SK287689B6 - Immunostimulatory oligodeoxynucleotides - Google Patents

Immunostimulatory oligodeoxynucleotides Download PDF

Info

Publication number
SK287689B6
SK287689B6 SK1815-2002A SK18152002A SK287689B6 SK 287689 B6 SK287689 B6 SK 287689B6 SK 18152002 A SK18152002 A SK 18152002A SK 287689 B6 SK287689 B6 SK 287689B6
Authority
SK
Slovakia
Prior art keywords
monothiophosphate
monophosphate
odn
deoxyinosine
deoxycytosine
Prior art date
Application number
SK1815-2002A
Other languages
Slovak (sk)
Other versions
SK18152002A3 (en
Inventor
Walter Schmidt
Karen Lingnau
Carola Schellack
Alena Egyed
Original Assignee
Intercell Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT0100000A external-priority patent/AT410173B/en
Application filed by Intercell Ag filed Critical Intercell Ag
Publication of SK18152002A3 publication Critical patent/SK18152002A3/en
Publication of SK287689B6 publication Critical patent/SK287689B6/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/24Heterocyclic radicals containing oxygen or sulfur as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/18Type of nucleic acid acting by a non-sequence specific mechanism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Saccharide Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

An use of oligodeoxynucleic acid molecule (ODN) having the structure according to formula (I), wherein any X is O or S; any NMP is a 2' deoxynucleoside monophosphate or monothiophosphate, selected from the group consisting of deoxyadenosine-, deoxyguanosine-, deoxyinosine-, deoxycytosine-, deoxyuridine-, deoxythymidine-, 2-methyl-deoxyinosine-, 5-methyl-deoxycytosine-, deoxypseudouridine-, deoxyribosepurine-, 2-amino-deoxyribosepurine-, -6-S-deoxyguanine-, 2-dimethyl- deoxyguanosine- or N- isopentenyl-deoxyadenosine-monophosphate or -monothiophosphate, NUC is a 2' deoxynucleoside, selected from the group consisting of deoxyadenosine-, deoxyguanosine-, deoxyinosine-, deoxycytosine-, deoxyuridine-, deoxythymidine-, 2-methyl-deoxyinosine-, 5-methyl-deoxycytosine-, deoxypseudouridine-, deoxyribosepurine-, 2-amino-deoxyribosepurine-, 6-S-deoxyguanine-, 2-dimethyl- deoxyguanosine- or N-isopentenyl-deoxyadenosine; a and b are integers from 0 to 100 with the proviso that a + b is between 4 and 150, B and E are common groups for 5' or 3' ends of nucleic acid molecules, for preparing an immunostimulatory pharmaceutical composition. An immunostimulatory pharmaceutical composition containing such ODN.

Description

Oblasť technikyTechnical field

Predkladaný vynález sa týka použitia molekuly oligodeoxynukleovej kyseliny (ODN) na výrobu imunostimulačnej farmaceutickej kompozície a farmaceutického prípravku, ktorý také molekuly ODN obsahuje.The present invention relates to the use of an oligodeoxynucleic acid (ODN) molecule for the manufacture of an immunostimulatory pharmaceutical composition and a pharmaceutical composition comprising such ODN molecules.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Vakcíny môžu zachrániť viac životov (a zdrojov) ako akákoľvek iná lekárska intervencia (Nossal, 1998). Vďaka celosvetovým očkovacím programom sa drasticky znížila incidencia mnohých smrteľných ochorení. Aj keď toto platí pre celý rad ochorení, napríklad tuberkulózu, záškrt, čierny kašeľ, osýpky a tetanus, pre mnoho infekčných ochorení zahŕňajúcich väčšinu vírusových infekcií, ako je napríklad AIDS, neexistujú účinné vakcíny. Neexistujú účinné vakcíny pre ďalšie ochorenia, infekčné alebo neinfekčné, vyžadujúce si každým rokom životy miliónov pacientov, ktoré zahŕňajú maláriu a nádorové ochorenia. Nanajvýš rýchlo sa vyvíjajúce baktérie a mikroorganizmy rezistentné na antibiotiká volajú po alternatívnych liečebných postupoch, kde vakcíny sú logickou voľbou. Veľká potreba vakcín je konečne tiež ilustrovaná faktom, že infekčné ochorenia, skôr ako kardiovaskulárne choroby alebo nádorové ochorenia, alebo poranenia, zostávajú najväčšou príčinou úmrtia a neschopnosti na svete (Bloom a Widdus, 1998).Vaccines can save more lives (and resources) than any other medical intervention (Nossal, 1998). Worldwide vaccination programs have drastically reduced the incidence of many fatal diseases. Although this is true for a variety of diseases such as tuberculosis, diphtheria, whooping cough, measles and tetanus, there are no effective vaccines for many infectious diseases involving most viral infections, such as AIDS. There are no effective vaccines for other diseases, infectious or non-infectious, requiring the lives of millions of patients each year, including malaria and cancer. Extremely fast developing bacteria and antibiotic resistant microorganisms call for alternative treatments where vaccines are the logical choice. Finally, the great need for vaccines is also illustrated by the fact that infectious diseases, rather than cardiovascular diseases or cancer, or injuries, remain the largest cause of death and disability in the world (Bloom and Widdus, 1998).

Z imunologického pohľadu je dnes na poli vakcín najväčším problémom fakt, že tradičné vakcíny (a/alebo imunomodulačné zlúčeniny obsiahnuté v týchto prípravkoc)h sú navrhnuté, aby indukovali vysoké hladiny protilátok (Harrow a Lane (1988). Ale protilátky samy osebe nie sú účinné v prevencii veľkého množstva ochorení zahŕňajúcich väčšinu chorôb spôsobených vírusmi, intracelulámymi baktériami, určitými parazitmi a nádormi. Príklady takých ochorení sú, ale nie sú obmedzené na uvedený vírus HIV alebo Plasmodium spec. v prípade malárie. V počerných experimentálnych systémoch bolo preukázané, že v týchto prípadoch je zodpovedná bunková časť imunitného systému, zahŕňajúca T bunky, skôr ako časť protilátková. Preto sú potrebné nové inovačné technológie, aby sa prekonali obmedzenia konvenčných vakcín. Stred pozornosti musí byť položený na technológiách, ktoré spoľahlivo indukujú bunkový imunitný systém, vrátane antigén špecifických T buniek, ktoré rozpoznávajú molekuly na bunkách infikovaných patogénmi. Vakcíny sú ideálne navrhované tak, aby indukovali T bunky rozpoznávajúce choré a/alebo infikované bunky od buniek normálnych a súčasne protilátky sekrétované B bunkami rozpoznávajúcimi patogény v extracelulámych kompartmentoch.From the immunological point of view, the biggest problem today in the field of vaccines is that traditional vaccines (and / or immunomodulatory compounds contained in these preparations) are designed to induce high levels of antibodies (Harrow and Lane (1988). But the antibodies themselves are not effective. in the prevention of a large number of diseases involving most diseases caused by viruses, intracellular bacteria, certain parasites and tumors Examples of such diseases are, but are not limited to, said HIV or Plasmodium spec. in the case of malaria. In some cases, the cellular part of the immune system, including the T cells, is responsible rather than the antibody part, and therefore new innovative technologies are needed to overcome the limitations of conventional vaccines, the focus must be on technologies that reliably induce cellular immune ystem, including antigen-specific T cells, which recognize molecules on cells infected with pathogens. Vaccines are ideally designed to induce T cells recognizing diseased and / or infected cells from normal cells and at the same time antibodies secreted by B cells recognizing pathogens in the extracellular compartments.

Niektoré zavedené vakcíny obsahujú živé atenuované organizmy, kde existuje riziko zvratu k virulentnému divokému kmeňu. Toto môže mať životu ohrozujúce následky najmä pre imunnosuprimovaných hostiteľov. Vakcíny sú alternatívne podávané ako kombinácie antigénov odvodených od patogénov spolu so zlúčeninami, ktoré indukujú alebo zvyšujú imunitné odpovede proti týmto antigénom (tieto zlúčeniny sú bežne nazývané adjuvantné látky), pretože tieto podjednotkové vakcíny nie sú samy osebe všeobecne účinné.Some established vaccines contain living attenuated organisms where there is a risk of reversal to a virulent wild strain. This may have life-threatening consequences especially for immunosuppressed hosts. Vaccines are alternatively administered as combinations of pathogen-derived antigens together with compounds that induce or enhance immune responses against these antigens (these compounds are commonly called adjuvants) because these subunit vaccines are not generally effective in themselves.

Zatiaľ čo nie sú pochybnosti, že uvedené vakcíny sú cennými lekárskymi liečebnými prostriedkami, je nevýhodou, že vplyvom ich komplexity môžu byť vyvolané závažné vedľajšie účinky, napríklad k antigénom, ktoré sú obsiahnuté vo vakcíne vykazujúcej skríženú reaktivitu s molekulami exprimovanými bunkami očkovaných jedincov. Navyše je problematické splniť existujúce požiadavky regulačných autorít, napríklad Svetovej zdravotníckej organizácie (WHO), amerického Food and Drug Administration (FDA) a ich európskych náprotivkov, ktoré sa týkajú presnej špecifikácie zloženia vakcíny a mechanizmov indukcie imunity.While there is no doubt that these vaccines are valuable medical therapeutics, it is a disadvantage that due to their complexity, serious side effects can be induced, for example, to antigens that are contained in a vaccine showing cross-reactivity with molecules expressed by the cells of vaccinated individuals. In addition, it is difficult to meet existing requirements of regulatory authorities such as the World Health Organization (WHO), the US Food and Drug Administration (FDA) and their European counterparts regarding the precise specification of vaccine composition and immune-induction mechanisms.

Bunky prezentujúce antigén patria k vrodenému imunitnému systému, ktorý sa vyvinul ako prvá obranná línia hostiteľa, a ktorý obmedzuje infekciu skoro po expozícii mikroorganizmom (Hofmann et al., 1999). Bunky vrodeného imunitného systému rozpoznávajú vzory alebo relatívne nešpecifické štruktúry exprimované na ich cieľoch, skôr ako sofistikovanejšie, špecifické štruktúry, ktoré sú rozpoznávané adaptívnym imunitným systémom (Hoffmann et al., 1999). Príklady buniek vrodeného imunitného systému sú makrofágy a dendritické bunky, ale tiež granulocyty (napríklad neutrofily), prirodzené zabíjačské bunky a ďalšie bunky. Oproti tomu bunky adaptívneho imunitného systému rozpoznávajú špecifické antigénne štruktúry zahŕňajúce peptidy v prípade T buniek a peptidy rovnako tak ako trojrozmerné štruktúry v prípade B buniek. Adaptívny imunitný systém je špecifickejší a sofistikovanejší ako vrodený imunitný systém a zlepšuje sa po opakovanej expozícii danému patogénu/antigénu. Fylogenetický je vrodený imunitný systém oveľa starší a môže byť nájdený už pri veľmi primitívnych organizmoch. Ale vrodený imunitný systém je kritický počas iniciálnej fázy antigénnej expozície, pretože navyše k tomu, že bunky vrodeného imunitného systému (bunky APC) zadržujú patogény, tiež vybavujú bunky adaptívneho imunitného systému informáciami a teda spúšťajú špecifické imunitné odpovede vedúce na zbavenie sa votrelcov. Celkovo povedané majú bunky vrodeného imunitného systému a obzvlášť APC bunky kritickú úlohu počas indukčnej fázy imunitných odpovedí prostredníctvom a) zadržením pôvodcov infekcií pomocou rozpoznávacieho systému primitívnych vzorov, aAntigen-presenting cells belong to the innate immune system that developed as the first host defense line and that limits infection soon after exposure to microorganisms (Hofmann et al., 1999). Cells of the innate immune system recognize patterns or relatively non-specific structures expressed on their targets, rather than more sophisticated, specific structures that are recognized by the adaptive immune system (Hoffmann et al., 1999). Examples of cells of the innate immune system are macrophages and dendritic cells, but also granulocytes (e.g. neutrophils), natural killer cells, and other cells. In contrast, cells of the adaptive immune system recognize specific antigenic structures including peptides in the case of T cells and peptides as well as three-dimensional structures in the case of B cells. The adaptive immune system is more specific and sophisticated than the innate immune system and improves after repeated exposure to a given pathogen / antigen. Phylogenetic is the innate immune system much older and can be found in very primitive organisms. However, the innate immune system is critical during the initial phase of antigenic exposure because, in addition to the fact that the innate immune system cells (APCs) retain pathogens, they also provide the cells of the adaptive immune system with information and thus trigger specific immune responses leading to the elimination of intruders. In summary, cells of the innate immune system, and in particular APC cells, play a critical role during the induction phase of immune responses by (a) arresting infectious agents with a primitive pattern recognition system, and

b) vybavením buniek adaptívneho imunitného systému informáciami, čo vedie na špecifické imunitné odpovede a pamäte majúce za následok zbavenie sa vnikajúcich patogénov alebo ďalších cieľov (Roitt et al., 1998). Tieto mechanizmy môžu byť tiež dôležité na zbavenie sa alebo na zadržanie nádorových buniek.b) providing the cells of the adaptive immune system with information leading to specific immune responses and memories resulting in the release of emerging pathogens or other targets (Roitt et al., 1998). These mechanisms may also be important for the clearance or retention of tumor cells.

Ako je zmienené, rozpoznávajú bunky vrodeného imunitného systému vzory exprimované na ich príslušných cieľoch. Príklady sú lipopolysacharidy (LPS) v prípade Gram negatívnych baktérií, mykobakteriálne glykolipidy, lipoteichoové kyseliny Gram pozitívnych baktérií, manany kvasníc a dvjvláknové RNA vírusov (Hoffmann et al., 1999). Navyše môžu rozpoznávať štruktúry, ako sú napríklad narušené glykozylácie proteínov na nádorových bunkách.As mentioned, cells of the innate immune system recognize patterns expressed on their respective targets. Examples are lipopolysaccharides (LPS) for Gram negative bacteria, mycobacterial glycolipids, lipoteichoic acids Gram positive bacteria, mannan of yeast, and double-stranded RNA viruses (Hoffmann et al., 1999). In addition, they can recognize structures such as impaired protein glycosylation on tumor cells.

Nedávne nálezy opisujú DNA prvokov alebo nižších eukaryot ako ďalšie štruktúry rozpoznávané vrodeným (ale možno tiež adaptívnym) imunitným systémom cicavcov (a pravdepodobne väčšinou, ak nie všetkými stavovcami) (Krieg, 1966; Lipford et al., 1998).Recent findings describe DNA of protozoa or lower eukaryotes as other structures recognized by the innate (but possibly also adaptive) immune system of mammals (and probably by most, if not all vertebrates) (Krieg, 1966; Lipford et al., 1998).

Imunitný systém rozpoznáva nižšie organizmy zahŕňajúce baktérie pravdepodobne vďaka štrukturálnym a sekvenčným rozdielom medzi patogénom a hostiteľskou DNA. Cieľom sú obzvlášť krátke úseky DNA odvodené od non-stavovcov, alebo vo forme krátkych syntetických ODN obsahujúcich nemetylované cytozín-guanín dinukleotidy (CpG) v určitom kontexte báz (Krieg et al., 1995). Motívy CpG sa nachádzajú v očakávanej frekvencii v bakteriálnej DNA, ale sú oveľa menej časté v DNA stavovcov (LipLord et al., 1998; Pisetsky, 1998). Motívy CpG non-stavovcov (to je bakteriálne) nie sú navyše metylované, zatiaľ čo CpG sekvencie stavovcov metylované sú. Tieto rozdiely medzi bakteriálnou DNA a DNA stavovcov umožňujú stavovcom rozpoznávať DNA non-stavovcov ako nebezpečný signál.The immune system recognizes lower organisms including bacteria, probably due to structural and sequence differences between the pathogen and the host DNA. The target is particularly short DNA segments derived from non-vertebrate animals or in the form of short synthetic ODNs containing unmethylated cytosine-guanine dinucleotides (CpG) in a particular base context (Krieg et al., 1995). CpG motifs are found at the expected frequency in bacterial DNA, but are much less common in vertebrate DNA (LipLord et al., 1998; Pisetsky, 1998). In addition, non-vertebrate CpG motifs (i.e., bacterial) are not methylated, while vertebrate CpG sequences are methylated. These differences between bacterial DNA and vertebrate DNA allow vertebrates to recognize non-vertebrate DNA as a dangerous signal.

Prirodzené DNA obsahujúce CpG, ODN, rovnako tak ako tiofosfátom substituované (zámena tiofosfátových rezíduí za fosfát) ODN obsahujúci CpG motívy (CpG-ODN) nie sú len silnými aktivátormi prolyferácie imunitných buniek a humorálnych imunitných odpovedí (Krieg et al., 1995), ale tiež stimulujú silné bunkové imunitné odpovede (prehľad v Lipford et al., 1998). DNA/ODN obsahujúce nemetylované CpG motívy môžu priamo aktivovať monocytové bunky (dendritické bunky, makrofágy) a B bunky. Prirodzené zabíjačské bunky nie sú pravdepodobne priamo aktivované, ale zodpovedajú na IL-12 odvodený z monocytov (interleukín 12) s veľkým zvýšením ich produkcie IFN-y (Chace et al., 1997). V dôsledku toho podporuje indukcia monocytov a NK buniek pomocou CpG DNA indukciu odpovedí Thl typu a rozvoj cytotoxických T buniek.Natural CpG-containing DNAs, ODNs as well as thiophosphate-substituted (replacement of thiophosphate residues with phosphate) ODNs containing CpG motifs (CpG-ODN) are not only potent activators of immune cell proliferation and humoral immune responses (Krieg et al., 1995), but also stimulate strong cellular immune responses (review in Lipford et al., 1998). DNA / ODN containing unmethylated CpG motifs can directly activate monocyte cells (dendritic cells, macrophages) and B cells. Natural killer cells are not likely to be directly activated, but respond to monocyte-derived IL-12 (interleukin 12) with a large increase in their IFN-γ production (Chace et al., 1997). As a result, induction of monocytes and NK cells by CpG DNA promotes the induction of Th1-type responses and the development of cytotoxic T cells.

Je známe, že ribonukleová kyselina založená na inozíne a cytozíne, ako je polyinozínová-poylcytidylová kyselina (poly I : C), podporuje Thl-špecifické imunitné odpovede. Je známe, že stimuluje makrofágy na produkciu cytokínov, ako sú IL-Ια a IL-12 (Manetti et al., 1995), je známa tiež ako účinný induktor interferónu prvého typu (Manetti et al., 1995) a účinný stimulátor NK buniek (Cavanauah et al.. 1996).It is known that ribosucleic acid based on inosine and cytosine, such as polyinosine-poylcytidylic acid (poly I: C), promotes Th1-specific immune responses. It is known to stimulate macrophages to produce cytokines such as IL--α and IL-12 (Manetti et al., 1995), also known as a potent inducer of type I interferon (Manetti et al., 1995) and potent NK cell stimulator (Cavanauah et al., 1996).

Tento účinok bol ale prísne obmedzený na ribonukleovú kyselinu obsahujúcu inozínové a cytidínové rezíduá (W098/16247).However, this effect was strictly limited to ribonucleic acid containing inosine and cytidine residues (WO98 / 16247).

Skúmania výskumníkov predkladaného vynálezu ukázali, že ODN obsahujúce nemetylované CpG motívy, ktoré aj keď účinne stimulujú imunitný systém, majú základné nevýhody, obzvlášť s ohľadom na špecifitu (vysoké pozadie) a indukciu vedľajších účinkov, ako je napríklad vysoká systemická tvorba TNF-a. Je známe, že vysoké systemické uvoľňovanie TNF-a spôsobuje syndróm toxického šoku, ktorý môže spôsobiť smrť postihnutých pacientov.Investigations by researchers of the present invention have shown that ODNs containing unmethylated CpG motifs, which, although effectively stimulating the immune system, have basic disadvantages, particularly with respect to specificity (high background) and induction of side effects, such as high systemic TNF-α production. It is known that high systemic release of TNF-α causes toxic shock syndrome, which can cause death of affected patients.

Preto je cieľom predkladaného vynálezu poskytnúť vhodné nové ODN, ktoré nemajú takéto drastické vedľajšie účinky ako ODN založené na CpG sekvenciách. Je preto ďalším cieľom znížiť vedľajšie účinky farmaceutických preparátov obsahujúcich známe ODN a poskytnúť bezpečné a účinné dobre tolerované farmaceutické preparáty s účinnými imunostimulačnými vlastnosťami, ktoré sú vhodné na vakcináciu živočíchov, obzvlášť cicavcov, vrátane človeka.It is therefore an object of the present invention to provide suitable novel ODNs that do not have such drastic side effects as ODNs based on CpG sequences. It is therefore a further object to reduce the side effects of pharmaceutical preparations containing known ODNs and to provide safe and efficacious well tolerated pharmaceutical preparations with effective immunostimulatory properties that are suitable for the vaccination of animals, especially mammals, including humans.

Podstata vynálezuSUMMARY OF THE INVENTION

V súlade s tým je predmetom vynálezu použitie molekuly oligodeoxynukleovej kyseliny (ODN) majúcej štruktúru definovanú vzorcom (I)Accordingly, the invention provides the use of an oligodeoxynucleic acid (ODN) molecule having the structure defined by formula (I)

kde ktorýkoľvek substituent X je O alebo S;wherein any X is O or S;

ktorýkoľvek zo zvyškov NMP je 2'-deoxynukleozid-monofosfát alebo -monotiofosfát vybraný z deoxyadenozín-, deoxyguanozín-, deoxyinozín-, deoxycytozín-, deoxyuridín-, deoxytymidín-, 2-metyl-deoxyinozín-, 5-metyl-deoxycytozín-, deoxypseudouridín-, deoxyribosapurín-, 2-aminodeoxyribosapurín-, 6-S-deoxyguanín-, 2-dimetyldeoxyguanozín- alebo N-izopentenyldeoxyadenozín-monofosfátu alebo -monotiofosfátu,any of the NMP residues is 2'-deoxynucleoside monophosphate or -monothiophosphate selected from deoxyadenosine-, deoxyguanosine-, deoxyinosine-, deoxycytosine-, deoxyuridine-, deoxythymidine-, 2-methyl-deoxyinosine-, 5-methyl-deoxycytosine- , deoxyribosapurine, 2-aminodeoxyribosapurine, 6-S-deoxyguanine, 2-dimethyldeoxyguanosine or N-isopentenyldeoxyadenosine monophosphate or monothiophosphate,

NUC je 2'-deoxynukleozid vybraný z deoxyadenozín-, deoxyguanozín-, deoxyinozín-, deoxycytozín-, deoxyuridín-, deoxytymidín-, 2-metyldeoxyinozín-, 5-metyldeoxycytozín-, deoxypseudouridín-, deoxyribosapurín-, 2-aminodeoxyribosapurín-, 6-S-deoxyguanín-, 2-dimetyldeoxyguanozín- alebo N-izopentenyldeoxyadenozínu, a a b sú celé čísla od 0 do 100 výhradne, že a + b je číslo medzi 4 a 150,NUC is a 2'-deoxynucleoside selected from deoxyadenosine-, deoxyguanosine-, deoxyinosine-, deoxycytosine-, deoxyuridine-, deoxythymidine-, 2-methyldeoxyinosine-, 5-methyldeoxycytosine-, deoxypseudouridine-, deoxypyrosibine-, deoxyribosine-, deoxyrurosine, 6-deoxyurosine, -deoxyguanine-, 2-dimethyldeoxyguanosine- or N-isopentenyldeoxyadenosine, and b and are integers from 0 to 100 exclusively that a + b is a number between 4 and 150,

B a E sú bežné skupiny pre 5' alebo 3' konce molekúl nukleovej kyseliny, na výrobu imunostimulačnej farmaceutickej kompozície.B and E are common groups for the 5 'or 3' ends of the nucleic acid molecules to produce an immunostimulatory pharmaceutical composition.

Prekvapivo sa ukázalo, že ODN obsahujúce deoxyinozínové rezíduá (i-ODN) majú imunnostimulačný účinok porovnateľný, alebo v mnohých prípadoch dokonca lepší, ako ODN obsahujúce motívy CpG. Navyše ODN podľa predkladaného vynálezu produkujú špecifickejšie imunitné odpovede k danému antigénu alebo antigénnemu fragmentu ako CpG ODN. Navyše ODN podľa predkladaného vynálezu znížili indukciu nežiaducich vedľajších reakcií, obzvlášť, indukciu systémového TNF-α alebo IL-6.Surprisingly, it has been shown that ODNs containing deoxyinosine residues (i-ODNs) have an immunostimulatory effect comparable, or in many cases even better, than ODNs containing CpG motifs. In addition, the ODNs of the present invention produce more specific immune responses to a given antigen or antigenic fragment than a CpG ODN. In addition, the ODNs of the present invention reduced the induction of unwanted side reactions, in particular, the induction of systemic TNF-α or IL-6.

Zatiaľ čo určité imunnostimulačné účinky boli opísané pre RNA molekuly obsahujúce RNA molekuly, ako sú napríklad poly-IC alebo molekuly zmienené vo W098/16247, ukázalo sa prekvapivo, že molekuly deoxynukleovej kyseliny obsahujúcej rezíduá deoxyinozínu môžu byť dobrými imunnostimulačnými ODN.While certain immunostimulatory effects have been described for RNA molecules containing RNA molecules, such as poly-IC or the molecules mentioned in WO98 / 16247, it has surprisingly been found that deoxynucleic acid molecules containing deoxyinosine residues can be good immunostimulatory ODNs.

Navyše I-ODN podľa predkladaného vynálezu sú oproti ODN založených na špecifických motívoch CpG nezávislé od špecifického motívu alebo palindromickej sekvencie opísanej pre CpG oligonukleotidy (pozri napríklad EP 0 468 520 A2, W096/02555, W098/18810, W098/37919, WO 98/40100, W098/52581, W099/51259 a W099/56755, všetky začlenené tu ako referencie). Preto jedna skupina I-ODN podľa predkladaného vynálezu môže prednostne obsahovať Cl motív (a preto sú preferované formy predkladaných ODN opísané v týchto začlenených referenciách, kde jedno alebo viacero guanozínových rezíduí sú nahradené deoxyinozínovými rezíduami). Tento motív nie je potrebný pre svoju hlavnú imunnostimulačnú vlastnosť, pretože I-ODN s inozínom neumiestneným v Cl alebo IC kontexte majú imunnostimulačné vlastnosti tiež.In addition, the I-ODNs of the present invention are independent of the specific motif or palindromic sequence described for CpG oligonucleotides over ODNs based on specific CpG motifs (see, for example, EP 0 468 520 A2, WO96 / 02555, WO98 / 18810, WO98 / 37919, WO 98 / 40100, WO98 / 52581, WO99 / 51259 and WO99 / 56755, all incorporated herein by reference). Therefore, one group of I-ODNs of the present invention may preferably contain a Cl motif (and therefore preferred forms of the present ODNs are described in these incorporated references, where one or more guanosine residues are replaced by deoxyinosine residues). This motif is not necessary for its major immunostimulatory property since I-ODNs with inosine not located in the Cl or IC context have immunostimulatory properties as well.

I-ODN podľa predkladaného vynálezu je preto molekula DNA obsahujúca rezíduum deoxyinozínu, ktorá je prednostne poskytnutá v jednovláknovej forme.The I-ODN of the present invention is therefore a DNA molecule containing a deoxyinosine residue, which is preferably provided in single-stranded form.

I-ODN podľa predkladaného vynálezu môže byť izolovaná prostredníctvom rekombinantných metód alebo môže byť chemicky syntetizovaná, v druhom prípade môže I-ODN podľa predkladaného vynálezu obsahovať modifikované oligonukleotidy, ktoré môžu byť syntetizované s použitím štandardných chemických transformácií, ako sú napríklad metylfosfonáty alebo iné modifikované oligonukleotidy založené na fosfore, ako sú napríklad fosfotriestery, fosfoamidáty a fosforditioráty. Ďalšie modifikované oligonukleotidy bez fosforu môžu byť tiež použité (Stirchak et al., marec 17 (1989), 6139-6141), ale monofosfáty a monotiofosfáty sú prednostným 2' deoxynukleozid monofofátom na použitie v predkladanom vynáleze.The I-ODN of the present invention may be isolated by recombinant methods or may be chemically synthesized, in the latter case the I-ODN of the present invention may contain modified oligonucleotides that may be synthesized using standard chemical transformations such as methylphosphonates or other modified oligonucleotides phosphorus-based compounds such as phosphotriesters, phosphoamidates and phosphorothiorates. Other modified phosphorus-free oligonucleotides may also be used (Stirchak et al., March 17 (1989), 6139-6141), but monophosphates and monothiophosphates are preferred 2 'deoxynucleoside monophosphates for use in the present invention.

NMP z I-ODN podľa predkladaného vynálezu sú prednostne vybrané zo skupiny obsahujúcej deoxyadenozín-, deoxyguanozín-, deoxyinozín-, deoxycytozín-, deoxyuridín-, deoxytymidín-, 2-metyl-deoxyinozín-, 5-metyl-deoxycytozín-monofosfát alebo -monotiofosfát (ako je obvykle fosfátová alebo tiofosfátová skupina 5' deoxyribózy). Zatiaľ čo pre ODN založených na CpG motívoch je základom, že tento motív je nemetylovaný, toto nie je prekvapivo prípad ODN podľa predkladaného vynálezu, kde napríklad 2-metyl-deoxyinozínové alebo 5-metyl-deoxycytozínové rezíduá nemajú všeobecne žiadny negatívny účinok na imunnostimulačné vlastnosti ODN podľa predkladaného vynálezu. Alternatívne môžu byť prítomné na 2-pozícii ribózovej skupiny miesto 2-deoxyforom NMP tiež ďalšie obzvlášť inertné skupiny, ako sú napríklad -F, -NH2, -CH3, obzvlášť -CH3. -OH a SH skupiny sú ale vylúčené pre I-ODN podľa predkladaného vynálezu z umiestnenia v pozícii 2'-ribózy, obzvlášť ribózového rezídua pre inozín NMP.The NMPs of the I-ODNs of the present invention are preferably selected from the group consisting of deoxyadenosine, deoxyguanosine, deoxyinosine, deoxycytosine, deoxyuridine, deoxythymidine, 2-methyl-deoxyinosine, 5-methyl-deoxycytosine monophosphate (or monothiophosphate). such as the 5'-deoxyribose phosphate or thiophosphate group). While for CpG motif-based ODNs the basis is that this motif is unmethylated, this is not surprisingly the case with the ODN of the present invention where, for example, 2-methyl-deoxyinosine or 5-methyl-deoxycytosine residues generally have no negative effect on the immune-stimulatory properties of ODNs. according to the present invention. Alternatively, other particularly inert groups such as -F, -NH 2 , -CH 3 , especially -CH 3, may also be present at the 2-position of the ribose group instead of the 2-deoxyphor NMPs. However, the -OH and SH groups are excluded for the I-ODN of the present invention from being located at the 2'-ribose position, especially the ribose residue for the inosine NMP.

DÍžka ODN podľa predkladaného vynálezu je v rozmedzí štandardných ODN použitých podľa doterajších znalostí. Preto molekuly s celkovou dĺžkou pod 4 a nad 150 báz majú postupne sa znižujúci imunnostimulačný potenciál. Prednostné ODN obsahujú medzi 10 a 60 bázami, obzvlášť, medzi 15 a 40 bázami (nukleotidy), z čoho vyplýva a + b vo vzorci (I) je v týchto prednostných formách medzi 10 a 60 bázami, prednostne medzi 15 a 40 bázami.The ODN length of the present invention is within the range of standard ODNs used to date. Therefore, molecules with a total length below 4 and above 150 bases have a progressively decreasing immunostimulatory potential. Preferred ODNs comprise between 10 and 60 bases, in particular, between 15 and 40 bases (nucleotides), resulting in a + b in formula (I) in these preferred forms between 10 and 60 bases, preferably between 15 and 40 bases.

Zatiaľ čo molekuly ribonukleovej kyseliny obsahujúcej inozín a cytidín, ktoré sú v predchádzajúcich prácach opísané ako imunnostimulačné molekuly, sú veľké a relatívne nedefinované polynukleové kyseliny s molekulovými váhami oveľa nad 200 000 (komerčne dostupná polyinozínová-polycytidylová kyselina od spoločnosti Sigma Chemicals, má molekulovú váhu v rozmedzí 220 000 až 460 000 (aspoň 500 - 1 000 C+I rezíduí)). Molekuly podľa predkladaného vynálezu sú molekuly DNA, ktoré sú oveľa kratšie s dobre definovanou dĺžkou a zložením, a sú v produktoch vysoko reprodukovateľné.While the inosine-containing and cytidine-containing ribonucleic acid molecules described in the prior art as immunostimulatory molecules are large and relatively undefined polynucleic acids with molecular weights well above 200,000 (commercially available polyinosine-polycytidylic acid from Sigma Chemicals, it has a molecular weight in between 220 000 and 460 000 (at least 500-1 000 C + I residues)). The molecules of the present invention are DNA molecules that are much shorter with a well defined length and composition, and are highly reproducible in the products.

Ďalej je preferované, že deoxyinozín obsahujúci NMP z I-ODN podľa vzorca (I) je monotiofosfát s jedným alebo štyrmi atómami síry, a tiež že ďalšie NMP, obzvlášť všetky ďalšie NMP, sú prítomné ako nukleo4 zid monotiofosfáty, pretože takéto ODN majú vyššiu rezistenciu k nukleázam (je jasné pre predkladaný vynález, že termín „mono“ vo výraze „monotiofosfáty“ sa týka fosfátu, to je, že jedna fosfátová skupina (jeden atóm fosforu) je prítomná v každom NMP). Prednostne aspoň jeden atóm z Xi a X2 je S a aspoň jeden atóm z X3 a X4 je O v NMP podľa predkladaného vynálezu. X3 a X4 sú prednostne O. X3 môže byť (v dôsledku syntézy NMP) odvodené napríklad z fosfátovej skupiny alebo z 3-skupiny NMP ribózy).It is further preferred that the NMP-containing deoxyinosine of the I-ODN of formula (I) is a monothiophosphate with one or four sulfur atoms, and also that other NMPs, particularly all other NMPs, are present as nucleo4 zid monothiophosphates because such ODNs have higher resistance to nucleases (it is clear for the present invention that the term "mono" in the term "monothiophosphates" refers to phosphate, that is, one phosphate group (one phosphorus atom) is present in each NMP). Preferably, at least one of X 1 and X 2 is S and at least one X 3 and X 4 is O in the NMP of the present invention. X 3 and X 4 are preferably O. X 3 may (due to NMP synthesis) be derived, for example, from the phosphate group or from the 3-group of the NMP ribose).

ODN podľa predkladaného vynálezu prednostne obsahujú sekvenciu hhh wdi dhh h, nhh hhh wdi nhh hhh hhh wn, nhh wdi din hhh hdi ndi nh, nhh hhh wdi dhh hhh hhh wn alebo nhh wdi did hhh hdi ddi dh, kde akékoľvek n je 2' deoxynukleozid monofosfát alebo monotiofosfát vybraný zo skupiny obsahujúcej deoxyadenozín-, deoxyguanozín-, deoxyinozín-, deoxycytozín- alebo deoxytymidín-monofosfát, alebo -monotiofosfát, akékoľvek h je 2' deoxynukleozid monofosfát alebo monotiofosfát vybraný zo skupiny obsahujúcej deoxyadenozín-, deoxycytozín- alebo deoxytymidín-monofosfát, alebo monotiofosfát, i je deoxyinozín-monofosfát alebo -monotiofosfát, akékoľvek w je 2' deoxynukleozid monofosfát alebo monotiofosfát vybraný zo skupiny obsahujúcej deoxyadenozín- alebo deoxytymidín-monofosfát, alebo -monotiofosfát, a akékoľvek d je 2' deoxynukleozid monofosfát alebo monotiofosfát vybraný zo skupiny obsahujúcej deoxyadenozín-, deoxyguanozín- alebo deoxytymidín-monofosfát, alebo monotiofosfát.ODNs according to the present invention preferably comprise the sequence hhh wdi dhh h, nhh hhh wdi nhh hhh hhh wn, nhh wdi din hhh hdi nh nh, nhh hhh wdi dhh hhh hhh wn or nhh wdi did hhh hdi ddi dh, where any is a deoxynucleoside monophosphate or monothiophosphate selected from the group consisting of deoxyadenosine-, deoxyguanosine-, deoxyinosine-, deoxycytosine- or deoxythymidine monophosphate, or -monothiophosphate; , or monothiophosphate, i is deoxyinosine monophosphate or -monothiophosphate, any w is a 2 'deoxynucleoside monophosphate or monothiophosphate selected from the group consisting of deoxyadenosine or deoxythymidine monophosphate, or -monothiophosphate, and any d is 2' deoxynucleoside monophosphate or monophosphate containing deoxyadenosine-, deoxyguanosine- or deoxythymidine-monofo or monothiophosphate.

Ako je uvedené, nie je pre I-ODN podľa predkladaného vynálezu potrebný špecifický motív (ako je napríklad CpG alebo palindróm). ODN obsahujúce Cl motív sú ale preferované, takže v prednostnej forme obsahuje ODN podľa vzorca (I) aspoň jeden 2' deoxycytozín-monofosfát alebo monotiofosfát, 3'-priľahlý k 2' deoxyinozín-monofosfátu alebo -monotiofosfátu za vzniku 5'-CI 3'- motívu.As mentioned, a specific motif (such as CpG or palindrome) is not required for the I-ODN of the present invention. However, ODNs containing a Cl motif are preferred, so that in a preferred form, the ODN of formula (I) comprises at least one 2 'deoxycytosine monophosphate or monothiophosphate, 3'-adjacent to 2' deoxyinosine monophosphate or monothiophosphate to form 5'-CI 3 ' - motif.

Prednostné ODN podľa predkladaného vynálezu obsahujú jednu alebo viacej zo sekvencii gacitt, iacitt, gaictt, iaictt, kde a je deoxyadenozín-monofosfát alebo -monotiofosfát, g je deoxyguanozín-monofosfát alebo -monotiofosfát, a je deoxyinozín-monofosfát alebo -monotiofosfát, c je deoxycytozín-monofosfát alebo -monotiofosfát a t je deoxytymidín-monofosfát alebo -monotiofosfát.Preferred ODNs of the present invention comprise one or more of gacitt, iacitt, gaictt, iaictt, wherein a is deoxyadenosine monophosphate or -monothiophosphate, g is deoxyguanosine monophosphate or -monothiophosphate, and is deoxyinosine monophosphate or -monothiophosphate, -monophosphate or -monothiophosphate whether it is deoxythymidine monophosphate or -monothiophosphate.

I-ODN podľa predkladaného vynálezu sú obzvlášť vhodné na aplikáciu na farmaceutickom poli, napríklad na aplikáciu ako liek zvieraťu alebo človeku. Sú špecificky prispôsobené, aby účinkovali ako imunnostimulačná látka, obzvlášť vo vakcínovom prípravku alebo spolu s ním.The I-ODNs of the present invention are particularly suitable for application in the pharmaceutical field, for example, as an medicament to an animal or a human. They are specifically adapted to act as an immuno-stimulant, particularly in or with the vaccine formulation.

Preto sa predkladaný vynález tiež týka farmaceutického prípravku obsahujúceho ODN podľa predkladaného vynálezu.Therefore, the present invention also relates to a pharmaceutical composition comprising an ODN of the present invention.

Pretože prednostný farmaceutický prípravok podľa predkladaného vynálezu je vakcínou, mal by tento prípravok obsahovať antigén namiesto ODN podľa predkladaného vynálezu. Potenciál tohto antigénu zvýšiť ochranu/imunitnú odpoveď očkovaného jedinca je silne zvýšený jeho kombináciou s ODN podľa predkladaného vynálezu, obzvlášť vplyvom ich imunnostimulačnej aktivity.Since the preferred pharmaceutical composition of the present invention is a vaccine, the composition should comprise an antigen instead of an ODN of the present invention. The potential of this antigen to enhance the protection / immune response of a vaccinated individual is strongly enhanced by its combination with the ODN of the present invention, particularly due to their immunostimulatory activity.

Vakcína môže obsahovať celý rad rôznych antigénov. Príklady antigénov sú usmrtené celé organizmy, ako sú napríklad inaktivované vírusy alebo baktérie, plesne, prvoky alebo dokonca nádorové bunky. Antigény sa môžu tiež skladať zo subfrakcií týchto organizmov/tkanív z proteínov, alebo v ich jednoduchšej forme z peptidov. Antigény môžu byť tiež rozpoznávané imunitným systémom vo forme glykozylovaných proteínov alebo peptidov a môžu tiež byť alebo obsahovať polysacharidy alebo lipidy. Môžu byť použité krátke peptidy, pretože napríklad cytotoxické T bunky (CTL) rozpoznávajú antigény vo forme krátkych obvykle 8-11 aminokyselín dlhých peptidov v spojení s hlavným histokompatibilným komplexom (MHC) (Rammensee et al., Immunogenetics 41, (1995), 178-228). B bunky rozpoznávajú dlhšie peptidy od zhruba 15 aminokyselín (Harrow et al., Cold Spring Harbor: Cold Spring Harbor Laboratory, (1988)). Na rozdiel od epitopov T buniek môžu byť trojrozmerné štruktúry antigénov B buniek tiež dôležité na rozpoznávanie protilátkami. Na získanie trvalých antigén špecifických imunitných odpovedí sú užitočné na spustenie imunitných kaskád, ktoré zahŕňajú všetky potrebné bunky imunitného systému, adjuvantné látky. Adjuvantné látky primáme účinkujú, ale nie sú obmedzené na ich spôsob účinku, na takzvané antigén prezentujúce bunky (APC). Tieto bunky sa obvykle prvé stretávajú s antigénom(-énmi) s nasledujúcou prezentáciou spracovaného alebo nemodifikovaného antigénu imunitnému efektom. Úlohu môžu hrať tiež prechodné bunkové typy. Len efekto5 rové bunky s príslušnou špecifitou sú aktivované v produktívnej imunitnej odpovedi. Adjuvantná látka môže tiež lokálne zadržovať antigény a spolu injekčné podané ďalšie faktory. Navyše môže adjuvantná látka účinkovať ako chemoatraktant pre ďalšie imunitné bunky, alebo môže účinkovať lokálne a/alebo systematicky ako stimulujúca látka pre imunitný systém.The vaccine may contain a variety of different antigens. Examples of antigens are killed by whole organisms, such as inactivated viruses or bacteria, fungi, protozoa or even tumor cells. Antigens may also consist of subfractions of these organisms / tissues from proteins, or in simpler form, from peptides. Antigens may also be recognized by the immune system in the form of glycosylated proteins or peptides and may also be or contain polysaccharides or lipids. Short peptides may be used because, for example, cytotoxic T cells (CTLs) recognize antigens in the form of short usually 8-11 amino acids long peptides in association with the major histocompatibility complex (MHC) (Rammensee et al., Immunogenetics 41, (1995), 178- 228). B cells recognize longer peptides from about 15 amino acids (Harrow et al., Cold Spring Harbor: Cold Spring Harbor Laboratory, (1988)). Unlike T cell epitopes, the three-dimensional structures of B cell antigens may also be important for antibody recognition. To obtain persistent antigen-specific immune responses, adjuvants are useful for triggering immune cascades that include all necessary cells of the immune system. Adjuvants act primarily, but are not limited to their mode of action, on so-called antigen-presenting cells (APCs). These cells usually first encounter the antigen (s) with the following presentation of the processed or unmodified antigen to the immune effect. Transient cell types can also play a role. Only effector cells of appropriate specificity are activated in a productive immune response. The adjuvant may also locally retain antigens and co-injected with other factors. In addition, the adjuvant may act as a chemoattractant for other immune cells, or may act locally and / or systematically as a stimulant for the immune system.

Podľa prednostnej formy sú ako antigény použité epitopy T buniek. Alternatívne môže byť preferovaná kombinácia epitopov T buniek a B buniek.According to a preferred embodiment, T cell epitopes are used as antigens. Alternatively, a combination of T cell epitopes and B cells may be preferred.

Antigény, ktoré majú byť použité v predkladaných prípravkoch, nie sú kritické. Podľa predkladaného vynálezu je možné samozrejme použiť tiež zmesi rôznych antigénov. Proteíny alebo peptidy odvodené z vírusového alebo bakteriálneho patogénu, alebo z plesní, alebo parazitov sú prednostne použité ako takéto antigény (zahŕňajúce derivatizované antigény alebo glykozylované, alebo lipidové antigény, polysacharidy alebo lipidy). Ďalším prednostným zdrojom antigénov sú nádorové antigény. Prednostné patogény sú vybrané zo skupiny obsahujúcej vírus ľudskej imunnodeficiencie (HIV), vírusy hepatitídy A a B, vírus hepatitídy C (HCV), vírus Rousovho sarkómu (RSV, vírus Epsteina Barrovej (EBV), vírus chrípky, rotavírus, Stafylokokus aureus, Chlamidia pneumoniae, Chalmydia trachomatis, Mycobaktérium tuberculosis, Streptokokus pneumoniae, Bacillus antracis, Vibrio cholerae, Plasmodium sp. (Pl. falciparum, Pl. vivax, etc./ Aspergillus sp. alebo Candida albicans. Antigény môžu byť tiež molekuly exprimované nádorovými bunkami (nádorové antigény). Derivačný proces môže zahŕňať purifikáciu špecifického proteínu z patogénnych/nádorových buniek, inaktiváciu patogénu, rovnako tak ako proteolytickú alebo chemickú derivatizáciu alebo stabilizáciu takého proteínu. Rovnakým spôsobom môžu byť tiež použité vo farmaceutickom prípravku podľa predkladaného vynálezu nádorové antigény (nádorové vakcíny) alebo autoimúnne antigény. S takými prípravkami môže byť uskutočnená nádorová vakcinácia alebo liečba autoimúnnych ochorení.The antigens to be used in the present compositions are not critical. Of course, mixtures of different antigens may also be used according to the present invention. Proteins or peptides derived from a viral or bacterial pathogen, or from fungi or parasites are preferably used as such antigens (including derivatized antigens or glycosylated, or lipid antigens, polysaccharides or lipids). Another preferred source of antigens is tumor antigens. Preferred pathogens are selected from the group consisting of human immunodeficiency virus (HIV), hepatitis A and B viruses, hepatitis C virus (HCV), Rous sarcoma virus (RSV, Epstein Barr virus (EBV), influenza virus, rotavirus, Staphylococcus aureus Chalmydia trachomatis, Mycobacterium tuberculosis, Streptococcus pneumoniae, Bacillus antracis, Vibrio cholerae, Plasmodium sp. (Pl. Falciparum, Pl. Vivax, etc./ Aspergillus sp. Or Candida albicans. Antigens may also be molecules expressed by tumor cells). The derivative process may include purification of a specific protein from pathogenic / tumor cells, pathogen inactivation as well as proteolytic or chemical derivatization or stabilization of such a protein In the same way, tumor antigens (tumor vaccines) or autoimmune antigens may also be used in the pharmaceutical composition of the present invention. Tumor vaccination or treatment of autoimmune diseases may be performed with such formulations.

V prípade peptidových antigénov je v predkladanom vynáleze zahrnuté použitie peptidových mimitopov/agonistov/superagonistov/antagonistov alebo peptidov zmenených v určitých pozíciách bez ovplyvnenia imunologických vlastností non-peptidových mimitopov/agonistov/superagonistov/antagonistov (prehľadom v Sparbier a Walden, 1999). Peptidové antigény môžu tiež obsahovať predĺženie buď na karboxy, alebo na amino konci peptidového antigénu zjednodušujúce interakciu s polykationickou zlúčeninou(ami), alebo imunnostimulačnou zlúčeninou(ami). Na liečbu autoimúnnych ochorení môžu byť použité antagonisty na báze peptidov.For peptide antigens, the use of peptide mimitopes / agonists / superagonists / antagonists or peptides altered at certain positions without affecting the immunological properties of non-peptide mimitopes / agonists / superagonists / antagonists (reviewed in Sparbier and Walden, 1999) is included in the present invention. The peptide antigens may also comprise an extension at either the carboxy or amino terminus of the peptide antigen to facilitate interaction with the polycationic compound (s) or the immunostimulatory compound (s). Peptide-based antagonists can be used to treat autoimmune diseases.

Antigény môžu byť tiež derivatizované, aby obsahovali molekuly zvyšujúce prezentáciu antigénu a zacielenie antigénov k antigén prezentujúcim bunkám.Antigens may also be derivatized to include molecules that enhance antigen presentation and target antigens to antigen presenting cells.

V jednej forme vynálezu slúži farmaceutický prípravok na získanie tolerancie k proteínom alebo proteínovým fragmentom a peptidom, ktoré majú úlohu v autoimúnnych ochoreniach. Antigény použité v týchto formách slúžia na umožnenie tolerancie imunitného systému alebo na zníženie imunitných odpovedí proti epitopom majúcich úlohu v autoimúnnych procesoch.In one embodiment, the pharmaceutical composition serves to gain tolerance to proteins or protein fragments and peptides that play a role in autoimmune diseases. The antigens used in these forms serve to allow immune system tolerance or reduce immune responses against epitopes playing a role in autoimmune processes.

Prednostne farmaceutický prípravok podľa predkladaného vynálezu, obzvlášť vo forme vakcíny, ďalej obsahuje polykationický polymér, prednostne polykationický peptid, obzvlášť polyarginín, polylyzin alebo antimikrobiálny peptid.Preferably, the pharmaceutical composition of the present invention, especially in the form of a vaccine, further comprises a polycationic polymer, preferably a polycationic peptide, in particular a polyarginine, polylysine or an antimicrobial peptide.

Polykationická zlúčenina(y), ktorá má byť použitá podľa predkladaného vynálezu, môže byť akákoľvek polykationická zlúčenina, ktorá má charakteristický účinok podľa WO 97/30721. Prednostné polykationické zlúčeniny sú vybrané z bázických polypeptidov, organických polykatiónov, bázických polyaminokyselín alebo ich zmesí. Tieto polyaminokyseliny by mali mať dĺžku reťazca aspoň 4 aminokyselinové rezíduá (pozri: Tuftsin, ako je opísané v Goldman et al (1983)). Obzvlášť prednostné sú látky obsahujúce peptidické väzby, ako sú polylyzin, polyarginín a polypeptidy obsahujúce viac ako 20 %, obzvlášť viac ako 50 % bázických aminokyselín v rozmedzí viac ako 8, obzvlášť viac ako 20 aminokyselinových rezíduí alebo ich zmesí. Ďalšie prednostné polykatióny a ich farmaceutické prípravky sú opísané vo WO 97/30721 (napríklad polyetylénimíny) a WO 99/38528. Prednostne obsahujú tieto polypeptidy medzi 20 a 500 aminokyselinovými rezíduami, obzvlášť medzi 30 a 200 rezíduami.The polycationic compound (s) to be used according to the present invention may be any polycationic compound having the characteristic effect of WO 97/30721. Preferred polycationic compounds are selected from basic polypeptides, organic polycations, basic polyamino acids, or mixtures thereof. These polyamino acids should have a chain length of at least 4 amino acid residues (see: Tuftsin as described in Goldman et al (1983)). Particularly preferred are substances containing peptide bonds such as polylysine, polyarginine and polypeptides containing more than 20%, especially more than 50% basic amino acids in the range of more than 8, especially more than 20 amino acid residues or mixtures thereof. Other preferred polycations and their pharmaceutical compositions are described in WO 97/30721 (e.g. polyethyleneimines) and WO 99/38528. Preferably, these polypeptides comprise between 20 and 500 amino acid residues, especially between 30 and 200 residues.

Tieto polykationické zlúčeniny môžu byť produkované chemicky alebo rekombinantne, alebo môžu byť odvodené z prirodzených zdrojov.These polycationic compounds may be produced chemically or recombinantly, or may be derived from natural sources.

Kationické (poly)peptidy môžu byť tiež polykationické antibakteriálne mikrobiálne peptidy s vlastnosťami, ktoré sú prehľadne zhrnuté (Ganz a Lehrer, 1999; Hancock, 1999). Tieto (poly)peptidy môžu byť prokaryotického alebo rastlinného pôvodu, alebo môžu byť produkované chemicky alebo rekombinantne (Andreu a Rivas, 1998; Ganz a Lehrer, 1999; Simmaco et al., 1998). Peptidy môžu tiež patriť do triedy defenzínov (Ganz, 1999; Ganz a Lehrer, 1999). Sekvencie takých peptidov môžu byť napríklad nájdené v Antimikrobial Sequence Database na nasledujúcej intemetovej adrese:The cationic (poly) peptides may also be polycationic antibacterial microbial peptides with properties that are summarized (Ganz and Lehrer, 1999; Hancock, 1999). These (poly) peptides may be of prokaryotic or plant origin, or may be produced chemically or recombinantly (Andreu and Rivas, 1998; Ganz and Lehrer, 1999; Simmaco et al., 1998). The peptides may also belong to the class of defensins (Ganz, 1999; Ganz and Lehrer, 1999). For example, the sequences of such peptides can be found in the Antimicrobial Sequence Database at the following intemetal address:

http://www.bbcm.univ.trieste.it/~tossi/pagl.htmlhttp://www.bbcm.univ.trieste.it/~tossi/pagl.html

Takéto obranné peptidy hostiteľa, alebo tiež defenzívy, sú tiež prednostnou formou polykationického polyméru podľa predkladaného vynálezu. Všeobecne je ako polykationický polymér použitá zlúčenina umožňujúca ako koncový produkt aktiváciu (alebo zníženú reguláciu) adaptívneho imunitného systému prednostne sprostredkovanú pomocou APC (zahŕňajúcich dendritické bunky).Such host defense peptides, or defensive peptides, are also a preferred form of the polycationic polymer of the present invention. In general, a compound allowing the activation (or downregulation) of the adaptive immune system, preferably mediated by APC (including dendritic cells), is used as the end product.

Obzvlášť preferované na použitie ako polykationická látka v predkladanom vynáleze sú od catelicidínu odvodené antimikrobiálne peptidy alebo jeho deriváty (A 1416/2000, začlenené tu ako referencia), obzvlášť antimikrobiálne peptidy odvodené od cicavčieho catelicidínu, prednostne od ľudského, hovädzieho alebo myšacieho catelicidínu, alebo neuroaktívne zlúčeniny, ako je napríklad (ľudský) rastový hormón.Particularly preferred for use as a polycationic agent in the present invention are antimicrobial peptides or derivatives thereof (A 1416/2000, incorporated herein by reference), particularly antimicrobial peptides derived from mammalian catelicidin, preferably human, bovine or murine catelicactin, derived from catelicidin compounds such as (human) growth hormone.

Polykationické zlúčeniny odvodené z prirodzených zdrojov zahŕňajú HIV-REV alebo HIV-TAT (odvodené kationické peptidy, antennapedia peptidy, chitosán alebo iné deriváty chitínu), alebo iné peptidy odvodené z týchto peptidov alebo proteínov biochemickou alebo rekombinantnou produkciou. Ďalšie prednostné polykationické zlúčeniny sú catelín alebo príbuzné, alebo odvodené látky od catelínu. Napríklad myšací catelín je peptid, ktorý má aminokyselinovú sekvenciu NH2-RLAGLLRKGGEKIGEKLKKIGOKIKNFFQKLVPQPECOOH. Príbuzné látky odvodené od catelínu obsahujú celú, alebo časti sekvencie catelínu aspoň s 15 - 20 aminokyselinovými rezíduami. Derivácie môžu zahŕňať substitúciu alebo modifikáciu prirodzených aminokyselín, ktoré nie sú medzi 20 štandardnými aminokyselinami. Navyše môžu byť do takých catelínových molekúl vložené ďalšie kationické rezíduá. Je preferované, aby tieto catelínové molekuly boli skombinované s antigénom a imunogénom ODN podľa predkladaného vynálezu. Prekvapivo sa ale ukázalo, že tieto catelínové molekuly sú účinné tiež ako adjuvantné látky pre antigén bez pridania ďalších adjuvantných látok. Je preto možné použiť takéto catelínové molekuly ako účinné adjuvantné látky v očkovacích prípravkoch s alebo bez ďalších imunnoaktivačných látok.Polycationic compounds derived from natural sources include HIV-REV or HIV-TAT (derived cationic peptides, antennapedia peptides, chitosan or other chitin derivatives), or other peptides derived from these peptides or proteins by biochemical or recombinant production. Other preferred polycationic compounds are cateline or related, or derivative of cateline. For example, murine cateline is a peptide having the amino acid sequence NH 2 -RLAGLLRKGGEKIGEKLKKIGOKIKNFFQKLVPQPECOOH. Catelin-related substances include all or parts of the catelin sequence with at least 15-20 amino acid residues. Derivatives may include substitution or modification of natural amino acids that are not among the 20 standard amino acids. In addition, other cationic residues may be introduced into such cateline molecules. It is preferred that these catelin molecules are combined with the antigen and the immunogen ODN of the present invention. Surprisingly, however, it has been shown that these catelin molecules are also effective as adjuvants for the antigen without the addition of other adjuvants. It is therefore possible to use such catelin molecules as active adjuvants in vaccine formulations with or without other immunoactivating agents.

Ďalšia prednostná polykationická látka na použitie podľa predkladaného vynálezu je syntetický peptid obsahujúci aspoň 2 KLK motívy oddelené spájacou časťou zo 3 až 7 hydrofóbnych aminokyselín (A 1789/2000, začlenené tu ako referencia).Another preferred polycationic agent for use in the present invention is a synthetic peptide comprising at least 2 KLK motifs separated by a 3 to 7 hydrophobic amino acid linker (A 1789/2000, incorporated herein by reference).

Je veľmi prekvapivé, že imunostimulačný účinok farmaceutického prípravku podľa predkladaného vynálezu bol významne vyšší, ako mohlo byť očakávané zo súčtu účinkov každej jednotlivej zložky alebo dokonca súčtu účinkov ODN alebo polykatiónu s antigénom.It is very surprising that the immunostimulatory effect of the pharmaceutical composition of the present invention was significantly higher than could be expected from the sum of the effects of each individual component or even the sum of the effects of ODN or polycation with the antigen.

B a E vo vzorci (I) sú bežné skupiny pre 5' a/alebo 3' konce molekúl nukleovej kyseliny. Príklady takých skupín sú jednoducho dostupné pre osoby pohybujúce sa v odbore (pozri napríklad „Oligonucleotides and Analogues - A Practical Approach“ (1991), ed. Eckstein, Oxford University Press). Pre I-ODN podľa predkladaného vynálezu B a/alebo E sú prednostne vybrané nezávisle z -H, -CH3, -COCH3, -OH, -CHO, fosfátové, tifosfátové, sulfátové alebo tiosulfátové skupiny, alebo fosfoalkylové skupiny, obzvlášť s dĺžkou alkylu C]-C6 a/alebo s terminálnou aminoskupinou (aminoskupina môže byť napríklad použitá na ďalšie označenie I-ODN podľa predkladaného vynálezu, napríklad -PO4(CH2)n-NH2 alebo -PO4-(CH2)n-NH-značka). Obzvlášť preferované ako B sú nukleozidy, obzvlášť zmienené 2'deoxynukleotidy (to je bez fosfátovej alebo tiofosfátovej skupiny). Alternatívne môžu tieto skupiny tiež obsahovať väzbové skupiny k iným molekulám, obzvlášť nosičské molekuly alebo značky. V takých formách ODN, kde ODN sú naviazané na pevné povrchy alebo častice, alebo značky, sú tieto povrchy, častice, značky atď. tiež časťou B a/alebo E skupín.B and E in formula (I) are common groups for the 5 'and / or 3' ends of the nucleic acid molecules. Examples of such groups are readily available to persons skilled in the art (see, for example, "Oligonucleotides and Analogues - A Practical Approach" (1991), ed. Eckstein, Oxford University Press). For the I-ODNs of the present invention B and / or E are preferably selected independently from -H, -CH 3 , -COCH 3 , -OH, -CHO, phosphate, triphosphate, sulfate or thiosulfate groups, or phosphoalkyl groups, especially of length C 1 -C 6 alkyl and / or with a terminal amino group (for example, the amino group may be used to further denote the I-ODN of the present invention, for example -PO 4 (CH 2 ) n -NH 2 or -PO 4 - (CH 2 ) n -NH -brands). Particularly preferred as B are nucleosides, especially the 2'deoxynucleotides mentioned (i.e., without a phosphate or thiophosphate group). Alternatively, these groups may also contain linking groups to other molecules, especially carrier molecules or labels. In those forms of ODNs where ODNs are attached to solid surfaces or particles, or labels, these are surfaces, particles, labels, and the like. also part of the B and / or E groups.

Samozrejme akákoľvek (soľ) forma alebo tautoméme formy molekúl podľa vzorca (I) sú zahrnuté v tomto vzorci (I).Of course, any (salt) form or tautomeric form of the molecules of formula (I) are included in this formula (I).

Farmaceutický prípravok podľa predkladaného vynálezu môže ďalej zahŕňať ďalšie aktívne zložky, farmaceutický aktívne látky, obzvlášť látky, ktoré sú použiteľné v spojení s vakcínami. Prednostné formy takých ďalších aktívnych zložiek sú cytokíny, protizápalové látky, antimikrobiálne látky alebo ich kombinácie.The pharmaceutical composition of the present invention may further comprise other active ingredients, pharmaceutically active agents, especially agents that are useful in conjunction with vaccines. Preferred forms of such additional active ingredients are cytokines, anti-inflammatory agents, antimicrobials or combinations thereof.

Farmaceutický prípravok podľa predkladaného vynálezu môže samozrejme ďalej obsahovať pomocné látky, obzvlášť farmaceutický prijateľný nosič, pufŕačné látky, stabilizačné látky alebo ich kombinácie.The pharmaceutical composition of the present invention may, of course, further comprise excipients, in particular a pharmaceutically acceptable carrier, buffering agents, stabilizing agents or combinations thereof.

Relatívne množstvo zložiek v predkladanom farmaceutickom prípravku je vysoko závislé od nutnosti jednotlivého antigénu a od zvieraťa/človeka, ktorému by mal byť prípravok aplikovaný. Preto farmaceutický prípravok podľa predkladaného vynálezu prednostne obsahuje jeden alebo viacej ODN podľa predkladaného vynálezu, prednostne 1 pg až 10 g, prednostne 1 ng až 1 g, prednostnejšie 1 000 ng až 10 mg, obzvlášť 10 mg až 1 mg. Antigén, rovnako tak ako polykationický polymér môžu byť aplikované v podobných dávkach, preferované je rozmedzie 1 až 10 000 mg antigénu a 0,1 až 1 000 mg polykatiónu na očkovanie.The relative amount of the ingredients in the present pharmaceutical composition is highly dependent on the need for an individual antigen and on the animal / human to whom the composition should be administered. Therefore, the pharmaceutical composition of the present invention preferably comprises one or more ODNs of the present invention, preferably 1 µg to 10 g, preferably 1 µg to 1 g, more preferably 1000 µg to 10 mg, especially 10 mg to 1 mg. The antigen as well as the polycationic polymer can be applied at similar dosages, preferably a range of 1 to 10,000 mg of antigen and 0.1 to 1,000 mg of polycation for vaccination.

Predkladané prípravky môžu byť aplikované pacientovi, napríklad kandidátovi očkovania, v účinných množstvách, napríklad týždne, dvakrát týždne, alebo v mesačných intervaloch. Pacienti, ktorí majú byť liečení predkladanými prípravkami, môžu byť tiež očkovaní opakovane alebo len raz. Prednostné použitie predkladaného vynálezu je aktívna imunizácia, obzvlášť človeka alebo zvierat bez ochrany proti špecifickému antigénu.The present compositions may be administered to a patient, for example, a vaccine candidate, in effective amounts, for example, weekly, twice weekly, or at monthly intervals. Patients to be treated with the present compositions may also be vaccinated repeatedly or only once. A preferred use of the present invention is the active immunization, especially of a human or animal without protection against a specific antigen.

Spôsob aplikácie predkladaného prípravku nie je kriticky dôležitý, vhodná je napríklad podkožná, intramuskuláma, intradermálna alebo transdermálna injekcia, rovnako tak ako perorálna aplikácia.The method of administration of the present composition is not critical, for example subcutaneous, intramuscular, intradermal or transdermal injection, as well as oral administration.

Je tiež možné aplikovať predkladaný prípravok oddelene, napríklad injekciou imunostimulujúcej látky oddelene od prípravku s antigénom/polykatiónom. Predkladaný vynález preto tiež zahŕňa súpravu obsahujúcu prípravok obsahujúci antigén a polykationický polymér ako jednu zložku a prípravok obsahujúci imunostimulačnú a chemotaktickú látku ako druhú zložku.It is also possible to administer the present composition separately, for example by injecting the immunostimulating agent separately from the antigen / polycation preparation. Therefore, the present invention also encompasses a kit comprising a composition comprising an antigen and a polycationic polymer as one component and a composition comprising an immunostimulatory and a chemotactic agent as a second component.

Zložky môžu byť aplikované na rovnaké miesto alebo v rovnaký čas, ale aplikácie na rôzne miesta alebo v rôznych časoch počas rôzne časové obdobia sú tiež možné. Je tiež možné meniť systémové a lokálne aplikácie prípravku alebo zložiek.The components may be applied to the same site or at the same time, but application to different sites or at different times over different time periods is also possible. It is also possible to vary the systemic and local application of the formulation or ingredients.

Detaily predkladaného vynálezu sú opísané nasledujúcimi príkladmi uskutočnenia vynálezu a obrázkami, ale vynález nimi nie je samozrejme obmedzený.The details of the present invention are described by the following examples and figures, but the invention is not, of course, limited thereto.

Obr. 1 ukazuje imunitnú odpoveď proti peptidu OVA257.2M, odvodenému od ovalbumínu po injekcii OVA257.264, poly-L-arginínu (pR 60) a deoxyinozín I obsahujúcich oligonukleotidov (I-ODN) alebo CpG 1668. Myšiam boli do zadných labiek injekčné aplikované zmesi, ako je uvedené. O štyri dni neskôr boli bunky drénujúcich lymfatických uzlín ex vivo stimulované pomocou OVA257.264. Počet IFN-g produkujúcich buniek bol určený o 24 hodín neskôr s použitím stanovenia ELISPOT. Výsledky sú vyjadrené ako počet škvŕn/106 buniek lymfatických uzlín.Fig. 1 shows an immune response against ovalbumin-derived peptide OVA257.2M after injection of OVA257.264, poly-L-arginine (pR 60) and deoxyinosine I containing oligonucleotides (I-ODN) or CpG 1668. Mice were injected with hind paws , as it is stated. Four days later the draining lymph node cells ex vivo stimulated with OVA 25 7. 264th The number of IFN-g producing cells was determined 24 hours later using an ELISPOT assay. Results are expressed as spots / 10 6 lymph node cells.

Obr. 2 ukazuje indukciu systémovej tvorby TNF-a po injekcii OVA257-264, poly-L-argininu (pR 60) a deoxyinozín I obsahujúcich oligonukleotidov (I-ODN) alebo CpG 1668. Myšiam boli do zadných labiek injekčné aplikované zmesi, ako je uvedené. O jednu hodinu po injekcii bola odobraná krv zo žily chvosta a z krvi bolo pripravené sérum. Koncentrácia TNF-a v sére bola určená stanovením ELISA.Fig. 2 shows the induction of systemic TNF-a after the injection of OVA 257-264, poly-L-arginine (pR 60) and deoxyinosine I-containing oligonucleotides (I-ODN) or CpG 1668. Mice were injected into the hind footpads with mixtures applied as indicated . One hour after injection, blood was collected from the tail vein and serum was prepared from the blood. Serum TNF-α concentration was determined by ELISA.

Obr. 3 ukazuje imunitnú odpoveď proti peptidu OVA257_264 odvodenému od ovalbumínu po injekcii OVA257-264, poly-L-arginínu (pR 60) a deoxyinozín I obsahujúcich oligonukleotidov (I-ODN) alebo CpG 1668, alebo CpC. Myšiam boli do zadných labiek injekčné aplikované zmesi, ako je uvedené. O štyri dni neskôr boli bunky drénujúcich lymfatických uzlín ex vivo stimulované pomocou OVA257.264 irelevantným peptidom mTRP2181.i88 (protein 2 príbuzný myšacej tyrozináze, VYDFFVWL) alebo pR 60. Počet IFN-g produkujúcich buniek bol určený o 24 hodín neskôr s použitím stanovenia ELISPOT. Výsledky sú vyjadrené ako počet škvŕn/106 buniek lymfatických uzlín so štandardnou odchýlkou tripletov.Fig. 3 shows the immune response against the OVA peptide 2 57_ 264 Ovalbumin-derived after the injection of OVA 257-26 4, poly-L-arginine (pR 60) and deoxyinosine I-containing oligonucleotides (I-ODN) or CpG 1668 or GpC. Mice were injected into the hindpaws as described above. Four days later, the draining lymph node cells were ex vivo stimulated with OVA 2 5 7 . 264 irrelevant peptide mTRP2 181 .i 88 (2 related protein of mouse tyrosinase, VYDFFVWL) or pR 60. The number of IFN-g producing cells was determined 24 hours later using an ELISPOT assay. Results are expressed as spots / 10 6 lymph node cells with a standard deviation of triplets.

Obr. 4 ukazuje indukciu systémovej tvorby TNF-a po injekcii OVA257_264, poly-L-arginínu (pR 60) a deoxyinozín I obsahujúcich oligonukleotidov (I-ODN) CpC alebo CpG 1668. Myšiam boli do zadných labiek injekčné aplikované zmesi, ako je uvedené. O jednu hodinu po injekcii bola odobraná krv zo žily chvosta a z krvi bolo pripravené sérum. Koncentrácia TNF-a IL-6 v sére bola určená cytokín špecifickými stanoveniami ELISA.Fig. 4 shows the induction of systemic TNF-a after the injection of OVA 7_ 25 6 4 2, poly-L-arginine (pR 60) and deoxyinosine I-containing oligonucleotides (I-ODN) or CpG 1668. Mice were CpG in the hind paws injected with the mixture, as it is stated. One hour after injection, blood was collected from the tail vein and serum was prepared from the blood. Serum TNF-α concentration in serum was determined by cytokine-specific ELISA.

Obr. 5 ukazuje imunitnú odpoveď proti peptidu OVA257.264 odvodenému od ovalbumínu po injekcii TRP-2, poly-L-arginínu, CpG 1668 alebo 20-mer sekvencií obsahujúcich deoxyinozín. Myšiam boli do zadných labiek injekčné aplikované zmesi, ako je uvedené. O štyri dni neskôr boli bunky drénujúcich lymfatických uzlín ex vivo stimulované pomocou TRP-2, irelevantným peptidom OVA257.264 alebo pR60. Počet IFN-g produkujúcich buniek bol určený o 24 hodín neskôr s použitím stanovenia ELISPOT. Výsledky sú vyjadrené ako počet škvŕn/106 buniek lymfatických uzlín so štandardnou odchýlkou tripletov.Fig. 5 shows an immune response against the OVA 257 peptide. 264 derived from ovalbumin after injection of TRP-2, poly-L-arginine, CpG 1668, or 20-mer sequences containing deoxyinosine. Mice were injected into the hindpaws as described above. Four days later, lymph node drainage cells were ex vivo stimulated with TRP-2, an irrelevant OVA 257 peptide. 264 or pR60. The number of IFN-g producing cells was determined 24 hours later using an ELISPOT assay. Results are expressed as spots / 10 6 lymph node cells with a standard deviation of triplets.

Obr. 6 ukazuje kombinovanú injekciu I-ODN a poly-L-arginínu (pR 60) spolu s peptidom odvodeným od melanómu.Fig. 6 shows the combined injection of I-ODN and poly-L-arginine (pR 60) together with a melanoma-derived peptide.

Obr. 7 ukazuje, že kombinovaná injekcia I-ODN a (pR 60) spolu s peptidom odvodeným od melanómu znižuje indukciu systémového TNF-a a IL-6.Fig. 7 shows that combined injection of I-ODN α (pR 60) together with a melanoma-derived peptide reduces the induction of systemic TNF-α and IL-6.

Obr. 8 ukazuje kombinovanú injekciu náhodného 10-mer I-ODN a (pR 60) spolu s peptidom odvodeným od melanómu.Fig. 8 shows the combined injection of a random 10-mer I-ODN α (pR 60) together with a melanoma-derived peptide.

Obr. 9 ukazuje, že kombinovaná aplikácia ovalbumínu (OVA) s oligo-dIC26-mer a pR zvyšuje produkciu OVA špecifických IgG protilátok. Myšiam boli do zadných labiek injekčné aplikované zmesi, ako je uvedené. 24. a 115. deň po injekcii boli odobrané séra, v ktorých boli stanovené ELISA stanovením OVA špecifické IgG2a (A) a IgGl (B) protilátky. Výsledky sú uvedené ako titer protilátok.Fig. 9 shows that the combined administration of ovalbumin (OVA) with oligo-dIC26-mer and pR increases the production of OVA specific IgG antibodies. Mice were injected into the hindpaws as described above. Sera were collected on days 24 and 115 post-injection and assayed by ELISA for OVA specific IgG2a (A) and IgG1 (B) antibodies. Results are reported as antibody titer.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Vo všetkých experimentoch boli použité tiofosfátom substituované ODN (s tiofosfátovými rezíduami substituujúcimi fosfát, odtiaľto nazývané „tiofosfátom substituované oligonukleotidy“), pretože takéto ODN majú vyššiu nukleázovú rezistenciu (Ballas et al., 1996; Krieg et al., 1995; Parronchi et al., 1999).Thiophosphate substituted ODNs (with phosphate substituting thiophosphate residues, hence called "thiophosphate substituted oligonucleotides") were used in all experiments because such ODNs have higher nuclease resistance (Ballas et al., 1996; Krieg et al., 1995; Parronchi et al. , 1999).

Príklad 1Example 1

Kombinovaná injekcia rôznych I-ODN a poly-L-argininu (pR 60) synergicky zvyšuje imunitnú odpoveď proti peptidu odvodenému od ovalbumínu Myši C57BI/6 (Harlan/Olac)Combined injection of various I-ODN and poly-L-arginine (pR 60) synergistically enhances the immune response against ovalbumin-derived peptide C57BI / 6 mice (Harlan / Olac)

Peptid Peptid OVA257.264 (SIINFEKL) , MHC 1. triedy (H-2Kb) obmedzený epitop kuracieho ovalbumínu (Rotzschke et al., 1991), bol syntetizovaný s použitím štandardnej chemickej syntézy F-moc na pevnej fáze, purifikovaný pomocou HPLC a analyzovaný pomocou hmotovej spektroskopie kvôli čistote. Dávka: 300 mg/myšPeptide Peptide OVA 257 . 264 (SIINFEKL), a MHC Class I (H-2Kb) restricted epitope of chicken ovalbumin (Rotzschke et al., 1991), was synthesized using standard F-moc chemical solid-phase synthesis, purified by HPLC, and analyzed by mass spectroscopy for purity. Dose: 300 mg / mouse

Poly-L-arginín60 CpG-ODN 1668Poly-L-arginine 60 CpG-ODN 1668

I-ODN 1I-ODN 1

I-ODN 2I-ODN 2

I-ODN 3 (pR60) Poly-L-arginín s priemerným stupňom polymerácie 60 arginínových rezíduí; spoločnosť Sigma. Dávka 100 mg/myš tiofosfátom substituované ODN obsahujúce CpG motív: tcc atg acg ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš tiofosfátom substituované ODN obsahujúce deoxyinozín: tcc ati aci ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš tiofosfátom substituované ODN obsahujúce deoxyinozín: tcc atg aci ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš tiofosfátom substituované ODN obsahujúce deoxyinozín: tcc ati aci ttc cti ati ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myšI-ODN 3 (pR60) Poly-L-arginine with an average degree of polymerization of 60 arginine residues; Sigma. A dose of 100 mg / mouse thiophosphate substituted ODN containing the CpG motif: tcc atg acg ttc ctg atg ct was synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse thiophosphate substituted ODN containing deoxyinosine: tcc ati tci ttc ctg atg ct was synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse thiophosphate substituted ODN containing deoxyinosine: tcc atg and ttc ctg atg ct was synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse thiophosphate-substituted ODN containing deoxyinosine: tcc ati tci ttc ti ati ct was synthesized by NAPS GmbH, Gottingen. Dose 5 nmol / mouse

Experimentálne skupiny (5 myší na skupinu)Experimental groups (5 mice per group)

1. OVA257-2641. OVA257-264

2. OVA257-264 + pR 602. OVA257-264 + pR 60

3. OVA257_264 + CpG 16683. OVA 25 7_264 + CpG 1668

4. OVA257_264 + I-ODN 14. OVA 2 5 7 _264 + I - ODN 1

5. OVA257-264 + I-ODN 25. OVA 2 57-264 + I - ODN 2

6. OVA2 57-264+ I-ODN 36. OVA 2 57-264 + I - ODN 3

7. OVA257_264 + CpG 1668 + pR 607. OVA 2 57_ 2 64 + CpG 1668 + pR 60

8. OVA257_264 + I-ODN 1 + pR 608. OVA 2 57_ 2 64 + I-ODN 1 + pR 60

9. OVA257-264 + I-ODN 2 + pR 609. OVA 257 -264 + I-ODN 2 + pR 60

10. OVA257_264 + I-ODN 3 + pR 6010. OVA 57_ 2 2 64 + I-ODN 3 + pR 60

V deň 0 bol myšiam injekčné aplikovaný do každej zadnej labky celkový objem 100 ml (50 ml na labku) obsahujúci zmienené zlúčeniny. Zvieratá boli usmrtené 4 dni po injekcii a boli odobrané popliteálne lymfatické uzliny. Lymfatické uzliny boli pretlačené cez 70 mm bunkové sito a premyté dvakrát médiom DMEM (Gibco BRL) obsahujúcim 5 % fetálne teľacie sérum (FCS, spoločnosť Sigma). Bunky boli upravené na 3 x 106 buniek/ml v DMEM/5 %/FCS. Analýza ELISPOT IFNg bola uskutočnená v triplete, ako bolo opísané (Miyahira et al., 1995). Táto metóda je široko používaným postupom umožňujúcim kvantifikáciu antigén špecifických T buniek. Lymfocyty boli stimulované ex vivo s médiom slúžiacim ako kontrola, peptidom OVA257.264 alebo Concavalínom A (Con A). Škvrny reprezentujúce jednotlivé IFN-g produkujúce T bunky boli spočítané a počet škvŕn pozadia bol odčítaný zo všetkých vzoriek. Vysoký počet detekovaných škvŕn po stimulácii s Con A (dáta nie sú uvedené) ukazujú na dobrý stav použitých lymfocytov. Pre každú experimentálnu skupinu myší sú počty škvŕn/106 buniek ilustrované na obrázku 1.On day 0, mice were injected into each hindpaw with a total volume of 100 ml (50 ml per paw) containing the compounds. Animals were sacrificed 4 days after injection and popliteal lymph nodes were collected. The lymph nodes were passed through a 70 mm cell sieve and washed twice with DMEM medium (Gibco BRL) containing 5% fetal calf serum (FCS, Sigma). Cells were adjusted to 3 x 10 6 cells / ml in DMEM / 5% / FCS. ELISPOT IFNg analysis was performed in a triplet as described (Miyahira et al., 1995). This method is a widely used procedure for quantifying antigen-specific T cells. Lymphocytes were stimulated ex vivo with control medium, peptide OVA 257 . 26 4 or Concavalin A (Con A). Spots representing individual IFN-γ producing T cells were counted and the number of background spots was subtracted from all samples. The high number of spots detected after stimulation with Con A (data not shown) indicate the good state of the lymphocytes used. For each experimental group of mice, spot numbers / 10 6 cells are illustrated in Figure 1.

Jednu hodinu po injekcii bola odobraná krv zo žily chvosta a bolo pripravené sérum na určenie indukcie systémového TNF-a s použitím stanovenia ELISA (obrázok 2).One hour after injection, blood was collected from the tail vein and serum was prepared to determine the induction of systemic TNF-α using an ELISA assay (Figure 2).

Príklad 2Example 2

Výmena guanozínu desoxy-inozínom mení neimunogénnu GpC-sekvenciu na vysoko imunogénnu, obzvlášť v kombinácii s poly-L-arginínom (pR60).The exchange of guanosine by desoxy-inosine converts the non-immunogenic GpC sequence to a highly immunogenic, particularly in combination with poly-L-arginine (pR60).

Myšimice

Peptidpeptide

Poly-L-arginín60 CpG-ODN 1668 CpG-ODNPoly-L-Arginine 60 CpG-ODN 1668 CpG-ODN

I-ODN 9I-ODN

I-ODN 10I-ODN 10

C57BI/6 (Harlan/Olac)Harlan / Olac C57BI / 6

Peptid OVA257-264 (SIINFEKL) , MHC 1. triedy (H-2Kb) obmedzený epitop kuracieho ovalbumínu (Rotzschke et al., 1991) bol syntetizovaný s použitím štandardnej chemickej syntézy F-moc na pevnej fáze, purifikovaný pomocou HPLC a analyzovaný pomocou hmotovej spektroskopie kvôli čistote. Dávka: 300 ug/myš (pR60) Poly-L-arginín s priemerným stupňom polymerácie 60 arginínových rezíduí; spoločnosť Sigma. Dávka 100 ug/myš tiofosfátom substituované ODN obsahujúce CpG motív: tcc atg acg ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš tiofosfátom substituované ODN obsahujúce neimunogénne GpC motív: tcc atg agc ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš tiofosfátom substituované ODN obsahujúce deoxyinozín: tcc atg aic ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš tiofosfátom substituované ODN obsahujúce deoxyinozín: tcc ati aic ttc cti ati ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myšOVA257-264 (SIINFEKL), MHC class 1 (H-2Kb) restricted chicken ovalbumin epitope (Rotzschke et al., 1991) was synthesized using standard F-moc solid-phase chemical synthesis, purified by HPLC and analyzed by mass spectrometry. spectroscopy for purity. Dose: 300 µg / mouse (pR60) Poly-L-arginine with an average degree of polymerization of 60 arginine residues; Sigma. A dose of 100 µg / mouse thiophosphate substituted ODN containing the CpG motif: tcc atg and ttc ctg atg ct were synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse thiophosphate substituted ODN containing a non-immunogenic GpC motif: tcc atg agc ttc ctg atg ct was synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse thiophosphate substituted ODN containing deoxyinosine: tcc atg and ttc ctg atg ct was synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse thiophosphate-substituted ODN containing deoxyinosine: tcc ati and ttc atti-ct was synthesized by NAPS GmbH, Gottingen. Dose 5 nmol / mouse

Experimentálne skupiny (5 myší na skupinu)Experimental groups (5 mice per group)

OVA257_264OVA 2 57_ 2 64

OVA257_264 + pR 6057_ 2 2 OVA + pR 64 60

OVA257_264+ CpG 1668OVA 2 57_ 264 + CpG 1668

OVA257_264 + GpCOVA 25 7_ 26 4 + GpC

OVA257-264+I-ODN 9OVA 257 -264 + I-ODN 9

OVA257-264+I-ODN 10OVA 257 -264 + I-ODN 10

OVA257.264 + CpG 1668 + pR 60OVA 2 57. 264 + CpG 1668 + pR60

OVA257_264+ GpC + pR 60OVA 2 57_ 264 + GpC + pR 60

OVA257.264 + I-ODN 9 + pR 60OVA 257 . 264 + I-ODN 9 + RP 60

OVA257.264 + I-ODN 10 + pR 60OVA 257 . 26 4 + I-ODN 10 + p 60

V deň 0 bol myšiam injekčné aplikovaný do každej zadnej labky celkový objem 100 ul (50 ul na labku) obsahujúci zmienené zlúčeniny. Zvieratá boli usmrtené 4 dni po injekcii a boli odobrané popliteálne lymfatické uzliny. Lymfatické uzliny boli pretlačené cez 70 um bunkové sito a premyté dvakrát médiom DMEM (Gibco BRL) obsahujúcim 5 % fetálne teľacie sérum (FCS, spoločnosť Sigma). Bunky boli upravené na 3 x 106 buniek/ml v DMEM/5%/FCS. Analýza ELISPOT IFNg bola uskutočnená v triplete, ako bolo opísané (Miyahira et al., 1995). Táto metóda je široko používaným postupom umožňujúcim kvantifikáciu antigén špecifických T buniek. Lymfocyty boli stimulované ex vivo s médiom slúžiacim ako kontrola, peptidom ÓVA257_264/irelevantným peptidom mTRP-2lgi_i88 (proteín-2 príbuzný myšacej tyrozináze, VYDFFVWL), pR 60 a Concavalínom A (Con A). Škvrny reprezentujúce jednotlivé IFN-g produkujúce T bunky boli spočítané a počet škvŕn pozadia bol odčítaný zo všetkých vzoriek. Vysoký počet detekovaných škvŕn po stimulácii s Con A (dáta nie sú uvedené) ukazujú na dobrý stav použitých lymfocytov. Pre každú experimentálnu skupinu myší sú počty škvŕn/106 buniek ilustrované na obrázku 3, sú uvedené štandardné odchýlky ex vivo stimulovaných tripletov. Jednu hodinu po injekcii bola odobraná krv zo žily chvosta a bolo pripravené sérum na určenie indukcie systémového TNF-a a IL-6 s použitím stanovenia ELISA (obrázok 4).On day 0, mice were injected into each hindpaw with a total volume of 100 µl (50 µl per paw) containing the compounds. Animals were sacrificed 4 days after injection and popliteal lymph nodes were collected. The lymph nodes were passed through a 70 µm cell sieve and washed twice with DMEM medium (Gibco BRL) containing 5% fetal calf serum (FCS, Sigma). Cells were adjusted to 3 x 10 6 cells / ml in DMEM / 5% / FCS. ELISPOT IFNg analysis was performed in a triplet as described (Miyahira et al., 1995). This method is a widely used procedure for quantifying antigen-specific T cells. Lymphocytes were stimulated ex vivo with medium serving as a control peptide Ova 2 57_ 264 / irrelevant peptide MTRP-2 8 8 g i_i (protein-2 mouse tyrosinase related, VYDFFVWL), pR 60 and Concanavalin A (Con A). Spots representing individual IFN-γ producing T cells were counted and the number of background spots was subtracted from all samples. The high number of spots detected after stimulation with Con A (data not shown) indicate the good state of the lymphocytes used. For each experimental group of mice, spot numbers / 10 6 cells are illustrated in Figure 3, standard deviations of ex vivo stimulated triplets are shown. One hour after injection, blood was collected from the tail vein and serum was prepared to determine the induction of systemic TNF-α and IL-6 using an ELISA assay (Figure 4).

Príklad 3Example 3

Kombinovaná injekcia náhodných 20-mer sekvencii obsahujúcich desoxyinozín a peptidu odvodeného od melanómu indukuje silnú imunitnú odpoveď proti peptidu, ktorá môže byť ďalej zvýšená ko-aplikáciou poly-L-arginínu (pR 60).The combined injection of random 20-mer sequences containing desoxyinosine and a melanoma-derived peptide induces a strong immune response against the peptide, which can be further enhanced by co-administration of poly-L-arginine (pR 60).

Myši C57BI/6 (Harlan/Olac)C57BI / 6 Mice (Harlan / Olac)

Peptid Peptid TRP-2 (VYDFFVWL), MHC 1. triedy (H-2Kb) obmedzený epitop proteínu-2 príbuzného myšacej tyrosináze (Bllom et al., 1997), bol syntetizovaný s použitím štandardnej chemickej syntézy F-moc na pevnej fáze, purifikovaný pomocou HPLC a analyzovaný pomocou hmotovej spektroskopie kvôli čistote. Dávka: 300 ug/myšPeptide The TRP-2 peptide (VYDFFVWL), MHC class 1 (H-2K b ) restricted epitope of the related murine tyrosinase-related protein-2 (Bllom et al., 1997), was synthesized using standard F-moc solid-phase chemical synthesis, purified by HPLC and analyzed by mass spectroscopy for purity. Dose: 300 µg / mouse

Poly-L-arginín 60 (pR60) Poly-L-arginín s priemerným stupňom polymerácie 60 arginínových rezíduí; spoločnosť Sigma. Dávka 100 ug/myšPoly-L-arginine 60 (pR60) Poly-L-arginine with an average degree of polymerization of 60 arginine residues; Sigma. Dose 100 µg / mouse

CpG-ODN 1668 tiofosfátom substituované ODN obsahujúce CpG motív: tcc atg acg ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš wdi tiofosfátom substituované ODN: nhh hhh wdi nhh hhh hhh wn boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš wdidin tiofosfátom substituované ODN: nhh hhh wdi nhh hhh hhh wn boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš wdid tiofosfátom substituované ODN: nhh hhh wdi dhh hhh hhh wn boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš wdidid tiofosfátom substituované ODN: nhh wdi did hhh hdi ddi dh boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myšCpG-ODN 1668 thiophosphate substituted ODN containing a CpG motif: tcc atg and ttc ctg atg ct were synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse wdi thiophosphate substituted ODN: nhh hhh wdi nhh hhh hhh wn was synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse wdidine thiophosphate-substituted ODN: nhh hhh wdi nhh hhh hhh wn was synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse wdid thiophosphate substituted ODN: nhh hhh wdi dhh hhh hhh wn was synthesized by NAPS GmbH, Gottingen. The 5 nmol / mouse thiophosphate substituted ODN dose: nhh wdi did hhh hdi ddi dh were synthesized by NAPS GmbH, Gottingen. Dose 5 nmol / mouse

Experimentálne skupiny (5 myší na skupinu)Experimental groups (5 mice per group)

1. TRP-2TRP-2

2. TRP-2+ pR 602. TRP-2 + pR60

3. TRP-2 + CpG 16683. TRP-2 + CpG1668

4. TRP-2 + wdi4. TRP-2 + wdi

5. TRP-2 + wdidin5. TRP-2 + wdidine

6. TRP-2 + wdid6. TRP-2 + wdid

7. TRP-2 + wdidid7. TRP-2 + wdidide

8. TRP-2 + CpG 1668+pR 608. TRP-2 + CpG1668 + pR60

9. TRP-2 + wdi + pR 609. TRP-2 + wdi + pR60

10. TRP-2 + wdidin + pR 6010. TRP-2 + widin-pR + 60

11. TRP-2 + wdid+ pR 6011. TRP-2 + wdid + pR60

12. TRP-2 + wdidid + pR 6012. TRP-2 + widide + pR60

V deň 0 bol myšiam injekčné aplikovaný do každej zadnej labky celkový objem 100 ul (50 ul na labku) obsahujúci zmienené zlúčeniny. Zvieratá boli usmrtené 4 dni po injekcii a boli odobrané popliteálne lymfatické uzliny. Lymfatické uzliny boli pretlačené cez 70 um bunkové sito a premyté dvakrát médiom DMEM (Gibco BRL) obsahujúcim 5 % fetálne teľacie sérum (FCS, spoločnosti Sigma). Bunky boli upravené na 3 xOn day 0, mice were injected into each hindpaw with a total volume of 100 µl (50 µl per paw) containing the compounds. Animals were sacrificed 4 days after injection and popliteal lymph nodes were collected. The lymph nodes were passed through a 70 µm cell sieve and washed twice with DMEM medium (Gibco BRL) containing 5% fetal calf serum (FCS, from Sigma). Cells were adjusted to 3X

106 buniek/ml v DMEM/5 %/FCS. Analýza ELISPOT IFN-g bola uskutočnená v triplete, ako bolo opísané (Miyahira et al., 1995). Táto metóda je široko používaným postupom umožňujúcim kvantifikáciu antigén špecifických T buniek. Lymfocyty boli stimulované ex vivo s médiom slúžiacim ako kontrola, peptidom TRP-2, irelevantným peptidom OVA257.264, pR 60 a Concavalínom A (Con A). Škvrny reprezentujúce jednotlivé IFN-g produkujúce T bunky boli spočítané a počet škvŕn pozadia bol odčítaný zo všetkých vzoriek. Vysoký počet detekovaných škvŕn po stimulácii s Con A (dáta nie sú uvedené) ukazujú na dobrý stav použitých lymfocytov. Pre každú experimentálnu skupinu myší sú počty škvŕn/106 buniek ilustrované na obrázku 5, sú uvedené štandardné odchýlky ex vivo stimulovaných tripletov.10 6 cells / ml in DMEM / 5% / FCS. ELISPOT IFN-γ analysis was performed in a triplet as described (Miyahira et al., 1995). This method is a widely used procedure for quantifying antigen-specific T cells. Lymphocytes were stimulated ex vivo with medium serving as a control peptide TRP-2, an irrelevant peptide OVA 2 5 7th 264 , pR 60 and Concavalin A (Con A). Spots representing individual IFN-γ producing T cells were counted and the number of background spots was subtracted from all samples. The high number of spots detected after stimulation with Con A (data not shown) indicate the good state of the lymphocytes used. For each experimental group of mice, spot numbers / 10 6 cells are illustrated in Figure 5, standard deviations of ex vivo stimulated triplets are shown.

Príklad 4Example 4

Kombinovaná injekcia I-ODN a poly-L-arginínu (pR 60) synergicky zvyšuje imunitnú odpoveď proti peptidu odvodenému od melanómu.The combined injection of I-ODN and poly-L-arginine (pR 60) synergistically enhances the immune response against the melanoma-derived peptide.

Experimentálne skupiny (5 myší na skupinu)Experimental groups (5 mice per group)

1. TRP-2)81-1881. TRP-2181-188

2. TRP-2,81.188 + PR 602. TRP-2.81.188 + PR 60

3. TRP-2,81.188+ CpG 16683. TRP-2.81.188 + CpG 1668

4. TRP-2,s,.,ss + I-ODN 24. TRP-2, s, s, s + I-ODN 2

5. TRP-2,81-188 + CpG 1668 +pR 60 6. TRP-2i8M88 + I-ODN 2 + pR 605. TRP-2.81-188 + CpG 1668 + pR 60 6. TRP-2 18M88 + I-ODN 2 + pR 60

V deň 0 bol myšiam injekčné aplikovaný do každej zadnej labky celkový objem 100 ul (50 ul na labku) obsahujúci zmienené zlúčeniny. Zvieratá boli usmrtené 4 dni po injekcii a boli odobrané popliteálne lymfatické uzliny. Lymfatické uzliny boli pretlačené cez 70 um bunkové sito a premyté dvakrát médiom DMEM (Gibco BRL) obsahujúcim 5 % fetálne teľacie sérum (FCS, spoločnosť Sigma). Bunky boli upravené na 3 x 106 buniek/ml v DMEM/5 %/FCS. Analýza ELISPOT IFN-γ bola uskutočnená v triplete, ako bolo opísané (Miyahira et al., 1995). Táto metóda je široko používaným postupom umožňujúcim kvantifikáciu antigén špecifických T buniek. Lymfocyty boli stimulované ex vivo s médiom slúžiacim ako kontrola, peptidom TRP-2,81-188, irelevantným peptidom OVA257.264 a Concavalínom A (Con A). Škvrny reprezentujúce jednotlivé IFN-γ produkujúce T bunky boli spočítané a počet škvŕn pozadia bol odčítaný zo všetkých vzoriek. Vysoký počet detekovaných škvŕn po stimulácii s Con A (dáta nie sú uvedené) ukazujú na dobrý stav použitých lymfocytov. Pre každú experimentálnu skupinu myší sú počty škvŕn/106 buniek ilustrované na obrázku 6, sú uvedené štandardné odchýlky ex vivo stimulovaných tripletov.On day 0, mice were injected into each hindpaw with a total volume of 100 µl (50 µl per paw) containing the compounds. Animals were sacrificed 4 days after injection and popliteal lymph nodes were collected. The lymph nodes were passed through a 70 µm cell sieve and washed twice with DMEM medium (Gibco BRL) containing 5% fetal calf serum (FCS, Sigma). Cells were adjusted to 3 x 10 6 cells / ml in DMEM / 5% / FCS. ELISPOT IFN-γ analysis was performed in a triplet as described (Miyahira et al., 1995). This method is a widely used procedure for quantifying antigen-specific T cells. Lymphocytes were stimulated ex vivo with medium serving as a control peptide TRP 2.81 to 188, 25 irrelevant peptide OVA-26 7. 4 and Concanavalin A (Con A). Spots representing individual IFN-γ producing T cells were counted and background spots were subtracted from all samples. The high number of spots detected after stimulation with Con A (data not shown) indicate the good state of the lymphocytes used. For each experimental group of mice, spot numbers / 10 6 cells are illustrated in Figure 6, standard deviations of ex vivo stimulated triplets are shown.

Jednu hodinu po injekcii bola odobraná krv zo žily chvosta a bolo pripravené sérum na určenie indukcie systémového TNF-a a IL-6 s použitím špecifických ELISA stanovení (obrázok 7).One hour after injection, blood was collected from the tail vein and serum was prepared to determine the induction of systemic TNF-α and IL-6 using specific ELISA assays (Figure 7).

Príklad 5Example 5

Kombinovaná injekcia náhodných 10-mer I-ODN a poly-L-arginínu (pR 60) synergicky zvyšuje imunitnú odpoveď proti peptidu odvodenému od melanómu.The combined injection of random 10-mer I-ODN and poly-L-arginine (pR 60) synergistically enhances the immune response against the melanoma-derived peptide.

Experimentálne skupiny (5 myší na skupinu) . TRP-2,81-188 . TRP-2i8i-i88 + pR 60Experimental groups (5 mice per group). TRP-2.81-188. TRP-2181-188 + pR60

3. TRP-2,81-188 + CpG 16683. TRP-2.81-188 + CpG 1668

4. TRP-2,s,-188 + ODN 174. TRP-2, s, -188 + ODN 17

5. TRP-2,81-188 + CpG 1668 + pR 605. TRP-2.81-188 + CpG 1668 + pR60

6. TRP-2,81-188 + ODN 17 + pR 606. TRP-2.81-188 + ODN 17 + pR60

V deň 0 bol myšiam injekčné aplikovaný do každej zadnej labky celkový objem 100 ul (50 ul na labku) obsahujúci zmienené zlúčeniny. Zvieratá boli usmrtené 4 dni po injekcii a boli odobrané popliteálne lymfatické uzliny. Lymfatické uzliny boli pretlačené cez 70 um bunkové sito a premyté dvakrát médiom DMEM (Gibco BRL) obsahujúcim 5 % fetálne teľacie sérum (FCS, spoločnosť Sigma). Bunky boli upravené na 3 x 106 buniek/ml v DMEM/5 %/FCS. Analýza ELISPOT IFN-γ bola uskutočnená v triplete, ako bolo opísané (Miyahira et al., 1995). Táto metóda je široko používaným postupom umožňujúcim kvantifikáciu antigén špecifických T buniek. Lymfocyty boli stimulované ex vivo s médiom slúžiacim ako kontrola, peptidom TRP-2,8i.i88> irelevantným peptidom OVA257-264 a Concavalínom A (Con A). Škvrny reprezentujúce jednotlivé IFN-γ produkujúce T bunky boli spočítané a počet škvŕn pozadia bol odčítaný zo všetkých vzoriek. Vysoký počet detekovaných škvŕn po stimulácii s Con A (dáta nie sú uvedené) ukazujú na dobrý stav použitých lymfocytov. Pre každú experimentálnu skupinu myší sú počty škvŕn/106 buniek ilustrované na obrázku 8, sú uvedené štandardné odchýlky ex vivo stimulovaných tripletov.On day 0, mice were injected into each hindpaw with a total volume of 100 µl (50 µl per paw) containing the compounds. Animals were sacrificed 4 days after injection and popliteal lymph nodes were collected. The lymph nodes were passed through a 70 µm cell sieve and washed twice with DMEM medium (Gibco BRL) containing 5% fetal calf serum (FCS, Sigma). Cells were adjusted to 3 x 10 6 cells / ml in DMEM / 5% / FCS. ELISPOT IFN-γ analysis was performed in a triplet as described (Miyahira et al., 1995). This method is a widely used procedure for quantifying antigen-specific T cells. Lymphocytes were stimulated ex vivo with medium serving as a control peptide TRP 2,8i.i88> irrelevant peptide OVA 2 57- 2 64 and Concanavalin A (Con A). Spots representing individual IFN-γ producing T cells were counted and background spots were subtracted from all samples. The high number of spots detected after stimulation with Con A (data not shown) indicate the good state of the lymphocytes used. For each experimental group of mice, spot numbers / 10 6 cells are illustrated in Figure 8, standard deviations of ex vivo stimulated triplets are shown.

Myši C57BI/6 (Harlan/Olac)C57BI / 6 Mice (Harlan / Olac)

Peptid Peptid TRP-2 (VYDFFVWL), MHC 1. triedy (H-2Kb) obmedzený epitop proteínu-2 príbuzného myšacej tyrosináze (Bllom et al., 1997), bol syntetizovaný s použitím štandard11Peptide The TRP-2 peptide (VYDFFVWL), an MHC class 1 (H-2Kb) restricted epitope of the protein-2 related mouse tyrosinase (Bllom et al., 1997), was synthesized using standard 11.

Poly-L-arginínóO CpG-ODN 1668Poly-L-arginine CpG-ODN 1668

ODN 17ODN 17

Myšimice

Peptidpeptide

Poly-L-arginín60 CpG-ODN 1668Poly-L-arginine 60 CpG-ODN 1668

I-ODN 2 nej chemickej syntézy F-moc na pevnej fáze, purifikovaný pomocou HPLC a analyzovaný pomocou hmotovej spektroskopie kvôli čistote. Dávka: 100 ug/myš (pR60) Poly-L-arginín s priemerným stupňom polymerácie 60 arginínových rezíduí; spoločnosť Sigma. Dávka 100 ug/myš tiofosfátom substituované ODN obsahujúce CpG motív: tcc atg acg ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš tiofosfátom substituované ODN obsahujúce deoxyinozín: hhh wdi dhh h boli syntetizované spoločnosťou NAPS GmbH, Gôttingen, (h = CAT, w = AT, d = GAT). Dávka: 10 nmol/myšI-ODN 2 of its solid-phase F-moc chemical synthesis, purified by HPLC and analyzed by mass spectroscopy for purity. Dose: 100 µg / mouse (pR60) Poly-L-arginine with an average degree of polymerization of 60 arginine residues; Sigma. A dose of 100 µg / mouse thiophosphate substituted ODN containing the CpG motif: tcc atg and ttc ctg atg ct were synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse thiophosphate substituted ODN containing deoxyinosine: hhh wdi dhh h was synthesized by NAPS GmbH, Gottingen, (h = CAT, w = AT, d = GAT). Dose: 10 nmol / mouse

C57BI/6 (Harlan/Olac)Harlan / Olac C57BI / 6

Peptid TRP-2 (VYDFFVWL), MHC 1. triedy (H-2Kb) obmedzený epitop proteínu-2 príbuzného myšacej tyrosináze (Bllom et al., 1997), bol syntetizovaný s použitím štandardnej chemickej syntézy F-moc na pevnej fáze, purifikovaný pomocou HPLC a analyzovaný pomocou hmotovej spektroskopie kvôli čistote. Dávka: 100 ug/myš (pR60) Poly-L-arginín s priemerným stupňom polymerácie 60 arginínových rezíduí; spoločnosť Sigma. Dávka 100 ug/myš tiofosfátom substituované ODN obsahujúce CpG motív: tcc atg acg ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka 5 nmol/myš tiofosfátom substituované ODN obsahujúce deoxyinozín: tcc atg aci ttc ctg atg ct boli syntetizované spoločnosťou NAPS GmbH, Gôttingen. Dávka: 5 nmol/myšPeptide TRP-2 (VYDFFVWL), MHC class 1 (H-2K b ) restricted epitope of protein-2 related mouse tyrosinase (Bllom et al., 1997) was synthesized using standard F-moc solid-phase chemical synthesis, purified by HPLC and analyzed by mass spectroscopy for purity. Dose: 100 µg / mouse (pR60) Poly-L-arginine with an average degree of polymerization of 60 arginine residues; Sigma. A dose of 100 µg / mouse thiophosphate substituted ODN containing the CpG motif: tcc atg and ttc ctg atg ct were synthesized by NAPS GmbH, Gottingen. A dose of 5 nmol / mouse thiophosphate substituted ODN containing deoxyinosine: tcc atg and ttc ctg atg ct was synthesized by NAPS GmbH, Gottingen. Dose: 5 nmol / mouse

Príklad 6Example 6

Kombinovaná aplikácia oligo-deoxyIC26.mer a poly-L-arginínu (pR) zvyšuje na ovalbumín (OVA) špecifickú humorálnu odpoveď.The combined administration of oligo-deoxyIC 2 6. mer and poly-L-arginine (pR) enhances the ovalbumin (OVA) specific humoral response.

Myši C57BI/6 (Harlan/Olac)C57BI / 6 Mice (Harlan / Olac)

Ovalbumín (OVA) Ovalbumín z kuracích vajec, stupeň V, spoločnosť SIGMA Chemicals, A-5503, šarža 54H7070. Dávka 50 ug/myšOvalbumin (OVA) Chicken Egg Ovalbumin, Grade V, SIGMA Chemicals, A-5503, Lot 54H7070. Dose 50 µg / mouse

Poly-L-arginín 60 (pR60) Poly-L-arginín s priemerným stupňom polymerácie 60 arginínových rezíduí; spoločnosť Sigma Chemicals, P-4663, šarže 68H5903. Dávka 100 ug/myš Oligo-deoxy IC, 26-mer (oligo-dIC26.raer) oligo-dIC26.mer bol syntetizovaný štandardnou fosfoamididovou chémiou v 4 umol mierke a purifikovaný pomocou HPLC (spoločnosť NAPS, Nemecko).Poly-L-arginine 60 (pR60) Poly-L-arginine with an average degree of polymerization of 60 arginine residues; Sigma Chemicals, P-4663, lot 68H5903. The dose of 100 / mouse Oligo-deoxy IC, 26-mer (oligo-dIC 26th RAER) oligo-dIC 26th mer was synthesized by standard phosphoamidide chemistry on a 4 µm scale and purified by HPLC (NAPS, Germany).

Experimentálne skupiny (4 myši na skupinu)Experimental groups (4 mice per group)

1. OVA + 0líg0-dIC26-mer + PR1. OVA + 0lg0-dIC 2 6-mer + PR

2. OVA + 0lÍg0-dIC26-mer2. OVA + 0lÍg0-dic two 6-mer

3. OVA + pR3. OVA + pR

4. OVA4. OVA

V deň 0 bol myšiam injekčné aplikovaný do každej zadnej labky celkový objem 100 ul (50 ul na labku) obsahujúci zmienené zlúčeniny. 24 dní po injekcii bolo odobrané sérum, ktoré bolo vyšetrené stanovením ELISA na prítomnosť OVA špecifických protilátok. Tieto výsledky ukazujú, že injekcia OVA v kombinácii s oligo-dlC a pR zvyšuje produkciu OVA špecifických IgG protilátok v porovnaní s injekciou OVA s každou so substancií samotnou (obrázok 13A, B). Zaujímavé je, že titre IgG2a aj IgGl boli zvýšené po jedinej injekcii OVA s oligo-dIC/pR, čo ukazuje na podiel Thl aj Th2 buniek. Ale po 115 dňoch boli stále ešte detekovateľné len zvýšené hladiny IgG2 v sére myší po injekcii OVA a oligo-dIC/pR.On day 0, mice were injected into each hindpaw with a total volume of 100 µl (50 µl per paw) containing the compounds. 24 days after injection, serum was collected and examined by ELISA for the presence of OVA specific antibodies. These results show that injection of OVA in combination with oligo-dlC and pR increases the production of OVA specific IgG antibodies compared to injection of OVA with each substance alone (Figure 13A, B). Interestingly, both IgG2a and IgG1 titers were increased after a single injection of OVA with oligo-dIC / pR, indicating both Th1 and Th2 cells. However, only elevated IgG2 levels in the serum of mice after OVA and oligo-dIC / pR injection were still detectable after 115 days.

Tieto dáta demonštrujú, že kombinovaná injekcia OVA s oligo-dlC a pR zvyšuje OVA špecifickú humorálnu odpoveď. Táto odpoveď je charakterizovaná produkciou izotypov protilátok indukovaných Thl aj Th2 bunkami v časnej fáze, ale neskôr hlavne protilátkami indukovanými Thl bunkami.These data demonstrate that the combined injection of OVA with oligo-dlC and pR enhances the OVA specific humoral response. This response is characterized by the production of isotypes of antibodies induced by both Th1 and Th2 cells in the early phase, but later mainly by antibodies induced by Th1 cells.

ReferencieReferences

Andreu, D., a Rivas, L. (1998). Animal antimicrobial peptides: an overview. Biopolymers 47, 415 - 433. Ballas, Z. K., Rasmussen, W. L., a Krieg, A. M. (1996). Induction of NK activity in murine and human cells by CpG motif in oligodeoxynucleotides and bacterial DNA. J Immunol 157, 1840 - 1845.Andreu, D., and Rivas, L. (1998). Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433. Ballas, Z.K., Rasmussen, W.L., and Krieg, A.M. (1996). Induction of NK activity in murine and human cells by CpG motif in oligodeoxynucleotides and bacterial DNA. J Immunol 157, 1840-1845.

Bloom, B. R., a Widdus, R. (1998). Vaccine visions and their global impact. Nat Med 4, 480 - 484.Bloom, B. R., and Widdus, R. (1998). Vaccine visions and their global impact. Nat Med 4, 480-484.

Bloom, M. B., Perry-Lalley, D., Robbins, P. F., Li, Y., el-Gamil, M., Rosenberg, S. A., a Yang, J. C. (1997). Identification of tyrosinase-related proteín 2 as a tumor rejection antigén for the B 16 melanoma. J Exp Med 185,453 -459.Bloom, M. B., Perry-Lalley, D., Robbins, P.F., Li, Y., el-Gamil, M., Rosenberg, S.A., and Yang, J.C. (1997). Identification of tyrosinase-related protein 2 as and tumor rejection antigen for the B 16 melanoma. J Exp Med 185, 453 -459.

Buschle, M., Schmidt, W., Berger, M., Schaffner, G., Kurzbauer, R., Killisch, L, Tiedemarm, J. K., Trska,Buschle, M., Schmidt, W., Berger, M., Schaffner, G., Kurzbauer, R., Killisch, L., Tiedemarm, J.K., Trska,

B., Kirlappos, H., Mechtler, K., Schilcher, F., Gabler, C., a Bimtsiel, M. L. (1998). Chemically defined, cellfree cancer vaccines: use of tumor antigen-derived peptides or polyepitope proteins for vaccination. Gene Ther. Mol. Biol. 1, 309 - 321.B., Kirlappos, H., Mechtler, K., Schilcher, F., Gabler, C., and Bimtsiel, M. L. (1998). Chemically defined, cell-free cancer vaccines: use of tumor-derived peptides or polyepitope proteins for vaccination. Gene Ther. Mol. Biol. 1, 309-321.

Buschle, M., Schmidt, W., Zauner, W., Mechtler, K., Trska, B., Kirlappos, H., a Bimstiel, M. L. (1997). Transloading of tumor antigen-derived peptides into antigen-presenting cells. Proc. Natl. Acad. Sci. USA 94, 3256-3261.Buschle, M., Schmidt, W., Zauner, W., Mechtler, K., Trska, B., Kirlappos, H., and Bimstiel, M. L. (1997). Transloading of tumor-derived peptides into antigen-presenting cells. Proc. Natl. Acad. Sci. USA 94: 3256-3261.

Cavanaugh, P. F., Jr., Ho, Y-K, a Bardos, to je (1996). The activation of murine macrophages and natural killer cells by the partially tiolated double stranded RNA poly (1). mercapto poly(C). Res. Comm. Mol. Pathol. Pharmacol. 91, 131 -147.Cavanaugh, P.F., Jr., Ho, Y-K, and Bardos, that is (1996). Activation of murine macrophages and natural killer cells by partially thiolated double stranded RNA poly (1). mercapto poly (C). Res. Comm. Mol. Pathol. Pharmacol. 91, 131-147.

Chace, J. H., Hooker, N. A., Mildenstein, K. L., Krieg, A. M., a Cowdery, J. S. (1997). Bacterial DNA-induced NK celí IFN- gamma production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 84, 185- 193.Chace, J. H., Hooker, N. A., Mildenstein, K. L., Krieg, A. M., and Cowdery, J. S. (1997). Bacterial DNA-induced NK cell IFN-gamma production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 84, 185-193.

Davis, H. L., Weeranta, R., Waldschmidt, T. J., Tygrett, L., Schorr, J., a Krieg, A. M. (1998). CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigén. J Immunol 160, 870 - 876.Davis, H. L., Weeranta, R., Waldschmidt, T. J., Tygrett, L., Schorr, J., and Krieg, A. M. (1998). CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 160, 870-876.

Deng, G. M., Nilsson, 1. M., Verdrengh, M., Collins, L. V., and Tarkowski, A. (1999). Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat Med 5, 702 - 705.Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L.V., and Tarkowski, A. (1999). Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat Med 5, 702-705.

Ganz, T. (1999). Defensins and host defense [comment], Science 286, 420 - 421.Ganz, T. (1999). Defensins and host defense [comment], Science 286: 420-421.

Ganz, T., a Lehrer, R. 1. (1999). Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today 5, 292 - 297.Ganz, T., and Lehrer, R. 1. (1999). Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today 5, 292-297.

Hancock, R. E. (1999). Host defence (cationic) peptides: what is their future clinical potential? Drugs 57, 469 až 473.Hancock, R.E. (1999). Host defense (cationic) peptides: what is their future clinical potential? Drugs 57, 469-473.

Harlow, E., a Lane, D. (1988). Antibodies: a laboratory manual (Cold Spring Harbor: Cold Spring Harbor Laboratory).Harlow, E., and Lane, D. (1988). Antibodies: a laboratory manual (Cold Spring Harbor).

Hartmann, G., Weiner, G. J., a Krieg, A. M. (1999). CpG DNA: A potent signál for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 96, 9305 - 9310.Hartmann, G., Weiner, G. J., and Krieg, A. M. (1999). CpG DNA: A potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 96, 9305-9310.

Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., a Ezekowitz, R. A. (1999). Phylogenetic perspectives in innate immunity. Science 284, 1313 - 1318.Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. (1999). Phylogenetic perspectives in innate immunity. Science 284, 1313-1318.

Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J., a Krieg, A. M. (1996). CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA 93, 2879 - 2883.Klinman, D. M., Yi, A.K., Beaucage, S.L., Conover, J., and Krieg, A.M. (1996). CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA 93: 2879-2883.

Krieg, A. M. (1999). CpG DNA: a novel immunomodulator [letter]. Trends Microbiol 7, 64 - 5.Krieg, A.M. (1999). CpG DNA: a novel immunomodulator [letter]. Trends Microbiol 7, 64-5.

Krieg, A. M. (1996). An innate immune defense mechanism based on the recognition of CpG motifs in microbial DNA. J Lab Clin Med 128, 128 - 133.Krieg, A.M. (1996). An innate immune defense mechanism based on recognition of CpG motifs in microbial DNA. J Lab Clin Med 128, 128-133.

Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A., a Klinman, D. M. (1995). CpG motifs in bacterial DNA trigger direct B-cell activation. Náture 374, 546 - 549. Krieg, A. M., Yi, A. K., Schorr, J., a Davis, H. L. (1998). The role of CpG dinucleotides in DNA vaccines. Trends Microbiol 6, 23 - 27.Krieg, A.M., Yi, A.K., Matson, S., Waldschmidt, T.J., Bishop, G.A., Teasdale, R., Koretzky, G.A., and Klinman, D. M. (1995). CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549. Krieg, A.M., Yi, A.K., Schorr, J., and Davis, H.L. (1998). The role of CpG dinucleotides in DNA vaccines. Trends Microbiol 6, 23-27.

Lethe, B., van den Eynde, B., van Pel, A., Corradin, G., a Boon, T. (1992). Mouse tumor rejection antigens P815A and P815B: two epitopes carried by a single peptide. Eur J Immunol 22, 2283 - 2288.Lethe, B., van den Eynde, B., van Pel, A., Corradin, G., and Boon, T. (1992). P815A and P815B mouse tumor rejection antigens: two epitopes carried by a single peptide. Eur J Immunol 22, 2283-2288.

Liljeqvist, S., a Stahl, S. (1999). Production of recombinant subunit vaccines: proteín immunogens, live delivery systems and nucleic acid vaccines. J Biotchnol 73, 1 - 33.Liljeqvist, S., and Stahl, S. (1999). Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotchnol 73, 1-33.

Lipford, G. B., Heeg, K., a Wagner, H. (1998). Bacterial DNA as immune celí activator. Trends Microbiol 6, 496 - 500.Lipford, G. B., Heeg, K., and Wagner, H. (1998). Bacterial DNA as immune cell activator. Trends Microbiol 6, 496-500.

Manetti, R., Annunziato, F., Tomasevic, L., Gianno, V., Parronchi, P., Romagnani, S. a Maggi, E. (1995). Polyinosinic acid: polycytidylic acid promotes T helper type 1-specific immune responses by stimulating macrophage production of interferon-a and interleukin-12. Eur. J. Immunol. 25, 2656 - 2660.Manetti, R., Annunziato, F., Tomasevic, L., Gianno, V., Parronchi, P., Romagnani, S., and Maggi, E. (1995). Polyinosinic acid: polycytidylic acid promotes T helper type 1-specific immune responses by stimulating macrophage production of interferon-a and interleukin-12. Eur. J. Immunol. 25, 2656-2660.

Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., a Coffman, R. L. (1986). Two types of murine helper T celí clone. 1. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136, 2348 - 2357.Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L. (1986). Two types of murine helper T cell clone. 1. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136, 2348-2357.

Nossal, G. (1998). Living up to the legacy. Nat Med 4, 475 - 476.Nossal, G. (1998). Living up to the legacy. Nat Med 4, 475-476.

Oxenius, A., Martinic, M M., Hengartner, H., a Klenerman, P. (1999). CpG-containing oligonucleotides are efficient adjuvants for induction of protective antiviral immune responses with T-cell peptide vaccines. J Virol 73,4120-4126.Oxenius, A., Martinic, M.M., Hengartner, H., and Klenerman, P. (1999). CpG-containing oligonucleotides are effective adjuvants for the induction of protective antiviral immune responses with T-cell peptide vaccines. J Virol 73, 4120-4126.

Paillard, F. (1999). CpG: the double-edged sword [comment]. Hum Gene Ther 10,2089 - 2090.Paillard, F. (1999). CpG: The double-edged sword [comment]. Hum Gene Ther 10,2089–2090.

Pamer, E. G., Harty, J. T, a Bevan, M. J. (1991). Precise prediction of a dominánt class I MHC-restricted epitope of Listeria monocytogenes. Náture 353, 852 - 855.Pamer, E.G., Harty, J.T., and Bevan, M.J. (1991). Precise prediction of the dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353, 852-855.

Parronchi, P., Brugnolo, F., Annunziato, F., Manuelli, C., Sampognaro, S., Mavilia, C., Romagnani, S., a Maggi, E. (1999). Phosphorotioate oligodeoxynucleotides promote the in vitro development of human allergen-specific CD4+ T cells into Thl effectors. J Immunol 163, 5946 - 5953.Parronchi, P., Brugnolo, F., Annunziato, F., Manuelli, C., Sampognaro, S., Mavilia, C., Romagnani, S., and Maggi, E. (1999). Phosphorotioate oligodeoxynucleotides promote the in vitro development of human allergen-specific CD4 + T cells into Th1 effectors. J Immunol 163, 5946-5953.

Pisetsky, D. S. (1997). Immunostimulatory DNA; a clear and present danger? Nat Med 3, 829 - 831.Pisetsky, D. S. (1997). Immunostimulatory DNA; A Clear And Present Danger? Nat Med 3, 829-831.

Pisetsky, D. S. (1999). The influence of base sequence on the imunostimulatory properties of DNA. Immunol Res 19, 35 - 46.Pisetsky, D. S. (1999). Immunostimulatory properties of DNA. Immunol Res 19: 35-46.

Rammensee, H. G., Friede, T., Stevanoviic S. (1995). MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178 - 228.Rammensee, H. G., Friede, T., Stevanoviic S. (1995). MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178-228.

Rodrigues, M., Nussenzweig, R. S., Romero, P., a Zavala, F. (1992). The in vivo cytotoxic activity of CD8+ T celí clones cor-relates with their levels of expression of adhesion molecules. J Exp Med 175, 895 - 905. Roitt, 1., Brostoff, J., a Malé, D. (1998). Immunology (London: Mosby International Ltd).Rodrigues, M., Nussenzweig, R. S., Romero, P., and Zavala, F. (1992). The in vivo cytotoxic activity of CD8 + T cell clones cor-related with their expression levels of adhesion molecules. J Exp Med 175, 895-905. Roitt, 1., Brostoff, J., and Malé, D. (1998). Immunology (London: Mosby International Ltd.).

Rotzschke, O., Falk, K., Stevanovic, S., Jung, G., Walden, P., a Rammensee, H. G. (1991). Exact prediction of a natural T celí epitope. Eur J Immunol 21, 2891 - 2894.Rotzschke, O., Falk, K., Stevanovic, S., Jung, G., Walden, P., and Rammensee, H. G. (1991). Exact prediction of a natural T cell epitope. Eur J Immunol 21, 2891-2884.

Schmidt, W., Buschle, M., Zauner, W., Kirlappos, H., Mechtler, K., Trska, B., a Bimstiel, M. L. (1997). Cellfree tumor antigén peptide-based cancer vaccines. Proc. Natl. Acad. Sci. USA 94, 3262 - 3267.Schmidt, W., Buschle, M., Zauner, W., Kirlappos, H., Mechtler, K., Trska, B., and Bimstiel, M. L. (1997). Cellfree tumor antigen peptide-based cancer vaccines. Proc. Natl. Acad. Sci. USA 94, 3262-3267.

Schwartz) D. A., Quinn, T. J., Thome, P. S., Sayeed, S., Yi, A. K. , a Krieg, A. M. (1997). CpG motifs in bacterial DNA cause inflammation in the lower respirátory tract, J Clin Invest 100, 68-73.Schwartz, D.A., Quinn, T.J., Thome, P.S., Sayeed, S., Yi, A.K., and Krieg, A.M. (1997). CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract, J Clin Invest 100, 68-73.

Shimonkevitz, R., Colon, S., Kappler, J. W., Marrack, P., a Grey, H. M, (1984). Antigén recognition by H2-resctricted T cells 11. A tryptic ovalbumin peptide that substitutes for processed antigén. J Immunol 133, 2067 - 2074.Shimonkevitz, R., Colon, S., Kappler, J.W., Marrack, P., and Gray, H.M. (1984). Antigen recognition by H2-resctricted T cells 11. A tryptic ovalbumin peptide that substitutes for processed antigen. J Immunol 133, 2067-2074.

Simmaco, M., Mignogna, G, a Barra, D. (1998). Antimicrobial peptides ftom amphibian skin: what do they telí us? Biopolymers 47, 435 - 450.Simmaco, M., Mignogna, G, and Barra, D. (1998). Antimicrobial peptides ftom amphibian skin: what do they body us? Biopolymers 47, 435-450.

Sparbier, K., a Walden, P. (1999). T celí receptor specificity and mimotopes. Curr Opin Immunol 11, 214 218.Sparbier, K., and Walden, P. (1999). T cell receptor specificity and mimotopes. Curr Opin Immunol 11, 214-218.

Sparwasser, T., Koch, E. S., Vabulas, R. M., Heeg, K., Lipford, G. B., Ellwart, J. W., a Wagner, H. (1998). Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 28, 2045 - 2054.Sparwasser, T., Koch, E. S., Vabulas, R. M., Heeg, K., Lipford, G. B., Ellwart, J. W., and Wagner, H. (1998). Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 28, 2045-2054.

Sparwasser, T., Mietlike, T., Lipford, G., Borschert, K., Hacker., H., Heeg, K., a Wagner, H. (1997). Bacterial DNA causes septic shock [letter]. Náture 386, 336 - 337.Sparwasser, T., Mietlike, T., Lipford, G., Borschert, K., Hacker., H., Heeg, K., and Wagner, H. (1997). Bacterial DNA causes septic shock. Nature 386, 336-337.

Sparwasser, T., Miethke, T., Lipford, G., Erdmann, A., Hacker, H., Heeg, K., a Wagner, H. (1997). Macrophages sense pathogens via DNA motif: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol 27, 1671 - 1679.Sparwasser, T., Miethke, T., Lipford, G., Erdmann, A., Hacker, H., Heeg, K., and Wagner, H. (1997). Macrophages sense pathogens via DNA motif: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol 27, 1671-1679.

Weiner, G. J., Liu, H. M., Wooldridge, J. E., Dahle, C. E., a Krieg, A. M. (1997). Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigén immunization. Proc Natl Acad Sci USA 94, 10833 - 10837.Weiner, G. J., Liu, H. M., Wooldridge, J. E., Dahle, C. E., and Krieg, A. M. (1997). Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA 94, 10833-10837.

Yew, N. S., Wang, K. X., Przybylska, M., Bagley, R. G., Stedman, M., Marshali, J., Scheule, R. K., a Cheng,Yew, N. S., Wang, K. X., Przybylska, M., Bagley, R. G., Stedman, M., Marshali, J., Scheule, R. K., and Cheng,

S. H. (1999). Con-tribution of plasmid DNA to inflammation in the lung after ad-ministration of cationic lipid:pDNA complexes. Hum Gene Ther 10, 223 - 234.S.H. (1999). Concentration of plasmid DNA to inflammation in the lung after ad-ministeration of cationic lipid: pDNA complexes. Hum Gene Ther 10, 223-234.

Claims (10)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Použitie molekuly oligodeoxynukleovej kyseliny (ODN) majúcej štruktúru definovanú vzorcom (I)Use of an oligodeoxynucleic acid (ODN) molecule having the structure defined by formula (I) NMPb-E (X), kde ktorýkoľvek substituent X je O alebo S;NMP b -E (X) wherein any X is O or S; ktorýkoľvek zo zvyškov NMP je 2'-deoxynukleozid-monofosfát alebo -monotiofosfát vybraný z deoxyadenozín-, deoxyguanozín-, deoxyinozín-, deoxycytozín-, deoxyuridín-, deoxytymidín-, 2-metyldeoxyinozín-, 5-metyl-deoxycytozín-, deoxypseudouridín-, deoxyribosapurín-, 2-aminodeoxyribosapurín-, 6-S-deoxyguanín-, 2-dimetyldeoxyguanozín- alebo N-izopentenyldeoxyadenozín-monofosfátu alebo -monotiofosfátu,any of the NMP residues is 2'-deoxynucleoside monophosphate or -monothiophosphate selected from deoxyadenosine-, deoxyguanosine-, deoxyinosine-, deoxycytosine-, deoxyuridine-, deoxythymidine-, 2-methyldeoxyinosine-, 5-methyl-deoxycosine- deoxycosine, -, 2-aminodeoxyribosapurine, 6-S-deoxyguanine, 2-dimethyldeoxyguanosine or N-isopentenyldeoxyadenosine monophosphate or monothiophosphate, NUC je 2'-deoxynukleozid vybraný z deoxyadenozín-, deoxyguanozín-, deoxyinozín-, deoxycytozín-, deoxyuridín-, deoxytymidín-, 2-metyldeoxyinozín-, 5-metyldeoxycytozín-, deoxypseudouridín-, deoxyribosapurín-, 2-aminodeoxyribosapurín-, 6-S-deoxyguanín-, 2-dimetyldeoxyguanozín- alebo N-izopentenyldeoxyadenozínu, a a b sú celé čísla od 0 do 100 s výhradou, že a + b je číslo medzi 4 a 150,NUC is a 2'-deoxynucleoside selected from deoxyadenosine-, deoxyguanosine-, deoxyinosine-, deoxycytosine-, deoxyuridine-, deoxythymidine-, 2-methyldeoxyinosine-, 5-methyldeoxycytosine-, deoxypseudouridine-, deoxypyuribine-, deoxyribosine-, deoxyrurosine, 6-deoxyrolidine, -deoxyguanine-, 2-dimethyldeoxyguanosine- or N-isopentenyldeoxyadenosine, and b are integers from 0 to 100, with the proviso that a + b is a number between 4 and 150, B a E sú bežné skupiny pre 5' alebo 3' konce molekúl nukleovej kyseliny, na výrobu imunostimulačnej farmaceutickej kompozície.B and E are common groups for the 5 'or 3' ends of the nucleic acid molecules, for the manufacture of an immunostimulatory pharmaceutical composition. 2. Použitie podľa nároku 1, kde ktorýkoľvek NMP je vybraný z deoxyadenozín-, deoxyguanozín-, deoxyinozín-, deoxycytozín-, deoxyuridín-, deoxytymidín-, 2-metyldeoxyinozín-, 5-metyl-deoxycytozín-monofosfátu alebo -monotiofosfátu.Use according to claim 1, wherein any NMP is selected from deoxyadenosine, deoxyguanosine, deoxyinosine, deoxycytosine, deoxyuridine, deoxythymidine, 2-methyldeoxyinosine, 5-methyl-deoxycytosine monophosphate or monothiophosphate. 3. Použitie podľa nároku 1 alebo 2, kde a + b je medzi 10 a 60, prednostne medzi 15 a 40.Use according to claim 1 or 2, wherein a + b is between 10 and 60, preferably between 15 and 40. 4. Použitie podľa ktoréhokoľvek z nárokov 1 až 3, kde aspoň jeden z Xj a X2 je S a aspoň jeden z X3 a X4 je O a prednostne ktorýkoľvek z NMP je nukleozidmonotiofosfát.The use according to any one of claims 1 to 3, wherein at least one of X 1 and X 2 is S and at least one of X 3 and X 4 is O and preferably any of the NMP is nucleoside monothiophosphate. 5 tým, že ďalej obsahuje ďalšie aktívne zložky, obzvlášť cytokíny, protizápalové látky, antimikrobiálne látky alebo ich kombinácie.5, further comprising further active ingredients, in particular cytokines, anti-inflammatory agents, antimicrobials or combinations thereof. 15. Farmaceutický prípravok podľa ktoréhokoľvek z nárokov 11 až 14, vyznačujúci sa tým, že ďalej obsahuje pomocné látky, obzvlášť farmaceutický prijateľný nosič, pufračné látky, stabilizačné látky alebo ich kombinácie.Pharmaceutical preparation according to any one of claims 11 to 14, characterized in that it further comprises excipients, in particular a pharmaceutically acceptable carrier, buffering agents, stabilizing agents or combinations thereof. 5. Použitie podľa ktoréhokoľvek z nárokov 1 až 4, kde ODN obsahuje sekvenciu hhh wdi dhh h, nhh hhh wdi nhh hhh hhh wn, nhh wdi din hhh hdi ndi nh, nhh hhh wdi dhh hhh hhh wn alebo nhh wdi did hhh hdi ddi dh, kde ktorýkoľvek z n je 2'-deoxynukleozid-monofosfát alebo -monotiofosfát vybraný z deoxyadenozín-, deoxyguanozín- deoxyinozín-, deoxycytozín- alebo deoxytymidín-monofosfátu, alebo -monotiofosfátu, ktorýkoľvek z h je 2'-deoxynukleozidmonofosfát alebo monotiofosfát vybraný z deoxyadenozín-, deoxycytozín- alebo deoxytymidm-monofosfátu, alebo -monotiofosfátu, i je deoxyinozín-monofosfát alebo -monotiofosfát, ktorýkoľvek z h w je 2'-deoxynukleozid-monofosfát aleboUse according to any one of claims 1 to 4, wherein the ODN comprises the sequence hhh wdi dhh h, nhh hhh wdi nhh hhh hhh wn, nhh wdi din hhh hdi ndi nh, nhh hhh wdi dhh hhh hhh wn or nhh wdi did hhh hdi ddi dh, wherein any n is 2'-deoxynucleoside monophosphate or -monothiophosphate selected from deoxyadenosine, deoxyguanosine-deoxyinosine, deoxycytosine- or deoxythymidine monophosphate, or -monothiophosphate, any of which is 2'-deoxynucleoside monophosphate, or deoxycytosine- or deoxythymidine monophosphate, or -monothiophosphate, i is deoxyinosine monophosphate or -monothiophosphate, any of which is 2'-deoxynucleoside monophosphate or -monotiofosfát vybraný z deoxyadenozín-, alebo deoxytymidín-monofosfátu, alebo -monotiofosfátu, a ktorýkoľvek z d je 2'-deoxynukleozid-monofosfát alebo -monotiofosfát vybraný z deoxyadenozín-, deoxyguanozín- alebo deoxytymidín-monofosfátu, alebo -monotiofosfátu.a monothiophosphate selected from deoxyadenosine-, or deoxythymidine monophosphate, or -monothiophosphate, and any of d is 2'-deoxynucleoside monophosphate or -monothiophosphate selected from deoxyadenosine, deoxyguanosine or deoxythymidine monophosphate, or -monothiophosphate. 6. Použitie podľa ktoréhokoľvek z nárokov 1 až 5, kde zmienená ODN obsahuje aspoň jeden 2'-deoxycytozín-monofosfát alebo -monotiofosfát, 3'-priľahlý k 2'-deoxyinozín-monofosfátu alebo -monotiofosfátu, najmä deoxyinozín-deoxycytozín 26-mér.Use according to any one of claims 1 to 5, wherein said ODN comprises at least one 2'-deoxycytosine monophosphate or -monothiophosphate, 3'-adjacent to 2'-deoxyinosine monophosphate or -monothiophosphate, in particular deoxyinosine deoxycytosine 26-mer. 7. Použitie podľa ktoréhokoľvek z nárokov 1 až 7, kde zmienená ODN obsahuje sekvenciu wdi, wdid, wdidin alebo wdidid, kde w, d, i a n sú definované.Use according to any one of claims 1 to 7, wherein said ODN comprises the sequence wdi, wdid, wdidin or wdidid, wherein w, d, i and n are defined. 7. Použitie podľa ktoréhokoľvek z nárokov 1 až 6, kde zmienená ODN obsahuje sekvenciu gacitt, najmä tcc atg aci ttc ctg atg ct, iacitt, gaictt, iaictt, kde a je deoxyadenozín-monofosfát alebo -monotiofosfát, g je deoxyguanozín-monofosfát alebo -monotiofosfát, i je deoxyinozín-monofosfát alebo -monotiofosfát, c je deoxycytozín-monofosfát alebo -monotiofosfát a t je deoxytymidín-monofosfát alebo -monotiofosfát.Use according to any one of claims 1 to 6, wherein said ODN comprises a sequence of gacitt, in particular tcc atg and ttc ctg atg ct, iacitt, gaictt, iaictt, wherein a is deoxyadenosine monophosphate or monothiophosphate, g is deoxyguanosine monophosphate or - monothiophosphate, i is deoxyinosine monophosphate or -monothiophosphate, c is deoxycytosine monophosphate or -monothiophosphate and t is deoxythymidine monophosphate or -monothiophosphate. 8. Použitie podľa ktoréhokoľvek z nárokov 1 až 8, kde B a E sú nezávisle vybrané z -H, -CH3, -COH, -COCH3, -OH, -CHO, -PO4, -PSO3, -PS2O2, -PS3O, -PS4, -SO3, -PO4 (CH2)^-NH2 alebo -PO4(CH2),.6-NHznačka.Use according to any one of claims 1 to 8, wherein B and E are independently selected from -H, -CH 3 , -COH, -COCH 3 , -OH, -CHO, -PO 4, -PSO 3 , -PS 2 O 2, -PS 3 O, -PS 4, -SO 3, -PO4 (CH2) ^ - NH 2 or -PO 4 (CH 2) ,. 6 -NHtag. 9. Použitie podľa ktoréhokoľvek z nárokov 1 až 9, kde zmienený imunostimulačný farmaceutický prípravok je vakcína.Use according to any one of claims 1 to 9, wherein said immunostimulatory pharmaceutical composition is a vaccine. 10. Farmaceutický príprav romkoľvek z nárokov 1 až 9.Pharmaceutical preparation of any one of claims 1 to 9. 11. Farmaceutický príprav romkoľvek z nárokov 1 až 9.Pharmaceutical preparation of any one of claims 1 to 9. 12. Farmaceutický príprav romkoľvek z nárokov 1 až 9 a antigén.Pharmaceutical preparation of any one of claims 1 to 9 and an antigen. 13. Farmaceutický prípravok podľa nároku 11 alebo 12, vyznačujúci sa tým, že ďalej obsahuje polykatiónový polymér, prednostne polykatiónový peptid, obzvlášť polyarginín, polylyzín alebo anti-Pharmaceutical preparation according to claim 11 or 12, characterized in that it further comprises a polycationic polymer, preferably a polycationic peptide, in particular polyarginine, polylysine or anti- vyznačujúci characterized sa tým, by vyznačuj úci mark the task sa tým, by vyznačujúci characterized sa tým, by
mikrobiálny peptid, obzvlášť antimikrobiálny peptid odvodený od cicavčieho katelicidínu, syntetický peptid obsahujúci 2 KLK-motívy oddelené linkerom s 3 až 7 hydrofóbnymi aminokyselinami alebo rastový hormón, obzvlášť ľudský rastový hormón.a microbial peptide, especially an antimicrobial peptide derived from mammalian cathelicidin, a synthetic peptide comprising 2 KLK-motifs separated by a linker of 3 to 7 hydrophobic amino acids, or growth hormone, especially human growth hormone. 14. Farmaceutický prípravok podľa ktoréhokoľvek z nárokov 11 až 13, vyznačujúci saPharmaceutical preparation according to any one of claims 11 to 13, characterized by
10 16. Farmaceutický prípravok podľa ktoréhokoľvek z nárokov 11 až 15, vyznačujúci sa tým, že obsahuje 1 ng až 1 g, prednostne 100 ng až 10 mg, obzvlášť 10 mg až 1 mg jednej alebo viacej ODN podľa ktoréhokoľvek z nárokov 1 až 9.Pharmaceutical preparation according to any one of claims 11 to 15, characterized in that it contains 1 ng to 1 g, preferably 100 ng to 10 mg, in particular 10 mg to 1 mg of one or more ODNs according to any one of claims 1 to 9.
SK1815-2002A 2000-06-08 2001-06-07 Immunostimulatory oligodeoxynucleotides SK287689B6 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0100000A AT410173B (en) 2000-06-08 2000-06-08 ANTIQUE COMPOSITION
AT19732000 2000-11-23
PCT/EP2001/006433 WO2001093905A1 (en) 2000-06-08 2001-06-07 Immunostimulatory oligodeoxynucleotides

Publications (2)

Publication Number Publication Date
SK18152002A3 SK18152002A3 (en) 2003-08-05
SK287689B6 true SK287689B6 (en) 2011-06-06

Family

ID=25608484

Family Applications (1)

Application Number Title Priority Date Filing Date
SK1815-2002A SK287689B6 (en) 2000-06-08 2001-06-07 Immunostimulatory oligodeoxynucleotides

Country Status (26)

Country Link
US (3) US8568742B2 (en)
EP (1) EP1296713B1 (en)
JP (2) JP5271471B2 (en)
KR (1) KR100799788B1 (en)
CN (1) CN1309418C (en)
AT (1) ATE249839T1 (en)
AU (2) AU8181201A (en)
BR (1) BRPI0111639B8 (en)
CA (1) CA2411575C (en)
CZ (1) CZ304195B6 (en)
DE (1) DE60100814T2 (en)
DK (1) DK1296713T3 (en)
ES (1) ES2206424T3 (en)
HK (1) HK1056678A1 (en)
HU (1) HU228264B1 (en)
IL (2) IL152959A0 (en)
IS (1) IS1993B (en)
MX (1) MXPA02012010A (en)
NO (1) NO329492B1 (en)
PL (1) PL211036B1 (en)
PT (1) PT1296713E (en)
RU (2) RU2293573C2 (en)
SI (1) SI1296713T1 (en)
SK (1) SK287689B6 (en)
TR (1) TR200302015T4 (en)
WO (1) WO2001093905A1 (en)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977245B2 (en) 1999-04-12 2005-12-20 The United States Of America As Represented By The Department Of Health And Human Services Oligodeoxynucleotide and its use to induce an immune response
RU2293573C2 (en) * 2000-06-08 2007-02-20 Интерселл Аг Immunostimulating oligodeoxynucleotides
ES2307568T3 (en) * 2000-12-08 2008-12-01 Coley Pharmaceutical Gmbh CPG TYPE NUCLEIC ACIDS AND SAME USE METHODS.
US20040081655A1 (en) * 2001-01-05 2004-04-29 Karen Lingnau Methods and compositions comprising polycationic compounds
WO2002053185A2 (en) * 2001-01-05 2002-07-11 Intercell Ag Anti-inflammatory use of polycationic compounds
CA2433794A1 (en) * 2001-01-05 2002-07-11 Intercell Ag Uses for polycationic compounds as vaccine adjuvants
US7244438B2 (en) 2001-01-05 2007-07-17 Intercell Ag Uses for polycationic compounds
AT410798B (en) 2001-01-26 2003-07-25 Cistem Biotechnologies Gmbh METHOD FOR IDENTIFYING, ISOLATING AND PRODUCING ANTIGENS AGAINST A SPECIFIC PATHOGEN
CA2447793A1 (en) * 2001-05-21 2002-11-28 Intercell Ag Immunostimulatory oligodeoxynucleic molecules
EP1412390A2 (en) * 2001-07-26 2004-04-28 Tanox, Inc. Agents that activate or inhibit toll-like receptor 9
US7666674B2 (en) 2001-07-27 2010-02-23 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of sterically stabilized cationic liposomes to efficiently deliver CPG oligonucleotides in vivo
US7354909B2 (en) * 2001-08-14 2008-04-08 The United States Of America As Represented By Secretary Of The Department Of Health And Human Services Method for rapid generation of mature dendritic cells
MX339524B (en) 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
EP1450821A1 (en) * 2001-12-07 2004-09-01 Intercell AG Immunostimulatory oligodeoxynucleotides
US8466116B2 (en) 2001-12-20 2013-06-18 The Unites States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of CpG oligodeoxynucleotides to induce epithelial cell growth
WO2003054161A2 (en) 2001-12-20 2003-07-03 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services USE OF CpG OLIGODEOXYNUCLEOTIDES TO INDUCE ANGIOGENESIS
US8088388B2 (en) * 2002-02-14 2012-01-03 United Biomedical, Inc. Stabilized synthetic immunogen delivery system
CA2388049A1 (en) 2002-05-30 2003-11-30 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
WO2004011650A2 (en) 2002-07-24 2004-02-05 Intercell Ag Antigens encoded by alternative reading frame from pathogenic viruses
AR040996A1 (en) 2002-08-19 2005-04-27 Coley Pharm Group Inc IMMUNE STIMULATING NUCLEIC ACIDS
US7785608B2 (en) 2002-08-30 2010-08-31 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
JP2006504687A (en) 2002-09-13 2006-02-09 インターツェル・アクチェンゲゼルシャフト Method for isolating hepatitis C virus peptide
US8263091B2 (en) 2002-09-18 2012-09-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method of treating and preventing infections in immunocompromised subjects with immunostimulatory CpG oligonucleotides
CA2502414A1 (en) 2002-10-15 2004-04-29 Intercell Ag Nucleic acids coding for adhesion factor of group b streptococcus, adhesion factors of group b streptococcus and further uses thereof
EP2287313A1 (en) 2003-03-04 2011-02-23 Intercell AG Streptococcus pyogenes antigens
CN100355453C (en) * 2003-03-24 2007-12-19 英特塞尔股份公司 Improved vaccines
CA2517673C (en) * 2003-03-24 2013-08-13 Intercell Ag Improved vaccines for preventing viral infection
JP2007523609A (en) 2003-03-31 2007-08-23 インターツェル・アクチェンゲゼルシャフト S. epidermidis antigen
AU2004230244B2 (en) 2003-04-15 2011-09-22 Intercell Ag S. pneumoniae antigens
WO2004099242A2 (en) 2003-05-07 2004-11-18 Intercell Ag Streptococcus agalactiae antigens i + ii
WO2004106367A2 (en) 2003-05-30 2004-12-09 Intercell Ag Enterococcus antigens
CN1822856B (en) * 2003-07-11 2010-04-28 英特塞尔股份公司 HCV vaccines
JP4817599B2 (en) * 2003-12-25 2011-11-16 独立行政法人科学技術振興機構 Immune activity enhancer and method for enhancing immune activity using the same
KR100721928B1 (en) 2004-11-05 2007-05-28 주식회사 바이오씨에스 Pharmaceutical composition for treating or preventing dermatitis comprising CpG oligodeoxynucleotide
EP2471550A1 (en) 2005-10-07 2012-07-04 Health Protection Agency Proteins with improved solubility and methods for producing and using same
TW200806315A (en) 2006-04-26 2008-02-01 Wyeth Corp Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
AU2007264205B2 (en) 2006-06-28 2013-04-18 Statens Serum Institut Expanding the T cell repertoire to include subdominant epitopes by vaccination with antigens delivered as protein fragments or peptide cocktails
JP2009542196A (en) 2006-07-07 2009-12-03 インターセル アーゲー Small Streptococcus pyogenes antigens and their use
CA2661224A1 (en) 2006-09-15 2008-03-20 Intercell Ag Borrelia antigens
EP1923069A1 (en) 2006-11-20 2008-05-21 Intercell AG Peptides protective against S. pneumoniae and compositions, methods and uses relating thereto
AR064642A1 (en) 2006-12-22 2009-04-15 Wyeth Corp POLINUCLEOTIDE VECTOR THAT INCLUDES IT RECOMBINATING CELL THAT UNDERSTANDS THE VECTOR POLYPEPTIDE, ANTIBODY, COMPOSITION THAT UNDERSTANDS THE POLINUCLEOTIDE, VECTOR, RECOMBINATING CELL POLYPEPTIDE OR ANTIBODY, USE OF THE COMPOSITION AND A COMPOSITION AND A METHOD
EP2266591A3 (en) 2007-01-12 2012-08-08 Intercell AG Protective proteins of S. agalactiae, combinations thereof and methods of using the same
CN102015754A (en) 2007-05-02 2011-04-13 英特塞尔股份公司 Klebsiella antigens
EP2012122A1 (en) 2007-07-06 2009-01-07 Medigene AG Mutated parvovirus structural proteins as vaccines
DK2158211T3 (en) 2007-05-31 2016-12-05 Medigene Ag Mutated structural protein of a parvovirus
AU2008265218A1 (en) 2007-06-18 2008-12-24 Intercell Ag Chlamydia antigens
BRPI0909664A2 (en) 2008-03-17 2019-09-24 Intercell Ag protective peptides against s. pneumoniae and related compositions, methods and uses thereof
EP2650014A2 (en) 2008-06-20 2013-10-16 Wyeth LLC Compositions and methods of use of ORF1358 from beta-hemolytic streptococcal strains
EP2424882A2 (en) 2009-02-05 2012-03-07 Intercell AG Peptides protective against e. faecalis, methods and uses relating thereto
EP2405938A2 (en) 2009-02-13 2012-01-18 Intercell AG Nontypable haemophilus influenzae antigens
RU2536981C9 (en) 2009-06-22 2015-05-10 ВАЙЕТ ЭлЭлСи Immunogenic compositions of staphylococcus aureus antigens
ES2729934T3 (en) 2009-06-22 2019-11-07 Wyeth Llc Compositions and procedures for preparing immunogenic compositions of Staphylococcus aureus serotype 8 capsular polysaccharide conjugate
CN102740882A (en) 2009-08-27 2012-10-17 诺华有限公司 Adjuvant comprising aluminium, oligonucleotide and polycation
EP2319871A1 (en) 2009-11-05 2011-05-11 Sanofi-aventis Polypeptides for binding to the "receptor for advanced glycation endproducts" as well as compositions and methods involving the same
JP2013507115A (en) 2009-10-09 2013-03-04 サノフイ Polypeptides for binding to "terminal glycation end product receptors" and compositions and methods comprising them
EP2308896A1 (en) 2009-10-09 2011-04-13 Sanofi-aventis Polypeptides for binding to the "receptor for advanced glycation endproducts" as well as compositions and methods involving the same
US8765148B2 (en) 2010-02-19 2014-07-01 Valneva Austria Gmbh 1C31 nanoparticles
CN102802662A (en) 2010-03-18 2012-11-28 诺华有限公司 Adjuvanted vaccines for serogroup B meningococcus
ES2614807T3 (en) 2010-06-04 2017-06-02 Wyeth Llc Vaccine Formulations
WO2012025873A2 (en) 2010-08-23 2012-03-01 Wyeth Llc STABLE FORMULATIONS OF NEISSERIA MENINGITIDIS rLP2086 ANTIGENS
LT2753352T (en) 2010-09-03 2017-05-25 Valneva Austria Gmbh Isolated polypeptide of the toxin a and toxin b proteins of c. difficile and uses thereof
AR082925A1 (en) 2010-09-08 2013-01-16 Medigene Ag STRUCTURAL PROTEINS MUTED BY PARVOVIRUS WITH CROSS-PROTECTED B cell protection epitope, product and related methods
JP5976652B2 (en) 2010-09-10 2016-08-24 ワイス・エルエルシー Non-lipidated variant of Neisseria meningitidis ORF2086 antigen
AU2011346535B2 (en) 2010-12-22 2015-09-24 Wyeth Llc Stable immunogenic compositions of Staphylococcus aureus antigens
US9315814B2 (en) * 2011-05-26 2016-04-19 Intervet Inc. Immunostimulatory oligodeoxynucleotides
EP2714907B1 (en) * 2011-05-26 2016-06-15 Intervet International B.V. Immunostimulatory oligodeoxynucleotides
ITMI20111182A1 (en) 2011-06-28 2012-12-29 Canio Buonavoglia VACCINE FOR CORONAVIRUS CANINO
EP3485906A1 (en) 2012-03-09 2019-05-22 Pfizer Inc Neisseria meningitidis compositions and methods thereof
SA115360586B1 (en) 2012-03-09 2017-04-12 فايزر انك Neisseria meningitidis compositions and methods thereof
DK3363806T3 (en) 2012-12-20 2022-11-21 Pfizer Glycoconjugation method
CA2903716C (en) 2013-03-08 2019-04-09 Pfizer Inc. Immunogenic fusion polypeptides
KR20180099912A (en) 2013-09-08 2018-09-05 화이자 인코포레이티드 Neisseria meningitidis compositions and methods thereof
WO2016130569A1 (en) 2015-02-09 2016-08-18 Mj Biologics, Inc. A composition comprising pedv antigens and methods for making and using the composition
CA3207425A1 (en) 2014-05-09 2015-11-12 Universiteit Utrecht Holding B.V. New cath2 derivatives
US10888611B2 (en) 2015-02-19 2021-01-12 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
NZ736238A (en) 2015-05-04 2022-07-01 Pfizer Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
US10751402B2 (en) 2016-11-09 2020-08-25 Pfizer Inc. Immunogenic compositions and uses thereof
SG10202111092UA (en) 2017-01-31 2021-11-29 Pfizer Neisseria meningitidis compositions and methods thereof
WO2019158636A1 (en) 2018-02-16 2019-08-22 2A Pharma Ab Parvovirus structural protein for the treatment of autoimmune diseases
EP3527223A1 (en) 2018-02-16 2019-08-21 2A Pharma AB Mutated parvovirus structural protein
JP2022533318A (en) 2019-05-20 2022-07-22 ヴァルネヴァ エスイー Subunit vaccines for the treatment or prevention of respiratory tract infections
WO2020240268A1 (en) 2019-05-31 2020-12-03 Universidad De Chile An immunogenic formulation that induces protection against shiga toxin-producing escherichia coli (stec)
US20230146256A1 (en) 2020-04-17 2023-05-11 Regents Of The University Of Minnesota SARS-CoV-2 SPIKE RECEPTOR BINDING DOMAIN AND COMPOSITIONS AND METHODS THEREOF
US20230321212A1 (en) 2020-08-26 2023-10-12 Pfizer Inc. Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
WO2022074061A1 (en) 2020-10-07 2022-04-14 Valneva Sweden Ab Cholera vaccine formulation
WO2023083964A1 (en) 2021-11-11 2023-05-19 2A Pharma Ab Parvovirus structural protein against beta- and gamma-hpv
WO2023232901A1 (en) 2022-06-01 2023-12-07 Valneva Austria Gmbh Clostridium difficile vaccine
WO2024069420A2 (en) 2022-09-29 2024-04-04 Pfizer Inc. Immunogenic compositions comprising an rsv f protein trimer

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725545A (en) 1971-02-03 1973-04-03 R Maes Enhancement of antibody production by nucleic acid-polycation complexes
US3906092A (en) * 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
CA2016841C (en) * 1989-05-16 1999-09-21 William D. Huse A method for producing polymers having a preselected activity
AU635339B2 (en) 1989-10-11 1993-03-18 Merrell Dow Pharmaceuticals Inc. Inosine/guanosine derivatives as immunosuppressive agents
US5514577A (en) 1990-02-26 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide therapies for modulating the effects of herpes viruses
DE69125368T2 (en) 1990-12-21 1997-10-09 Hoffmann La Roche CARACTERIZATION OF HLA-DQBETA DNA
US5098437A (en) * 1991-02-13 1992-03-24 Pfizer Hospital Products Group, Inc. Acetabular cup positioning insert
WO1993008297A1 (en) 1991-10-23 1993-04-29 Baylor College Of Medicine Fingerprinting bacterial strains using repetitive dna sequence amplification
US5646262A (en) * 1994-07-28 1997-07-08 Georgetown University Antisense oligonucleotides against hepatitis B viral replication
ZA964446B (en) * 1995-06-06 1996-12-06 Hoffmann La Roche Oligonucleotides specific for hepatitis c virus
DE69617274T2 (en) * 1995-06-06 2002-08-08 Beth Israel Hospital METHOD AND DEVICE FOR DIAGNOSTIC DNA TEST
US20020081577A1 (en) * 1995-06-06 2002-06-27 Robert L. Kilkuskie Oligonucleotides speciific for hepatitis c virus
ES2188997T3 (en) * 1996-10-02 2003-07-01 Us Gov Health & Human Serv DETECTION AND IDENTIFICATION OF ENTEROVIRUS NO POLIOVIRUS.
ES2241042T3 (en) * 1996-10-11 2005-10-16 The Regents Of The University Of California IMMUNO STIMULATOR POLINUCLEOTIDE CONJUGATES / IMMUNOMODULATOR MOLECULA.
EP2085090A3 (en) 1997-06-06 2012-05-02 The Regents of the University of California Inhibitors of DNA immunostimulatory sequence activity
US5955443A (en) * 1998-03-19 1999-09-21 Isis Pharmaceuticals Inc. Antisense modulation of PECAM-1
US6001651A (en) * 1998-03-20 1999-12-14 Isis Pharmaceuticals Inc. Antisense modulation of LFA-3
IL126919A0 (en) * 1998-11-05 1999-09-22 Univ Ben Gurion Antisense oligomer
ES2237115T5 (en) * 1998-06-24 2008-05-16 Innogenetics N.V. PARTICLES OF HCV ENVELOPE PROTEINS: USE FOR VACCINATION.
NZ517929A (en) 1999-09-25 2004-02-27 Univ Iowa Res Found Immunostimulatory nucleic acids
WO2001083503A2 (en) 2000-05-01 2001-11-08 Hybridon, Inc. MODULATION OF OLIGONUCLEOTIDE CpG-MEDIATED IMMUNE STIMULATION BY POSITIONAL MODIFICATION OF NUCLEOSIDES
RU2293573C2 (en) * 2000-06-08 2007-02-20 Интерселл Аг Immunostimulating oligodeoxynucleotides
AT410173B (en) * 2000-06-08 2003-02-25 Cistem Biotechnologies Gmbh ANTIQUE COMPOSITION
CA2517673C (en) * 2003-03-24 2013-08-13 Intercell Ag Improved vaccines for preventing viral infection
US7951845B2 (en) * 2006-01-19 2011-05-31 The Regents Of The University Of Michigan Composition and method of treating hearing loss

Also Published As

Publication number Publication date
RU2293573C2 (en) 2007-02-20
CN1434723A (en) 2003-08-06
IS1993B (en) 2005-03-15
EP1296713B1 (en) 2003-09-17
NO20025835D0 (en) 2002-12-04
DK1296713T3 (en) 2004-01-26
CA2411575A1 (en) 2001-12-13
JP2013121962A (en) 2013-06-20
US20150125488A1 (en) 2015-05-07
CZ304195B6 (en) 2013-12-27
RU2007103151A (en) 2008-08-20
ATE249839T1 (en) 2003-10-15
HUP0301229A3 (en) 2010-01-28
US20030171321A1 (en) 2003-09-11
AU8181201A (en) 2001-12-17
US9492537B2 (en) 2016-11-15
PL211036B1 (en) 2012-04-30
DE60100814D1 (en) 2003-10-23
PT1296713E (en) 2004-02-27
CN1309418C (en) 2007-04-11
US8945591B2 (en) 2015-02-03
US8568742B2 (en) 2013-10-29
ES2206424T3 (en) 2004-05-16
WO2001093905A1 (en) 2001-12-13
HK1056678A1 (en) 2004-02-27
DE60100814T2 (en) 2004-07-01
NO329492B1 (en) 2010-11-01
TR200302015T4 (en) 2004-01-21
SK18152002A3 (en) 2003-08-05
IL152959A0 (en) 2003-06-24
JP5271471B2 (en) 2013-08-21
NO20025835L (en) 2002-12-04
BRPI0111639B1 (en) 2017-04-11
CZ20024168A3 (en) 2003-09-17
HU228264B1 (en) 2013-02-28
JP2003535146A (en) 2003-11-25
JP5908851B2 (en) 2016-04-26
BRPI0111639B8 (en) 2021-05-25
MXPA02012010A (en) 2005-04-22
IS6627A (en) 2002-11-18
US20130183339A1 (en) 2013-07-18
PL358982A1 (en) 2004-08-23
CA2411575C (en) 2015-04-07
RU2413520C2 (en) 2011-03-10
IL152959A (en) 2008-04-13
BR0111639A (en) 2003-03-25
KR20030032964A (en) 2003-04-26
HUP0301229A2 (en) 2003-08-28
KR100799788B1 (en) 2008-01-31
SI1296713T1 (en) 2004-02-29
AU2001281812B2 (en) 2005-04-07
EP1296713A1 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
US9492537B2 (en) Methods and compositions involving immunostimulatory oligodeoxynucleotides
US7858588B2 (en) Immunostimulatory oligodeoxynucleic molecules
AU784403B2 (en) Pharmaceutical composition for immunomodulation and preparation of vaccines comprising an antigen and an immunogenic oligodeoxynucleotide and a polycationic polymer as adjuvants
AU2001281812A1 (en) Immunostimulatory oligodeoxynucleotides
ZA200209479B (en) Immunostimulatory oligodeoxynucleotides.
AU2002320762A1 (en) Immunostimulatory oligodeoxynucleic molecules

Legal Events

Date Code Title Description
PC4A Assignment and transfer of rights

Owner name: INTERCELL AUSTRIA AG, VIENNA, AT

Free format text: FORMER OWNER: INTERCELL AG, WIEN, AT

Effective date: 20130515

TC4A Change of owner's name

Owner name: VALNEVA AUSTRIA GMBH, VIENNA, AT

Effective date: 20141024

MK4A Patent expired

Expiry date: 20210607