩGm were isolated from the plasmids pSKααtΩKm and pSKααtΩGm after EcoRI digestion and ligated with EcoRI cut pSUP202 DNA. The ligation batches were transformed according to E. coli S17-1. The selection was made on LB medium containing tetracycline with kanamycin or gentamycin. Kanamycin-resistant transformants were obtained whose hybrid plasmid (pSUP αtΩKm) contained the inactivated gene aatΩKm. The corresponding hybrid plasmid (pSUPααtΩGm) of the gentamycin-resistant transformants contained the inactivated gene αtΩGm.
Beispiel 5Example 5
Umklonieren der durch Deletion inaktivierten Gene in das konjugativ übertragbare "Suizid-Plasmid" mit "sαcß-Selektionssystem" pHE55.Cloning of the genes inactivated by deletion into the conjugatively transferable "suicide plasmid" with "sαcß selection system" pHE55.
Um die durch Deletion inaktivierten Gene in Pseudomonas sp. HR199 gegen die intakten Gene austauschen zu können, benötigt man einen Vektor, der die schon für pSUP202 beschriebenen Eigenschaften aufweist. Da im Gegensatz zu den durch Ω- Element inaktivierten Genen bei durch Deletion inaktivierten Genen keine Selek- tionsmöglichkeit (keine Antibiotika-Resistenz) für den erfolgten Austausch der Gene in Pseudomonas sp. HR199 besteht, mußte ein anderes Selektionssystem zur Anwendung kommen. Bei dem "raαß-Selektionssystem" wird das auszutauschende, durch Deletion inaktivierte Gen in einem Plasmid kloniert, welches neben einem Antibiotika-Resistenzgen auch über das sacB-Gen verfügt. Nach konjugativer Übertragung dieses Hybridplasmids in einen Pseudomonaden wird das Plasmid durch homologe Rekombination an der Stelle in das Genom integriert, an der sich das intakte Gen befindet (erster "Cross over"). Auf diese Weise entsteht ein "heteroge- noter" Stamm, der sowohl über ein intaktes als auch über ein durch Deletion inakti- viertes Gen verfügt, welche durch die pHE55-DNA voneinander getrennt sind. DieseThe genes in Pseudomonas sp. To be able to exchange HR199 for the intact genes, you need a vector that has the properties already described for pSUP202. In contrast to the genes inactivated by Ω element, no deletion-inactivated genes possibility (no antibiotic resistance) for the exchange of genes in Pseudomonas sp. HR199 exists, a different selection system had to be used. In the "raαß selection system", the gene to be exchanged and deactivated by deletion is cloned in a plasmid which, in addition to an antibiotic resistance gene, also has the sacB gene. After conjugative transfer of this hybrid plasmid into a pseudomonad, the plasmid is integrated into the genome by homologous recombination at the point at which the intact gene is located (first "cross over"). In this way, a "heterogeneous" strain is created which has both an intact and a deletion-inactivated gene, which are separated from one another by the pHE55 DNA. This
Stämme weisen die durch den Vektor codierte Resistenz auf und besitzen darüber hinaus ein aktives sacB-Gen. Durch ein zweites homologes Rekombinationsereignis (zweiter "Cross over"), soll nun die pHE55-DNA zusammen mit dem intakten Gen aus der genomischen DNA ausgegliedert werden. Durch dieses Rekombinations- ereignis entsteht ein Stamm, der nur noch über das inaktivierte Gen verfügt. Darüber hinaus kommt es zum Verlust der pHE55 -codierten Antibiotika-Resistenz und des .sαcS-Gens. Streicht man Stämme auf Saccharose-haltigen Medien aus, werden Stämme die das sacB-Gen exprimieren im Wachstum gehemmt, da das Genprodukt Saccharose zu einem Polymer umsetzt, welches im Periplasma der Zellen akkumuliert wird. Zellen, die durch das zweite Rekombinationsereignis das sacB-Strains have the resistance encoded by the vector and also have an active sacB gene. Through a second homologous recombination event (second "cross over"), the pHE55 DNA together with the intact gene is now to be separated from the genomic DNA. This recombination event creates a strain that only has the inactivated gene. In addition, there is a loss of the pHE55-encoded antibiotic resistance and the .sαcS gene. If strains are streaked on sucrose-containing media, strains which express the sacB gene are inhibited in growth because the gene product converts sucrose into a polymer which is accumulated in the periplasm of the cells. Cells that the sacB-
Gen nicht mehr tragen, werden somit nicht im Wachstum gehemmt. Um eine phänotypische Selektionsmöglichkeit auf die Integration des durch Deletion inaktivierten Gens zu besitzen, tauscht man dieses nicht gegen ein intaktes Gen aus, sondern man bedient sich eines Stammes, in dem das auszutauschende Gen bereits durch Insertion eines Ω-Elements "markiert" vorliegt. Bei erfolgreichem Austausch verliert der resultierende Stamm die durch das Ω-Element codierte Antibiotika- Resistenz.No longer carrying genes are therefore not inhibited in growth. In order to have a phenotypic selection option for the integration of the gene inactivated by deletion, this is not exchanged for an intact gene, but a strain is used in which the gene to be exchanged is already “marked” by insertion of an Ω element. If the exchange is successful, the resulting strain loses the antibiotic resistance encoded by the Ω element.
Das inaktivierte Gen fcs A wurden nach stl-Verdauung aus dem Plasmid pSK/csΔ isoliert und mit Pstl geschnittener pHE55 DNA ligiert. Der Ligationsansatz wurde nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB- Medium. Es wurden Tetracyclin-resistente Transformanden erhalten, deren Hybridplasmid (pHEfcsA) das inaktivierte GenfcsA enthielt.The inactivated gene fcs A was isolated from the plasmid pSK / csΔ after stl digestion and ligated with Pstl cut pHE55 DNA. The ligation mixture was transformed into E. coli S17-1. The selection was made on LB containing tetracycline Medium. Tetracycline-resistant transformants were obtained whose hybrid plasmid (pHEfcsA) contained the inactivated GenevacsA.
Das inaktivierte Gen echA wurden nach EcoRI-Verdauung aus dem Plasmid pSKecbΔ isoliert und mit Mung Bean Nuklease behandelt (Erzeugung von glattenThe inactivated echA gene was isolated from the plasmid pSKecbΔ after EcoRI digestion and treated with mung bean nuclease (generation of smooth
Enden ["blunt ends"]). Das Fragment wurde mit BamHl geschnittener und Mung Bean Nuklease behandelter pHE55 DNA ligiert. Der Ligationsansatz wurde nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB- Medium. Es wurden Tetracyclin-resistente Transformanden erhalten, deren Hybridplasmid (pHEecbΔ) das inaktivierte Gen echA enthielt.Blunt ends). The fragment was ligated with BamHl cut and mung bean nuclease treated pHE55 DNA. The ligation mixture was transformed into E. coli S17-1. The selection was made on LB medium containing tetracycline. Tetracycline-resistant transformants were obtained whose hybrid plasmid (pHEecbΔ) contained the inactivated gene echA.
Das inaktivierte Gen vdhA wurden nach EcoRI-Verdauung aus dem Plasmid pSKvüfbΔ isoliert und mit Mung Bean Nuklease behandelt. Das Fragment wurde mit BamHl geschnittener und Mung Bean Nuklease behandelter pHΕ55 DNA ligiert. Der Ligationsansatz wurde nach E. coli S17-1 transformiert. Die Selektion erfolgte aufThe inactivated gene vdhA was isolated from the plasmid pSKvüfbΔ after EcoRI digestion and treated with mung bean nuclease. The fragment was ligated with BamHl cut and Mung Bean nuclease treated pHΕ55 DNA. The ligation mixture was transformed into E. coli S17-1. The selection was made on
Tetracyclin-haltigem LB-Medium. Es wurden Tetracyclin-resistente Transformanden erhalten, deren Hybridplasmid (pHEv bΔ) das inaktivierte Gen vJbΔ enthielt.LB medium containing tetracycline. Tetracycline-resistant transformants were obtained whose hybrid plasmid (pHEv bΔ) contained the inactivated gene vJbΔ.
Das inaktivierte Gen aatA wurden nach EcoRI-Verdauung aus dem Plasmid pSKααtΔ isoliert und mit Mung Bean Nuklease behandelt. Das Fragment wurde mitThe inactivated gene aatA was isolated from the plasmid pSKααtΔ after EcoRI digestion and treated with mung bean nuclease. The fragment was made with
BamHl geschnittener und Mung Bean Nuklease behandelter pHΕ55 DNA ligiert. Der Ligationsansatz wurde nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium. Es wurden Tetracyclin-resistente Transformanden erhalten, deren Hybridplasmid (pHEααtΔ)das inaktivierte Gen aatA enthielt. Beispiel 6BamHl cut and mung bean nuclease treated pHΕ55 DNA ligated. The ligation mixture was transformed into E. coli S17-1. The selection was made on LB medium containing tetracycline. Tetracycline-resistant transformants were obtained whose hybrid plasmid (pHEααtΔ) contained the inactivated gene aatA. Example 6
Erzeugung von Mutanten des Stammes Pseudomonas sp. HR199, bei denen spezifisch Gene des Eugenol-Katabolismuses durch Insertion eines Ω-EIementes inaktiviert wurden.Generation of mutants of the Pseudomonas sp. HR199, in which genes of eugenol catabolism were specifically inactivated by inserting an Ω element.
Der Stamm Pseudomonas sp. HR199 wurde als Rezipient in Konjugationsexperimenten eingesetzt, bei denen Stämme von E. coli S17-1 als Donoren eingesetzt wurden, die die unten aufgeführten Hybridplasmide von pSUP202 enthielten. Die Transkonjuganten wurden auf Gluconat-haltigem Mineralmedium selektiert, welches das dem Ω-Element entsprechende Antibiotikum enthielt. "Homogenote" (Austausch des intakten Gens gegen das durch Ω-Element-Insertion inaktivierte Gen durch doppeltes "Cross over") und "heterogenote" (Integration des Hybridplasmids in das Genom durch einfachen "Cross over") Transkonjuganten konnten anhand der durch pSUP202 codierten Tetracyclin-Resistenz unterschieden werden.The Pseudomonas sp. HR199 was used as a recipient in conjugation experiments in which strains of E. coli S17-1 were used as donors, which contained the hybrid plasmids of pSUP202 listed below. The transconjugants were selected on mineral medium containing gluconate, which contained the antibiotic corresponding to the Ω element. "Homogenote" (exchange of the intact gene for the gene inactivated by Ω-element insertion by double "cross over") and "heterogenote" (integration of the hybrid plasmid into the genome by simple "cross over") transconjugants could be coded using pSUP202 Tetracycline resistance can be distinguished.
Die Mutanten Pseudomonas sp. HR199 c.sΩKm und Pseudomonas sp. HR199 fcsΩ Gm wurden nach Konjugation von Pseudomonas sp. HR199 mit E. coli S17-1 (pSUP/csΩKm) bzw. E. coli S17-1 (pSUP/∞ΩGm) erhalten. Der Austausch des intakten fcs-Gens gegen das durch ΩKm bzw. ΩGm inaktivierte Gen (fcsΩKm bzw. fcsΩGm) wurde mittels DNA-Sequenzierung verifiziert.The mutants Pseudomonas sp. HR199 c.sΩKm and Pseudomonas sp. HR199 fcsΩ Gm were conjugated by Pseudomonas sp. Get HR199 with E. coli S17-1 (pSUP / csΩKm) or E. coli S17-1 (pSUP / ∞ΩGm). The exchange of the intact fcs gene for the gene inactivated by ΩKm or ΩGm (fcsΩKm or fcsΩGm) was verified by means of DNA sequencing.
Die Mutanten Pseudomonas sp. HR199 ecbΩKm und Pseudomonas sp. HR199 echΩ Gm wurden nach Konjugation von Pseudomonas sp. HR199 mit E. coli S17-1 (pSUPecbΩKm) bzw. E. coli S17-1 (pSUPecbΩGm) erhalten. Der Austausch des intakten ecb-Gens gegen das durch ΩKm bzw. ΩGm inaktivierte Gen (ecbΩKm bzw. ecbΩGm) wurde mittels DNA-Sequenzierung verifiziert.The mutants Pseudomonas sp. HR199 ecbΩKm and Pseudomonas sp. HR199 echΩ Gm were conjugated from Pseudomonas sp. Receive HR199 with E. coli S17-1 (pSUPecbΩKm) or E. coli S17-1 (pSUPecbΩGm). The exchange of the intact ecb gene for the gene inactivated by ΩKm or ΩGm (ecbΩKm or ecbΩGm) was verified by means of DNA sequencing.
Die Mutanten Pseudomonas sp. HR199 vJbΩKm und Pseudomonas sp. HR199 vdhThe mutants Pseudomonas sp. HR199 vJbΩKm and Pseudomonas sp. HR199 vdh
ΩGm wurden nach Konjugation von Pseudomonas sp. HR199 mit E. coli S17-1 (pSUPv bΩKm) bzw. E. coli S17-1 (pSUPvJbΩGm) erhalten. Der Austausch des intakten vJb-Gens gegen das durch ΩKm bzw. ΩGm inaktivierte Gen (wtTzΩKm bzw. vJbΩGm) wurde mittels DNA-Sequenzierung verifiziert.ΩGm were obtained after conjugation of Pseudomonas sp. Receive HR199 with E. coli S17-1 (pSUPv bΩKm) or E. coli S17-1 (pSUPvJbΩGm). The exchange of the intact vJb gene against the gene inactivated by ΩKm or ΩGm (wtTzΩKm or vJbΩGm) was verified by means of DNA sequencing.
Die Mutanten Pseudomonas sp. HR199 αötΩKm und Pseudomonas sp. HR199 aatΩ Gm wurden nach Konjugation von Pseudomonas sp. HR199 mit E. coli S17-1The mutants Pseudomonas sp. HR199 αötΩKm and Pseudomonas sp. HR199 aatΩ Gm were conjugated from Pseudomonas sp. HR199 with E. coli S17-1
(pSUPαα/ΩKm) bzw. E. coli S17-1 (pSUPααtΩGm) erhalten. Der Austausch des intakten aat-Gens gegen das durch ΩKm bzw. ΩGm inaktivierte Gen (ααtΩKm bzw. ααtΩGm) wurde mittels DNA- Sequenzierung verifiziert.(pSUPαα / ΩKm) or E. coli S17-1 (pSUPααtΩGm) obtained. The exchange of the intact aat gene for the gene inactivated by ΩKm or ΩGm (ααtΩKm or ααtΩGm) was verified by means of DNA sequencing.
Die Mutante Pseudomonas sp. HR199 csΩKmvJbΩGm wurden nach Konjugation von Pseudomonas sp. HR199 /csΩKm mit E. coli S17-1 (pSUPvJbΩGm) erhalten. Der Austausch des intakten vdh-Gens gegen das durch ΩGm inaktivierte Gen (vdhΩ Gm) wurde mittels DNA-Sequenzierung verifiziert.The mutant Pseudomonas sp. HR199 csΩKmvJbΩGm were conjugated by Pseudomonas sp. HR199 / csΩKm obtained with E. coli S17-1 (pSUPvJbΩGm). The exchange of the intact vdh gene for the gene inactivated by ΩGm (vdhΩ Gm) was verified by DNA sequencing.
Die Mutante Pseudomonas sp. HR199 vJbΩKmααtΩGm wurden nach Konjugation von Pseudomonas sp. HR199 viibΩKm mit E. coli S17-1 (pSUPααtΩGm) erhalten. Der Austausch des intakten ααt-Gens gegen das durch ΩGm inaktivierte Gen (aatΩ Gm) wurde mittels DNA-Sequenzierung verifiziert.The mutant Pseudomonas sp. HR199 vJbΩKmααtΩGm were after conjugation of Pseudomonas sp. HR199 viibΩKm with E. coli S17-1 (pSUPααtΩGm) obtained. The exchange of the intact ααt gene for the gene inactivated by ΩGm (aatΩ Gm) was verified by means of DNA sequencing.
Die Mutante Pseudomonas sp. HR199 vJbΩKmecbΩGm wurden nach Konjugation von Pseudomonas sp. HR199 vtibΩKm mit E. coli S17-1 (pSUPecbΩGm) erhalten. Der Austausch des intakten ecb-Gens gegen das durch ΩGm inaktivierte Gen (echΩ Gm) wurde mittels DNA-Sequenzierung verifiziert. The mutant Pseudomonas sp. HR199 vJbΩKmecbΩGm were conjugated to Pseudomonas sp. HR199 vtibΩKm obtained with E. coli S17-1 (pSUPecbΩGm). The exchange of the intact ecb gene for the gene inactivated by ΩGm (echΩ Gm) was verified by DNA sequencing.
Beispiel 7Example 7
Erzeugung von Mutanten des Stammes Pseudomonas sp. HR199, bei denen spezifisch Gene des Eugenol-Katabolismuses durch Deletion eines Teilbereiches inaktiviert wurden.Generation of mutants of the Pseudomonas sp. HR199, in which genes of eugenol catabolism were specifically inactivated by deletion of a partial area.
Die Stämme Pseudomonas sp. HR199 αsΩKm, Pseudomonas sp. HR199 ecbΩKm, Pseudomonas sp. HR199 vdhΩK und Pseudomonas sp. HR199 aatΩKm wurden als Rezipient in Konjugationsexperimenten eingesetzt, bei denen Stämme von E. coli S17-1 als Donoren eingesetzt wurden, die die unten aufgeführten Hybridplasmide von pHE55 enthielten. Die "heterogenoten" Transkonjuganten wurden auf Gluconat- haltigem Mineralmedium selektiert, welches neben Tetracyclin (pHE55 codierte Resistenz) das dem Ω-Element entsprechende Antibiotikum enthielt. Nach Ausstreichen auf Saccharose-haltigem Mineralmedium wurden Transkonjuganten erhalten, die durch ein zweites Rekombinationsereignis (zweiter "Cross over") die Vektor- DNA eliminiert hatten. Durch Ausstreichen auf Mineralmedium ohne Antibiotika bzw. mit dem Ω-Element entsprechenden Antibiotikum konnten die Mutanten erkannt werden, bei denen das durch Ω-Element inaktivierte Gen gegen das durch Deletion inaktivierte Gen ausgetauscht worden war (keine Antibiotika-Resistenz).The Pseudomonas sp. HR199 αsΩKm, Pseudomonas sp. HR199 ecbΩKm, Pseudomonas sp. HR199 vdhΩK and Pseudomonas sp. HR199 aatΩKm were used as a recipient in conjugation experiments in which strains of E. coli S17-1 were used as donors, which contained the hybrid plasmids of pHE55 listed below. The "heterogeneous" transconjugants were selected on mineral medium containing gluconate, which contained the antibiotic corresponding to the Ω element in addition to tetracycline (resistance coded pHE55). After streaking on sucrose-containing mineral medium, transconjugants were obtained which had eliminated the vector DNA by a second recombination event (second "cross over"). By spreading on mineral medium without antibiotics or with the antibiotic corresponding to the Ω element, it was possible to identify the mutants in which the gene inactivated by Ω element had been replaced by the gene inactivated by deletion (no antibiotic resistance).
Die Mutante Pseudomonas sp. HR199^c.sA wurde nach Konjugation von Pseudomonas sp. HR199 csΩKm mit E. coli S17-1 (pHEfcsA) erhalten. Der Austausch des durch ΩKm inaktivierten Gens (fcsΩK ) gegen das durch Deletion inaktivierte Gen (fcsA) wurde mittels DNA-Sequenzierung verifiziert.The mutant Pseudomonas sp. HR199 ^ c.sA was obtained after conjugation of Pseudomonas sp. HR199 csΩKm obtained with E. coli S17-1 (pHEfcsA). The exchange of the gene inactivated by ΩKm (fcsΩK) for the gene inactivated by deletion (fcsA) was verified by means of DNA sequencing.
Die Mutanten Pseudomonas sp. HR199 echA wurde nach Konjugation von Pseudomonas sp. HR199 ecbΩKm mit E. coli S17-1 (pHEecbΔ) erhalten. Der Austausch des durch ΩKm inaktivierten Gens (ecbΩKm) gegen das durch Deletion inaktivierte Gen (echA) wurde mittels DNA-Sequenzierung verifiziert. Die Mutanten Pseudomonas sp. HR199 vdhA wurde nach Konjugation von Pseudomonas sp. HR199 vdhΩKm. mit E. coli S17-1 (pHEvJbΔ) erhalten. Der Austausch des durch ΩKm inaktivierten Gens (vdhΩKm) gegen das durch Deletion inaktivierte Gen (vdhA) wurde mittels DNA-Sequenzierung verifiziert.The mutants Pseudomonas sp. HR199 echA was conjugated to Pseudomonas sp. HR199 ecbΩKm obtained with E. coli S17-1 (pHEecbΔ). The exchange of the gene inactivated by ΩKm (ecbΩKm) for the gene inactivated by deletion (echA) was verified by means of DNA sequencing. The mutants Pseudomonas sp. HR199 vdhA was conjugated to Pseudomonas sp. HR199 vdhΩKm. obtained with E. coli S17-1 (pHEvJbΔ). The exchange of the gene inactivated by ΩKm (vdhΩKm) for the gene inactivated by deletion (vdhA) was verified by means of DNA sequencing.
Die Mutanten Pseudomonas sp. HR199 aatA wurde nach Konjugation von Pseudomonas sp. HR199 αtΩKm mit E. coli S17-1 (pHEαα/Δ) erhalten. Der Austausch des durch ΩKm inaktivierten Gens (ααtΩKm) gegen das durch Deletion inaktivierte Gen (aatA) wurde mittels DNA-Sequenzierung verifiziert.The mutants Pseudomonas sp. HR199 aatA was conjugated to Pseudomonas sp. HR199 αtΩKm obtained with E. coli S17-1 (pHEαα / Δ). The exchange of the gene inactivated by ΩKm (ααtΩKm) for the gene inactivated by deletion (aatA) was verified by means of DNA sequencing.
Beispiel 8Example 8
Biotransformation von Eugenol zu Vanillin mit der Mutante Pseudomonas sp. HR199 vdhΩKm. Der Stamm Pseudomonas sp. HR199 bΩKm wurde in 50 ml HR-MM mit 6 mMBiotransformation of eugenol to vanillin with the mutant Pseudomonas sp. HR199 vdhΩKm. The Pseudomonas sp. HR199 bΩKm was in 50 ml HR-MM with 6 mM
Eugenol bis zu einer optischen Dichte von ca. ODόOOnm = 0.6 angezogen. Nach 17 h waren 2.9 mM Vanillin, 1.4 mM Ferulasäure und 0.4 mM Vanillinsäure im Kulturüberstand nachweisbar.Eugenol attracted to an optical density of approx. ODόOOnm = 0.6. After 17 h, 2.9 mM vanillin, 1.4 mM ferulic acid and 0.4 mM vanillic acid were detectable in the culture supernatant.
Beispiel 9Example 9
Biotransformation von Eugenol zu Ferulasäure mit der Mutante Pseudomonas sp. HR199 vrf/iΩGmöαtΩKm.Biotransformation of eugenol to ferulic acid with the mutant Pseudomonas sp. HR199 vrf / iΩGmöαtΩKm.
Der Stamm Pseudomonas sp. HR199 vtibΩGmααtΩKm wurde in 50 ml HR-MM mit 6 mM Eugenol bis zu einer optischen Dichte von ca. ODόOOnm = 0.6 angezogen.The Pseudomonas sp. HR199 vtibΩGmααtΩKm was grown in 50 ml HR-MM with 6 mM eugenol to an optical density of approx. ODόOOnm = 0.6.
Nach 18 h waren 1.9 mM Vanillin, 2.4 mM Ferulasäure und 0.6 mM Vanillinsäure im Kulturüberstand nachweisbar. Beispiel 10After 18 h, 1.9 mM vanillin, 2.4 mM ferulic acid and 0.6 mM vanillic acid were detectable in the culture supernatant. Example 10
Biotransformation von Eugenol zu Coniferylalkohol mit der Mutante Pseudomonas sp. HR199 vd/iΩGmaatΩKm. Der Stamm Pseudomonas sp. HR199 vöbΩGmααtΩKm wurde in 50 ml HR-MM mitBiotransformation of eugenol to coniferyl alcohol with the mutant Pseudomonas sp. HR199 vd / iΩGmaatΩKm. The Pseudomonas sp. HR199 vöbΩGmααtΩKm was in 50 ml HR-MM with
6 mM Eugenol bis zu einer optischen Dichte von ca. ODόOOnm = 0.4 angezogen. Nach 15 h waren 1.7 mM Coniferylalkohol, 1.4 mM Vanillin, 1.4 mM Ferulasäure und 0.2 mM Vanillinsäure im Kulturüberstand nachweisbar.6 mM eugenol attracted to an optical density of approx. ODόOOnm = 0.4. After 15 h, 1.7 mM coniferyl alcohol, 1.4 mM vanillin, 1.4 mM ferulic acid and 0.2 mM vanillic acid were detectable in the culture supernatant.
Beispiel 11Example 11
Fermentative Produktion von natürlichem Vanillin aus Eugenol im 10 1 Fermenter mit der Mutante Pseudomonas sp. HR 199 vdhΩKm.Fermentative production of natural vanillin from eugenol in a 10 l fermenter with the mutant Pseudomonas sp. HR 199 vdhΩKm.
Mit 100 ml einer 24 Stunden alten Vorkultur, die auf einer Schüttelmaschine (120 Upm) bei 32°C in einem auf pH 7,0 eingestellten Medium aus 12,5 g/1 Glyzerin,With 100 ml of a 24-hour-old preculture, which is made on a shaking machine (120 rpm) at 32 ° C. in a medium made of 12.5 g / 1 glycerol and adjusted to pH 7.0
10 g/1 Hefeextrakt und 0,37 g/1 Essigsäure angezogen wurde, wurde der Produktions- fermenter beimpft. Der Fermenter enthielt 9,9 1 Medium mit folgender Zusammensetzung: 1,5 g/1 Hefeextrakt, 1,6 g/1 KH2PO4, 0,2 g/1 NaCl, 0,2 g/1 MgSO4. Der pH- Wert wurde mit Natronlauge auf pH 7,0 eingestellt. Nach der Sterilisation wurde dem Medium 4 g Eugenol zugefügt. Die Temperatur betrug 32°C, die Belüftung 3The production fermenter was inoculated with 10 g / 1 yeast extract and 0.37 g / 1 acetic acid. The fermenter contained 9.9 liters of medium with the following composition: 1.5 g / 1 yeast extract, 1.6 g / 1 KH 2 PO 4 , 0.2 g / 1 NaCl, 0.2 g / 1 MgSO 4 . The pH was adjusted to pH 7.0 with sodium hydroxide solution. After sterilization, 4 g of eugenol was added to the medium. The temperature was 32 ° C, the ventilation 3
Nl/min und die Rührerdrehzahl 600 Upm. Der pH- Wert wurde mit Natronlauge bei pH 6,5 gehalten.Nl / min and the stirrer speed 600 rpm. The pH was kept at pH 6.5 with sodium hydroxide solution.
Vier Stunden nach dem Animpfen wurde mit der kontinuierlichen Zugabe von Eugenol begonnen, so daß am Ende der Fermentation nach 65 Stunden 255 g Eugenol zur Kultur gegeben worden waren. Außerdem wurden während der Fermentation 40 g Hefeextrakt zugefüttert. Die Konzentration an Eugenol lag am Ende der Fermentation bei 0,2 g/1. Der Gehalt an Vanillin betrug 2,6 g/1. Zusätzlich lagen noch 3,4 g/1 Ferulasäure vor. Das so erhaltene Vanillin kann durch bekannte physikalische Verfahren wie Chromatographie, Destillation und/oder Extraktion isoliert und zur Herstellung natürlicher Aromen verwendet werden.Four hours after inoculation, the continuous addition of eugenol was started, so that at the end of the fermentation, 255 g of eugenol had been added to the culture after 65 hours. In addition, 40 g of yeast extract were added during the fermentation. The concentration of eugenol at the end of the fermentation was 0.2 g / 1. The vanillin content was 2.6 g / l. In addition, 3.4 g / 1 ferulic acid were still present. The vanillin thus obtained can be isolated by known physical methods such as chromatography, distillation and / or extraction and used to produce natural flavors.
Erläuterungen zu den Figuren:Explanations to the figures:
FIG. la bis lr:FIG. la to lr:
Gen- Strukturen zur Gewinnung von Organismen und MutantenGene structures for the extraction of organisms and mutants
calA *: Teil des inaktivierten Gens der Coniferylalkohol-Dehydrogenase calB*: Teil des inaktivierten Gens der Coniferylaldehyd-Dehydrogenase fcs*: Teil des inaktivierten Gens der Ferulasäure-CoA Synthetase ech*: Teil des inaktivierten Gens der Enoyl-CoA Hydratase-Aldolase vdh* : Teil des inaktivierten Gens der Vanillin-Dehydrogenase aat*: Teil des inaktivierten Gens der beta-KetothiolasecalA *: part of the inactivated gene of the coniferyl alcohol dehydrogenase calB *: part of the inactivated gene of the coniferylaldehyde dehydrogenase fcs *: part of the inactivated gene of the ferulic acid-CoA synthetase ech *: part of the inactivated gene of the enoyl-CoA hydratase aldolase vdh * : Part of the inactivated gene of vanillin dehydrogenase aat *: Part of the inactivated gene of beta-ketothiolase
Die mit "*" versehenen Restriktionsenzym-Schnittstellen kamen für die Konstruktion zum Einsatz, sind jedoch in dem resultierenden Konstrukt nicht mehr funktionsfähig. The restriction enzyme interfaces provided with "*" were used for the construction, but are no longer functional in the resulting construct.
FIG. 2a: Nukleotidsequenz der Gen-Struktur calAΩKm FIG. 2b: Nukleotidsequenz der Gen-Struktur calAΩGm: FIG. 2c: Nukleotidsequenz der Gen-Struktur calAA FIG. 2d: Nukleotidsequenz der Gen-Struktur calBΩKm FIG. 2e: Nukleotidsequenz der Gen-Struktur calBΩGmFIG. 2a: nucleotide sequence of the calAΩKm gene structure FIG. 2b: nucleotide sequence of the gene structure calAΩGm: FIG. 2c: nucleotide sequence of the calAA gene structure FIG. 2d: Nucleotide sequence of the gene structure calBΩKm FIG. 2e: nucleotide sequence of the calBΩGm gene structure
FIG. 2f: Nukleotidsequenz der Gen-Struktur calBA FIG. 2g: Nukleotidsequenz der Gen-Struktur fcsΩKm FIG. 2h: Nukleotidsequenz der Gen-Struktur fcsΩGm FIG. 2i: Nukleotidsequenz der Gen- Struktur fcsA FIG. 2j: Nukleotidsequenz der Gen-Struktur ecbΩKmFIG. 2f: Nucleotide sequence of the gene structure calBA FIG. 2g: nucleotide sequence of the gene structure fcsΩKm FIG. 2h: nucleotide sequence of the gene structure fcsΩGm FIG. 2i: nucleotide sequence of the gene structure fcsA FIG. 2j: nucleotide sequence of the gene structure ecbΩKm
FIG. 2k: Nukleotidsequenz der Gen-Struktur ecbΩGm FIG. 21: Nukleotidsequenz der Gen-Struktur echA FIG. 2m: Nukleotidsequenz der Gen-Struktur vtibΩKm FIG. 2n: Nukleotidsequenz der Gen-Struktur vJbΩGm FIG. 2o: Nukleotidsequenz der Gen-Struktur vdhAFIG. 2k: nucleotide sequence of the gene structure ecbΩGm FIG. 21: Nucleotide sequence of the gene structure echA FIG. 2m: nucleotide sequence of the gene structure vtibΩKm FIG. 2n: nucleotide sequence of the gene structure vJbΩGm FIG. 2o: Nucleotide sequence of the gene structure vdhA
FIG. 2p: Nukleotidsequenz der Gen-Struktur aatΩKm FIG. 2q: Nukleotidsequenz der Gen-Struktur aatΩGm FIG. 2r: Nukleotidsequenz der Gen-Struktur aatA FIG. 2p: nucleotide sequence of the gene structure aatΩKm FIG. 2q: nucleotide sequence of the gene structure aatΩGm FIG. 2r: nucleotide sequence of the gene structure aatA

Claims

Patentansprttche Patent claims
1. Transformierter und/oder mutagenisierter ein- oder mehrzelliger Organismus, der dadurch gekennzeichnet ist, daß Enzyme des Eugenol- und/oder Ferula- säure-Katabolismus derart inaktiviert sind, daß eine Akkumulation der1. Transformed and / or mutagenized single or multicellular organism, which is characterized in that enzymes of eugenol and / or ferulic acid catabolism are inactivated such that an accumulation of
Intermediate Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und oder Vanillinsäure erfolgt.Intermediate coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and or vanillic acid takes place.
2. Organismus nach Anspruch 1, dadurch gekennzeichnet, daß der Eugenol- und/oder Ferulasäure-Katabolismus durch Ω-Elemenf-Insertion oder Einführen von Deletionen in entsprechende Gene verändert ist.2. Organism according to claim 1, characterized in that the eugenol and / or ferulic acid catabolism is changed by Ω-elemenf insertion or insertion of deletions in corresponding genes.
3. Organismus nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß ein oder mehrere Gene, die für die Enzyme Coniferylalkohol-Dehydro- genasen, Coniferylaldehyd-Dehydrogenasen, Ferulasäure-CoA Synthetasen,3. Organism according to one of claims 1 or 2, characterized in that one or more genes which are responsible for the enzymes coniferyl alcohol dehydrogenase, coniferylaldehyde dehydrogenase, ferulic acid-CoA synthetases,
Enoyl-CoA Hydratasen-Aldolasen, beta-Ketothiolasen, Vanillin-Dehydro- genasen oder Vanillinsäure-Demethylasen Enzyme kodieren, verändert und/oder inaktiviert sind.Enoyl-CoA hydratase aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases encode enzymes, are modified and / or are inactivated.
4. Organismus nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß er einzellig, vorzugsweise ein Mikroorganismus oder eine pflanzliche oder eine tierische Zelle ist.4. Organism according to one of claims 1 to 3, characterized in that it is single-celled, preferably a microorganism or a plant or an animal cell.
5. Organismus nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß er ein Bakterium, vorzugsweise eine Pseudomonas- Art ist.5. Organism according to one of claims 1 to 4, characterized in that it is a bacterium, preferably a Pseudomonas species.
6. Gen-Strukturen, bei denen die für die Enzyme Coniferylalkohol-Dehydroge- nasen, Coniferylaldehyd-Dehydrogenasen, Ferulasäure-CoA Synthetasen, Enoyl-CoA Hydratasen-Aldolasen, beta-Ketothiolasen, Vanillin-Dehydroge- nasen oderVanillinsäure-Demethylasen oder zweier oder mehrerer dieser Enzyme kodierenden Nukleotidsequenzen verändert und/oder inaktiviert sind. 6. Gene structures in which the coniferyl alcohol dehydrogenases, coniferylaldehyde dehydrogenases, ferulic acid-CoA synthetases, enoyl-CoA hydratase aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases or two or more are used for the enzymes nucleotide sequences encoding these enzymes are changed and / or inactivated.
7. Gen-Strukturen mit den in Figur la bis lr angegebenen Strukturen.7. Gene structures with the structures indicated in FIGS. 1a to 1r.
8. Gen-Strukturen mit den in Figur 2a bis 2r angegebenen Sequenzen.8. Gene structures with the sequences given in FIGS. 2a to 2r.
9. Vektoren enthaltend wenigstens eine Gen-Struktur nach einem der Ansprüche 6 bis 8.9. Vectors containing at least one gene structure according to one of claims 6 to 8.
10. Transformierter Organismus nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß er wenigstens einen Vektor gemäß Anspruch 9 enthält.10. Transformed organism according to one of claims 1 to 5, characterized in that it contains at least one vector according to claim 9.
1 1. Organismus nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß er wenigstens eine Gen-Struktur nach einem der Ansprüche 6 bis 8 an Stelle des jeweiligen intakten Gens im Genom integriert enthält.1 1. Organism according to one of claims 1 to 5, characterized in that it contains at least one gene structure according to one of claims 6 to 8 integrated in place of the respective intact gene in the genome.
12. Verfahren zur biotechnischen Herstellung von organischen Verbindungen, insbesondere von Alkoholen, Aldehyden und organischen Säuren, dadurch gekennzeichnet, daß ein Organismus nach einem der Ansprüche 1 bis 5 oder 10 bis 11 eingesetzt wird.12. A process for the biotechnical production of organic compounds, in particular alcohols, aldehydes and organic acids, characterized in that an organism according to one of claims 1 to 5 or 10 to 11 is used.
13. Verfahren zur Herstellung der Organismen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Veränderung des Eugenol- und/oder Ferulasäure-Katabolismus mittels an sich bekannter mikrobiologischer Züchtungsmethoden erzielt wird.13. A method for producing the organisms according to one of claims 1 to 5, characterized in that the change in the eugenol and / or ferulic acid catabolism is achieved by means of microbiological breeding methods known per se.
14. Verfahren zur Herstellung eines Organismus nach einem der Ansprüche 1 bis 5 oder 10 bis 11, dadurch gekennzeichnet, daß die Veränderung des Eugenol- und/oder Ferulasäure-Katabolismus und/oder die Inaktivierung der entsprechenden Gene mittels gentechnischer Methoden erzielt wird. 14. A method for producing an organism according to one of claims 1 to 5 or 10 to 11, characterized in that the change in the eugenol and / or ferulic acid catabolism and / or the inactivation of the corresponding genes is achieved by means of genetic engineering methods.
15. Verwendung der Organismen nach einem der Ansprüche 1 bis 5 oder 10 bis 1 1 zur Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure.15. Use of the organisms according to one of claims 1 to 5 or 10 to 1 1 for the production of coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and / or vanillic acid.
16. Verwendung von Gen-Strukturen nach einem der Ansprüche 6 bis 8 oder eines Vektors nach Anspruch 9 zur Herstellung transformierter und/oder mutagenisierter Organismen. 16. Use of gene structures according to one of claims 6 to 8 or a vector according to claim 9 for the production of transformed and / or mutagenized organisms.
EP99953892A 1998-10-31 1999-10-20 Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism Withdrawn EP1124947A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19850242 1998-10-31
DE19850242A DE19850242A1 (en) 1998-10-31 1998-10-31 Construction of production strains for the production of substituted phenols by targeted inactivation of genes of eugenol and ferulic acid catabolism
PCT/EP1999/007952 WO2000026355A2 (en) 1998-10-31 1999-10-20 Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism

Publications (1)

Publication Number Publication Date
EP1124947A2 true EP1124947A2 (en) 2001-08-22

Family

ID=7886266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953892A Withdrawn EP1124947A2 (en) 1998-10-31 1999-10-20 Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism

Country Status (14)

Country Link
EP (1) EP1124947A2 (en)
JP (1) JP2003533166A (en)
KR (1) KR20020022045A (en)
CN (1) CN1325444A (en)
AU (1) AU761093B2 (en)
BR (1) BR9914930A (en)
CA (1) CA2348962A1 (en)
DE (1) DE19850242A1 (en)
HK (1) HK1041902A1 (en)
HU (1) HUP0104772A3 (en)
IL (1) IL142272A0 (en)
PL (1) PL348647A1 (en)
SK (1) SK5742001A3 (en)
WO (1) WO2000026355A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2721148B1 (en) 2011-06-17 2018-09-12 Symrise AG Microorganisms and methods for producing substituted phenols

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830691B1 (en) * 2006-11-21 2008-05-20 광주과학기술원 Novel bacterium able to biotransform isoeugenol and eugenol to natural vanillin or vanillic acid
CN105408488B (en) 2013-07-22 2020-01-17 巴斯夫欧洲公司 Genetic engineering of pseudomonas putida KT2440 for rapid and high yield vanillin production from ferulic acid
CN103805640B (en) * 2014-01-26 2016-04-06 东华大学 A kind of method utilizing bacterial oxidation pine uncle aldehyde to prepare forulic acid
EP3000888B1 (en) * 2014-09-29 2018-12-05 Symrise AG Process for converting ferulic acid into vanillin
FR3041655B1 (en) * 2015-09-29 2017-11-24 Lesaffre & Cie NEW BACTERIAL STRAINS FOR VANILLIN PRODUCTION
CN111019995B (en) 2019-12-31 2021-04-27 厦门欧米克生物科技有限公司 Method for producing vanillin by fermentation with eugenol as substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227980A (en) * 1992-02-21 1993-09-07 Takasago Internatl Corp Production of vanillin and its related compound by fermentation
DE4227076A1 (en) * 1992-08-17 1994-02-24 Haarmann & Reimer Gmbh Process for the preparation of substituted methoxyphenols and microorganisms suitable therefor
GB9606187D0 (en) * 1996-03-23 1996-05-29 Inst Of Food Research Production of vanillin
DE19649655A1 (en) * 1996-11-29 1998-06-04 Haarmann & Reimer Gmbh Synthetic enzymes for the production of coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid and their use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0026355A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2721148B1 (en) 2011-06-17 2018-09-12 Symrise AG Microorganisms and methods for producing substituted phenols

Also Published As

Publication number Publication date
AU1041300A (en) 2000-05-22
CN1325444A (en) 2001-12-05
AU761093B2 (en) 2003-05-29
HUP0104772A3 (en) 2003-10-28
IL142272A0 (en) 2002-03-10
KR20020022045A (en) 2002-03-23
WO2000026355A3 (en) 2000-11-09
SK5742001A3 (en) 2001-12-03
CA2348962A1 (en) 2000-05-11
DE19850242A1 (en) 2000-05-04
HUP0104772A2 (en) 2002-03-28
WO2000026355A2 (en) 2000-05-11
HK1041902A1 (en) 2002-07-26
BR9914930A (en) 2001-07-10
PL348647A1 (en) 2002-06-03
JP2003533166A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
DE60030988T2 (en) Process for producing L-amino acids by increasing cellular NADPH
EP0334841B1 (en) Micro-organisms and plasmids for producing 2,4-dichlorophenoxy acetic acid (2,4-d)-monooxygenase and process for producing these plasmids and strains
DE60025976T2 (en) DNA encoding a mutated isopropylmalate synthase, microorganism producing L-leucine, and methods of producing L-leucine
DE60132498T2 (en) ISOPRENOIDPRODUKTION
DE60028777T2 (en) PROCESS FOR THE PREPARATION OF 1,3-PROPANEDIOL BY A RECOMBINANT MICROORGANISM IN THE ABSENCE OF COENZYME B12
DE19610984A1 (en) Alcohol dehydrogenase and its use for the enzymatic production of chiral hydroxy compounds
WO2001044480A2 (en) Enzymes and genes used for producing vanillin
DE112007002880T5 (en) Process for the preparation of hydroxytyrosol
DE102007052463A1 (en) Fermentative recovery of acetone from renewable resources using a new metabolic pathway
WO1994008031A1 (en) Microorganisms for the production of tryptophan and process for producing the same
DE69433873T2 (en) Synthesis of catechol by a biomass-derived carbon source
DE3853548T2 (en) Process for the preparation of compounds with a hydroxyl or epoxy end group and microorganisms therefor.
EP0845532A2 (en) Enzymes for the synthesis of coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin, vanillic acid and their applications
EP0667909B1 (en) Biotechnological method of producing biotin
DE60115900T2 (en) NUCLEOTIDE SEQUENCES CODING FOR THE MDHA GENE FROM CORYNEBACTERIUM GLUTAMICUM
EP1124947A2 (en) Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism
EP0722500A1 (en) Genes for butyrobetaine/crotonobetaine-l-carnitine metabolism and their use for the microbiological production of l-carine
EP1570059A1 (en) Method for the production of r-alpha-lipoic acid by fermentation
EP1244776B1 (en) Tetrahydropyrimidine oxygenase gene, polypeptides encoded by said gene and method for producing the same
DE69920470T2 (en) NOVEL GENE AND TRANSFORMANT, WHICH INCLUDES THIS
DE69931176T2 (en) NEW BACILLUS SUBTILIS STRAINS FOR FOOD REMINDER
DE10220234B4 (en) Processes and microorganisms for the microbial production of pyruvate from carbohydrates and alcohols
DE10332623A1 (en) Cells and methods for the fermentative production of R-alpha-lipoic acid
DE10245993A1 (en) Cells that produce enantiomerically enriched R-alpha-lipoic acid, useful e.g. as antioxidants for treating diabetes and its complications, and which over express the lipoyl-protein-ligase B gene
DE10101501A1 (en) Process for the fermentative production of pantothenic acid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010531

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT PAYMENT 20010531;LV PAYMENT 20010531;MK;RO;SI PAYMENT 20010531

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SYMRISE GMBH & CO. KG

17Q First examination report despatched

Effective date: 20031202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051103