CA2433794A1 - Uses for polycationic compounds as vaccine adjuvants - Google Patents

Uses for polycationic compounds as vaccine adjuvants Download PDF

Info

Publication number
CA2433794A1
CA2433794A1 CA002433794A CA2433794A CA2433794A1 CA 2433794 A1 CA2433794 A1 CA 2433794A1 CA 002433794 A CA002433794 A CA 002433794A CA 2433794 A CA2433794 A CA 2433794A CA 2433794 A1 CA2433794 A1 CA 2433794A1
Authority
CA
Canada
Prior art keywords
antigen
cpg
use according
characterized
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002433794A
Other languages
French (fr)
Inventor
Karen Lingnau
Frank Mattner
Walter Schmidt
Michael Buschle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valneva Austria GmbH
Original Assignee
Intercell Ag
Karen Lingnau
Frank Mattner
Walter Schmidt
Michael Buschle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EPPCT/EP01/00087 priority Critical
Priority to PCT/EP2001/000087 priority patent/WO2001054720A1/en
Priority to AT6722001 priority
Priority to ATA672/2001 priority
Application filed by Intercell Ag, Karen Lingnau, Frank Mattner, Walter Schmidt, Michael Buschle filed Critical Intercell Ag
Priority to PCT/EP2002/000062 priority patent/WO2002053184A2/en
Publication of CA2433794A1 publication Critical patent/CA2433794A1/en
Application status is Abandoned legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55572Lipopolysaccharides; Lipid A; Monophosphoryl lipid A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • Y02A50/38Medical treatment of vector-borne diseases characterised by the agent
    • Y02A50/408Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a protozoa
    • Y02A50/411Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a protozoa of the genus Plasmodium, i.e. Malaria
    • Y02A50/412Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a protozoa of the genus Plasmodium, i.e. Malaria the medicinal preparation containing antigens or antibodies, e.g. vaccines, antisera
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • Y02A50/46Medical treatment of waterborne diseases characterized by the agent
    • Y02A50/462The waterborne disease being caused by a virus
    • Y02A50/463The waterborne disease being caused by a virus the virus being the Hepatitis A virus [HAV]
    • Y02A50/464The waterborne disease being caused by a virus the virus being the Hepatitis A virus [HAV] the medicinal preparation containing antigens or antibodies, e.g. vaccines, antisera

Abstract

The invention relates to the use of a polycationic compound for the preparation of a medicament with retarded in vivo release.

Description

Uses for Polycationic Compounds The invention relates to new uses for polycationic compounds.
Pharmaceutically used polycationic compounds, for example the polycationic amino acid polymers poly-L-arginine and poly-L-ly-sine, have been shown to allow very efficient charging of antigen presenting cells (APCs) with antigens in vitro and in vivo. This is thought to be the key event for triggering immune cascades, eventually leading to the induction of antigen specific immune effector cells that are able to destroy or neutralise targets. It has been shown previously that a number of polycationic compounds excert effects on immune cells (Buschle et al., Gene Ther.Mol.Biol. 1 (1998), 309-321; Buschle et al., Proc.Natl.Acad.Sci. USA, 94 (1997), 3256-3261).
Co-injection of a mixture of poly-L-arginine and poly-L-lysine together with an appropriate antigen as a vaccine protects ani-mals from tumor growth in several animal models. A vaccine con-sisting of polycationic compounds and antigens is accepted in the art as being a very effective form of treatment (WO 97/30721).
Many pharmaceutical substances administered to an individual are often quickly distributed throughout the body. The rapid systemic distribution of the drug usually causes strong and harmful side effects. The medical effect would be better if the medicament would stay in higher amounts at the site of administration and be gradually and continuously released to the whole body in small amounts.
It is an object~of the present invention to provide means for keeping a medicament which is desired to act locally at the site of administration (depot effect). It is a further object of the invention to prevent or ameliorate side effects of drugs which are due to a too fast distribution of this drug throughout the body .
These objects are solved by the use of a polycationic compound for the preparation of a medicament with retarded in vivo re-lease. It has surprisingly been found out in the course of the CONFIRMATION COPY

-present invention that polycationic compounds, if applied to-gether with other pharmaceutically active compounds, which are quickly distributed in the individual, when administered without polycationic compounds, exhibit an effect of a retarded re-lease of the active compound from the site of administration.
The polycationic compound seems to keep the active pharmaceutical compound in a depot which allows a retarded in vivo release of the medicament which is often desired for an effective treatment with the pharmaceutically active principle.
An important field, where such a retarded in vivo release is ad-vantageous is vaccination. If an antigen is presented for an ex-tended period of time to the immune system of an individual to be vaccinated, the immune system has an enhanced possibility to cre-ate an efficient immune response against such an antigen. If, on the other hand, such an antigen is quickly distributed throughout the body, the antigen is quickly degraded and diluted so that an efficient immune response may not be achieved for many promising antigens. According to the present invention polycationic com-pounds therefore are used for providing a depot of e.g. such an antigen, which allows a long lasting continuous and effective presentation of this antigen to the immune system in order to create a protective immunity. Furthermore, when the antigens are applied in combination with immunostimulatory compounds (e. g.
CpG-ODN), the slow release of these immunostimulatory compounds from the depot should result in a continuous stimulation of the immune system.
The present invention is especially beneficial if the combined medicament is administered, e.g. subcutaneously, intravenously, intranasally, intramusculary, intradermally or transdermally.
However, other application forms, such as parenteral or topical application, are also suitable for the present invention. How-ever, the depot effect seems to be mostly significant if the com-position is injected or implanted.
The present invention is preferably used in connection with all medicaments for which a retarded in vivo release is desired, e.g.
antigens, allergens, drugs, which include cytokines, chemokines, immunostimulatory nucleic acids, cytotoxic drugs or anti-angio-genic drugs or compounds needed for wound healing.
The antigen to be used within the course of the present invention is not critical, it may preferably be selected from the group consisting of an antigen from a viral, bacterial or a parasitic pathogen, an antigen from an eucaryotic pathogen, a tumor anti-gen, an autoimmune antigen or mixtures thereof. Especially pre-ferred are negatively charged antigens or hydrophobic antigens.
Further examples of antigens are whole-killed organisms, such as inactivated viruses or bacteria, fungi, protozoa or even cancer cells. Antigens may also consist of subfractions of these organ-isms/tissues, of proteins, or, in their most simple form, of pep-tides. Antigens can also be recognised by the immune system in form of glycosylated proteins or peptides and may also be or con-tain polysaccharides or lipids. Short peptides can be used, since e.g: cytotoxic T cells (CTL) recognise antigens in form of short usually 8-11 amino acids long peptides in conjunction with major histocompatibility complex (MHC). B cells recognise longer pep-tides starting at around 15 amino acids. By contrast to T cell epitopes, the three dimensional structure of B cell antigens may also be important for recognition by antibodies.
Preferred pathogens are selected from human immune deficiency vi-rus (HIV), hepatitis A and B viruses, hepatitis C virus (HCV), Rous sarcoma virus (RSV), Epstein Barr virus (EBV),Influenza vi-rus, Rotavirus, Staphylococcus aureus, Chlamydia pneumoniae, Chlamydia trachomatis,~Mycobacterium tuberculosis, Streptococcus pneumoniae, Bacillus anthracis, Vibrio cholerae, Plasmodium sp.
(P1. falciparum, P1. vivax, etc.), Aspergillus sp. or Candida al-bicans. Antigens may also be molecules expressed by cancer cells (tumor antigens). Antigens may also be derived antigens. The derivation process may include the purification of a specific protein from the pathogen/cancer cells, the inactivation of the pathogen as well as the proteolytic or chemical derivatisation or stabilisation of such a protein. In the same way also tumor anti-gens (cancer vaccines) or autoimmune antigens may be used to-gether with a polycationic compound according to the present invention.
The polycationic compounds) to be used according to the present invention may be any polycationic compound, which shows e.g. the characteristic effect according to the WO 97/30721, or others like cationic liposomes, poly-ethylene-amine, chitosan or poly-cations for DNA transfer. Preferred polycationic compounds are selected from basic polypeptides, organic polycations, basic polyaminoacids or mixtures thereof. These polyaminoacids should have a.chain length of at least 4 amino acid residues (see: Tuft-sin as described in Goldman et al (1983)). Especially preferred are substances containing peptidic bounds, like polylysine, polyarginine and polypeptides containing more than 200, espe-cially more than 50% of basic amino acid residues in a range of more than 8, especially more than 20, amino acid residues or mix-tures thereof. Other preferred polycations and their pharmaceuti-cal compositons are described in WO 97/30721 (e. g.
polyethyleneimine) and WO 99/38528. Preferably these polypeptides contain between 5 and 500 amino acid residues, especially between and 200 residues.
These polycationic compounds may be produced chemically or recom-binantly or may be derived from natural sources.
Cationic (poly)peptides may also be polycationic anti-bacterial microbial peptides with properties as reviewed in (Ganz and Le-hrer, 1999; Hancock, 1999). These (poly)peptides may be of pro-karyotic or animal or plant origin or may be produced chemically or recombinantly (Andreu and Rivas, 1998; Ganz and Lehrer, 1999;
Simmaco et al., 1998). Peptides may also belong to the class of defensins (Ganz, 1999; Ganz and Lehrer, 1999). Sequences of such peptides can, for example, be found in the Antimicrobial Se-quences Database under the following Internet address:
http-/lwww bbcm univ trieste.it/~tossi/paal.html Such host defense peptides or defensines are also a preferred form of the polycationic polymer according to the present inven-tion. Generally, a compound allowing for activation (or down-regulation) of the adaptive immune system, preferably mediated by APCs (including dendritic cells) is used as polycationic polymer.
Especially preferred for use as polycationic substance in the present invention are cathelicidin derived anti-microbial pep-tides or derivatives thereof (A 1416/2000, incorporated herein by reference), especially anti-microbial peptides derived from mam-mal cathelicidin, preferably from human, bovine or mouse.
Polycationic compounds derived from natural sources include HIV-REV or HIV-TAT (derived cationic peptides, antennapedia peptides, chitosan or other derivatives of chitin) or other peptides de-rived from these peptides or proteins by biochemical or,recombi-nant production. Other preferred polycationic compounds are cathelin or related or derived substances from cathelin. For ex-ample, mouse cathelin is a peptide which has the amino acid se-quence NHS-RLAGLLRKGGEKIGEKLKKIGOKIKNFFQKLVPQPE-COOH. Related or derived cathelin substances contain the whole or parts of the cathelin sequence with at least 15-20 amino acid residues. Deri-vations may include the substitution or modification of the natu-ral amino acids by amino acids which are not among the 20 standard amino acids. Moreover, further cationic residues may be introduced into such cathelin molecules. These cathelin molecules are preferred to be combined with the antigen and. the immunogenic ODNs according to the present invention. However, these cathelin molecules surprisingly have turned out to be also effective as an adjuvant for an antigen without the addition of further adju-wants. It is therefore possible to use such cathelin molecules as efficient adjuvants in vaccine formulations with or without fur-they immunostimulatirig substances.
Another preferred polycationic substance to be used according to the present invention is a synthetic peptide containing at least 2 KLK-motifs separated by a linker of 3 to 7 hydrophobic amino acids (A 178912000, incorporated herein by reference).
As mentioned above polycationic compounds may according to the present invention be preferably used together with a drug for which side effects due to a quick spread throughout the body of an individual are known. In general, the polycationic compound and the drug supposed to be released slowly are administered to-gether at the same time and at the same site. In. the combined me-dicament according to the present invention, such drugs may be e.g. simply mixed with the polycationic compounds or provided as a covalently combined medicament.

Preferred compounds with inflammatory potential to be used within the course of the present invention are immunogenic nucleic acid molecules. It~is known that the immune system of mammals (and probably most if not all vertebrates) recognises DNA of lower or-ganisms, including bacteria probably due to structural and se-quence usage differences between pathogen and host DNA. In particular, short stretches of DNA derived from non-vertebrates or short form oligodeoxynucleotides (ODNs) containing non-methy-lated cytosine-guanine dinucleotides (CpG) in a certain base con-text, are targeted. CpG motifs are found at the expected frequency in'bacterial DNA but are much less frequent in verte-brate DNA. In addition, non-vertebrate (i.e. bacterial) CpG mo-tifs are not methylated, whereas vertebrate CpG sequences are.
Such ODNs containing CpG motifs (CpG-ODNs) can directly activate monocytes and B cells. In consequence, the activation of mono-cytes and NK cells by CpG-ODNs promotes, the induction of a Th1-type response and the development of cytotoxic T cells. In addi-tion, such immunogenic ODNs are used as vaccine adjuvants to en-hance the antibody response to specific antigens (e. g.
EP 0 4~8 520 A2, WO 96/02555, WO 98/16247, etc.).
When CpG-ODNs are applied in combination with an antigen to an animal, the CpG-ODN molecules are quickly distributed throughout the body without providing an effective minimum concentration at the site of administration where the desired effect should be initiated. It could be shown by the present animal model that the polycationic compounds inhibit the immediate spread of these molecules and induce the formation of a depot of CpG-ODNs at the injection site which resulted in a strongly prolonged CpG-ODN in-duced antigen specific immune response in vivo. This CpG-ODN
model therefore was excellent for showing the depot effect of polycationic compounds. If CpG-ODNs are applied in combination with an antigen via injection, the CpG-ODN molecules are quickly distributed throughout the body without providing an effective minimum concentration at the site of administration where the de-sired effect should be initiated. It could be shown by the pres-ent animal model that the polycationic compounds inhibit the immediate spread of these molecules and induce the formation of a depot antigen and CpG-ODNs at the injection site, which resulted in a strongly prolonged CpG-ODN induced antigen-specific immune response in vivo.
Therefore, a preferred embodiment of the present invention is characterised in that the medicament is to be applied together with the polycationic compound further comprises immunogenic oli-godesoxy nucleic acid molecules (ODNs), especially ODNs contain-ing CpG motifs (CpG-ODNs), inosine containing ODNs (T-ODNs) or mixtures or combinations thereof. I-ODNs are described for exam-ple in the Austrian patent application A 1973/2000 (incorporated herein by reference). Mixtures of I-ODNs with CpG-ODNs may also be provided as well as combinations of these two principles, e.g.
an I-ODN containing CpG motifs.
The induction of a depot effect according to the present inven-tion is of course most desired for pharmaceutically active sub-stances which are supposed to act locally at the given administration site. Therefore, the invention is significantly advantageous for substances, which should act locally but are easily transported and diffused away from this site by diffusion of transportation processes in the body. Such substances may in-clude antigens, allergens, cytokines, chemokines, immunostimula-tory nucleic acids, cytotoxic drugs or anti-angiogeni:c drugs or compound needed for wound healing.
A preferred embodiment of the present invention relates to the use of the polycationic substances in combination with substances which otherwise rapidly diffuse from the administration site, i.e. have a rather short pharmacological half life, especially with respect to the site of administration. Therefore, preferred rapidly diffusing substances with a pharmacological half life (drop of the concentration of the substance by half), especially at the site of administration, of below 10 minutes, more pre-ferred below 5 minutes, especially below 1 minute.
Preferably, such substances to be applied together with polycati-onic compounds in order to achieve a depot effect show a certain affinity to the polycationic compound, i.e. hydrophobic interac-tion, hydrogen bridges, electrostatic interactions, polar or ionic interactions. Of course, the depot effect may also be _ g -achieved by covalent binding of the components in the combined pharmaceutical preparation; although non-covalent interactions of drug and polycationic compounds are preferred.
It is known (PCT/EP 01/00087) that the co-application of polyca-tionic compounds and CpG-OI7Ns with an antigen strongly and syner-gystically enhances the induction of an antigen specific immune response when compared to the injection without poly-cationic compounds. That is reflected by a high number of IFN-y-producing cells isolated from draining lymph nodes (ELISPOT assay). As stated above within the course of the present invention, it could be shown that this strong local immune response (day 4/draining lymph node cells) induced after one single injection of an anti-gen with a mixture of polycationic compounds (as an example polyarginine pR 60 is used) and CpG-ODNs converts to a systemic immune response which is very long lasting. According to the pre-sent invention, the complex formation ability of substances such as CpG-ODNs with polycationic compounds is used for preventing a systemic distribution and the subsequent fast resorption of such substances, thereby providing a strong prolongation of the prop-erties of such substances, e.g. a prolongation of the immu-nostimulatory properties of CpG-ODNs. In addition, preventing the systemic distribution avoids the induction of potential harmful systemic side effects of immunostmulatory agents.
This model using CpG-ODNs and polycationic peptides is further described and analysed in the example section. Moreover,. to pro-vide an. analysable pharmaceutical target, an Ovalbumin-derived peptide (OVAzs7-as4) is used as a model compound (a model antigen) .
The present invention also relates to treating a patient with a drug, supposed to be retardedly released in vivo comprising ad-ministering that drug together with an effective amount of a polycationic compound inducing a depot effect of that drug.
The amounts of polycationic compound to be administered is highly depending on the necessities of the individual composition and optionally on the drug to be administered together with the poly-cationic polymer. In case of poly-L-arginine and poly-L-lysine preferred amounts of polycation are 0.001-1000 pg/administration unit, more preferred 0,1-10 mg/dose, especially around or beyond 0,1 mg/20g body weight (of mice) or the equivalent dose for hu mans.
The invention will be described in more detail by way of the fol-lowing examples and the drawing figures, yet it is not restricted to these particular embodiments.
Fig. 1 shows that the combined application of poly-L-arginine, CpG-ODN and antigen induces strong antigen-specific immune re-sponses which are systemic and very long lasting. The figure shows peripheral blood lymphocytes stimulated ex vivo with OVAZS7-z64 peptide;
Fig. 2a shows that poly-L-arginine induces the formation of a de-pot at the injection site. This figure shows photos from the in-jection sites at the indicated time points after vaccination.
White lines surround the area where the fluorescence labelled compounds of the vaccine can be detected;
Fig. 2b shows that the co-application of poly-L-arginine inhibits the spreading of CpG-ODN-Cy5 throughout the body. This figure shows FRCS analyses of lymphoid and non-lymphoid tissues at~day 1 after injection of CpG-ODN-Cy5 (B) or CpG-ODN-Cy5 and pR 60-FITC
(C). Untreated mice were used as a control (A);
Fig. 3 shows that poly-L-arginine induces the formation of a de-pot at the injection site when co-injected at least with one more molecule. This figure shows photos from the injection sites at day 4 after vaccination;
Fig. 4 shows that co-injected poly-L-arginine prevents the CpG-ODN-induced systemic production of TNF-(x and IL-6 in vivo. Mice were injected into the hind footpads and one hour later serum was prepared. The amount of TNF-oc and IL-6 in the sera was determined by ELISA;

E X A M P L E S
In the present examples it is shown that the strong local immune response (day 4/draining lymph node cells) induced after one sin-gle injection of antigen with a mixture of pR60 and CpG-ODN con-verts to a systemic immune response which is, most importantly, very long lasting (Example 1). Even 372 days after injection (the latest time point analysed), around 500 antigen-specific, IFN-g producing T cells per million peripheral blood lymphocytes can be detected. One possible explanation for this effect might be that a complex-formation of CpG-ODN with poly-L-arginine prevents the systemic distribution of CpG-ODN and the subsequent fast resorp-tion of CpG-ODN. Hence, this results in a strong prolongation of the immunostimulatory properties of CpG-ODNs.
In order to investigate this assumption, fluorescence-labeled compounds were injected together subcutaneously into the flank of mice. At different time points after this treatment, injection sites were inspected for the presence of labeled compounds. In example 2a and 2b, OVAzs7-zs4-peptide (unlabeled) , poly-L-arginine-FITC (yellow) and CpG-ODN-Cy5 (blue) were used for injections.
After injection of OVAzs7-zs4 peptide with poly-L-arginine-FITC the formation of a depot could be detected at the injection site. The inj ection of OVAzS~_zs4-peptide with CpG-ODN-Cy5 resulted in the distribution of CpG-ODN-Cy5 all over the skin (example 2a). As simultaneously determined by FRCS, analyses (example 2b), CpG-ODN-Cy5 is also detectable in secondary lymphoid organs (draining lymph node, spleen) and non-lymphoid tissues (lung, liver, kid-ney, heart) . In contrast, when OVAz57_zs4-peptide and CpG-ODN-Cy5 were injected together with poly-L-arginine-FITC, the CpG-ODN-Cy5 was restricted to the depot formed by poly-L-arginine (example 2a). FRCS analyses from these mice (example 2b) revealed that CpG-ODN-Cy5 is not detectable in the periphery, due to the fact that CpG-ODN-Cy5 is trapped by poly-L-arginine in the depot at the injection site. Both, poly-L-arginine-FITC and CpG-ODN-Cy5 can be detected within this depot at least up to day 92 after in-jection (the latest time point analysed). This observation im-plies that the combination of peptide and poly-L-arginine with CpG-ODN led to a far long lasting existence of the depot compared to the combination of peptide and poly-L-arginine. In example 3, TRP-21s1-lss peptide-FITC (yellow), poly-L-arginine-TRITC (red-vio-let), CpG-ODN-Cy5 (blue) were used for injections. When TRP-21s1-~ss peptide-FITC was injected either alone or in combination with CpG-ODN-Cy5, the peptide was not detectable at the injection site at day 4. The injection of poly-L-arginine-TRITC alone resulted in its distribution all over the skin. The injection of CpG-ODN-Cy5 either alone or in combination with TRP-21st-lss peptide-FITC
resulted in the distribution of CpG-ODN-Cy5 all over the skin.
This experiment.also indicates that. poly-L-arginine only induced the formation of a depot when it was injected with at least one more molecule (peptide and/or CpG-ODN).
Thus, these findings imply that poly-L-arginine induces a depot at the injection site within other compounds (antigen and/or im-munostimulatory CpG-ODN) are kept. In the 'case of co-injection of OVAzs7-zsa peptide, poly-L-arginine and CpG-ODN, the slow release of both peptide and CpG-ODN from this depot is most likely responsi-ble for the persistent activation of accessory cells and subse-quently the persistent stimulation of T cells. In consequence, this leads to the observed long lasting existence of high numbers of antigen-specific T cells in the periphery after one single in-jection.
Beside their potent immunostimulatory effects, CpG-ODNs are de-scribed to have potentially harmful side effects in that they in-duce the systemic release of high amounts of pro-inflammatory cytokines such as TNF-oc and IL-6, which could induce a shock~syn-drome (Sparwasser 1997, Lipford 1997). As described in example 2a, 2b and 3, CpG-ODNs are not systemically present when injected in combination with poly-L-arginine. Therefore, it was investi-gated whether the co-administration of poly-L-ar.ginine affects the CpG-ODN-induced systemic production of TNF-oc and IL-6. Serum levels of both cytokines were determined by ELISA one hour after injection. Example 4 demonstrates that neither the injection of OVAzs7-zs9-peptide alone nor in combination with poly-L-arginine led to the induction of significant amounts of TNF-oc and IL-6 in the serum, whereas the inj ection of OVAzs7-zsa-peptide in combination with CpG-ODN induces high concentrations of both cytokines. How-ever, upon co-administration of OVAzs7-zsa-peptide with poly-L-ar-ginine and CpG-ODN, this systemic production of TNF-a and IL-6 was totally abolished. Thus, these data in combination with the findings demonstrated in Example 2 and 3 indicate that the local-isation of CpG-ODN via the depot formation mediated by poly-L-ar-ginine prevents the systemic distribution of CpG-ODN and subsequently the systemic release of pro-inflammatory cytokines.
In parallel, in vitro studies were performed to clarify whether the complexation of CpG-ODN by poly-L-arginine can also directly influence the stimulation of mouse bone marrow-derived CDllc*
dendritic cells by CpG-ODN concerning the production of TNF-oc and IL-6. For this purpose, CDllc+ dendritic cells were incubated ei-ther with poly-L-arginine, CpG-ODN or the combination of poly-L-arginine and CpG-ODN (example 5). The levels of TNF-oc and IL-6 were determined in the supernatants derived from these cultures.
After incubation with poly-L-arginine neither TNF-oc, nor IL-6 were detectable, whereas after incubation with CpG-ODN significant amounts of both cytokines are produced. Impressively, the pres-ence of poly-L-arginine inhibited the CpG-ODN-induced production of TNF-a, and IL-6 by these cells .
Thus, these results indicate that the complexation of CpG-ODN by poly-L-arginine not only inhibits the systemic but also the local release of pro-inflammatory cytokines. In consequence, these beneficial effects of poly-L-arginine prevent probably uncon-trolled and excessive systemic and local immune responses induced by CpG-ODNs.
Further in vitro-experiments revealed that poly-L-arginine also inhibits the polyinosinic-polycytidylic acid-induced production of pro-inflammatory cytokines by human dendritic cells.
Thus, these observations imply a general anti-inflammatory effect of poly-L-arginine. The risks of the application of immunogenic but potential harmful substances can be probably minimised by the co-application of poly-L-arginine. The rapid systemic distribu-tion of such substances can be prevented by the property of poly-L-arginine to form a depot in which alI compounds are trapped.
Furthermore, the complexation of these substances by poly-L-ar-ginine can e.g. inhibit the release of toxic amounts of pro-in-flammatory cytokines.
Example 1:
The combined application of Ovalbumin-peptide/poly-L-arginine (pR
60)/ CpG-ODN leads to the induction of strong antigen-specific immune responses which are systemic and very long lasting.
Mice C57B1/6 (Harlan/Olac) Peptide OVA257~-264 Peptide (SIINFEKL) , a MHC class I (H-2Kb)-' restricted epitope of chicken Ovalbumin (Rotz-schke, O. et al., Eur. J. Immunol. 1991 21 (11):
2891-4),synthesised by standard solid phase F-moc synthesis, HPLC purified and ana lysed by mass spectroscopy for purity.
Dose: 300 ~.g/mouse Poly-L-Arginine 60 (pR60) Poly-L-Arginine with an average degree of poly-merisation of 60 arginine residues; SIGMA chemi cals Dose: 100 ug/mouse CpG-ODN 1668 phosphothioate-modified oligodinucleotides con taming a CpG- motif: tcc atg acg ttc ctg atg ct, synthesised by NAPS Gottingen GmbH.
Dose: 5nmol/mouse Exberimental aroubs (5 mice per group) 1. OVAzs7-as4 Peptide + CpG-ODN + pR 60 2. OVAZS7-~s4 Peptide + CpG-ODN

3. OVA~57_zsa-Peptide + pR 60 On day 0, mice were injected into each hind footpad with a total volume of 100~.~.1 (501 per footpad) containing the above mentioned compounds. Blood was taken via the tail vein at the indicated time points and peripheral blood lymphocytes (PBLs) were isolated using a Ficoll gradient.~PBLs were stimulated ex vivo with the antigen used for vaccination; with medium (background) and.Conca-navalin A (positive control). IFN-'y-ELISPOTs were carried out as described (Miyahira et al., 1995). This method is a widely used procedure allowing the quantification of antigen-specific T
cells. Spots representing single IFN-y producing T cells were counted and the number of background spots was substracted from all samples. There were many spots detected after the stimulation with Con A (data not shown) indicating a good condition of the used lymphocytes. For each experimental group of mice the number of spots/1x106 PBLs are illustrated in Figure 1.
Example 2a:
Poly-L-arginine induces the formation of a depot at the injection site Mice C57B1/6 (Harlan/Olac) Peptide OVA257-264 Peptide (SIINFEKL) , a MHC class I (H-2Kb)-restricted epitope of chicken Ovalbumin (Rotzschke, O.et al., Eur. J. Immunol. 1991 21(11): 2891-4), synthesised by standard solid phase F-moc synthesis, HPLC purified and analysed by mass spectroscopy for purity.
Dose: 300ug/mouse Poly-L-Arginine 60-FITC (pR60-FITC) Poly-L-Arginine with an average degree of poly-merisation of 60 arginine residues; SIGMA chemi-' cats For fluorescein (FITC) labeling of poly-L-ar-ginine, the poly-L-arginine was dissolved in 50mM HEPES pH 7,9 (l0mg/500u1). A 5-fold molar ex-cess of FITC (Molecular Probes, Eugene, OR) in an equal volume of DMSO was added to the poly-L-arginine solution. The solution was kept at room tempera-ture in the dark for 2,5 hours. Unreacted dye was separated by running the mixture over a PD10 col-umn(Pharmacia, Uppsala, Sweden), using 50mM Hepes, pH 7,9, as eluent. The solution was then dialysed against 2 x 5 liter aqua dest., pH 7,4(0,1M HCL), over night. After lyophilisation poly-L-arginine FITC was dissolved in aqua bidest. with a concen-tration of l0mg/ml.
Dose: 100 ug/mouse CpG-ODN 1668-Cy5 phosphothioate-modified, Cy5-labeled oligodinu-cleotides containing a CpG motif:
tcc atg aca ttc ctg atg ct, synthesised by NAPS
Gottingen GmbH.
Dose: 5nmo1/mouse Experimental groups (1 mouse / group 1/ indicated time point, 3 mice / group 2-4 / time point) 1. untreated 2. OVAz57-264 Peptide + pR 60-FITC
3. OVAz57_zsa Peptide + CpG-ODN1668-Cy5 4. OVAz57_zs4-Peptide + pR 60-FITC + CpG-ODN 1668-Cy5 On day 0 mice were injected subcutaneously into the right flank with a total volume of 100.1 containing the above mentioned Com-pounds. Animals were sacrificed at the indicated time points af-ter injection and photos were taken from the injection sites (Fig. 2a) .
Example 2b:
Co-application of poly-L-argiaiae inhibits the distribution of CpG-ODN-Cy5 throughout the body Mice C57B1/6 (Harlan/Olac) Poly-L-Arginine 60-FITC (pR60-FITC) Poly-L-Arginine with an average degree of poly-merisation of 60 arginine residues; SIGMA chemi-cals For fluorescein (FITC) labeling of poly-L-ar-ginine, the poly-L-arginine was dissolved in 50mM HEPES pH 7,9 (l0mg/500~.~.1). A 5-fold molar ex-cess of FITC (Molecular Probes, Eugene, OR) in an equal volume of DMSO was added to the poly-L-arginine solution. The solution was kept at.room tempera ' tune in the dark for 2,5 hours. Unre-acted dye was separated by running the mixture over a PD10 column (Pharmacia, Uppsala, Sweden) using 50mM He pes pH 7,9 as eluent. The solution was then dia-lysed against ~ x 5 liter aqua dest., pH 7,4 (0,1M
HCL), over night. After lyophilisation poly-L-ar-pine-FITC was dissolved in aqua bidest. with a concentration of l0mg/ml.
Dose: 100 ug/mouse CpG-ODN 1668-Cy5 phophothioate-modified, Cy5-labeled oligodinucleo-tides containing a CpG motif: tcc ata aca ttc ctg atg ct, synthesised by NAPS Gottingen GmbH.
Dose: 5nmo1/mouse Experimental groups (1 mouse / group 1/ indicated time point, 3 mice / group 2-4 / time point) 1. untreated 2. CpG-ODN1668-Cy5 3. pR 60-FITC + CpG-ODN 1668-Cy5 Mice were injected subcutaneously into the right flank with a to-tal volume of 100.1 containing the above mentioned compounds. One day after injection, mice were sacrificed and FACS-analyses were performed from secondary lymphoid organs (draining lymph node, spleen) as well as non-lymphoid tissues (lung, liver, kidney, heart) (Fig.. 2b).
Example 3:
Poly-L-arginine induces the formation of a depot at the injection site when co-injected at least with one more molecule Mice C57B1/6 (Harlan/Olac) Peptide TRP-2-Peptide (VYDFFVWL), a MHC class I (H-2Kb)-restricted epitope of mouse tyrosinase related protein-2 (Bloom, M.B, et al., J Exp Med 1997 185, 453-459), synthesised by standard solid phase F-moc synthesis, HPLC purified and analysed by mass spectroscopy for purity. For fluorescein (FITC) labeling, the TRP-2 -peptide was dissolved in 1M sodium borate, pH 7,9. An 8-fold molar excess of FITC (Molecular Probes, Eugene, OR) in an equal volume of DMF was added to the peptide solution.
The solution was kept at room temperature for four hours. Unreacted dye was seoarated ba running the mixture over a G25 gel filtration column (Pharma-cia, Uppsala, Sweden) using 0,1o TFA in water as eluent. Two moles of FITC were incorporated per mol of peptide (N-terminus, side chain of lysine) Dose: 100ug/mouse Poly-L-Arginine 60-TRITC (pR60-TRITC) .
Poly-L-Arginine with an average degree of poly-merisation of 60 arginine residues; SIGMA chemi-cals. For TRITC-labeling of poly-L-arginine, the poly-L-arginine was dissolved in 50mM HEPES pH 7,9 (l0mg/500u1). A 5-fold molar excess of FITC (Mo-lecular Probes, Eugene, ORj in an equal volume of DMSO was added to the poly-L-arginine solution.
The solution was kept at room temperature in the dark for 2,5 hours. Unreacted dye was separated by running the mixture over a PD10 column (Pharmacia, Uppsala, Sweden), using 50mM Hepes, pH 7,9, as eluent. The solution was then dialysed against 2 x liter aqua dest., pH 7,4 (0,1M HCL), over night.
After lyophilisation poly-L-argine-TRITC was dis-solved in aqua bidest. with a concentration of l0mg/ml.
Dose: 100 ~.zg/mouse CpG-ODN 16&8-Cy5 phosphothioate-modified, Cy5-labeled oligodinu cleotides containing a CpG motif: tcc atg aca ttc ctg atg ct, synthesised by NAPS Gottingen GmbH.
Dose: 5nmol/mouse Experimental groups (1 mouse / group 1/ indicated time point, 3 mice / group 2-4 / time point) .
1. untreated 2. TRP-2 -FITC
isi-isa 3. pR60-TRITC °
4. CpG-ODN1668-Cy5 5 . TRP-2181-isa-FITC + pR6 0-TRITC

6. TRP-~laz-isa-FITC + CpG-ODN-Cy5 7. pR60-TRITC + CpG-ODN 1668-Cy5 8. TRP-~~81-lss-FITC + pR 60-TRITC + CpG-ODN 1668-Cy5 On day 0 mice were injected subcutaneously into the right flank with a total volume of 1001 containing the above mentioned Com-pounds. Animals were sacrificed at day 4 after injection and pho-tos were taken from the injection sites (Fig. 3).
Example 4 The co-injection of poly-L-arginine prevents the CpG-ODN-induced systemic production of TNF-oG and IL-6 in vivo Mice C57B1/6 (Harlan/Olac) Peptide OVA257-264 (SIINFEKL) , an MHC class I (H-2Kb) -re-stricted epitope of chicken ovalbumin (Rotzschke et al., 1991), was synthesised using standard solid phase F-moc synthesis, HPLC-purified and analysed by mass spectroscopy for purity Dos a : 3 0 0~~.g/mouse Poly-L-arginine 60 (pR60) Poly-L-arginine with an average degree of poly-merisation of 60 arginine residues; SIGMA Chemi-cals Dose: 100ug/mouse CpG-ODN 1668 phosphothioate-modified oligodeoxynucleotides con-taining a CpG motif: TCC ATG ACG TTC CTG ATG CT, synthesised by NAPS GmbH, Gottingen.
Dose: 5 nmol/mouse Experimental aroups: 4 mice per.group 1 . OVA

2. pR60 3 . CpG 16 6 8 "~' OVA257-264 4 . CpG 16 6 8 + pR6 0 + OVA257-264 Mice were injected into each hind footpad with a total volume of 100.1 (501 per footpad), containing the above mentioned com-pounds. One hour after injection blood was taken from the tail-vein and serum was prepared. The amount of the pro-inflammatory cytokines TNF-a, and IL-6 in the sera was determined by cytokine-specific ELISAs according to the manufacturer's instructions (R&D
Systems, Inc., Minneapolis, MN).
This experiment shows that inj ection of OVAzs~-as4 alone or in com-bination with poly-L-arginine does not induce the production of detectable amounts of TNF-oc or IL-6 (Figure 4). In contrast, the injection of OVAZS7-264 peptide with CpG-ODN 1668 induces the sys-temic production of TNF-oc and IL-6. When peptide and CpG-ODN were co-injected with poly-L-arginine, the CpG-ODN induced production of pro-inflammatory cytokines was inhibited.

References:
Andreu, D., and Rivas, L. (1998). Animal antimicrobial peptides:
an overview. Biopolymers 47, 415-433.
Ganz, T. (1999). Defensins and host defense [comment]. Science 286, 420-421.
Ganz, T., and Lehrer, R. I. (1999). Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today 5, 292-297.
Goldman, R., Bar-Shavit, Z. (1983). On the mechanism of the aug-mentation of the phagocytic capability of phagocytic cells by Tuftsin, substance P, neurotensin, and kentsin and the interrela-tionship between their receptors. Ann N Y Aca. Sci. 419:143-55.
Inaba et al. (1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulo-cyte/macrophage colony-stimulating factor. J. Exp. Med. 176:1693 Hancock, R. E. (1999). Host defence (cationic) peptides: what is their future clinical potential? Drugs 57, 469-473.
Lipford, G.B., T. Sparwasser, M. Bauer, S. Zimmermann, E. Koch, K. Heeg, H. Wagner. 1997. Immunostimulatory DNA: sequence-depend-ent production of potentially harmful or useful cytokines. Eur.
J. Immunol. 27:3420 Sparwasser,T. T. Miethke, G. Lipford, A. Erdmann. H. Hacker, K.
Heeg, H. Wagner. 1997. Macrophages sense pathogens via DNA mo-tifs: induction of tumor necrosis factor-a-mediated shock. Eur J
Immunol. 27:1671 Verdijk, R.M., T. Mutis, B. Esendam, J. Kamp, C.J. Melief, A.
Brand, E. Goulmy. 1999. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active hu-man dendritic cells. J Immunol. 163:57

Claims (13)

1. Use of a polycationic compound for the preparation of a subcutaneously, intramuscularily, intra- or transdermally admin-istered vaccine, comprising an antigen, with retarded in.vivo release of said antigen.
2. Use according to claim 1, characterised in that said antigen is an antigen with side effects due to the distribution of this antigen throughout the body of an individual, if applied without the polycationic compound.
3. Use of a polycationic compound for the preparation of a sub-cutaneously, intramuscularily, intra- or transdermally admin-istered vaccine for the induction of a depot effect.
4. Use according to any one of claims 1 to 3, characterized in that said antigen is selected from the group consisting of an antigen from a viral or a bacterial pathogen, an antigen from an eukaryotic pathogen, a tumor antigen, an autoimmune antigen or mixtures thereof.
5. Use according to claims 1 to 4, characterized in that said polycationic compound is a polycationic peptide, preferably a basic polypeptide, an organic polycation comprising peptide bonds or mixtures thereof.
6. Use according to any one of claims 1 to 5, characterized in that said polycationic compound is polylysine, polyarginine, a polypeptide containing more than 50 % of basic amino acid residues in a range of more than 5, especially more than 10, amino acid residues or mixtures thereof.
7. Use according to any one of claims 1 to 5, characterized in that said polycationic compound is a synthetic peptide contain-ing at least two KLK-motifs separated by a linker of 3 to 7 hy-drophobic amino acids.
8. Use according to any one of claims 1 to 7, characterized in that said vaccine further comprises a compound with an inflam-matory potential.
9. Use according to any one of claims 1 to 8, characterized in that said vaccine further comprises a compound with a pharmaco-logical half-time at the site of administration of below 10 minutes, preferably below 5 minutes, especially below 1 minute.
10. Use according to any one of claims 1 to 9, characterized in that said vaccine further comprises immunogenic nucleic acid mo-lecules.
11. Use according to any one of claims 1 to 10,.characterized in that said vaccine further comprises inosine containing ODNs (I-ODNS).
12. Use according to any one of claims 1 to 11, characterized in that said vaccine is a locally acting vaccine.
13. Use according to any one of claims 1 to 12, characterized in that said vaccine further comprises an active substance, said active substance having an affinity to said polycationic com-pound.
CA002433794A 2000-01-28 2002-01-07 Uses for polycationic compounds as vaccine adjuvants Abandoned CA2433794A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EPPCT/EP01/00087 2001-01-05
PCT/EP2001/000087 WO2001054720A1 (en) 2000-01-28 2001-01-05 Pharmaceutical composition for immunomodulation and preparation of vaccines comprising an antigen and an immunogenic oligodeoxynucleotide and a polycationic polymer as adjuvants
AT6722001 2001-04-25
ATA672/2001 2001-04-25
PCT/EP2002/000062 WO2002053184A2 (en) 2001-01-05 2002-01-07 Uses for polycationic compounds as vaccine adjuvants

Publications (1)

Publication Number Publication Date
CA2433794A1 true CA2433794A1 (en) 2002-07-11

Family

ID=25608382

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002433794A Abandoned CA2433794A1 (en) 2000-01-28 2002-01-07 Uses for polycationic compounds as vaccine adjuvants

Country Status (4)

Country Link
EP (1) EP1347775B1 (en)
JP (1) JP2004519452A (en)
CA (1) CA2433794A1 (en)
WO (1) WO2002053184A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2433794A1 (en) 2001-01-05 2002-07-11 Intercell Ag Uses for polycationic compounds as vaccine adjuvants
WO2004084938A1 (en) * 2003-03-24 2004-10-07 Intercell Ag Improved vaccines
EP2536427A1 (en) 2010-02-19 2012-12-26 Intercell AG Ic31 nanoparticles
KR101586200B1 (en) * 2014-12-31 2016-01-18 성균관대학교산학협력단 Immunostimulatory composition, producing method of the same, and immunotherapeutic composition including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB744988A (en) * 1952-01-31 1956-02-15 Allen & Hanburys Ltd Improvements in preparations of insulin
GB8921470D0 (en) * 1989-09-22 1989-11-08 Peptide Technology Ltd Vaccines
JPH07503700A (en) * 1991-01-03 1995-04-20 Alkermes Inc
RS50101B (en) * 1996-02-24 2009-01-22 Boehringer Ingelheim International Gmbh., Pharmaceutical compositions for immunomodulation
WO2000041679A1 (en) * 1999-01-13 2000-07-20 Johns Hopkins University School Of Medicine Genetic immunization with co-delivery of nucleic acid and cytokines
CN1227030C (en) * 1999-04-19 2005-11-16 史密丝克莱恩比彻姆生物有限公司 Adjuvant composition comprising saponin and an immunostimulatory oligonucleotide
AT408721B (en) * 1999-10-01 2002-02-25 Cistem Biotechnologies Gmbh A pharmaceutical composition containing an antigen
CA2433794A1 (en) 2001-01-05 2002-07-11 Intercell Ag Uses for polycationic compounds as vaccine adjuvants
AT409085B (en) 2000-01-28 2002-05-27 Cistem Biotechnologies Gmbh A pharmaceutical composition for immunomodulation and preparation of vaccines
RU2293573C2 (en) * 2000-06-08 2007-02-20 Интерселл Аг Immunostimulating oligodeoxynucleotides
AT410635B (en) * 2000-10-18 2003-06-25 Cistem Biotechnologies Gmbh Vaccine composition

Also Published As

Publication number Publication date
WO2002053184A2 (en) 2002-07-11
JP2004519452A (en) 2004-07-02
EP1347775B1 (en) 2016-11-30
EP1347775A2 (en) 2003-10-01
WO2002053184A3 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
De Titta et al. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose
Jegerlehner et al. Regulation of IgG antibody responses by epitope density and CD21‐mediated costimulation
US9382545B2 (en) CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
JP6367554B2 (en) Dose selection adjuvanted synthetic nanocarrier
Cho et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism
JP4111403B2 (en) Immunostimulatory polynucleotide / immunomodulatory molecule complexes
DE69819150T3 (en) Immunostimulatory oligonucleotide, compositions thereof, and methods for use thereof
CA2490983C (en) Immunostimulation by chemically modified rna
Dowling et al. Toll‐like receptors: the swiss army knife of immunity and vaccine development
Smith et al. Applications of nanotechnology for immunology
Diwan et al. Dose sparing of CpG oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery
JP6406793B2 (en) Immunoregulatory nucleotide (IRO) compounds that modulate immune responses based on toll-like receptors
Steinhagen et al. TLR-based immune adjuvants
Krieg Immune effects and mechanisms of action of CpG motifs
KR101761388B1 (en) Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation
EP1204425B1 (en) Methods of modulating an immune response using immunostimulatory sequences and compositions for use therein
AT408721B (en) A pharmaceutical composition containing an antigen
EP1083232B1 (en) Transfer of mRNA using polycationic compounds
Wilson-Welder et al. Vaccine adjuvants: current challenges and future approaches
US20050013812A1 (en) Vaccines using pattern recognition receptor-ligand:lipid complexes
US20040006034A1 (en) Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
Mutwiri et al. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides
US20090017021A1 (en) Methods and compositions for inducing innate immune responses
EP0855184A1 (en) Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination
US5573916A (en) Immunogenic constructs comprising b-cell and t-cell epitopes on common carrier

Legal Events

Date Code Title Description
FZDE Dead